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Preface

While the Renin-Angiotensin Aldosterone System (RAAS) plays a central role in salt and
water homeostasis, it also affects various organ systems including the heart and vascula-
ture, the kidneys, and the nervous system. Evidence indicates that angiotensin II has major
deleterious effects on vascular tone, insulin sensitivity, and markers of inflammation and
thrombosis. RAAS overactivity is implicated in the pathogenesis of serious and commonly
encountered disease entities including hypertension, type 2 diabetes, diabetic nephropathy,
left ventricular hypertrophy, congestive heart failure (CHF), and myocardial infarction.

The major pathogenetic mechanisms resulting from RAAS overactivity include activa-
tion of the sympathetic nervous system, endothelial dysfunction, and proinflammatory
and procoagulant states.

Evidence from basic science and major clinical trials established the beneficial effects of
inhibitors of the different components of RAAS such as angiotensin-converting enzyme
(ACE) inhibitors, angiotensin receptor blockers (ARBs), and aldosterone antagonists.
RASS inhibition is currently utilized in the treatment of hypertension, diabetic nephrop-
athy, and CHF. Inhibitors also demonstrated improvements in outcomes after myocardial
infarction and improvement in glucose homeostasis as well as prevention of type 2
diabetes with some agents.

In this book, written by a group of highly experienced scholars, we address the major
concepts and topics related to RAAS activation, including the pathogenetic mechanisms
underlying the deleterious effects of activated RAAS and the role of local tissue RAAS
in various organ systems such as the heart and vasculature, the skeletal muscle, adipose
tissues, pancreas, and the angiotensinergic pathways in the brain. Cutting-edge informa-
tion addresses the needs of a wide range of readers including medical students, clinical
practitioners, and basic science investigators alike. This book bridges the gap between
basic science and clinical practice regarding the RAAS system, which is imminently
critical and highly relevant to today’s practice of medicine. Finally, with data emerging
from the COVID-19 pandemic indicating overrepresentation of people with diseases
associated with RAAS activation such as hypertension, chronic kidney disease, and dia-
betes, the role of RAAS activation and RAAS inhibition in the pathogenesis and clinical
outcomes in COVID-19 has garnered a great deal of interest. In this book, we dedicate a
chapter to this topical and highly critical subject.

Samy I. McFarlane, MD, MPH, MBA, FACP
Distinguished Teaching Professor and Associate Dean,

Internal Medicine Residency Program Director,
College of Medicine,

Department of Medicine,
Division of Endocrinology,

State University of New York,
Downstate Health Science University,

New York, USA

XII



Preface

While the Renin-Angiotensin Aldosterone System (RAAS) plays a central role in salt and 
water homeostasis, it also affects various organ systems including the heart and vascula-
ture, the kidneys, and the nervous system. Evidence indicates that angiotensin II has major 
deleterious effects on vascular tone, insulin sensitivity, and markers of inflammation and 
thrombosis. RAAS overactivity is implicated in the pathogenesis of serious and commonly 
encountered disease entities including hypertension, type 2 diabetes, diabetic nephropathy, 
left ventricular hypertrophy, congestive heart failure (CHF), and myocardial infarction.

The major pathogenetic mechanisms resulting from RAAS overactivity include activa-
tion of the sympathetic nervous system, endothelial dysfunction, and proinflammatory 
and procoagulant states.

Evidence from basic science and major clinical trials established the beneficial effects of 
inhibitors of the different components of RAAS such as angiotensin-converting enzyme 
(ACE) inhibitors, angiotensin receptor blockers (ARBs), and aldosterone antagonists. 
RASS inhibition is currently utilized in the treatment of hypertension, diabetic nephrop-
athy, and CHF. Inhibitors also demonstrated improvements in outcomes after myocardial 
infarction and improvement in glucose homeostasis as well as prevention of type 2 
diabetes with some agents.

In this book, written by a group of highly experienced scholars, we address the major 
concepts and topics related to RAAS activation, including the pathogenetic mechanisms 
underlying the deleterious effects of activated RAAS and the role of local tissue RAAS 
in various organ systems such as the heart and vasculature, the skeletal muscle, adipose 
tissues, pancreas, and the angiotensinergic pathways in the brain. Cutting-edge informa-
tion addresses the needs of a wide range of readers including medical students, clinical 
practitioners, and basic science investigators alike. This book bridges the gap between 
basic science and clinical practice regarding the RAAS system, which is imminently 
critical and highly relevant to today’s practice of medicine. Finally, with data emerging 
from the COVID-19 pandemic indicating overrepresentation of people with diseases 
associated with RAAS activation such as hypertension, chronic kidney disease, and dia-
betes, the role of RAAS activation and RAAS inhibition in the pathogenesis and clinical 
outcomes in COVID-19 has garnered a great deal of interest. In this book, we dedicate a 
chapter to this topical and highly critical subject.

Samy I. McFarlane, MD, MPH, MBA, FACP
Distinguished Teaching Professor and Associate Dean,

Internal Medicine Residency Program Director,
College of Medicine,

Department of Medicine,
Division of Endocrinology,

State University of New York,
Downstate Health Science University,

New York, USA





1

Section 1

The Renin-Angiotensin 
Aldosterone System: 

Pathophysiologic Insights





3

Chapter 1

The Role of the  
Renin-Angiotensin-Aldosterone 
System in Cardiovascular Disease: 
Pathogenetic Insights and Clinical 
Implications
Violeta Capric, Harshith Priyan Chandrakumar, 
Jessica Celenza-Salvatore and Amgad N. Makaryus

Abstract

Increased attention has been placed on the activation of the renin- 
angiotensin-aldosterone system (RAAS) and pathogenetic mechanisms in cardio-
vascular disease. Multiple studies have presented data to suggest that cardiac and 
arterial stiffness leading to adverse remodeling of both the heart and vasculature 
leads to the various pathological changes seen in coronary artery disease, heart 
failure (with preserved and reduced ejection fractions), hypertension and renal 
disease. Over-activation of the RAAS is felt to contribute to these structural and 
endocrinological changes through its control of the Na+/K+ balance, fluid volume, 
and hemodynamic stability. Subsequently, along these lines, multiple large investi-
gations have shown that RAAS blockade contributes to prevention of both cardio-
vascular and renal disease. We aim to highlight the known role of the activated 
RAAS and provide an updated description of the mechanisms by which activation 
of RAAS promotes and leads to the pathogenesis of cardiovascular disease.

Keywords: cardiovascular disease, coronary artery disease, heart failure, 
hypertension

1. Introduction

Cardiovascular disease is the leading cause of death in men and women in the 
United States and throughout the world [1]. Current efforts are focused on decreas-
ing the burden of death due to atherosclerosis and cardiac disease overall. Increased 
attention has been placed on the activation of the renin-angiotensin-aldosterone 
system (RAAS) and pathogenetic mechanisms in cardiovascular disease. The RAAS 
system effects blood pressure control and electrolyte and fluid balance and there-
fore plays a significant role in cardiovascular hemodynamics [2–4].

Classically, it is known that angiotensinogen is cleaved by renin to form angio-
tensin-I (Ang I), which is then converted to angiotensin-II (Ang II) by angiotensin 
converting enzyme (ACE), however other peptides and products of this axis have 
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been shown to play a role in the development of cardiovascular disease [3, 4]. It is 
thought that two of these products (angiotensin 1-7 and angiotensin 1-9) may have 
counterregulatory effects on the development of atherosclerosis and cardiovascular 
disease [4]. Although the role of angiotensin II is understood more clearly, these 
peptides provide other targets by which the RAAS system can be utilized to prevent 
atherosclerosis.

Overactivation or pathologic activation of the RAAS system, specifically angio-
tensin II, has been shown to play a specific role in endothelial dysfunction, inflam-
mation, intense vasoconstriction, increased vascular and cardiac hypertrophy, 
fibrosis and the development of atherosclerosis [2–5]. Multiple large investigations 
have shown that direct inhibition of the effects of angiotensin II via angiotensin 
converting enzyme inhibitors (ACE-I) and angiotensin-receptor blockers (ARB) 
improve mortality, prevent renal disease and decrease cardiovascular events in this 
subset of patients. Additionally, some studies have shown that utilization of both 
ARB and ACE-I may have cumulative effects on inhibiting the adverse effects of an 
overactivated RAAS system [6, 7].

We aim to highlight the known role of the activated RAAS and provide an 
updated description of the mechanisms by which overactivation of RAAS promotes 
disease and provide a summary of the clinical implications of RAAS inhibition in 
cardiovascular disease.

2. Overview of the RAAS system

The RAAS system has several moving parts, with different organ systems stimu-
lating its activation and suppression. Renin, the active form of prorenin, is secreted 
by the granular cells of the kidney. Although renin’s role is that of an enzyme, 
its means of expression are more hormonal. Renin’s production is stimulated by 
hypotension, hyponatremia, and decreased sympathetic activity. Renin is respon-
sible for cleaving angiotensinogen, a protein produced in the liver. Angiotensinogen 
is regulated via thyroid hormone, steroids, and levels of circulating angiotensin 
II. Angiotensinogen is cleaved into angiotensin I, which is further converted into 
angiotensin II by angiotensin converting enzyme [3, 4].

RAAS key players are composed of renin, angiotensin I & II, and angiotensin 
converting enzyme located in the heart atria, conduction system, valves, ventricles, 
coronary vessels, fibroblasts and myocytes [8, 9]. Ang II is the effector hormone 
playing a pivotal role in the cardiac RAAS and has a widespread effect throughout 
the body, targeting different mechanisms of action.

Ang II acts via the angiotensin receptors mediating the following actions [9, 10]:

1. Cardiovascular system - vasoconstriction, increased blood pressure, increased 
cardiac contractility, vascular and cardiac hypertrophy

2. Renal system - tubular sodium reabsorption, inhibition of renin release

3. Sympathetic nervous system stimulation

4. Aldosterone synthesis through adrenal cortex

5. Cell growth and proliferation, inflammatory response, and oxidative stress.

Angiotensin converting enzyme 2 (ACE 2) is involved in the degradation of 
Ang II to Ang (1-7) and Ang (1-9), which provide a relative vasodilatory effect 
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as outlined in Figure 1. ACE 2 is restricted to vascular endothelial cells, arterial 
smooth muscle cells, myofibroblasts, carotid arteries and renal tubular epithelium 
[8–10]. The effects of Ang II, Ang (1-7) and Ang (1-9) have been uncovered in the 
past several years, specifically their role in hypertension, endothelial damage, and 
cardiovascular disease [5, 6, 9, 12]. The role of Ang (1-7) and Ang (1-9) is further 
outlined in Figure 1 as they pertain to the pathophysiologic changes in the cardio-
vascular system.

3. Pathogenic insights

3.1 Atherosclerosis and endothelial dysfunction

Endothelial dysfunction is thought to be a precursor to atherosclerosis, or the 
thickening and stiffness of vessels. This damage often cultivates in an atheroscle-
rotic plaque, which is a fibrin and cholesterol contained structure that deposits on 
the inner lumen of blood vessels and can impede oxygen delivery to tissues and 
organs. Endothelial damage and inflammation allow for the migration of mono-
cytes and macrophages to the site of injury and the formation of foam cells [13–15]. 
Additionally, stimulation of inflammatory mediators also promotes smooth muscle 
cell (SMC) thickening, stiffness of vessels and forms a fibrous cap on the athero-
sclerotic plaque (Figure 2) [16]. The pathophysiology of plaque development is very 
closely tied to RAAS as Ang II plays a key role in these pathophysiologic changes.

Ang II acts on the AT1 and AT2 receptors (AT1-R and AT2-R) causing arteriolar 
vasoconstriction, and inflammation through generation of reactive oxygen species 

Figure 1. 
Schematic of the RAAS as it pertains to angiotensin II and angiotensin (1-7) (Ang-(1-7)) and their counter-
regulatory effects via angiotensin receptors 1 and 2 (AT1-R and AT2-R respectively) and MAS receptor (MAS) 
[5, 6, 11]. Abbreviations: ACE-I (angiotensin converting enzyme inhibitor), ARB (Angiotensin-II receptor 
blocker), Ang (1-9) (angiotensin 1-9), ACE (angiotensin converting enzyme).
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(ROS), proinflammatory transcription factors such as nuclear factor kB (nf-kB), 
and the proliferation of smooth muscle cells contributing to atherogenesis [17, 18]. 
Activated nf-kB increases inflammatory mediators including interleukin-6 (IL-6), 
monocyte chemoattractant protein-1 (MCP-1) and platelet derived growth factor 
(PDGF), all of which mediate inflammation, endothelial damage and monocyte 
migration and adhesion leading to fibrosis [6, 18].

Ang II induces NF-kappaB (NF-kB) and inflammation through its binding to 
AT1-R. This has been demonstrated extensively as AT1-R blockers have shown to 
significantly decrease inflammation. Induction of NF-kB leads to the expression 
of pro-inflammatory cytokines such as IL-6 and TNF-alpha [19, 20]. Additionally, 
IL-6 itself can activate AT1-R resulting in overexpression and production of reac-
tive oxidative species (ROS) when RAAS is overstimulated [19]. The RAAS is also a 
potent oxidant stimulator, as it activates the NADH/NADPH oxidase signaling path-
way, and thereby produces superoxide anions and other ROS. TNF-alpha impairs 
endothelial nitric oxide (NO) production in coronary arteries thereby causing 
vasoconstriction. Additionally, ACE plays a role in the degradation of bradykinin, 
which depletes NO formation as well [6, 18–20]. Overall, we have a RAAS mediated 
expression of ROS, inflammatory mediators, and depletion of vasodilatory NO.

This inflammation mediated cellular injury and production of ROS, activates the 
endothelium and increases expression of intercellular adhesion molecules (ICAM-
1) and vascular cell adhesion molecules (VCAM-1), which promote endothelial 
damage and make cells leaky [9, 21, 22]. The endothelial damage promotes further 
migration of leukocytes, production of inflammatory cytokines and chemokines.

Finally, RAAS promotes thrombosis through Ang II receptors located on human 
platelets. Through these receptors Ang II promotes the release of thromboxane A2 

Figure 2. 
A schematic depicting the dynamic changes involved in the formation of an atherosclerotic plaque [16]. 
Abbreviations: ROS, reactive oxygen species; ICAM-1, intracellular adhesion molecule 1; IFN-c, interferon-
gamma; IL, interleukin; LDL, low-density lipoprotein; M-CSF, macrophage colony-stimulating factor; 
MCP-1, monocyte chemoattractant protein 1; MMP, matrix metalloproteinase; oxLDL, oxidized LDL; SR-A, 
scavenger receptor A; TGF-b, transforming growth factor beta; VCAM-1, vascular adhesion molecule 1; VEGF, 
vascular endothelial growth factor; VSMC, vascular smooth muscle cells. Reproduced with permission from 
Mary Ann Liebert, Inc.
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and platelet derived growth factor, which promote atherosclerotic plaque formation 
and thrombus formation [22, 23]. Ang II involvement in endothelial dysfunction and 
atherosclerotic plaque formation is summarized in Figure 3.

4. Hypertension

Hypertension, defined as a systolic blood pressure greater than 120 and diastolic 
pressure greater than 80, affects a quarter of the world’s population. When the 
etiology of hypertension is unknown, it is termed essential hypertension. When 
the cause of hypertension is known, by way of underlying metabolic, hormonal, 
neurogenic, or cardiovascular dysfunction, it is deemed as secondary hypertension 
[24]. As we have reviewed thus far, RAAS is responsible for maintaining sodium 
concentration in the blood, fluid status, and hemodynamic stability and therefore 
has a significant effect on blood pressure. Overactivation of RAAS can perpetuate 
unwanted elevations in blood pressure.

Increased levels of Ang II and subsequently aldosterone cause increases in vas-
cular tone and hypertension. Aldosterone, a mineralocorticoid, takes its effect by 
binding to mineralocorticoid receptors (MR) and translocating into nucleus. Here, 
it integrates with cellular DNA and induces transcription of genes that regulate 
electrolytes and fluid balance. An over expression of aldosterone causes an elevated 
aldosterone-renin ratio which leads to systemic complications [4].

Patient’s with primary aldosteronism (PA) and increased aldosterone levels 
are at higher risk for cerebrovascular complications. Although PA is not a com-
mon diagnosis, fifteen percent of patients with essential hypertension have higher 
than normal levels of circulating aldosterone. We can conclude that this sub-set 
of essential hypertension patients will have similar end-organ effects of elevated 
aldosterone as do patients with PA [4].

Hypertension itself can cause endovascular injury, which leads to increased 
production of ROS and inflammatory mediators ultimately contributing to athero-
sclerosis [25, 26]. The result of such endothelial injury is worsening cardiovascular 
disease, hypertension, and renal dysfunction. We see this manifest in the kidney 
with proteinuria and collagen deposition. Eventually, healthy kidney parenchyma 
is replaced with fibrotic tissue, leading to even more dysregulation with blood 

Figure 3. 
Summarized effects of Ang II as it is known to cause endothelial damage, inflammation, migration and 
adhesion of monocytes, proliferation of vasculature and platelets and formation of atherosclerotic plaque and 
thrombus [6, 18–23].
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pressure homeostasis. In the cardiovascular system, inflammatory damage from 
overactivation of RAAS and hypertension causes calcifications and fibrosis. As 
such, inhibition of the RAAS system with ACE-I and ARB has become a cornerstone 
in therapy for hypertensive patients, particularly those with evidence of diabetes, 
microalbuminuria and in CAD patients overall [15, 25–28]. The details of some of 
the landmark clinical trials contributing to the guidelines in treatment with ACE-I 
and ARB are further discussed in this chapter.

5. Ischemic heart disease

Coronary artery disease (CAD) or Ischemic heart disease (IHD), develops when 
there is a limitation of blood flow within the coronaries. It occurs due to the gradual 
buildup of atherosclerotic plaque within the wall of arteries leading to reduced oxygen 
delivery to cardiac myocytes. It comprises a clinical spectrum based on the degree of 
luminal narrowing and the activation of the atherosclerotic plaque [13, 14]. The RAAS 
plays a vital role in the pathogenesis of CAD. Evidence supports that RAAS controls 
atherosclerosis through intracellular signaling pathways by mediating endothelial 
function, inflammation, fibrinolytic balance, growth, lipid-glucose metabolism, and 
its vasoconstrictor function.

Ang II has growth promoting effects by regulating growth of vascular smooth 
muscle cells and activating the growth associated kinase pathways. In states of 
ischemia, there is increased vascular endothelial growth factor (VEGF) expression. 
In vascular smooth muscle cells, transforming growth factor B1, platelet derived 
growth factor causes fibrosis and cellular hypertrophy. These angiogenic factors 
lead to the formation of new cells, fibrin, and collagen deposition leading to growth 
of the plaque and thickening of vessels [20, 21].

RAAS plays a role in altering the fibrinolytic balance as well by inhibiting fibri-
nolysis and enhancing thrombosis. Within the vessels, Ang II stimulates the release 
of plasminogen activator inhibitor - I (PAI-I) thereby reducing the fibrinolytic 
activity. It activates tissue factor which acts as a cofactor for factor VII, potentiating 
the coagulation cascade [22, 23]. The above mechanism increases the thrombogenic 
activity.

Ang II overexpression causes endothelial inflammation and activation of 
cytokine cascade thereby causing progression of atherosclerotic plaque. The silent 
plaque ruptures when the inflammation overwhelms the stable fibrous cap causing 
thrombosis and acute ischemia [13, 14].

6. Heart failure

Heart failure is a clinical syndrome categorized based on clinical signs and 
symptoms and further subclassified by echocardiography findings. As per the 
American College of Cardiology, left ventricular ejection fraction (LVEF) of ≥50% 
is defined as heart failure with preserved ejection fraction (HFpEF), LVEF 41-49% 
as heart failure with mid-range ejection fraction (HFmrEF), LVEF≤40% as heart 
failure with reduced ejection fraction (HFrEF). HFrEF particularly occurs after an 
inciting event like myocardial injury, arrhythmias, cardiomyopathies, substance 
abuse, infections or genetic diseases which put the heart in a state of stress leading 
to contractile dysfunction and cellular remodeling [29]. The circulatory changes 
arising from heart failure are sensed by the peripheral baroreceptors and chemo-
receptors, thereby activating a sequalae of compensatory neurohormonal mecha-
nisms. The compensatory mechanisms include activation of sympathetic nervous 
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system (SNS) and RAAS. RAAS plays an integral role in cardiac contractility, 
homeostatic control of blood pressure and electrolyte-fluid balance [30, 31].

In an adult with normal circulation, the baroreceptors located in the carotid 
sinus and aortic arch balance the sympathetic and parasympathetic outflow from 
the central nervous system. Alterations in the cardiac output change the effective 
arterial blood volume resulting in inhibition of parasympathetic response and a 
reflux increase in the sympathetic vascular tone. The increased sympathetic activity 
leads to vasoconstriction of the renal afferent arteriole and decreases blood flow to 
the kidney [29, 32]. This activates renin secretion and thereby RAAS.

Renin is secreted in response to 4 main stimuli [10, 33]:

1. Decreased renal perfusion pressure sensed by baroreceptor cells in the arterial 
vessel wall

2. Decreased intracellular chloride levels (altered NaCl delivery)

3. Sympathetic nerve stimulation via beta-1 adrenergic receptors

4. Negative feedback by a direct action of Ang II

The pathophysiology of heart failure allows for decreased renal perfusion and 
increased sympathetic response, both of which cause an overactivation of the 
RAAS [34]. The overstimulation of RAAS in heart failure is further depicted in 
Figure 4.

In pathological states like pressure or volume overload, cardiac tissues exhibit 
elevated levels of renin and Ang II levels leading to cardiac hypertrophy, myocardial 
fibrosis, hypertensive heart disease and chronic heart failure through mechanics 
explained earlier. Additionally, post-infarction levels of ACE-2 have been shown to be 
elevated, which may explain a counter-regulatory mechanism to protect against the 
Ang-II mediated myocardial damage. When this natural counter-regulatory mecha-
nism is lost in ACE-2 knockout animal models the levels of dilated cardiomyopathy 
were much more pronounced. Several trials have also looked at specific levels of 
plasma renin and HFrEF and have found that those with elevated levels had an associ-
ated worse outcome than their counterparts. In patients with advanced heart failure, 
baseline levels of plasma renin and plasma aldosterone are persistently high, which 
further exemplifies the role of RAAS in cardiac remodeling and heart failure [35–37].

Figure 4. 
The regulatory effects of RAAS as it pertains to heart failure mechanics [34]. Reproduced with permission from 
McGraw Hill LLC.
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Innovative studies have discovered that a particular breakdown product of Ang 
1-7, also known as Alamandine, has shown to prevent ventricular and vascular 
remodeling in animal models [11]. Studies of by-products offer areas of potential 
research as we grow to understand the intricacies of the molecular pathways that 
play a role in the development of heart failure.

7. Clinical implications

The overactivation of RAAS and its effects on the pathophysiology of hyperten-
sion, vascular stiffness, ischemia, thrombosis, and left ventricular (LV) remodeling 
has been well documented. As such, several medications that impede the harmful 
effects of the overactivation of RAAS have been shown to prevent the negative 
clinical outcomes. Here we review some of the landmark clinical trials that have 
contributed to the current guidelines and recommendations for the treatment of 
hypertension, ischemic heart disease and heart failure (Table 1).

