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Chapter 1

Memristors Based on 2D 
Monolayer Materials
Xiaohan Wu, Ruijing Ge, Deji Akinwande and Jack C. Lee

Abstract

2D materials have been widely used in various applications due to their 
remarkable and distinct electronic, optical, mechanical and thermal properties. 
Memristive effect has been found in several 2D systems. This chapter focuses on the 
memristors based on 2D materials, e. g. monolayer transition metal dichalcogenides 
(TMDs) and hexagonal boron nitride (h-BN), as the active layer in vertical MIM 
(metal–insulator–metal) configuration. Resistive switching behavior under normal 
DC and pulse waveforms, and current-sweep and constant stress testing methods 
have been investigated. Unlike the filament model in conventional bulk oxide-based 
memristors, a new switching mechanism has been proposed with the assistance of 
metal ion diffusion, featuring conductive-point random access memory (CPRAM) 
characteristics. The use of 2D material devices in applications such as flexible non-
volatile memory (NVM) and emerging zero-power radio frequency (RF) switch 
will be discussed.

Keywords: Two-dimensional materials, transition metal dichalcogenide,  
non-volatile memory, resistive switching, atomristor

1. Introduction

Memristors have been studied for several decades and a large variety of materials 
has been utilized in memristors. One of the most representative and well-studied 
materials is metal oxide, which exhibits resistive switching phenomenon and has 
been widely used as the active layer in resistive random-access memory (RRAM). 
In the recent years, two dimensional materials have been discovered and developed 
rapidly as the most attractive novel materials. In 2004, the first two-dimensional 
material, graphene (consisting of a single layer of carbon atoms), was discovered by 
A. Geim and K. Novoselov [1]. Since then, the remarkable and diverse electronic, 
optical, mechanical and thermal properties have drawn much interest and inspired 
a large amount of 2D materials to be identified and analyzed, including transition 
metal dichalcogenides (TMDs), diatomic hexagonal boron nitride (h-BN), and 
monoatomic buckled crystals Xenes [2]. The 2D atomic sheets can be defined as 
atomically thin, layered crystalline solids, featuring intralayer covalent bonding 
and interlayer van der Waals bonding. These materials are recognized as two-
dimensional since they represent the thinnest unsupported crystalline materials 
that can be realized. Graphene has been utilized in electronics devices mainly 
as the conductive electrodes since it is a zero-gap semiconductor. The material 
exhibits high electron mobility at room temperature with reported values of more 
than 15000 cm2 V−1 s−1. Nevertheless, the zero-gap nature prevents its potential 
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applications in field effect transistors (FET). MoS2, a representative TMD material, 
has ~1.8 eV direct band gap in its monolayer form. Thus, it is suitable to be applied 
in FET devices [3]. In addition, hexagonal boron nitride (h-BN) also has drawn 
considerable attention among other 2D materials as a high band gap insulating 
material at ~5.9 eV, making it suitable for the production of ultrahigh mobility 2D 
heterostructures based on various types of 2D semiconductors [4]. Now the collec-
tion of 2D materials has been expanded to hundreds or expectedly thousands owing 
to more elemental and compound sheets uncovered [2, 5].

Non-volatile memory (NVM) has long been studied and developed by both aca-
demia and industry [6]. The most common non-volatile memory is flash memory 
[6, 7]. Although flash memory has advantages of fast read and write speed, low 
power consumption and less prone to damage compared with traditional hard disk 
drives, it has some drawbacks such as limited endurance and retention, high pro-
gramming and erasing voltages, and the existing problems in small-area transistor 
structure like bias-temperature instability (BTI) or stress induced leakage current 
(SILC). In the search for the next-generation non-volatile memory, researchers have 
been working on various emerging alternatives, including ferroelectric random 
access memory (FeRAM), phase change memory (PCM), spin-transfer torque mag-
netic random access memory (STT-MRAM) and resistive random access memory 
(RRAM) [8, 9].

Among those emerging NVM, the RRAM devices show excellent endurance and 
retention compared with the commonly used flash memory, featuring lower power 
consumption, faster switching speed and better scalability [10]. The basic struc-
ture of a RRAM device is quite simple, basically a metal–insulator–metal (MIM) 
stacking. The conventional insulating material in RRAM is bulk metal oxides, 
such as SiO2, TiO2, or HfO2 [11–14]. As the most common switching mechanism, 
conductive filaments will be formed in the insulator with external electrical bias. 
Depending on the formation and rupture of the conductive filament, the device can 
be repeatably switched between a high-resistance state (HRS) and a low-resistance 
state (LRS) and sustained without power supply. This is commonly referred to 
as the non-volatile resistance switching (NVRS) or memristive phenomenon. 
Recently, extensive works have been done in the development of RRAM devices not 
only in NVM application but also in brain-inspired neuromorphic computing due to 
its analog-like multi-state switching behavior [15–17].

In the past few years, motivated by the rapid development on 2D materials, 
researchers have found that several 2D materials also exhibit memristive phe-
nomenon, expanding the NVRS materials to a large collection of ultrathin layered 
crystalline films. As a zero-gap 2D material, graphene is not suitable for resistance 
switching devices. On the other hand, graphene oxide has been successfully proved 
as the active layer in memristors [18]. MoS2 is a representative 2D semiconductor, 
which has been found to show memristive effect in the form of 1 T phase [19]. 
In addition, Sangwan et al. reported that grain boundaries in monolayer MoS2 
film can produce NVRS in planar (horizontal) structure [20]. Nevertheless, the 
planar structure without 3D stacking ability has the limitation of low integration 
density. Another example is h-BN, a representative 2D insulator, which has been 
demonstrated to show the resistive switching behavior in multilayer nanosheets 
[21]. However, the monolayer 2D materials were not reported to exhibit the effect in 
vertical MIM configuration.

In this chapter, the memristors based on 2D monolayers (primarily TMDs and 
h-BN) are presented and discussed [22–25]. The devices (collectively labeled as 
atomristors) feature forming-free bipolar and unipolar switching, with relatively 
low switching voltages down to <1 V and large on/off current ratio of more than 
106. Besides DC operation, the device can switch with fast switching speed by pulse 
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operation (< 15 ns). An atomic-resolution Dissociation-Diffusion-Adsorption 
model has been proposed attributing the enhanced conductance to metal atoms/
ions adsorption into intrinsic vacancies, a conductive-point mechanism supported 
by first-principle calculations and scanning tunneling microscopy (STM) charac-
terizations [25, 26]. Besides voltage-sweep DC measurement, other characterization 
method like current sweeping and constant electric stress can be employed on the 
2D-based memristors and illustrates more information in the resistive switching 
mechanisms [27, 28]. Benefit from the ultra-thin nature of the active layer, a novel 
application, RF switch, is realized based on the atomristors with operating frequen-
cies covering the RF, 5G, and mm-wave bands and exhibits superior performance 
compared to those of existing solid-state switches [29–31]. The results discussed in 
this chapter have been organized and reproduced with permissions based on several 
representative publications in this field.

2. Fabrication of 2D-based memristors

A dozen 2D materials have been investigated for non-volatile resistive switching, 
including transition metal sulfides (MS2, M = Mo, W, Re, Sn), transition metal sel-
enides (MSe2, M = Mo, W, Re, Sn, Pt), a transition metal telluride (MoTe2), a TMD 
heterostructure (WS2/MoS2) and an insulator (h-BN). These selected 2D materials 
can be readily grown as mono or few layers with unambiguous characterization of 
material quality and thickness, using chemical vapor deposition (CVD) or metal–
organic chemical vapor deposition (MOCVD) method [32, 33].

Two device structures were used for the 2D-based memory device fabrication. 
First is the typical crossbar device with the advantages of small-area capability and 
better probing condition. The schematic and optical image of MoS2 crossbar device 
are shown in Figure 1a and b. Most of the electrical measurements were performed 
on the crossbar devices. The other structure, the litho-free and transfer-free device, 
was fabricated based on the 2D materials directly on metal foils to avoid possible 
residues or contamination induced by lithography or transfer process (schematic 
shown in Figure 1c). The crossbar device fabrication started with bottom electrodes 
(BE) patterning by electron beam lithography and 2 nm Cr/60 nm Au metal stack 
deposition on an SiO2(285 nm)/Si substrate. Monolayer TMD was then transferred 
onto the fabricated substrate using a resist-free polydimethylsiloxane (PDMS) 
stamp transfer method. In this method, monolayer TMD was brought into con-
formal contact with PDMS. The substrate-TMD-PDMS system was subsequently 
soaked into diluted water. Since the original SiO2 substrate is hydrophilic, it is easy 
for water to diffuse into the TMD-substrate interface, which helps separate the 
two layers. Then, the PDMS-TMD film was brought into contact with the target 
substrate with BE on it. The PDMS stamp was peeled off to leave monolayer TMD 
films on the target substrate. CVD h-BN was transferred onto BE from the Ni foil 

Figure 1. 
(a, b) schematic and optical image of MIM structure of TMD crossbar device. (c) Schematic of TMD litho-free 
and transfer-free device based on MoS2 grown on Au foil.
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substrate using another poly(methyl methacrylate) (PMMA)-assisted wet transfer 
method. A thin layer of PMMA was spin coated onto the h-BN/Ni and then the 
Ni was etched away in 0.5 M ammonia persulfate solution. The PMMA/h-BN was 
rinsed in DI water to remove any etchant by-product before lifting by the target 
substrate with BE. The PMMA was then removed by immersing in acetone. For 
crossbar devices, top electrodes (TE) was patterned by e-beam lithography and 
deposited by e-beam evaporation using the same fabrication process as BE. In litho-
free and transfer-free device, metal foils were used as global BE, and the TE (60 nm 
Au) was deposited via a shadow mask.

3. DC and pulse switching characteristics

DC electrical measurements were performed on as-fabricated devices consisting 
of atomic sheets with Au bottom and top electrodes and revealed memristive phe-
nomenon in a dozen 2D systems (Figure 2). For instance, MoS2, the prototypical 

Figure 2. 
Typical I-V curves of resistive switching behavior in crossbar devices for single-layer (1 L) MoS2, WS2, ReS2, 
MoSe2, WSe2, ReSe2, h-BN, and few-layer (FL) SnS2, SnSe2, MoTe2, and litho-free device for monolayer  
WS2/MoS2 heterostructure, and multilayer PtSe2. The y-axes are normalized as current density J.
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TMD, featured low currents corresponding to a high-resistance state until the 
application of ~1.7 V, which “SET” the 2D-layer switch to a low-resistance state that 
maintains until a negative voltage is applied to “RESET” it. A compliance current is 
typically applied during SET process to prevent irreversible breakdown, while no 
compliance current is needed during RESET process. Interestingly, the monolayer 
non-volatile memory devices required no electro-forming step, a prerequisite in 
transition metal oxides (TMOs) that initializes a soft dielectric breakdown to form 
a conductive filament for following resistive switching operation [10]. Although 
some researches have shown that electroforming can be avoided by thickness scal-
ing into the nm-regime, excessive leakage current from trap-assisted tunneling is a 
limiting consequence [10, 34]. Here, an ON/OFF ratio above 105 can be achieved in 
2D NVRS devices, which highlights a defining advantage of crystalline monolayers 
over ultrathin amorphous oxides. These collective results of memristive phenom-
enon in representative atomic sheets allude to a universal effect in non-metallic 2D 
materials which opens a new avenue of scientific research on defects, charge, and 
interfacial phenomena at the atomic scale, and the associated materials design for 
diverse applications. Certain 2D memristors of the same MIM construction feature 
unipolar switching where voltage of the same polarity is used for both SET and 
RESET programming. Regarding the polarity dependence, the precise understand-
ing of the factors that produce either bipolar or unipolar switching in 2D sheets is 
yet unclear and deserving of atomistic and unipolar switching is a complex compe-
tition among several parameters including lateral area, grain size, and modeling and 
microscopy studies for elucidation. A recent study in TMOs have suggested that the 
co-existence of bipolar compliance conditions, which may help the understanding 
of the phenomenon [35]. However, the underlying physics of unipolar switching 
has been previously established to be originated from electro-thermal heating that 
facilitates diffusion. A symptom of this effect is that a relatively higher RESET cur-
rent is required to increase the local temperature to break the conductive link.

In most of the experiments, gold was selected as an inert electrode to rule out 
any switching effect that might arise from possible interfacial metal oxide forma-
tion. Furthermore, to rule out the undesirable contribution of polymer contami-
nation from microfabrication, very clean devices including lithography-free and 
transfer-free devices (Figure 3a) were made, which also produced the memristive 
effect, alluding to an intrinsic origin. The lithography-free and transfer-free devices 
are based on monolayer MoS2 grown directly on gold foil [36].

Previously reports have shown that line or grain boundary defects in polycrys-
talline 2D multi-layers play an intrinsic role in switching [37]. While it may be a 
possible factor in monolayers, it is not an exclusive factor as shown in Figure 3b from 
a vertical MIM device realized on a single-crystal CVD MoS2, highlighting the poten-
tial role of localized effects. In addition, the NVRS phenomenon is not restricted to 
inert electrodes, since monolayer TMD with electrochemically active (Ag) electrodes 
can produce memristive effect as presented in Figure 3c. Moreover, monolayer 
graphene has also been demonstrated to be a suitable electrode option (Figure 3d).

Switching performance of retention time, DC switching cycling and vari-
ability was measured in 2D-based memristors. The NVRS devices present distinct 
advantages in terms of ultimate vertical scaling, down to an atomic layer thin with 
forming-free characteristics. By replacing metal electrodes with graphene, the 
entire memory cell can be scaled below 2 nm. Also, the transparency of graphene 
and the unique spectroscopic features of 2D materials provide the advantages of 
direct optical characterization for in-situ studies and in-line manufacturing testing. 
At an early stage, manual endurance data (Figure 4a and b) is not yet sufficient 
to meet the strict requirements for solid-state memory, a reflection of the nascent 
state of 2D atomristors compared to TMO memristors, which had similar endurance 
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(<103 cycles) in early research but has now advanced above 106 cycles. Oxidation by 
interface engineering or doping may improve endurance performance, similar to 
what has been observed in amorphous-carbon memory devices [38]. Preliminary 
retention test of non-volatile states shows up to a week (Figure 4c), which is already 
sufficient for certain neuromorphic applications involving short and medium-term 
plasticity [39]. In addition, the sub-nanometer thinness of monolayers is promising 
for realizing ultra-high densities in 3D array architecture. As an estimation, at a 
loose pitch of 10 nm, an atomristor density of 1015/mm3 would provide ample room 
to mimic the density of human synapses (~109/mm3). For single-bit single-level 
memory storage, it corresponds to a theoretical areal density of 6.4 Tbit/in2.

Beyond DC characterization, pulse SET/RESET is feasible for 2D-based 
memristors (see Figure 5 for monolayer h-BN device). The read I-V curves before 

Figure 3. 
Typical I-V curves of monolayer MoS2 memristors with different device conditions, including (a) litho-free 
and transfer-free device, (b) single crystal device, (c) litho-free device with Ag as BE and TE, and (d) crossbar 
device with graphene as TE and Au as BE.

Figure 4. 
(a,b) Endurance and resistance distribution of MoS2 crossbar MIM device with 150 manual DC switching 
cycles. (c) Time dependent measurements of MoS2 crossbar switch featuring stable retention over a week at 
room temperature.
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and after applying pulses clearly show the switching from OFF to ON state 
and from ON to OFF state, with 15 ns SET switching speed, and 50 ns RESET 
 switching speed.

4. Parameter-dependent studies in 2D-based memristors

To gain more insights into the underlying mechanism(s), electrical measure-
ments with the dependence of temperature, area scaling, compliance current, 
voltage sweep rate and layer thickness were performed with MoS2 as the active layer 
owing to its greater material growth and characterization maturity. The low-voltage 
I-V characteristics at different temperatures are analyzed to explain the electron 
transport mechanisms at LRS and HRS. Metallic ohmic conduction can be deduced 
at LRS (Figure 6a) since the current decreases as the temperature increases, and the 
normalized conductance

 ( ) ( )/ / /= I VnG dI dV   (1)

is approximately one, a signature of linear transport that can be attributed to 
direct tunneling

 
∗ −

 
 
 

4 2
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d m
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Where J is the current density, m* is the effective mass, φ is the tunnel barrier 
height, h is Planck’s constant, and K is proportional to the lateral area (A) and 
dependent on the barrier parameters (m, φ, d) [40]. d is the 2D barrier thickness. 
The direct tunneling model exhibits linear transport characteristics and is illus-
trated with an MIM band diagram (Figure 6a). Non-linear I-V characteristics are 
observed at HRS (Figure 6b), showing the current increasing as the temperature 
increases. The HRS data can be best fitted by the Schottky emission model with 
good agreement (Figure 6c) [40].
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Figure 5. 
(a) 15 ns SET and (b) 50 ns RESET pulse demonstration in h-BN memristor.
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where A* is the effective Richardson constant, m0 is the free electron mass, T 
is the absolute temperature, q is the electronic charge, ϕB is the Schottky barrier 
height, E is the electric field across the dielectric, k is Boltzmann’s constant, ε0 is the 
permittivity in vacuum, and εr is the optical dielectric constant. For estimation, the 
effective thickness of ~1 nm is used and m*/m0 is ~1. The extracted barrier height is 
~0.47 eV at 300 K, and the refractive index n is 6.84.

Area scaling studies have also been conducted and clearly show distinct 
profiles with the LRS relatively flat while the HRS has a more complicated rela-
tionship (Figure 6d). The LRS profile is consistent with the theory of a single 
(or few) localized filament(s) for TMO-based RRAM [10, 41]. With the area 
below 100 μm2, the HRS resistance scales inversely with area owing to uniform 
conduction. For larger sizes, the resistance is relatively area-invariant, which can 
be attributed to the presence of localized grain boundaries. Note that the average 
domain size of typical CVD MoS2 monolayer is ~102–103 μm2. The current and 
resistance dependence on compliance current (see Figure 6e and f) reveal a linear 
relation that can be explained by an increase in the cross-sectional area of a single 
filament or to the formation of multiple filaments [41]. From the results of the 
temperature-dependent conduction experiments, the existence of Schottky barrier 
through TMD-metal interface from literatures [42, 43], and area-dependent stud-
ies, the NVRS behavior in MoS2 devices can be explained by the proposed model 

Figure 6. 
Dependence of (a-c) temperature, (d) area scaling, (e, f) compliance current, (g) sweep rate, and (h, i) layer 
thickness of MoS2 memristors.
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that, during SET process, the electrons are transported through a filamentary-like 
1D conductive link (or a virtual “conductive point”), and during RESET process, 
the conductive link is broken, resulting in a Schottky barrier at the device inter-
faces. Atomic level elucidation of the mechanisms(s) through advanced micros-
copy imaging and theoretical modeling is of great importance and is the focus of 
further research.

As to applications, the programmable resistance states are ideal for multilevel 
memory and neuromorphic computing. Moreover, the intrinsic low-resistance values 
~5 Ω (Figure 6f), inspires a new application for low-power non-volatile RF switches. 
The dependence of the SET/RESET voltages on sweep rate (Figure 6g) suggests that 
more time is needed for ionic diffusion, which results in lower switching voltages. 
Layer dependent studies up to four layers demonstrate that the switching phenom-
ena can be observed in few-layer 2D films (Figure 6h), with a distinction that the 
LRS resistance increases with layer number (Figure 6i).

5. Switching mechanisms in 2D-based memristors

To further elucidate the mechanism of NVRS phenomenon in 2D monolayers, a 
Dissociation-Diffusion-Adsorption (DDA) model has been proposed, (Figure 7a). In 
the vertical MIM structure, the symmetric electrodes choice (in most cases both TE 
and BE are gold) enables the formation of “conductive points” from either the top or 
bottom electrode. The first step is “Dissociation”, which is based on the metal atom/
ion dissociating from a cluster of metal atoms at the electrode-2D material interface. 
It is straightforward that this process depends on the choice of metal electrode. As 
discussed above, Au electrodes, as a noble metal, were selected to rule out potential 
effects from interfacial metal oxidation. It is also worth noting that Au has relatively 
low atomization enthalpy among various transition metals, thus can serve as an 
appropriate electrode [44]. First-principle calculation results have been performed 
and show that the dissociation energy required to move a Au atom sufficiently far 
from the bulk Au surface is 3.80 eV. For conventional conductive-bridge memory, 
the dissociation step is a common prerequisite that relies on the formation of metal 
ions to create a conductive filament and has been extensively investigated in previous 
reports, so the subsequent diffusion and adsorption steps will be the focus [45].

After Au atom/ion dissociates from the electrode, two scenarios may happen, 
with either directly adsorbing (chemical bonding) into a vacancy when they are 
close (Case 1), or it first weakly bonds to the pristine region and subsequently 
diffuses across the surface and finally finds a vacancy to fill and bond (Case 2). 
The two scenarios are illustrated in Figure 7a. Case 1 is a simpler scenario with only 
two steps “Dissociation” and “Adsorption” courtesy of the initial close position to 
a vacancy. On the other hand, Case 2 consists of all three steps and is expected to 
be more common since the adsorbed neutral Au atom (Au) or positively charged 
Au ion (Au+1) in the pristine region are energetically favorable compared to their 
isolated states. Benefitting from the simplicity of Case 1, first-principle calculations 
for a collection of 12 materials were conducted, which have all been demonstrated 
to show NVRS behavior. In contrast, for the more probable Case 2, owing to the 
system complexity, only MoS2 is analyzed as a prototypical monolayer in the 
TMD family.

In the simpler scenario Case 1, the dissociated Au is at first in an isolated state 
and tends to directly get adsorbed into the defect, resulting in the formation of 
conductive point that causes switching from HRS to LRS. It has been reported that 
the most common defects for 2D materials are vacancies, for example, S vacancy in 
MoS2, Se vacancy in MoSe2, B vacancy in BN, etc. The first-principle calculations 
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indicate that there is no barrier energy for Au to move in and bind with the defect 
site. This is straightforward to understand since isolated Au is unstable and the 
system energy tends to decrease as Au moves towards a defect site. In Figure 7b, the 
adsorption energy of Au atom/ion into a vacancy site has been calculated for various 
2D materials. The negative adsorption energy (the energy difference between final 
state and initial state) means that adsorption is energetically favorable and releases 
energy, while a positive value means that the adsorption requires extra energy. 
Based on the calculations on diverse 2D materials, a common trend can be observed 
that both Au+1 and Au are energetically favorable to be adsorbed into defects, result-
ing in a SET process. To be more specific, Au+1 is the most favorable candidate, then 
neutral Au, and finally, negatively charged Au ion (Au−1). A major reason for such a 
trend is that Au+1 is the most energetically unstable in its isolated vacuum state, thus 
releasing the most energy when covalently binding to a vacancy site, followed by 
the neutral Au atom and then Au−1.

For the “Diffusion” step in Case 2, Figure 7c shows the calculated diffusion 
pathway and barrier energies (the energy difference between transition state and 
initial state) with Au moving along MoS2 surface from the top of one S atom to the 
top of a neighboring S atom in the pristine region (without defects). Based on the 
first-principle calculations, the energy barrier for the Au atom/ion moving from 
one S atom site to another is quite low (< 0.1 eV), indicating that Au atom/ion can 
easily migrate around the pristine region at room temperature. This can be easily 
understood because the adsorption of Au atom/ion in the pristine region is weak, 
making them very mobile on the surface.

Figure 7. 
(a-d) Calculated energy results and (e-g) STM observations for dissociation-diffusion-adsorption 
(DDA) model.
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With regard to the final “Adsorption” step in Case 2, Au will diffuse to the atom 
close to the defect site, and eventually bind to it, since Au can easily move around the 
surface. Figure 7d shows the calculated energies for the transition and final states in 
the adsorption step. The low energy barrier (≤ 0.18 eV) indicates that Au/Au+1 can 
adsorb from the pristine region to the defect site, especially at high temperatures due 
to the Joule heating from the increased electrical current. In addition, this process 
can release a large amount of energy (≥ 1.72 eV). The low energy barrier and high 
energy released suggest that the adsorption of Au/Au+1 from the pristine region to 
the defect site is preferable both kinetically and energetically. However, the reversed 
process, for instance, the Au/Au+1 moving out from the vacancy site to the pristine 
region, has a much higher energy barrier (1.89 eV). Thus, it is much more difficult 
for Au/Au+1 to desorb from the vacancy site. As a result, Au/Au+1 can stably bind to 
the vacancy site, acting as a conducting point at LRS. During the RESET process, a 
high current usually passes through the conductive point, providing enough energy 
to overcome the barrier and driving Au/Au+1 away from the vacancy site. On the 
other hand, the Au−1 ion has the highest energy barrier and the smallest binding 
energy. As a result, the Au−1 ion is the least favorable to participate in the NVRS from 
both the kinetic and energetic viewpoints and it is not likely to play an essential role 
in resistive switching for both the scenarios discussed.

To provide experimental evidence to support the Dissociation-Diffusion-
Adsorption model discussed above, STM measurement fitted with a gold tip 
was performed. STM was at first used for atomic resolution imaging of the MoS2 
surface to locate and identify the sulfur vacancies (Figure 7e). It was followed by 
a controlled physical contact of gold STM tip with the MoS2 surface and voltage 
sweepings to emulate NVRS operation in a vertical MIM memory device. The STM 
image of the same location after SET shows a bright protrusion on the surface 
(Figure 7f). Stability of the site indicates it is not a diffusing atom. Instead, it is 
strongly bonded to the surface and identified as a gold atom absorbed into the 
sulfur vacancy [26]. RESET is realized by an opposite voltage sweeping where the 
gold atom is removed from the defect site (Figure 7g). The differences in sharp-
ness and contrast of the STM images before and after the switching indicate that 
the tip apex has been changed due to the dissociation of a gold atom from the STM 
tip. In an extensive STM measurement, the STM tip was not only placed on top 
of the sulfur vacancy, but also in a pristine (defect-free) region. Compared with 
the I-V curves which resemble NVRS observed at the defect locations, electrical 
measurements on pristine regions reveal a tunneling-like I-V behavior with no 
switching phenomenon, suggesting the important role of defects (e.g. S vacancy) 
in a switching event [26].

6. Special operation methods of 2D-based memristors

To further investigate the NVRS phenomenon during SET process in the MoS2 
memristors, a current-sweep measurement method was introduced to the devices 
to get a more comprehensive understanding. Figure 8a shows the voltage–current 
(V-I) relationship by current-sweep method to SET a MoS2 device. The transition 
starts at a HRS, followed by a gradual increase of both voltage and current. When 
the current reaches ~1.8 mA, the voltage suddenly decreases while the conduction 
current remained the same. In other words, the resistance of the device changes 
from a higher resistance state to a lower resistance state. Four subsequent voltage 
drops can be observed from 0.01 A to 0.03 A (as shown in the amplified figure). 
The device remains at the final lowest resistance state during and after the back-
ward current sweeping, which indicates that a NVRS process from HRS to LRS 
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(SET) is realized by current sweeping. Compared to the single-step SET process 
realized by voltage sweeping, multiple transition steps can be observed during 
current-sweep measurement. Note that the voltage for the first transition in current 
sweeping is ~0.65 V as shown in Figure 8a, which is very close to the SET voltage 
using voltage sweeping on the same device.

In Figure 8b, similarly, a multiple-step SET can be observed by current sweep. 
Moreover, the RESET process realized by current sweeping is presented in the same 
figure. When the current sweeps to ~12 mA, the voltage abruptly rises, suggesting 
a transition from LRS to HRS. This transition current is consistent with the RESET 
current (~10 mA) observed using voltage sweep method. Compared to RESET 
behavior by voltage sweeping, a compliance voltage is required in the case of 
current sweeping to avoid extremely high voltage across the device. Thus, it can be 
deduced that the RESET process is more likely to be a current/thermal-driven effect 
instead of voltage-driven effect. During RESET, a large amount of Joule heating 
can be induced by the high RESET current, which dissolves the conductive path 
first and then the Au ions will be migrated though porous regions or defects in the 
MoS2 film, or back to the electrodes by reduction [10, 46]. This Joule heating effect 
is supported by the experimental observation that the transitions in voltage-sweep 
RESET (although sometimes with multiple steps) are sharp and sudden rather 
than gradual changes in 2D-based NVRS devices, a signature of Joule heating-
dominated RESET process. Another evidence is that the MoS2-based memristors 
can be switched in both bipolar and unipolar, which suggests it is not the electrical 
bias but the current level that plays a more important role in the RESET switching. 
Figure 8c shows the “READ” operations on the device before and after the current-
sweep switching, which demonstrates the non-volatility of the NVRS behavior 
with a large on/off ratio of ~107. It can be observed that the resistance state after 
current-sweep RESET is consistent with the initial HRS state, which indicates the 
stable switching characteristics and alludes to a potential approach using current 
sweeping to improve the cycle-to-cycle variability at HRS, a long-standing issue for 
RRAM devices [47].

Figure 9a and c exhibit the switching curves of the SET process by cur-
rent sweeping and RESET by voltage sweeping respectively on the same device. 
Similarly, the switching characteristics for current-sweep SET and voltage-sweep 
RESET tested on another device are shown in Figure 9b and d, respectively. Based 
on the statistical data of all the measured devices, a relationship can be established: 
normally for a device with single-step SET behavior by current sweeping (Figure 
9a), the voltage-sweep RESET is also single-step (Figure 9c); on the other hand, 
for a device that has multiple steps during current-sweep SET (Figure 9b), a 
multiple-step RESET can be obtained by voltage sweeping (Figure 9d). With the 

Figure 8. 
(a, b) Current-sweep switching curves and (c) states reading behaviors in MoS2 memristors.
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experimental results that show single or multiple transition steps, it can be inferred 
that multiple defect/vacancy-rich regions exist in the device area, which leads to 
single or multiple conductive points formation during NVRS.

Figure 10 presents the resistance evolution under constant voltage stress 
(CVS) on the devices at HRS. The working devices refer to the devices that exhibit 
stable switching characteristics and have been tested for several DC cycles and 
RESET to HRS before stress measurement. Then, relatively low constant volt-
age bias (< VSET) is applied on the devices with positive CVS (Figure 10a) and 
with negative CVS (Figure 10b). It can be observed that the resistance changes 
from HRS to an even higher resistance state (labeled as HRS’). This phenomenon 
is opposite to the observation in the TMO-based devices, where the resistance 
is switched from HRS to LRS under CVS [48, 49]. Similar behavior has been 
observed with both positive and negative CVS, which can be related with the co-
existence of unipolar and bipolar operations in MoS2 memristors. Moreover, CVS 
test is performed on the fresh (as-fabricated) devices and shows similar HRS to 
HRS’ transition (see Figure 10c). This phenomenon suggests that for both fresh 
devices and pre-RESET working devices, the commonly referred “HRS” is not the 
highest resistance, but actually an intermediate state that can still be modulated 
to a higher resistance state (HRS’). However, if the voltage stress goes higher than 
the SET voltage (Figure 10d), the device will switch to LRS and then fail due to 
high power.

The previously discussed DDA model with the assistance of metal atom/ion 
migration can be used to explain the NVRS phenomenon in MoS2 memristors. The 
CVS test results provide more insights to this model with the tunable resistance 
states illustrated in Figure 10e. The existence of HRS’ suggests that, a small portion 
of metal atoms may be embedded in the MoS2 film at HRS, which could possibly 

Figure 9. 
The resistance switching characteristics of (a, b) current-sweep SET and (c, d) voltage-sweep RESET on the 
same device with similar transition behavior.



Memristor - An Emerging Device for Post-Moore’s Computing and Applications

16

be induced by deposition process for as-fabricated devices or incomplete voltage-
sweep RESET for working devices. Previous reports have shown experimental 
evidence to support this assumption that metal atoms can diffuse into the defects in 
2D TMD films during the evaporation deposition process of TE confirmed by cross-
sectional TEM images [50, 51]. These embedded metal atoms/ions are negligible 
in bulk metal oxides, but they can be important in the atomically thin MoS2 sheets. 
With a relatively low voltage stress, these metal atoms tend to move out of the 
vacancies due to the accumulated Joule heating effect, which results in a transition 
to HRS’. This unique resistance evolution behavior under CVS suggests a distinct 
property for 2D materials. For traditional TMO-based bulk materials, the resistance 
state is typically controlled by the characteristics of the conductive filament and the 
“gap” region between the electrode and filament tip [10, 52]. While for 2D materi-
als, the resistance state can be modulated by the interaction between atoms/ions 
from electrodes and interfacial vacancies, enabling atomic-level resistance control 
with advanced defect engineering for ultra-thin crystalline 2D materials.

Figure 10. 
(a-d) Resistance evolution under CVS MoS2-based memristors at HRS in different scenarios. (e) Illustration 
for the CVS process.
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7. Applications in flexible non-volatile memory and RF switch

Applications in flexible memory devices and RF switches were investigated 
based on 2D memristors. The high breaking strain and ease of integration of 2D 
materials on soft substrates can afford flexible non-volatile memory devices that 
can endure mechanical cycling (Figure 11 for MoS2-based memristor).

Non-volatile low-power RF switches represents another major application of 
atomristors. The low ON-state resistance values, below ~10 Ω, is critical for low-
loss non-volatile RF switch circuits. The intrinsic experimental RF characteristics 
of monolayer MoS2 switch show promising results of ~0.3 dB insertion loss in the 
ON-state (Figure 12a) and isolation below 20 dB in the OFF-state (Figure 12b) at 
frequencies up to 50 GHz [29]. By using monolayer h-BN as the active layer in the 
RF switch, the device exhibits a cutoff-frequency figure of merit of around 129 
THz with a low insertion loss (≤0.5 dB) and high isolation (≥10 dB) from 0.1 to 
200 GHz. In addition, it shows a high-power handling (around 20 dBm) and nano-
second switching speeds, which are superior to those of existing solid-state switches 
[31]. This new application leads to the development of a nanoscale energy-efficient 
high-frequency solid-state switch technology for the rapidly growing communica-
tion systems in the 5G band and beyond.

A comparison between 2D atomristors discussed in this chapter and other 
representative 2D-based memory devices is presented in Table 1, highlighting the 
thinnest active layer thickness with superior switching properties and reliability as 
mentioned above.

Figure 11. 
(a) Stable resistance states and (b) switching behaviors after 1000 bending cycles at 1% strain.

Figure 12. 
Radio-frequency characterization of the MoS2 RF switch: (a) insertion loss and (b) isolation.
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8. Conclusion

In summary, a universal memristive phenomenon has been observed in 2D 
materials. These 2D-based memristors exhibit low switching voltage (<1 V), large 
on/off ratio (>106), fast switching speed (<20 ns), and forming-free characteristics. 
A mechanism based on metal atoms/ions adsorption into intrinsic vacancies pro-
ducing an atomic-level conductive-point effect, has been proposed and supported 
by first-principle calculations and STM measurements. Constant voltage stress has 
been applied on the 2D-based memristors at high resistance state (HRS), revealing 
an additional higher resistance state that has not been discovered in conventional 
metal-oxide devices. Current sweeping method unveils the details hidden in the 
commonly used voltage-sweep curves, in which the transition step number could 
be attributed to the number of defects/vacancies. These open up a new materials 
space that might advance diverse applications including high-density neuromorphic 
computing, non-volatile memory fabrics, and zero-power RF switches.
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Chapter 2

Effect of Surface Variations on 
Resistive Switching
Mangal Das and Sandeep Kumar

Abstract

In this chapter, we study factors that dominate the interfacial resistive switching 
(RS) in memristive devices. We have also given the basic understanding of different 
type of RS devices which are predominantly interfacial in nature. In case of resis-
tive random access memory (RRAM), the effect of surface properties on the bulk 
cannot be neglected as thickness of the film is generally below 100 nm. Surface 
properties are effected by redox reactions, interfacial layer formation, and presence 
of tunneling barrier. Surface morphology affects the band structure in the vicinity 
of interface, which in turn effects the movements of charge carriers. The effect of 
grain boundaries (GBs) and grain surfaces (GSs) on RS have also been discussed. 
The concentration of vacancies (Ov)/traps/defects is comparatively higher at GBs 
which leads to leakage current flow through the GBs predominantly. Such huge 
presence of charge carriers causes current flow through grain boundaries.

Keywords: resistive switching, interface, grain boundary, oxygen vacancy, surface 
morphologies

1. Introduction

In this chapter, the fundamentals of nanoionic redox based resistive switch-
ing materials are described including different modes of switching. The primary 
parameters have also been discussed which essentially affect the resistive switching 
behavior. In addition, this chapter encompasses the various physical as well as chemi-
cal phenomena occurring at nano level during resistive switching of devices and 
other related trending technological areas are also included. An introduction to three 
distinct kinds of redox based resistive switching materials is given followed by their 
short history and promising applications into device fabrication field. Further, a brief 
discussion related to requirement and optimization of device performance parameters 
has been incorporated along with future prospects, challenges and important indus-
trial applications such as memory, logic circuits and so on. The elements that observe 
resistive switching are driven by a reversible phenomenon taking place between 
two terminals. This behavior depicts primarily two different resistance values of 
nonvolatile nature depending on the external electrical bias conditions [1]. However, 
such a reversible behavior obtained under continuous applied external stimuli can 
also be achieved within more than two resistance levels commonly called as multilevel 
resistive switching. The term ‘nonvolatile’ suggests the retention or preservation 
of change in resistance level after removal of the external stimuli. Such memristive 
materials are capable of memorizing these resistance values under the influence of 
stimuli [2]. Similar to phenomenon of resistive switching, there can be different 
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possible switching scenarios such as magnetoresistive phenomenon i.e. spin-transfer 
torque, electrical effects like the leakage current via gate oxide layer containing 
trapped defects, change in structure/phase among amorphous and crystalline phases, 
and nanoionic redox phenomenon [1]. So, this chapter deals with the phenomenon of 
nanoionic redox realized due to ion movement within the two terminal based device 
structure elements and results into different resistance values of the material. In this 
chapter, a few terminology such as redox-based resistive switching random access 
memory (RRAM), resistive switching and/or memristive etc. is to be used frequently. 
Such terms have been essentially included to explain the fundamental physical charac-
teristics of materials showing potential in multilevel switching or analog properties.

2. Resistive system and type of physical mechanism

Following the systematic and consistent study of RRAM devices, it has been 
realized that the resistive switching material (I) embedded between two metal 
electrodes (M) plays a key role in switching phenomenon in the metal–insula-
tor–metal (MIM) stratified device structures. In general, MIM devices are referred 
to sandwiched stacks/layers of metals and insulator. In a simplistic way, the resis-
tive switching effect can be identified phenomenology as the different switching 
occurring within stratified MIM layered structure. For such device structures, it is 
comprehensible to understand the different locations of switching while moving 
vertically from one metal electrode to other. Therefore, there can be following pos-
sible switching locations (Figure 1):

i. switching taking place in close proximity to interface of either metal 
electrode

ii. switching at or near middle of the electrode interfaces

iii. switching occurring over or along the whole path formed among interfaces 
of metal electrodes.

Figure 1. 
Different types of resistive switching in which the formation of an interfacial layer between metal electrode and 
oxide plays a key role in device performance.
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On the other hand, switching locations are also possible along perpendicular 
direction i.e. in the plane of device cross section (lateral direction). Due to this, 
following switching types are induced:

i. switching based on the formation and rupture of conducting filament (CF) 
called as filamentary switching.

ii. switching dependent upon contact area. In this case, the switching phenom-
enon participates to whole device cross section. This results into the scaling 
of current with the area of cross section. Usually, such a switching behavior 
is also termed as interface type switching due to the process taking place near 
the metal electrode.

3. Interface-type switching

The interface type switching is usually of uniform nature and shows area 
scalable characteristics. ReRAMs devices utilizing metal oxides (initially semi-
conductor or conductor) are frequently governed by interface type switching 
phenomena. Such a resistive switching behavior is primarily observed at the metal 
oxide and electrode interface. In this context, Baikalov et al. [1] investigate the 
resistance behavior of theperovskite oxide based memory devices. It has been 
demonstrated that an applied electric field significantly modifies the value of 
contact resistance measured among perovskite oxide and metal electrode. In order 
to understand the interface type resistive switching, many groups of researchers 
have given effort to establish different models for switching mechanism. These 
models are framed using ionic point defects (oxygen vacancies) and their drifted 
movement or electromigration within the metal oxide materials [1–5]. Some of 
the models are based on the formation of charge carrier i.e. electrons and/or holes 
trapping at defect sites [6] and observation of Mott transitions taking place at 
the interfaces [7, 8]. In the case of ReRAMs, low resistance value (in the range of 
kΩ) as well as the extended retention behavior (in the range of years) are realized 
in terms of models based on the modification of atomic or ionic configurations. 
Therefore, ionic and electronic mechanisms are used to examine the resistive 
switching characteristics and its origin at microscopic level. For ReRAMs, the 
interface type resistive switching is primarily predicted to dominant if the 
resistance of device scales with area. Therefore, Nb-doped SrTiO3 is governed by 
interface type switching whereas filament based resistive switching prevails in 
NiO based memory cells [9, 10].

In case of valence change memory (VCM) devices, the resistive-switching 
phenomenon is understood by the chemical reactions and events taking place near 
or at the interface of metal electrode and oxide. While characterizing such VCM 
devices through spectroscopic techniques, the interface related switching behav-
ior is investigated after averaging the area which essentially eliminates the need 
of any optical arrangements for focusing and/or magnification. The predefined 
interface dependent switching helps to designate the localized resistive switching 
phenomenon ascribed to CFs. Due to such interface i.e. thin oxide layer developed 
between insulator oxide and reactive metal electrode, the external stimuli driven 
electrochemical modification of interface considerably affects the performance of 
device. It is known that devices fabricated with reactive electrodes and insulating 
oxide materials show redox type reactions inducing movement of oxygen towards 
metal electrode (Table 1).
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3.1 Formation of a blocking layer on conducting oxides

The formation of an interface between oxide layer and an active electrode 
shows significant impact onto the different phenomena such as nonlinear trans-
port of the charge carriers and affects performance of VCM type devices. In par-
ticular, the nonstoichiometric metal oxide layer demonstrates reversible oxidation 
and reduction at or near the interface which makes device functional. It is known 
that the interface type switching is mainly observed in conducting oxides like 
doped manganites utilizing metal electrodes e.g. Al, Ti and Ta etc. Such electrode 
metals exhibit relatively high oxygen affinity facilitating interface driven switch-
ing [9, 15, 16]. In case of Pr0.7Ca0.3MnO3 (PCMO), it has been established that the 
growing Al metal electrode is oxidized whereas deposited PCMO thin film layer 
depicts the reduction process during deposition process as evidenced by thorough 
in-situ photoemission studies. Therefore, in interface type resistive switching 
process, the prominent electronic transport across interface is highly dependent 
upon the developed interfacial oxide thin layer. Such insulating oxide layers at 
interface are important in deciding the resistivity behavior during switching of the 
fabricated devices [17]. In TiN/SiO2/Fe stacked structure, Feng et al. reported RS 
behavior induced because of thin FeOx transition layer at SiO2/Fe interface formed 

Switching Device 
Fabrication 
Technique of 
Switching layer

Retention 
(sec)

Endurance 
(cycle)

Switching 
Voltage

Type of Switching Ref

Au/LaMnO3/C-AFM
Pulsed injection 
metal–organic 
chemical vapor 
deposition 
(PI-MOCVD)

— — VSET = 4 V, 
VRESET = −6 V,

Oxygen 
displacement, Mn 

oxidation
state(+3.6 to +3.1), 

Work function 
decreases by 

0.28 eV.

[11]

Ag/Pr0.6Ca0.4MnO3/Al
Pulsed laser 
deposition (PLD)

3.6x105 12x103 — Formation and 
modulation 

of a rectifying 
interfacial
AlOx layer

[12]

Pt/PbTiO3/
Nb:SrTiO3(100)
Hydrothermal 
method

3x103 5x102 VSET = 4 V, 
VRESET =
−4, −6 V

Trap controlled 
spacecharge-
Limited, M

odulation of the Pt/
PbTiO3Schottky-

like junction

[13]

Pt/Nb:STO/Pt
PLD

106 107 — Pt/single crystal 
Nb:SrTiO3 
Schottky
junction

[10]

Ti/PCMO/SrRuO3

PLD
— — VSET = 6.8 V, 

VRESET =
−6.8 V

Cacomposition, 
dependence on the 
RS characteristics,

formation of 
amorphous 

TiOylayers at the 
interfaces

[14]

Table 1. 
Comparison of different parameters for interfacial type RS devices.



29

Effect of Surface Variations on Resistive Switching
DOI: http://dx.doi.org/10.5772/intechopen.97562

during processing of plasma-enhanced tetraethyl orthosilicate. However, after 
incorporating Pt into Fe electrode (TiN/SiO2/Fe0.73Pt0.27) reduces the concentra-
tion of Fe in thin FeOx layer which eventually improved the data dispersion of 
switching parameters [18]. In another report, the annealing of TiN/SiO2/FeOx/
FePt stratified structure dramatically modifies RS properties. Under optimized 
annealing conditions, excellent improvements have been observed including 
distinct reduction in RS parameters such asforming voltage, set/reset voltages, and 
their dispersions along with higher resistance i.e. ON/OFF ratio [19, 20].

3.2 Electrically induced redox reactions at the Interface

The conducting oxide e.g. manganites or cobaltites based memristive devices 
that employ reactive metal electrodes practically show uniform electrical conduc-
tion throughout the active area of device [9, 21]. It is known that the electrical 
resistance in case of the fabricated devices is low and increases primarily as a func-
tion of the applied bias. Such positive bias is applied onto the top electrode of the 
fabricated device. A careful analysis employing the cross-sectional TEM along with 
EELS and HAXPES measurements revealed that the actual thickness of oxide layer 
formed at or near the interface enhances noticeably due to the electroforming treat-
ment [14, 17]. In TiN/SiO2/FeOx/Fe device, Chang et al. demonstrated multilevel 
RS characteristics containing thin FeOx transition layer which essentially assist in 
achieving controlled current compliance in SET process and stopped voltage during 
RESET process. Interestingly, the controlled external electric conditions facilitate 
tunable resistive states. The distinct mechanism for multilevel RS behavior has been 
realized by distinguishing the electrical behaviors, statistically which indicated the 
mobile-ion-assisted electrochemical redox governed RESET process [22].

3.3 Schottky-like metal/conducting oxide interfaces

Prior to explaining the resistive switching effects, the realization about the 
fundamental of the electronic properties related to conducting oxides is very 
important. Also, the current and voltage (I-V) behavior of interface formed at con-
ducting oxide and metal electrode plays a key role in device performance. However, 
the contact resistance of such interfaces are largely modified by two major effects. 
One of the two effects is the existence of unwanted chemical reaction of metal 
electrode with conducting oxide. Secondly, the distinct Fermi level of conducting 
oxide and metal electrode leads to generation of space charge layer. The high contact 
resistance of interface is predominantly due to the Schottky barrier. This forms 
space charge region where essentially the majority charge carriers are depleted. 
In many cases of memory devices, the different electrode metals not only induce 
considerable modification in the resistive switching properties but also the contact 
resistance is affected significantly [6, 15, 23]. In case of stratified M/Pr0.7Ca0.3MnO3/
SrRuO3 (M/PCMO/SRO) and M/SrTi0.99Nb0.01O3/Ag (M/Nb:STO/Ag) where M is 
top electrode metal, the change in I-V characteristics has been discussed utilizing 
different electrode materials. The authors have used Ti and Au with work functions 
as ~4.3 and 5.1 eV, respectively whereas SRO possesses the highest value of work 
functions as 5.3 eV [15]. In present case, PCMO and Nb:STO exhibit only Ohmic 
contacts with SRO and Ag acting as the bottom metal electrode. It is known that 
while PCMO semiconducting oxide is dominated by p-type behavior, Nb:STO 
depicts n-type conduction. One can realize that the contact resistance between M 
and p-type dominated PCMO oxide is the largest for M with the least work func-
tion. Therefore, for PCMO based memory cells, Ti having the lowest work function 
demonstrates rectifying I-V behavior i.e. hysteretic characteristics distinctive to 
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resistive switching properties. However, the contact resistance between M and 
n-type Nb:STO increases as the work function of M enhances. This indicates that 
Nb:STO based memory cells utilizing Au as the top electrode display hysteretic 
characteristics during I-V measurements. These observations are in good agree-
ment with the fact that the rectifying behavior of I-V characteristics is governed by 
Schottky type barrier height formed at the interfaces. Therefore, an important and 
critical role of Schottky type barrier can be easily perceive in driving the resistive 
swathing effect in the fabricated memory cells. Considering the highly reactive 
nature of Ti top electrode material, it is also necessary to take the accounts of dif-
ferent chemical reactions occurring at the interface. For example, Ti being a more 
reactive metal can chemically react to the semiconducting oxide through the extrac-
tion of oxygen ions during film deposition and subsequent annealing procedure. 
Such events take place when the oxygen vacancies are injected via areas in close 
proximity to the interfaces. These oxygen vacancies are primarily of donor type 
and hence, capable of modifying the initial donor concentration of n-type Nb:STO 
semiconducting oxide. The considerable enhancement in the amount of donors 
ensures improved Ohmic contact conductance behavior. On the other hand, p-type 
PCMO oxide experiences the diminished conductivity which eventually results 
into an insulating type region of PCMO close to the interface. Such a phenomenon 
is similar to space charge effects which adds up to oxidize Ti metal. Thus, it evokes 
resistance at interface since the oxidation of Ti forming non-stoichiometric TiOx 
has low conductivity.

I-V as well as C-V behavior demonstrate a hysteretic type characteristics if the 
resistance switching is area scalable. This is well explained on the basis of Schottky 
depletion model through the mechanism of electronic trapping or detrapping [24]. 
In practice, different contributions from the metal electrode work function, elec-
tron affinity of the n-type Nb:STO semiconducting oxide and interface trap sates 
residing within low-k interfacial layer are taken into consideration while estimating 
the accurate Schottky barrier height [25]. Interestingly, a noticeable sign related 
to electronic trapping or detrapping of bandgap states can be perceived within the 
depletion region for memory cells where resistive switching characteristics are area 
scalable. Also, due to small read out currents, a shorter retention time (in the range 
of 102–103 s) is measured for such cells which endorses the retention time and cur-
rent variations obtained for only electronic switching. A voltage-induced unidirec-
tional threshold resistive switching has been reported for Au/NiO/Nb:SrTiO3 devices 
fabricated by pulsed laser deposition. Interestingly, only positive voltage values dem-
onstrate the forming process controlled threshold resistive switching behavior [26].

Further, Schottky barrier at the interface is altered not only via the impact 
ionization but also depend onto the movement of oxygen vacancies driven applied 
electric field [15]. In another report, for single crystals of self-doped SrTiO3 (STO), 
the authors have discussed the effect of electrode engineering with variable work 
function, device geometry and measurement configurations upon the resistive 
switching. Additionally, the various metal electrode combinations such as Ti and 
Pt has been exploited to analyze and manipulate the electrical transport i.e. Ohmic 
or Schottky type across junctions. It has been concluded that the observed resistive 
switching behavior is greatly influenced by changing the amount of oxygen vacan-
cies only at or near the interface under an effective applied electrical bias [27]. For 
most of the switching binary or complex transition metal oxides (i.e. solid elec-
trolytes), it is well known that current transport is the collective manifestation of 
electronic charge carriers as well as the mobile ions and related ionic defects. There 
exists cationic interstitials, delocalized electrons and oxygen vacancies in hypo-
stoichiometric oxides whereas oxygen interstitials, delocalized holes and cationic 
vacancies are the major charge carriers in hyper-stoichiometric oxides.
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In general, both the electron affinity of metal oxide materials and metal elec-
trode work function define the Schottky barrier height. This implies the fact that 
the metal work function is believed to be directly related to the Schottky barrier. 
Nevertheless, in practice, the Schottky barrier height is considerably affected by 
the formation of metal electrode/oxide interfacial layer providing an additional 
capacitor i.e. insulator type thin slab. In this context, Cowley and Sze revealed that 
formation of such capacitive layers evoke a definite and noteworthy drop in voltage 
which ultimately alters the ideal height of Schottky barrier.

Moreover, the formation of interface between metal electrode and oxide layer is 
also described in terms of the Helmholtz plane and diffuse double layers [28]. It has 
been thoroughly discussed that there exists an intrinsic electrochemical potential 
difference at the interface of metal electrode and oxide which induces the transfer 
of electrons among oxide layer and metal. Such an event produces dipole layer at 
the interface due to the movement of electrons ensuing space charge effect. Under 
applied electrical bias, electronic charge carriers, ions and related ionic defects take 
part in screening the electric field via the diffuse double layer in the oxide region. 
However, there is a little screening of electric field at the metal electrode side 
because of sufficiently high enough concentration of electrons. It is evident that the 
screening length is extended much deeper inside the oxide layer than that of metal 
electrode owing to large difference in the concentration of charge carriers and elec-
trons. While the first screening of electric field is caused by the ions residing over 
the Helmholtz plane, the second screening is primarily due to the electronic charge 
carriers, ions and related ionic defects present in the diffuse double layer [28].

For the most frequently employed metal oxides such as Ta2O5, HfO2, and SiO2 
based memristive devices with compatible metal electrodes like Ta, Hf, and Ti have 
been extensively studied. For example, HfOx/AlOy-based homeothermic devices 
depict low-power and homogeneous RS behavior useful synaptic applications [29]. 
In vanadium-based devices, Lin et al. demonstrate excellent RS characteristics 
through interface where localized transition occurs [30]. Hsieh et al. discussed 
mitigation of critical issue of short-term relaxation in HfOx/CeOx derived RRAM 
devices [31]. In case of bilayer structure devices employing Ni/SiNx/HfO2/p++-Si 
stacks, a self-rectifying has been shown to improve the sneak-path current emerg-
ing in the crossbar arrays fabrication process. Such bilayered devices provided 
enhanced rectification ratio usually >104. It has been revealed that during negative 
bias, the formation of large Schottky barrier of HfO2 facilitate the reduction in cur-
rent [32]. The progressive and consistent investigations have shown that interfacial 
layer exists inherently between the metal electrode and oxide. However, the oxygen 
affinity of metal as well as chemical and thermodynamic strength of the oxide layer 
determines the degree of oxidation of metal electrodes. Thus, the performance of 
fabricated device is highly dependent onto the extent of interfacial layer altering the 
initial crystal structure of oxide layer [33].

4. Tunnel barrier driven resistive switching

The tunnel ReRAM based on oxides is peculiarly known as the nonvolatile 
memory that demonstrate area dependent resistive switching properties. Unity 
Semiconductor Company first introduced the tunnel ReRAM and then Rambus 
Labs followed the work. ReRAM employs thin insulator type oxide layer to con-
trol the current through quantum-mechanical tunneling as magnetic RAM. In 
contrast to other oxide based RRAM system showing movement of oxygen ions, 
the quantum-mechanical tunneling effect within the insulator or barrier provides 
a more regulated current values in different processes such as SET, RESET and 
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Read-out which facilitate improved device performance. The mobile oxygen ion 
traveling across the insulator or barrier tunnel shows considerable impact onto 
the tunnel properties. Also, an appropriate change in thickness of tunnel barrier 
or oxide effectively helps into regulate the device current levels. Moreover, such 
a control over I-V characteristics for SET and RESET states offers transistor or 
diode-like selector less fabrication of passive cross-point configuration (1R) based 
working memory devices. This type of operation memory devices exhibit self-select 
feature. A precise and optimized tunnel device geometry with regulated current 
conduction serves high device yeild due to small variability in cell-to-cell and 
wafer-to-wafer operation. Further, the multibit storage can also be realized even in 
a single memory cell owing to an analog transition of the SET and RESET processes. 
The area dependent switching properties also enables smaller technology nodes in 
near future. Since tunnel ReRAM is still in development stage, it suffers from a few 
critical issues like ease of processing, integration and optimum retention time [34].

The tunnel ReRAM is also a stratified structure containing a very thin tunnel oxide 
layer (in the range of 2–3 nm only) placed between conducting oxide and metal elec-
trode. The conducting meal oxide is usually a metallic type perovskite oxides includ-
ing (Pr, Ca)MnO3 or highly conducting La or Nb doped SrTiO3. The stable electrical 
insulators possessing high-k oxides such as ZrO2 or HfO2 are employed generally as 
the tunnel oxide barrier layer [35]. The noble metals like Pt are utilized as electrodes 
for electrical biasing. The use of noble electrode metal is of utmost since they do not 

Switching Device
Fabrication Technique of 
Switching layer

Retention 
(sec)

Endurance 
(cycle)

Switching Voltage Type of 
Switching

Ref

Ni/Si3N4/SiO2/p + -Si
low-pressure
chemical vapor deposition 
(LPCVD)

— — VSET = 4 V, 
VRESET = −2 V,

Si3N4 (5 nm) 
as a resistive 

switching 
layer and 

SiO2 (2.5 nm)
tunnel
Barrier

[36]

Pt/Ti/HfO2/TiOx/Pt
Atomic layer deposition 
(ALD)

104 3x102 — HfO2 (4 nm) 
as a resistive 

switching 
layer and 

TiOx (6 nm)
tunnel
barrier

[37]

Pt/Ta2O5/TaOx/TiO2/Pt
Atomic layer deposition 
(ALD)

1010 104 — TiO2 (4 nm) 
as a resistive 

switching 
layer and 

Ta2O5(6 nm)
tunnel
barrier

[38]

Ti/HfO2/Al2O3/TiN
Atomic layer deposition 
(ALD)

— — — HfO2 (10 nm) 
as a resistive 

switching 
layer and 

Al2O3 (1 nm)
tunnel
barrier

[39]

Table 2. 
Comparison for of switching parameters for tunnel barrier type RS devices.
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react chemically with oxygen ions inducing formation of unwanted interfacial layer. 
The mechanism of tunnel ReRAM is radically different to interface based switching 
devices discussed above. In order to obtain good conductivity, both the conducing 
metal oxides e.g. (Pr, Ca)MnO3 and tunnel oxide layer are processed at high tempera-
ture to ensure optimum crystallinity of the deposited films (Table 2) [34].

5. Ferroelectric resistive switching

In the late year 1970, the first experimental work by Esaki reported the resistive 
switching behavior utilizing reversal of polarization in ferroelectric material [40]. 
This report followed many other ferroelectric based resistive switching materials 
such as the perovskitetitanates including PbTiO3 [41], BaTiO3 [42], and multiferroic 
system e.g. BiFeO3 [43]. With consistent investigations, researchers have explained 
the resistive switching in ferroelectrics [40–43]. Usually, there exists two different 
types of ferroelectric based resistive switching memory. Considering the conduc-
tion mechanism, first is the ferroelectric tunneling junction and other is known as 
ferroelectric diode type memory. An ultrathin tunneling ferroelectric barrier is the 
primary component of the ferroelectric tunneling junctions. For such junctions, 
one can observe significant modification in tunnel oxide barrier height because of 
polarization reversal occurring in the ferroelectric materials. The ferroelectric tunnel 
barrier exhibits potential distribution of asymmetric type which evokes change in the 
height of barrier when reversal of polarization takes place. For memory cells, when 
both the metal electrodes are different that impose distinct screening lengths, the 
asymmetric potential distribution is achieved [44, 45]. The asymmetric behavior of 
potential has also been examined after placing a non-ferroelectric ultrathin layer onto 
the ferroelectric oxide layer [46]. The presence of dielectric ultrathin layer acts as a 
separation wall which essentially divides polarization charge in ferroelectric oxide 
layer and screening charge in metal electrode. Therefore, the non-ferroelectric i.e. 
dielectric layer possesses a certain distribution of the potential. In case of ferroelec-
tric diode, the interface between metal electrode and ferroelectric layer observes the 
formation of Schottky type barrier. Upon the reversal of polarization in ferroelectric 
layer, the height of Schottky type barrier correspondingly changes (Table 3) [41].

6. Complementary switching

The complementary resistive switching (CRS) is the switching mode in which 
two distinct locations of switching are found. CRS devices contain variable con-
centration of defects within the switching layer. In particular, SET process occurs if 
the oxygen vacancies accumulate at either of metal electrodes. This takes place on 

Switching Device Fabrication 
Technique of Switching layer

Retention (sec) Endurance (cycle) Switching Voltage Ref

Cu/Pb(Zr0.2Ti0.8)O3/
La0.7Sr0.3MnO3/SrTiO3

— — VSET = 0.8 V, 
VRESET = −2.1 V,

[45]

2-nm
C-AFM Tip/BTO/30-nm LSMO 
(La2/3Sr1/3MnO3)

— — VSET = 3.5 V, 
VRESET = −3.5 V

[42]

Ag/BiFeO3/Ag — — VPulse = 150 V, −150 V [43]

Table 3. 
Comparison of switching voltages for ferroelectric type RS devices.
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account of the reduced oxygen vacancy concentration at the other end [47]. It states 
that both the interfaces cannot switch simultaneously. One needs to switch OFF 
when the other is ON. The mechanism of CRS is explained in terms of the distribu-
tion of defect within the insulating i.e. switching layer. After the applied electrical 
bias (positive or negative), the movement of defects towards certain electrode is 
observed. Depending upon the accumulation of defects at one or opposite interface, 
the SET and RESET states occur giving current levels under +ve and/or -ve bias 
conditions. With the help of either current compliance condition or sudden stop of 
bias at current peaks, only the SET state is obtained and one can limit the RESET 
state to takes place giving rise to bipolar switching [48]. Compared to other resistive 
switching devices, CRS provides slow and steady SET operation at one interface 
rather than an abrupt transition in current level. At the same time, RESET opera-
tion occurring at other interface eliminates the need of positive feedback [49]. It is 
known that an individual VCM device can exhibit CRS operation. For VCM devices 
with symmetric stack and similar top and bottom metal electrodes shows CRS 
phenomenon (Table 4).

Switching 
Device

Retention (sec) Endurance (cycle) Switching Voltage Reason for 
Switching

Ref

HfO2/Al2O3/
TiOx(HAT)

104 103 VSET = −3.8 V, 
VRESET = −3.5 V,

Anionic 
redistribution 
in HfO2 and 

TiOx

layers, leaving 
Al2O3 as tunnel 

barrier

[50]

TiN/HfOx/Pt 104 103 VSET = −0.86 V, 
VRESET = 1.08 V,

BRS of device 
transforms 
to CRS after 
transitional

processes 
through 

controlling 
compliance 

current

[51]

Pd/
Ta2O5-x/TaOy/
Pd

~3.5x103 2x103 VSET = −0.9 V, 
VRESET = 1.1 V

Different 
oxygen 

compositions 
of Ta2O5-x

and TaOy 
layers, oxygen 

vacancies 
(VO) can be 
exchanged

between two 
layers.

[52]

Ta/ZnSnO/
TiN

104 2x103 VSET = −2 V, 
VRESET = 1.5 V

TaO and TiON 
interface layers 

are formed 
at the top 

Ta/ZnSnO 
and bottom 
ZnSnO/TiN 

interfaces

[53]

Table 4. 
Comparison for complementary type RS devices.
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7. Interface controlled resistance (ICR)

The redox reaction driven resistive switching is dominated by the mechanism in 
which the charged defects or impurities rearrange at the metal electrode and oxide 
interface. Such a rearrangement of mobile defects reduce the contact resistance 
due to large interface charge concentration which ultimately decreases the contact 
barrier height as well as width. This process is examined through the Mott–Schottky 
theory dealing with the contact formed among metal and non-metal elements. For 
nanoionic devices, the resistance switching mechanism based on the formation of 
an interfacial layer has been investigated in a wide variety of metal oxides includ-
ing TiO2 [54], HfO2 [55, 56], ZrO2 [57, 58] Ta2O5 etc. It is well known that the metal 
oxides are more prone to oxygen ion i.e. ease of defect formation and hence, largely 
show nonstoichiometric nature. Therefore, the inherent nonstoichiometric nature 
of metal oxides produce several lattice point defects or impurities like vacancies 
and/or interstitials of metal and oxygen ions. Such defects present in metal oxides 
can be similar to acceptors or donors and are capable of modifying the electronic 
properties and the switching characteristics of device. Owing to sufficient con-
centration of charge carriers i.e. defects, such metal oxides can act equivalent to 
extrinsic semiconductor and thus, the classical semiconductor model governs the 
electronic conduction.

In order to highlight three main differences between nonstoichiometric metal 
oxide and classical semiconductor, researchers categorized them into a particular 
group known as mixed ionic–electronic conductors or chemiconductors [59, 60]. 
Followings are the distinctions used for classification:

i. the variation in oxide composition i.e. nonstoichiometric feature induces 
defect ions producing donors and acceptors i.e. dopants in chemiconductors,

ii. under applied electrical bias, while the defect ions are able mobile within 
the lattice, dopants in semiconductors are fixed at certain positions in lat-
tice, and.

iii. however, the dopants are non-uniformly distributed at the interface, in 
particular.

Apart from the above differences, the classical semiconductor acts similar to 
chemiconductors possessing sufficient nonstoichiometric feature. Therefore, their 
electrical characteristics are described in the framework of the Mott–Schottky 
model producing Schottky barriers at the interface (Table 5).

Switching 
Device

Retention 
(sec)

Endurance 
(cycle)

Switching Voltage Reason for 
Switching

Ref

Al/MoOx/Pt — 5x102 VSET = −3 V, 
VRESET = −2 V,

Self-rectifying 
and interface-

controlled

[61]

TiN/ZrO2/Pt 120 — — oxygen vacancy 
conducting 

filamentary paths

[57]

s-In/
NSTO/o-In

104 3.5x103 — Schottky 
interface

[62]

Table 5. 
Comparison for interface controlled resistance RS devices.
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8. Effect of grain surface area and grain boundary

Interfacial type resistive switching (RS) in memristive device is dominated by 
the surface morphology and properties. Under the application of an external voltage 
bias, the density distribution of defects/vacancies can vary along the film thickness, 
which affects the bandgap of material and produces unpredictable behavior in resis-
tive switching response. These uncertain changes at the interface, barrier bandgap 
leads to a change in the sample’s resistance in an interfacial RS which is extremely 
sensitive to interfacial properties.

Generally, interface is defined between two different materials systems but 
sometimes interface can also be defined at the regions which have the same com-
position and crystal structure but different crystal orientations (even inside the 
same solid such as grain boundaries (GBs)-including tilt and twist boundaries-twin 
boundaries and stacking faults) [34]. Moreover, an interface is affected by the sev-
eral external environment conditions such as air, vacuum, moisture and some other 
material properties such as the crystallinity of solids at the interface. However, the 
defect chemistry is comparatively different in the proximity of a charged interface 
(GB) from the bulk situation (single crystal). Basically, charged interface induces 
the redistribution of the mobile charge carriers in the space-charge layer region 
while in bulk, the electroneutrality has been played an important role (at equilib-
rium) between differently charged point defects. In this section, the effect of grain 
boundaries (GBs) and grain surfaces (GSs) on RS have discussed.

Oxygen vacancies and defects are considered responsible for resistive switch-
ing phenomena in oxides materials. For nanoscaled materials, GBs conductivity is 
directly proportional to grain size, and it may modulate according to the direction 
of current flow (perpendicular and parallel direction of GBs) [63]. However, the 
position of the GBs is dependent on the shape and size of the grain J. Maier [63] has 
reported that in case of yttria-doped zirconia if the grain size decreases at particular 
dimension (~ 50 nm in diameter) then most of the current passes perpendicular 
to the GB axis and the conductivity parallel to GB becomes negligible. Further, the 
formation of GBs when two adjacent and equally oriented grains are rotated to each 
other and twisted GB occurs when the rotation axis is perpendicular to the bound-
ary. On the other hand, if the rotation axis is lied in the boundary plane, a tilted 
boundary is resulted [34]. Moreover, the degree of rotation also affects the coher-
ence of the final grain boundary. GB with minimum rotation angle can be treated as 
an group of edge dislocations and aggregation of screw dislocations [34]. The con-
centration of oxygen vacancies (Ov) is comparatively higher at GBs which leads to 
leakage current flow through the GBs predominantly [64]. Any variation in Ov will 
be closely related to grain boundary and grain surface area. In some polycrystalline 
oxide thin film, structural defects, grain boundaries and local nonstoichiometric 
regions are responsible for high leakage current. Further, high electrical stress due 
to applied electrical potential, induces traps/cracks along the GBs. Induced traps/
cracks also increases the leakage current and size of the conduction region at the 
GBs as compared to the grain regions [65]. In recent years, the ab initio calculations 
and conductive atomic force microscopy (CAFM) have demonstrated to study the 
charge transport through grain boundaries in polycrystalline HfO2 [66].