In the treatment of hypertension, the patient’s specific co-morbidities must be 
considered prior to initiating therapy including, race, diabetes, kidney function and 
other high-risk pre-existing conditions that may predispose to CV outcomes. One 
landmark trial, the AASK trial (2002), studied African Americans with hyperten-
sion and kidney disease and compared intensive blood pressure control versus 
conservative blood pressure control with ACE-I, metoprolol, and amlodipine. The 
two groups had no difference in the progression to CKD, however patients on ACE-I 
had less chronic kidney disease events and death, which solidified the use of ACE-I 
in patients with CKD [38].

The mainstay of treatment in patients with heart failure and CAD is blockade 
of the RAAS. Multiple trials highlighted in Table 1 have been performed showing 
improvement in cardiovascular (CV) outcomes and reduced CV mortality.

The first trial to demonstrate improved CV outcomes with HFrEF is the 
CONSENSUS (1987) trial conducted among New York Heart Association (NYHA) 
Class IV HF and cardiomegaly patients which compared enalapril and placebo. 
Six-month mortality with enalapril was 26% as opposed to 44% with placebo [39]. 
The SOLVD (1991) treatment trial chose patients with HF and LVEF ≤35%, NYHA 
II-IV, with similar randomization, showing mortality reduction by 16% due to 
reduction of death in patients on enalapril versus placebo. This study also showed 
a decrease in CV related hospitalizations [40]. Further research with the V-HeFT II 
(1991) trial showed that ACE-I was superior in improving survival to vasodilators 
such as isosorbide dinitrate and hydralazine [41]. Additionally, use of ACE-I as a 
disease modifying drug was established post-MI in the SAVE trial (1992), which is 
further discussed in Table 1 [42].

Additional studies looked to compare the effects of ACE-I versus ARB. These 
trials were the VALIANT (2003) trial and the OPTIMAAL (2002) trial. The 
VALIANT trial showed that valsartan was as effective as captopril in improving 
survival among patients with HF and/or LV disfunction in the post-MI period [43]. 
The OPTIMAAL trial compared losartan and captopril in high-risk patients after 
acute myocardial infarction with LV-dysfunction and heart failure and found no 
difference in mortality outcomes [44]. Similar studies in patients with HFpEF were 
conducted, including the CHARM-Preserved trial (2003) and the I-PRESERVE trial 
(2008). CHARM- Preserved showed that candesartan modestly reduced HF-related 
hospitalizations however had no effect on mortality [45]. I-PRESERVE used 
Irbesartan in HFpEF patients and similarly found no reduction in mortality [46].

The thought that the addition of an ARB to an ACE inhibitor could inhibit RAAS 
more significantly was established. This was compared in two large significant 
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trials. The CHARM-added trial compared symptomatic HF patients with LVEF 
≤40% who were already on an ACE inhibitor with either addition of candesartan 
or placebo. This trial showed a reduction in CV mortality and HF hospitalizations; 
however, it was accompanied by a significant increase in hyperkalemic events [47]. 
The Val-HeFT (2001) compared patients with symptomatic HF, LVEF <40% with 
LV dilatation and on ACE inhibitors by adding either valsartan or placebo. There was 
no effect on mortality however, there was a 23% reduction in HF hospitalization in 
the treatment group [48]. Finally, the ONTARGET trial (2008) compared ramipril 
to telmisartan to a combination of both in patients with CV disease or diabetes with 
complications and found that the combination of telmisartan plus ramipril had no 
increase in benefit and was associated with more adverse events [49].

Several trials looking at the effects of aldosterone antagonists and heart failure 
patients were conducted with overall favorable results. Patients benefit from 
reduced sympathetic stimulation and alleviate fluid overload from sodium and 
water retention through aldosterone blockade. The RALES trial (1999) studied the 
role of spironolactone in patients with LVEF≤35% and NYHA class III-IV, which 
showed that Spironolactone, along with ACE-I (as most patients were already on 
ACE-I) showed a 11% reduction in CV mortality compared to placebo [50]. The 
TOPCAT trial (2014) done in patients with HFpEF and controlled blood pressures 
to receive spironolactone or placebo. This study conversely showed that spirono-
lactone did not reduce CV mortality however did result in a small reduction in 
HF hospitalizations [51]. Another trial, the EMPHASIS-HF trial (2011), looked at 
Eplerenone versus placebo in HF patients, NYHA class II, showed that Eplerenone 
reduced the risk of death and hospitalizations in patients with HF [52].

A newer group of RAAS inhibition medications combining an ARB and nepri-
lysin inhibitor (ARNI) was studied in 2014 in the PARADIGM-HF trial. Neprilysins 
are key enzymes in the degradation of natriuretic peptides. They increase endog-
enous natriuretic peptide levels including bradykinin, thereby promoting vasodila-
tion and natriuresis. Neprilysins were initially attempted with an ACE inhibitor 
combination however this led to incidences of angioedema given increased levels of 
bradykinin. PARADIGM - HF trial was conducted in patients with symptomatic HF 
and LVEF ≤40% assigned to enalapril alone or valsartan-sacubitril combination. 
This showed significant reduction in CV mortality, all-cause mortality, and HF 
hospitalizations with no increase in angioedema events [53]. The PARAGON-HF 
trial (2019) studied ARNI versus valsartan alone in HFpEF patients with EF > 45% 
and NYHA II to IV and showed that ARNI did not lower hospitalizations or death 
from CV causes, however there was a modest improvement in NYHA class and a 
slower decline in renal function than what was seen in valsartan alone [54]. The 
PIONEER-HF trial (2019) showed that initiated of ARNI versus enalapril in acute 
diastolic heart failure patients allowed for significant reductions in HF biomarker, 
NT-proBNP, without significant change in adverse effects [55].

Direct renin inhibitors have been attempted with the goal of reducing renin and 
thereby the entire RAAS cascade. The ALTITUDE trial (2012) added aliskiren to 
patients with diabetes type 2 in order to prevent kidney disease and CV outcomes. 
These patients were on ACE-I however the addition of aliskiren led to an increase in 
CV mortality, hypotension, and adverse hyperkalemic events. The trial was stopped 
early due to higher mortality findings [56].

8. Summary and conclusions

RAAS is a complex and evolving pathway that has been implicated in the patho-
genesis of endothelial damage, atherosclerosis, and cardiac remodeling. Inhibition 
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Abstract

Diabetes mellitus (DM) is a metabolic disorder and characterized by hyperglycemia. 
Being a concern of both the developed and developing world, diabetes is a global health 
burden and is a major cause of mortality world-wide. The most common is the type 2 
diabetes mellitus (T2DM), which is mainly caused by resistance to insulin. Long-term 
complications of diabetes cause microvascular related problems (eg. nephropathy, 
neuropathy and retinopathy) along with macrovascular complications (eg. cardiovas-
cular diseases, ischemic heart disease, peripheral vascular disease). Renin-angiotensin-
aldosterone system (RAAS) regulates homeostasis of body fluid that in turn, maintains 
blood pressure. Thus, RAAS plays pivotal role in the pathogenesis of long-term DM 
complications like cardiovascular diseases and chronic kidney diseases. T2DM is a 
polygenic disease, and the roles of RAAS components in insulin signaling pathway 
and insulin resistance have been well documented. Hyperglycemia has been found 
to be associated with the increased plasma renin activity, arterial pressure and renal 
vascular resistance. Several studies have reported involvement of single variants within 
particular genes in initiation and development of T2D using different approaches. This 
chapter aims to investigate and discuss potential genetic polymorphisms underlying 
T2D identified through candidate gene studies, genetic linkage studies, genome wide 
association studies.

Keywords: diabetes, type 2 diabetes, renin-angiotensin-aldosterone system, 
hypertension, gene polymorphism, genome wide association study, genetics, 
COVID-19

1. Introduction

Diabetes is a global health burden and one of the leading causes of morbidity 
world-wide [1]. Diabetes mellitus (DM) is a metabolic disorder characterized by 
polydipsia, polyphagia, polyurea and weight loss due to hyperglycemia, which 
means persistent elevated levels of plasma glucose. The prolonged hyperglycemia 
results in long-term impediments of diabetes that cause macrovascular complica-
tions including cardiovascular diseases (CVDs) and other vascular complications 
including nephropathy (end-stage renal disease) or retinopathy (leading to blind-
ness) [2]. On the other hand, renin-angiotensin-aldosterone system (RAAS) plays 
an important role in maintaining blood pressure and body fluid [3]. Inappropriate 
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activation of RAAS contributes to the hemodynamic abnormalities that lead to 
endothelial dysfunction, hypertension, and CVD [3, 4].

Diabetes, hypertension and CVDs, are important risk factors for severity and 
mortality in people infected with coronavirus infectious disease 2019 (COVID-19) 
[5, 6]. Both Type 2 diabetes (T2D), the commonest form of diabetes and hyperten-
sion are multifactorial and polygenic diseases caused by the association of both 
genetic and environmental factors. Understanding the underlying genetic causes of 
susceptibility to these diseases is important for people’s health and health-related 
quality of life worldwide. In this chapter, we describe the pathophysiology of T2D 
and RAAS and their associated risks analyzed in term of genetic variants.

2. Diabetes

Diabetes is a global epidemic affecting people of both the developed and devel-
oping world. According to International Diabetes Federation, 9.3% of the world 
population had diabetes in 2019 and predicted that by 2045 about 10.9% of the 
world population may suffer from diabetes [7]. Prevalence of diabetes is increasing 
both in developing and developed countries. About 79% of the diabetic patients live 
in low-income or lower middle-income countries of which more than 60% belongs 
to Asian countries while rest of them are habitant of developed world [8]. Notably, 
diabetes is a health concern in adults compare to other age groups and it has been 
projected that between the years 2010 to 2030, developing countries will harbor 
69% more adults with diabetes while 20% more adults with diabetes will be resid-
ing in developed countries [9]. Persistent elevated levels of plasma glucose result in 
long-term impediments of diabetes that cause macrovascular complications includ-
ing CVDs, peripheral vascular disease, stroke and microvascular complications 
including nephropathy that leads to end-stage renal disease, retinopathy leading to 
blindness, neuropathy that causes damage to the nerves [2].

Diabetes can be classified into the following types [10]:

i. Type 1 diabetes (T1DM; due to autoimmune β-cell destruction, usually 
leading to absolute insulin deficiency, including latent autoimmune diabetes 
of adulthood).

ii. Type 2 diabetes (T2DM; due to a progressive loss of adequate β-cell insulin 
secretion frequently on the background of insulin resistance).

iii. Gestational diabetes mellitus (diabetes diagnosed in the second or third 
trimester of pregnancy that was not clearly overt diabetes prior to gestation).

iv. Specific types of diabetes due to other causes, eg. monogenic diabetes 
syndromes (such as neonatal diabetes and maturity-onset diabetes of 
the young), diseases of the exocrine pancreas (such as cystic fibrosis and 
pancreatitis), and drug- or chemical-induced diabetes (such as with gluco-
corticoid use, in the Human Immunodeficiency Virus treatment, or after 
organ transplantation).

Of the major types, T2DM is the commonest form. T2D was caused by devel-
oping insulin resistance due to lifestyle, obesity, reduced physical activity [3]. 
Individuals with T2DM will have seven to ten years shorter life span compare to 
non-diabetic individuals and 80% patients with T2DM develop cardiovascular 
disease [11]. CVD like coronary artery disease is responsible for the 2–4 fold 
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increased rate of death in adults [12, 13]. Diabetes being considered as the inde-
pendent risk factor from other such factors as age, gender, smoking, weight for 
dying from liver disease, lung disease, cancer, mental disorders, cardiovascular 
complications [14]. Moreover, people are more prone to infections or infectious 
diseases who have already developed diabetes [15] due to high levels of glucose in 
blood that favors immune dysfunction by modulating both innate (alteration of 
neutrophil functions) and adaptive (reducing T cell response) immune response 
[16–20]. Most recent incidence of pandemic has revealed that the severity of 
COVID-19 exaggerates in individuals with hyperglycemia due to augmented 
production of pro-inflammatory cytokines as well as poor innate immunity [21]. 
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection 
severely affects the survival rate of the infected individuals [21] with diabetes as it 
is a critical comorbidity [22].

T2D is a multifactorial and polygenic diseases caused by the association of 
different risk alleles located on multiple genes. Environmental factors modulating 
gene–gene interaction and/or expression are believed to be contributing factor for 
the development of T2D. Thus, genetic variants associated with T2DM are not only 
important for prediction and prevention of the disease along with its associated 
complications, but also will facilitate early treatment as well as need-based bona 
fide management of the disease.

3. Renin-angiotensin-aldosterone system

RAAS is one of the multifaced systems, which maintains homeostasis of body 
fluids, electrolyte balance and thus, regulates blood pressure [3, 23, 24]. Renin, 
initially known as pressor hormone, is an aspartic protease and it’s only known 
substrate is angiotensinogen (AGT) [25]. Angiotensin converting enzyme (ACE) 
is a peptidase that is mainly found in the capillaries of lung followed by endothelial 
and kidney epithelial cells in human [26]. The classical RAAS involves cleavage of 
AGT for release of a small decapeptide, angiotensin-I (Ang-I). The peptidase ACE 
then converts Ang-I into an octapeptide, angiotensin-II (Ang-II). RAAS activity is 
intrinsically high in the lung where ACE level is very high and thus, a major site of 
systemic Ang-II synthesis.

The Ang-II is the most potent hormone peptide that utilizes G-protein coupled 
receptors (GPCRs) called angiotensin type 1 and type 2 receptors (AT1R and 
AT2R) to mediate physiological functions. Ang-II facilitates vasoconstriction, cell 
proliferation, cell hypertrophy, anti-natriuresis, fibrosis, and atherosclerosis using 
AT1R [27] while, via AT2R, the peptide elicits vasodilation, anti-proliferation, anti-
hypertrophy, anti-fibrosis, anti-thrombosis, and anti-angiogenesis [28] (Figure 1). 
Ang-II also stimulates the production of the steroid hormone, aldosterone, which is 
the final product of the RAAS cascade. Aldosterone binds to the mineralocorticoid 
receptor and regulates the transcription of target genes, resulting in the upregula-
tion of electrolyte flux pathways in the kidney. Dysregulation of RAAS can lead 
to adverse effects on fluid homeostasis, which in turn may lead to organ damage 
followed by CVDs.

Angiotensin converting enzyme 2 (ACE2) is a homolog of ACE. ACE2 is also 
highly expressed in the lung. The main activity of ACE2 is to degrade Ang-II into 
angiotensin 1–7 (Ang 1–7) by hydrolyzing of the C-terminal residue [29]. Thus, 
ACE2, in the lung, have a role in adjusting the balance of circulating Ang-II/Ang 1–7 
levels. Also, product of ACE2 facilitates vasodilation and therefore opposing the 
role of ACE product (i.e. Ang-II). Ang 1–7 is expected to exert its action through the 
MAS-related (MAS1) GPCR [30]. It is evident that insulin exhibits adverse effects 
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on the structural and functional features of islet cells by inducing Ang-II mediated 
oxidative stress [31]. Through AT1R, Ang-II inhibits course of insulin action in vas-
cular and skeletal muscle tissue, interferes insulin signaling via phosphatidylinositol 
3-kinase and its downstream protein kinase B (Akt) signaling pathway [32].

Increased vasoconstriction and renal sodium reabsorption along with enhanced 
secretion of aldosterone results overactivation of RAAS followed by metabolic 
modulation leading to altered blood pressure and development of insulin resistance 
[33, 34]. Aldosterone has the ability to impair insulin signaling pathway by down-
regulating insulin receptor substrate-1 (IRS-1) in vascular smooth muscle cells [35] 
and thus, contributes to the development of and/or deteriorating metabolic disor-
ders including disruption of glucose homeostasis [36].

The (pro)renin receptor [(P)RR], cloned almost two decades before in 2002 
[37], has now been considered as one of the pivotal members of RAAS. Modulation 
of renin/prorenin takes place after binding to their receptor. After binding to (P)
RR, the enzymatic activity of renin increases while the proactive form of renin 
known as prorenin gets activated non-proteolytically and exhibits renin activity 
[38, 39]. Binding to (P)RR with prorenin causes a change in conformation within 
the prosegment region followed by opening of the active site and making it acces-
sible to the substrate, AGT [39, 40]. Thus, receptor mediated activity of renin and 
prorenin possibly activate tissue specific renin-angiotensin system in an Ang-II 
dependent manner, which ultimately could contribute in modulating local RAAS. 
(P)RR has been found to be ubiquitously expressed in brain, heart, placenta, liver, 
pancreas and kidney [37]. The association between (P)RR gene polymorphism and 
high blood pressure has been demonstrated in Caucasian and Japanese male subjects 
[41, 42]. In another study with transgenic rats over expressing (P)RR in smooth 
muscles it was reported to elevate blood pressure and increase heart rate in their 
models [43]. A single mutation in exon 4 of (P)RR gene is associated with mental 

Figure 1. 
Renin-angiotensin-aldosterone system (RAAS) and its linkage to type 2 diabetes mellitus (T2DM). The 
classical RAAS shows angiotensin-II (Ang-II) dependent pathway mediated different physiological effects 
via G-protein coupled receptors (GPCR) called angiotensin type 1 and type 2 receptors (AT1R and AT2R). 
Renin, secreted from kidney, regulates the rate limiting step of this pathway by converting its liver originated 
substrate angiotensinogen (AGT) into a decapeptide, angiotensin-I (Ang-I). Ang-I is converted into an 
octapeptide Ang-II by angiotensin converting enzyme (ACE). Ang-II binds to AT1R and AT2R to mediate the 
counterbalanced physiological functions. Angiotensin converting enzyme 2 (ACE2) is to cleave Ang-II into 
angiotensin 1–7 (Ang 1–7), which exerts the vasodilation effects.
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retardation and epilepsy [44] while a silent mutation in exon 4 on human (P)RR 
facilitates enhanced expression of c321C > T that lacked exon 4 [44]. Though pres-
ence of this single nucleotide polymorphism (SNP) does not bring any change as far 
as the renin binding ability is concerned but it modulates ERK1/2 activation [44], 
which may in turn modifies gene expression pattern.

RAAS mediates diverse functions by the action of angiotensin receptors 
(Figure 1) and has the link to cancer through tissue remodeling, inflammation, 
angiogenesis and apoptosis [45, 46]. Genetic and epidemiological studies showed 
that polymorphism of the RAS components contribute to the risk of cancer. Either 
the insertion/deletion (I/D) polymorphisms of ACE or AGT M235T SNP confer the 
risks for developing breast cancer [45]. Two AT1R SNPs are associated with risk 
for renal cell cancer, and its associations are stronger in subjects with hypertension 
[47]. Although the identified SNPs could be a marker of disease linked to another 
disease-causing SNP, rather than the disease-causing SNP itself [47], further stud-
ies are warranted to clarify cancer etiology involving the RAS components.

4. Diabetes and RAAS

Development of insulin resistance at the cellular level is initiated by Ang-II and 
aldosterone via increasing oxidative stress and altering insulin signaling (Figure 2). 
Ang-II is also responsible for generating pancreatic β-cell oriented oxidative stress, 
inflammation, and apoptosis. Evidence also suggested involvement of aldosterone 
in diminished glucose induced insulin secretion from pancreas [33].

The therapeutic approaches for lowering glucose levels significantly reduces 
the chance of developing diabetes associated microvascular complications while 
modest improvement has been observed in case of improving diabetes associated 
macrovascular complications [48, 49]. A case–control study conducted in German 
population demonstrated increased prevalence of T2D among individuals with 
hypertension and higher concentration of aldosterone (but low Ang-II level and 
low plasma renin activity) compared to the control hypertensive individuals [50]. 

Figure 2. 
Involvement of RAAS components into pathogenesis of T2DM. Hyperglycemia causes oxidative stress 
through generation of reactive oxygen species (ROS) that along with the production of Ang-II through 
overactive RAAS, may contribute to the pathophysiology of T2DM. Thus, genetic polymorphisms present in 
the genes expressing the components of RAAS probably modulate gene expression followed by protein levels 
that ultimately involve in the disease pathogenesis. Also, variants within these genes may also involve in the 
initiation and development of diabetes.
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Another study revealed association between higher levels of aldosterone and insulin 
resistance along with dose-dependent contribution of high aldosterone level to 
the risk of developing T2D [51]. Figure 2 schematically represents components of 
RAAS involved in the regulation of physiology, and probable mechanism of their 
contribution to the pathophysiology of diabetes.

5.  T2DM and RAAS: contribution of the RAAS components to the 
pathogenesis of T2D

The most important key features of the pathogenesis of diabetes are the 
resistance to insulin which in turn reduces the insulin ability to uptake peripheral 
glucose [52], and the failure of β-cells to produce adequate amount of insulin [53]. 
Obesity is one of the major risk factors for the development of insulin resistance 
along with sedentary lifestyle, lack of physical activities etc. that in turn increases 
the levels of glucose in blood [54]. Obesity is also involved in the activation of RAAS 
[55, 56]. On the other hand, RAAS has been found to be associated with multiple 
obesity-associated chronic diseases, especially for cardiovascular related disease 
[57, 58]. In addition, several lines of evidence revealed association between activa-
tion of RAAS and the onset of T2D [55, 59, 60]. The connection between renin 
angiotensin system and insulin signaling pathway along with insulin resistance has 
been established [61]. A meta-analysis demonstrated that use of AT1R blockers or 
ACE inhibitors reduces the chance of new onset of T2DM by 22% in a population 
who are vulnerable to diabetes [62]. Though association between ACE I/D polymor-
phisms and risk of T2D inconsistent even in the same population [63, 64], CAPP 
trial demonstrated that ACE inhibitor captopril-treated patient group had 11% 
reduced chance of developing diabetes compared to non-treated groups [65] while 
LIFE study showed 25% reduction in new onset of diabetes [66]. All together these 
studies strongly support linkage between RAS components and hyperglycemia. 
Moderate hyperglycemia at the early stage of diabetes results increased plasma renin 
activity, arterial pressure and renal vascular resistance with the activation of both 
local and circulating RAAS [67, 68]. Moreover, hyperglycemia causes glycosylation 
of p53 which leads to the AGT transcription followed by the production of Ang-II 
[69, 70]. This was further supported by Fiordaliso et al. who demonstrated a direct 
correlation among levels of glucose, p53 glycosylation and Ang-II production [71].