The space-charge conduction model for acceptor-doped zirconia suggests that 
the lower ionic conductivity in zirconia occurs due to the depletion of oxygen 
vacancies and excess the positive charge laying in the GB core [67, 68]. However, 
dislocations appeared in YSZ single crystal due to plastic deformation does not 
improve the material’s electrical transport significantly [69]. Further, the resis-
tive switching in WO3 thin film is dominated by the grain surface region, not by 
the GB [70].
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In case of polycrystalline oxide films, GBs contain a high density of defects, which 
will accumulate the more traps inside the grain regions. A traps present inside the 
grain may cause a percolation path under a high electric field [65]. In filamentary type 
conduction, oxygen vacancies/ions would form a filaments throughout the oxide layer 
(highly conductive path) via GB [71]. Another interpretation of conductive filament’s 
formation is connected with the motion of the O2− ions which usually appears near 
the crystal defects such as oxygen vacancies and GBs [56, 72, 73]. A filament forming 
behavior in switching oxide film can be controlled by controlling the grain size under-
neath the top electrode and smaller grain size indicate the large number of GBs. These 
types of correlation can be identified by varying the electrode size and the number 
of GB underneath. However, these correlation becomes are not impactful if electrode 
size less than the individual grain size [74]. In addition, Das et al. have discussed the 
effect of GBs, GSs, and surface morphology such as (hillocks, lattice mismatch) on 
the statistical variation of RS parameters (forming voltage, set-reset voltage) in yttria-
based resistive switching device (Figure 2) [64]. Successive RS operations depend 
on the inhomogeneous changes in defect structure, and as a result, the switching 
parameters also vary persistently. During RS process, there are several type of sources 
in different oxides which provoke variability in device parameters. However, the 
formation and recombination of oxygen vacancies is highly stochastic in nature and 
play dominant role in deciding degree of variability. After analyzing the experimental 
data, Monte Carlo simulation has established a potential stochastic model that relates 
subsequent RS behavior to the initial states of contact in resistive memory cells [75].

Figure 2. 
Yttria layer (~80 nm) is deposited at different substrate temperatures of 300 (Y3), 400 (Y4), and 500°C (Y5) 
by dual ion beam sputtering system. Scanning electron microscope (FESEM) images of (a) Y3 (b) Y4 (c) Y5. 
(d) Mean (M) and standard deviation (σ) of the set and reset voltages. (e) Mean (M) and standard deviation 
(σ) of the grain surface area (figure d and e. reprinted with permission: Ref. [64]).
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9. Conclusions

This chapter dealt with different types of resistive switching where the role of 
interface formation modifying the switching properties was thoroughly discussed. 
The surface properties of thin films demonstrated significant dependence onto the 
predominant factors e.g. redox reactions, interface formation along with tunnel 
barrier thereby affected the device performance. The morphological characteristics 
of surface across the interface containing GBs and GSs regulated the charge carrier 
transport due to modified band structure. Owing to relatively high defect concen-
tration at the interface, GBs controlled the leakage current behavior of device.
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Artificial Synapses Based on
Atomic/Molecular Layer
Deposited Bilayer-Structured
Memristive Thin Films
Chang Liu, Lin Zhu, Lai-Guo Wang and Ai-Dong Li

Abstract

This chapter deals with several kinds of ultrathin bilayer-structured
memristors, such as Pt/Al2O3/HfO2/TiN, Pt/HfO2/HfOx/TiN, Pt/TiO2/Ti-based
maleic acid (Ti-MA)/TaN, among which the asymmetric memristive functional
layers were designed and prepared by atomic layer deposition (ALD) or
molecular layer deposition (MLD) technique. These bilayer memristors exhibit a
typical bipolar resistive switching characteristic, in accord with the space charge
limited current model. Some important biologic synaptic functions have been
achieved, including nonlinear transmission characteristics, spike-timing-dependent
plasticity, short�/long-term plasticity, paired-pulse facilitation, and conditioned
reflex. The mechanism of bilayer memristive device has been proposed based on
oxygen vacancies migration/diffusion model. Above all the ultrathin bilayer
memristors fabricated by low temperature ALD/MLD are one competitive candi-
date for neuromorphic simulation and flexible electronic applications.

Keywords: memristor, atomic layer deposition, bilayer, synapse, mechanism

1. Introduction

The memristor concept was first proposed as the fourth fundamental passive
circuit element by Chua in 1971 based on the completeness of the circuit theory,
which indicates the relationship between magnetic flux and charge [1, 2]. After
thirty seven years, Strukov et al. eventually found the missing memristor in study-
ing TiO2 cross-arrays in 2008 [2]. This draws the extensive and intensive attention
from the academia and the industry. Memristor is a two-terminal electrical device
whose resistance can be tuned by changing the flux or charge through it. Memristor
possesses a lot of advantages, e.g., simple device architecture, high energy effi-
ciency, better compatibility with semiconductor industry, and high integration
density.

A neural synapse, as the basic unit of learning and memory in the brain, plays a
critical role in biological neural networks. Electronic synapses are utilized to emu-
late the bio-synapses’ functions. Some researches on synapse simulation have been
reported by adjusting synaptic weights so as to make an effective bio-inspired
computing system [3–6]. Nevertheless, most work chose transistors and capacitors
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to realize artificial synapse, which produced high energy consumption at high
integration density and limited the programming running. The new memristor has
nonlinear transfer characteristics similar to the bio-synapse and is regarded as the
closest to the synaptic device [4].

Although various materials and structures exhibit memristive behavior,
almost all the memristor systems are based on the structural asymmetry [7, 8].
For example, in the metal–insulator–metal (MIM) structure, the defects such as
oxygen vacancy or active ions in the insulator layer can induce structural
asymmetry under the action of the external field, or when one of the metal
electrodes is active. Therefore, the asymmetric bilayer-structured memristors
play a crucial role in constructing artificial neural networks for brain-inspired
applications.

Atomic layer deposition (ALD) is a kind of commercial technology compatible
with semiconductor processing. It shows unusual advantages in controllable
fabrication of nano-laminate thin films due to its unique sequential self-limiting
surface reaction mechanism at low growth temperature [9, 10]. In early 2001 ALD
has been known as candidate technology preferred for semiconductor industry
along with metalorganic chemical vapor deposition (MOCVD) and plasma-
enhanced CVD by the international technology roadmap for semiconductors (ITRS)
[11]. ALD has become one of the most competitive deposition techniques for
microelectronics and nanotechnology owing to sub-nanometer thickness control,
large-area uniformity, excellent three-dimensional conformality, and good repro-
ducibility. Thin films with low defect density can be prepared by ALD even at room
temperature (RT) with plasma assistance [12]. Evidently, low temperature or RT
ALD technology can greatly widen the flexible substrate choice range, showing
exciting potentials in flexible electronic device fabrication. Molecular layer
deposition (MLD) can be regarded as the subtype of ALD due to the molecular
nature of the deposition process, suitable for growth of organic–inorganic hybrid
materials [13].

In this section, we fabricated several synaptic devices of asymmetric bilayer-
structured ultrathin memristors by atomic layer deposition (ALD) and molecular
layer deposition (MLD), such as Pt/AlOx/HfOx/TiN, Pt/HfO2/HfOx/TiN, Pt/
TiO2/Ti-based maleic acid (Ti-MA)/TaN. Some biological synapse-like functions of
long�/short-term plasticity (LTP and STP), spike-timing-dependent plasticity
(STDP), and paired-pulse facilitation (PPF) have been achieved simultaneously. A
memristive mechanism of an asymmetric bilayer-structured synaptic device has
been proposed to explain synaptic plasticity based on the oxygen vacancy
migration/diffusion model.

2. Bilayer-structured ultrathin memristors

2.1 Fabrication processing

Asymmetric bilayer-structured ultrathin memristor based on Pt/A/B/TiN or
TaN was fabricated on SiO2/Si substrates by thermal-ALD (TALD), MLD and
plasma-enhanced ALD (PEALD), as illustrated in Figure 1a. Herein A and B act as
asymmetric memristive functional layer, PEALD TiN or sputtered TaN as bottom
electrode, sputtered Pt as top electrode with a spot size in diameter of 150 μm.
Table 1 gives several typical bilayer ultrathin memristors and their architectures.
The related deposition conditions have been listed in Table 2, including used metal
precursors and reactants, source temperature and deposition temperature, and
growth per cycle (GPC).
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Figure 1.
(a) Diagram of the asymmetric bilayer-structured ultrathin memristor. (b) I–V characteristics of the Pt/HfOx/
ZnOx/TiN synapse device measured by a modified DC double ramp sweep. The sweep sequence is denoted by the
number. (c) I–V characteristics of the memristor at positive and negative bias voltages. The voltage sweep range
is from 0 to 1.4 (�0.6) V then back to 0 V, and the time for a sweep cycle is 1 s. the device conductivity
continuously decreases or increases during the positive or negative voltage sweeps. (d) the curves of voltage and
current versus time, which are plotted from the data in (c) [15].

Device structure A (thickness) B (thickness)

Pt/HfOx/ZnOx/TiN HfOx (5 nm) ZnOx (5 nm)

Pt/AlOx/HfOx/TiN AlOx (5 nm) HfOx (5 nm)

Pt/TiO2/Ti-MA/TaN Ti-MA (4 nm) TiO2 (4 nm)

Table 1.
Several typical bilayer-structured ultrathin memristors and their architectures.

Material Metal
precursor

Precursor
temperature

Reactant Deposition
temperature

GPC
(Å/cycle)

TALD HfO2 TEMAH 155°C H2O 250°C 1

AlOx TMA RT H2O 250°C 1

ZnOx DEZ RT H2O 250°C 1.3

TiO2 TiCl4 RT H2O 250°C 0.3

PEALD HfOx TEMAH 155°C H2 plasma 250°C 1

TiN TiCl4 RT NH3 plasma 400°C 0.5

MLD Ti-MA TiCl4 RT MA(135°C) 160°C 1.4

Table 2.
Deposition conditions of asymmetric functional layers in memristors prepared by TALD/PEALD/MLD. Here
TEMAH,TMA, DEZ, and MA refer to Hf[N(C2H5)CH3]4, Al(CH3)3, Zn(C2H5)2, maleic acid, respectively.
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2.2 Electrical performances and synaptic functions

The electrical properties were measured under DC sweep and pulse modes using
semiconductor parameter analyzer on probe station. The bottom electrode of
memristors was set on ground and all the voltage signals were applied to the top
electrode. The asymmetric bilayer ultrathin memristors were exploited to mimic
some important synaptic functions such as long-term potentiation/depression, the
transition from STP to LTP, PPF and STDP.

2.2.1 TiN/ZnOx/HfOx/Pt inorganic memristor

The I–V curves of Pt/HfOx/ZnOx/TiN inorganic memristor are plotted in
Figure 1b under a modified DC double sweep. To mimic the functions of a
nerve synapse, one multiple-state resistances should be obtained in bilayer
memristor. A continuous set or reset process was performed by successive
increasing the compliance from 0.1 to 1.0 mA at an interval of 0.1 mA or
altering the reset voltage from 1.0 to 1.7 V at an interval of 0.05 V. 8 low
resistance states (LRS) and 11 distinguishable high resistance states (HRS) are
observed during consecutive set and reset process, respectively. Moreover the
resistance can be continuously reduced or raised between multiple intermediate
states without going back to the original state, which is key for electronic
synapse [14]. The device conductivity decreases continuously with six easily
recognized states after exerting sweep positive bias voltage from 0 to 1.4 V six
times and the elevated conductivity with difficultly distinguishable ones after
sweep negative pulse voltage from 0 to �0.6 V (Figure 1c and d), indicating the
conductance change caused by consecutive potentiating or depressing signals. It
can be attributed to the dynamic change of oxygen vacancy concentration and
distribution in asymmetric bilayer structure of HfOx/ZnOx under various elec-
trical signals [15].

A series of pulse signals were designed and applied to the memristor to test the
important STDP rule in the Hebbian learning theory, as seen in the insets of I and
III of Figure 2, including the V�/V+ = �1.0 V/1.0 V pulse pair signal as a presyn-
aptic and postsynaptic spike with the 3 s interval time. Such design can prevent
from the disturbance of excitatory postsynaptic current [16]. The time interval
between the final presynaptic spike and the initial postsynaptic spike is defined as
the relative time of Δt. The relative change of the synaptic weights (ΔW) is
defined as:

ΔW ¼ I2–I1ð Þ=I1 � 100% (1)

The initial postsynaptic or presynaptic current I1 was used as the control value.
After the spike pair was applied and over for 5 min, the measured presynaptic or
postsynaptic current was I2.

The dependence of ΔW on Δt of Pt/HfOx/ZnOx/TiN in Figure 2 II and IV follows
the STDP learning rule. While the presynaptic spike happens before the postsynap-
tic spike (Δt < 0), synaptic weights enhance, indicating long-term potentiation
(LTPo); while the presynaptic spike appears after the postsynaptic spike, synaptic
weights become small (Δt > 0), implying long-term depression (LTD). And the
shorter the Δt between the two spikes, the larger the ΔW. The STDP data points of
memristor in Figure 2 show evident statistical scatter, similar to the biological
synapse.

In addition, Pt/HfOx/ZnOx/TiN device also exhibits the nonlinear transmission
efficiency, and the transition from STP to LTP (not shown here) [15].
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2.2.2 TiN/HfOx/AlOx/Pt inorganic memristor

The memristor device based on TiN/HfOx/AlOx/Pt can also emulate the biolog-
ical synapse. Usually, the synapse operates under pulse signals rather than DC bias
sweep voltage. The LTPo and LTD phenomena can be observed in Pt/AlOx/HfOx/
TiN under 180 potentiating pulses (�0.5 V, 10 ms) and 180 depressing pulses
(1 V, 10 ms), as shown in Figure 3a. The connection strength can be dynamically
modulated by the consecutive external signals, determining the transfer efficiency
between the electronic neurons.

Figure 2.
Emulation of STDP learning rule in Pt/HfOx/ZnOx/TiN memristive device—The relative change of the
memristor synaptic weight (ΔW) versus the relative spike timing (Δt). And the solid line is the fitting
exponential curve to the experimental data. The insets illustrate various spike schemes. The pulse pair comprises
a positive and a negative voltage pulse with amplitude of 1.0 V and width of 50 ms. The interval between the
two pulses is Δt ms (t = �10n, n = 1, 2, … , 10). The current compliance is not set in the whole emulation
process. The current values are read at 0.1 V after 5 min of the spikes [15].

Figure 3.
(a) Change in the response current under the influence of consecutive potentiating or depressing pulses. After
pulse stimulation, a 0.1 V 100 ns reading pulse was applied to read the response current. After �0.5 V
potentiating pulses, the response current gradually increases (long-term potentiation), while the response
current gradually decreases after 1 V depressing pulses (long-term depression). (b) Response of a memristor
device to different pulse programs [17].
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Further experiments have demonstrated that a pulse signal from amplitude of
1.0–1.5 V and pulse width of 50–100 ms leads to various current responses in
Figure 3b. That is to say, the larger pulse amplitude, the longer pulse width, and the
more pulse number will produce more significant response current change, which is
analogous to long-term potentiation/depression of the human brain.

Synaptic plasticity can be divided into STP and LTP according to the timelines of
enhanced synaptic connections. The repeated stimulation induced STP to LTP
transition is illustrated in Figure 4. With increasing the rehearsal pulse number
(N = 10, 40, 70, 100, 120), the resistance remaining becomes larger (Figure 4a).
This procedure is similar to the Ebbinghaus forgetting curve related to human
memory [18, 19].

An exponential decay equation was employed to depict the relaxation process:

M tð Þ ¼ Me þ M0 �Með Þ exp �t=τð Þ (2)

whereM(t),M0, andMe are the memory level at time t, t = 0, and at steady state
after a long time, and τ of the relaxation time constant. The experimental and
simulation results after 70 identical pulses are shown in Figure 4b, containing the
dependence of τ on N in the inset. The decay rate is faster in the beginning and then
becomes slower. The τ value increases from several seconds to 50 seconds with the
training pulse number from 10 to 120, revealing a declining forgetting rate from
�57% for N = 10 to �5% for N = 120. This confirms the transition from STP to LTP
through repeated rehearsal and learning.

The STDP rule has been mimicked in TiN/HfOx/AlOx/Pt memristor, as indicated
in Figure 5. The schematic of another training pulse signal with various amplitudes
is shown in Figure 5a, different from the pulse design in Figure 2. A set of pulses
(1 V, �0.5 V, �0.45 V, �0.4 V, �0.35 V, �0.3 V, �0.25 V)/(0.5 V, �1 V, �0.9 V,
�0.8 V, �0.7 V, �0.6 V, �0.5 V) were used as pre-synaptic/post-synaptic stimula-
tion signals, respectively. Some different pulse signals designed at various spike
timings (Δt) are designed and illustrated in Figure 5b. When the shortest Δt
(10 ms) is inserted to the device, the largest ΔW of 50% for potentiation and� 80%
for depression are realized.

The memristive mechanism of asymmetric TiN/HfOx/AlOx/Pt memristor has
been deeply investigated with the aid of x-ray photoelectron spectroscopy (XPS)
depth analyses, which will be discussed in the following Section 2.3.

Figure 4.
Repeated stimulation induced STP to LTP transition. (a) Resistance remaining decay curve recorded after 10,
40, 70, 100, 120 identical pulses (1.6 V, 10 ms). A 0.1 V voltage was used to read the device current. (b)
Resistance remaining decay curve recorded after 70 identical pulses and the fitted curve according to Eq. (1).
The inset plots the dependence of relaxation time τ on the pulse number. τ is obtained by the fitting curve [17].
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2.2.3 TiN/HfOx/HfOx/Pt inorganic memristor

In the previous work on Pt/HfOx/ZnOx/TiN and TiN/HfOx/AlOx/Pt memristors,
the asymmetric memristive functional layers of A and B are different materials.
Next, we will focus on Pt/HfO2/HfOx/TiN bilayer-structured memristor, as illus-
trated in Figure 6a. 4 nm-thick non-stoichiometric HfOx films were prepared by

Figure 5.
(a) Training pulse signal with different amplitudes design schematic loaded on the Pt/AlOx/HfOx/TiN
memristor (assuming Δt = 10 ms). Each pulse width and pulse interval are 10 ms, respectively. (b) Some
different pulse signals designed at various spike timings (Δt). (c) STDP-like curves. The relative change of the
memristor synaptic weight (ΔW) versus the relative spike timing (Δt) [17].

Figure 6.
(a) Schematic of the Pt/HfO2/HfOx/TiN memristor. (b) Cross sectional HAADF-STEM image of the device.
(c) EDS elemental mapping of Pt, Hf, O, N,Ti and Si. (d) STDP-like curves. The different synaptic weights
(ΔW) versus the different spike times (Δt). The inset shows a pair of pre-synaptic and post-synaptic spikes, and
the spike pair is designed to implement STDP [20].
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PEALD using the H2 plasma and 2 nm-thick stoichiometric HfO2 films by TALD
using the H2O precursor, in basically consistent with the measured result by the
cross-sectional high angle annular dark field (HAADF)-scanning transmission
microscopy (STEM) in Figure 6b. The energy dispersive x-ray spectroscopy (EDS)
elemental mapping images of Pt/HfO2/HfOx/TiN are shown in Figure 6c, revealing
the stacking structure. In addition, XPS composition analyses show that the atomic
ratio of Hf:O in the HfO2 and HfOx layers is 1:2.04 and 1:1.84, respectively, indicat-
ing that stoichiometric HfO2 and nonstoichiometric HfOx bilayer-structured
memristors have been obtained [20]. Hence A and B herein represent HfO2 and
HfOx with various oxygen contents, respectively. This device unit based on TiN/
HfOx/HfO2/Pt memristor can also simulate the biological synapse learning rule of
STDP, as indicated in Figure 6d. When the shortest spike timing of 10 ms is applied
to the memristor device, the pulse train responses give rise to the largest ΔW value
of 83% for potentiation and � 65% for depression, respectively [20]. These ΔW
values for STDP are similar for Pt/HfOx/ZnOx/TiN, TiN/HfOx/AlOx/Pt and TiN/
HfOx/HfO2/Pt memristors.

The paired-pulse facilitation (PPF) is a phenomenon wherein the post-synaptic
response induced by the spike increases when the time interval of the two spikes is
very close [20]. PPF index can be defined as follows:

PPF ¼ G2 � G1ð Þ=G1 � 100% ¼ C1 � exp �Δt=τ1ð Þ þ C2 � exp �Δt=τ2ð Þ (3)

G1 and G2 are the conductance values after the first and the second pulse,
respectively. The time constants of τ1 and τ2 can be assigned to the fast and slow
decaying terms, respectively.

Evidently Pt/HfO2/HfOx/TiN memristor displays the marked dependence of
synaptic weight on pulse interval Δt by applying the pulse of �1.5 V and 2.5 V,
respectively, as seen in Figure 7a and b. For shortest Δt of 400 ns, the PPF index
increases to 135% under positive pulse and becomes �62% under negative pulse.
For the negative pulse signals, the calculated τ1 and τ2 values are 357 ns and 2.47 ms,
respectively; for the positive pulses, τ1 and τ2 are 1.48 ms and 6.79 ms, respectively.
When the Δt decreases, the memory effect will be improved, which is ascribed to
the fact that the smaller Δt between pulses produces less oxygen vacancies to drift
back with more effective accumulation of the oxygen vacancies.

Figure 7.
PPF index as the function of the time interval (Δt) of the Pt/HfO2/HfOx/TiN memristor under negative voltage
pulse (a) and positive voltage pulse (b). Black points represent the measurement data, and the red lines
represent the fitting data by using Eq. (3). The insets in (a) and (b) record the applied pulse waveforms [20].
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Pt/HfO2/HfOx/TiN also mimics a classical conditioning under different pulse
stimuli, as illustrated in Figure 8. In the famous experiment [21], a dog salivates
(unconditioned response, UR) when watching the food (unconditioned stimulus, US)
(Figure 8a), when it does not salivate (conditioned response, CR) on hearing the ring
(conditioned stimulus, CS) alone (Figure 8b). Nonetheless, after some rehearsals, i.e.
feeding the dog when ringing the bell (Figure 8c), the dog salivates even in only
hearing the ring (Figure 8d). This elucidates that the dog has correlated the food with
the ring. Furthermore, when taking away the food, the correlation between the food
and ring gradually reduces and even disappears under only the conditioned stimuli
(Figure 8e). The whole procedure can be emulated in the Pt/HfO2/HfOx/TiN by
using +4 V and � 1.3 V stimuli with a single pulse duration of 5 ms.

Before rehearsing, the memristor has a low resistance state of 5 kΩ. The +4 V
stimulus (US) causes a high resistance state of 3 MΩ (UR) (Figure 8f), when the
�1.3 V stimulus (CS) only results in a low resistance state of 5 kΩ before training
(Figure 8g). In Pavlov’s experiments, the food and the ring exist simultaneously to
reinforce the correlation between US and CS. In our experiments, the +2.7 V stim-
ulus was exerted to the memristor, the same as the simultaneous stimuli of �1.3 V
and + 4 V pulse signals. When two rehearsing sequences with +2.7 V pulse, the
device becomes the high resistance output of 2 MΩ (CR) (Figure 8h). When
removing the +4 V signal, the memristor continues to keep in a high resistance state
under a series of �1.3 V stimuli alone and then returns to a low resistance state
(Figure 8i), implying the setup and vanish of the classical conditional reflex.

The energy consumption is one important indicator for a practical electronic
synaptic device in neuromorphic network. Pt/HfO2/HfOx/TiN memristor can be set
in less than 100 ns and reset in less than 10 ns, indicating the rapid switching speed,
as recorded in Figure 9a.

The current response curves versus the time after the applied programming signal
during the set or reset operation are plotted in Figure 9b and c, respectively. The
current rises after a waiting time of about 260 ns when a � 2 V/1 ms stimulus is
applied, indicating the beginning of the set process (Figure 9b). The memristor
resistance decreases from the initial high resistance state (�1 MΩ) to low resistance
state (�800 Ω). Similarly, the current reduces after a waiting time of about 70 ns
when a +3 V/1 ms signal is exerted, showing the occurrence of the reset process. The
energy consumption per operation can be calculated to be 520 pJ for the set process
and 1.05 nJ for the reset process by considering the pulse waveforms (time, response
current, and pulse voltage), corresponding to the maximum energy consumption in
one set or reset operation, as the memristor has been set in the lowest resistance state
with the highest response current. Nevertheless, the actual operation of the electronic
synapse is generally in the mediate resistance states (�80 kΩ). The response current
of the memristor is inversely proportional to the resistance value of the synaptic
device with a first-order approximation. So, the evaluated actual energy consumption
per operation will decline in the range of around ten picojoules.

Finally, the impact of oxygen vacancy concentration in non-stoichiometric HfOx

layers on resistive switching properties of Pt/HfO2/HfOx/TiN bilayer ultrathin
memristor has been investigated. The memristor with 12.1% oxygen vacancy con-
centration in the HfOx layer exhibits comprehensively better performances such as
the optimal pulse energy consumption, reset switching speed, and DC endurance
and retention characteristics [20].

2.2.4 TaN/Ti-MA/TiO2/Pt organic: inorganic hybrid memristor

As mentioned above, we mainly elucidated the bio-synaptic functions of three
asymmetric inorganic bilayer-structured ultrathin memristors. In this part,
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Figure 8.
Emulation of the acquisition and extinction of classical conditioning demonstrated by Pavlov’s dog experiment.
(a) The dog salivates while watching the food (US ! salivating UR). (b) The dog does not salivate upon
hearing the ringing alone (CS ! no salivating). (c) In the training process, the food and ringing together
stimulates the dog, and the dog salivates (US + CS ! salivating). (d) After sufficient training, classical
conditioning is formed and the dog salivates upon hearing the ringing alone (CS ! salivating, CR). (e)
Extinction of classical conditioning after removing the food for some time. (f) Positive +4 V pulse (US) can lead
to a high resistance output, similar to the UR in (a). (g) The negative �1.3 V pulse (CS) cannot lead to the high
resistance output before training, similar to the CS in (b). (h) After applying several training sequences of
+2.7 V pulse voltage, equal to the simultaneous stimuli of �1.3 V and +4 V pulses, the device reaches a high
resistance state of 2 MΩ (CR), analogous to the phenomenon in (c). (i) After only applying some �1.3 V pulse
alone, the memristor remains in a high resistance state, similar to CR in (d). Then it returns to the low resistance
state, consistent with the extinction of classical conditioning in (e) [20].
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organic–inorganic hybrid bilayer memristors of TaN/Ti-MA/TiO2/Pt were prepared
by low temperature MLD/ALD at 160°C. The synaptic plasticity has been explored
deeply. Some superb synaptic functions, such as nonlinear transmission character-
istics, STP/LTP, PPF, and STDP have been achieved in the hybrid memristors [22].

First the narrow-scan XPS and Fourier transform infrared (FTIR) spectroscopy
were used to detect the chemical composition and organic group of Ti-based maleic
acid (Ti-MA) hybrid film, as shown in Figure 10a–d. The C 1 s XPS peaks at
284.6 eV and 288.4 eV (Figure 10a) result from the C-C (backbone chain carbon)
bond and the O-C=O bond from carboxyl, respectively, suggesting the occurrence
of organic component in Ti-MA films. The doublet at 458.7 eV and 464.5 eV with
the spin orbit splitting energy of 5.8 eV can be assigned to the Ti 2p1/2 and Ti 2p3/2
ones from the Ti-O bond of TiO2 [13, 23] (Figure 10b, which indicates the inorganic
component in hybrid films. Moreover, the O 1 s spectrum can be deconvoluted into
two peaks at 530.0 eV and 531.6 eV, corresponding the O-Ti and O-C bonds,
respectively (Figure 10c). The FTIR spectrum of Ti-MA hybrid film (Figure 10d)
displays the asymmetric and symmetric stretch of carboxylate groups at 1575 cm�1

and 1447 cm�1. The splitting of 128 cm�1 indicates the bidentate bond mode
between the Ti ion and carboxyl. As a result, Ti-MA inorganic–organic hybrid films
have been fabricated successfully.

The resistive switching characteristics of the hybrid bilayer memristor of
TaN/Ti-MA/TiO2/Pt have been examined for 100 times, as seen in in Figure 11a.
The typical bipolar resistive switching behavior has been confirmed with narrow
distribution of set voltage of �1.6 � 0.2 V (red line) or reset voltage of 1 � 0.1 V

Figure 9.
(a) Switching speed test of the synaptic device. The voltage for the set and reset operation in the memristor is
about �2 V and +3 V, respectively. The device can be switched in less than 100 ns for a set operation and less
than 10 ns for a reset operation. (b) Transient current response on the applied voltage pulse for a set operation
from the high resistance state to the low resistance state. The set pulse amplitude, width, rising time, and falling
time are set to be �2 V, 1000 ns, 20 ns, and 20 ns, respectively. (c) Transient current response on the applied
voltage pulse for a reset operation from the low resistance state to the high resistance state. The reset pulse
amplitude, width, rising time, and falling time are set to be 3 V, 1000 ns, 20 ns, and 20 ns, respectively [20].
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(black line). The double-logarithmic I-V curves and linear fits to the set process are
shown in Figure 11b. At the low voltage stage, the I-V is dominated by the Ohm’s
law with the approximately linear relationship (region 1, R2 = 0.9996). When the
voltage increases, the current is dependent of near square of the voltage, obeying
the Child conductive law (region 2, R2 = 0.9995). At critical voltage of around 1.2 V,
the current is proportional to the nth power of the voltage with a sharp current rise

Figure 10.
Narrow-scan XPS spectra of (a) C 1 s, (b) Ti 2p and (c) O 1 s and (d) FTIR spectrum from the Ti-MA hybrid
films on Si [22].

Figure 11.
(a) I-V curve of the TaN/Ti-MA/TiO2/Pt hybrid memristor for 100 times DC ramp voltages tests. Bottom inset
is the schematic of the memristor. (b) Double-logarithmic I-V curves and linear fits to the set process [22].
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(region 3, R2 = 0.9904). All these prove the space charge limited current (SCLC)
model in hybrid bilayer memristor [24], revealing the filament model of oxygen
vacancy migration.

The PPF and STDP functions have also been characterized in hybrid memristor,
as shown in Figures 12 and 13, respectively. A pair of pulses (�1 V, 400 ns) with
different Δt were applied to the hybrid memristor (Figure 12a). The measured data
can be well fit exponentially (Figure 12b). The PPF index has reached to 361% with
the 400 ns pulse interval in hybrid memristor. When the pulse interval increases to
2400 ns, the PPF index dramatically tends to 3% [22]. Compared to inorganic
bilayer memristor, the organic–inorganic hybrid bilayer device has much larger PPF
index in the same pulse interval of 400 ns.

Figure 12.
(a) PPF function in memristors generated by two pulse spikes and the real-time response current. (b) PPF
curves with different pulse interval time [22].

Figure 13.
STDP curves obtained in hybrid memristor. The spot is the measured data and the red line is the fitting results. The
insets are the spike pulse signals designed by a pair of 0.8 V and �0.8 V pulses with pulse width of 120 μs [22].
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The STDP rule was emulated in hybrid memristor by using a pair of 0.8 V
and �0.8 V pulses with 120 μs pulse width. The ΔW has a strong time correlation
with maximum 35% increment at the Δt of �20 μs and �20% reduction at the Δt of
20 μs. These values are relatively smaller than the ΔW maximum value of 60–90%
of inorganic memristors. Finally, the ΔW in hybrid device obeys the exponential
association with the Δt, namely

ΔW ¼ A exp �Δt=τð Þ (4)

The measured data can be fitted well.
In addition, the conditioned reflex has been mimicked in hybrid film memristor,

similar to the results of Pt/HfO2/HfOx/TiN memristor in Figure 8.
By comparison with inorganic bilayer memristors, it can be found that the

organic–inorganic hybrid bilayer memristor has similar bio-synaptic functions with
comparable switching speed and energy consumption. Moreover organic–inorganic
hybrid materials may possess both the advantages of organic and inorganic compo-
nents with excellent flexibility and tunability. Inorganic compounds have better
electrical characteristics and thermal stability. Organic compounds own various
functional groups, larger stretchability and low processing temperature. By means
of the synergetic and complementary effects between organic and inorganic com-
ponents, the comprehensive properties of hybrid memristive materials could be
expected for significant improvement. The hybrid bilayer ultrathin memristor
derived by low temperature MLD/ALD is one competitive candidate for flexible
neuroscience applications.

2.3 Memristive mechanism

In Section 2.2, we focused on the electrical Performance and synaptic functions
of several bilayer ultrathin memristors. In this section, the asymmetric memristive
mechanism of the bilayer-structured memristors on TiN or TaN will be studied
carefully. Taking Pt/AlOx/HfOx/TiN memristor as an example, the XPS depth pro-
files of asymmetric bilayer device units were obtained under various resistance
states of the initial state, low resistance state (LRS), high resistance state (HRS), and
medium resistance state [17]. XPS is a powerful surface analytical tool to determine
the chemical valence and the oxygen vacancy contents in multilayer-structured
metal oxide thin films [23, 25].

Figure 14a–d records the high-resolution Al 2p, Hf 4f and O 1 s peaks in AlOx

and HfOx layers for as-deposited Pt/AlOx/HfOx/TiN in the initial state. The Hf 4f
spectra from the HfOx layer can be deconvoluted into four peaks (Figure 14b). The
stronger peaks at �16.7 eV and 18.6 eV originate from the Hf4+ in the HfOx layer,
whereas the weaker ones with slightly lower energies of 15.6 eV and 17.9 eV come
from the Hf(4�x)+ in the low valence Hf sub-oxide. The content percentage of two
Hf valence states in the HfOx layer can be roughly evaluated by calculating the area
proportion of each peak, as shown in the inset of Figure 14b [26–28]. The percent-
age of Hf4+ and Hf(4�x)+ in the HfOx layer is around 89.7% and 9.4%, respectively.
A similar analysis can be also carried out for the Al 2p spectra from AlOx layer
(Figure 14a). Meanwhile the O 1 s spectra from the AlOx and HfOx layers can also
be deconvoluted into two peaks. The stronger peaks at around 531.5 and 531.0 eV
result from Al-O and Hf-O bonding in the AlOx and HfOx layers, respectively,
whereas the weaker ones with a slightly higher energy of 532.1 eV in the O 1 s
spectra are ascribed to the oxygen vacancies in the AlOx and HfOx layers according
to the literature reports [26–29]. The calculated percentage of oxygen vacancies in
the AlOx and HfOx layers is around 0.7% and 8.1%, respectively (Figure 14c and d).
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Significantly, the oxygen vacancy content in the HfOx layer is much higher than
that in the AlOx layer.

The XPS depth data of Pt/AlOx/HfOx/TiN memristor by Ar ion etching under
various resistance states may provide some valuable information on the valence
states and defects of metal oxide layers [24], for the initial state sample recorded in
Figure 14e. The AlOx/HfOx bilayer structure could be recognized with an evident
interfacial diffusion between AlOx/HfOx and HfOx/TiN (gray region). The depth
distribution of the average oxygen vacancy concentration in the asymmetric
Pt/AlOx/HfOx/TiN memristors under various resistance states of the initial state,
LRS, HRS, and medium resistance state is illustrated in Figure 14f. Table 3 lists the
average oxygen vacancy concentration values of Pt/AlOx/HfOx/TiN for four resis-
tance states at different positions of A, B, C, D, and E, corresponding to an etch time

Figure 14.
Narrow-scan (a) Al 2p, (b) Hf 4f and O 1 s peaks of (c) AlOx and (d) HfOx in as-prepared Pt/AlOx/HfOx/
TiN in the initial state. (e) XPS depth profile of Pt/AlOx/HfOx/TiN in the initial state. (f) The depth
distribution of the average oxygen vacancy concentration in the initial state, LRS, HRS, and medium resistance
state after 40 pulses (1.5 V, 0.5 ms). The gray region in figure (e) and (f) is the interfacial layer [17].
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of 0 s, 90 s, 210 s, 390 s, and 510 s. Herein A, B, C, D, and E locate in the interface of
the Pt/AlOx, AlOx layer, the interface of the AlOx/HfOx, HfOx layer, and the inter-
face of HfOx/TiN, respectively. The oxygen vacancy distribution is inhomogeneous
in the Pt/AlOx/HfOx/TiN memristor, and the oxygen vacancy concentration of the
interfaces between AlOx/Pt (A), AlOx/HfOx (C), HfOx/TiN (E) is markedly higher
than that of the adjacent AlOx (B) and HfOx (D) layers. Furthermore, the oxygen
vacancy concentration in HfOx (D) is much higher than that in AlOx (B) layer.

In general, the resistive switching mechanism of metal oxide memristors is
related to the connection and rupture of conductive filaments of oxygen vacancies.
But the simple increase of oxygen vacancy concentration is not always effective.
The non-uniform distribution of oxygen vacancies in memristors is the critical
factor affecting the resistive switching behavior of memristive devices [30].

Based on the oxygen vacancy concentration and distribution in the Pt/AlOx/
HfOx/TiN memristors under various resistance states in Figure 14f, we proposed a
memristive mechanism of an asymmetric bilayer metal oxide synaptic device to
explain synaptic plasticity, as illustrated in Figure 15.

There are much more random oxygen vacancies in the HfOx layer than in the
AlOx layer for as-deposited Pt/AlOx/HfOx/TiN device. Meanwhile, the oxygen
vacancy concentration in the interfaces of AlOx/HfOx and HfOx/TiN is evidently
higher than the HfOx layer (Figure 15a). During the forming process, the disorderly
distributed oxygen vacancies in the bilayer oxide layers and interfacial layers form
conductive filaments under the external electrical field, similar to the soft breakdown
of the capacitor. So the connection and disconnection of the conductive filaments
lead to resistive switching. When inserting a �3 V forming voltage, the device turns
from the initial state to LRS with suddenly resistance drop from 10 MΩ to 600 Ω,
suggesting that the oxygen vacancies with positive charges (VO

2+) in the AlOx/HfOx

interface, HfOx layer, and HfOx/TiN interface move to the AlOx layer and AlOx/Pt
interface. Simultaneously, the oxygen vacancy concentration gradient help to the
migration of the oxygen vacancies, forming localized conductive filaments of oxygen
vacancies in the bilayer structured AlOx/HfOx device (Figure 15b).

After applying the +2.5 V reset voltage to the LRS device, the memristor trans-
fers from LRS (600 Ω) to HRS (1 MΩ) (Figure 15c). During the reset process, the
oxygen vacancies migrate from the AlOx/Pt interface and AlOx layer to the AlOx/
HfOx interface and HfOx layer, leading to the rupture of oxygen vacancy conduc-
tive filaments in the AlOx layer. Besides, considering the thermophoresis/diffusion-
driven oxygen migration [31, 32], the middle position of the conductive filament in
the AlOx layer first breaks up, causing a spatial gap, as indicated by the red arrow in
Figure 15c. electron tunneling happens through the physical gap with the enhanced
resistance. During the reset process, the oxygen vacancy concentration declines at
the AlOx/Pt interface and AlOx layer and rises at the AlOx/HfOx interface and HfOx

Oxygen vacancy concentration A B C D E

Position Pt/AlOx AlOx AlOx/HfOx HfOx HfOx/TiN

Initial 9.5% 0.7% 17.7% 8.7% 21.1%

LRS 8.8% 4.1% 10.4% 7.1% 17.3%

HRS 7.2% 3.0% 11.2% 8.0% 16.7%

Medium 6.6% 4.0% 11.3% 7.5% 17.0%

Table 3.
Average oxygen vacancy concentration of Pt/AlOx/HfOx/TiN in various positions for different resistance
states [17].
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layer, as proved by the relative variation of oxygen vacancy concentrations in
Figure 14f and Table 3.

Because the synapse device usually operates under pulse mode to get more
intermediate resistance states, a continuous pulse experiment was exploited to alter
the device from a LRS (600 Ω) to a medium resistance state (50 kΩ) by imposing
40 pulses (+1.5 V, 10 ms) (Figure 15d). The XPS result (Figure 14f) indicates that
the oxygen vacancy concentration curve of medium resistance state devices lies
approximately between HRS and LRS in the AlOx layer and HfOx layer. The differ-
ence in oxygen vacancy concentration at the interface layers of AlOx/HfOx and
HfOx/TiN among the medium resistance state, LRS, and HRS is slightly little. In
consequence, during regular operations of synaptic memristors, the formation/
rupture of nanoscale conductive filaments tend to appear in the low k AlOx layer
with lower electric field intensity [33]. Furthermore, the device conductance can be
modulated by the oxygen vacancy drift under pulse electric field, producing a
change in the concentration and distribution of oxygen vacancies at the interface of
the metal/oxide and the interior. In the LRS of 600 Ω, the conductive filament is
thick with the conductance of 22 G0, corresponding to a wide conductive filament
with classical metallic properties. After 40 pulse stimuli, a medium resistance state
of 50 kΩ is obtained with a conductance of 0.26 G0, where the conductive filament
behaves as a quantum wire, producing a single-defect conducting path [31, 33, 34].

The oxygen vacancy migration/diffusion model can be used to explain the tran-
sition from STP to LTP in bilayer memristive device (Figure 4a). When imposing
the +1.6 V pulse, the oxygen vacancies move from the AlOx layer to the HfOx layer

Figure 15.
Model of the formation and rupture of a conductive filament consisting of oxygen vacancies. After �3 V forming
voltage, the device transfers from an initial resistance state (a) to a low resistance state (LRS) (b); after 2.5 V
reset voltage, the device transfers from a low resistance state to a high resistance state (HRS) (c); after 40
continuous pulses (+1.5 V, 10 ms), the device transfers from LRS to a medium resistance state (d) [17].
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with the reduced response current. When the voltage is removed, some oxygen
vacancies may stay in a new steady position, however some oxygen vacancies may
diffuse back to the old position owing to the gradient of oxygen concentration. This
leads to the device conductance change with a reduced synaptic weight during the
relaxation time. After applying repetitive pulse stimuli, the subsequent voltage
forces the reversely diffused oxygen vacancies to move forward again so as to
improve the migration efficiency until most oxygen vacancies attain new equilib-
rium positions. The remaining synaptic weight gradually increases with the
increasing pulse number. This process is called repeated training and learning,
corresponding to the transformation from STP to LTP [17].

The memristive mechanism from Pt/AlOx/HfOx/TiN device is also applicable to
other bilayer-structured memristors such as Pt/HfO2/HfOx/TiN, Pt/TiO2/Ti-MA/TaN.

3. Conclusion

Our asymmetric bilayer-structured memristors fabricated by ALD/MLD and
their main memristive features are summarized in Table 4, including set/reset
voltage, ON/OFF ratio, and some important synaptic functions. Some similar work
with asymmetric bilayer structure has also been listed in Table 4 for comparison. It
can be seen that all memristors with asymmetric bilayer structure exhibit better
resistive switching performance. Our memristors have relatively thinner functional
layers, relatively smaller ON/OFF ratio and emulate more artificial synaptic func-
tions such as LTPo, LTD, the transition from STP to LTP, PPF, STDP, and condi-
tional reflex (CR). The memristive mechanism of our bilayer-structured ultrathin
device has been proposed to explain the synaptic plasticity based on oxygen vacan-
cies migration/diffusion model. The non-uniform distribution of oxygen vacancies
in asymmetric bilayer memristors plays the crucial role in affecting the linkage/
rupture of conductive filaments.

In light of these promising results and the fabrication compatibility with semi-
conductor industry, the ALD/MLD-derived bi-layer ultrathin memristor devices
have tremendous potential as billions of electronic synapses in next-generation
artificial neural network and flexible electronics.

Device structure Thickness
(nm)

Set/reset
voltage (V)

ON/OFF
ratio

Synaptic functions References

Pt/HfO2/ZnO/TiN �10 �1.7/+1.4 �30 LTPo, LTD, STP/LTP,
STDP

Our works

Pt/Al2O3/HfO2/TiN �10 �1.4/ +1.3 �610 LTPo, LTD, STP/LTP,
PPF, STDP

Pt/HfO2/HfOx/TiN �6 �1.6/+1.1 �954 LTPo, LTD, STP/LTP,
PPF, STDP, CR

Pt/TiO2/Ti-MA/TaN �8 �1.5/+1 �230 LTPo, LTD, STP/LTP,
PPF, STDP, CR

Ni/SiNx/AlOy/TiN �11.5 +4/�3.5 �500 LTPo, LTD, STDP [35]

TiN/HfO2/Al2O3/Pt �10 +1.4/�1.3 �105 STDP [36]

W/AlOx/Al2O3/TiN �10 +1.05/�1.25 �103 — [37]

Ag/ZrO2/WS2/Pt �100 +0.16/�0.06 >105 PPF, STDP [38]

Table 4.
Comparison of main memristive features of our ultrathin memristors fabricated by ALD/MLD and other
asymmetric bilayer-structured memristors.
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Abstract

In this Chapter, we review the recent progress on resistance drift mitigation
techniques for resistive switching memory devices (specifically memristors) and its
impact on the accuracy in deep neural network applications. In the first section of the
chapter, we investigate the importance of soft errors and their detrimental impact on
memristor-based vector–matrix multiplication (VMM) platforms performance spe-
cially the memristance state-drift induced by long-term recurring inference opera-
tions with sub-threshold stress voltage. Also, we briefly review some currently
developed state-drift mitigation methods. In the next section of the chapter, we will
discuss an adaptive inference technique with low hardware overhead to mitigate the
memristance drift in memristive VMM platform by using optimization techniques to
adjust the inference voltage characteristic associated with different network layers.
Also, we present simulation results and performance improvements achieved by
applying the proposed inference technique by considering non-idealities for various
deep network applications on memristor crossbar arrays. This chapter suggests that a
simple low overhead inference technique can revive the functionality, enhance the
performance of memristor-based VMM arrays and significantly increases their life-
time which can be a very important factor toward making this technology as a main
stream player in future in-memory computing platforms.

Keywords: Memristor Crossbar, State-drift, Vector–matrix Multiplication,
Inference

1. Introduction

Designing specialized hardware accelerators has been a topic of interest recently
due to rapid growth of machine learning and artificial intelligence [1–5]. Despite the
recent advancements in developing machine learning complementary-metal-oxide
(CMOS) based chips to efficiently implement vector–matrix multiplication (VMM)
operations, these systems are limited by the off-chip memory bottleneck [6]. To this
end, co-locating memory and processing has been considered as a solution by using
non-volatile resistive switching memory technologies [7–14]. One such device
technology is memristor and it has risen as a promising high speed, low power
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computational alternative to traditional CMOS hardware [15–18]. Memristor can be
placed in a crossbar structure to perform highly parallel multiply-accumulate
(MAC) operations efficiently using Ohm’s Law [19–22]. Through heavy
parallelization using Kirchoff’s laws, a memristor crossbar is able to do MAC oper-
ations at O(1) speed [23]. Crossbars are most commonly used to perform VMM by
mapping a n by m matrix the memristors’ conductance range, applying an input
voltage vector to the rows, and then reading the current from the appropriate
columns [24]. In addition to neuromorphic applications [25–28] of memristor
crossbar, through VMM memristor crossbar has shown to be capable of performing
a number of tasks ranging from image processing [29], physical unclonable func-
tions (PUFs) [30–32], optimization problems [33–35], sparse coding [36], and solv-
ing partial differential equations [37]. Also, there have been many researches
focusing on implementation of deep neural network (DNN) accelerators using
memristor crossbars which focuses on different device, algorithm and system level
contributions [18–20, 38]. While there has been significant progress in memristor
crossbar-based computational devices, there are still many major challenges in
robustness and computational accuracy that hinder the technology [20, 39, 40].
There have been several researches focus on mitigating the impact of non-idealities
on memristor crossbar systems performance and these reliability improvement
techniques are mainly proposed for process variations [41, 42], hard faults [43, 44],
signal distortion issue [45], and memristance drift [46–48]. These techniques can be
mainly categorized into (i) retraining to compensate the error (ii) mapping tech-
niques (iii) closed-loop training (iv) error-correction coding.

Here, we focus on the memristance drift effect and the mitigation techniques to
avoid the impact of this issue over the memrisitive DNN systems. Typically, in
memristor crossbars, there are two major operations to perform: write and read
operations. In the write operation, a voltage above the switching voltage of the
memristor [49] is applied to a memristor repeatedly until the resistance of the
memristor is sufficiently close to the target resistance. During the read operation, a
voltage lower than the switching voltage is applied to the memristor and the current
from the memristor is measured. The read operation is used extensively in the
inference operation of many Ex-situ and In-situ algorithms including artificial
neural networks (ANN). Ideally, the resistance of the memristor should not change
at all, but in practice, there is often a very small change in the memristor state after
a read operation. This phenomenon is known as memristance drift [50, 51]. Over
many read operations, these small changes in resistance of the memristors in a
crossbar will add up to have a significant impact on computational accuracy.
Memristance drift occurs in different resistive switching memory technologies and
it is not similar in terms of the behavior. In phase change memory (PCM) devices,
the memristance drift occurs even when there is no voltage applied over the mem-
ory cell and the amorphous state (high resistance state) of the device is changing
over time [52]. Subsequently, this issue will be more severe a the high-resistive
amorphous state increases and this will impact dramatically the PCM-based sys-
tem’s performance in presence of high cycle-to-cycle and device-to-device varia-
tions. In memristor technology, as discussed before, the repetitive VMM operations
result a memristance drift phenomenon and it becomes worse as the number of
inference operations increases. Existing solutions to this problem include periodical
weight reprogramming and feedback designs have limitations with high computa-
tional overhead and limited long-term effectiveness. For instance, HfOx RRAM
testing results using a dynamic BL-bias circuit for preventing memristor state dis-
turbance during read operations [53]. Error correction code (ECC) is used in [51] to
reduce write latency by up to 70%. However, these techniques are not sufficient in
themselves to enhances the performance of computational memristor crossbars in
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which 2–3 bits of memristance drift can cause significant decreases in performance.
Recently, a few more effective memristance-drift mitigation techniques have been
proposed [54–56]. This chapter will summarize the approach and results of a closed-
loop feedback system technique [54] and an inline calibration approach [55] before
taking a more in-depth look into an adaptive inference technique (AIDX) [56] that
optimizes the inference voltage pulse amplitude and width. In addition, the power
and chip area overhead of these three techniques are briefly compared.

2. Memristance drift and its modeling

In general, there are memristor models can be separated into physics-based and
behavior-based simulations depending on the characteristics of their modeling and
their general purpose. Physics-based models typically attempt to simulate
memristors at a molecular-level by considering the material characteristics of the
active memristor layers and mathematical modeling of the ion drifting between
these materials. While physical models accurately model memristance drift, they
are generally computationally expensive and limited in scope to the detailed analy-
sis of singular memristor behavior. As such, memristor crossbar arrays are modeled
using behavior-based models. Behavior-based memristor models are much simpler
than physics-based models and use experimental fitting parameters to match the
behavior of different types of memristors. Current–voltage plots are one of the most
common methods of quickly visualizing memristor short-term behavior and many
behavior-based models like VTEAM [57] are built to agree with these plots. Over
the course of a voltage sweep, there is not enough time for the memristor’s state to
change noticeably under the threshold voltage and as such, the long term conse-
quences of memristance drift aren’t captured in these models. Many popular
behavior-based models, such as VTEAM [57] and TEAM [58], utilize current and
voltage thresholds to partition memristor behavior under high and low voltage/
current scenarios. Generally, these threshold models approximate the subthreshold
state change as zero and thus do not consider the long-term effects of memristance
drift. Other behavior-models, such as the nonlinear ion drift [59] and Simmons
Tunnel Barrier model [60], do not utilize a threshold and instead model memristor
high and low voltage memristor behavior using the same equations and fitting
parameters. Without a threshold, these models lack the flexibility to accurately
model the minute changes of memristance drift without sacrificing the accuracy of
its higher-voltage switching modeling. Recently, there have been attempts to
extend popular behavior-based models to more accurately simulate memristance
drift. For instance, [56] added subthreshold modeling equation and fitting parameters
to extend the VTEAMmodel. However, the modeling of memristance drift in
behavior-based models is still currently in its infancy due to the lack of experimental
data on long-term memristor behavior when exposed to low voltage pulses.

2.1 Impact of state-drift on crossbar VMM

Memristance drift in crossbar arrays can be summarized as the buildup of small
unintended changes in memristor state over many low-voltage read operations [56].
During a crossbar VMM operation, the ideal output current I j of the j-th column can
be modeled simply as:

I j ¼
X
i

GijVi (1)
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Here Vi represents the voltage applied to the i-th row of the crossbar and Gij is
the conductance of the memristors in the i-th row and j-th column. For a given
VMM operation, state drift can be represented as a small change in conductance δG.
The non-ideal output current I0j is then given as:

I0j ¼
X
i

Gij þ ΔGij
� �

Vi (2)

ΔGij represents the accumulation of memristance drift caused by all previous
VMM operations and skews the distribution of weights within the crossbar
(Figure 1a). It can be shown from Eqs. (1) and (2) that the difference between I0j
and I j scales with the read voltage of each row V and the number of rows N. Over a
long period, the buildup of drift in the crossbar weights caused by memristance
drift will lead to significant error (Figure 1b). The speed of memristance drift will
vary depending on application and memristor characteristics. Even after a short
period of 1 second, a 0.1 V signal could cause a memristor to deviate around 2%
from its initial state [61]. A thorough analysis of memristance drift speed with
respect to initial state and drift direction is done in [54]. In the SET direction, [54]
found that memristors’ resistance decreased by 77.07%, 62.07%, 56.28% and 8.81%
after 100 read operations with initial resistances of 200kΩ, 100kΩ, 80kΩ, and 15kΩ,
respectively. The speed of drift in the RESET direction was much slower at only
�0%, 1.17 � 10–4%, 0.018% and 16.43% increase in resistance for the same initial
states. From the analysis in [54], memristance drift speed is shown to be greatly
impacted by initial state and the direction of switching. A heatmap of conductance
highlights the impact of initial state on the buildup of memristance drift over time

Figure 1.
(a) Neural network (NN) weight matrix mapped onto crossbar with conductance matrix G. Each subsequent
VMM operation will cause a slight skew in the distribution of the memristors’ conductance. (b) Initially, the
error due to memristance drift is negligible. Over many inference operations, the skew in the conductance
distribution builds up resulting in significant error in the NN output. Figure reprinted by [56].
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(Figure 2a). Here, the bottom row represents the bias of a neural network and are
initialized near the high conductance state while the rest of the memristors
representing the weights are initialized close to the low conductance state. Due to
this conductance initialization, all memristors except the bottom row in the above
figure experience an aggregate memristance drift in the positive direction while the
bottom row experiences memristance drift in the negative direction. There have
been multiple studies that show that memristance drift causes significant perfor-
mance degradation on various applications after long term use. In [56], the negative
impact across ten baseline ML tasks in the Proben1 [63] datasets, memristance drift
caused an average classification accuracy decrease of 26%, 42%, and 51% after 500,
2000, and 10000 inference operations, respectively. [56] also analyzed the effects
of memristance drift on convolutional neural networks with the CIFAR10 image
classification dataset [64]. Ten different CNN architectures were tested with a
relatively consistent accuracy degradation of 29%, 59%, and 72% after 500, 2000,
and 10000 inference operations respectively. Memristor drift ranges from upwards
of 10% deviatation from its programmed value to upwards of 30% deviation at
10000 inference steps as shown in (Figure 2a). To clarify, the memristance drift
speed remains the same for each network in (Figure 2b) regardless of the number
of hidden layers. However, each additional hidden layer accumulates memristance
increasing amounts of memristance drift-related error from the previous layer
causing deeper neural network’s accuracy to degrade more quickly than networks
with less hidden layers (Figure 2b). In [55], the classification accuracy on the

Figure 2.
(a) Impact of varying number of hidden layers on memristance drift induced accuracy degradation on the MNIST
dataset [62]. (b) Heatmap of typical memristor crossbar weight mapping with the bottom row as the bias and the
rest of the heatmap representing the weight matrix. Over time, the memristance drift direction between the bias
and weights diverges due to differences in bias and weight initialization. Figure reprinted by [56].
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MNIST handwritten digits dataset [62] decreases by approximately 2.5–4% across
four independent trials due to the cycle-to-cycle variation of memristance drift. In
[54], the classification accuracy degradation on MNIST was tested with
memristance drift in the SET and RESET directions separately. In the SET direction,
the classification accuracy dropped from 91.91–60% after only 100 inference oper-
ations. In the RESET direction, accuracy degradation was slower where accuracy
dropped to 60% after approximately 300 inference operations.

3. Memristance drift mitigation overview

3.1 ICE: inline calibration

Given the significant negative impact of memristance drift on crossbar perfor-
mance, there has been a few works that have proposed meaningful solutions to the
memristance drift problem. When a memristor crossbar’s performance drops below
acceptable levels due to memristance drift, the memristors will be rewritten to their
intended states. For a given application, this recalibration is usually done at period-
ically ensure high crossbar accuracy over long time intervals. Since rewriting a
memristor to a specific state can be up to 100 times slower than the speed of an
inference operation [65], frequent crossbar calibrations could significantly bottle-
neck crossbar throughput. In [55], the authors propose an inline calibration method
that utilizes “interrupt-and-benchmark (I&B)” operations to track the crossbar
computational error in order to predict the time period before the next calibration
operation. In addition, the time period between two I&B operations is dynamically
optimized as to minimize the time overhead of the inline calibration method on
crossbar performance. As defined in the paper, I&B operations interrupt regular
crossbar operation in order to evaluate crossbar computational error on a set of
benchmark data [55]. Between each recalibration of the memristor crossbar, there
exists a theoretical maximum number of inference operations sup nr before the next
recalibration must be done due to performance degradation. The optimization goal
of ICE is to make the actual number of inference operations nr between two cali-
bration operations approach sup nr. This is not a trivial task because sup nr can vary
significantly between many calibration operations due to changes in memristance
drift speed from cycle-to-cycle variations and other factors. ICE approximates sup
nr by applying polynomial fitting to the crossbar error data during I&B operations.

To reduce the time overhead of the inline calibration method, ICE seeks to
minimize the number of I&B operations k between each recalibration of the cross-
bar. ICE uses its polynomial fitting function to guess the benchmark computation
error of the next I&B operation. If the absolute difference between the guessed
crossbar error and the actual I&B error is below some threshold, the time until the
next I&B operation will be doubled up to some maximum time interval. Otherwise,
ICE will reset the time interval between successive I&B operations to its default
value. For testing, ICE adopts a TiOx-based memristor device model from [61]. This
model extends the bulk model TiO2 with a focus on behavior-based process varia-
tion analysis of memristors. The results presented in [55] are measured in terms of
efficiency with computational efficiency defined as:

γ ¼ nr
sup nr

(3)

To quantify the time overhead caused by I&B operations, the parameter Δ is
defined as:
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Δ ¼ knIB
nr

(4)

Here, k is the average number of I&B operations between crossbar recalibrations
and nIB is the number of inference operations required per I&B operation. These
criteria were evaluated across four baseline tasks (HMAX, KMeans, Sobel, and
MNIST [62]) and compared to a baseline of constant time period crossbar
recalibrations. With second degree polynomial fitting, ICE achieves an average
calibration efficiency γ of 91.18% which is a 21.77% improvement over the baseline.
This improvement in calibration efficiency only came at the cost of a time overhead
Δ of 0.439%. No information on the voltage range or power consumption of ICE is
presented in [55]. However, the author’s mentioned that future works could include
a detailed power analysis of ICE using a SPICE-based memristor model.

3.2 Closed-loop feedback circuit

Traditionally, the data flow of a memristor crossbar-based neural network fol-
lows a linear pipeline in a conventional open-loop system. While these open-loop
systems serve as a simple and efficient pipeline for VMM operations, they are not
able to effectively manage the effects of memristance drift. In [54], a closed-loop
circuit is proposed to mitigate memristance drift by adaptively adjusting the direc-
tion of current in each memristor using a feedback controller. Mean square error
(MSE) is used to measure the degradation caused by memristance drift. Specifi-
cally, the difference in MSE (ΔMSE) between the ideal crossbar and the current
state is used as a metric to inform the feedback controller. For each inference
operation, a weight compensation algorithm is run to minimize memristance drift
speed. The second feature of the closed-loop design introduced in [54] is the usage
of an “arrogant principle” which assumes that the prediction made by the crossbar
system is always correct. This principle allows the system to use its output as the
label to determine the direction of compensation in the weight compensation algo-
rithm. The effectiveness of this assumption hinges on the ideal accuracy of the
crossbar-mapped neural network. With a high initial accuracy, the “expectation of
recognition accuracy probability with respect to time” will be close to its upper
bound, thus keeping the rate of degradation of the feedback controller low. Naively,
this closed-loop design requires an additional compensation pulse for each inference
operation which would halve the throughput of the crossbar system. To address this
issue, [54] combines the compensation pulse with regular inference operations by
manipulating the k-th inference operation into compensating for the memristance
drift caused by the (k-1)-th inference. The feedback controller is used to determine
the recall direction of the (k-1)-th and then adjusts the direction of the k-th infer-
ence pulse accordingly. By integrating the k-th compensation pulse into the (k + 1)-
th inference pulse, there is no need to sacrifice crossbar throughput to implement
this proposed system. For testing, [54] adopts the dynamic model of the TaOx
memristor from [66] with a low resistive state and high resistive state of 1 kΩ and
1MΩ, respectively. The performance of single and two-layer neural networks were
tested on the MNIST dataset. The effectiveness of the closed loop design was
measured as the number of inference operations before the crossbar accuracy drops
below 70%. As compared to a baseline crossbar system, the proposed closed-loop
design is shown to increase the number of recall operations by 1897 operations for
the single-layer network and 1590 operations for the two-layer network. This
increase corresponds to a 13.84� lifetime extension for the single layer network and
a 13.95� lifetime extension for the two-layer network. For power estimation, [54]
uses a square recall voltage pulse of 0.3 V for 100 ns. Boban had an estimated power
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consumption of 1.1196 mW for a single layer neural network which increases to
6.7367 mW for a two-layer neural network implementation.

4. Adaptive inference scheme for memristance drift mitigation

In [56], the authors proposed an adaptive inference scheme called AIDX that
optimizes the amplitude and duration of inference voltage pulses in order to mini-
mize the speed of memristance drift. AIDX formulates memristance drift as an
optimization problem and seeks to minimize the memristance drift error defined as
the increase in mean squared error (MSE) from the initial programmed crossbar
after a set number of inference operations. The initial MSE can be modeled as:

E0 ¼
X
j

y j �
X
i

GijVi

 !2

(5)

Similarly, the MSE after k inference operations is given as:

Ek ¼
X
j

y j �
X
i

Gij þ ΔGk
ij

� �
Vi

 !2

(6)

where ΔGk
ij is the accumulated memristance drift in the memristor i-th row and

j-th column from k inference operations. The additional error due to memristance
drift after k operations is calculated as EDrift ¼ Ek � E0. The naive approach of
simply choosing the minimum allowable voltage amplitude and duration may seem
logical because speed of memristance drift scales with amplitude and duration.
However, this naïve approach would still result in significant memristance drift
because of the vast differences in state drift speed in the SET and RESET drift [54].
As such, AIDX focuses on balancing the aggregate drift in the SET and RESET
directions for a given application by optimizing the ratio of SET to RESET
voltage pulse amplitude A and duration D (Figure 3a). The minimization of
memristance drift with respect to voltage pulse amplitude and duration is
formalized as follows:

minA,DEDrift A,Dð Þ (7)

Here, EDrift is a function of A and D that are vectors which represent the ratio of
SET to RESET voltage pulse amplitude and duration of each row of the memristor
crossbar respectively. The Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm
[67] is used to tackle this optimization problem. Since the gradient of the
memristance drift error cannot be evaluated directly, the gradients used in the
BFGS algorithm were numerically approximated using function evaluations. Under
some circumstances, it is possible for the optimized values of A and D to be too
large or small to be properly implemented on a crossbar. Extreme values of A andD
are often caused by skewed memristor characteristics where memristance drift
speed in one direction is much faster than the other direction or when the data
distribution is heavily skewed toward one recall direction. To address this issue,
AIDX randomly inverting the direction of inference for an input vector x with
probability a in order to compensate for imbalanced memristor characteristics and a
skewed data distribution (Figure 3b). The probability of input inversion is opti-
mized to minimize EDrift before the optimization of A and D vectors to ensure a
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relatively balanced memristance drift speed in the SET and RESET directions as to
prevent extreme final values of A and D.

The general usage of AIDX in both preprocessing and inference is described in
(Figure 3c). To ensure optimal performance, optimization is done in three scenarios:
Optimizing over pulse amplitude ratio, optimizing over pulse duration ration, and
optimization over both parameters simultaneously. The best set of parameters is then
chosen according to lowest evaluated EDrift. If the parameters A and D are too
extreme, the optimization of probability of input inversion a is performed. Applying
AIDX during inference is almost identical to a normal crossbar VMM operation
except that if the input was inverted, the output vector must be reinverted to recover
the intended output. When applying AIDX to deep neural networks, it can be ineffi-
cient to optimize over all layers simultaneously due to the large number of parame-
ters. Instead, AIDX applies the BFGS algorithm to each layer separately in forward
pass order in order to reduce optimization time (Figure 4a). AIDX used a simulated
extended VTEAMmodel to fit real TiOx-based memristor device data. The following
non-idealities were considered for testing: 15% memristor programming error, 15%
random gaussian noise added to the high/low conductance states and alpha/k param-
eters of the extended VTEAMmodel for device-to-device variation. In addition, 200
ohms of source resistance and 20 ohms of line resistance were considered as well as
sneak paths were also considered. AIDX was applied to a memristor system that

Figure 3.
(a) Visual representation on how AIDX’s parameters changes the relative amplitude and width of positive and
negative voltage pulses before and after optimization. (b) Illustration of skewed input distributions can cause an
imbalance of memristance drift error in a particular direction. By applying input inversion, the input
distribution is reflected such that the memristance drift error in each direction is balanced. (c) Flowchart
describing the AIDX procedure for preprocessing and inference. Figure reprinted by [56].
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operates with a voltage range of �0.2 V to 0.2 V. Depending on the pulse amplitude
optimization, AIDX’s inference pulse can vary within this range. On average, there is
2% reduction in passive power consumption within the crossbar compared to the
baseline system when using AIDX. A simple test of AIDX effectiveness is done by
applying random positive and negative voltage pulses to memristors with and with-
out AIDX. After 10000 inference operations, the baseline memristors deviated a max
of 1.9% from its initial value while AIDX had a max deviation of only 0.17%
(Figure 4b). When tested on the 10 benchmark tasks from the Proben1 dataset [63],
the average classification accuracy degradation with AIDX is approximately 4%, 7%,

Figure 4.
(a) AIDX optimizes and applies separate voltage amplitude and duration ratios for each layer separately. (b)
Basic test on memristance drift with all devices with and without AIDX. With all memristors initially set to
0.0052 S, half of the memristors receive pre-generated random sequences of positive and an identical sequence of
negative pulses are applied to the other half of the crossbar.

Figure 5.
(a) Classification accuracy of AIDX and baseline neural network on ten tasks from the Proben1 dataset after 500,
2000, and 10000 inference operations. (b) Classification accuracy of AIDX and baseline on CIFAR10 dataset
with various CNN architectures after 500, 2000, and 10000 inference operations. Figure reprinted by [56].
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and 8% after 500, 2000, and 10000 inference operations (Figure 5a). On average,
AIDX reduced accuracy degradation by 42% as compared to the baseline test after
10000 inference operations. When testing AIDX on 10 CNN architectures using the
CIFAR10 dataset [18], the classification accuracy decrease by an average of 4%, 7%,
and 8% after 500, 2000, and 10000 inference operations (Figure 5b). This accuracy
degradation corresponds to a 22%, 35%, and 43% improvement over the baseline
respectively. In addition, AIDX was also applied to image reconstruction by training a
simple 3-layer autoencoder on the MNIST dataset [62]. The average mean squared
error of the baseline auto-encoder was 0.033, 0.068, and 0.129 after 500, 2000, and
10000 inference operations respectively. With AIDX, the average mean squared
error drops to 0.015, 0.021, and 0.028 after 500, 2000, and 10000 inference
operations which is an improvement of 53.0%, 69.0%, and 78.6% over the baseline
(Figure 6).

5. Overhead analysis

The three methods for mitigating memristance drift discussed in this chapter all
induce small overheads in terms of power consumption and chip area. Time

Figure 6.
(a) Reconstruction of sample images from MNIST dataset after 1, 500, 2000, and 10000 inference operations.
(b) The average mean squared error in image reconstruction between AIDX and baseline autoencoder after set
time steps. The percentage error improvement of AIDX over the baseline is also shown. Figure reprinted by [56].

79

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



overhead is not discussed in this section because there is negligible change in
crossbar throughput by all three mitigation methods. Power overhead is defined in
this section as the additional power consumption induced in the memristor crossbar
and peripheral circuits due to proposed memristance drift solutions. For the sake of
consistency, the estimates of peripheral power consumption of [54] are used for
comparison. While power consumption is not disclosed in [55], the power overhead
of [56] is 1.19% while [54] has a power overhead of 1.61%. Area overhead is defined
consistently with [56] as the additional on-chip area required for memristance drift
mitigation method because of peripherals, external circuit, and other items. Since
both [55, 56] do not include any additional on-chip circuitry, these two methods do
not have any chip area overhead while the closed loop circuits proposed in [54]
require an additional 2.34% chip area. On the other hand, both [55, 56] require
solving an optimization problem before implementing their mitigation technique.
However, considering that the optimization procedure would only needed to be
performed once for an application, these solutions still promise great scalability for
long-term memristor crossbar usage.