Genetic predisposition involving certain SNPs residing within the genes of 
RAAS has been anticipated as the risk factors for the development and progres-
sion of T2D and T2D associated complications hypertension [72], coronary heart 
disease [73], nephropathy [73–75] and retinopathy [76]. Human AGT, a member 
of serpin gene family, comprises of 5 exons accounting for a full-length of about 
12 kb and is situated on chromosome 1 (1q42-q43). Most convincing evidence 
for the probable association of polymorphic sites within AGT gene with essential 
hypertension has been identified in the 5′ flanking region, exons, and introns of 
the gene [77]. Strong association of rs11568020 (A-152G) and rs5050 (A-20C) in 
the promoter region as well as rs4762 and rs699 within exon 2 of AGT gene with 
hypertension was evident in Eastern Indian population [72]. Interestingly, incom-
patible findings with respect to the association of AGT variants with T2D have 
been observed [62, 72, 78, 79]. Variants rs699 and rs4762 within AGT gene found 
to be associated with the reduced risk of T2D in Eastern Indian and Malaysian 
Malays populations [72, 78] while no significant association was observed in the 
Chinese and the Japanese populations [63, 79]. However, rs699, rs4762 and rs5051 
of AGT gene were reported to be associated with the increased risk of T2DM in the 
Pakistani [80], Korean [81] and Malaysian Malays [78] populations, respectively. 
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It has been documented that Ang-II is capable of stimulating the production of 
TGF-β [82] or inducing generation of reactive oxygen species (ROS) [83] that 
causes over-accumulation of extracellular matrix proteins or various cellular dys-
functions in patients with diabetes. Furthermore, variants present within the genes 
of RAAS components especially within ACE, AGT and AT1R genes have shown to 
be the most promising candidate genes susceptible to diabetic associated complica-
tions like nephropathy along with its progression towards renal failure as well as 
retinopathy [78, 84]. Haplotype TCG of AGT has been observed to be associated 
with increased risk of T2D [78]. According to Purkait et al. [72], three haplotypes 
(H4, H7 and H8) of AGT showed strong association with hypertension while H2 
had protective role against this disease. It is reported that the AT1R A1166C is not 
likely a risk factor for chronic kidney disease in East Asians and Caucasians while 
it is shown to be a risk factor in South Asian population [85, 86]. Almost 30–50% 
of the diabetic individuals are prone to develop kidney disease [87, 88]. Previous 
studies reported association of renin gene polymorphisms with number of non- 
communicable diseases including diabetic nephropathy [89], increased risk of vas-
cular complications [90], plasma renin activity [91], susceptibility to hypertension 
in a variety of ethnic groups [92–95], T2D [96] with inconsistent results [97–99]. 
Few studies did not find any significant association of renin rs16853055 with dia-
betes and diabetic nephropathy diseases [100, 101] while Purkait et al. [102] found 
an association of this variant with diabetic nephropathy in Indian population along 
with strong linkage disequilibrium with rs16853055. On the other hand, Deinum et al. 
reported weak association of renin gene polymorphism present in the first intron 
(involved in the regulation of transcription of renin) with diabetic nephropathy 
[89, 103]. Moreover, rs1799998 of the CYP11B2 gene (aldosterone synthase) was 
associated with the levels of serum aldosterone and production [104, 105], blood 
pressure [106, 107], ischemic stroke [108], with the progression of renal function 
[109, 110] and end stage renal disease [111]. Meta-analysis performed by Xu et al. 
demonstrated association of allelic frequency as well as co-dominant homozygous 
and recessive models of inheritance with regard to −344 T/C polymorphism within 
promoter region of CYP11B2 gene with the increased risk of diabetic nephropathy 
[112]. Similar association was observed by Purkait et al. [113] in Indian population. 
Promoter regions play important regulatory roles in gene transcription followed 
by formation of a functional protein through translation. Thus, presence of vari-
ants within the promoter region may be involved in the disease progression or 
pathogenicity which is definitely subject to further investigation and validation. 
Furthermore, methylation within the promoter region of a gene contributes to the 
expression of that particular gene [114]. Variant rs1799998 causes substitution of 
cytosine to thymidine within the promoter region of CYP11B2 gene which is the 
binding site of a putative steroidogenic transcription factor-1 [115].

6. Pathophysiology and genetics of type 2 diabetes

Both environmental and genetic factors play pivotal role in the development of 
diabetes in human. However, some individuals develop diabetes while others do 
not although they use to live in the same environment. A substantial proportion of 
Pima Indians develop T2D even with a normal lifestyle in a normal environment 
that showed strong linkage of genetic make-up to T2D [116]. Thus, understanding 
genetics related to the pathogenesis of T2D is of utmost importance for the man-
agement of this global endemic disease. Familial studies orchestrated more robust 
data as proof that genes play important role as risk factor for the development of 
diabetes. First degree individuals with family history of T2D are at 3-fold increased 
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risk of developing T2D compared to those who do not have positive family history 
[117–119]. Studies with monozygotic twins demonstrated that 50% risk of develop-
ing type 1 diabetes is contributed by HLA genes while rest of the 50% is associated 
with environmental factors and epigenetic modifications [120, 121]. Several family, 
population and twin-based studies established that heritability of T2D ranges from 
20–80% [122, 123]. Forty percent individuals possess risk of developing T2D who 
have one parent with T2D while 70% of the individuals have higher risk of develop-
ing T2D if both the parents are T2D [124]. Seventy percent of monozygotic twins 
are in concordance with the chance of developing T2D while the concordance rate 
in dizygotic twins has been found to be 20–30% [125, 126].

The primary method to identify genes susceptible to T2D was genome link-
age analysis. This approach efficiently identified causal mutations specially for 
the monogenic forms of diabetes like maturity-onset diabetes in young (MODY), 
mitochondrial diabetes in neonates and insulin resistance [127–129]. This approach 
further recognized the short tandem repeats located on q arm of chromosomes 4, 5, 
10, 12, 22 and p arm of chromosomes 2, 3, 6, 13 for their probable association with 
T2D in different ethnic populations [130–134] along with causative genetic variants 
within calpain10 (CAPN10) [135], ENPP1 [136], HNF4A [137, 138] and ACDC [139]. 
Calcium-activated neutral protease 10, one of the regulator of glucose homeostasis, 
gene (CAPN10) variants UCSNP-43 G/A in intron 3, UCSNP-19 2R (two 32-bp 
repeats)/3R (three 32-bp repeats) in intron 6 and UCSNP-63 C/T in intron 13 have 
been reported to be associated with T2D in Mexicans Americans, German and 
Finnish populations [135, 140]. The ectonucleotide pyrophosphatase phosphodi-
esterase (ENPP1) was supposed to be associated with insulin resistance [141]. The 
three-alleles risk haplotype (K121Q/IVS20 delT-11/A > G + 1044 TGA, QdelTG) 
within ENPP1 was associated with childhood obesity, development of T2D and with 
adult obesity [136]. HNF4A, member of the steroid hormone receptor superfamily, 
plays major role in insulin expression and secretion followed by glucose metabolism 
in pancreatic β-cells along with gluconeogenesis in liver [142, 143]. Variants within 
HNF4A gene were identified as the risk factor for MODY and causative factor for 
β-cell dysfunctions [144]. Also, non-coding variants rs4812829 and rs6017317 as 
well as coding variant rs1800961 (T130I) within HNF4A were involved in the devel-
opment of T2D [145–147]. Decreased level of adipose tissue-derived adiponectin 
in plasma is evident in individuals with obesity [148], insulin resistance [149] and 
T2D [148]. Adiponectin encoding ACDC gene variants 276G > T and 45 T > G were 
found to be associated with lower levels of plasma adiponectin in Japanese [150] 
and German obese people [151], respectively along with their predisposition to 
T2D. However, genome wide linkage analyses did not reveal any association of these 
variants of ACDC gene with obesity and T2D in Pima Indians [139]. Transcription 
factor TCF7L2 showed strongest linkage to the risk of T2D before genome wide 
association study (GWAS) era [130]. TCF7L2 involves in Wnt signaling pathway 
that regulates proliferation and survival of pancreatic islet cell functions [152] and 
its reduced expression is linked to impaired insulin secretion [153]. TCF7L2 gene 
variants rs12255372 and rs7903146, showed strong linkage disequilibrium with 
composite at-risk alleles of the microsatellite marker (DG10S478).

Candidate gene association studies have also been proved to be effective to 
obtain substantial evidences of genetic predisposition to T2D. For example, insulin-
like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an important candidate 
gene for T2D [154, 155], was involved with T2D development by reducing insulin 
secretion [156] may be through changing adipose tissue and β-cell function [157]. 
IGF2BP2 was also associated with overweight and obesity [158]. Association of 
rs4402960 and rs1470579 within IGF2BP2 with the risk of T2D demonstrated in 
French Caucasians while another study revealed that T2D patients carrying the 
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T allele of rs4402960 had higher levels of fasting plasma glucose, postprandial 
glucose, total cholesterol and postprandial serum insulin compared to individuals 
with the GG genotype [158]. Besides, IGF2BP2 variants showed effect on treatment 
of diabetes. For example, lower efficacy of the repaglinide treatment for reducing 
fasting plasma glucose and postprandial glucose was observed in diabetic patients 
with rs1470579 AC + CC genotypes compared to AA genotypes. On the other hand, 
repaglinide treatment had higher effect on diabetic patients with GT + TT geno-
types with regard to rs4402960 on postprandial insulin compared to GG genotype 
carrying patients [158]. The potassium inwardly rectifying channel, subfamily J, 
member 11 (KCNJ11) has attracted attention due to its contribution to the patho-
genesis of T2D by modulating insulin production and secretion [159] and thus, is 
a good candidate gene to elucidate its disease association. KCNJ11 harboring four 
missense SNPs rs5219, rs1800467, rs5215, rs41282930 were recognized to influence 
risk of T2D by impairing insulin secretion [160]. Peroxisome proliferator activator 
receptor gamma (PPARG) was identified to harbor T2D disease susceptibility vari-
ants. Both KCNJ11 and PPARG encode anti-diabetic drug targets and their respec-
tive missense SNPs rs5219 (E23K) and rs1801282 (P12A) are associated with the risk 
of T2D [161].

Although candidate gene and linkage analyses provided considerable evidences 
behind the genes for their probable association with the pathophysiology of T2D 
and/or with the risk of T2D, novel genes are yet demanding due to the inconsistent 
and discordant findings within the same population and also, in different ethnic 
groups. Screening of whole genome using GWAS helps to overcome the shortcom-
ings of the above mentioned approaches to some extent by expediting regularly 
spaced variants without any prior knowledge of gene or their effects that has 
brought a significant breakthrough in understanding the genetic basis of T2D. This 
has become realistic after successful completion of the Human Genome Project 
and the International HapMap Project. This has given an opportunity to deposit 
millions of SNPs in the public databases [162] and presence of higher frequency of 
a particular SNP in cases compare to controls suggests association of that SNP with 
the case i.e., disease. Moreover, to satisfy association of SNPs statistically, stringent 
p value (<10−8) is required in GWAS and it benefited researchers to eliminate false 
positive association out of the millions of reported SNPs [163]. Even with such strict 
threshold levels of statistics, several case–control studies in different ethnicities 
have generated replicative positive results through different independent datasets. 
T2D associated variants within genes uncovered by GWAS positioned at different 
chromosomal locations (Figure 3A) can be grouped into i) insulin secretion and 
processing related (GIPR, CCND2, CDKAL1, GCK, TCF7L2, GLIS3, THADA, 
IGF2BP2, DGKB), ii) impaired insulin function related (PPARG, KLF14, IRS1), 
iii) insulin resistance related (ACDC, FTO, KLF14, DUSP9), iv) β-cell mass and 
function related (IGF2BP2, HCNQ1, CDKN2A, CDKN2B) and iii) body mass 
index (BMI) and lipid level related (NRXN3, CMIP, APOE, and MC4R). Notably 
rs4731702 of intronless KLF14 demonstrated an association with insulin resistance 
[164] while rs972283 contributed to elevated blood pressure [165], which may 
ultimately increase risk of cardiovascular disease; C allele of the rs2283228 within 
HCNQ1 showed association with increased fasting glucose levels and impaired 
β-cell function in Asians [166], while C allele of rs2237895 in KCNQ1 was found 
to be related to decreased risk of abdominal obesity in patients with T2DM [167, 
168]; rs5945326 of DUSP9 on X chromosome was related to the increased risk 
of T2D in Japanese [169], Pakistanis [170] and in European [171] populations; 
rs1558902 within FTO showed correlation with the incidence T2D in humans even 
after adjusting the data with confounding factors such as age and BMI [172] and 
rs9939609 may modulate the risk of T2D by regulating other genes, an incidence 
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independent of BMI [173]; variants present within the tumor suppressor cyclin 
dependent kinase inhibitors, CDKN2A and CDKN2B, reported to be associated 
with T2D in Asians and Europeans [174–177]. rs10811661 of CDKN2A/2B is also, 
according to GWAS, linked to diabetes [178]; hematopoietically-expressed homeo-
box or HHEX gene variants rs11118745G/A, rs7923837A/G, and rs5015480C/T had 
been identified as risk factors for T2D in Japanese [179], German [180], Korean 
[181], Indian [182] populations. Association of a common variant, Trp325Arg 
within SLC30A8, with the risk of T2D [171, 183]  

Figure 3. 
Chromosomal locations of genes carrying variants (A) associated with β-cell function followed by insulin 
production and secretion (B), glucose utilization and homeostasis (C) along with glycemic traits and abnormal 
adipose tissue function (D) which all together may lead to T2D and of genes of major RAAS components. 
Several approaches specially GWASs identified several variants associated with pancreatic islet cell function 
followed by β-cell dysfunction, insulin secretion and processing (red), with development of insulin resistance 
followed by imbalanced glucose homeostasis (blue). Other variants are also associated with abnormal adipose 
tissue function which may also be caused by oxidative stress, a consequence of Ang-II (Figure 2). Variants 
within SLC30A8 and (P)RR (green) showed both protection against T2D and risk association with T2D as 
well as hypertension, respectively. Also, mostly non-coding and few coding variants within the genes (black) 
showed association with the risk of T2D. Variants within the major gene of RAAS have been found to be 
associated with the risk of T2D and T2D-associated hypertension other that their established risk association 
with essential hypertension and cardiovascular diseases. REN, renin; AGT, angiotensinogen; AT1R and AT2R, 
angiotensin type 1 and type 2 receptors, ACE, angiotensin converting enzyme; ACE2, angiotensin converting 
enzyme 2; CYP11B2, aldosterone synthase; (P)RR, (pro)renin receptor; In, insulin; Glc, glucose; IRS, insulin 
receptor substrate.
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and, levels of glucose [184] and proinsulin [185] had been well documented. 
Interestingly, through genotyping of ~150,000 individuals from five ethic groups, 
Flannick et al. (2014) revealed protective role against the development of T2D 
mediated by the loss of function variants harbored within SLC30A8 [186]. AA 
genotype of rs11558471 of SLC30A8 was found significantly more frequent in T2D 
patients than in controls in Han Chinese [187] and Indian [182] populations.

Non-coding variants within different genes [like variants of PRC1, MADD, 
MTNR1B, FADS1, CRY2, GLIS3, LC2A2, ADCY5, GCKR, G6CP2 [184], TP53INP1 
[188], GIPR [189], ADCY5 [189], TSPAN8/LGR5, JAZF1, Notch1 [190], HNF1B 
[191], FTO [155], ZEDB3 [188]], as presented in Figure 3A, were also recognized 
as major risk factors associated with the development of T2D and/or regulation 
of glucose/insulin homeostasis, and/or glycemic traits (Figure 3B and C) and 
abnormal adipose tissue function (Figure 3D) while few variants were discerned 
to have protective roles against the development of diabetes [184, 188–195]. Also, 
similar association was found with regard to intergenic variants rs972283 (G/A, 
47 kb upstream) of KLF14 [188], rs2943641 (C/T, 502 kb upstream) of IRS-1 
[155], rs1111875 (C/T, 7.7 kb downstream) of HHEX [183], rs10811661 (T/C, 
125 kb upstream) of CDKN2A/2B [190], rs4607103 (C/T, 38 kb upstream) of 
ADAMSTS9 [190], regulatory region variant rs5945326 (G/A, 8 kb upstream) 
of DUSP9 [188], rs2191349 (T/G) of DGKB/TMEM195 [196], promoter region 
rs2853669 of human telomerase reverse transcriptase (TERT) gene [197]. Non-
coding variants positioned at essential regions like enhancer and promoter 
sequence may also modulate chromatin loops, alter sequence motifs and modulate 
histone marks that ultimately regulate gene expression, which could be one of the 
key reasons their disease association.

7. Pathogenesis and genetics of RAAS

RAAS is the enzymatic cascade to produce the effector molecule, Ang-II, by the 
multiple enzymes [23] (Figure 1). Various genotypes of the RAAS components [eg. 
AGT, renin, ACE, ACE2, AT1R, AT2R and (P)RR] have been investigated to find the 
link between genetic variation, blood pressure, and hypertension [198].

The two AGT genotypes (G-6A non-coding SNP and M235T coding SNP) are 
associated with higher plasma AGT levels and increased risks of essential hyperten-
sion [77]. The AGT SNPs occurring within the non-coding region could explain 
the association with plasma AGT concentration because of the alternation in AGT 
transcription [198]. It is plausible that the higher AGT concentration brings about 
the higher levels of Ang-II, which may lead to high blood pressure. In the study of 
10,690 individuals, the associations of elevated blood pressure, ischemic heart dis-
ease and ischemic cerebrovascular disease were examined with four AGT variants 
(A-20C and G-6A non-coding SNPs and T174M and M235T coding SNPs) [199]. 
Both women and men with -6AA, 174TT, and 235TT (versus -6GG, 174TT, and 
235TT) had higher mean levels of plasma AGT (861 ng/mL and 811 ng/mL, respec-
tively). This finding suggests that the genotype has an effect on risk of elevated 
blood pressure in women, but not in men [199]. The association of the genotype 
with ischemic heart disease and ischemic cerebrovascular disease seems weak as a 
risk [199]. A meta-analysis of 45,267 individuals from different ethnic populations 
shows that M235T genotype is associated with an increase in plasma AGT levels 
[200]. An analysis of 424 individuals from 41 two-generation families from Utah 
indicates significant linkage between six AGT SNPs (rs5051, rs699, rs6687360, 
rs2478543, rs3789670 and rs943580) and plasma AGT levels whereas plasma AGT 
and blood pressure were not significantly correlated [201]. AGT SNPs have been 
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identified from various ethnic groups to show its association with hypertension 
[72, 202–205]. Of note, AGT genotypes (G-6A, T + 31C and M235T) with hyper-
tension are not associated with plasma AGT level, while -1074 t|T235 haplotype is 
associated with an increase of AGT level but not with hypertension [202]. Sato  
et al. [202] suggested that the positive association between AGT polymorphism and 
hypertension is not simply explained by an increase of plasma AGT concentration.

Renin polymorphism was investigated by assessing the association of ten renin 
genotypes with hypertension risk in 570 hypertensive and 222 normotensive 
Caucasians [95]. Subjects with DM, secondary hypertension, significant medical 
illness or severe obesity were excluded, and their food intakes were also controlled. 
The A allele of rs6693954 SNP and the haplotype containing rs6693954A were 
significantly associated with higher risk of hypertension [95]. Compared to other 
haplotypes, the same haplotype showed the higher levels of plasma renin activ-
ity, suggesting that a direct renin inhibitor is effective to reduce blood pressure of 
rs6693954A carriers [95]. In addition, the haplotype displayed a blunted mean arte-
rial pressure response to exogenously infused Ang-II [95], which infers the dysregu-
lation of RAAS at the tissue level [206]. This study [95] confirms the association 
between renin genotypes and risk for hypertension.

As described above, genetic variations in individual RAAS components can 
contribute to the onset of physiological outcomes, which probably brings about 
the increase in blood pressure. But hypertension is a multifactorial disease involv-
ing both genetic and environmental factors [207] like T2D. The mechanism of 
susceptibility to hypertension and CVD is much more complex, since various 
genes work in an additive or interactive manner, together with environmental 
factors [198]. Ji et al. [205] provided the experimental evidence to support the idea. 
In a study of 905 hypertensive and 905 normotensive Han Chinese population, 
41 SNPs of the five RAAS components (AGT, renin, ACE, AT1R, and CYP11B2) 
and the non-genetic factors were analyzed to investigate their associations with 
essential hypertension [205]. Subjects with CVD, DM, kidney diseases, secondary 
hypertension and other major chronic illnesses were excluded. Serum levels of total 
cholesterol and triglyceride, and BMI were significantly higher in the hypertensive 
group than in the normotensive group. Six SNPs (rs3789678 and rs2493132 within 
AGT, rs4305 within ACE, rs275645 within AT1R, rs3802230 and rs10086846 within 
CYP11B2) were shown to associate with hypertension. The interaction between BMI 
and rs4305 (ACE SNPs) increased the susceptibility to hypertension. Together with 
non-genetic factors, the genetic variations in the RAAS components may play an 
important role in determining an individual’s susceptibility to hypertension [205].

GWAS analysis performed by Ji et al. [208] provided one important viewpoint 
on genetic polymorphism of RAAS. The authors searched GWAS Catalog (https://
www.ebi.ac.uk/gwas/) and identified all known RAAS genes and relevant diseases 
and traits. Remarkably, SNPs within AGT, renin, ACE2, CYP11B2, ATP6AP2 [(P)
RR] and HSD11B2 were not associated with any disease and trait. There were SNPs 
being associated with other disease and trait: ACE (metabolic traits), AT1R (leads 
levels in blood), AT2R (fibrosis), MAS1 (lipoprotein levels), RENBP (schizophre-
nia) and NR3C2 (thyroid function). But these six SNPs showed no direct associa-
tion with hypertension. The only SNP associated with a blood pressure trait was 
rs17367504, which is located in the intronic region of methylenetetrahydrofolate 
reductase (MTHFR) gene near many plausible candidate genes, including ion chan-
nel CLCN6, natriuretic peptides NPPA and NPPB, and RAAS component AGTRAP. 
The authored emphasized that the contribution of RAAS variants needs to be 
reconsidered when evaluating one’s susceptibility of hypertension [208]. GWAS 
analysis is providing a new dimension for understanding genetic architecture of 
blood pressure and Page’s “mosaic theory” of hypertension [209].
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SARS-CoV-2 has emerged in December 2019, which caused COVID-19. The 
SARS-CoV-2 spike protein directly binds to ACE2, which is present on lung epithelial 
cells and other tissues [210]. ACE2 converts Ang-II to Ang 1–7 leading to tissue repair 
signal (Figure 1). When SARS-CoV-2 is attached to ACE2, it likely reduces the ACE2 
activity associated with reduced inflammation, thereby increasing lung injury due to 
the decrease in Ang 1–7 generation [210]. It was observed that the severe COVID-19 
patients are likely to have a history of diabetes, hypertension or CVD [5, 6]. For reduc-
ing the infection by COVID-19 and the other coronaviruses, deciphering the suscep-
tibility to hypertension in term of genetic variations should be indispensable, which 
will be achieved by steady efforts to clarify the genetic background of each ethnic.

We recently reported probable association of five non-coding SNPs within 
renin and (P)RR genes with T2D, hypertension and T2D-associated hyperten-
sion in Bangladeshi population [211]. Renin SNP rs3730102 was associated with 
an increased risk of the three diseases. Renin SNP rs11571079 was associated 
with an increased risk for hypertension and T2D-associated hypertension, while 
the SNP showed a decreased risk for T2D, exerting a protective effect. (P)RR 
rs2968915|rs3112298 haplotypes were related to an increased risk of T2D and T2D-
associated hypertension. These findings highlight important roles of non-coding 
variants of renin and (P)RR genes in the etiology of several polygenic diseases [211]. 
Although there is a limitation for genotyping the candidate SNPs for the disease risk 
prediction, finding the candidate gene in different ethnic group through “one-
to-one” approach should be valuable to design a measure for ensuring health and 
quality of life at all ages in each population group.

8. Conclusion

Though several studies have revealed genetic approaches to identify the patho-
physiology of diabetes, hypertension and/or diabetes associated complications, it 
is still very challenging to uncover a definite candidate for the genetic etiology of 
these diseases due to overlapping involvement of genes, loci or even SNPs. GWASs 
have come forward to get rid of this elusiveness through scanning of whole genome. 
However, it is still very challenging due to the ethnic variations and ethnicity-
dependent gene expression patterns even harboring the same loci and/or variants 
to recognize genetic risk factors. Rather panels of variants (panels of variants for 
more closely related to T2D, panels for more closely related to hypertension and 
panels of overlapping variants in case of T2D and hypertension) could be a more 
meticulously related suggestive diagnostic, predictive and prognostic biomarker for 
these diseases. Known variants along with their gene expression pattern may play a 
pivotal role in determining disease pathogenesis.
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Abstract

The renin-angiotensin-aldosterone system is a physiological system that plays 
an important role in the regulation of blood pressure and body water-electrolyte 
balance, in which the kidney, liver and lungs play a role in its activation. This system 
comes into play in various diseases such as the cardiovascular, renal, pulmonary and 
nervous system where blood pressure and fluid-electrolyte balance may change. 
The purpose of this study, which is presented in line with this information, is to 
explain the working principle of this system, how this system is activated, how it 
comes into play in the mentioned diseases, and what kind of results occur.

Keywords: Renin, angiotensin, aldosterone, ACE2, hypertension, pulmonary 
diseases, renal diseases, neurodegenerative diseases, AngII, Covid-19

1. Introduction

The renin-angiotensin-aldosterone system (RAAS) is a powerful system that 
regulates fluid-electrolyte balance and systemic blood pressure. First, it has been 
stated that it is a hormonal and peptidergic endocrine system that regulates blood 
pressure and fluid-electrolyte balance [1, 2]. Until recently, RAAS was known only 
as an endocrine system that regulates blood pressure and fluid-electrolyte balance, 
but now it is noted that this system is not only found in circulation but also locally in 
organ systems, and also has autocrine-paracrine functions [3].

There are some components of RAAS responsible for these effects. One of these 
components, renin, is synthesised as prorenin from the juxtaglomerular apparatus, 
which is also found in kidney efferent arterioles. The protein is converted to active 
renin, stored in secretory granules and released into the circulation when necessary 
[4]. The release of renin, a proteolytic enzyme, is triggered by many physiological 
stimuli, including prostacyclins (PGI2), such as stimulation of macula densa in 
the distal tubule with low Na + concentration, reduction of arterial pressure, renal 
sympathetic nerve activation and stimulation of β1-receptors [5]. Circulating renin 
provides the formation of Angiotensin I (AngI) from angiotensinogen, most of which 
is synthesised from the liver [6]. AngI is converted to Angiotensin II (AngII) by 
Angiotensin-converting enzyme (ACE), a membrane-bound metalloproteinase found 
in high amounts on pulmonary vascular endothelial cell surfaces (Figure 1) [5, 7].
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ACE, a member of the zinc metallopeptidase class, had two main roles in 
metabolism. It takes part in the RAAS system and the kinin-kallikrein system 
(KKS). Another task is to inactivate substance P and neurokines [8, 9]. ACE has two 
forms in endothelial and epithelial cells and male spermatid. Its form in endothelial 
and epithelial cells is called “somatic form” (sACE), and the form found in sper-
matids is called “germinal form” (gACE) [10]. The primary structure of these two 
forms is different from each other. While sACE has two active sites with different 
catalytic properties, gACE has only one active [11]. ACE has another mammalian 
homologue named angiotensin-converting enzyme 2 (ACE2) [12]. Although ACE2 
has carboxypeptidase activity like ACE, it cleaves an amino acid unlike ACE and its 
most important substrates are AngI and AngII [13].

In the body, AngII has many roles such as increasing blood pressure by direct 
contraction of vascular smooth muscles, increasing myocardial contractility, water 
and salt retention by stimulating aldosterone release from the adrenals, stimulation 
of catecholamine release from sympathetic nerve endings, cell growth and prolif-
eration [14, 15]. It turns out that AngII can be generated locally in many tissues, 
including the brain, independent of circulating components [16]. AngII acts by 
binding to receptors in the protein structure on the plasma membranes of different 
tissues. These receptors are termed AngII type 1 (AT1R) and AngII type 2 (AT2R) 
receptors [17]. Changes in the balance of RAAS have been reported to have direct or 
indirect effects with cardiovascular system diseases, lung diseases, nervous system 
diseases and kidney diseases. Therefore, this section describes the mechanism of 
action of RAAS and the relationship of RAAS components with these diseases.

2. The role of RAAS in cardiovascular disease

2.1 Heart failure and myocardial infarction

Ang II has a role in a variety of cardiac dysfunctions, including hypertrophy, 
arrhythmia, and ventricular dysfunction [18, 19]. Inability to pump enough blood 

Figure 1. 
Renin-angiotensin-aldosterone system and effects.
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to the body due to insufficient heart functions due to various reasons is known as 
heart failure. When looking at the role of RAAS in the case of heart failure, RAAS 
activation can occur when hypertrophy occurs in the heart muscle cells. This causes 
fluid retention in the body and peripheral vasoconstriction, resulting in cardiac 
overload and heart failure [20]. RAAS activation increases in heart rate and con-
tractility, thus reducing coronary blood flow [21]. Experimental studies have shown 
that plasma renin activity increases in acute heart failure. Also, it was determined 
that plasma renin activity was normal in the compensated phase of chronic heart 
failure, and this shows that RAAS is associated with heart failure [22]. It has also 
been determined that when myocardial cells are exposed to excessive AngII and 
aldosterone, fibrosis is formed. This again shows that RAAS plays an important 
role in myocardial heart disease. It was determined that AT-1 receptor expression 
affected by AngII decreased in decompensated heart failure, while AT-2 receptors 
remained unchanged [23]. It has also been determined that ACE inhibitors play 
an important role in heart failure. It has been reported that ACE inhibitors are 
beneficial, especially in patients with left ventricular failure, and that death rates 
are reduced [24]. These findings are an important indicator that renin-angiotensin 
inhibition is crucial to improving cardiac dysfunction. When the relationship of 
RAAS with myocardial infarction is examined, it has been determined that ACE2 
RNA expression increases in the case of myocardial infarction [25]. In another 
study, it was shown that ACE2 expression increased in the case of myocardial injury 
induced by ischemia–reperfusion in rats and this increase attenuated myocardial 
damage [26].

2.2 Hypertension

It has been determined that the plasma renin level changes in the case of 
hypertension. Plasma renin levels are not proportional to blood pressure, and it has 
been reported that plasma renin levels are low in some patients, normal in others 
and high in others. One of the reasons for the change in the renin level is that it is 
primarily caused by ischemia that develops in the nephrons. In this case, renin levels 
released from ischemic nephrons increase at different levels, resulting in normal 
or high plasma renin levels. The renin released from ischemic nephrons passes into 
the circulation leading to the formation of AngII [17, 27]. As a result, hypertension 
occurs with increased vasoconstriction and sodium retention in nephrons. The 
reason why plasma renin level is normal in some hypertensive patients is that aldo-
sterone is not synthesised in response to sodium restriction. Also, it has been stated 
that resistance to renin and AngII is formed in the vessels and therefore they can 
increase blood pressure even at low levels. Besides, independent of RAAS in circu-
lating blood, it has been determined that Ang II production by serine protein kinase 
activity is independent of ACE activity in the heart, brain, adrenal cortex and blood 
vessels [28]. Also, AngII contributes to hypertension [29]. When looking at the 
relationship between salt intake and RAAS, it is seen that high salt intake suppresses 
RAAS, while low salt intake stimulates AngII release [30]. Studies have determined 
that smooth muscle cells are also critical in the regulation of AngII-mediated blood 
pressure. A study in mice found that 22α protein deficiency in smooth muscle 
reduces hypertension that can occur with AngII [31]. This is an indication that the 
RAAS system plays an important role in hypertension.

2.3 Atherosclerosis

AngII has been determined to induce endothelial dysfunction and increase oxi-
dative stress in the endothelium by stimulating the production of reactive oxygen 
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species (ROS) such as superoxide anions (O2−) derived from nicotinamide adenine 
dinucleotide phosphate oxidase (NADPH oxidase). This is especially the result 
of endothelial AT1R stimulation that interacts with the Nox5/Ca2 + calmodulin 
binding site, which will increase Ca + concentration in the endothelial cell [32, 33]. 
Nox5 is a member of the NADPH oxidase family and plays an important role in the 
development of atherosclerosis, inflammation, and oxidative stress [33, 34]. It also 
plays a role in the adhesion of mononuclear cells to the arterial endothelium and 
recruitment of mononuclear cells by stimulating the increase in CAM expression of 
TNF-α, which is released as a result of stimulation of AT1R with AngII, in combina-
tion with IL-6 [35]. One study reported that AngII induced monocyte chemotactic 
protein-derived protein expression (MCPIP1) via an AMPK/p38 MAPK-dependent 
pathway [36]. Increased MCPIP1 expression contributes to atherosclerotic plaque 
formation by triggering apoptosis in macrophages [37]. Another thing related to 
the formation of atherosclerosis is that AngII induces the expression of a multi-
functional protein found in macrophages, endothelial cells, smooth muscle cells 
(SMCs), and epithelial cells called osteopontin. Osteopontin plays an important 
role in the development and development of atherosclerosis [38]. The cell mem-
brane has a transmembrane glycoprotein called LOX. LOX acts as a receptor for 
oxidised LDL (oxLDL). It increases the expression of AngII LOX-1 gene. Binding 
of oxLDL to LOX-1 in the endothelium causes an increase in leukocyte adhesion 
molecules, activates apoptosis pathways, increases ROS and induces endothelial 
dysfunction. This situation contributes to the development of atherosclerosis. Also, 
oxLDL increases the formation of ACE, which induces the formation of AngII 
(Figure 2). This increases LOX-1 expression, which positively regulates the expres-
sion of AT1R, and contributes to a self-sustaining pro-atherogenic cycle [39]. Thus, 
it has been determined that ACE and ATR1 inhibitors prevent the development of 
atherosclerosis.

2.4 Vascular inflammation

RAAS plays an important role in shaping vascular inflammation. Vascular 
inflammation causes endothelial dysfunction. This dysfunction causes tissue dam-
age. Endothelial dysfunction also results in the accumulation of inflammatory cells 
in the area. This situation triggers atherosclerosis. Also, studies have shown that 

Figure 2. 
Mechanism of AngII-mediated atherosclerosis formation. Involvement of Ang-II, ACE2, and Ang-1–7 in 
atherogenic pathways. The Ang-II binding into AT1R can activate Nox5 through a calcium/calmodulin-
dependent pathway.
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AngII-mediated inflammation and hypertension and atherosclerosis develop [40]. 
In another study, it was determined that AngII administration in human vascular 
smooth muscle cells increased NF-KB activation, thus increasing IL-6, MCP-1 and 
TNF-expression [41]. Again, although it is a vasoconstrictor, AngII was determined 
to induce endothelial damage by inhibiting endothelial cell regeneration. AngII has 
been reported to act as a second messenger to activate intracellular signalling path-
ways such as mitogen-activated protein kinase (MAPK) and protein kinase Akt/
protein kinase B (Akt/PKB), pathways that mediate cell proliferation and apoptosis, 
and thus vascular dysfunction [42]. AngII is also stated to be a potent pro-oxidant. 
Ang II induces the production of superoxide anions and activates NADH/NADPH 
signalling [43]. AngII lowers nitric oxide (NO) levels and activates redox-sensitive 
genes, particularly cytokines and adhesion molecules [44]. Ang II is also a profi-
brotic factor. Chronic AngII administration in mice has been shown to cause an 
increase in blood pressure, infiltration of inflammatory cells into the myocardium 
and cardiac fibrosis [45]. Another factor that provides the proinflammatory and 
profibrinolytic effect of RAAS in vessels is aldosterone [46]. Aldosterone affects 
insulin resistance and the development of atherosclerosis. In vascular smooth 
muscle cells, aldosterone alters insulin signalling, increases insulin-like growth 
factor-1 expression.

2.5 Oxidative stress

Oxidative stress is defined as the disproportion between the presence of anti-
oxidants and free radicals or prooxidants in a biological system. ROS and reactive 
nitrogen species (RNTs) are by-products of a variety of cellular processes, including 
aerobic metabolism [47–51]. These by-products cause damage to various tissues 
[52–73]. RAAS has a direct relationship with oxidative stress that may occur in 
the cardiovascular system. It has been determined that chronic administration of 
aldosterone, one of the components of RAAS, causes oxidative stress in the rat 
aorta [74]. AngII represents one of the major vasoactive peptides involved in the 
regulation and activation of NADPH oxidase. Ang II stimulates the activation of 
NADPH oxidase, increases the expression of NADPH oxidase subunits, and induces 
ROS formation in vascular smooth muscle cells, endothelial cells and fibroblasts. 
ACE2 shows an effect of reducing oxidative stress by inhibition of ROS synthesis by 
reducing AngII to Ang 1–7. Ang 1–7 therapy can have a curative effect on vascular 
disease models. It is reported that solutions that can increase Ang 1–7 levels may 
be beneficial to alleviate endothelial dysfunction [75]. This is supported by studies 
showing that overexpression of ACE2 leads to attenuating the effects of hyperten-
sion in animal models [76, 77]. It supports the argument that hypertension is a side 
effect directly related to oxidative stress, thus overexpression of ACE2 leads to a 
reduction of oxidative stress in a biological system [78].

3. The role of RAAS in renal diseases

3.1 Proteinuria

RAAS plays an important role in the pathogenesis of many kidney diseases 
characterised by proteinuria. In a study, it was stated that AngII induces the forma-
tion of proteinuria. It has also been determined that AngII stimulates the formation 
of TGF-1 in various kidney cells [79]. TGF-1 has been found to impair autoregula-
tion by afferent arterioles [80]. Vasoconstriction occurs after increased arterial 
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pressure in afferent arterioles. In case of impaired autoregulation in the presence 
of TGF-1, especially systemic hypertension occurs, an increase in transcapillary 
pressure occurs. Thus, AngII increases capillary filtration pressure by causing 
efferent vasoconstriction and TGF-1-mediated impaired afferent arteriole auto-
regulation. Also, AngII has been found to have a direct effect on the integrity of the 
filtration barrier. Again, AngII has been shown to reduce the synthesis of negatively 
charged proteoglycans and additionally suppress nephrin synthesis [81]. It has been 
observed that this situation causes apoptosis in podocytes. Vascular endothelial 
growth factor (VEGF) has been identified to be an important factor in increasing 
the permeability of the filtration barrier in the kidneys [82]. It has been determined 
to stimulate VEGF expression via the AngII, AT1 and AT 2 receptors. It is thought 
that the increase in VEGF expression via AT2 receptors may be mediated by an 
increase in hypoxia-inducible factor 1. Also, VEGF and TGF-1 mediate the AngII-
mediated synthesis of the 3rd chain of collagen type IV, which is a component of the 
glomerular basement membrane [83, 84]. As a result, it is seen that AngII causes 
proteinuria by causing changes in hemodynamic and non-hemodynamic mecha-
nisms. AngII stimulates albumin reabsorption in proximal tubule cells through 
AT2 receptor-mediated protein kinase B activation [85]. Albumin uptake induces a 
selection of proinflammatory and profibrogenic cytokines such as monocyte che-
moattractant protein-1, IL-8, endothelin, and TGF-1 [86]. This situation stimulates 
the migration of cells into the interstitium. Ultimately it causes inflammation in the 
interstitial area.

3.2 Fibrosis

In a study, ECM proteins induce type I procollagen and mRNA encoding fibro-
nectin in cultured mesangial cells of AngII, and also stimulates the synthesis of 
type I collagen types 1 and 3 in cultured proximal tubular cells [79]. It has been 
determined that the stimulatory effect of AngII on collagen expression is dependent 
on TGF-1 expression. As a result of the studies, it has been reported that AngII 
stimulates the proliferation of cultured renal fibroblasts and increases mRNA 
expression of TGF-β1, fibronectin and type I collagen. It has also been observed that 
renin increases TGF-1 expression by stimulating a particular receptor in cultured 
mesangial cells [87]. These findings suggest that increased renin as a result of ACE 
inhibitor therapy may directly contribute to renal fibrosis through increased TGF-1 
despite AngII blockade. It was also determined that AngII increased connective 
tissue growth factor (CTGF) in kidney tissue. CTGF is a fibrinolytic mediator 
and is also stimulated by TGF-β. However, AngII also stimulates CTGF synthesis 
independently of TGF-β [88]. These findings suggest that increased renin as a result 
of ACE inhibitor therapy may directly contribute to renal fibrosis through increased 
TGF-1 despite AngII blockade. It was also determined that AngII increased connec-
tive tissue growth factor (CTGF) in kidney tissue. CTGF is a fibrinolytic mediator 
and is also stimulated by TGF-β. However, AngII also stimulates CTGF synthesis 
independently of TGF-β [89]. Studies have shown that more than one-third of 
local fibroblasts in renal interstitial fibrosis originate from tubular epithelial cells 
through a process called epithelial to mesenchymal transition (EMT). Again, AngII 
can be effective on EMT [90].

3.3 Inflammation

Studies have shown that AngII activates the proinflammatory transcription 
factor NF-KB via AT1 and AT2 [91]. It has also been stated that it can stimulate 
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NF-KB in AngIII and AngIV [86]. It has been determined that Rho-kinase plays a 
role in AngII mediated NF-KB activation. Also, AngII stimulates the transcription 
factor Ets. This factor regulates vascular inflammation by the transport of T cells 
and macrophages to the vascular wall. AngII has been reported to increase the level 
of Toll-like 4 receptors that bind LPS on mesangial cells. It has been observed that 
this receptor has an increasing effect on NF-KB activation [92]. The penetration of 
inflammatory cells into the glomerulus as well as the tubulointerstitium plays an 
important role in the progression of chronic kidney disease. Also, AngII induces 
the adhesion of circulating immune cells to capillaries by stimulating the increase 
of adhesion molecules such as vascular cellular adhesion molecule-1, intracellular 
adhesion molecule-1 and integrins. This situation shows the relationship of AngII 
with renal inflammation. It has also been determined that AngII has a stimulating 
effect on lymphocyte production [86, 93].

3.4 Chronic kidney disease (CKD)

Studies explaining the relation of RAAS with CKD were made in the 1980s and 
important data were obtained in these studies [94]. AngII has emerged as a central 
mediator of kidney damage because it can induce glomerular capillary hypertension 
that damages endothelial, glomerular epithelial cells, and mesangial cells [94, 95]. 
Also, AngII/aldosterone has non-haemodynamic effects that are important in the 
pathogenesis of CKD, such as inflammation, fibrosis, ROS production, and activa-
tion of pathways associated with endothelial dysfunction [94]. One of the most 
common causes of CKD is diabetic nephropathy. RAAS has an important role in 
diabetic nephropathy. Plasma renin activity is lower than normal in patients with 
diabetes [96]. However, intra-renal RAAS activity is high [97, 98]. This is an indica-
tion that diabetic nephropathy has one of the most important roles in the forma-
tion of CKD.

Figure 3. 
Mechanism of AngII-mediated apoptosis formation in the podocyte. AT1R signalling induces ER stress through 
increased GRP 78 and p-elf2α expression and PKC-δ phosphorylation. p38 MAPK and PKC-δ activation lead 
to increased Bax expression and enhanced NHE1 activity, triggering cellular apoptosis.
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3.5 Apoptosis

Studies show that the RAAS system is associated with renal hypertrophy and 
apoptosis. It has been determined that AngII, one of the components of RAAS, 
induces apoptosis in vivo and in vitro conditions [99]. It has been reported that AT1 
and AT2 receptors are involved in these effects. Studies have reported that Ang II 
plays an important role in tubular cells and podocytes in (Endoplasmic reticulum) 
ER stress-induced renal apoptosis, especially in diabetic nephropathy [100]. It has 
been shown that Ang II can induce podocyte ER stress via the PERK-eIf2-α-ATF4 
axis and the PI3-kinase pathway [101]. Another study found an AT1R-mediated 
increase in glomerular GRP 78 in rats chronically treated with AngII. These data 
support the relationship between the AngII/AT1R signal and ER stress on podocyte 
damage. In the same study, Ang II treatment was reported to induce p38 MAPK-
dependent apoptosis in podocytes associated with Bax protein activation. In addi-
tion, Na+/H+ exchanger isoform 1 (NHE1) activity increases. As a result, it triggers 
cellular apoptosis (Figure 3), [102].

4. The role of RAAS in lung diseases

4.1 Acute lung injury and pneumonia

As a result of RAAS activation, inflammation [103] and vascular permeability 
increase [104] due to Ang II stimulation of AT1 receptor and thus severe acute lung 
damage occurs [105, 106]. In mice, administration of losartan prevents acute lung 
injury caused by Ang II and decreases AT1R expression [107, 108]. Pneumonia is 
associated with RAAS, especially in influenza-induced types of pneumonia RAAS 
system plays a very important role. In patients with pneumonia, the use of RAAS 
inhibitors reduces the mortality rate and the likelihood of intubation [109]. As with 
other viral types of pneumonia, children infected with the Respiratory syncytial 
virus (RSV) tend to have higher Ang II levels than healthy children [110]. The 
benefit of recombinant ACE2 treatment on RSV infection has been demonstrated in 
a preclinical mouse model in animal experiments [111]. H7N9 and H5N1 influenza 
reduce the level of ACE2, increase the level of Ang II, and thus cause lung dam-
age via the AT1 receptor [112]. In H5N1 and H7N9 mouse models, treatment with 
losartan results in a decrease in IL-6 level and lung oedema, thus preventing lung 
damage [113]. It was concluded that losartan prevents lung damage by inhibiting 
RAAS activity.

4.2 SARS-CoV viral infection

The Spike protein [S protein] on the SARS-CoV Virus surface attaches to the 
ACE2 receptor and enters the body in this way. Moreover, ACE2 improves the 
efficiency of SARS-CoV replication [114]. Transmembrane protease serine 2 
(TMPRSS2) can degrade ACE2 and S protein for membrane fusion and the entry 
of SARS-CoV into cells. Therefore, the concentration of ACE2 in the membrane 
decreases, but the number of cells infected with SARS-CoV with cessation increases 
[115]. Ang-II level increases in lung tissue of mice infected with SARS-CoV. Also, 
the use of angiotensin receptor blockers in these animals significantly reduces pul-
monary oedema. This indicates that lung failure caused by SARS-CoV is caused by 
an increase in Ang-II level and overactivation of the AT1 receptor [116]. Increased 
ACE level and decreased ACE2 levels in SARS patients cause increased Ang II level 
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and AT1 receptor expression, which accelerates lung damage and can lead to death 
[117]. Also, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 
(IL-8), caspase 3 (CASP3), caspase 9 (CASP9) and fibroblast growth factor-7  
(FGF-7) increase in the lung tissue of these patients [118].