6. Conclusions

In summary, this chapter first discusses memristor crossbar modeling and how
there is a current lack of attention in modeling subthreshold memristor behavior.
The next section overviews how the speed of memristance drift is impacted by
recall voltage and amplitude, memristor characteristics, crossbar size, and number
of inference operations since the last write operation. In addition, memristance drift
is shown to cause severe accuracy degradation across multiple datasets and tasks
such as MNIST and CIFAR10. The second half of this chapter is dedicated to
overviewing three different approaches for memristance drift mitigation. First, an
inline calibration approach [55] and a closed-loop feedback system is summarized.
Then, there is a more in-depth look into an adaptive inference scheme that opti-
mized the ratio of SET to RESET voltage pulse amplitude and width to minimize
memristance drift speed. The final section of the chapter briefly compared the
power and chip area overhead of these three memristance drift mitigation tech-
niques. Hopefully, this chapter can bring more much-needed attention to the study
of memristance drift and the development of drift mitigation techniques.
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Chapter 5

Pattern Formation in a RD-MCNN
with Locally Active Memristors
Ahmet Samil Demirkol, Alon Ascoli, Ioannis Messaris
and Ronald Tetzlaff

Abstract

This chapter presents the mathematical investigation of the emergence of
static patterns in a Reaction–Diffusion Memristor Cellular Nonlinear Network
(RD-MCNN) structure via the application of the theory of local activity. The pro-
posed RD-MCNN has a planar grid structure, which consists of identical memristive
cells, and the couplings are established in a purely resistive fashion. The single cell
has a compact design being composed of a locally active memristor in parallel with a
capacitor, besides the bias circuitry, namely a DC voltage source and its series
resistor. We first introduce the mathematical model of the locally active memristor
and then study the main characteristics of its AC equivalent circuit. Later on, we
perform a stability analysis to obtain the stability criteria for the single cell.
Consequently, we apply the theory of local activity to extract the parameter space
associated with locally active, edge-of-chaos, and sharp-edge-of-chaos domains,
performing all the necessary calculations parametrically. The corresponding
parameter space domains are represented in terms of intrinsic cell characteristics
such as the DC operating point, the capacitance, and the coupling resistance.
Finally, we simulate the proposed RD-MCNN structure where we demonstrate the
emergence of pattern formation for various values of the design parameters.

Keywords: pattern formation, memristor, reaction–diffusion, cellular nonlinear
networks, destabilization, local activity, complexity

1. Introduction

An important feature of complex systems is the emergence of spatiotemporal
patterns, which can be observed in numerous physical systems consisting of homo-
geneous media [1]. Among many examples, the emergence phenomenon can occur
as a result of oscillatory kinetics in a chemical reaction [2], self-organization of
biological organisms [3], mechanical vibration on liquid surfaces [4], or mineral
precipitation on geologic surfaces [5]. In particular, network dynamics of pattern
formation is considered to be the key attribute of information processing and
memory storage in biological neural networks [6] and, hence, is the main concern in
neuroscience. Following the consequences of the seminal paper of Turing [7] where
he introduced the chemical basis of morphogenesis, the mechanism behind pattern
formation dynamics has been extensively studied in various scientific branches. On
one hand, different mathematical models have been proposed to elucidate the
analytical principles of pattern formation dynamics [8]. On the other hand, there
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has been an ambiguity on the conceptual definition of the complexity phenomenon,
which was previously described as symmetry breaking, instability of the homoge-
nous, exchange of energy, or self-organization. In [9], Chua has proposed the
theory of local activity, as the origin of complexity, where he quantitatively defined
the mathematical principle behind the emergence of complex patterns in a homog-
enous medium. In this way, the theory of local activity assembled various defini-
tions under the same framework and enabled the quantitative investigation of
pattern formation dynamics, especially through electrical circuits. Since then, sev-
eral works dealing with pattern formation dynamics on electrical hardware have
referred to the theory of local activity to perform robust and quantitative analysis
(e.g., see [10]). Mathematically, a well-known method to realize pattern formation
dynamics is to implement reaction–diffusion partial differential equations (RD-
PDEs) [11]. Various physical systems adopting reaction–diffusion equations have
been shown to create well-known spatiotemporal phenomena such as traveling
waves or clustering patterns [12]. Therefore, circuit implementations of RD-PDEs
would be a reasonable approach to capture pattern formation dynamics on electrical
hardware. Cellular nonlinear networks (CNNs), which can be described as homo-
geneous structures composed of evenly spaced and locally coupled identical cells,
are prominent hardware solutions to implement the RD-PDEs. In particular, the
reaction dynamics of an RD-PDE can be implemented by the identical cells of a
CNN, while the diffusive dynamics of the same RD-PDE can be successfully
discretized using the central difference approach and then implemented via
resistive coupling between the identical neighboring cells, resulting in the so-called
RD-CNN structure [13]. Motivated by this approach, emergent phenomena,
such as Turing patterns or auto waves, have already been demonstrated across
RD-CNNs [14].

The high-speed data transfer capability of modern mobile communication sys-
tems has led to the introduction of 5G and, in the future, 6G networks successively
in a short period, which has enabled a new era in technology such as Industry 4.0
and Internet-of-Things (IoT) [15]. In parallel with the requirements of the new
technological applications and the performance criteria of the corresponding hard-
ware realizations, the design of bio-inspired neuromorphic systems utilizing the in-
memory-computing principle, which stands as an alternative option to the design of
conventional von-Neumann computing architectures where memory and processor
units are separated from each other, has recently gained a lot of attention [16].
Similarly, there is a huge research effort in academia and industry for developing
efficient fabrication techniques to implement the new in-memory computing cir-
cuit elements such as resistive switching memories, which can apparently be
described as memristors [17]. The memristor, a two-terminal circuit element that
was theoretically hypothesized 50 years ago, can be briefly considered as a
nonlinear resistor with inherent memory dynamics [18]. Due to recent develop-
ments in physical implementations of different types of memory devices, the
modeling and analysis of memristors and memristive systems have also gained
attention, resulting in comprehensive circuit and system theoretical investigations
[19]. Accordingly, the availability of manufactured nanoscale memristors emerges
as a key enabler for the implementation of memory and processing units realized in
the same place of compact hardware, and thus, provides the opportunity to design
novel bio-inspired systems with in-memory-computing capabilities. In this way, it
can be possible to overcome the end of Moore’s law by engineering the information
processing architectures, rather than downscaling the semiconductor device
dimensions, which practically has come to an end.

Consistent with the above-mentioned text, locally active memristors have
already been utilized in the design and application of spiking neural cells
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demonstrating promising results [20], while prominent artificial neural network
designs employing memristor crossbar arrays have been presented in several works
[21]. Besides, the theory of memristor cellular nonlinear networks (MCNNs) has
been comprehensively investigated in [22–25] and the formation of Turing patterns
with reaction–diffusion MCNNs (RD-MCNNs) has been introduced in [26]. In
addition, pattern formation utilizing locally active NbO memristors in an MCNN
has been presented in [27]. In a previous work [28], we have presented the model-
based analytical investigation of dynamic pattern formation in a RD-MCNN,
exploiting a manufactured locally active memristor, while the proposed single cell
structure, as well as the subsequent results, is different from those presented here.
Similarly, in [29], we have presented preliminary results of the mathematical
investigation of static pattern formation in a RD-MCNN structure. The goal of this
work is to extend the content of the previously presented works and to introduce an
analytical design procedure for the implementation of static pattern formation
across a compact RD-MCNN structure while taking into account the theory of local
activity for the mathematical treatment. To enable the locally active dynamics, we
employ a nanoscale locally active generic memristor model in the design of the basic
network cell. The proposed RD-MCNN has a planar grid form and is composed of
locally coupled identical cells. The compact unit cell consists of a locally active
memristor in parallel with a linear capacitor, besides the bias circuitry, namely a DC
voltage source and its series resistor. We first introduce the mathematical definition
of the locally active generic memristor employed and, then, study the main charac-
teristics of its AC equivalent circuit. Later on, we perform a quick stability analysis
and determine stability criteria for the single cell. Consequently, we apply the
theory of local activity in order to extract the parameter space with locally active,
edge-of-chaos, and sharp-edge-of-chaos domains, performing all the necessary cal-
culations parametrically. The corresponding parameter space domains are illus-
trated in terms of intrinsic network characteristics such as the cell DC operating
point, the cell capacitance, and the coupling resistance. Essentially, we adopt a
circuit theoretical approach, regarding the stability analysis of the single cell and the
destabilization process after the coupling is established, which promotes an efficient
investigation of the criteria to be derived. Finally, we carry out numerical simula-
tions where we demonstrate the emergence of pattern formation across the pro-
posed RD-MCNN structure for various values of the design parameters.

2. The locally active generic memristor

Nanoscale memristors with locally active (i.e., S-shaped) DC current–voltage
(I–V) characteristics have been utilized in the design of oscillatory neuron cells
[30, 31]. Furthermore, it was shown in [32–34] that memristor models in a generic
form are capable of representing the dynamics of these nanoscale devices accu-
rately. Similarly, in this work, we adopt a simplified generic memristor model to
implement locally active dynamics, which helps to reduce the complexity and the
simulation time of large-scale networks employing such devices. In addition, the
adoption of the generic form enables simplified calculations related to the deriva-
tion of the AC model of the device, further promoting the clarification of the
results.

2.1 The model definition

We introduce the memristor model equations, namely the I–V relationship in
Eq. (1), and the state equation in Eq. (2), where im (vm) is the memristor current
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(voltage), Rs is the series resistance, T is the state variable representing the temper-
ature, and G Tð Þ ¼ g0 ∙ exp �g1=T

� �
is the temperature-dependent memductance

function. We would like to note that Eqs. (1) and (2) define a sole memristor core
with current imc ¼ im and voltage vmc ¼ vm ∙ 1þ Rs ∙G Tð Þð Þ�1. The parameter values
of the given model employed during the numerical simulations can be found in
Table 1.

im ¼ vm ∙
G Tð Þ

1þ Rs ∙G Tð Þ ¼ vmc ∙G Tð Þ (1)

CT
dT
dt

¼ vmc ∙ im � gT ∙ T � T0ð Þ (2)

The S-shaped DC I-V curve under the current sweep and the schematic of the
complete device, which can be depicted as the series combination of the core
memristor and Rs, are introduced in Figure 1(a). At this point, we would like to
point out that the negative differential resistance (NDR) region, which hosts the
peculiar dynamics of the locally active memristor, is highlighted with the orange
color in Figure 1(a).

2.2 The AC equivalent circuit

Since the small-signal equivalent of the memristor plays an important role dur-
ing the forthcoming circuit theoretical stability analysis, it is crucial to obtain the
AC equivalent circuit of the memristor device. For this purpose, we first derive the
small-signal equivalent of the core memristor and then combine it in series with Rs
to obtain the AC equivalent circuit of the overall memristor. Essentially, we set
Rs ¼ 0Ω in Eqs. (1) and (2) so that the updated equation set represents the core

g0=S g1=K Rs=Ω CT= J∙K�1� �
gT= W ∙K�1� �

T0= Kð Þ

5 ∙ 10�3 1700 200 10�14 6:67 ∙ 10�7 300

Table 1.
Parameter values for Eqs. (1) and (2).

Figure 1.
(a) DC I-V curve of the locally active memristor, with NDR region highlighted. The schematic of the memristor,
as the series combination between the core device and the series resistor Rs, is depicted in the inset figure. (b) AC
equivalent circuit of the entire memristor where R1 ¼ Rs þ R1i.
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memristor only. Then, we linearize Eqs. (1) and (2) by deriving their first-order
Taylor series expansions. As the next step, we apply Laplace transform to the
linearized equations, and after a suitable rearrangement of the Laplace equations,
we express the impedance function of the core memristor in Foster’s first form [35]
RL circuit configuration. The final configuration of the AC equivalent circuit of the
entire memristor is depicted in Figure 1(b).

Regarding the AC equivalent circuit, R1i represents the inverse of the slope of the
DC I-V curve for Rs ¼ 0Ω and naturally gets negative values in the NDR region.
Furthermore, the quantity R1i þ R2ð Þ corresponds to the instantaneous resistance,
V T0ð Þ=I T0ð Þ, of the core memristor, which always gets positive values at a given
temperature T0, since the I-V curve lies either in the first or in the third quadrant.
The same explanations are still valid also for Rs 6¼ 0Ω if R1i is replaced by
R1 ¼ R1i þ Rs. Lastly, L represents the dynamics of the core device, while L and R2
have positive values at all equilibrium points. The graphical representation of the
small-signal element values of Figure 1(b) versus the DC current IQ can be found in
Figure 2, where we use parameter values as given in Table 1 during the numerical
simulations. Finally, a similar procedure regarding the derivation of the AC equiv-
alent circuit of a generic memristor including a detailed investigation and graphical
illustration can be found in [36] as well.

Figure 2.
Small signal elements values of Figure 1(b) are depicted as a function of the DC equilibrium current IQ , while
the parameter values are adopted from Table 1 during the numerical simulations. (a) ∣R1∣ vs. DC current
where positive values of R1 are depicted in blue color and negative values of R1 are depicted in orange color. The
orange part of ∣R1∣ curve one-to-one corresponds to the NDR region of the DC I-V curve. (b) R2 vs. IQ where R2
always gets positive values. (c) R1 þ R2ð Þ vs. IQ . R1 þ R2ð Þ corresponds to the instantaneous resistance
V T0ð Þ=I T0ð Þ of the memristor and always gets positive values. (d) L vs:IQ where L represents the dynamics of
the memristor and takes positive values for all current values.

91

Pattern Formation in a RD-MCNN with Locally Active Memristors
DOI: http://dx.doi.org/10.5772/intechopen.100463



3. The single cell

To achieve a compact single cell design, a basic solution is to establish oscillatory
dynamics by implementing a minimal second-order system accompanied by a
simple bias circuitry. Since the memristor itself implements a first-order system
with inductive dynamics, an efficient solution to increase the order of the system
would be to include an additional capacitor into the cell design. Additionally, we
prefer to realize the proper biasing via a DC voltage source and a bias resistor.
Consequently, the proposed single cell is depicted in Figure 3(a) where Vb is the
DC voltage source, Rb is the bias resistor, Rs is the series resistor, and C is the
parallel capacitor, while the open circle denotes the coupling node.

3.1 Stability analysis of the single cell

Pattern formation through a RD-MCNN prerequisites stable single-cell
dynamics in the isolated case. Therefore, in this section, we perform a parametric
stability analysis for the uncoupled single cell, which is also the first step of param-
eter extraction of the circuit element values. A straightforward procedure of stabil-
ity analysis would require performing linearity analysis on the state equations of the
second-order single cell, followed by the derivation of the eigenvalues, to express
the stability conditions [37]. In this work, we present a circuit theoretical approach
where we employ the AC equivalent circuit of the single cell, which is depicted in
Figure 3(b), and derive the stability conditions for the uncoupled case. Adopting
this approach, it is possible to express in an efficient way, the stability conditions of
the isolated cell in terms of linear circuit element values and of AC element values of
the memristor in a parametric form, which enables a direct evaluation of the results.
Finally, although the results to be derived should hold for any equilibrium point on
the DC I-V curve, without loss of generality, we assume that the memristor is biased
in the NDR region, where R1 <0 and the device is locally active, which is essential
for the emergence of complexity.

To derive the stability conditions of the single-cell circuit in Figure 3(a),
we firstly obtain the AC equivalent of it, simply by replacing the memristor
with its small-signal equivalent (previously introduced in Figure 1(b)) and by
assuming the DC voltage source as a short-circuit element, resulting in the circuit
given in Figure 3(b). Second, we calculate the impedance function Z sð Þ, which is
illustrated in Figure 3(b), and given in (3). Here, we would like to note that the
poles of Z sð Þ directly correspond to the eigenvalues of the state equations of the
single cell.

Figure 3.
(a) The single cell of the RD-MCNN structure. Vb is the DC voltage source, Rb is the bias resistor, Rs is the series
resistor, C is the parallel capacitor. The open circle denotes the coupling node. (b) AC equivalent of the circuit in
(a). The small-signal transfer function Z sð Þ is the impedance seen through the coupling node.
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Z sð Þ ¼ sL R1 þ R2ð ÞRb þ R1R2Rb

s2LC R1 þ R2ð ÞRb þ s L R1 þ R2 þ Rbð Þ þ R1R2RbC½ � þ R1 þ Rbð ÞR2
¼ N sð Þ

D sð Þ
(3)

The stability of Z sð Þ can be determined by examining the location of the poles of
Z sð Þ, or equivalently, the roots of D sð Þ via Routh-Hurwitz criteria. At this point, it is
timely to recall from Figure 2 that L>0, R2 >0, and R1 þ R2ð Þ>0, which reveals
the fact that the coefficient of the s2 term of D sð Þ is readily positive. Consequently,
to guarantee the (asymptotic) stability of Z sð Þ, remaining the coefficients of the
D sð Þ polynomial have to be nonnegative, as dictated by Routh-Hurwitz criteria.
Therefore, we have R1 þ Rbð Þ>0 and L R1 þ R2 þ Rbð Þ þ R1R2RbC>0 that respec-
tively imply that the bias resistor Rb has to be larger than the magnitude of the
inverse of the slope of the DC I-V curve (i.e., Rb > R1j j), while C has to be smaller
than a critical Cmax value, which is given in Eq. (4). Here, we would like to note that
D sð Þ would simplify in the absence of the parallel capacitor C, while the first
stability condition R1 þ Rbð Þ>0 would remain the same, as shown in [38], but
Eq. (4) would be unnecessary.

C<
L R1 þ R2 þ Rbð Þ

�R1R2Rb
¼ Cmax (4)

In Figure 4(a), Cmax is shown (in blue) as a function of the equilibrium point of
the memristor current IQ�NDR across the entire NDR region, for two different values
of Rb. It can be seen from Figure 4(a) that the smaller value of Rb results in a larger
value for Cmax, which would be beneficial during a hardware realization, while we
remind that Rb should be kept larger than R1j j for a stable operation.

3.2 Local activity analysis of the single cell

The small-signal behavior of an uncoupled cell, which is biased at a locally
passive operating point, can be represented by a positive real complexity function
(or similarly, by a positive real transfer function for the 1-port coupling case).
Subsequently, the AC equivalent circuit of the same cell at the given operating point
would be strictly composed of passive linear elements, which inherently results in
stable dynamics. Therefore, a diffusive coupling (i.e., the coupling established via a
resistor) obtained between these identical cells would similarly result in an

Figure 4.
(a) Cmax vs. IQ�NDR (blue curves) and Rc�max vs. IQ�NDR (orange curves). (b) Cmax * Rc�max product. It can
be seen from both graphs that smaller values of Rb results in larger values for Cmax, Rc�max , and Cmax * Rc�max
values, while the last product term is more influenced from Rb value.
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eventually stable structure since the combination of passive circuit elements
through a resistive coupling cannot give rise to instability. Thus, to be able to
observe the emergence of complexity in a diffusively coupled homogenous net-
work, it is vital to accommodate locally active cells, which cannot be represented by
positive real complexity functions in the small-signal regime. This fact at the same
time implies that local activity can be simply judged as a violation of local passivity
[9]. Furthermore, a locally active cell is defined to be on the edge-of-chaos, if it is
biased at an asymptotically stable operating point. Most importantly, an uncoupled
cell, which is poised on the edge-of-chaos and therefore considered as a “dead” or
“silent” cell due to its stability, can be potentially destabilized from its quite state
via resistive coupling, which leads to the generation of complex patterns across the
homogenous medium. Correspondingly, the edge-of-chaos domain involves a sub-
set called the sharp-edge-of-chaos domain, which defines the set of parameters that
destabilize the cell after coupling is introduced. Strictly speaking, a one-port cell is
said to be locally active if and only if its small-signal transfer function (e.g., Z sð Þ
given by Eq. (3) in our case) satisfies any of the conditions below [9]:

1.Z sð Þ has a pole with positive real part, that is, Re s½ �>0.

2.Z sð Þ has multiple poles on the imaginary (jω) axis.

3.Z sð Þ has a simple pole s ¼ jωp on the imaginary axis and the residue associated
with this pole, specifically r jωp

� � ¼ lim
s!jωp

Z sð Þ ∙ s� jωp
� �

, is either a negative

real number or a complex number.

4. Re Z jωð Þ½ �<0 for some ω∈ �∞,∞ð Þ.

To confirm the locally active dynamics of the complexity function Z sð Þ of
Eq. (3), which is associated with the uncoupled cell of Figure 3(a), a direct
approach would be to check whether these four rigorously defined criteria are
satisfied or not, an approach we had applied in a previous work [28]. However, in
this work, we apply a quick inspection method of local activity criteria, and rather
check if Z sð Þ clearly violates local passivity. In consistent with this approach, it can
be seen that Z sð Þ possesses a right half plane (RHP) zero (i.e., z ¼ �R1R2=L R1 þ R2ð Þ
>0, for R1 <0), a feature that cannot be realized with any locally passive transfer
function. Thus, without a need for a further examination, we can infer that once it
is biased in the NDR region, the uncoupled cell operates in the locally active regime.
Furthermore, since the uncoupled cell is designed to be asymptotically stable (via
tuning Rb and C accordingly), we can directly conclude that it is both locally active
and on the edge-of-chaos across the entire NDR region. Finally, we would like to
note that the RHP zero is a strong indicator of a possible destabilization scenario
after the coupling is established.

3.3 Destabilization analysis after the introduction of coupling

For the emergence of pattern formation, it is essential that the identical cells lose
stability after the resistive coupling is established between them. In the previous
section, we have studied the stability of the uncoupled cell, while in this section, we
investigate the destabilization process after a resistive array is added to couple the
elements of the network. Since a direct stability analysis that requires exploring the
complete network itself would be complicated and time-consuming, it would be
beneficial to apply a simplified stability analysis. Considering highly accurate
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illustrative examples, the stability analysis of two-cell [37] and three-cell [29] arrays
can be found in the literature. In this work, we present a quick inspection method,
which is conceptually introduced in [9] and has been implemented through an
example in [28], where the idea is to terminate the coupling node of the single cell
with a coupling resistor, resulting in the circuit depicted in Figure 5(a) for the case
study presented here.

To investigate the possible destabilization scenarios of the resistively terminated
cell in Figure 5(a), we follow the same circuit theoretical approach as in the
previous subsections and examine the corresponding AC equivalent circuit, which
is shown in Figure 5(b). Here, the poles of the impedance function Zc sð Þ coincide
with the eigenvalues of the second-order system equivalent of the circuit in
Figure 5(a) at a given equilibrium point and should be examined to determine the
destabilization conditions. At this point, it should be noted that the AC equivalent
circuits depicted in Figures 3(b) and 5(b) are qualitatively equivalent to each other,
while Rc appears additionally in parallel with Rb in Figure 5(b). Therefore, the
expression of Zc sð Þ, readily given in Eq. (5), is identical to the expression of Z sð Þ,
where the term Rb is replaced with the parallel equivalent term Rbc, that is,
Rbc ¼ Rb ∙Rc= Rb þ Rcð Þ.

Zc sð Þ ¼ sL R1 þ R2ð ÞRbc þ R1R2Rbc

s2LC R1 þ R2ð ÞRbc þ s L R1 þ R2 þ Rbcð Þ þ R1R2RbcC½ � þ R1 þ Rbcð ÞR2
¼ Nc sð Þ

Dc sð Þ
(5)

To claim instability of Zc sð Þ, at least one coefficient of the Dc sð Þ polynomial has
to be negative, as dictated by Routh-Hurwitz criteria. Here, it is straightforward to
see that the coefficient of the s2 term of Dc sð Þ is readily positive. Similarly, it is
possible to show after some algebraic rearrangement that the coefficient of the s
term remains positive as long as the stability precondition given by Eq. (4), with Rb
replaced by Rbc, is satisfied. Thus, for instability, the constant term of Dc sð Þ, namely
R1 þ Rbcð Þ ∙R2, has to be negative. Starting with the inequality R1 þ Rbcð Þ ∙R2 <0 and
replacing Rbc with Rb ∙Rc= Rb þ Rcð Þ directly give us the destabilization condition
introduced by Eq. (6).

Rc < � R1 ∙Rb

R1 þ Rb
¼ Rc�max ¼ � R1∥Rbð Þ (6)

In Figure 4(a), we plot (in orange) Rc�max as a function of the equilibrium point
of the memristor current IQ�NDR across the entire NDR region, for two different
values of Rb. Similar to the characteristics of Cmax, the smaller value of Rb results in
a larger value for Rc�max , which would relieve the design constraints for an

Figure 5.
(a) A simplified scenario for the resistively coupled single cell where Rc stands for the coupling resistor. (b) AC
equivalent circuit of the cell in (a). The poles of Zc sð Þ shall be investigated for analyzing the stability of the
circuit in (a) at a given equilibrium point.
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hardware realization. On the other hand, Eq. (6) reveals the fact that considering
the memristor model-dependent quantities, Rc�max depends only on the slope of the
I-V curve (i.e., R1

�1), while Cmax depends on other quantities (see Eq. (4)) as well.
Besides, as a function of IQ�NDR, the characteristics of Cmax increase (decrements),
while the characteristics of Rc�max decrease (increments). Moreover, it is interest-
ing to mention that the condition derived in Eq. (6) is qualitatively equivalent to the
results presented in [29, 37], indicating the fact that the simplification considered in
this work is accurate and provides a quick insight into the destabilization scenario of
the coupled cell in Figure 5(a).

Considering a typical time constant based design approach, we characterize the
term Rc�max ∙Cmax, introducing the exact and an approximate product in Eq. (7),
and plot these quantities in Figure 4(b) as a function of IQ�NDR, for two different
values of Rb. Here, we would like to note that the approximate product term
L= R1 þ Rbð Þ is obtained under the assumption R1 þ R2 þ Rbð Þ ffi R2.

Rc�max ∙Cmax ¼ � R1 ∙Rb

R1 þ Rb
∙
L R1 þ R2 þ Rbð Þ

�R1R2Rb
¼ L R1 þ R2 þ Rbð Þ

R2 R1 þ Rbð Þ ffi L
R1 þ Rbð Þ (7)

It can be seen from Figure 4(b) that the approximated time constant term given
in Eq. (7) follows the original expression very closely, especially for the smaller
value of Rb. Moreover, the approximated value is independent of R2, but rather
dependent on the dynamic quantity L, or in other words, the switching speed of the
memristor device. As a final and crucial remark, referring to the instability region of
parameters, that is, the sharp-edge-of-chaos domain, it is possible to rigorously
define the necessary circuit design variables by taking into account the parametric
equations given by Eqs. (4) and (6).

4. RD-MCNN structure and static pattern formation

The proposed RD-MCNN structure has a planar grid arrangement and it is
composed of m� n identical cells where m is the number of rows, n is the number
of columns, and Ci,j represents the cell at ith row and the jth column. All the cells are
resistively coupled to the respective nearest neighbors in vertical and horizontal
directions only, and the CNN structure assumes periodic boundary conditions; that
is, the first and the last cells in each row, and respectively, in each column, are
resistively coupled to each other as well. To study the emergence of pattern forma-
tion dynamics in the proposed RD-MCNN, among several structures investigated,
here we present typical simulation results of a two-dimensional 51� 51 structure.
We define the same initial conditions (T0 ¼ 300K and Vc0 ¼ 0V) for all the cells
unless otherwise stated, except for the cell, namely C26,26, which is in the center of
the network. This exception for the definition of initial conditions is adopted to
initiate the emergence of the transient behavior in the numerical simulations.

First of all, we investigate the effect of changing the DC operating point on the
static pattern formation. To this end, we set the design parameters Rb to 2kΩ and Rc
to 0:1kΩ, while we tune Vb to vary the location of the DC operating point of each
cell. We present the emergent static patterns in Figure 6, where Vb ¼ 1:2V in
Figure 6(a), Vb ¼ 1:3V in Figure 6(b), Vb ¼ 1:4V in Figure 6(c), and Vb ¼ 1:5V
in Figure 6(d). Here, we plot the memristor voltage, or equivalently, the capacitor
voltage, of each cell and assign a color code to its amplitude value, as depicted on
the right side of each plot. It is possible to observe from Figure 6 that a shift in the
location of the operating point due to an increase in Vb may lead to static patterns
featuring a reduced spread in capacitor voltage amplitude through the array,
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reflected by a gradual decrement in the variety of colors in the emergent patterns,
as especially observed in Figure 6(d).

Later on, we examine the effect of the coupling strength on the static pattern
formation by varying the value of the coupling resistance Rc. Similarly, we set the
design parameters Vb to 1:2V and Rb to 2kΩ while we tune the value of Rc to adjust
the coupling strength. The results are illustrated in Figure 7, where Rc ¼ 0:25kΩ in
Figure 7(a), Rc ¼ 0:5kΩ in Figure 7(b), Rc ¼ 1kΩ in Figure 7(c), and Rc ¼ 2kΩ in
Figure 7(d). It can be seen that as Rc increases, first a deformation starts to occur in
the outer parts of the static pattern of Figure 7(a)–(c), while clearly, a new static
pattern emerges, finally in Figure 7(d). The final pattern in Figure 7(d) also shows
that neighboring cells exhibit a sharper spread in the capacitor voltage amplitude,
which is reflected by the clear color contrast observable in this plot, especially as
compared to that of Figure 7(a).

In addition, we focus on the effect of the initial conditions on pattern formation,
as depicted in Figure 8, where we fix the values of all of the design parameters such
that Vb ¼ 1:2V, Rb ¼ 2kΩ, and Rc ¼ 0:1kΩ. The cells located in the center of each
side of the edges (i.e., C1,26,C26,1,C51,26,C26,51), or midpoint cells for short, have the
same initial condition as the center cell C26,26 in Figure 8(a), while only the corner
cells (C1,1, C1,51, C51,1, C51,51) have the same initial condition as the center cell C26,26

in Figure 8(c). On the other hand, only the midpoint cells share the same initial
conditions in Figure 8(b), while the center cell C26,26 features the same initial
condition as the rest of the network. Similarly, only the corner cells share the same

Figure 6.
RD-MCNN output values represented by the cell memristor voltages obtained in a simulation of a two-
dimensional 51 � 51 RD-MCNN structure for Rb ¼ 2kΩ, Rc ¼ 0:1kΩ, while Vb ¼ 1:2V in (a), Vb ¼ 1:3V
in (b), Vb ¼ 1:4V in (c), and Vb ¼ 1:5V in (d). All the cells have the same initial conditions except for the
center cell C26,26. A shift in the memristor DC operating point may lead to static patterns with a reduced range
in capacitor voltage amplitude, as mostly pronounced in (d).
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initial conditions in Figure 8(d), while the center cell C26,26 features the same initial
condition as the rest of the network cells. The difference between the patterns
presented in Figure 8(a) and (b), and equivalently in Figure 8(c) and (d), shows
the effect of a change in the number of cells sharing the same initial conditions.
Likewise, the difference between the patterns presented in Figure 8(a) and (c),
and equivalently in Figure 8(b) and (d), shows the effect of a change in the
location (indeed, a rotation of half-side length) of cells sharing the same initial
conditions, which can result in clearly different patterns. Since there exists a very
high number of spatial permutations for the location and the number of cells with
the same initial conditions, we conjecture that there may appear a large class of
clearly distinguishable patterns, such as those presented in Figure 8, which results
in a significant memory capacity of the network.

Lastly, we investigate the effect of the size of the network on the patterns
generated through. For this purpose, we set the design parameters Vb to 1:2V, Rb to
2kΩ, and Rc to 0:2kΩ, while we define the same initial conditions for the corner cells
as it is the case for the center cell. Then, we simulate structures of different size
while preserving their square geometry, and depict the results in Figure 9, where
m ¼ n ¼ 31 in Figure 9(a), m ¼ n ¼ 41 in Figure 9(b), m ¼ n ¼ 51 in Figure 9(c),
and m ¼ n ¼ 61 in Figure 9(d). Once more, it can be concluded from Figure 9 that
the patterns generated across networks of different sizes and square geometry are
clearly distinguishable one from the other.

Figure 7.
RD-MCNN output values represented by the cell memristor voltages obtained in a simulation of a two-
dimensional 51 � 51 RD-MCNN structure for Rb ¼ 2kΩ, Vb ¼ 1:2V, while Rc ¼ 0:25kΩ in (a), Rc ¼
0:5kΩ in (b), Rc ¼ 1kΩ in (c), and Rc ¼ 2kΩ in (d). All the cells have the same initial condition except for the
center cell C26,26. As Rc increases, first a deformation occurs in the outer parts of the pattern observed in (a), as
shown in (b) and (c), while a clearly new pattern emerges in (d). With reference to the pattern in (d), the
capacitor voltages in neighboring cells exhibit a sharper change in the amplitude, which is practically reflected
by the color contrast observable, especially as compared to that of (a).
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5. Conclusion

In this chapter, we have presented the mathematical investigation of static
pattern formation across a resistively coupled RD-MCNN structure via the applica-
tion of the theory of local activity. The considered networks have identical cells in a
compact form, each of which is composed of a DC bias voltage source, a bias
resistor, a locally active memristor, and a parallel capacitor. The memristor was
represented through a generic model, which helped to reduce the numerical com-
plexity and to shorten the simulation time of large-scale networks. A useful AC
equivalent circuit could be derived for the locally active device, which facilitated
further calculations related to the small signal model of the network cell. We have
adopted a systematic circuit theoretical approach that we applied for the stability
analysis of the isolated cell and for the extraction of its parameter values for its
operation on the edge-of-chaos and sharp-edge-of-chaos domains. In this way, we
have performed a simple, fast, and robust analysis, which at the same time allowed
an efficient interpretation of the results. All the calculations were performed in
parametric form, which allowed a deep investigation of the results, making it
possible to extract the related sets of parameters in terms of the cell characteristics,
namely the DC operating point and the capacitor value, as well as the value of the

Figure 8.
RD-MCNN output values represented by the cell memristor voltages obtained in a simulation of a two-
dimensional 51 � 51 RD-MCNN structure for Rb ¼ 2kΩ, Rc ¼ 0:1kΩ and Vb ¼ 1:2V. The cells in the middle
of each side of the edges, or briefly the midpoint cells (C1,26,C26,1,C51,26,C26,51), have the same initial
conditions as the center cell C26,26 in (a), while the corner cells (C1,1, C1,51, C51,1, C51,51) have the same initial
conditions as the center cell C26,26 in (c). On the other hand, only the midpoint cells share the same initial
conditions in (b), while the center cell C26,26 features the same initial condition as the rest of the network cells.
Similarly, only corner cells share the same initial conditions in (d), while the center cell C26,26 features the same
initial conditions as the rest of the network cells. A change in the location as well as in the number of cells sharing
the same initial conditions can result in clearly different patterns, conferring the network a significant memory
capacity.
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coupling resistance. The proposed RD-MCNN was shown to generate diverse pat-
terns while we have extensively investigated the effect of design parameters, initial
conditions, and the size of the network on the patterns generated therein. Further-
more, the mathematical and circuit theoretical approach employed during the
investigation of pattern formation dynamics in the RD-MCNN under focus in this
chapter can be easily adopted to RD-MCNNs with different cell designs.