4.3 SARS-CoV-2 viral infection

SARS-CoV-2 (Covid-19) Similar to SARS-CoV, the S protein uses the ACE2 
cellular membrane for input and uses TMPRSS2 for S protein preparation to 
facilitate the fusion of viral and cellular membranes [119–121]. Compared to 
other coronaviruses, the affinity of S protein to ACE2 is higher in SARS-CoV and 
SARS-CoV-2. Looking at the distribution of ACE2 receptors in the body, it is found 
on the endothelial cells and smooth muscle cells of organs and tissues, including 
the oral and nasal mucosa, lung, small intestine, kidney, heart and blood vessels. 
The widespread distribution of ACE2 receptors in the body is an indicator of 
multi-organ failure in COVID-19 patients [122–124]. SARS-CoV-2 infection causes 
RAAS disorders and systemic inflammatory response. The plasma Ang II level of 
COVID-19 patients is significantly higher than that of healthy individuals. This 
condition is linearly related to viral load and lung injury [125]. A clinical study has 
shown that cytokine storm syndrome (CSS) occurs in patients with COVID-19 and 
severe pneumonia. Also, it showed that some cases can progress rapidly to Acute 
respiratory distress syndrome (ARDS) and even to multiple organ failure [126]. 
Inflammatory cytokines and chemokines are synthesised in Covid-19 patients, 
including IL-6, IL-2, IL-1β, IL-8, IL-17, IFN-γ, TNF-α and monocyte chemoattrac-
tant protein-1 (MCP-1) (Figure 4). Among them, however, IL-6 in particular plays 
a key role in triggering the inflammatory response, increasing the mortality rate in 
patients [125]. In Covid-19 infection, after the virus binds to ACE2 on the cell sur-
face, Ang II cannot convert to Ang1–7, and thus more and more binding occurs to 
AT1 receptors. This situation causes an imbalance in the ACE/ Ang II/AT1R axis. As 
a result, the pulmonary endothelium and epithelial cells are damaged by stimulat-
ing inflammatory signalling pathways, resulting in an increase in the permeability 
of pulmonary capillaries [127].

Figure 4. 
Effects of the renin-angiotensin system during SARS-CoV-2 infection.
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5. The role of RAAS in some neurological disorders

Brain RAAS irregularity may contribute to neurodegeneration due to neuroin-
flammation, oxidative stress and pathophysiological changes due to ageing. Several 
studies have reported that irregular RAAS plays a key role in numerous degenera-
tive diseases of the brain, including Alzheimer’s, Parkinson’s disease, Huntington’s 
disease, dementia, amyotrophic lateral sclerosis, Multiple sclerosis, Traumatic brain 
injury, and Stroke [128–130].

5.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disease charac-
terised by impaired daily functions and behaviour, especially memory [131]. The 
most important change in AD neuropathology is Aβ-centred senile amyloid plaques 
formed in the hippocampus, amygdala and cortex. Neurovascular disorders and 
chronic neurodegeneration occur in the surrounding brain tissues and vessels as a 
result of the toxic effects of these plaques [132]. Besides these plaque formations; 
Neurofibrillary tangles, oxidative stress in cell membranes and organelles, inflamma-
tion, gliosis, excitotoxicity due to excessive intracellular Ca + 2 increase and neuron 
death by many mechanisms that trigger each other such as disruption in membrane 
cation channels are encountered [133, 134]. The amyloid-beta (Aβ) peptide triggers 
O2 radical production in endothelial cells and induces oxidative and peroxidative 
reactions, causing cell death. As an example of these reactions; the oxidative reaction 
catalysed by the combination of amyloid plaques with heavy metal ions and lipid 
membrane peroxidation by various mechanisms can be given. It has been observed 
that the increased ROS activity via Aβ in tissue taken from the hippocampus caused 
synaptic disruption and cell death as a result of increased Ca + 2 increase with 
N-methyl-D-aspartate (NMDA) channel activation. Besides, mitochondria dysfunc-
tion is an important point in AD pathology. In biopsy studies, it was found that 
mitochondria shrank and protein and DNA dispersed into the cytoplasm [135, 136].

One of the brain RAAS products, the Ang- (1–7) peptide is a Mas receptor 
[MASR] agonist [137]. MASRs are abundant in memory-related areas of the brain 
and accelerate hippocampal long-term potentiation (LTP) together with Ang- 
(1–7). Also, it is known that the neuroinflammatory effects of Ang II, another 
RAAS product, contribute to cognitive disorders. Reversing the biological effects of 
Ang II with the anti-inflammatory, anti-fibrotic, vasodilator and anti-proliferative 
biological effects of Ang- (1–7); supports memory and learning [138]. In brain 
tissue studies in AD, it has been shown that the expression and activity of ACE, the 
metabolic enzyme of Ang-II, changes significantly in certain regions of the brain, 
including the frontal cortex and hippocampus. It has been reported that when 
centrally acting ACE inhibitors are used, they have reduced cognitive decline and 
have memory-enhancing effects [139, 140]. ACE2 activity decreases in AD pathol-
ogy [141]. Ang- (1–7) improves memory functions without affecting hippocampal 
or cortical amyloid peptide storage [142].

Ang II causes oxidative stress through the AT1 receptor [143] and increases 
superoxide. Thus, it causes neuroinflammation and vascular diseases [144]. As 
a result, it causes Aβ accumulation due to AD. However, the AT2 receptor signal 
produces beneficial effect including learning and memory. Angiotensin receptor 
blockers (ARBs) inhibit AT1R signalling, which shifts the effect of Ang-II towards 
the beneficial path (AT2R signal) (Figure 5) [144].

ACE inhibitors have a protective effect against AD. It shows this effect by 
suppressing brain-derived neurotrophic factor reduction and TNF-α release. 
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ACE inhibitors also improve oxidative-nitrosative stress and nitrotyrosine produc-
tion, which reduces amyloidogenesis and subsequent Aβ accumulation [145, 146]. 
On the other hand, ACE inhibitor (Captopril) and Angiotensin receptor block-
ers (Telmisartan, Candesartan, Losartan) ameliorate oxidative stress [147–151]. 
Telmisartan normalises the decreased thioredoxin (TRX) system in addition to 
attenuating the expression of the protein (TXNIP) that interacts with thioredoxin. 
Thus, it reduces the formation of endogenous ROS [149]. Similarly, telmisartan 
reduces improved glycation end products and 4-hydroxynonenal, which are 
markers of oxidative stress and are associated with Neurodegeneration [150]. 
Candesartan lowers the level of free radicals in the brain by decreasing malondial-
dehyde and increasing glutathione levels [151].

5.2 Parkinson’s disease

Ang II levels are high in the striatum and substantia nigra of Parkinson’s disease 
(PD) patients. Ang II and AT1R trigger apoptosis by activating autophagy in a dopa-
minergic neuronal cell. These findings suggest that Ang II plays a role in the patho-
genesis of PD [152]. In animal models of PD, it has been found that the signalling of 
AT2Rs is decreased with the loss of function in dopaminergic neurons [153]. Also, 
ACE and ACE2 were detected in the cerebrospinal fluid of PD patients. ACE levels 
are decreased in the cerebrospinal fluid of PD patients [154].

5.3 Multiple sclerosis

Multiple sclerosis (MS) is defined as an autoimmune neurodegenerative disease 
that typically occurs in the third or fourth decade of life [155]. Although the aetiol-
ogy of the disease is not fully known, both environmental and genetic factors are 

Figure 5. 
Effect of AngII on the nervous system. Amyloid plaque (Aβ), angiotensin II (AngII), angiotensin I (AngI), 
angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), angiotensin (AT), 
AT2 receptor (AT2R), AT1 receptor (ATR1R).
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thought to play an important role in the development of MS [156]. Blocking angio-
tensin II production by ACE inhibitors and inhibition of angiotensin II signalling by 
AT1 receptor blockers suppresses T-helper 17 (Th17) cells [157]. Th17 cells play an 
important role in the development and relapse of MS [158]. In a study, ACE activity 
in the blood serum of MS patients was reported to be higher than in healthy con-
trols [159]. In another study, ACE and ACE2 levels were found to be reduced in the 
cerebrospinal fluid of MS patients [160].

6. Conclusion

As understood, the renin-angiotensin-aldosterone system plays a very important 
role in regulating the fluid-electrolyte balance and blood pressure in the body. 
RAAS has receptors in many organs and tissues and can show various effects here. 
RAAS can be affected by various diseases affecting the cardiovascular, renal, 
nervous and respiratory systems and plays a major role in the formation of damage 
that may occur in these systems. Drugs that can affect the components or receptors 
of RAAS can prevent damage that may occur. The presented study shows the impor-
tance of the role of this system in the mentioned diseases. Understanding the role of 
this system in the mentioned diseases is of great importance in the development of 
new treatment protocols and new therapeutic agents.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

The renin angiotensin aldosterone system (RAAS) plays a key function in 
renovascular hypertension induced by renal artery stenosis (RAS). RAS causes a 
decrease in renal perfusion in the stenosed kidney which in turn stimulates renin 
the rate limiting enzyme in RAAS. This stimulation triggers a series of events 
starting with renin release leading to Ang II production, decrease in sodium 
excretion, increase sympathetic tone; all contributing to the development of 
renovascular hypertension. In RAS increase of superoxide reduce nitric oxide 
in the afferent arteriole increasing vasoconstriction and a marked decrease in 
glomerular filtration rate. In renovascular hypertension prostaglandins mediate 
renin release in the stenosed kidney. Targeting different RAAS components is part 
of the therapy for renovascular hypertension, with other options including renal 
nerves denervation and revascularization. Different clinical studies had explored 
revascularization, RAAS blocking and renal nerves denervation as a therapy. We 
will discuss organ, cellular and molecular components of this disease.

Keywords: Renin angiotensin aldosterone system, renovascular hypertension, renin, 
renal nerves, oxidative stress

1. Introduction

Renal artery stenosis (RAS) is a common condition in patients suffering from 
atherosclerosis and fibromuscular dysplasia [1–6], with an overall prevalence dis-
ease rate of 15.4% [4]. Progression to severe stenosis is well documented and leads 
to hypertension and kidney damage [7–9]. Clinically, renovascular hypertension 
is one the most important causes of secondary hypertension and kidney  damage. 
In patients with RAS, 65% are hypertensive and 26.5% suffer kidney failure [4, 6]. 
Advancement to end stage renal disease is known to increase cardiovascular 
events [10]. The clinical trials Angioplasty and Stenting for Renal Artery Lesions 
(ASTRAL) [11], and Cardiovascular Outcomes in Renal Atherosclerotic Lesions 
(CORAL) [12] targeted renal vascularization to improve disease outcomes but 
failed to show any improvement in renal function, cardiovascular events or mortal-
ity [11, 12]. Furthermore, prospective studies in ASTRAL and CORAL concluded 
that 15-22% of patients suffering from renovascular disease will progress to renal 
“end point” within 3 to 4 years [13]. The NHLBI Cardiovascular Health Study used 
a non-invasive screen and found that 6.8% elderly patients (both African American 
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and white) had more than 60% RASten or renal artery occlusion [14, 15]. The renin 
angiotensin aldosterone system (RAAS) plays a key role in hypertension, with 
renin recognized as the driver of renovascular hypertension (Figure 1). In humans, 
plasma renin activity (PRA) is used as biomarker for the activation of RAAS in 
hypertension and in patients with atherosclerotic RAS, high PRA is associated with 
increased risk for cardiovascular events and high mortality [16]. These suggest an 
important function for RAAS in renovascular hypertension onset and the need to 
target different components of RAAS for therapy.

2. Renin angiotensin aldosterone system function in renal artery stenosis

Renal artery stenosis causes a decrease in renal perfusion in the stenosed kidney 
which in turn stimulates RAAS. This stimulation triggers a series of events starting 
with renin release leading to angiotensin II (Ang II) production, decrease in sodium 
excretion, increase sympathetic tone; all contributing to the development of hyper-
tension (Figure 1) [17, 18]. When there is a need for renin expression and release, 
the number of renin expressing cells increase a process known as Juxtaglomerular 
(JG) cell recruitment [19–24] involving the trans differentiation of vascular smooth 
muscle cells into renin expressing cells along the afferent arteriole [20, 21, 23]. JG 
cell recruitment is well documented in this model [25–27]. Activation of the renal 
baroreceptor in RAS causes renovascular hypertension through RAAS activation 
[28]. In uni- and bi-lateral RAS aldosterone levels are upregulated [29–32]. Moreover, 
in renovascular hypertension prostaglandins mediate renin release in the stenosed 
kidney [33–36], and catecholamines mediated by an increase in cAMP and activation 
of protein kinase A (PKA) [37–39]. Decrease renal perfusion cause a decline in renal 
function and increase kidney injury [40, 41]. This decrease in renal function starts 
with endothelial damage, decrease in nitric oxide and increase in vasoconstrictors 
and oxidative species [42]. Reactive oxidative stress (ROS) increase renal vascular 
tone, tubuloglomerular feedback, and endothelial disfunction decreasing glomerular 
filtration rate [43].

Successful treatments for hypertension such as angiotensin converting enzyme 
(ACE) inhibitors and angiotensin receptor blockers (ARBs) alleviate hypertension, 

Figure 1. 
Renin Angiotensin Aldosterone System (RAAS) key role in renal artery stenosis (RAS) induction of 
renovascular hypertension and kidney damage. Deterioration of renal perfusion in the stenosed kidney cause a 
decrease in renal pressure which in turn stimulates RAAS. This stimulation triggers a series of events starting 
with renin release leading to angiotensin II production; decrease in sodium excretion, increase sympathetic tone; 
ending in hypertension.
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but need close examining for kidney failure and hyperkalemia [4]. Aliskiren, a 
direct renin inhibitor, may still be a potential option for the treatment of high blood 
pressure in some forms of hypertension such as chronic kidney disease (CKD) and 
renovascular hypertension [44]. In a clinical study, aliskiren combined with olmes-
artan reduced proteinuria by about 40% from baseline in patients with CKD with 
persistent proteinuria [45]. In non-diabetic CKD patients, aliskiren combined with 
ARBs, safely reduced proteinuria and attenuated the decline in glomerular filtration 
rate (GFR) [46]. These results indicate that a complete treatment of renal artery 
stenosis induced renovascular hypertension and kidney damage may need targeting 
both the angiotensin II-dependent and the Ang II-independent arms of RAAS.

Renal artery stenosis is common in diabetic patients placing them at higher risk 
of end organ damage causing end stage renal disease [9, 47–49]. In older patients, 
RAS is the most common problem of end stage renal failure [50]. In RAS renin is 
recognized as the disease driver [6, 16, 51–54]. RAS is common in atherosclerotic 
patients and caused hypertension, oxidative stress, and kidney damage [7, 9]. 
Increased oxidative stress has been reported in humans as well as in two kidney 
one clip (2K1C) animal model and other hypertensive animal models [24, 55–60]. 
Changes in renal perfusion activate RAAS and increase the sympathetic activ-
ity of the afferent renal nerves contributing to renovascular hypertension and 
end-stage renal disease during RAS [61]. In the 2K1C model renal denervation 
decreases hypertension [62, 63]. Clinical trials (Renal Denervation in Patients 
With Refractory Hypertension (HTN-1) (Symplicity HTN-1), Renal Denervation 
in Patients With Uncontrolled Hypertension (Symplicity HTN-2), The Renal 
Denervation for Hypertension (DENERHTN), and Catheter-based renal denerva-
tion in patients with uncontrolled hypertension in the absence of antihypertensive 
medications (SPYRAL)) report that using renal denervation as therapy for hyper-
tension has good outcomes [64–67]. The therapeutic effects of renal denervation 
have been attributed to removal of sympathetic efferent and/or afferent fibers [68]. 
Renin secretion is stimulated by renal efferent nerves, which also stimulate tubular 
sodium reabsorption [62] without perturbations to glomerular filtration rate or 
albumin urinary secretion [69]. These indicates that initially, renal artery stenosis 
induces RAAS and in later stages other organs involved in blood pressure homeosta-
sis are involved in the induction of renovascular hypertension such as renal nerves 
and adrenal gland.

3. Central nervous system input in renal artery stenosis

Different experimental models of hypertension showed the crucial role play by 
the central nervous system (CNS) in this disease. Specifically, sympathetic effer-
ent outflow augments during hypertension. It has been shown that both Ang II 
and aldosterone actions are mediated by the CNS [70, 71]. In experimental models 
of hypertension, ablation of the forebrain surrounding the anteroventral third 
cerebral ventricle (AV3V) inhibited hypertension [72, 73]. In the CNS the AV3V 
contains the median preoptic eminence, the organum vasculosum of the lateral 
terminalis, and the preoptic periventricular nucleus [74]. This forebrain region is 
responsible for cardiovascular regulation, and includes the subfornical organ, the 
organum vasculosum of the lamina terminalis, which are circumventricular organs 
lacking a blood-brain barrier [75]. Production of ROS in these brain regions strongly 
influences blood pressure [76]. Several reports showed that actions on these brain 
regions are responsible for Ang II hypertension and increase oxidative stress with 
NADPH oxidase playing a key role [77–80]. Renal vasculature and tubular segments 
are controlled by the efferent sympathetic renal nerves and promote arteriolar 
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vasoconstriction and renin release and increases sodium reabsorption [81]. In the 
afferent arterioles Ang II activates the alpha1 adrenergic receptor, which increases 
oxidative stress and constriction of the afferent arterioles, reducing renal blood 
flow [82]. Contrary, activation of the b1-adrenergic receptor activation inhibits ROS 
generation promoting vasodilation [83]. In different hypertension animal models 
renal denervation inhibit the induction of hypertension, showing that ablation of 
renal efferent induction of ROS is important in hypertension development [84, 85]. 
These data indicate that oxidative stress control efferent and afferent renal nerve 
actions in the development of hypertension.

Renal artery stenosis activates RAAS and increases the activity of the afferent 
renal nerves resulting in hypertension and end-stage renal disease [61]. It is known 
that in the 2K1C model renal denervation decreases hypertension [62, 63]. Removal 
of sympathetic efferent and/or afferent fibers controls hypertension [68], and the 
renal efferent nerves stimulate renin secretion and tubular sodium reabsorption 
[62]. During renal artery stenosis, there is an increase in Neutrophil Oxidase Factor 
p47 (p47phox) and p67phox [86–88]. Furthermore, in renal artery stenosis genera-
tion of ROS induced renal damage [88, 89], with the main source of ROS being 
NADPH oxidase [90, 91].

In the induction of renovascular hypertension, the renal nerves as well as the 
renin angiotensin aldosterone system activation cause the increase in blood pressure 
and dysregulation of sodium secretion, with renal denervation alleviating the 
central nerve system input decreasing blood pressure.

4. Oxidative stress in renal artery stenosis

Oxidative stress in the kidney and vasculature contribute to hypertension devel-
opment. NADPH oxidase is a major source of oxidative stress in mammalian cells 
[75]. Most of the renal cells express NADPH oxidase and there are several stimuli 
that cause its activation leading to organ injury and hypertension development 
[75, 92, 93]. Reactive oxygen species (ROS) produced by NADPH oxidase in the kidney 
cause vasoconstriction and organ injury. Specifically, increase of superoxide reduces 
nitric oxide (NO) in the afferent arteriole increasing vasoconstriction and a marked 
decrease in GFR. In rabbits, Ang II-induced hypertension increase the p22phox 
subunit of NADPH oxidase causing endothelial dysfunction in the afferent arteriole 
[94]. Moreover, in spontaneous hypertensive rats, superoxide is generated in the 
afferent arteriole in response to endothelin-1 (ET-1) [95, 96]. Podocytes are impor-
tant components of the renal filtration system. Dahl salt-sensitive rats had increase 
glomerular expression of p22phos and NOX2 that increases oxidative stress causing 
podocyte injury, glomerular sclerosis and proteinuria, with the antioxidant tempol 
(4-Hydroxy-TEMPO) correcting this glomerular injury [97, 98]. Plasminogen causes 
podocyte injury through stimulation of NOX2 and NOX4 expression [99], Ang II 
stimulates ROS generation in the mitochondria stimulating autophagy [100], Ang 
II-induced ROS production caused glomerulosclerosis [101], and oxidative stress 
disrupts nephrin – caveolin-1 crosstalk in podocytes disrupting of glomerular filtra-
tion barrier [102]. In the vasculature, increased oxidative stress causes hypertension 
in different animal models [103–108]. During renal artery stenosis, generation of 
ROS is recognized as the main mechanism of renal damage [88, 89, 109, 110] with 
the activation of NADPH oxidase as the source of ROS [90, 91], and associated with 
an increase in p47phox and p67phox [19, 86–88].

It is important to recognize that renal artery stenosis increase the production 
of reactive oxygen species leading to renal damage. ROS production influences 
not only organ damage but also contributes to the increase in blood pressure. 
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In the therapy of this disease multiple molecules are involved leading to increases in 
oxidative stress, blood pressure and renal injury and all start with the activation of 
the renin angiotensin aldosterone system.

5.  Angiotensin II dependent and independent action in renal artery 
stenosis

In renal artery stenosis induction of renovascular hypertension, renin is rec-
ognized a key molecule, and as such in the therapy of renovascular hypertension 
Angiotensin Converting Enzyme (ACE) inhibitors and Angiotensin Receptor 
blockers (ARBs) are used [4]. Moreover, sympathetic nervous systems action in the 
kidney promotes renin secretion through renal efferent nerves, which also stimulate 
tubular sodium reabsorption [62], and in the 2K1C model denervation inhibit the 
onset of hypertension [62, 63]. Renal artery stenosis causes renovascular hyperten-
sion, which is associated with deterioration of kidney function [20]. Reduction in 
renal flow is recognize as a source of hypoxia during renovascular hypertension [21]. 
Arterial stenosis causes thrombosis, and ischemia in renovascular hypertension [22]. 
During renal artery stenosis generation of ROS is recognized as the main mechanism 
of renal damage [88, 89], causing increased in vasoconstrictors, cell death and 
decrease in the activity of nitric oxide [109, 110]. A swine model of renal artery ste-
nosis presented an increase in ROS, renal and cardiac damage [23, 86–89, 111–113]. 
In renal artery stenosis activation of RAAS increase ROS generating by the activation 
of NADPH oxidase [90, 91], associated with is an increase in p47phox and p67phox 
[86–88]. Phosphorylation of p47phox by PKC is a key step in NADPH oxidase activa-
tion [114–118]. Hypertension is associated with PKC activation and increase oxida-
tive stress [119], which caused endothelial nitric oxide synthase (eNOS) disfunction 
and uncoupling producing ROS instead of NO. This uncoupling is a key mechanism 
for endothelial dysfunction in angiotensin II-induced hypertension [120–122]. 
Increase in NOX2 activity requires increase NOX2 expression and p47phox associa-
tion and activation of NOX2 [19]. Furthermore, increase in oxidative stress is well 
documented in 2K1C model [55–59, 123, 124]. All the actions mentioned above are 
Ang II mediated.