Finally, the content of this work can be extended to the investigation of the role
of the network geometry and variety in cells’ initial conditions on pattern forma-
tion. Furthermore, the impact of memristor non-idealities such as variability in
memristor behavior from cycle to cycle, as well as from device to device, and
endurance degradation and short- and long-term reliability issues shall be further
examined to achieve a robust design. Such non-idealities, essentially, can affect the
NDR characteristics of the memristors and narrow the width of the NDR region, or
the devices can even get stuck in one of the high-resistance or low-resistance locally
passive regimes where they act as dead cells without any dynamics. Preliminary
simulation results show that endowing memristors with narrower NDR width neg-
atively affect the patterns’ color contrasts, while the presence of the high- or low-
resistance locally passive devices results in the formation of color clusters within the
patterns. Interestingly, similar color clusters emerge also when some of the array
memristors’ initial conditions are randomly selected, which suggests a possible
strategy to compensate for the disturbing action of locally passive cells on the
formation of predefined patterns through a dynamic conditioning of their initial
conditions. Similarly, the low color contrast quality in the patterns, which occur due

Figure 9.
Simulation results of various m� n RD-MCNN structures for Rb ¼ 2kΩ, Rc ¼ 0:2kΩ and Vb ¼ 1:2V, where
m ¼ n ¼ 31 in (a), m ¼ n ¼ 41 in (b), m ¼ n ¼ 51 in (c), and m ¼ n ¼ 61 in (d). The corner cells have the
same initial conditions as the center cell for all the structures. Although the four structures share a square
geometry, they differ in size, which leads to clearly distinguishable patterns.
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to the existence of memristors featuring a narrower NDR region, can be improved
by reprogramming dynamically the bias voltage sources in these “defect” cells. In
conclusion, proper control strategies including cells’ dynamic biasing and initial
condition conditioning, as well as reconfiguration of the network array, may be
considered as a solution to overcome the harmful effects which memristor non-
idealities may induce on the emergence of predefined patterns in the proposed RD-
MCNNs. Future studies will also be devoted to envision an application, where the
capability of our cellular medium to generate a variety of steady-state static patterns
may be useful to our modern society.
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Chapter 6

Development of
Compute-in-Memory Memristive
Crossbar Architecture with
Composite Memory Cells
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and Majid Ahmadi

Abstract

In this chapter, we discuss the compute-in-memory memristive architectures
and develop a 2M1M crossbar array which can be applied for both memory and
logic applications. In the first section of this chapter, we briefly discuss compute-in-
memory memristive architectural concepts and specifically investigate the current
state off the art composite memristor-based switch cells. Also, we define their
applications e.g. digital/analog logic, memory, etc. along with their drawbacks and
implementation limitations. These composite cells can be designed to be adapted
into different design needs can enhance the performance of the memristor crossbar
array while preserving their advantages in terms of area and/or energy efficiency. In
the second section of the chapter, we discuss a 2M1M memristor switch and its
functionality which can be applied into memory crossbars and enables both mem-
ory and logic functions. In the next section of the chapter, we define logic imple-
mentation by using 2M1M cells and describe variety of in-memory digital logic
2M1M gates. In the next section of the chapter, 2M1M crossbar array performance
to be utilized as memory platform is described and we conceived pure memristive
2M1M crossbar array maintains high density, energy efficiency and low read and
write time in comparison with other state of art memory architectures. This chapter
concluded that utilizing a composite memory cell based on non-volatile memristor
devices allow a more efficient combination of processing and storage architectures
(compute-in-memory) to overcome the memory wall problem and enhance the
computational efficiency for beyond Von-Neumann computing platforms.

Keywords: compute-in-memory, crossbar, logic design, memory, memristor

1. Introduction

In general, memory devices are considered as one of the most important
primitives in every computing system. Although, they play an undeniable role in
conventional computers, which the processing units and memory are separate, it is
generally believed that future computers, unlike von Neumann architectures, will
have a compute-in-memory (CIM) structure. According to Moore’s Law and
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fundamental VLSI limitations, CMOS technology is expected to face constraints and
serious challenges at each technology node [1]. These challenges require solutions
both short-term and long-term solving technical and strategic difficulties on
Moore’s Law way. Accordingly, researchers both in academia and industries are
working hard on different available options and solutions from device up to archi-
tecture levels proposing incremental as well as revolutionary approaches. Regarding
to this requirements, many efforts and initiatives have done by researches in order
to keep on progress in the emerging memory technologies such as Ferroelectric
Random Access Memory (FeRAM) [2], Magnetic Random Access Memory
(MRAM) [3], and Resistive Random Access Memory (RRAM) [4], etc. Among all
these technologies RRAM (generally referred as memristor) has received a lot of
attention not only because of its favorable characteristics of low operating voltage,
high speed, simple structure, and nano-scale but also with its logic implementation
capabilities of the memristor devices. Memristor first in 1971, was proposed by
Chua as a non-linear passive element [5], and then almost 37 years later, in
2008, was physically realized by the HP company, which was fabricated
utilizing a Pt–TiO2–Pt structure [6]. These nano-devices are based on a resistor
with6variable resistance which can maintain resistance value upon bias removal
that can be used as non-volatile memory cells. In addition to the conventional
usage as memory cells, this device has also found variety of interesting applications
such as machine learning platforms [7, 8], logic circuits design [9, 10], and
neuromorphic systems [11]. Considering memristor as a non-volatile memory
device makes it an interesting building block for large scale non-volatile memory
systems. The memristor, or memory resistor, has been used in crossbar array
architectures [12].

Due to the structural limitations (e.g. sneak path problems, interconnect resis-
tance and etc.) of fully passive arrays (0T1M) various resistive switching memory
based structures for the memory cells has been offered in literature such as 1T1M
[13, 14], 4M1M [15], 1S1M [16–22], 1D1M [23], and 2T1M [24]. One challenging
issue in crossbar array performance is sneak path current which can lead to negative
effects on power consumption and limit the array size and other negative effects.
Despite of amazing footprint size (4F2) in fully passive crossbars, 1T1M arrays has
been developed to reduce the impact of alternate currents with the cost of adding an
access CMOS transistor in a single memory cell which significantly reduces the area
efficiency of the array. These pseudo-crossbar structures mostly developed for
digital memory arrays and they enable making large crossbars by adding more
accessibility to each memory cell and avoiding the problem of voltage degradation
over memory crossbar interconnects. 2T1M structure [24] is also presented and the
auxiliary CMOS device is added to help for self-learning mechanism and these
structure are used for spiking neural networks (SNNs). Also, a modified version of
these cells are designed in 1T1M [13, 14] manner by getting benefit from the new
type of transistor which has a smaller size and has the ability to change the sign of
the charge carriers. Two terminal selectors such as non-linear switching elements
and diodes are attracting a lot of attentions due to the scalability and small footprint
sizes. Symmetric voltage–current characteristics for 1S1R structure in [17–22] avoid
using these type of cells in logic applications. Also, for composite memory cells with
diodes, Zener diode is utilized due to the low break down voltage which makes
possible the rewriting over the memrisor device in each cell. Complementary resis-
tive switch (CRS) with back to back memristor devices provide resiliency toward
the sneakpath current by keeping one of the series device in high resistance which
reduce the alternate current path in non-selected cells. Pure memristive composite
memory array with 4M1M structure is proposed in [15], this structure provides a
memristor switch to avoid sneakpath. In this method, at least one of the input
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devices is in low-resistance state (Ron) all the time which connects target cell to
other cells in the row through a low resistive network. However, this structure
suffers from parallel branches detour currents which considerably impact the
power consumption and writing current.

Other attractive domain for composite memory structure is utilizing them for
logic applications by collocating the computing within the memory in the same
place. Several number of logic design and implementation research works have
recently been proposed using memristor devices. Memristor Ratio Logic (MRL) is a
CMOS-Memristor structure approach for combinational logic design [25]. In this
method logical values are presented as node voltages, but it is a hybrid approach
consisting both memristor and MOS transistors in the crossbar fabric. There are also
other methods, such as MAGIC [26] and IMPLY [27] in which unlike MRL,
memristance of memristors represent logical values. Each approach has positive and
negative points regarding required number of memristor or MOS transistors or
required time steps.

This chapter discuss 2M1M composite memory array and its application in both
memory and logic. The proposed switch provides three modes namely, ON, OFF
and No-Change, designed with three memristor. This structure not only can be used
as AND, OR, NAND, and NOR logic gates with less computational steps compared
to [27], but also the IMPLY logic can be implemented in crossbar array by this
memory cell. The proposed cell is a pure memristor memory cell as 2M1M. The read
and write operations are done by the same memristor circuits without need for
additional circuitry within memory fabric. Thus, significantly reducing the number
of required elements and simplifies the crossbar structure. The technique presented
in the reading circuit does not need an isolated access to the memristor node which
in turn reduces circuit wiring, and leads to a very simple structure with less com-
plexity. Proposed structure provides an effective gating mechanism by which
memory elements can be partially isolated from the access line during reading cycle
which considerable reduces the sneak path currents. The remainder of this chapter
is organized as follows: Section 2 introduces memristor-based switch circuit and its
application and performance in the proposed memory cell. In Section 3 the pro-
posed crossbar structure is discussed. Logic implementation and computational
operations by 2M1M memory cell are presented in Section 4 and some explanation
about sneak path are discussed.

2. A 2M1M memristor cell and its functionality

2.1 2M1M switch circuit

The 2M1M three state switch [9] which functions in ON, OFF, and NC are
shown in Figure 1. As it can be seen, the proposed memory cell comprises of three
memristor devices XA, XB and XC. XA and XB devices are the access devices and they
isolate the target device XC which stores the information. There are three
terminals A, B, and C in this structure in which A and B are considered as input
terminals and Va and Vb (as input voltages of ‘�V’ or ‘+V’) should be applied to
terminals A and B respectively. Operation of the circuit, regarding Va and Vb as
input voltages and VM as its output can be explained as follows. The input voltage
(+V) for logic ‘1’ and the input voltage (�V) for the logic ‘0’ are applied to the XA

and XB memristors (|�V| > |Vth|). The voltage VM on common node of memristors
represents output of the circuit while memristor XC maintains this value in form of
memristance. The truth table of this circuit is shown in Table 1.
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VM � Vað Þ
Ra

þ VM � Vbð Þ
Rb

þ VM

Rc
¼ 0

! VM
1
Ra

þ 1
Rb

þ 1
Rc

� �
¼ Va

Ra
þ Vb

Rb

(1)

and providing Ra, Rb << Rc we can approximate VM as:

VM ¼ Rb

Ra þ Rb
Va þ Ra

Ra þ Rb
Vb (2)

When both inputs are ‘0’ (�V) according to the polarity of memristors, since a
negative voltage is applied across memristor XA and a positive voltage across
memristor XB, so their memristance, regardless of their initial states, will change to
Roff and Ron, respectively. Therefore, according to Kirchhoff’s law and also con-
sidering the initial state of the memristor XC, as RC >> RA, RB (memristance of XA

and XB), the voltage in common node of memristors is: VM = �V. This will set
memristance of XC to Roff, which is logical zero:

Va ¼ Vb ¼ �V

VM ¼ Ra þ Rb

Ra þ Rb
� �Vð Þ ¼ �Vð Þ≈Logical 0

(3)

For logic 1, according to the fourth row of the Table 1, when both inputs are in
the same value of +V, similarly, based on the polarity and direction of memristors,
the memristor XA is set to Ron and memristor XB becomes Roff. Therefore, the
voltage on the output node (M) is approximately +V which will change the
memristance of the output memristor, XC, to Ron representing logical one:

Figure 1.
Schematic of the proposed memory cell. (a) General circuit of memory cell. (b) Configuration for switch circuit
mode. Figure reprinted by [9].

Case Va Vb VM Rc Switch State

1 �V �V �V Roff OFF

2 �V +V 0 Rini NC

3 +V �V 0 Rini NC

4 +V +V +V Ron ON

Table 1.
Truth table for the proposed switch circuit.
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Va ¼ Vb ¼ V

VM ¼ Ra þ Rb

Ra þ Rb
� V ¼ V ≈Logical1

(4)

Otherwise, if the value of input voltages is different as (+V) and (�V), both
input memristors have the same value of either Ron or Roff according to the applied
voltage and their polarity. This results in a zero voltage on common node. Since
Vc = 0, in this case memristance of XC does not change:

Va ¼ �Vb ¼ V

VM ¼ Ron

Ron þ Ron
� V þ Ron

Ron þ Ron
� �Vð Þ ¼ 0

(5)

or similarly:

Va ¼ �Vb ¼ �Vð Þ
VM ¼ Roff

Roff þ Roff
� �Vð Þ þ Roff

Roff þ Roff
� V ¼ 0

(6)

This state is called a NO-Change state. To have a timing analysis of switches
operation, according to [15]:

dR tð Þ
dt

¼ �k � i tð Þ ¼ �k � V
R tð Þ (7)

k ¼ μ:ΔR � Ron=D2 (8)

ΔR ¼ Roff � Ron (9)

Because in the fourth combination of the truth table of memristor based switch
(Table 1), memristor XA is parallel with memristor XB then Va = Vb. Therefore:

Va ¼ R tð Þ � dR tð Þ
�k � d tð Þ (10)

By integrating (8) and also assuming that ϕ0 ¼ 0, ϕ tð Þ is given by

ð
Va ¼

ð
R tð Þ � dR tð Þ
�k � d tð Þ ¼

ð
dϕ
dt

(11)

Ra
2 tð Þ � Rai

2 ¼ �2kaϕ tð Þ (12)

ϕ tð Þ ¼ Ra
2 tð Þ � Rai

2� �
�2ka

(13)

and also by supposing the initial state of memristor XA is Roff and its final state is
Ron, the required flux across the memristor XA is

ϕ tð Þ ¼ Ron
2 � Roff

2� �

�2ka
(14)

Thus, the required time for change state of memristor XA and XB is given by:

Δϕa ¼ VaT1 (15)
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T1 ¼
Ron þ Roff
� � �D2

�2VaμvRon

T1 ¼ T2

(16)

In memristor XC the required time for the change of state is:

T3 ¼
R0
on þ R0

off

� �
�D2

�2VCμ0vR
0
on

(17)

Therefore, the total time to change the cell state,Tt, is given by:

Tt ¼ T1 þ T3

Tt ¼
Roff

2 � Ron
2� �

�2kaVa
þ

R0
on þ R0

off

� �
�D2

�2VCμ0vR
0
on

(18)

2.1.1 Simulation result for 2M1M switch circuit

This is in general agreement with the simulation results as presented in follow,
Despite several memristor SPICE models which are presented in [28, 29], the

simulation results are performed using Biolek model presented in [30]. This model
is selected due to the fact that, it can be utilized in mathematical analysis for power
and delay estimation besides its validity to characterize the memristor switching
behavior. PSPICE software has been utilized to perform the simulations. The simu-
lations are carried out by using the parameters in Table 2, and for a fair compari-
son, these parameters are similar with [15] to evaluate functionality of the design.

Different combinations of inputs which are applied to the switch are shown in
Figure 2. As it can be seen the simulations results are in agreement with the truth
table of Table 1. Here the voltage is applied and output logics is represented by
memristance of the XC. Delay or settling times for this switch is defined by the time
which XC memristance reaches to its final value. According to the simulation
results, this time is 1.11 ns which is also in agreement with theoretical calculations.

2.2 Write and read operations

For the write operation, the memory cell should work based on the first and
forth rows of Table 1, respectively for writing ‘0’ and ‘1’, as descried in details in
subsection 2.1. For read operation, unlike previous works, these cells do not need
any additional wiring or complicated sense circuitry. This is because in this circuit

Parameters Value Parameters Value

D(nm) 1 Vth(V) 0.11

Vw(V) 0.9 VR(V) 0.1

Ron(Ω) 100 R’on(kΩ) 10

Roff(Ω) 900 R’off(Ω) 1900

μ(m2V�1 s�1) 1�10�6 μ’(m2V�1 s�1) 1�10�7

Table 2.
Simulation parameters for 2M1M memory architecture.
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memristor change inertia, as shown in Figure 3, is exploited. In general, the READ
operation is done by floating node B and applying READ signal VR to node C. Then,
a sense amplifier (SA) is sensed the current from node A of the memory cell. In
other words, in this technique a read signal is applied to the memristor which does
not change the memristance, either because of its high frequency (f > fth) or/and
because of its low voltage (V < Vth).

In read process method, a pulse VR with appropriate amplitude and small dura-
tion is applied to the circuit as “read signal”. A sense amplifier then measures value of
the propagated signal on port A of the switch. Width and amplitude of this pulse (or
spike) should be chosen in a way to do not affect memristors’ state during read
process. As mentioned before in high frequencies memristor operates like a pure
resistive element. If we connect A and B ports of the proposed circuit to the ground,
and apply to the other end of the memristor XC (port C), a read spike with amplitude
voltage of 2 V, as shown in Figure 3b, the output voltage can be read at node VM as:

VM ¼ RonkRoff
� �

RonkRoff
� �þ Rc

� 2V ffi Ron

Ron þ Rc
� 2V (19)

Figure 3.
(a) Write and (b) read circuit configurations of the proposed memory cell. (c) 2M1M Memristor-based
crossbar architecture. Figure reprinted by [9].

Figure 2.
Memristor switch circuit simulation results for different cases. In each subfigure, upper figure displays the inputs
and common node voltages while the below figure displays the output device resistance state. (a) a = 0, B = 0.
(b) a = 0, B = 1. (c) a = 1, B = 0. (d) a = 1, B = 1. Figure reprinted by [9].
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which in terms of logic vales can be described as:

if : Rc ¼ Ron ! VM ¼ V ¼ logical 1

if : Rc ¼ Roff ! VM ffi 0 ¼ logical 0
(20)

With this technique we can increase reading speed and reduce power consump-
tion. In addition, if we read the output value from port A instead of node M, this read
method does not require any additional wiring to access node M. This considerably
reduces fabrication and wiring complexity of the proposed crossbar structure.

3. 2M1M Memristor crossbar architecture

In crossbar architecture the 2M1Mmemory cell can be used effectively as shown
in Figure 3c. While, there is no need CMOS transistors for each cell within cross bar
fabric in this architecture. As it can be seen in Figure 3c, the similar nodes of
memory cells in the crossbar structure are connected to each other in the horizontal
rows nodes Ai and Bi are of the cells are connected to each other separately while in
vertical columns modes Ci are connected to each other. The desired reading or
writing operation are performed by applying appropriate voltages in suitable rows
and columns to activate a cell and disable others.

3.1 Write operation in the crossbar

For write operation in the crossbar architecture, like a single memory cell, appro-
priate input values need to be applied to the memory cell based on Table 1. This
means that, both applied voltages Va and Vb should be similar, either amount of ‘+V’
or ‘�V’ to write logical ‘1’ or to write logical ‘0’ respectively. Otherwise, the other
states in truth table, the switch is in the No-Change state. This scheme is easily
applicable to the crossbar structure in the same way as a single cell using connected
cell port (ai, bi and ci). It should be considered that when read or write signal are
applied, cells should be completely isolated from the target cell. When writing in a
cell (or a number of associated cells as a word), the other cells should have
maintained their saved vales. For more explanation for write operation, as an exam-
ple. Considering cell 22 as a target cell to write ‘0’ (‘1’) in Figure 4. In this case, the
same voltages �V (similarly +V for ‘1’) should be applied to both memristors XA and
XB and node C is connected to GND. In this situation, in terms of applied voltages

Figure 4.
(a) Write configuration in 3 � 3 2M1M crossbar memory and the hazardous zones are displayed. Z1 zone
contains target cell 22 and highlighted by green. (b) Resistive equivalent circuit of zone Z2 in the proposed 3 � 3
2M1M crossbar memory. The equivalent resistor circuit of the target cell 22 is highlighted by green.
Figure reprinted by [9].
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combination, four different zones are recognizable in the crossbar structure, as
shown in Figure 4. As it can be seen only the target cell is located in the first area, Z1.
The second area is Z2, where all cells have the same voltages as target cell on their ai
and bi nodes. In the third area, Z3, cells have the voltage on their node C, which is the
same as the target cell 22. In the fourth zone, Z4, there is no input in common with
cell 22. In the Z1 to write ‘0’ (‘1’) into the cell 22 voltage �V (+V) is applied to rows
Vb2 and Va2 where the column Vc2 is connected to GND.

As can be seen in the Figure 4, Z2 is the hazardous zone because in this area
same voltages as the target cell (�V or +V) are applied to the Va2 and Vb2 ports of
the cells. It can cause an unwanted writing and changing the state of the memristors
that are not supposed to change. To deal with this issue, C nodes of the neighbor
cells in zone Z2 are floated or in practice connected to a high impedance open circuit
(the columns Vc1 and Vc3 in Figure 4). Since the columns c1 and c2 are floated, we
consider a resistance RFloat for each of these columns and this resistance is
connected to the non-bar side of the XC device in each of 21 and 23 2M1M memory
cells. The bar side of XC device is connected to the common node between XA and
XB devices. Then, the equivalent resistor-based circuit for cell 21 has two serially
connected resistors Ra21 and Rb21 which are connected to rows a2 and b2 and they are
memristances of XA and XB devices in cell 21, respectively. The common node of XA

and XB is connected to a Rc21 resistor which is a memristance of Xc device in cell 21.
Therefore, resistance of the float column RFloat will be in series with Rc21 resistor
(this is true for cell 23). If the float resistance terminals were connected to both
terminals of XC device, then we could consider RFloat was parallel with Rc21 while
here only the non-bar side of XC device is connected to the floated column c1.

Resistor equivalent circuit of this zone is depicted in Figure 4b. This floated port
connection reduces current through XC memristor of the unselected cells (≈ 0) which
keeps the stored values of the cells untouched. The rest of the rows and columns in
the cross-bar structure are connected to ground. Thus, points A, B and C of cells that
are in zones Z3 and Z4 are either floating or connected to GND. the logical state of
these cells therefore do not change during write operation. Although, maybe one of
the two memristor XA and XB is sufficient to perform write operations and by help
one of them could to done correctly write operation but as mentioned, this structure
is designed to be based on a three-state switch ON, OFF and NO Change. The second
case is used to high impedance operation for memristors without changing of output
memristor in practice reading that through this can reduce the sneak paths current. In
addition, one of the applications of these cells has been mentioned is the implemen-
tation of logic circuits which is explained in the Section 4. Please note that in this
structure cells in the same column are almost independent and can be written or read
simultaneously. This makes it possible to have a parallel read/write process on these
cells for higher rate memory access operations or combine a number of them forming
data “word” rather than collections of single bits.

In the write operation as can be seen in Figure 4a, the memory cells 21 and 23
are in zone 2 and they are the neighboring cells of the target cell for write operation.
The equivalent resistor-based circuit of these cells are displayed in Figure 4b. Write
operation of the memory cell in 3�3 2M1M crossbar array is simulated in Figure 5a
and b. This memory cell is functioning even by having a time difference between
the applied voltage input Va and Vb. To test the proposed memory cell for this
special case, two asynchronous input voltages are applied to the memory cell and
the simulation results prove its functionality (Figure 5c).

3.2 Read operation in the crossbar

Regarding read operation, there are four zones in the crossbar as described in
previous section. During read operation, as shown in Figure 6a, by applying voltage
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VR to node C and stored bit in XC can be read as a voltage from node A. Suppose that
we want to read from cell 22. The read operation must be performed in 2 stages; in
the first stage, memristors XA, XB of the Z2 memory cells are changed to high
impedance (Roff) to partially isolate neighbor cells in this zone from applied read
spike which can be done by applying voltages �V and +V, according to truth table
of Table 1, to lines Va and Vb of the cells in the zone respectively. At second stage
the read signal is applied to port C of the target cell and voltage of port A of the cell
is read. This stage must be performed by floating row Vb2, applying voltage VC to
column Vc2, reading (measuring) the voltage on node A using a sense amplifier. The
important point at this stage is considering appropriate signal as read signal. It is
very important that applied read pulse be strong enough to induce a readable
voltage at A line of the row. And also this signal should not affect memristance
values of the memristors in the target cell or the neighbors. Here a spike shaped
narrow pulse is used as read signal (VC).

Another consideration which is so important in this crossbar architecture is
effect of neighbor cells in the output readout value. In this case the circuit can be
assumed as a resistive network and areas involved in this operation are Z1, Z2 that

Figure 5.
Writing in target cell with different neighbor cell’s stored value. (a) Write 1 in target cell. (b) Write 0 in target
cell. (c) Write operation when two asynchronous input voltages are applied to the target cell with the time
difference. Figure reprinted by [9].

Figure 6.
Read configuration in 3�3 2M1M crossbar memory and the hazardous zones are displayed. (a) Z1 which
contains target cell 22 is highlighted by green. Equivalent resistive circuit for hazardous zone for read operation.
Target cell for read operation is highlighted by orange. (b) Resistive circuit for hazardous zone in 3�3 2M1M
crossbar memory. (c) Equivalent resistive circuit by considering n neighbor cells. Figure reprinted by [9].
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can be seen in Figure 6. Sneak path current is considered as one of the most
important issues in memristor crossbar memories. Here, XA and XB of the neighbor
cells to “gate” effect of the XC memristance of the neighbors from read signal are
used. By changing memristance of XA and XB memristors of the neighbors to Roff, as
shown in Figure 6b, the target cell will be in parallel connection with its neighbors
which are gated form ai line by 2Roff memristance. Since all cells in these areas,
except cell 22, have a floating (Rfloat) resistance connected to the node C, each
neighbor cell can be considered as a 2Roff resistors in parallel with cell 22. The value
of these parallel resistances is equivalent to (2/n) � Roff (n = total number of
columns per row). Accordingly, equivalent resistance of the neighbor cells from ai
line is almost independent from their XC memristance, which represents stored
value in the cell. This technique considerably reduces sneak path effect and its
negative effect on cells’ readout process. Using equivalent circuit of Figure 6c, the
readout voltage and equivalent neighbor cells resistance can be calculated as:

Va ¼ Rsense

1þ 2
n

� �
Roff

� �kRoff Þ þ Rc þ Rsense
:Vc (21)

1þ 2
n

� �
Roff ÞkRoff Þ ffi

Roff

2
(22)

by selecting of Rsense = Roff,

Figure 7.
2M1M array logic schematics and simulation results for AND, NAND, OR, and NOR. (a) AND logic gate for
2M1M switch. (b) NAND logic gate for 2M1M switch. (c) OR logic gate for 2M1M switch. (d) NOR logic gate
for 2M1M switch.
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Va ¼
Roff

Roff

2
þ Rc þ Roff

� Vc

if : Rc ¼ Ron ) Va ¼
Roff

Roff

2
þ Ron þ Roff

� Vc ≈Logical 010

if : Rc ¼ Roff ) Va ¼
Roff

Roff

2
þ Roff þ Roff

� Vc ≈Logical 000

(23)

The second voltage Va from node A is higher or lower voltage according to Xc

which is low or high resistance state (Ron or Roff). Figure 7, presents simulation
results for a read operation in the crossbar structure. As it is discussed, to read the
stored value of a cell we have to apply a spike like pulse to the C node of the cell and
read the voltage from line ai, where bi line of the row and C node of the other cells
in the same row are float. When Rc is Roff the voltage in node A is a low voltage that
is equivalent to logic zero and vice versa, when Rc has the value of Ron, the voltage
in node A has a higher voltage which represents to a logic one. Figure 8, presents
two different cases. Figure 8a, shows reading ‘0’ from a cell, when the neighbor
stored ‘1’ Figure 8b, shows reading ‘1’ from a cell, when the neighbor stored ‘1’. In
both cases target cell has been readout correctly. According to the simulation results

Figure 8.
The simulations of memory cell in crossbar array for; (a) read of logic 0 from target cell and other cell, (b) read
logic 1 from target cell and other. Figure reprinted by [9].

Memory [23] Memory [24] 4M1M [15] 2M1M

Read time 1.2 ns 1.095 ns 0.25 ns 20 ps

Write voltage 1.0 V 0.9 V 0.9 V 0.9 V

Read voltage �1.0 V 0.9 V 0.1 V 0.1 V

Number of consecutive read — 130 ≫ 105 ≫ 105

Number of consecutive read by 10% noise 20 — ≫ 105 ≫ 105

Table 3.
Comparison of read operation with previous works.
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and the formula presented in the [16], reading margin in this work is equal to the
amount 0.7 V which can be a reasonable amount.

RM ¼ ΔVout
ΔVread

¼ Vout LRSð Þ � Vout HRSð Þ
VWS

(24)

where VWS is the read voltage applied. Simulation results are compared with
previous works in Table 3. As it can be seen in this table, the proposed method is
considerably better than [31, 32], and is similar to [15].

4. Logic implementation and computational operations by 2M1M
memory cell

Composite memory cells can be applied to implement digital logics. In addition
to its memory application, the proposed memory cell is capable of implementing
logic which makes it capable for in-memory computing applications. Here, in this
section we are assessing the logic implementation of the proposed architecture with
2M1M cells.

4.1 Logic gates with 2M1M switch

From switching point of view, this circuit is a three state switch as ‘ON’, ‘OFF’
and ‘No-Change’. Interestingly, this switch can also be used as logic gates. By setting
the initial memristance value of the output memristor to Ron or Roff, final
memristance state of memristor XC, respectively, AND or OR logic gate operations
are developed. Further, by changing the polarity of the output memristor (XC) one
can make NAND and NOR gates in a similar way. Therefore, the 2M1M array can
develop two different logic schemes based on the polarity of memristor XC. First,
include AND and OR gates and by changing the polarity of XC the array can develop
NAND and NOR gates. The logic is based on the resistance of device and not the
voltage. This will make this logic to enable in-memory compute logic family as the
data will store within the memory array after finishing the operation.

The input voltage pulses with amplitude +V and �V are applied as logic 1 and 0
into the rows a1 and b1. Other unselected rows will be floated and the column c1 is
grounded to shape a 2M1M cell 11 as a logic gate. Other unselected columns need to
be floated to inactive the rest of the 2M1M cells in the corresponding row. As an
example, the AND gate can be implemented by a 2M1M switch over the 2M1M
array by applying the appropriate voltages. This gate is comprised of two access
devices XA and XB which are connected in parallel with different polarities to node
M. The output device XC is connected between node M and bit-line of the array by a
positive polarity. The input voltages should be applied to a1 and b1 lines as VA and

A B AND OR NAND NOR

Vo Ro Vo Ro Vo Ro Vo Ro

�V �V 0 ROFF 0 ROFF 1 RON 1 RON

�V +V 0 RIN = ROFF 0 RIN = RON 0 RIN = RON 0 RIN = ROFF

+V �V 0 RIN = ROFF 0 RIN = RON 0 RIN = RON 0 RIN = ROFF

+V +V 1 RON 1 RON 0 ROFF 0 ROFF

Table 4.
Truth table of the proposed memristor logic gates.
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VB. Also, RC >> RA, RB and the resistance of RC will specify the output of the logic.
The logic can be described for different input combinations by considering the
Eqs. (1)–(5).

The truth table of different 2M1M logic gates has been in presented in Table 4,
by showing different input combination voltages, output voltage and resistance
state of the output device. Different 2M1M logic cells, their implementations on
memristor crossbar array and the simulation results corresponding to each AND,
NAND, OR, and NOR logic gates by using 2M1M cells for different input combina-
tions have been displayed in Figure 7. In Table 5, the proposed 2M1M logic gates
have been compared in terms of number of with IMPLY logic [27] and 4M1M [15].
It has been shown that the proposed logic requires only one computational step to
implement in-memory logic for AND, NAND, OR, and NOR gates. Also, the num-
ber of required devices to implement all of these logic gates are 3 devices included in
a 2M1M cell structure.

Sneak path current is considered as one of the important challenges against
practical application of memristor crossbars. During reading operation the sneak
path currents through neighbor cells can affect readout value of the target cell. To
eliminate or reduce the sneak path in the crossbar array several methods have been
proposed by researchers. In general, proposed methods can be divided into two
categories. In the first approach [33–36], researchers focus on device level structure
of the memristor or read process in the crossbar to make it more resilient against
this effect. Among these methods is the way provided in [33] in which read opera-
tion is done by an algorithm in several stages. This method improves the sneak path
problem but increases read time and require additional circuit to realize the read
algorithm stages. Another approach relies on memristive devices with inherent
nonlinear structure such as [34, 35] in which a three-terminal memristor device is
proposed to solve this problem. In another approach as presented in [36] to elimi-
nate sneak path currents separate columns are considered for each element in the
crossbar architecture. That increases cell area and therefore reduces the memory
density. In the second approach, to solve the problem of sneak path currents, it is
suggested to add additional switches to each memory cell in the crossbar architec-
ture to separate reading path of the target cell from the other unwanted paths.
There are several suggestions in this approach, but the most popular structure is
1T1M (one transistor for one memristor) [14]. This structure uses a transistor to
separate each cell from other cells during read operation. In this way, added tran-
sistor is the gating element of the cell. This method has problems due to the
scalability considerations of the CMOS-memristor structure [13]. In [23] diodes,

IMPLY [27] 4M1M [15] 2M1M

Operation step AND 4 1 1

OR 3 1 1

NAND 3 2 1

NOR 4 2 1

Required memristors AND 4 3 3

OR 3 3 3

NAND 3 4 3

NOR 3 4 3

Table 5.
Comparison of proposed 2M1M logic gates with [15, 27].
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instead of transistors, have been suggested to reduce sneak path. There are difficul-
ties with this approach as well due to diode behavior. In another approach [28],
back-to-back memristors are proposed to overcome the problem of sneak path
current in which always one of the memristors is in Roff state and the other one is
Ron. In this way, equivalent memristance is always greater than Roff which can
reduce the sneak path effect. In [15] a memristor based switch is suggested to solve
the problem of sneak path. In this method at least one of the input memristors is
always in state Ron, which connects target cell to other cells in the row through a low
resistive network. In this structure, as shown in Figure 9, during write process,
there is a detour current path through MS-MP and MT-MP, in all parallel branches in
the crossbar structure; witch can considerably increase the writing current and
power consumption.