New evidence places (pro)renin receptor (PRR) as an effector molecule in the 
Ang II-independent RAAS [125]. PRR binds both renin and prorenin [125–129]. 
There is an association of PRR with different pathophysiology of diseases [130–135]. 
PRR binds renin causing an increase in Ang I [125] and it can activate prorenin by 
promoting a conformational change [125–129]. PRR mRNA is expressed in different 
organs such as kidney, heart, brain, eye, adipose tissue and vascular SMCs [125, 134], 
It has been proposed that PRR activates the Ang II-independent RAAS with tissue 
specificity [136]. My laboratory and others are uncovering new functions of the 
Ang II independent pathway in blood pressure, oxidative stress and organ damage. 
New studies will define the relevance of this arm of RAAS and possible define new 
molecular targets for therapy.

6. Concluding remarks and future perspectives

In the definition of the molecular pathways involved in the development of 
renovascular hypertension, the Goldblatt two kidney one clip animal model has 
been critical. This animal mode has been extensively used with different animals 
all showing that renal artery stenosis strongly stimulates renin overexpression and 
release promoting renovascular hypertensions and kidney injury. In renovascular 
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hypertension renin is key and promotes the increase in Ang II leading to hyperten-
sion. Renin being the rate limiting step in the production of Ang II in RAAS, has 
been investigated as a possible target for the therapy. However, the main therapies 
used are angiotensin converting enzyme inhibitors and angiotensin receptor 
blockers. Direct renin inhibition by aliskiren, is potential therapy for hypertension 
in chronic kidney disease (CKD) and renovascular hypertension. Combination of 
aliskiren with olmesartan in the clinic, reduced proteinuria in patients with CKD 
with persistent proteinuria. In non-diabetic CKD patients, aliskiren combined with 
ARBs, reduced proteinuria and protected from the decline in glomerular filtration 
rate. We have shown here clinical and research data that indicates the during renal 
artery stenosis induced renovascular hypertension RAAS is activated and play a 
critical role in this pathology. It is important that a complete treatment of renovas-
cular hypertension may need targeting both the angiotensin II-dependent and the 
Ang II-independent arms of RAAS.
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Chapter 5

The Role of Renin Angiotensin 
Aldosterone System in the 
Progression of Cognitive 
Dysfunction in Chronic  
Kidney Disease Patients with 
Alzheimer’s Disease
Vinothkumar Ganesan

Abstract

Renin angiotensin aldosterone (RAAS) is very well established as a regulator 
of blood pressure (BP) and a determinant of target organ injury. It controls fluid 
and electrolyte balance through coordinated effects on the heart, blood vessels, 
and kidneys. The main effector of RAAS is angiotensin II (Ang II), which exerts its 
vasoconstrictor effect primarily on the postglomerular arterioles, thereby raising 
the glomerular hydraulic pressure and ultrafiltration of plasma proteins, which 
may lead to the initiation and progression of chronic kidney disease (CKD). RAAS 
also plays a, key role in hypertension and cerebrovascular disease. Enhanced Ang 
II levels accelerate the initiation and progression of cell senescence by fostering 
inflammation and oxidative stress. Sustained activation of RAAS facilitates aging-
related CKD and results in cognitive dysfunction and Alzheimer’s disease (AD). 
However, in many hypertension treatment studies, the frequency of fatal and 
nonfatal stroke has been greatly reduced, and this is very important since a history 
of stroke doubles the risk of dementia in both patients without CKD and hemodi-
alysis. In CKD patients with AD, anemia has also been identified as a risk factor for 
cognitive impairment, and correction of anemia with recombinant erythropoietin 
treatment has been shown to enhance cognition measures, such as AD markers and 
neuropsychological tests.

Keywords: Angiotensin converting enzyme, Chronic Kidney Disease,  
Cognitive Dysfunction, Alzheimer’s disease, Amyloid β, Tau

1. Introduction

The renin angiotensin aldosterone (RAAS) system is a hormone system in the 
body that is responsible for controlling the balance of fluid and blood pressure. 
The system consists primarily of three hormones, namely renin, angiotensin II 
and aldosterone. It is controlled mainly by the rate of renal blood flow. The main 
effector of RAAS is angiotensin II (Ang II), Rising glomerular hydraulic pressure 
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and ultra-filtration of plasma proteins, which can contribute to the initiation and 
progression of chronic kidney disease (CKD), as well as key molecules in hyper-
tension and cerebrovascular disease, exerts its vasoconstrictor effect primarily 
on postglomerular arterioles. Enhanced Ang II levels speed up the initiation and 
progression of cell senescence by encouraging inflammation and oxidative stress. 
Sustained RAAS activation facilitates aging-related CKD and results in cognitive 
decline and Alzheimer’s disease (AD). The risk of cognitive dysfunction in CKD 
patients with AD is significantly greater than in patients without CKD [1], not only 
in aged patients with CKD, but also in young patients with CKD [2]. It has been 
believed for a long time that kidney function is associated with brain activity. Our 
recent clinical studies indicate that CKD patients are more vulnerable to cognitive 
dysfunction and AD, and the severity of cognitive dysfunction is closely linked to 
the development of CKD and kidney failure [3–5].

2. RAAS: pathogenic mechanism of chronic kidney disease

RAAS is the best known blood pressure regulator (BP) and the determinant of 
hypertension damage to the target organs. It also regulates the balance of fluids and 
electrolytes by coordinated impacts on the heart, blood vessels, and kidneys. The 
main effector of the RAAS is Ang II [6]. Renin is secreted from the juxtaglomerular 
apparatus of the kidney in the classic RAAS pathway and acts on the circulating 
precursor angiotensinogen to create angiotensin I. Angiotensin I has few effects on 
BP, and in the lungs, ACE is transformed to Ang II. Ang II operates on the heart and 
kidneys by binding to type 1 (AT1) and type 2 (AT2) G-protein coupled recep-
tors [7]. The more deleterious effects of Ang II, vasoconstriction and heart and 
vessel hypertrophy are mediated by the AT1 receptor. In addition the vasodilator 
peptide bradykininin is inactivated by the angiotensin-converting enzyme (ACE) 

Figure 1. 
The pathogenic mechanism of chronic kidney disease in the renin angiotensin aldosterone system.
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in addition to the conversion of angiotensin I to Ang II [7]. Recently, ACE type 2 
(ACE2) has been found to cleave angiotensin I into inactive angiotensin1–9, trans-
formed by ACE into vasodilator and antiproliferative angiotensin1–7, respectively 
[8, 9]. While ACE2 in the human kidney is known to be present, there was no 
evidence on the distribution of tissues in kidney disease [8]. Kidney biopsies from 
patients with different kidney disorders, including transplant patients, were studied 
in a recent review. ACE2 was present in the tubular and glomerular epithelium and 
in the vascular smooth muscle cells and the interlobular artery endothelium in the 
control kidneys [10]. Neo-expression of ACE2 has been observed in the glomerular 
and peritubular capillary endothelium in all kidney diseases. Treatment with ACE 
inhibitors did not change ACE2 expression [10]. In vivo, Ang II increases the vascu-
lar tone of both afferent and efferent glomerular arterioles and modulates capillary 
intraglomerular pressure and glomerular filtration rate (GFR). Ang II primarily 
exerts its vasoconstrictor effect on the postglomerular arterioles, thereby raising the 
glomerular hydraulic pressure and filtration fraction, and impairing the glomerular 
barrier’s selective size role for macromolecules, such as plasma proteins [11]. Intra 
capillary hypertension and increased plasma protein ultrafiltration can lead to the 
onset and progression of CKD [12]. Angiotensin non-hemodynamic effect may also 
be relevant in the progression of kidney disease [6].

A diagrammatic sketch of the pathogenic role of RAAS in chronic kidney disease 
is shown in Figure 1.

3. RAAS: pathogenic mechanism of Alzheimer’s disease

Alzheimer disease (AD) is the most common neurodegenerative disease associ-
ated with dementia in the elderly. Various mechanisms, including DNA damage, 
lysosomal dysfunction, epigenetic modulation, and immune dysregulation, have 
been involved in neurodegenerative pathogenesis. Importantly, the homeostasis 
between protein synthesis, folding, and clearance of unfolded proteins, called pro-
teostasis, is disrupted in AD and other neurodegenerative diseases. This contributes 
to an accumulation of proteins that are oligomerized and aggregated (Intracellular 
Tau (Neurofibrillary tangles [NFT]), and extracellular amyloid β (Aβ) (Senile 
plaques)) that ultimately induce protein toxicity. In many neurodegenerative disor-
ders, including AD, oxidative stress are frequently found. In AD, Aβ accumulation, 
tau hyperphosphorylation, and the resulting degradation of synapses and neurons 
may be promoted by oxidative stress. In several target cells, Ang II has been shown 
to induce mitochondrial dysfunction through angiotensin II type 1 receptor (AT1R). 
Mechanistically, Ang II increases mitochondrial reactive oxygen species (ROS) [13]. 
Several studies indicate that ROS is involved in the development of Aβ fibrillation 
and NFT in AD and increases the pathology of Aβ and NFT in AD [14, 15].

The hyperactivity of the RAAS classical axis, mediated by AT1R, is implicated in 
the pathogenesis of AD. Ang II intracerebroventricular infusion increased both of the 
amyloid-β (Aβ) [16] and tau pathology, and also reduced cognitive performance [17], 
in aged normal rats. In most but not all AD mouse models, angiotensin II type 1 recep-
tor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) minimize 
the amount of AD-like pathology and increase cognitive efficiency [18, 19]. Clinical 
studies have also identified ACE2 and ACE as brain RAAS factors, not only in the 
regulation of blood pressure, but also in the conversion of Aβ43 to Aβ40, which may 
decrease Aβ accumulation associated with AD and decrease serum ACE-2 activity in 
AD patients compared to control subjects [20].

A diagrammatic sketch of the pathogenic role of RAAS in Alzheimer’s disease is 
shown in Figure 2.
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4.  Hypertension is a risk factor for cognitive dysfunction in chronic 
kidney disease patients with Alzheimer’s disease

The most common neurodegenerative disorders associated with CKD in the 
elderly are AD and dementia. Ang II represents a central molecule in cerebrovascular 
pathology and hypertension. Enhanced Ang II levels speed up the initiation and 
progression of cell senescence by encouraging inflammation and oxidative stress. 
Sustained RAAS activation causes aging related end stage organ damage and results 
in cognitive decline and dementia [21]. Studies also show that hypertension is the 
most important factor that adversely affects cerebral aging modalities and is related 
to cognitive compromise in people who are aging [22, 23]. This discovery has contrib-
uted to the belief that hypertension, up to the point of AD and dementia, is one of the 
factors responsible for the compromise of cognitive function in the elderly. It is there-
fore hypothesized that aging contributes to systemic and tissue RAAS hyperactivity 
and a rise in neurogenic hypertension, whereas evidence that connects brain RAAS 
with AD, memory, and learning develops cognitive functions [24]. In this regard, one 
of the long-term hypertension complications is clinically defined as dementia (for 
example AD) or vascular dementia, associated with diseases of the degenerative cen-
tral nervous system (CNS). The temporal association between dementia and broad 
cerebrovascular pathology indicates that there is a pattern of sudden initiation and 
progressive development of cognitive impairment in the onset of dementia within 
three months of the diagnosis of stroke. It is understood that hypertension raises the 
risks of the target organ, such as cardiomegaly, progressive hypertensive retinopathy, 
nephropathy and stroke. In addition to repeated episodes of stroke or acute ischemic 
attacks, chronic hypertension, which results in a reduction in cerebral blood flow, is 
associated with vascular dementia and results in cognitive impairment [25].

A diagrammatic sketch of the role of RAAS in the induction and mediation of 
high blood pressure and cognitive impairment in CKD patients with AD is shown in 
Figure 3.

Figure 2. 
Pathogenic Alzheimer’s disease pathway of the renin angiotensin aldosterone system.
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5.  Treatment of cognitive dysfunction in chronic kidney disease patients 
with Alzheimer’s disease

Cognitive dysfunction is common among patients with CKD and dialysis in 
the memory, attention, and executive function domains. In our previous study, 
working memory and executive control, two main areas of cognitive ability, are 
potentially significant variables in drug compliance [4, 5]. Increased risk for injury, 
increased health care costs and progression to dementia are also associated with 
cognitive dysfunction without dementia [26]. Dementia is described by a drop 
in cognitive performance from a previous higher level along with a behavioral 
disorder that interferes with everyday function and independence. The brain and 
kidney vascular beds have identical anatomical and hemodynamic characteristics; 
these results have contributed to the speculation that cognitive dysfunction and 
CKD are a reflection of vascular damage in multiple end organs [26]. In addition, 
most patients with CKD have elevated rates of hypertension, diabetes, high levels 
of inflammatory receptors and vascular endothelial dysfunction, cardiovascular 
events like stroke, and carotid atherosclerosis, both leading to vascular cognitive 
decline and neurodegenerative diseases such as AD [27]. Potential steps to minimize 
cognitive impairment in CKD patients may include the treatment of cardiovascular 
risk factors, but, unfortunately, no clinical trials have been performed in CKD 
patients assessing cardiovascular risk factors for the prevention of cerebrovascular 
disease or cognitive impairment.

There is a trial showing that treatment with hypertension has a beneficial effect 
on cognition. In that survey, High blood pressure care with medication not only 
improves the cardiovascular health of older people, but can also reduce their risk 
of dementia and AD [27, 28]. The combined risk ratio of dementia preferred care 
in a meta-analysis of antihypertensive trials [29]. There is no strong evidence from 

Figure 3. 
Chronic kidney disease and alzheimer’s associated renin angiotensin aldosterone system share ageing related 
molecular pathways, including processing of APP, tau phosphorylation, and increased oxidative stress.
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the trials in a systematic analysis of hypertension research to confirm that decreas-
ing blood pressure prevents the development of dementia or cognitive decline 
in hypertensive patients with no clear previous CVD [30]. However, the occur-
rence of fatal and non-fatal stroke has been greatly decreased in many studies of 
hypertension treatment, and it is very important since a history of stroke doubles 
the risk of dementia in both patients with non CKD and hemodialysis. In CKD 
patients, Anemia has also been identified as a risk factor for cognitive decline in 
CKD patients, and our studies have shown correction of anemia with recombinant 
erythropoietin therapy to improve cognitive measures, such as AD markers and 
neuropsychological tests [4, 5].

6. Future directions and challenges

This chapter explores the relationship between RAAS, cognitive dysfunction 
anemic CKD patients and EPO. We then hypothesized that the EPO may inhibit 
ACE2 interest and likely eventually alter complicated signaling cascades to boost 
cognition through changes in AD markers. A main aspect of this assessment is that 
in anemic CKD sufferers with cognitive impairment, the limited molecular effects 
of the treatment with EPO are crystal-clear. I may conclude by saying that a bright 
future for the EPO remedy. In order to better understand the mechanisms under-
lying the effects of EPO in anemic CKD with AD patients, further research into 
pharmacogenomics and clinical trials is required.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

With its alarmingly rising prevalence worldwide, type 2 diabetes has become a  
leading cause of morbidity and mortality around the planet. Efforts to prevent 
progression to diabetes in individuals at risk could have a significant positive 
public health impact. Multiple trials examining cardiovascular outcomes of Renin-
Angiotensin-Aldosterone System (RAAS) inhibitors revealed, in secondary analysis, 
a significantly reduced risk of new onset diabetes in participants receiving these 
agents. This glycemic protective effect is attributed to the known implication of 
RAAS in the development of insulin resistance and type 2 diabetes. The DREAM trial 
and the NAVIGATOR trial were two large randomized controlled studies examining, 
as primary outcome, the effect of Ramipril and Valsartan respectively on the inci-
dence of diabetes in patients with prediabetes. Their results confirmed a favorable 
glycemic effect of RAAS inhibition agents and suggested a possible added benefit of 
diabetes prevention to their other several cardiovascular and blood pressure benefits.

Keywords: diabetes prevention, renin-angiotensin- aldosterone system,  
glucose homeostasis, ACE inhibitors, angiotensin receptor blockers, prediabetes

1. Introduction

Diabetes Mellitus (DM) is a chronic disease characterized by hyperglycemia 
due to impaired glucose regulation [1]. Glucose regulation is controlled by insulin, 
a protein hormone produced and secreted by the 𝛃𝛃-cells of the pancreas. Type 2 
diabetes mellitus (T2DM) is characterized by insulin resistance and impaired 𝛃𝛃-cell 
function, eventually leading to decreased insulin secretion.

Prediabetes is the disease state which precedes the diagnosis of diabetes [2]. It is 
characterized by hyperglycemia caused by insulin resistance and 𝛃𝛃-cell dysfunction, 
as is type 2 diabetes, but before serum glucose levels reach that of diabetic diagnostic 
thresholds. Just as in diabetes, the diagnosis of prediabetes is made based on results 
of fasting plasma glucose, oral glucose tolerance test, Hemoglobin A1c, and/or 
random serum glucose levels [3]. Prediabetes can be defined by impaired fasting 
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glucose (IFG) with a fasting plasma glucose level 100–126 mg/dL (5.5–7.0 mmol/L), 
impaired glucose tolerance (IGT) with glucose level of 140–200 mg/dL  
(7.8–11.1 mmol/L) at 2 hours of the oral glucose tolerance test (OGTT), and/or 
HbA1c level of 5.7–6.5% (39–48 mmol/mol) [2, 3].

As the prevalence of diabetes continues to increase, it has become a severe 
public health problem worldwide. According to the World Health Organization 
(WHO) and International Diabetes Foundation (IDF), 451 million adults were 
diagnosed with diabetes worldwide in 2017, which was drastically increased from 
108 million in 1980 [2–4]. This number is expected to increase to 693 million by the 
year 2045 [3]. According to the CDC, in 2015, approximately half (48.3%) of the 
adult population ages 65 and older had prediabetes [2].

With its many microvascular and macrovascular complications, diabetes con-
tributes to a large portion of healthcare costs worldwide. In fact, approximately 850 
billion USD of the global healthcare expenditure was spent on patients with diabe-
tes in 2017 [2]. Research has shown that individuals with diabetes are at increased 
risk of cardiovascular disease (CVD), the leading cause of death worldwide [1]. The 
Framingham Heart study found that women with diabetes had a five times greater 
risk of heart failure, while men had two times greater risk, when compared to indi-
viduals of the same age and gender without diabetes [5]. Prediabetes has also been 
found to be independently associated with microvascular complications, macrovas-
cular complications (including CVD) and increased risk of overall mortality [6, 7].

Aside from the increased risk of CVD in individuals with diabetes, an indepen-
dent association between hypertension and insulin resistance has been established 
[8]. The Hong Kong Cardiovascular Risk Factor Prevalence Study found that of 
individuals with diabetes, 58% had elevated blood pressure, and of people with 
hypertension, 34% had impaired glucose tolerance. Only 42% of subjects stud-
ied with diabetes had normal blood pressure [9]. While the mechanism of this 
relationship is unclear, it has been hypothesized that patients with hypertension 
have impaired glucose tolerance due to changes in skeletal muscle tissue [10]. This 
common coexistence of hypertension and diabetes increases one’s risk of CVD 
and events, and thus contributes to the increased risk of morbidity and mortality 
in these patients. Both hypertension and insulin resistance are components of the 
cardiometabolic syndrome, a group of interrelated abnormalities, which increase 
the risk for CVD and T2DM. Other related abnormalities include obesity, left 
ventricular hypertrophy, dyslipidemia, and albuminuria [10, 11].

Given the increasing prevalence of diabetes worldwide and its many complica-
tions, a significant effort has been made to explore preventive modalities. Studies have 
concluded that lifestyle interventions involving diet and physical activity reduce the 
risk of diabetes by greater than 50% [12]. However, the intense lifestyle modifica-
tions necessary to result in change are often difficult to implement. Bariatric surgery 
has been found to be an effective method of diabetes prevention and treatment. In 
a meta-analysis of 22,094 patients who had undergone bariatric surgery, diabetes 
was completely resolved in 76.8% of patients [13]. The Swedish Obese Subject 
Study, a prospective study of 4047 patients without diabetes who underwent gastric 
surgery, found that after 15 years, 392 of 1658 control patients developed diabetes 
compared to 110 of 1771 patients who underwent bariatric surgery (p < 0.001) [14]. 
Pharmacological agents such as metformin, thiazolidinediones, alpha-glucosidase 
inhibitors, and the glucagon-like peptide-1 agonist, liraglutide have been shown to 
prevent diabetes in those at risk [1, 15]. However, none of these agents have the added 
benefit of hypertension or CVD prevention and/or treatment. In fact, thiazolidinedio-
nes have been associated with an increased risk of congestive heart failure [12].

Pharmacological agents which act by inhibition of the Renin-Angiotensin-
Aldosterone System (RAAS) including Angiotensin-converting enzyme inhibitors 
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(ACE-I) and angiotensin receptor blockers (ARBs) have been observed to have a 
favorable glycemic effect, and are among candidates examined in recent diabetes 
prevention trials. While they are often utilized for their blood pressure-lowering 
effect, they have cardiovascular benefits as well. Specifically, ACE-I have been 
found to play a role in the reversal of left ventricular hypertrophy in patients 
with hypertension, and preventing left ventricular remodeling post myocardial 
infarction [16]. Thus, ACE-I are indicated as first line agents in patients with heart 
failure, left ventricular systolic dysfunction (LVEF < 40–45%) and those with acute 
coronary syndrome and after suffering from an acute myocardial infarction [16]. 
In patients with heart failure, ACE-I have been shown to reduce mortality, hospi-
talizations, and prevent worsening of heart failure in these individuals [16]. The 
benefits of ARBs are less well defined, however, the clinical trial Val-HeFT found 
treatment with ARB, valsartan, resulted in decreased morbidity and mortality in 
patients with heart failure, when compared with placebo [17]. Additionally, ARBs 
have been found to slow the progression of diabetic nephropathy thus preventing 
end stage renal disease (ESRD) in these patients. Two trials, IDNT and RENAAL 
conducted in 2001, revealed ARBs (Irbesartan and Losartan) to be effective in 
reducing proteinuria and slowing the progression of ESRD in patients with diabetic 
nephropathy, independent of their blood-pressure lowering effect [18, 19].

Given these benefits, RAAS inhibitors are often first line agents for treating 
patients with concomitant hypertension and diabetes and those at risk for CVD. 
Several studies to date suggest that ACE-I and ARBs have the ability to improve gly-
cemic control by improving insulin sensitivity. Table 1 provides a brief description 
of the studies and their findings. This chapter explores the possibility of utilizing 
RAAS inhibitors as a means of diabetes prevention and/or improved glucose toler-
ance and the potential mechanisms by which this could be accomplished.

2. RAAS and glucose homeostasis

The renin-angiotensin-aldosterone system (RAAS) is responsible for regulating 
arterial blood pressure and blood volume [20, 21]. Renin, an enzyme produced 
by the juxtaglomerular cells in the kidney in response to low blood pressure or 
decreased sodium delivery to the kidneys, converts angiotensinogen to angiotensin 
I. Angiotensin converting enzyme (ACE), found in the lungs and kidneys, then 
converts angiotensin I to angiotensin II (AG II). Angiotensin II is the predominant 
hormone responsible for the hemodynamic effects of RAAS, namely: sodium 
retention at the proximal convoluted tubules of the kidneys, arterial vasoconstric-
tion, and release of aldosterone from the adrenal glands [22]. Angiotensin II is also 
responsible for the non-hemodynamic effect of RAAS related to glucose hemostasis 
[21, 23]. Several studies have suggested the role of RAAS in the development of 
insulin resistance and subsequent development of type 2 diabetes mellitus (T2DM) 
in humans. The pathophysiology is complex, mostly involving the skeletal muscle, 
adipose tissue, and pancreas [21] (Figure 1).