In this study, effect of sneak path can be easily reduced using proposed gating
mechanism created by XA and XB memristors in the cell. By changing state of these
memristors to Roff, memristor XC, which keeps the saved value (‘0’ or ‘1’) of the
memory cell, can be isolated from rest of the network. As discussed before, in the
second and third rows of the truth table switch goes to No-Change state and XC

keeps its sate untouched, where both XA and XB memristors become either Roff or
Ron. Therefore, if in the crossbar array structure, we apply �V and +V to ai and bi
lines of the row respectively, memristors XA and XB of all the cells in the row will to
Roff state, which is a high impedance, without any change in their XC memristance.
So unlike cells provided in [15] there is no resistance of Ron between the selected
node and the other nodes of the circuit. In fact, high impedance of the XA and XB

memristors isolate XC of all the cells in the crossbar from each other.
With this approach equivalent circuit of the neighboring cells in a row is as

shown in Figure 9. Interestingly, target cell (first cell from left) sees an equivalent
resistor of the network which is almost independent from stored values (in terms of
Ron or Roff) in other cells. This means if Rfloat >> Roff then effect of Rc state is
negligible on Iread current. Simulation results are presented in Table 6. As it can be
seen this method is far better than [15, 24]. In comparison with [31] sneak path
current in this work is higher but please note that in [31] there are two transistors
for each memory cell but our cell is transistor-less.

Figure 9.
Sneak path current in 4M1M cell [15] and the proposed 2M1M crossbar memory in a read operation. (a)
4M1M [15] sneak path currents in read operation. (b) Sneak path current in 2M1M crossbar during read
operation. Figure reprinted by [9].

1T1M [13] 2T1M [24] 4M1M [15] 2M1M

Sneak current 0.25–33.29 μA 5.0 pA 0.24–1.77 μA 9 nA

State change 0.261 0 0 0

Table 6.
Comparison of sneak current effect of the proposed architecture with other architectures.
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By providing the structure and strategies for array-based 1S1R [16–22], many of
the structures have offered while having high density 4F2, very small sneak paths
current, very low power consumption and high read margin that is very promising.
Compared with 2M1M structure, can be said that 1S1R based structures has been
created in series connection memory element and selector in terms of manufactur-
ing technology because are of the two different types perhaps compared with 2M1M
structure which is a memristor uniform structure be more complexity. And in the
2M1M structure used of memristor, that is a memory and a computing element. The
aim is to implementation the logic and computing capabilities for future applica-
tions of this structure in memory which can help to achieve a beyond classical von
Neumann architecture. It hopes that by development and progression of 2M1M, the
valuable feature in 1S1R structure is achieved for a higher density and removes
sneak paths. Approximated device density and power consumption of the proposed
architecture is compared with previous works in Table 7. As it is attainable form
this table, due to lower number of memristors per memory cell, proposed architec-
ture offers higher density compared with previous works. In terms of power con-
sumption, since authors did not find a clear explanation regarding details of
previous studies for their power calculations, power consumption of the cells in
various operations are presented and compared in details.

5. Conclusions

In summary, this chapter discusses the resistive switching based composite
memory cells and offers a solution toward the limitations within the current state-
of-art 0T1R fully passive arrays and 1T1R active arrays to implement more efficient
compute-in-memory structure for future beyond von-Neumann computing archi-
tectures. The first section of this chapter briefly review different resistive switching
based composite memory arrays and discusses their advantages and limitations
toward compute-in-memory applications and implementations. The next section,
define a 2M1M memory array cell and analyzes its switching characteristics and the
write and read operation principles within the crossbar structure. The final section
of the chapter discusses the logic application with 2M1M switch and its capability to
implement AND, NAND, OR, and NOR logic gates within 2M1M memory array
structure and its compute-in-memory feature. Also, this section discusses the prob-
lem of sneakpath within the composite memory arrays and 2M1M array structure.
We hope this chapter provide a good basis toward development of resistive
switching based composite memory array platforms and providing a good insight
over 2M1M structural benefits for compute-in-memory applications.

SRAM [37] Memory [38] Memory [16] 4M1M [15] 2M1M

Density (Gbt/cm2) 0.338 1.6 — 50 80

Energy (fj/bit) 28.4 — 0.011 2.5 � 10�4 23.2 � 10�9

Table 7.
Comparisons of density and energy consumption with previous works.
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Chapter 7

Functional Capabilities of Coupled
Memristor-Based Reactance-Less
Oscillators
Vladimir V. Rakitin and Sergey G. Rusakov

Abstract

New functionalities of reactance-less memristor based oscillators are discussed
which arise when two elementary oscillators are connected. It is shown that the
system of coupled memristor based oscillators can be used for converting analog
and analog-digital signals into binary pulse sequences. The approach to control the
thresholds in memristor based oscillators is discussed. Standard control approach in
memristor based oscillators is the exploitation of input signal to drive the rate of
change in the state of the memristor. In contrast, the main idea of the considered
controlling approach is to send the input signal not directly to the memristor device
but to the comparator circuit and as result to control oscillator circuit behavior by
change of interval of memristor resistor variation. The capabilities of coupled
memristor based oscillators with control thresholds are sufficient for constructing
the simple circuit elements of oscillatory computing architectures.

Keywords: reactance-less memristor based oscillators, coupling oscillators,
memristor devices, threshold comparator, switching thresholds,
binary oscillator networks

1. Introduction

The simplicity of the design of memristor based circuits and the possibility of
manufacturing memristors [1–3] using integrated technology make them promising
for use in a variety of information storage and processing systems. The construction
of neuromorphic systems [4–8] is one of the most important memristor applications
where the memristors provide the function of nonvolatile analog memory.

Due to memristor capabilities the wide implementation of memristors is
predicted in different circuit application spheres including analog circuits. The
properties of memristors [3, 9] open up new possibilities of constructing the
memristor based oscillators (MBO) of different types [10–14]. The complex behav-
ior of MBOs is analyzed in some papers (see for instance [15–18]). The inertial
property of memristors provides the elimination from oscillator circuits the reactive
elements (inductors and capacitors) which are poorly compatible with the require-
ments of the integrated implementation of neuromorphic systems. By the present
time the various types of reactance-less MBO have been proposed [19–28]. This
class of oscillators is considered below in the paper.

The neuromorphic systems including artificial neurons (AN) and networks
become promising area where the analog memory plays the important role [29–39].
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The memory elements are located between neurons and provide restructuring the
coupling weight coefficients. Memristors are well suited to the requirements for
artificial synapses [9, 40, 41]. The memristor resistance determines the value of the
weight coefficients. The change in resistance under the action of current determines
the possibility of restructuring the connections.

However, it should be noted that the properties of memristors allow them to be
used not only as synaptic elements but also in the artificial neurons themselves. It
can be mentioned that the reactance-less MBO consisting of memristor device and
an active element, for instance comparator, can be also considered as simple AN
model. Such an oscillator element can be inhibited or excited similarly to AN
behavior. Its state can be specified by the phase of periodic oscillation.

Advanced AN models [8] that more accurately describe the behavior of biolog-
ical neurons have high complexity to represent essentially more complex and vari-
ous dynamical processes. The response of oscillatory AN to the input excitation
involves not only changing the state but also changing the character of generation of
output pulse train. In this case the number of the pulses and position of the pulses in
pulse train depend on input amplitude and transient prehistory.

The complex mathematical model is required to represent such a behavior. This
is usually achieved by increasing the order of the model. The complexity of circuits
of corresponding oscillatory AN is also must be increased [42, 43] and strict
requirements for the precision of circuit parameters must be met.

We present the alternative approach in this paper. We demonstrate that coupled
memristor-based reactance-less oscillators have the set of modes with dynamical
processes that is enough to provide the desired complex behavior. To support these
capabilities at circuit level the approach to MBO construction is presented that
based on controlling the comparator threshold. Some advantages of this approach
are demonstrated.

Among the advantages of controlling threshold approach in MBO it is essential
to point out the opportunity to construct piecewise constant (PWC) oscillators.
Recently AN models based on piecewise constant (PWC) oscillators have appeared
[44–46]. Such AN models are convenient in practice. PWC oscillators are the
oscillators with mathematical models which are systems of ordinary differential
equations (ODE) with piecewise constant coefficients. The signals generated by AN
in this case are piecewise linear functions of time. PWC oscillators are developed on
the base of standard electronic components including amplifiers, logic gates, resis-
tors, capacitors. The transient processes occur in these circuits under constant
excitation, for example the charge or discharge of the capacitor at constant current.
The analysis of AN behavior of such type and networks based on them is given in
papers [47, 48]. The nonlinearity of the memristor characteristics due to the change
in its resistance when current flows through device limits the development of PWC
memristor based oscillators [49, 50]. Application of the considered approach to
control threshold in MBO avoids this restriction because it provides use only
changing the sign of the current through the memristor while generation process.

Application in binary oscillator networks is other important capability of the
considered coupled reactance-less MBOs. Oscillatory neural networks are promising
candidates for solving a number of complex computational problems [51–55]. The
most suitable circuit elements for such networks are binary generators with binary
output signals [56–58]. In binary oscillator networks (BON) binary signals are
exchanged and information is represented by binary streams. The considered
coupled reactance-less MBOs can be applied as elementary binary oscillators.

The rest of the paper is organized as follows. Section 2 presents the principle of
controlling thresholds in MBO circuits. The circuit version of coupled MBOs with
positive couplings and its functionalities are discussed in Section 3. In Section 4 the
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functional capabilities of coupled MBOs with inverting connections are given. The
main properties of coupled MBO for use in binary generator networks are consid-
ered in Section 5. The technique of using phase planes to analyze the behavior of
MBOs is widely used in sections.

2. Foundation: the principle of controlling threshold parameters in
memristor based oscillator circuits

2.1 Operating principles of reactance-less memristor based oscillators

Oscillators without inductors and capacitors are the result of the memristor
features applying. The self-excitation conditions are provided by the inertia of the
resistance change of memristors when current flows through memristors devices.
The absence of reactive elements allows to minimize the size of memristor based
oscillators (MBO). The requirements to oscillator-based computing are met, in
particular, by various variants of MBOs that differ in the number of memristor
devices and the techniques of their coupling.

The schematic of typical reactance-less MBO is shown in Figure 1a. The circuit
consists of memristor device М and a two-threshold comparator (TTC) with a
current generator. The comparator converts the voltage v on the memristor to a
binary output signal vout (Figure 1b). The current generator converts the output
binary signal (“0” and “1”) of vout to opposite corresponding currents i vð Þ (-I and
+I). The current input iin is conventional input for reactance-less MBO. The
memristor is connected to the input of the comparator by anode.

The memristor resistance R is decreased at a positive voltage v at anode when a
positive current i flows in. The transfer function of the comparator is shown in
Figure 1b. The comparator output voltage is “0” at –VM < v<Vm and it is equal to

Figure 1.
Typical illustrative graphs of behavior of reactance-less memristor based oscillator: (a) schematic of memristor
based oscillator), (b) transfer function of comparator, (c) input function of comparator with current source,
(d) waveforms of varying memristor resistor, (e) hysteresis loop for memristor resistor at phase plan.

127

Functional Capabilities of Coupled Memristor-Based Reactance-Less Oscillators
DOI: http://dx.doi.org/10.5772/intechopen.97808



“1” otherwise. Here VM >Vm. The current generator in the negative feedback
circuit of the comparator converts the binary output signal (“0”, “1”) into a nega-
tive current and a positive current through the memristor �I, þ Ið ), respectively
(Figure 1c). The input current iin is summed with the current i vð Þ.

The memristor resistance can be considered as characteristic of oscillator state.
Typical graph of varying memristor resistance in self-excitation mode of oscillator
is given in Figure 1d. The phase plan (Figure 1e) illustrates the cycle of change of
the memristor resistance R while oscillations as hysteresis loop.

Let us consider the cycle of periodic self-excitation mode of memristor oscillator
(Figure 1a). Let’s assume that for the initial moment of time t0 the voltage value v is
v>Vm (Figure 1c). In this case the current is positive i ¼ I and vout ¼ }1}. There-
fore, the memristor resistance R and the memristor voltage are reduced. At time t1
the voltage reaches the threshold value v ¼ Vm, the output voltage vout goes from
state “1” to state “0”. The value of memristor resistance is Rm ¼ Vm=I at this time
point. Here Rm is lower threshold value of the memristor resistance. In this case
current i and voltage v become negative: i ¼ �I and ¼ �Vm . The memristor
resistance begin to increase, this leads to decreasing the negative voltage on the
memristor. At time t2 it reaches the value v ¼ �VM, the output of the comparator
goes from “0” to “1”, the current and voltage on the memristor become positive
again: i ¼ I, v ¼ VM . At this time point, the resistance of the memristor achieves
the value RM ¼ VM=I where RM is upper threshold resistance value. To provide
periodicity of this process the following conditions must be satisfied

RON <Rm ¼ Vm

I
<

VM

I
¼ RM <ROFF: (1)

Here RON - is the minimal memristor resistance, ROFF – is the maximal
memristor resistance. In this case, the memristor resistance will periodically change
in the range from the lower threshold value Rm to the upper threshold resistance RM
(Figure 1d). The change in resistance is triangular if the rate of change in the
memristor resistance does not depend on its value. The rate of change is propor-
tional to the current according to the drift-diffusion model approximation [3].

The input current impacts on the speed of memristor resistance change. The
speed is increased at the same signs of the input current and the generator current
and it is decreased in opposite case.

2.2 Introducing the control of threshold parameters in memristor based
oscillator circuits

Standard control approach in memristor based oscillators (MBO) is the
exploitation of input signal to control the rate of change in the state of the
memristor.

In contrast from this, the main idea of considered controlling approach is to send
the input signal not directly to the memristor device but to the comparator circuit
and as result to control oscillator circuit behavior by change of interval of memristor
resistor variation.

The possible schematic of memristor based oscillator with controlled threshold
parameters [50] is given in Figure 2. This oscillator element provides the desired
functionalities.

The purpose is to change the comparator thresholds using the input voltage VIN
and to control the boundaries of range of memristor resistance variation by input
voltage. In this case input voltage VIN tð Þ, limited by the region VOUT tð Þ≥VIN tð Þ≥0,
shifts the range of R tð Þ change:
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Rm � r tð Þ≤R tð Þ≤RM � r tð Þ: (2)

Here r tð Þ ¼ Vr tð Þ=I is conditional resistance. In order to avoid exceeding the
limits of the range of changes in the memristor resistance, the following inequalities
are supported:

r tð Þ<Rm � RON and r tð Þ<ROFF � RM (3)

The original comparator thresholds Vm and VM are converted into active thresh-
olds in this case.

It can be mentioned that the state of the MBO can be characterized by phase.
The phase is determined by the values of two variables: R tð Þ and sign dR=dtð Þ:

The fundamental difference between the proposed control approach and the
conventional approach is following: the change of the memristor state does not
depend on the time of the drive signal arrival under standard control and the state
change depends on the time of arrival of the drive signal for proposed approach.

The different character of impact of driving pulses on MBO behavior is shown in
Figure 3. The input current iin impacts on the rate of change in the memristor
resistance (Figure 3a). In this case the speed increases at the same signs of the input

Figure 2.
Schematic of memristor based oscillator with controlled threshold parameters. The oscillator circuit contains
memristor М, two-threshold comparator (TTC), summing elements, attenuator k (Vr ¼ kVINÞ, current source
IM., logical element NAND.

Figure 3.
The different character of impact of driving pulses on varying memristor resistance R(t): (a) excitation by input
current iin, (b). excitation by input voltage vin to control thresholds.
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current and oscillator current and it decreases otherwise. The input voltage VIN is
applied to the comparator to change its thresholds and to determine the range of
resistance changes (Figure 3b).

The input current signal iin is integrated. Its effect on the waveforms depends on
the duration of the signal and on the phase of the process, in other words on the sign
of the resistance change. The long current pulses slow down or accelerate the
transient process but short current pulses do not impact on the resistance value.

The input signal VIN applied to the input of the comparator directly before
reaching the threshold can affect the switching process even with a small value of
the coefficient k. At other times the comparator sensitivity to the input signals is
reduced. This is illustrated in Figure 3b. The long-time pulses applied to the com-
parator input do not affect the trajectory R(t). But even a short positive pulse before
reaching the upper threshold resistance RM leads to a decrease in the switching
threshold and to earlier start of reducing memristor resistance. Similarly, a short
negative pulse before reaching the lower threshold resistance Rm leads to an
increase in the lower switching threshold. This leads to beginning of growth of the
memristor resistance.

2.3 Applicability of memristor based oscillator circuits with control of
thresholds in oscillator networks

The pointed out features of two considered approaches to control MBOs
predefine their exploitation in oscillator networks. The current inputs are more
suitable for controlling the state of network elements by external signals. The
voltage inputs with control of thresholds should be used to organize interaction of
network elements with each other including synchronization mode of oscillators.

Then we will limit ourselves to the consideration of MBOs with voltage inputs
and corresponding control of thresholds. Such an oscillator element can be consid-
ered as binary element with the binary input vin (Figure 4).

The current is positive and the memristor resistance decreases at the output
signal vout ¼ }1}, until the resistance reaches the lower threshold Rm � r = Rm �
kvin=I. At output signal “0” (vout ¼ }0}) the current through the memristor is
negative, its resistance increases until it achieves the upper threshold RM � r =
RM � kvin=I .

Thus, input state vin ¼ }1} slows down the exit from the state vout ¼ }1}, and
accelerates the exit from the state vout ¼ }0}.

It can be mentioned that considered MBOs with voltage control of thresholds are
well suitable for synchronization mode of coupled oscillators due to high sensitivity
to external input and fast transient to synchronization steady state.

Figure 4.
Binary MBO element (a) and hysteresis loop for MBO resistor (b) at phase plan taking into account threshold
shift.
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2.4 Model equations

The linear drift model [3] can be applied to describe the behavior of the
memristor device. This model involves “instant” voltage–current characteristic for
the instantaneous value of resistance

v ¼ R � i (4)

and control characteristic given by differential equation:

dR
dt

¼ �μ
ROFF � RONð ÞRON

D2 i ¼ �γi, (5)

The model has the following parameters: the high memristor resistor value ROFF,
the low memristor resistor value RON, ion mobility μ, the semiconductor film
thickness D, γ-is inertial parameter. These parameters have the following typical
values:

ROFF = 10 kОhm, RON = 1 kОhm, μ = 10�14 m2 s�1 V�1, D = 10 nm [3], γ = 109 V
A�2 s�1

.

The switching time of the memristor device under constant current I can be
estimated as

TR ¼ ROFF � RON

γ I
≈
ROFF

γ I
, (6)

This time is 100 ms for current value 100 μA.
To describe the behavior of oscillator with comparator it is convenient to exploit

the dimensionless parameters and variables. The dimensionless time is also applied.
Such dimensionless variables can be obtained by normalizing. The normalization of
resistances is performed using division by ROFF, respectively for voltages division by
I � ROFFð Þ is applied and for time - division by TR. As a result we have ROFF ¼ 1,
RON ¼ 0:1 and γ =1.

Taking into account the threshold shift the comparator model with current
generator i ¼ i vð Þ (Figure 1a) is described by the equations

i vð Þ ¼
1, if v>Vm � kvin

�1, if � VM � kvinð Þ< v<Vm � kvin

1, if � VM � kvinð Þ> v

8>><
>>:

(7)

Taking into account the binary variables the equations Eqs. (4), (5), and (7) can
be transformed to single piecewise constant equation with respect to the variable R

dR tð Þ
dt

¼

�1, if R tð Þ>RM � r tð Þ,
1, if R tð Þ<Rm � r tð Þ,

dR t� Δτ,Δτ ! 0ð Þ
dt

, if RM � r tð Þ>R tð Þ>Rm � r tð Þ,

8>>><
>>>:

(8)

where r tð Þ ¼ kvin tð Þ=I –as mentioned above, variable that reflects the change in
the threshold under the influence of external signal. To save the oscillation condi-
tions the following restrictions for r tð Þ must be satisfied:

ROFF >RM þ r tð Þ,RM � r tð Þ>Rm þ r tð Þ,Rm � r tð Þ>RON (9)
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The solution of equation Eq. (8) has character of triangular oscillations in the
range Rm � r<R tð Þ<RM � r .

2.5 Features of reactance-less memristor based oscillators in low frequency
applications

The model equation Eq. (5) describes an important feature of memristors - the
property of inertia. Due to this property it is possible to construct the reactance-less
oscillators or in other words oscillators without inductors and capacitors. In this
case the charge and discharge of reactive components in conventional oscillators is
replaced by changing the memristor resistance (Eq. (5)). The duration of these
processes is determined by the inertial parameter γ. The typical times of switching
of the memristor devices are determined by Eq. (6). Thus, typical current value 100
μA corresponds to oscillator frequency 10 Hz.

The prospects of application of such oscillators are associated primarily with the
development of low-power low-frequency oscillator circuits for neuromorphic sys-
tems and biomedical equipment.

The low-frequency operation range is the main application area of memristor
oscillators [21]. Low frequency oscillators are important for many applications but
their design is connected with significant difficulties due to the large values of
capacitors required for low oscillation frequencies [59]. Since the frequency of
operation of conventional RC relaxation oscillators is inversely proportional to the
time constant, τ = R � C, low-frequency operation requires high capacitance [21].
In this case the typical capacitance value may exceed 1 μF, capacitor occupies an
area of more than mm2. Such an area size contradicts the implementation in inte-
grated circuits. This leads often to off-chip placement of the capacitor [21]. The
special-purpose techniques are developed to overcome this problem and to avoid
the use of impractically large component values [59, 60]. Thus, relatively novel
technique was used to implement the oscillator on-chip, but the capacitor con-
sumed 77.8% of the total chip area [60].

It can be mentioned that the problem is solved automatically with applying
reactance-less MBOs due to very small area of memristor devices. For the consid-
ered MBO circuits of type (Figure 2) the size of area is determined by the area
occupied by CMOS comparator.

2.6 Alternative circuitry

In this type of MBO the comparator plays the role of control circuit in switching
the direction of the memristor current. It can be noted that this function can be
performed by other active circuit elements.

In particular, circuit with a series connected two devices can be considered:
memristor and device with negative differential resistance (NDR). This circuit can
generate relaxation oscillations when the generation conditions are satisfied.

There is no need for an active load in such circuits. This is advantage of oscillator
circuits based on memristor with NDR. In particular, such two-terminal devices can
specified by S-shaped I-V characteristics. In this case the memristor itself can have
two state given by high and low resistance values [35]. The relaxation oscillations
become possible when memristor is connected to a passive two-terminal circuit.
Such oscillators can be connected to each other by resistive or resistive-capacitive
couplings. This type of oscillators corresponds to circuits with the current input.

Various two-terminal devices can be used as the load in oscillators based on
memristors with NDR. Among them, devices with a structure similar to memristors
that exploit thin layers of insulators are promising. Creation of such devices based
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on silicon oxides [36, 61] seems to be the most promising now. New emerging
memristive technologies such as SiOx-based memristors are discussed in [61]. The
compatibility with standard CMOS technology provides a good perspective for the
implementation of hybrid CMOS-memristive designs in various applications.

Recent results [61] demonstrate advantages of the architecture of memory cell
comprising memristor and selector. It is expected that under certain conditions such
an emerging device architecture can act as an oscillator.

In the following text the consideration is limited by oscillator circuits based on
memristor devices [3], although the results presented below for coupled oscillator
elements can be extended to above mentioned circuit architecture.

3. Behavior of coupled memristor based oscillators with positive
couplings

3.1 Operating principles

The analysis of behavior of two coupled identical MBO with positive connection
is presented below.

This circuit is shown in Figure 5. It contains MBO1, MBO2, an adder at the input
and a phase detector at the output [50]. To provide an external control the excita-
tion signal VC is transmitted using an adder at the input. The phase detector at the
output is used to identify the synchronization mode of coupled oscillators. If there is
no synchronization between the oscillator stages MBO1 and MBO2 then output
signal Vs ¼ 1 and Vs ¼ 0 if there is synchronization.

The coupling strengths between the MBOs specified by coefficient k impact on
the behavior of this system significantly.

The rates of change of memristor resistances R1 and R2 are equal in modulus for
identical MBOs. But these rates may differ in signs. By such a way the variables R1

and R2 and the signs of derivatives dR1=dt and dR2=dt can be considered as system
states and may specify the behavior of system of two coupled oscillators.

The phase plane with axes R1 and R2 (Figure 6) can be exploited for analysis of
different behavior versions of such a system. The analysis is based on model Eq. (8).
In this case, the trajectories of moving the image points are straight lines. They pass
at angles of � π/4 on phase plane. Four trajectories can pass through each point of
phase plane. The sign of dR/dt defines one from them.

The boundaries of the area of trajectories movement are specified by the thresh-
old resistances. When the trajectory reaches the boundary the sign of the derivative
dR=dt changes and trajectory is mirrored from the boundary. The boundaries can
shift themselves at this time point.

If the external excitations are absent then the threshold of each MBO depends on
positive pulse from the neighboring MBO. In particular the lower limit of the
resistance of each MBO is reduced to Rm � r . As a result the area of the allowable
system states on the phase plane in self-oscillating mode is determined by the
square with vertices RM,RMð Þ and Rm � r,Rm � rð Þ (Figure 6). The area of

Figure 5.
Schematic of coupled memristor based oscillators (MBOs).
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stationary trajectories is located insight this square. This area is limited by the
dashed lines in Figure 6.

For the existence of a stationary trajectory, the following necessary and suffi-
cient conditions must be met: the image points must be located in the area indicated
above, and the signs of the derivatives must be identical.

If the variables are located at the main diagonal in this area and the specified
conditions are met, then the variables reach the threshold simultaneously (dotted
line A in Figure 6). Their moving directions also change simultaneously. They
continue to move along the main diagonal. When the threshold line is reached by
one variable on the other lines parallel to the main diagonal in this area, the sign of
its derivative changes. This is followed by the threshold change for another variable
with a corresponding change in the sign of its derivative. The trajectory is saved, but
the movement along it occurs in the opposite direction. Note that the phases of the
oscillations of the resistors are the same (Vs ¼ 0Þ for stable trajectories.

If the starting points of trajectories are located outside area of stationary trajec-
tories (Figure 6) then such trajectories are reflected after reaching the boundaries.
If in this case the signs of the derivatives are the same then the segments of the
trajectories tend to the stability region. The reflection character is defined by the
boundaries with different signs of derivatives dR1=dt 6¼ dR2=dt (dashed lines in
Figure 6). Any trajectory ends in the region of stable trajectories in result. Such
behavior is illustrated in Figure 6 by examples of the trajectories B and C. It can be
seen that the trajectory B falls into the stability region after two reflections and the
trajectory C - after four reflections.

The considered circuitwith two coupled identical oscillator elements (Figure 5) has a
set of stable and unstable steady state trajectories. The difference between themaximal
values of the variablesRs ¼ R1max � R2max . can be exploited as characteristic of stable
steady state trajectories. It can bementioned that zero valueRs Rs ¼ 0ð ) corresponds to
themaindiagonal onphaseplan (Figure6).This characteristic reaches thevalueRs ¼ �r
at the boundaries of the stable region. The each stationary trajectory (each value ofRs)
corresponds to a certain period of triangular oscillationswhich equals to

TS ¼ 2
RM � Rm þ r� RS

γI
: (10)

Figure 6.
The boundaries and trajectories at phase plane of changing the variables R1 and R2 for coupled MBOs: solid
lines – boundaries for case dR1=dt ¼ dR2=dt, dash-dotted lines - boundaries for case dR1=dt 6¼ dR2=dt, solid
lines with arrows - the trajectories of R1 and R2 with different initial conditions. The areas of stable trajectories
are limited by dashed lines.
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Let duration of the additional external control signal VC be shorter than period
TS. This signal VC can change the boundary and the trajectory of movement on the
phase plane respectively. Figure 6 shows the boundary U created by an external
signal. The trajectory D in Figure 6 illustrates the transition to new stable trajectory
under the influence of an external signal. The starting point of trajectory D is
located at the main diagonal. The trajectory D moves away from the main diagonal
under the external excitation. After three reflections (Figure 6) the transition of
image point to new stable trajectory is carried out.

3.2 Features

It can be mentioned that for considered coupled MBOs the movement along the
trajectory in the direction opposite to the original one can be provided by changing
the signs of the derivatives. This property can be called as reversibility of trajecto-
ries. The property is valid for stable trajectories as well as for any unstable trajecto-
ries before its transition to stable ones. Such a feature may be foundation for the
management of coupled MBOs.

In order to get from the original fixed trajectory (for example A) onto given
trajectory (for example D), it is enough to choose the intersection point of the
predetermined path with the threshold line (R2 ¼ Rm) and then to construct the
trajectory of leaving it until the inevitable intersection with the original trajectory
using change in derivative sign. The control signal with short duration and
sufficient amplitude moves the image point to the specified trajectory.

The process of transition to stationary trajectory can be represented using the
mapping function of the value RS over the period: RS nþ 1ð Þ ¼ P RS nð Þð Þ (Figure 7).
The value of RS for the n-th period is given in Figure 7 at the abscissa axis and
similar value as a result of Poincare mapping for n+1 period is shown at the ordinate
axis. The area of stable states belonging to the diagonal D (Figure 7) satisfies the
condition: �r<Rs < r, that corresponds to the area of stationary trajectories.

Until RSj j> 3r the return of RS to the region of stable states is performed with
stepsize equal to 4r. If RS located in the interval r<RS < 3r then the return occurs in
one step equal to 2 RSj j � 1ð ).

As follows from this analysis, the speed of the transition process from the
excited state to the stationary state depends on the coupling strength or in other
words on the coefficient r . The width of the stability area also depends on coupling
strength. The return to the stationary trajectory after external excitation can be
relatively long at low values of factor r. It can be expected that the return time is

Figure 7.
The function of mapping the difference in the states of the coupled MBOs for period.
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proportional to the amplitude of the external signal in a certain range of amplitude
varying.

The situation changes significantly when the excitation has a long duration,
comparable to or exceeding the duration of the period TS. In this case new values of
the threshold resistances for R1 are set during the action of the input signal. Then
the value R1 will change within this interval of variation. The duration of the
transition to the perturbed state will also depend on the coupling strength. The
output signal will appear on the phase detector in this case. The return to the
stationary trajectory will repeat again after completion of the input signal and
signals at the output of the phase detector will appear again.

The behavior of self-oscillating coupled MBO is described by piecewise-constant
differential equations. As a result, the complete analytical solution can be obtained.
In practice, it reduces to solving the problem of elastic reflection of a point inside a
rectangle with edges positioned depending on the sign of the point’s speed.

3.3 Simulation examples

Below the results of simulation of the coupled MBOs are given. The simulation
examples demonstrate the opportunity to control the state of the coupling MBOs and
illustrate also waveforms of generation of the pulse trains at the input excitation.

The time is defined as dimensionless variable. Also, the dimensionless values of
the circuit parameters and variables were used during simulation. Among them:
RM ¼ 0:8, Rm ¼ 0:4, r ¼ 0:1.

3.3.1 Example 1: managing the state of coupling MBOs

The considered circuit example has a set of stable and unstable steady- state
trajectories and provides complex transformation of input signal. The simulation
example illustrates the presence of three stable steady-state periodic solutions
(Figure 8) correspond to Rs ¼ R1max � R2max >0, Rs ¼ R1max � R2max <0,
Rs ¼ R1max � R2max ¼ 0.

Input signals lead to switching of stable trajectories and provides various modes
in application.

Let the starting points for the variable resistances be the same al for MBO1 and
MBO2 (R1 0ð Þ ¼ R2 0ð Þ ¼ 0:5). When the first control pulse with amplitude VC ¼
0:4 and duration T ¼ 0:5 is applied to MBO1 the process is generated in which the
amplitude of the resistance oscillations of MBO1 is greater than the similar ampli-
tude for MBO2. The state corresponds to inequality RS >0 (Figure 8). The second

Figure 8.
The computed waveforms in the coupled MBOs. VС - the solid line, R1(t) - dashed line, R2(t) - dotted line.
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control pulse leads to change of trajectory and generates the steady state
corresponding to inequality RS <0 (Figure 8).

By such a way this simulation example confirms the predicted change of
memristor states in the considered circuit under control pulse excitation.

3.3.2 Example 2: generation of pulse train by coupling MBO under the action of the
input signal

Let the initial setting conditions for MBO1 and MBO2 be the same that corre-
sponds to the zero voltage VS at the output of the detector (Figure 9a). After the
input signal with amplitude VC ¼ 0:5 and duration T = 0.5 (Figure 9a) their syn-
chronization is violated for time proportional to the amplitude of the input action.
The output signal of the comparator with amplitude VS ¼ 1 appears after the begin-
ning of the transition to the perturbed trajectory and pulses remain for a long time.

When long-term input signal T=1.5 of relatively small amplitude VC ¼ 0:1 is
applied the transition to the perturbed trajectory and exit from it is performed in
shorter time (Figure 9b). The output signal VS ¼ 1 occurs both after the rising
slope and after the fall slope of the input pulse.

3.4 Output

The coupled memristor based oscillators with positive couplings have a set of
stationary states in self-excitation mode.

An external signal can initiate a transition from one stationary state to another. Also
such a signal can remove the system from the region of stationary states to the excited
mode. This excitation is saved after completion of the input signal. The transition to
new steady state takes some time after completion of the external excitation. The pulse
train is generated at the comparator output during this time interval.

The coupling memristor based oscillators can be considered as the analog-to-
digital converters that provide conversion of input amplitude variation.

4. Behavior of coupled memristor based oscillators with inverting
connections

4.1 Operating principles

The connection types of the coupled memristor based oscillators (MBO) and the
values of the coupling strengths between them impact significantly on the character
of their behavior.

Figure 9.
Generation of train of output pulses (dotted line) under the action of the input signal of short duration (a) and
long duration (b).
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The schematic of coupled MBOs with inverting connections and binary output
signals is shown in Figure 10. The circuit of this oscillator element contains [49]
two identical oscillators MBO1 and MBO2. If the direct signal V1 applied to input
MBO2 then MBO1 receives an inverted signal (�V2Þ fromMBO2 output. The circuit
contains also output phase detector F V1,V2ð Þ and input adder. The phase detector
performs logical function over the binary outputs MBO1 and MBO2. The input
adder provides the receipt of both the control analog signal VC and the inverted
signal (�V2Þ at MBO1 input.

The state of the considered oscillator system can be specified by the variables R1

and R2 and time derivatives dR1=dt and dR2=dt. The modules of the rates of change
of memristor resistances R1 and R2 are the same for identical MBOs but signs of
these rates may differ.

The detailed analysis of behavior of this system using phase plane for variables
R1 and R2 is given in [49]. The feature of phase portrait for coupled MBOs with
inverting connections is related with the derivatives of variables R1 and R2 that take
the values �1. Due to this feature the trajectories of the image point are inclined
straight lines with angle of � π/4 relative to the coordinate axes.

The ratio of coupling coefficients with opposite signs r1 ¼ �k1V2 tð Þ=I and r2 ¼
k2V1 tð Þ=I significantly affects character of behavior. The cases of equal values
( r1j j ¼ r2) and different values ( r1j j 6¼ r2) are discussed in [49].