1. RAAS and the skeletal muscle: AG II affects glucose metabolism in the skeletal 
muscle through the inhibition of insulin-mediated glucose uptake and insulin 
signaling pathway, and a decrease in the blood supply to the skeletal muscle [21].

Inhibition of insulin-mediated glucose uptake and insulin signaling pathway. The 
skeletal muscle accounts for up to 70% of insulin-mediated glucose uptake in 
the body, which occurs through a series of tightly regulated events in the insulin 
signaling pathway [23, 24]. First, insulin binds to the insulin receptor on the 
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surface of the skeletal muscle cell, and this activates a cascade of events that 
ultimately ends in translocation of the glucose transporters (GLUT-4) from 
intracellular vesicles to the cell membrane through which glucose is taken up by 
the cells [23, 24]. Therefore, inhibition at any stage in the signaling pathway will 
result in insulin resistance with subsequent type 2 diabetes development if left 
unresolved. By acting through the angiotensin II type 1 receptor (AT1R), AG II 
activates NADPH oxidase, which leads to the production of reactive oxygen spe-
cies that in turn inhibits insulin-mediated translocation of GLUT-4 transporters, 
glucose uptake, and insulin signaling pathway in the skeletal muscle [23, 24].

Decrease in the blood supply to the skeletal muscle. Studies also show that AG II 
contributes to insulin resistance by decreasing microvascular blood supply to 
the skeletal muscle [21].

2. RAAS and the adipose tissue: Studies have shown that local RAAS present in 
adipose tissue affects adipocyte differentiation through angiotensin II’s action on 
its AT1R receptor [21], but there are conflicting views on the exact mechanism. 
For example, some studies suggest that AG II inhibits adipocyte precursor 
differentiation, thereby decreasing the number of insulin-sensitive adipocytes 
leading to insulin resistance [25]. In contrast, other studies indicate that AG II 
stimulates adipocyte differentiation and causes an increase in adipocyte size in 
visceral adipose tissue leading to obesity and insulin resistance [21].

3. RAAS and the pancreas: Increased activity of local pancreatic RAAS is asso-
ciated with impaired glucose metabolism. By acting through the AT1R recep-
tor, AG II decreases insulin secretion, impairs blood flow to the pancreatic 
islet cells, and causes inflammation and fibrosis of the pancreas, leading to 
impaired glucose tolerance [21].

In summary, through its different effects on the skeletal muscle, adipose tissue, 
and pancreas, RAAS is thought to contribute to the development of insulin resis-
tance and development of type 2 diabetes. Therapy with RAAS inhibitors has been 

Figure 1. 
Potential mechanisms implicated in favorable glycemic effect associated with RAAS inhibition.
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indeed associated with favorable glycemic events. At a clinical level, several trials 
have examined the role of RAAS inhibition in preventing the development of type 2 
diabetes in the population at risk.

3. Diabetes prevention as a secondary outcome of RAAS inhibition trials

There have been a number of trials conducted in which the primary aim was to 
study the effect of RAAS inhibitors on CVD and events. In addition to this primary 
outcome of interest, a number of these trials have found positive results with 
regards to their effect on diabetes prevention and improved glucose tolerance.

One of the first clinical trials to demonstrate a protective effect of RAAS inhibi-
tion on the incidence of diabetes was the Captopril Prevention Project (CAPPP) 
initiated in 1999. The primary aim of this trial was to compare the effect of ACE 
inhibition (using captopril) with conventional therapy (𝛃𝛃-blockers and/or diuret-
ics) on risk of CVD morbidity and mortality in patients with hypertension [26]. 
While there was no difference in prevention of cardiovascular morbidity and mor-
tality in those treated with captopril compared with conventional therapy, authors 
did find that the incidence of new onset diabetes was lower in participants treated 
with captopril [26]. This finding supports the theory that ACE inhibition may work 
to prevent the development of diabetes, which may be due to captopril’s ability 
to improve insulin sensitivity [26]. Additionally, those patients with diabetes at 
baseline who were treated with captopril had a lower rate of cardiovascular events 
and mortality when compared to those with diabetes treated with conventional 
therapy [26].

Another study, the Heart Outcomes Prevention Evaluation (HOPE) study, 
sought to explore the role of the ACE inhibitor, ramipril, on the incidence of 
myocardial infarction (MI), stroke, or all-cause mortality in patients with a history 
of vascular disease (coronary artery disease, stroke, peripheral vascular disease) or 
diabetes, plus at least one other cardiovascular risk factor (hypertension, elevated 
total cholesterol levels, low high-density lipoprotein cholesterol levels, cigarette 
smoking, or microalbuminuria), but without heart failure or any degree of left ven-
tricular dysfunction [27]. Subjects were randomized to receive ramipril or placebo, 
both with the addition of 400 IU of vitamin E daily [27]. Of the primary outcomes 
examined, patients treated with ramipril had a significantly decreased risk of myo-
cardial infarction, stroke, or death from cardiovascular causes (RR 0.78, 95% CI 
0.70–0.86). Of the participants without a diagnosis of diabetes at study onset, there 
was a 34% decreased incidence of new onset diabetes in those treated with ramipril 
compared with placebo (RR 0.66, 95% CI 0.34–0.76) [27]. Of note, these results are 
consistent with the study to Evaluate Carotid Ultrasound changes in patients treated 
with ramipril and vitamin E (SECURE), which reported decreased fasting glucose 
levels in patients treated with ramipril when compared with placebo [28].

Another trial, the Losartan Intervention For Endpoint reduction in hyperten-
sion study (LIFE), randomized participants aged 55–80 years with hypertension 
and electrocardiographic left ventricular hypertrophy (ECG LVH) to either 
losartan or atenolol [29]. The primary aim of this trial was to determine whether 
losartan improves LVH and thus reduces cardiovascular morbidity and mortality. 
Results revealed that those participants who received losartan had a decreased risk 
of cardiovascular events (MI and stroke), and 25% decreased risk of new onset 
DM when compared with atenolol (HR 0.75, 95% CI 0.63–0.88, p 0.001) [30]. It is 
possible that the protective effect of losartan on diabetes incidence seen in the LIFE 
trial could be due to the detrimental effects of atenolol, a 𝛃𝛃-blocker, on insulin 
sensitivity [10].
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The presence of diabetes has been found to be associated with increased left 
ventricular hypertrophy, both of which are risk factors for the cardiometabolic 
syndrome [29]. The initial analysis of the LIFE trial found that individuals treated 
with losartan had an increased regression of LVH when compared to those treated 
with atenolol. However, patients with diabetes and LVH had less regression than 
those without diabetes, possibly secondary to their predisposition [29]. A sec-
ondary analysis was conducted on the participants without diabetes at baseline, 
which sought to determine whether in-treatment resolution or continued absence 
of ECG LVH is associated with decreased risk of developing diabetes [29]. This 
analysis revealed a 38% decreased incidence of DM in those who had resolution or 
continued absence of LVH (HR 0.62, 95% CI 0.50–0.78, p < 0.001) independent 
of the previously identified effects of treatment with losartan versus atenolol. This 
finding suggests that while DM might lead to LVH, it is possible that LVH may in 
fact precede the development of diabetes [29]. While the causality of this relation-
ship is uncertain, this study proposes the idea that regression of LVH by means of 
RAAS inhibition might decrease the risk for DM. However, it is also possible that 
this observed relationship between LVH regression and decreased incidence of DM 
can be explained by the established association between hypertension and insulin 
resistance. This idea aligns with the finding that participants of the LIFE trial who 
developed diabetes had higher baseline systolic and diastolic blood pressures than 
those who did not [29].

In the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack 
(ALLHAT) trial, the primary aim was to compare the effectiveness of treatment 
with diuretic, chlorthalidone against calcium channel blocker, amlodipine and 
ACE-I, lisinopril in preventing coronary heart disease (CHD) or other cardiovas-
cular events in patients with hypertension and at least one CHD risk factor [31]. As 
far as primary outcome of interest, chlorthalidone was found to be superior to the 
others in preventing the primary outcome. However, study participants on lisinopril 
were found to have a lower incidence of diabetes at the follow up period of four 
years, when compared to those placed on other antihypertensives [31].

Similarly, the Prevention of Events with Angiotensin Converting Enzyme 
Inhibition (PEACE) trial sought to determine whether treatment with another 
ACE-I, trandolapril in patients with stable CAD and left ventricular ejection frac-
tion (LVEF) > 40% would reduce cardiovascular deaths, incidence of MI or need 
for percutaneous coronary intervention (PCI) when compared with treatment 
with placebo [32]. Although a secondary end point, results from this trial revealed 
that the incidence of new onset DM was significantly decreased in those treated 
with trandolapril when compared to those in the placebo group (HR 0.83, 95%CI 
0.72–0.96, p=0.01) [32]. Results from the PEACE trial, similar to the HOPE trial are 
important because they cannot be attributed to the adverse effects of the compari-
son drug (placebo).

The Valsartan Antihypertensive Long-Term Use Evaluation (VALUE) trial 
compared coronary heart disease outcomes in patients with hypertension treated 
with valsartan or amlodipine [33]. While there were no differences in primary 
composite outcome of cardiovascular morbidity and mortality in either group, sec-
ondary analysis revealed that new-onset DM occurred significantly less in patients 
treated with valsartan [33]. Despite the observed decreased incidence of diabetes 
with valsartan use, blood pressure reduction was less in this group, compared to 
those treated with amlodipine, which suggests that the effect of ARBs on diabetes 
prevention is independent of blood pressure reduction [34].

While each of the above trials found treatment with ACE-I and ARBs to be 
associated with decreased incidence of new onset diabetes, it must be noted that 
diabetes prevention was not a defined primary outcome in any of these studies. 
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Thus, their results must be interpreted with caution. A few other weaknesses 
should be taken into consideration on review. Some of these trials, including 
the HOPE and PEACE trials did not perform formal glucose testing to establish 
glycemic status, and relied on self-report alone [32, 35, 36]. Additionally, the 
HOPE, CAPP, and LIFE trials all utilized 𝛃𝛃-blockers as comparator drugs, which 
allows for the possibility that the observed effect of therapy with ACE-I or ARB on 
diabetes prevention is due to the detrimental effects of B-blockers on development 
of diabetes rather than the benefits of RAAS inhibition. A large prospective cohort 
study (n=12,550) conducted in 2000 revealed that hypertensive patients taking 
𝛃𝛃-blockers had a 28% increased risk of diabetes when compared to those who were 
not on any antihypertensive therapy [37].

4. DREAM and NAVIGATOR trials

Studies including the aforementioned trials showed a beneficial effect of RAAS 
inhibition with ACE-I and ARBs on diabetes prevention among patients with 
hypertension and other cardiovascular diseases [30, 35, 38, 39]. These trials studied 
diabetes prevention as a secondary outcome or post hoc analysis, thus the results 
should be interpreted with caution. Conversely, the DREAM and NAVIGATOR 
trials, conducted in 2006 and 2008, respectively, are double blind, randomized 
clinical trials, which were designed to determine the effect of RAAS inhibition on 
the incidence of diabetes as a primary outcome [40, 41]. Furthermore, in these two 
trials, glycemic categories were meticulously determined, defined and recorded. In 
both studies, DM was defined using standard criteria, fasting blood glucose (FBG) 
126 mg/dl or 200 mg/dl post oral glucose load and confirmed again at a later date. 
In the DREAM study, even in the event that diabetes was diagnosed by an outside 
physician, confirmation of the diagnosis using standard plasma glucose criteria was 
required in addition to the prescription of an antidiabetic agent by the diagnosing 
physician [40].

The DREAM trial was designed to investigate the effect of ramipril, an ACE-I 
and rosiglitazone, a thiazolidinedione, on diabetes prevention among patients with 
prediabetes (IGT and/or IFG) but without cardiovascular disease. The primary 
outcome of this study was newly diagnosed diabetes or death, with a secondary 
outcome of regression to normoglycemia defined as normal fasting and 2 hour 
post-load glucose levels [40]. Data analysis revealed no significant difference in the 
development of diabetes in the ramipril group when compared to the placebo group 
(HR 0.91, 95% CI 0.80–1.03) [40]. However, the likelihood of regression to normo-
glycemia was increased among subjects within the ramipril group when compared 
to the placebo group (HR 1.16, 95% CI 1.07–1.27). Moreover, while the fasting 
plasma glucose levels did not differ between the ramipril and the placebo group at 
the end of the trial, the 2 hour post glucose oral load values were significantly lower 
among those within the ramipril group [40].

There are a number of possible explanations for the lack of reduction in DM 
incidence with ramipril use in the DREAM trial which was different from the results 
found in previous trials with ACE-I/ARBs. First, as mentioned, diagnosis of diabe-
tes at study onset was unambiguously established in participants of the DREAM 
trial with an oral glucose tolerance test (OGTT), thus patients with pre-existing 
DM were reliably excluded from the study [40]. This was not the case for some of 
the other studies mentioned previously [35, 42]. Second, the demographics of the 
DREAM study patients differed from those of trials which showed a reduced inci-
dence of DM with RAAS inhibitors. Compared to the participants of the DREAM 
trial, subjects from the other trials were older, and had established CVD, and/or 
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heart failure [30, 35, 36, 43, 44]. It is possible that the RAAS system is activated to a 
greater extent and thus ACE inhibition may have greater benefits in these individu-
als [45]. Third, some of the trials that revealed reduced incidence of DM among 
those treated with ACE-I/ARBs had compared ACE-I with other anti-hypertensives 
associated with dysglycemia, such as 𝛃𝛃-blockers, as mentioned previously. This 
may have led to a possible exaggeration of the effect of RAAS inhibition on diabetes 
prevention. Fourth, most of the previous trials that showed a beneficial effect of 
ACE-I And ARB on DM prevention followed the patients for longer period of time 
than the median 3 years that the participants of the DREAM trial were followed for 
[30, 32, 35, 39, 43]. Specifically, the participants of the HOPE trial were followed for 
4.5 years, the PEACE trial for 4.8 years, ALLHAT study for 4.9 years, and the LIFE 
study for 4.8 years [30, 32, 35, 39]. In the DREAM trial, there was a late diversion 
of the Kaplan–Meier curves that suggested a benefit of ramipril in DM prevention 
after 3–5 years. Thus, it is possible that a longer and larger study may be needed to 
observe the effect of ramipril on DM prevention [45].

Four years after the publication of the results of the DREAM trial, the results 
of another trial, the Nateglinide and Valsartan in Impaired Glucose Tolerance 
Outcomes Research (NAVIGATOR) trial, were released [41]. This study also sought 
to investigate the effect of RAAS inhibition with the ARB, valsartan in addition 
to lifestyle modification on diabetes prevention in patients with impaired glucose 
tolerance and established CVD or CVD risk factors.

The NAVIGATOR trial was an improvement over the DREAM trial in several 
ways. First, a study-specific lifestyle-intervention program, which has previ-
ously been found to reduce risk of diabetes by up to 50%, was implemented for 
all patients in addition to pharmacotherapy [46, 47]. Second, there was a longer 
median follow up of 5 years in the NAVIGATOR trial compared with the 3 years 
follow up in the DREAM trial [40, 41]. Third, the NAVIGATOR trial enrolled a 
larger number of participants, 9306, versus 5269 participants in the DREAM trial. 
Another difference between these studies is that, unlike the DREAM trial, the 
NAVIGATOR trial enrolled patients with established CVD or CVD risk factors, who 
may have a greater degree of RAAS activation at baseline.

With these differences in mind, it is not surprising that while the DREAM 
trial found no difference between the ramipril and placebo groups with regards to 
diabetes prevention, the NAVIGATOR trial found that those treated with valsartan 
had a significantly reduced incidence of DM by 14% (HR 0.86, 95% CI 0.80–0.92, 
p< 0.001). Furthermore, patients in the valsartan arm of the study had lower 
mean fasting plasma glucose and 2 hours post glucose load levels. Additionally, the 
proportion of patients taking glucose lowering agents at the end of the study was 
lower in the valsartan group than in those in the placebo group.

Although significant, the 14% reduction in diabetes risk with valsartan appears 
smaller than the risk reduction seen in previously conducted trials involving ACE-I 
and ARBs [32, 35, 36, 44, 48]. One possible reason is that by the last study visit, a 
significantly higher proportion of subjects in the placebo arm were taking other 
ARBs or ACE-I (24.4% vs. 21.8%), which could have diluted the effect seen with 
valsartan. Another reason for this observed discrepancy could be due to a difference 
in the way in which glycemic status was determined at study onset and completion. 
Unlike the NAVIGATOR trial, a few other trials diagnosed DM by self-report rather 
than formal glucose testing which allows for misclassification error and possible 
false exaggeration of results [35].

In addition, the effect of valsartan with lifestyle modification was much smaller 
compared to landmark studies on diabetes prevention with lifestyle alone in which 
the incidence of DM was reduced by as much as 58% [46, 47, 49]. Similarly, the 
effect of valsartan on diabetes prevention in the NAVIGATOR trial is smaller when 
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compared to glucose lowering agents such as metformin, 26–31% [46, 50], acarbose 
25% [51] and rosiglitazone 60% in the DREAM study [52]. It is worthy of note that 
the NAVIGATOR trial followed the subjects for a longer duration (5 years) com-
pared to the trials involving these glucose lowering agents in which subjects were 
followed for 2.5–3.3 years.

In conclusion, the DREAM and NAVIGATOR trials showed benefit in glycemic 
indices but only the NAVIGATOR trial showed a reduced diabetes incidence as a 
primary outcome of RAAS inhibition with ACE-I and ARBs. These findings may 
have utility in the clinical setting, in terms of choice of antihypertensive agents to 
those at higher risk of DM development, in the presence or absence of CVD and its 
risk factors.

5. Conclusion and clinical implications

ACE-I and ARBs are currently widely used for the treatment of patients with 
hypertension, heart failure or asymptomatic left ventricular dysfunction, coronary 
artery disease, and diabetic nephropathy, with the clinical benefits of ACE-I more 
closely studied [53]. Based on the results from the aforementioned trials, the use 
of these agents may also be indicated for the prevention of diabetes and/or regres-
sion from impaired to normoglycemia. This is extremely significant in light of the 
emerging diabetes epidemic.

While it is not entirely clear, results from the trials explored throughout this 
chapter suggest that those with cardiometabolic syndrome and its risk factors 
including (but not limited to) hypertension, obesity, insulin resistance, and left 
ventricular hypertrophy may experience the greatest benefits with regards to diabe-
tes prevention and improved glycemic control. This could be due to the fact that the 
RAAS system is overactive in a number of these conditions. As discussed, activation 
of the RAAS system and increased production of angiotensin II is thought to play a 
role in the development of insulin resistance and subsequent development of T2DM 
[21]. It is also possible that the ability of ACE-I and ARBs to prevent diabetes is in 
part due to their effect on blood pressure reduction and LVH regression, both of 
which have been shown to improve insulin sensitivity [29].

However, while results from the CAPPP trial found a decreased incidence of new 
onset DM in patients treated with captopril, the blood pressure of patients in this 
group was significantly higher throughout the study than those treated with con-
ventional therapy with 𝛃𝛃-blocker and/or diuretics. This supports the hypothesis that 
captopril’s effect on diabetes prevention might be independent of blood pressure 
reduction. Results from the sub-analysis of the LIFE trial suggests that the effect 
of RAAS inhibition with losartan on LVH regression may be partly responsible for 
the decreased incidence of DM. It is possible that this association is also explained 
in part by the relationship between blood pressure and insulin resistance [29]. In 
conclusion, the apparent decreased incidence of new onset diabetes seen in patients 
treated with ACE-I and ARBs are likely attributable to both direct and indirect 
effects of these agents.

Given the variety of indications for which RAAS inhibitors have been estab-
lished, the additional benefit of diabetes prevention could help to alleviate 
polypharmacy in individuals who suffer from several of these conditions simultane-
ously. However, more research is needed to categorically place ACE-I and ARBs 
among the armamentarium of agents favoring DM prevention. Head to head studies 
comparing the effects of different ACE-I and ARBs would also be useful.
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in Infancy
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Abstract

Hypoaldosteronism is associated with either insufficient aldosterone 
 production or lack of responsiveness to aldosterone and can be isolated or in 
the context of primary adrenal failure. Τhe severity of clinical manifestations is 
inversely correlated to age, with the neonatal period being the most vulnerable 
time for a patient to present with mineralocorticoid insufficiency. Salt-wasting 
forms of congenital adrenal hyperplasia (CAH), adrenal hypoplasia congenita 
(AHC), aldosterone synthase deficiency (ASD) and pseudohypoaldosteronism 
(PHA) are all causes of hypoaldosteronism in infancy. Affected infants present 
with salt wasting, failure to thrive and potentially fatal hyperkalemia and shock. Α 
blood sample for the essential hormonal investigations should be collected before 
any steroid treatment is given, in order to confirm aldosterone insufficiency and 
to determine the underlying cause. Renal ultrasonography and urine culture are 
also useful for exclusion of secondary causes of aldosterone resistance. Initial 
management requires treatment of electrolyte imbalances and restoration of 
intravascular fluid volume. In case of a salt-wasting crisis, affected infants are 
usually treated initially with both hydrocortisone and fludrocortisone, pending 
the results of investigations. Interpretation of the hormonal profile will guide 
further therapy and molecular analysis of candidate genes.

Keywords: hypoaldosteronism, salt-wasting crisis, hyponatremia, hyperkalemia, 
pseudohypoaldosteronism

1. Introduction

Aldosterone, the most important mineralocorticoid, regulates electrolyte 
balance and intravascular volume by controlling renal sodium reabsorption and 
potassium excretion. Hypoaldosteronism is a rare, but potentially severe condi-
tion, associated with hyponatremia, hyperkalemia, metabolic acidosis and volume 
depletion. Given the higher mineralocorticoid demand during the critical neonatal 
period, the clinical presentation of aldosterone insufficiency in this age group can 
be dramatic [1–3].

2. The renin-angiotensin-aldosterone system in infancy

Regulation of fetal salt and water balance is handled by the placenta, so 
newborns with aldosterone defects have a normal electrolyte profile at birth. 
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Postnatally, healthy term neonates display a state of functional hypoaldosteronism 
(lower sodium and higher potassium concentrations), that contrasts with mark-
edly increased aldosterone and renin secretion rates [2–5]. Indeed, it has been 
reported, that neonates have a mean plasma aldosterone level of 80 ng/dl versus 
16.6 ng/dl for adults. Similarly, plasma renin activity (PRA) is severalfold higher 
in the first 3 months of life, than the levels reported later in adult life (450 and 
25 ng liter−1 min−1 respectively) [6]. Concurrent partial aldosterone resistance is 
attributed to the low mineralocorticoid receptor (MR) expression and the weak 
11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) activity of the neonatal 
kidney. Aldosterone unresponsiveness may, at least in part, account for the extra-
cellular fluid compartment contraction and weight loss during the first days of 
life [7–9].