Introducing the additional notations r and rM two possible versions can be
considered for different values of coupling coefficients: r1j j ¼ rm < r ¼ r2, r1j j ¼
rM > r ¼ r2 . First case with the dominance of direct positive coupling corresponds
to antiphase oscillations and second case with dominance of inverting negative
coupling corresponds to in-phase oscillations.

The period of antiphase oscillations equals to T ¼ 2 RM � Rm � rmð Þ=γI and the
period of in-phase oscillations is T ¼ 2 RM � Rm � rð Þ=γI.

The external control signal impacts on the phase trajectory of the system. Con-
sider then the case with r1j j ¼ rm.

The range of varying MBO1 threshold voltage is shifted due to applying the
control signal VC. The additional shift in the threshold resistances rC ¼ VC=I is
generated by control signal VC . Due to action of the VC signal the following active
restrictions determine the interval of varying memristor resistances of MBO1 and
MBO2 circuits.

Rm þ r� rC ≤R1 tð Þ≤RM þ r� rC at dR2=dt<0 (11)

Rm � rC ≤R1 tð Þ≤RM � rC at dR2=dt>0 (12)

Rm � r≤R2 tð Þ≤RM � r at dR1=dt<0 (13)

Rm ≤R2 tð Þ≤RM at dR1=dt>0 (14)

Figure 11 illustrates such shift at the phase portrait of the system with control
signal. As follows from formulas Eqs. (11) and (12), the threshold resistances for R1
are decreased (Figure 11) but the threshold resistances for R2 remained unchanged.

Figure 10.
The system of coupled MBOs with inverting connections.
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For this reason, the parallel shift of trajectories at the phase portrait (Figure 11)
corresponds to impact of external control signal.

Let the initial stable trajectory of the system before an external excitation
correspond to line segment (ab) and after an external excitation the displaced
trajectory corresponds to line segment (gh). When a constant control signal is
applied for sufficiently long time, the transition to the trajectory (gh) is inevitable.
It is caused by change in the sign of dR2=dt and reducing the threshold resistance
to Rm þ r� rC when the point b reaches the border at R1 tð Þ ¼ Rm þ rm. Figure 11
illustrates the movement of image point from b to c, then to d, until it falls on the
trajectory (gh).

The difference Δ ¼ r2 � r1j j determines the width of the stability area and
impacts on the speed of the transition process to new trajectory. It should be
expected that due to the piecewise linear character of transients the return time will
be proportional to the input amplitude in certain range of amplitude variation of
control signal.

4.2 Simulation example

The results of the behavior simulation of the coupled MBOs with inverting
connections are given below for case of short input signal.

The computed waveforms for the oscillator system with phase detector NOR are
shown in Figure 12. In this case stable antiphase oscillations are observed in the
system under the absence of an external signal.

The following values of coupling factors were selected: r2 ¼ 0:1, rm ¼ 0:09.
These values of coupling factors mean that positive coupling in connected MBOs is
stronger than negative coupling. The dimensionless parameters and variables are
used below and the dimensionless time is also applied.

Let a starting point of system state be the stable trajectory with antiphase
oscillations. The initial values of resistances RM ¼ 0:8, Rm ¼ 0:4 are selected. The
output signal VS ¼ 0 corresponds to the stable trajectories of initial state
(Figure 12). The positive pulse with amplitude of 0.05 and duration of 0.1 arrives at
time t = 0.9. It causes the delay of switching of MBO1. The series of four output
pulses is generated (Figure 12) while the system is in an excited state and the
antiphase is violated.

The difference Δ in the coupling factors significantly impacts on the speed of
transition to a stable trajectory. If this value is small the transient process can be

Figure 11.
Phase plane of system of coupled MBOs with inverting connections under external excitation.
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significantly delayed. At fixed values of the coupling strengths the input amplitude
and time of arrival of the input pulse determine the time of transition to a stable
trajectory. Due to this property the conversion of the input amplitude to the
duration of the transition process can be performed.

4.3 Output

The system of two coupled MBOs with the inverting connection can be charac-
terized by the following capabilities:

1.antiphase or in-phase steady state oscillations are generated depending on
relation of coupling strengths;

2. the control signal causes transition to new stable state if the pulse amplitude is
sufficient to change the threshold values;

3.appearance of pulses at the detector output is associated with the transition to
new state and violation of the synchronization of oscillations;

4.the duration of the transient process and the number of pulses at the detector
output are proportional to the amplitude of the drive signal and they are
inversely proportional to the modulus of the difference in the coupling
coefficients.

5. Properties of coupled memristor based oscillators for use in binary
oscillator networks

The coupled MBOs have useful functional qualities for a number of applications.
The possible application of connected MBOs as the basic elements of binary oscilla-
tion networks (BON) is discussed below. In particular, the BON with ring architec-
ture and star-like architecture are considered. The presented before coupled MBOs
with positive couplings and coupled MBOs with inverting connections are used for
this purpose.

Figure 12.
Example of simulating the timing diagram of the generation of output pulse series in the coupled MBOs with
inverting connections.
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5.1 Features of binary oscillator networks based on memristor oscillators

The important properties of coupled MBOs are the simplicity of external man-
aging the conditions of the oscillator injection locking, as well as fast frequency
capture under relatively small impact amplitude.

The external excitation can violate the synchronicity of the coupledMBOs. The time
to restore synchronization depends on the amplitude of the external impact and cou-
pling strengths between theMBOs. As a result, the coupledMBOs provide themodula-
tion of pulse trains desired for the implementation of oscillatory artificial neurons (AN).

By such a way, it becomes possible to apply the simpler coupling systems of the
first order instead of using high-order nonlinear systems with reactive circuit
elements and with high requirements for the element parameters.

Note that coupled MBOs belong to the class of binary oscillator and can be
exploited in BON on base of integrated technologies. Using binary oscillators with
binary output signals [46–48] is one of the promising lines for constructing oscilla-
tory neural networks that are most suitable for integrated technologies. In such
binary oscillator networks information is represented by binary streams.

The connection of N MBOs is described by system of N equations for variables
Ri tð Þ i ¼ 1, 2, … ,Nð Þ . This system has the view of type Eq. (8):

dRi tð Þ
dt

¼
�1, if Ri tð Þ>RM � ri tð Þ,
1, if Ri tð Þ<Rm � ri tð Þ,

dRi t� Δτ,Δτ ! 0ð Þ
dt

, if RM � ri tð Þ>Ri tð Þ>Rm � ri tð Þ,

8>><
>>:

(15)

The outputs of the transmitting MBOs are connected to the inputs of the receiv-
ing MBOs directly or via logic gates. Therefore the variables ri tð Þ are binary func-
tions of the outputs of the transmitting MBOs:

ri tð Þ ¼ ki � Fi vout1, vout2, … voutNð Þ (16)

where Fi …ð Þ is a logical function of N binary variables (0, 1). In this case the
relationship between binary variable vout and dR=dt is unambiguous.

The system of equations Eqs. (15) and (16) describes behavior of BON in auton-
omous mode. If there are external binary signals, they should be included into the Fi
functions as additional external variables.

As simple examples of the elements of the binary oscillator networks based on
memristor oscillators we can point out ring structure (Figure 13) which can be
considered as extension of the considered before two coupled identical MBO with
positive couplings (Figure 5) and also star-like structure (Figure 14) with applying
the coupled MBO with possible inverting connections.

5.2 Some simulation results

Some simulation results to confirm the features of BON based on MBOs are
presented below. To simulate the versions of BON fragments the dimensionless
parameters of the variables were used: RM ¼ 0:8, Rm ¼ 0:4.

Figure 13.
Example of BON ring structure using memristor based oscillators.
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The circuit element of star-like structure containing two coupled MBOs was
selected for simulation. This circuit contains also logical element OR. The coupling
strength has the value r = 0.05.

The computed waveforms are given in Figure 15. The transient process from
starting point to steady state is shown. The oscillators MBO1 and MBO2 have the
different initial states: R1 0ð Þ ¼ 0:4,R2 0ð Þ ¼ 0:8. Then the oscillators tend to peri-
odic steady state R1 tð Þ ¼ R2 tð Þ and reach it during four periods. The outputs of
MBO1 and MBO2 are identical in steady state mode. This state corresponds to
logical “0” due to applying the logical function XOR. The change of logical function
XOR is shown in the lower curve in Figure 15. In this case the pulses of logical “1″
appear under misalignment of the MBO1 and MBO2 outputs.

It can be mentioned that variation of initial state for MBO2 oscillator leads to
change in duration of the process of steady state establishing (Figure 15). So for
R2 0ð Þ ¼ 0:7, 0:6, 0:5 the transition to periodical steady state is performed for 3, 2
and 1 periods, respectively. In these cases, the difference in the initial states is a
multiple of twice the coupling strength factor (here r = 0.05). This case corresponds
to the complete synchronization of the oscillations (the phase shift is 0).

In connection with this non-multiple case is of interest. Then the initial states
R1 0ð Þ ¼ 0:43,R2 0ð Þ ¼ 0:8 are chosen as examples. The corresponding computed
waveforms are given in Figure 16 for different versions.

As can be seen from Figure 16a the oscillations in MBO1 and MBO2 are syn-
chronized with the shift at inverting absence. Steady state is reached for time
interval of four periods, the periodic pulses are generated at the output, the phase
detector XOR generates short mismatch pulses.

Figure 14.
Example of BON star-like structure using memristor based oscillators.

Figure 15.
The computed waveforms of the transient process from starting point to steady state for coupled MBOs: MBO1-
dashed line, MBO2 – dotted line, OR function -solid bold line, function XOR – solid line.
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The timing diagram of MBOs behavior gets more complicated for cases with
inverting the coupling signals (Figure 16b). The dependences of R (t) can be
considered as modulated by triangular oscillations. The output signals of the logical
element and the phase detector are converted into complex binary sequences with
large period. The similar character of waveforms can be observed in the case of
logical inversion (Figure 16c) when the logical OR circuit receives at the input the
inverted signal from the output of MBO2. By such a way if the difference in the
initial states is a non-multiple of twice the coupling strength factor then timing
diagram of MBOs behavior is complicated for both types of inversion. It is interest-
ing also that the simultaneous use of both types of inversion leads to another
character of waveforms (Figure 16d). The full synchronization can be achieved
after the transient process.

The presented simulation results illustrate the capabilities of coupled MBOs in its
application as elements of Binary Oscillator Networks.

6. Conclusion

The chapter describes the behavior and application capabilities of the coupled
reactance-less memristor based oscillators. This type of coupling memristor oscilla-
tors provides the generation of desired pulse trains with the complicate character of
behavior. The chapter idea is to apply the simpler coupling systems of the first order
instead of using high-order nonlinear systems with reactive circuit elements and
with high requirements for the element parameters.

The coupled memristor-based reactance-less oscillators have the set of modes
that is enough to provide the complex behavior desired in many applications.

Figure 16.
The computed waveforms of the transient process for coupled MBOs with the initial states R1 0ð Þ ¼
0:43,R2 0ð Þ ¼ 0:8. The graphs correspond to the following versions of coupling types: (a) couplings without
inverting; (b) couplings with analog inverting MBO1 input; (c) couplings with inverting of the MBO2 binary
output; (d) couplings with joint inverting of both types.
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To construct the memristor oscillator circuits the principle of controlling
threshold parameters is applied. The constructing the piecewise constant memristor
oscillators is one of advantages of this approach.

Two types of oscillator couplings are analyzed in chapter: coupled memristor
based oscillators with positive couplings, coupled memristor based oscillators with
inverting connections.

The coupling memristor based oscillators can be considered as the analog-to-
digital converters that provide transform of amplitude variation. The properties of
coupled reactance-less memristor based oscillators open up the possibility of
constructing binary oscillator networks on its base for solving a wide range of
problems. In particular, star-like binary oscillation networks based on coupled
memristor oscillators with only one logical elements create a number of promising
applications, including oscillator reservoir calculations, stochastic oscillators, neural
networks with probabilistic coding.
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Practical Approach to Induce 
Analog Switching Behavior in 
Memristive Devices:  
Digital-to-Analog Transformation
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Abstract

The capability of memristor devices to perform weight changes upon electrical 
pulses mimics the analogous firing mechanism in biological synapses. This capabil-
ity delivers the potential for neuromorphic computing and pushes renewed interests 
in fabricating memristor with analog characteristics. Nevertheless, memristors 
could often exhibit digital switching, either during the set, reset, or both processes 
that degenerate their synaptic capability, and nanodevice engineers struggle to 
redesign the device to achieved analog switching. This chapter overviews some 
important techniques to transform the switching characteristics from digital to ana-
log in valence change and electrochemical metallization types memristors. We cover 
physical dynamics involving interfacial diffusion, interfacial layer, barrier layer, 
deposition, and electrode engineering that can induce digital-to-analog switching 
transformation in memristor devices.

Keywords: digital, analog, switching transformation, switching mode, resistive 
memory, synaptic plasticity

1. Introduction

Memristive devices offer a great promise not only for ultra-high density data 
storage [1] but also for in-memory computing applications [2]. In-memory com-
puting utilizes the synaptic plasticity of the memristors, where they can mimic 
the biological synapse or neuron (neuromorphic) [3]. A lot of parameter should 
be considered to achieve high-performance memristor-based artificial synapses 
(dynamic range, linearity, asymmetry, level of states, etc.) [4]. Much effort has 
been conducted to improve these parameter, such bi-layering [5], irradiation [6], 
doping [7], and deposition engineering [8]. Most of synaptic parameters can 
also be enhanced by tuning the potentiation and depression pulse schemes [5]. 
Nevertheless, none of these parameters can be performed by memristors that 
exhibit digital characteristics. On the other hand, several challenges exist in fabri-
cating analog memristors, and, most often, the fabricated memristors exhibit semi- 
or pure digital characteristics. In this chapter, we review some important methods 
to induce analog characteristics by nanofabrication and electrical engineering that 
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could provide useful insight for the device development engineers to transform 
their digital memristors into analog.

Resistance switching in memristor devices, set (HRS-to-LRS) and reset (LRS- 
to-HRS) processes, can occur either in abrupt or gradual resistance change. Figure 1 
depicts the schematic of current–voltage and conductance-pulses curves of the abrupt 
and gradual resistance changes [2]. The abrupt resistance change is a phenomenon 
where the current or conductance of the resistance states is suddenly changed at a 
threshold voltage, as depicted in Figure 1(a) and (b). Any memristor devices with 
this digital characteristic tend to have limited capability to exhibit multiple resistance 
states (multibit performance). Henceforth, this abrupt behavior is also called digital 
switching. The only possible way to induce multibit performance is by varying the 
current compliance level to limit the size of the conduction filaments, and thus it 
controls the amount of the current that can pass through the cell (Figure 1(b)). On 
the other hand, gradual resistance change is a phenomenon where the device does 
not require any threshold voltage to change the current or conduction of the states, 
as depicted in Figure 1(c) and (d). In this case, any given voltage or electrical pulse 
stimulus is able to modulate the current or conduction of the states [9]; thus, the 
number of the states that the memristor can exhibit is equivalent to the number of 
voltage or pulse stimulus it can response to (Figure 1(d)). Henceforth, this gradual 
behavior is also called analog switching.

Figure 1. 
Schematic of (a, b) digital and (c, d) analog switching behaviors. Reprinted from [2].
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It is important to note that, based on our knowledge, the memristor, which works 
under unipolar mode (employing the same voltage polarity to set and reset the device), 
cannot show analog switching due to the rapid Joule heating process. Hence, the mem-
ristor should be designed in such a way where the Joule heating should not play a major 
role in its switching mechanism. Bipolar mode, however, has several variants of mode, 
such as conventional, complementary, and diode-like bipolar modes. Figure 2  
shows the conventional and complementary bipolar resistive switching in Pt/ZnO/
TiN memristor that was observed by Khan SA et al. [10]. They suggested that the two 
modes can be exhibited by varying the bias condition; counter-clockwise and clock-
wise voltage sweeps exhibit conventional (BRS) and complementary (CRS) bipolar 
modes, respectively, as depicted in Figure 1(a) and (b). The efficacy of the modes on 

Figure 2. 
I-V curves of (a) conventional analog bipolar (BRS) and (b) complementary (CRS) resistance switching 
modes in Pt/ZnO/TiN memristive device. Synaptic potentiation and depression of (c) BRS and (d) CRS. 
Epoch training accuracy of BRS and CRS devices. (e) Training accuracy of CRS and BRS modes. Reprinted 
from [10].
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the synaptic performance was studied Figure 1(c) and (d). Although both modes can 
exhibit synaptic plasticity (potentiation and depression characteristics), BRS performs 
superior linearity than that of CRS and, thus, better training accuracy (Figure 2(e)).

Memristors having a complementary or a diode-like mode offer benefit to the 
circuit integrations, which they do not need to be stacked with an additional select 
device in the array configuration [11, 12]. However, the exact switching mechanism 
of the complementary and diode-like bipolar modes is still not fully understood. 
Likewise, the synaptic properties of the complementary and diode-like memristor 
devices are still less investigated. Henceforth, based on these reasons, the pres-
ent chapter only focuses on the device development on the conventional bipolar 
memristive devices.

2. Digital-to-analog switching transformation

In some cases, a memristor device can show both abrupt and digital behaviors 
in the same switching cycle, such as digital set and analog reset or vice-versa. This 
behavior may induce better multibit performance, but it may not be sufficient to 
induce satisfactory synaptic performance. For example, if the set or reset process 
exhibits digital behavior then we can assume that the device will not exhibit good 
potentiation or depression, respectively. Henceforth, it is important to have analog 
switching for both set and reset processes. We discuss several important techniques 
to induce analog behavior in memristor devices. These techniques include trans-
forming the switching conduction from filamentary to homogeneous, adding an 
interfacial layer below the top electrode, and electrode engineering.

2.1 Filamentary to homogeneous switching transformation

Despite the filamentary switching is more scalable friendly, as the localized 
filaments (approximately 20 nm) [13] take part in the switching process than the 
homogeneous switching, which relies on the conduction changes of the entire bulk 
structure. However, the homogeneous switching tends to be easier to exhibit analog 
behavior. The co-existence of both filamentary and homogeneous resistive switch-
ing in a single device can be observed by adjusting the electrical operation (biasing 
condition).

Huang C-H et al. [14] reported that a digital unipolar in Pt/ZnO/Pt device 
could be controlled to show analog bipolar switching mode after reversing the 
bias condition at higher current compliance (CC), as depicted in Figure 3(a). 
The reversed bias made the switching layer consists of two regions, the oxygen-
rich region (below the top electrode) and the oxygen-deficient region (above the 
electrode), which transformed the filamentary into homogeneous switching. The 
reversed-biased technique can also be useful to transform filamentary bipolar to 
homogeneous bipolar, as reported by Ryu H. and Kim S. shown in Figure 3(b) 
[15]. They observed that applying appropriate stop voltage sweep prior to the 
LRS, at the negative differential region (NDR) voltage regime, can induce homo-
geneous switching in the Pt/Al2O3/TiN devices. Even though the I-V hysteresis of 
homogeneous switching is less obvious than the filamentary, it was reported that 
the synaptic behavior of the homogeneous switching is significantly improved, 
confirming the analog nature of the device [15]. A similar result was also observed 
in Pt/WOx/W device [16].

The homogeneous switching tends to dominate when the device operates at a 
lower current regime. Li Y. et al. [17] reported that the homogeneous switching in 
Ag/NiO/Pt device can be observed prior to the electroformed process, as depicted 
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in Figure 3(c). The successive voltage sweeps during positive and negative volt-
age incessantly decrease and increases the memristor conductance, respectively. 
Operating the device at a lower current regime unable to form the filament, but it 

Figure 3. 
Several strategies to induce homogeneous switching by controlling the biasing condition. The employment of  
(a) reversed bias and higher CC in Pt/ZnO/Pt device [14], (b) reversed bias at the NDR region in Pt/Al2O3/TiN 
device, [15] (c) successive voltage sweeps prior to the electroformed in the Ag/NiO/Pt device [17], and (d) opposite 
polarity in Fe-doped SrTiO3 device [19]. Reprinted and adapted from [14, 15, 17, 19].
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is sufficient to control the movement of the intrinsic defects within the bulk and, 
thus, modulate the Schottky barrier height (SBH). A variation of SBH was observed 
in this device at different scans, due to the widened of the Ag/p-NiO interface 
depletion width. A possible conduction mechanism of filament formation was 
also conferred there. Interestingly, as discussed there, the low temperature treated 
NiO device is not showing analog switching. A similar analog switching result was 
shown in PT/BiFeO3/Pt device [14]. The Ag/CuAlO2/TiO2/p++-Si structure was also 
shows similar analog switching due to the Ag ions and oxygen migration under the 
electric field [18]. In some cases, homogeneous and filamentary switching can also 
co-exist at the same current regime as well. Muenstermann R. et al. reported that 
the Pt/SrTiO3(Fe)/Nb:SrTiO3 device exhibited non-polar behavior, as shown in 
Figure 3(d) [19]. Intriguingly, the counter eightwise and eightwise switching are 
controlled by different switching mechanism which is filamentary and homoge-
neous switching, respectively.

Kim S. et al. [20] reported that the analog switching can also be achieved by a 
partial reset scheme. They observed that the reset process of the Cu/HfAlOx/Si device 
consist of two stages where the first stage (partial reset) is controlled by an electric 
field and the second stage (full reset) is dominated by Joule heating mechanism, 
as depicted in Figure 4(a). Figure 4(b) and (c) show the device exhibits digital or 
analog switching when it operates with a full reset or a partial reset, respectively. As 
expected, device that was operated with a partial reset performs better potentiation 
and depression than that of the full reset one, as shown in Figure 4(d) and (e). It 
is still not clear the physics behind this phenomenon; however, we hypothesis that 
this may due to the filamentary to homogenous switching transformation as well. 
Nevertheless, the relationship between the conduction mechanism, analog switching, 
and synaptic behavior should be investigated further.

2.2 Insertion layer engineering

Analog switching can be induced by inserting a metal film between the electrode 
and the storage layer. Here, we discuss insertion layer techniques that can transform 

Figure 4. 
(a) Two stages of reset process in Cu/AlHfOx/Si device. Switching characteristics of devices having (b) full and 
(c) partial resets. Synaptic behavior of the devices that operate with (d) full and (e) partial resets. Reprinted 
and adapted from [20].
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valence change and conductive-bridge type memristors from digital into analog 
switching. In these techniques, a metal layer is inserted between the top electrode 
and storage layer to control the drift of the anions and cations defects during the 
switching process.

2.2.1 Oxygen scavenging layer

The formation and rupture of the oxygen conducting filament in the valence 
change memristor are controlled by redox of oxygen, where it is mainly taken place 
at the electrode/oxide interfaces [6]. Hence, in order to achieve analog behavior, 
we need to ensure that the oxygen ions that injected to- (set process) or from (reset 
process) the electrode should be continuously drifted during the entire switching 
process.

Chang L-Y et al. suggest that the continuous drift can be done by inserting a 
metal layer that has similar Gibbs free energy of oxide formation ( fG∆ ) value to 
the storage layer [21]. Figure 5(a) and (b) show the I-V curves of TiN/TiO2/Ti and 
TiN/Ti/TiO2/TiN devices, respectively; the thickness of the Ti insertion layer was 
4 nm. It is observed that the device without Ti insertion layer (0Ti) exhibits digital 
switching; conversely, analog switching can be observed after the insertion layer 
was employed (4Ti). This digital-to-analog switching transformation is further 
confirmed by the behavior of the synaptic plasticity of the devices, as shown in 
Figure 5(c) and (d). Under a given pulse scheme, the conductance change of the 
0Ti device rises (potentiation) and falls (depression) abruptly; meanwhile, the 
synaptic plasticity in the 4Ti device is more gradual.

Figure 5. 
Typical I-V curves of devices made (a) without (0Ti) and (b) with Ti (4Ti) insertion layer. Potentiation and 
depression synaptic plasticity of (c) 0Ti and (d) 4Ti devices. Reprinted from [21].
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Chang L-Y et al. compared the interfacial properties between the stacks made 
without and with Ti layer, as depicted in Figure 6; for this purpose, they inserted 
20 nm thick of Ti (20Ti) to obtain a more obvious reaction at the interface. Based 
on the depth-XPS analysis (Figure 6(c–e)), the Ti layer absorbed oxygen from the 
TiO2 layer and forming TiOx interfacial layer at the TiN/TiO2 interface. Note that 
the formation of the interfacial layer was occurred during the deposition process 
(pristine stack). Based on the material analysis, they proposed that TiOx interfa-
cial layer can gradually ionize the oxygen ions during set/potentiation and reset/
depression process that promotes the occurrence of gradual switching in the device 
(Figure 6(f )).

2.2.2 Cation drift barrier layer

The conductive-bridge type memristor utilizes the electrochemical metalliza-
tion process where the atoms from the active electrode (Cu, Ag, or Ni) drift to the 
switching layer and form the conduction bridge (filament) [22, 23]. A diffusion 
barrier is usually employed in this type of memristor device to control the atomic 
drift [24, 25]. Aftab S. et al. used an oxidizable metal TiW as a diffusion barrier 
layer inserted between the switching layer and active metal top electrode to trans-
form TaOx-based memritor from digital set into analog [26]. Figure 7 shows the 
I-V curves and synaptic behavior of Cu/TaOx/TiN (device A) and Cu/TiW/TaOx/
TiN (device B) memristors. It was observed that the device made without the TiW 
barrier layer exhibits digital set with a poor synaptic behavior.

In Figure 7(a) and (b) I-V curves for both devices is shown. The forming com-
pliance current for both devices is 500 μA and set/reset cycle compliance current is 
1 mA. The device with 20 nm TiW barrier layer (Device B) insertion clearly shows 
gradual switching for both set and reset cycles as compared to without barrier 
layer (Device A) device. The gradual behavior superiority is further confirmed by 
synaptic plasticity as shown in Figure 7(c) and (d). By using an optimized pulse 
scheme with pulse width of 10 μs they observed abrupt conductance change when 
positive pulses are applied for potentiation process in Device A. However, Device 
B shows gradual change in conductance states when positive pulses are applied for 

Figure 6. 
Cross-sectional TEM image of (a) 0Ti and (b) 20Ti device stacks. (c) Intensity of N1s core level and (d) 
deconvolution of O1s core level spectra at various depth within the 20Ti stack. (e) Concentration of oxygen 
and titanium elements, and lattice-oxygen in the respective depth. (f) Conduction mechanism of the devices. 
Reprinted from [21].



157

Practical Approach to Induce Analog Switching Behavior in Memristive Devices: Digital…
DOI: http://dx.doi.org/10.5772/intechopen.98607

potentiation. Note that they also observed a significant improvement in data reten-
tion of the device made with a barrier layer.

The inserted barrier layer restricts excessive metal ions diffusion into the 
TaOx layer and forms an oxygen vacancy-rich TiWOx layer at the interface, as 
depicted in Figure 8(a–d). After the insertion of barrier layer, Cu diffusion into 

Figure 7. 
Typical I-V curves and synaptic behavior of devices made without (device A) and with (device B) TiW barrier 
layer. Reprinted from [26].

Figure 8. 
Cross-sectional TEM image of (a) 0Ti and (b) 20Ti device stacks. (c) Intensity of N1s core level and (d) 
deconvolution of O1s core level spectra at various depth within the 20Ti stack. (e) Concentration of oxygen 
and titanium elements, and lattice-oxygen in the respective depth. (f) Conduction mechanism of the devices. 
Reprinted from [21].
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the switching layer is limited to a great extent as can be seen by XPS depth spectra 
in Figure 8(c) and (d). These results indicate towards the role of barrier layer 
TiW and interfacial layer TiWOx. The TiW insertion layer also promote confined 
filament which was not the case with device A having abundant Cu diffusion 
(Figure 8e). They suggest that the TiWOx interfacial layer promotes the formation 
of hybrid filament. Thus, device B shows superior device stability and performance 
compared to device A (pure metallic filament), as depicted in Figure 8(e–f ).

Nevertheless, Wan T. et al. [27] suggest that the digital to analog switching in Ag/
SrTiO3/FTO device can also be achieved with a pure metallic filament by controlling 
the size of the filament during the switching operation. They inserted a reduced 
graphene oxide (RGO) layer on top of the FTO bottom electrode. The RGO has high 
interfacial resistance and help to dissipate the Joule heat through the RGO. Hence, the 
size of the metallic filament can be easily tuned to perform good analog behavior.

2.3 Electrode engineering

Jang J.T. et al. [28] observed that a careful choice of top electrode material is 
crucial in achieving analog behavior. They compared Mo/IGZO/Pd (sample 1) and 
Pd/IGZO/Pd (sample 2) stacks. The devices made with the Pd top electrode exhibits 
digital switching, an abrupt transition in the resistance state during the set and reset 
operations are depicted in Figure 9(a). On the other hand, the Mo/IGZO/Pd stack 
exhibits gradual transformation of resistance state for the set and reset operation, as 
shown in Figure 9(b).

Energy band diagram analysis for sample 1 and sample 2 is depicted in  
Figure 10(a)–(d). The abrupt switching in the Pd/IGZO/Pd stack is predomi-
nately due to a more significant barrier height of about 1 eV. A larger barrier 
height between the metal and semiconductor interface induces the formation of 
Schottky junction near the top and bottom electrode. However, the Mo/IGZO/
Pd stack is observed to have a minimal barrier height of 0.3 eV, which signifi-
cantly results in the formation of an ohmic junction near the top electrode and a 
Schottky junction near the bottom electrode. Thus, in the presence of an ohmic 
junction near the top electrode for sample 2, they observed a gradual switch-
ing behavior on engineering the top electrode. A similar phenomenon was also 
observed by Tang M.H. et al. [29] in Pt/ZnO/Pt and Ag/ZnO/Pt stacks devices. 
Digital unipolar switching behavior is observed in Pt/ZnO/Pt device and, con-
versely, the Ag/ZnO/Pt device exhibits analog bipolar switching. Although the 
paper does not discuss the detailed physics of such phenomenon, we assume that 
the contribution of Ag cations should play a role in achieving the analog behavior.

Figure 9. 
Typical I-V curves of (a) Pd/IGZO/Pd (sample 1) and (b) Mo/IGZO/Pd (sample 2) reprinted from [28].
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Li X. et al. [30] investigated the role of inert and oxidizable top electrode materi-
als in trilayer AlOx/TaOx/TaOy devices. The digital switching behavior is observed 
for the device with Pt as top electrode. The device made with Al top electrode tends 
to exhibit analog switching behavior. The Al top electrode interacts with the AlOx 
layer leading to the formation of oxygen deficient interfacial layer between AlOx 
and Al (top electrode). The oxygen ion migration and accumulation occur in a con-
tinuous manner and the device with Al top electrode is exhibiting gradual switching 
behavior during the continuous set and reset operation.

Figure 10. 
The schematic of (a) flat band diagram, (b) equilibrium, (c) positive bias, and (d) negative bias energy band 
diagram of sample 1 and sample 2. Reprinted from [28].

Figure 11. 
The schematic and IV curve of (a) & (b) device a & (c) & (d) device B. reprinted from [31].
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The method that Li X. et al. [30] proposed was further explored by C. Sun. 
et al. [31]. They suggest that an alloy of inert-oxidizable metal, FePt electrode, 
can induce analog characteristics on SiO2 based devices. The Figure 11(a) and (c) 
depict the schematic representation of Device A (TiN/SiO2/TiN) and Device B 
(TiN/SiO2/FePt/TiN). The FePt electrode act as the oxygen reservoir layer which 
assisting in trapping of oxygen ions during the resistive switching transformation. 
The barrier height of the electrode is also engineered on introducing FePt electrode 
which influence the switching transformation from abrupt to gradual as depicted in 
Figure 11(b) and (d).

3. Conclusion

We overviewed some essential techniques to fabricate analog memristive 
devices. Based on the techniques that we covered here, we noticed that most of 
the analog memristors tend to have or work at a lower current or conduction than 
that of digital memristors; the resistance of the On and the Off states is higher 
prior to the digital-to-analog transformation. Henceforth, we can assume that the 
employment of low voltage or current favors the exhibition of analog behavior, 
and thus, the synaptic characteristics can be observed easier. We hypothesized that 
some other way that might work to induce digital-to-analog transformation in the 
memristors is to engineer the partial formation of the conductive filament; this can 
be done by intentionally decrease the compliance current and the voltage operation. 
Table 1 summarizes the switching characteristics and synaptic behavior of several 
devices in reported studies. It is clear that the devices that endure digital-to-analog 
switching transformation often suffer from low memory window and dynamic 

Device structure Switching 
characteristics

Synaptic behavior Note References

Analog/
digital

On/off 
ratio

Linearity Dynamic 
range (%)

Pt/ZnO/TiN Analog <10 NA 33 Bipolar 
switching

[10]

Pr/ZnO/TiN Semi-
analog

10 NA 12.5 Complementary 
switching, 
digital set

[10]

Cu/HfAlOx/Si Digital 106 NA 125 Full reset, abrupt 
potentiation and 

depression

[10]

Cu/HfAlOx/Si Analog 10 NA 12 Partial reset [20]

TiN/TiO2/TiN Digital >10 NA 800 Abrupt 
depression

[21]

TiN/TiO2/TiN Analog ±10 NA 26 Multibit [21]

Cu/TaOx/TiN Semi-
analog

Unstable 0.87 150 Digital 
set, abrupt 

potentiation

[26]

Cu/TiW/TaOx/
TiN

Analog >10 0.69 34 Multibit [26]

From Simanjuntak et al.

Table 1. 
Several important examples of digital-to-analog switching transformation in published literature.
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range. We assume that analog switching in memristor device can only work when 
the switching region in the cell is small or no major structural changes happen due 
to the repeated switching cycles or pulses.

We also addressed several challenges in the analog memristor devices that could 
hinder the commercialization of these devices. First, the non-linear switching 
modes, such as complementary and diode-like modes, have unique advantages 
in integrating the memristors in the array configurations; however, the synaptic 
reliability of the devices having these modes is still less understood, and extensive 
investigation is needed to study the efficacy of these modes on the synaptic plastic-
ity. Secondly, analog memristors often suffer from short retention [14], which may 
not be suitable for data storage applications; however, this property opens another 
opportunity to modulate the long- and short-term memory plasticity of the devices 
that can be useful for neuromorphic computing applications. Hence, the trade-off 
between short retention and synaptic plasticity should be carefully managed to fit 
with the desired application. Third, the cycle-to-cycle operation can promote inter-
nal cell resistance variability that degenerates the analog behavior and could lead to 
the occurrence of digital switching [32]. Analog devices made with interfacial layer 
techniques may suffer from this problem due to the repeated redox reactions at the 
interfacial layer. Therefore, we hypothesized that a careful choice of the insertion 
layer plays a crucial role in achieving long cycle endurance and, thus, may prolong 
the exhibition of analog behavior.
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