3. Clinical presentation of hypoaldosteronism

Biochemically, hypoaldosteronism is characterized by hyponatremia, hyperka-
lemia, prerenal azotemia and non-anion gap metabolic acidosis (hyperkalemic or 
type 4 renal tubular acidosis). Τhe severity of clinical manifestations is inversely 
correlated to age, due to changes in adrenal and renal physiology [10, 11].

The critical neonatal period is clearly the most vulnerable time for an affected 
person to present with hypoaldosteronism [3]. Babies with mineralocorticoid insuf-
ficiency start to lose whole body sodium and water from day 1 in their urine. Overt 
electrolyte disturbances usually develop after the 4th day of life in infants with salt-
wasting 21-hydroxylase deficiency, but a very early onset of symptoms may be seen 
in cases of severe systemic PHA. Affected infants eventually present with dehydra-
tion, vomiting and failure to thrive, while urine output remains excessively high for 
the degree of dehydration [6, 10]. Early warning signs, such as failure to reach birth 
weight by two weeks of age or excessive weight loss (greater than 10–12%) during 
the first days of life, should always prompt a careful assessment of hydration status, 
kidney function and electrolyte profile [7].

Clinical manifestations associated with hyponatremia are primarily neurologic, 
due to osmotic water shift intracellularly, parenchymal edema and brain ischemia. 
Frequent symptoms include vomiting, poor feeding and lethargy or irritability. 
Pronounced symptoms, such as seizures, are encountered rarely due to the insidi-
ous onset (>48 h) of hyponatremia. Open sutures and fontanelles in neonates, also 
act as a protective mechanism preventing intracranial hypertension [12, 13]. Yet 
infants with hypoaldosteronism are at risk of acute deterioration and might present 
in circulatory collapse with lethargy, tachycardia, hyperpnea, prolonged capillary 
refill, and cool and mottled extremities. Hypotension, a very late dehydration sign, 
occurs when all compensatory mechanisms to maintain organ perfusion have failed 
[14]. Hyperkalemia is clinically manifested by muscular weakness and cardiac 
disturbances (bradycardia, ventricular fibrillation, hypotension or cardiac arrest). 
Electrocardiogram (ECG) signs of hyperkalemia include repolarization abnormali-
ties, peaked T-waves, QRS widening and depression of ST-segment. Arrhythmias 
may appear at any time and can lead to sudden death [15, 16].

Hypoaldosteronism has a much milder course in older children and adults, as 
aldosterone requirements normally decrease with age. Children with aldosterone 
insufficiency may present with subtle symptoms, such as postural hypotension and 
salt craving or even with asymptomatic growth failure. Autonomous addition of salt 
in the diet can delay or mask the presentation, until a simple viral gastroenteritis 
or a hot day associated with excessive sweating triggers the cascade of clinical 
 manifestations [10, 11].
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Reversible growth impairment is a well-known feature of several conditions 
accompanied by acidosis or electrolyte derangement (e.g., Bartter’s syndrome or 
renal tubular acidosis) [6]. Accordingly, children with aldosterone insufficiency 
may present with linear growth deceleration due to chronic hyponatremia and 
acidosis. Sodium is an important growth factor, stimulating cell prolifera-
tion, protein synthesis and increasing cell mass. The mechanism whereby Na+ 
promotes growth is through alkalinization of the cell interior, via a sodium-
dependent Na+/H+-antiporter. Sodium depletion and acidosis lead to decreased 
antiporter system’s activity and despite adequate macronutrient intake, children 
fail to thrive [17, 18].

4. Diagnostic workup

Hypoaldosteronism should be considered in any infant with persistent hyper-
kalemia and hyponatremia if there is no apparent cause, such as renal failure or 
prematurity. A diagnostic algorithm for infants presenting with salt-wasting and 
hyperkalemia (suspected mineralocorticoid defect) is presented in Figure 1 [8, 16].

Renal function must be evaluated carefully, since renal excretion of potassium 
is directly dependent upon glomerular filtration rate (GFR). Renal adaptive mecha-
nisms allow the kidneys to maintain potassium homeostasis until the GFR decreases 
to less than 15 ml/min/1.73 m2 [16, 19].

Hyperkalemia and hyponatremia are well-recognized complications of pre-
maturity. Hyperkalemia may be observed, even in the absence of oliguria, in very 
low birth weight preterm infants weighing less than 1,000 g. The serum potassium 
concentration may be as high as 9.0 mEq/1 and be accompanied by significant 
ECG irregularities [15]. Plasma potassium concentration decreases gradually from 
6.5 ± 0.5 mEq/1 at 30— 32 weeks to 5.1 ± 0.2 mEq/1 at 39–41 weeks. Premature 
infants of <36 weeks gestational age (GA) are also unable to conserve sodium. The 
more immature the infant, the greater the risk and the degree of hyponatremia [20]. 
Urinary sodium excretion is 3.1 ± 0.5 mEq/kg/day (mean ± SE) in the newborn of 
30–32 weeks gestational age and 1.2 ± 0.4 mEq/kg/day at 36—38 weeks gestational 
age [21].

The clinical scenario of a dehydrated infant with salt wasting and hyperkalemia 
represents a medical emergency implying inadequate mineralocorticoid action 
or complete adrenal insufficiency (both glucocorticoid and mineralocorticoid 
deficiency). The most common diagnosis in neonates is CAH due to 21-hydroxylase 
deficiency. Other conditions to be considered in infancy are the rare salt-wasting 
forms of CAH adrenal hypoplasia congenita, aldosterone synthase deficiency, PHA 
and drug effects [7, 22, 23].

Considerable overlap exists in the clinical and biochemical presentation of most of 
the above-mentioned endocrine diseases and only a few clinical signs can help clini-
cians to differentiate between them [23, 24]. A careful examination of the external 
genitalia is indicated in all infants with hyponatremia and hyperkalemia and might 
reveal valuable information towards the appropriate diagnosis [25]. 46, XX infants 
with 21-hydroxylase deficiency exhibit variable extent of virilization due to excessive 
androgen production. On the contrary, signs of undervirilization such as hypospadias 
are noted in 46,XY infants with 3β-hydroxysteroid dehydrogenase deficiency due 
to decreased androgen production. Infant boys with 21-hydroxylase deficiency have 
normal external genitalia or subtle penile enlargement that can be easily overlooked 
[25–29]. Impaired cortisol secretion is suggested clinically by low glucose levels and 
vascular tone insufficiency (hypotension) that is unresponsive to initial resuscitation. 
Last, although not always clinically obvious, increased pigmentation is a distinguishing 
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feature of primary adrenal insufficiency (PAI) associated with high levels of melano-
cyte-stimulating hormone (MSH), a ligand derived from pro-opiomelanocortin that 
causes hyperpigmentation of melanin-containing skin cells [6, 28].

The following investigations are suggested as a first - line diagnostic workup in 
infants with apparent mineralocorticoid deficiency:

• A critical sample for ACTH determination, cortisol, 17-hydroprogesterone  
(17- OHP), Δ4 - androstenedione, aldosterone levels and renin level or PRA 
should be drawn before administration of hydrocortisone.

Figure 1. 
Diagnostic approach to infants presenting with hyponatremia, hyperkalemia from references [8, 16] 
(GFR: glomerular filtration rate, PRA: plasma renin activity, 17OHP: 17-hydroxyprogesterone, Δ4-Α: 
Δ4-androstenedione, Aldo: aldosterone, CAH: congenital adrenal hyperplasia, AHC: adrenal hypoplasia 
congenita, PHA: pseudohypoaldosteronism, sPHA: systemic PHA, rPHA: renal PHA, ΑSD: aldosterone 
synthase deficiency, UTI: urinary tract infection).
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• A urine collection by suprapubic aspiration or catheterization for microscopic 
analysis, urine culture and urine electrolytes measurement.

• Abdominal ultrasonography [7, 10].

Hypoaldosteronism may be challenging to diagnose promptly, because aldo-
sterone and renin assays are generally sent to a reference laboratory and results are 
usually delayed. Thus, urinary electrolyte assessment and abdominal ultrasonogra-
phy are useful adjuncts in a clinical setting [12, 30].

4.1 Urine electrolytes

Urine sodium is expected to be low (usually <25) in hyponatremia, when the 
renal response is intact. A urine sodium concentration greater than 25 mEq/L 
demonstrates inappropriately high sodium excretion in the hyponatremic infant, 
suggesting aldosterone deficiency or resistance. Nevertheless, we should keep in 
mind that urinary sodium losses may not be excessive if the infant is salt depleted 
[12, 30, 31].

In addition to measuring urinary sodium, it is useful to estimate potassium 
excretion. The preferred method to estimate potassium excretion by the distal 
tubule is the transtubular potassium (K) concentration gradient (TTKG):

 ( ) ( )TTKG Blood Osmolality Urine K / Blood K Urine Osmolality= ∗ ∗  

TTKG is expected to be high (>10) during hyperkalemia, as a result of appropri-
ate aldosterone activity. TTKG values of less than six indicate impaired aldosterone 
action in the distal nephron as the cause of the hyperkalemia [31, 32]. Calculating 
TTKG before and after fludrocortisone administration is also useful in distinguish-
ing patients who have mineralocorticoid deficiency versus resistance. An increase 
in TTKG values is observed after administering fludrocortisone in aldosterone-
deficient states, but no change is seen in the case of aldosterone resistance [16].

4.2 Abdominal ultrasonography

Abdominal ultrasonography is a rapid, sensitive and non-invasive test that 
can provide valuable diagnostic information. The diagnosis of CAH is supported 
when a combination of 2 or more of the three following abnormalities are evident 
in adrenal sonography: (a) increased size (limb width > 4 mm), (b) lobulated or 
cerebriform surface and c) abnormal echogenicity. Adrenal imaging can also detect 
physical causes of adrenal insufficiency such as hemorrhage [33, 34].

Pelvic ultrasonography is indicated to evaluate internal genitourinary anatomy 
in infants with a suspected defect in steroidogenesis. Ultrasonography might reveal 
the presence of Müllerian structures in severely virilized infants with 21-hydroxy-
lase deficiency carrying a 46,XX karyotype [35]. Accordingly, the lack of Müllerian 
structures in an infant with a salt-wasting crisis and female appearing external 
genitalia is found in 46,XY infants with classic congenital lipoid adrenal hyperplasia 
(CLAH) [36].

Urine culture and renal ultrasonography may allow early recognition of second-
ary PHA in infants with salt-wasting by detecting renal malformations and urinary 
tract infection (UTI). Further imaging with voiding cystourethrography (VCUG) 
and 99mTc-mercaptoacetyltriglycine (MAG3) scintigraphy may demonstrate 
vesicoureteral reflux (VUR) or obstruction [37].
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4.3 Adrenal function tests

Evaluating apparent mineralocorticoid deficiency and eliciting the correct diag-
nosis requires a careful interpretation of adrenal function tests. Hypoaldosteronism 
can be isolated or in the context of PAI and concurrent cortisol production failure 
[38]. Serum cortisol level is expected to be elevated in the hypovolemic, acidotic 
patient with a functioning adrenal gland [39]. Diagnosis of PAI is suggested by an 
elevated plasma corticotropin (ACTH) concentration (frequently >100 pg/mL) 
in the presence of a low serum cortisol concentration (usually <10 mg/dL) [40]. 
Samples in young infants may be obtained at random, because diurnal secretion 
of ACTH and cortisol is not yet established, while by 6 months of age and beyond 
samples should be collected close to 8 AM [41]. In the setting of diagnostic uncer-
tainty, confirmation of the diagnosis is established by an ACTH-stimulation test 
(250 μg for children >2 years, 15 μg/kg for infants and 125 μg for children <2 years, 
intravenously). A subnormal peak cortisol level (<18 μg/dL) 30 or 60 minutes after 
ACTH administration is diagnostic of PAI [28, 29].

1. In case of hypocortisolism the first step is to evaluate 17-OHP level, because 
21-hydroxylase deficiency is the most common cause of PAI in neonates and 
young infants. Most affected infants have concentrations greater than 35 ng/L 
and all have concentrations greater than 10 ng/L. If 17-OHP levels are normal, 
other adrenal insufficiency causes need to be considered. Once 21-hydroxylase 
deficiency has been ruled out, the most frequent cause of adrenal insufficiency 
in male neonates are the DAX-1 mutations. Other causes include rare non- 
virilizing forms of salt-wasting CAH and neonatal adrenal hemorrhage. Adrenal 
hemorrhage should be suspected in the newborn presenting with adrenal 
insufficiency and hypovolemic shock in the first week of life and diagnosis is 
confirmed by abdominal sonography [34]. Screening for possible autoimmune 
adrenalitis with adrenal autoantibodies and for X-linked adrenoleukodystro-
phy (ALD) with very long-chain fatty acids (VLCFA) is indicated in infants 
presenting at an age older than 6 months [10, 42].

2. Normal cortisol, ACTH and 17-OHP levels are consistent with isolated hypoal-
dosteronism without parallel cortisol deficiency. The next step is to evaluate 
the renin and aldosterone levels. Elevated PRA and low aldosterone values, 
particularly an elevated PRA ratio to aldosterone are markers of primary 
( hyperreninemic) hypoaldosteronism [26]. Low aldosterone and renin con-
centrations are consistent with hyporeninemic hypoaldosteronism, a diagnosis 
that is rarely seen in infants. Last, the diagnosis of PHA is established when 
high aldosterone and renin concentrations are evident in the face of salt wast-
ing and hyperkalemia. In such cases, a renal etiology should be sought as a 
cause of secondary PHA. Urine culture and renal ultrasonography should be 
performed in any infant with electrolyte disturbances to exclude infection and 
obstructive uropathy, even in the absence of fever or other  symptoms and signs 
of pyelonephritis [43].

Antenatal Bartter syndrome should be included in the differential diagnosis 
of a neonate presenting with hyperkalemia, hyponatremia and hyperreninemic 
hyperaldosteronism. In general, Bartter syndrome is a group of inherited tubular 
disorders, characterized renal salt wasting, hypokalemia, metabolic alkalosis and 
normotensive hyperreninemic hyperaldosteronism. Interestingly, the initial clinical 
presentation of type II antenatal Bartter syndrome is an important mimic of type 1 
PHA. Transient neonatal hyperkalemia, occasionally severe, is observed within the 
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first three weeks of life in the majority of patients, obscuring the initial diagnosis, 
until the infant becomes hypokalemic. A mean peak plasma potassium level of 
9.0 mmol/L (range 6,3–10,5 mmol/L) was documented in 12 neonates with type II 
antenatal Bartter syndrome and ventricular tachycardia has complicated the clinical 
course in one of them [44, 45].

5. Treatment

Biochemical confirmation should not delay treatment initiation in acutely 
sick infants. Infants with a severe salt-wasting present in near-shock to shock and 
require immediate fluid resuscitation and correction of electrolyte abnormalities. 
Physicians should keep in mind that a blood sample for the essential hormonal 
investigations should be collected before any steroid treatment is given to confirm 
aldosterone insufficiency and to determine the underlying cause. [7, 14, 46]

Hyponatremia is usually long-standing and should be corrected slowly to prevent 
central pontine myelinolysis [47]. Resolution of hyperkalemia usually occurs rapidly 
with stress doses of hydrocortisone, due to mineralocorticoid effect. Still, when 
T-wave elevation is evident on electrocardiogram (ECG), 10% calcium gluconate can 
be used to stabilize membrane potential. Other specific treatments for hyperkalemia 
include nebulized salbutamol and intravenous insulin infusion at 1 U of insulin 
in 5 g dextrose to promote intracellular potassium shifting and kayexalate cation 
exchange resins to help rid the potassium burden. As a last resort, dialysis can cor-
rect hyperkalemia, if T-wave elevation is unrelieved by medical means [10, 16, 47].

Infants with life-threatening salt-wasting crisis are initially treated with paren-
teral hydrocortisone at stress doses (50–100 mg/m2 per day divided q 8 h) pending 
steroid hormone analysis [48]. This approach is not unreasonable given that CAH is 
a potentially lethal condition if treatment is delayed. Stress doses of hydrocortisone 
also have adequate mineralocorticoid activity, as 20 mg of intravenous hydrocorti-
sone is equivalent to 100 μg fludrocortisone [10]. Once the infant is stabilized, he or 
she may be transitioned to oral hydrocortisone and fludrocortisone acetate at doses 
30 mg/m2 per day divided q 8 h and 50 to 100 μg/24 h respectively [49].

Identification of the etiology is crucial to avoid inappropriate prolonged steroid 
treatment, in case of mineralocorticoid resistance or isolated hypoaldosteronism. 
Appropriate therapy varies according to the etiology and treatment should be 
adjusted when the results are available [50].

a. In case of hypocortisolism glucocorticoid replacement therapy is continued 
according to established guidelines [7]. Maintenance therapy in infants with 
CAH includes hydrocortisone 12–15 mg/m2/d and oral fludrocortisone acetate 
(0.05 to 0.2 mg/24 h). The requirement for sodium in normally growing 
infants is ~1 mmol/kg per day, the amount provided by human milk. However, 
in infants with salt-wasting, this amount is insufficient and sodium chloride 
supplements are recommended at a dose of 1–2 g/d [51].

b. If appropriate cortisol levels are obtained, PAI is excluded and hydrocortisone 
can be discontinued. Serum aldosterone will further differentiate isolated 
hypoaldosteronism from PHA. In cases of isolated aldosterone deficiency 
therapy includes 9a-fludrocortisone and salt supplementation. However, 
infants with mineralocorticoid resistance will not respond to fludrocortisone 
treatment. Management of these cases is symptomatic with sodium repletion, 
ion - exchange resins and treatment of the precipitating cause (e.g. antibiotics 
for a urinary tract infection) [24].
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6. Causes of hypoaldosteronism

Hypoaldosteronism is classified in three large categories, according to their 
pathophysiology; deficient production by the adrenal glands, aldosterone 
unresponsiveness and defective stimulation of aldosterone secretion by renin 
(Table 1) [52].

The most common cause of aldosterone deficiency in the first weeks of life, is 
CAH due to 21-hydroxylase deficiency [38]. However, this diagnosis becomes less 
likely outside the neonatal period, by which time most cases have been diagnosed, 
either based on newborn screening or a salt-losing crisis. In boys, once CAH has 
been ruled out, the most common cause of hypoaldosteronism in early infancy 
(birth to 2 months) are the DAX-1 mutations, causing AHC. Other defects in aldo-
sterone biosynthesis include ASD, 3β-hydroxysteroid dehydrogenase deficiency, 
cholesterol side-chain cleavage enzyme deficiency and congenital lipoid hyperplasia 
due to deficiency of the steroidogenic acute regulatory (StAR) protein. PHA which 
results from diminished renal tubule responsiveness to aldosterone is another 
important cause of salt wasting in infancy [6]. Hyporeninemic hypoaldosteronism 
results in the same metabolic derangements, although this most often presents in 
adult populations. While rare in infants, the administration of nephrotoxic medica-
tions (e.g., ACE inhibitors, nonsteroidal anti-inflammatory drugs) should also be 
considered [30].

6.1  Deficient aldosterone production by the adrenal glands: hyperreninemic 
hypoaldosteronism

Where the primary defect is in aldosterone synthesis or release, the serum 
aldosterone concentration is low with a compensatory increase in PRA. Genetic 
defects in aldosterone biosynthesis, adrenal destruction and adrenal dysgenesis 
are the most common reported causes of hyperreninemic hypoaldosteronism 
[29, 53, 54].

Α. Defective production by the adrenal glands: Hyperreninemic hypoaldosteronism (↓ aldosterone - ↑ renin)

Combined with cortisol insufficiency Isolated hypoaldosteronism

Genetic disorders Salt-wasting forms of CAH
Adrenal hypoplasia congenita

Aldosterone synthase deficiency

Metabolic disorders Adrenoleukodystrophy/
Adrenomyeloneuropathy
Wolman’s disease

Acquired disorders Autoimmune adrenalitis
Infections
Intra-adrenal hemorrhage

Drugs: Heparin, ACE inhibitors, 
ARBs

Β. Aldosterone resistance: Pseudohypoaldosteronism (↑ aldosterone - ↑ renin)

Primary, due to an inherited receptor defect
Secondary (UTI, urinary malformation, drugs)

C. Defective stimulation by renin: Hyporeninemic hypoaldosteronism (↓ aldosterone - ↓ renin)

In children with lupus nephritis, post-infectious glomerulonephritis or mild-to-moderate chronic renal 
insufficiency
Drugs: NSAIDs, COX-2 inhibitors, beta-blockers

Table 1. 
Causes of Hypoaldosteronism (CAH: congenital adrenal hyperplasia, ACE: angiotensin-converting enzyme, 
ARBs: angiotensin II receptor blockers, UTI: urinary tract infection, NSAIDs: nonsteroidal anti-inflammatory 
drugs, COX-2: cyclooxygenase-2).
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6.1.1 Salt-wasting forms of congenital adrenal hyperplasia

CAH is a group of autosomal recessive disorders characterized by cortisol insuf-
ficiency due to mutations affecting any of the steroidogenic enzymes required for cor-
tisol synthesis [51]. About 95% of CAH is caused by 21-hydroxylase deficiency, with 
the aldosterone-deficient form of the disease occurring in approximately 1:20.000 
births. Similarly, deficiencies of 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2), 
steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage 
enzyme (P450scc) inhibit both cortisol and aldosterone synthesis resulting in adrenal 
insufficiency with salt loss. Ambiguity of the genitalia in seen in 46,XX with 21OHD 
and 46,XY with 3βHSD2 deficiency. Paradoxically, 46,XX individuals born with 
severe 3βHSD2 deficiency can virilize slightly in utero, due to extra-adrenal 3βHSD1 
activity. Infants with lipoid CAH (StAR deficiency) have 46,XY sex reversal and 
normal-appearing female genitalia secondary to a severe defect in Leydig cell ste-
roidogenesis [1, 55]. A detailed review of this topic is beyond the scope of this chapter.

6.1.2 Aldosterone synthase deficiency

ASD is a rare case of hyperreninemic hypoaldosteronism inherited in an autoso-
mal recessive pattern and caused by mutations in the CYP11B2 gene encoding the 
enzyme aldosterone synthase [10, 56]. The CYP11B2 gene is located on chromosome 
8q22p, band q24.3, approximately 40 kb away from the 93% - identical CYP11B1 gene 
encoding the 11 β-hydroxylase enzyme [57]. Aldosterone synthase catalyzes the three 
final steps of aldosterone biosynthesis: first the 11-hydroxylation of deoxycorticoste-
rone (DOC) to corticosterone (compound B), then the hydroxylation at position 18 to 
18-hydroxycorticosterone (18OHB) and lastly the oxidation at position 18 to aldoste-
rone. According to the relative levels of aldosterone and its precursors, ASD has been 
subdivided into type 1 and type 2. It is important to note that 11-hydroxylation of 
DOC is not impaired in either type of ASD because it is also catalyzed by the CYP11B1 
isoenzyme, resulting in accumulation of both compound B and DOC [48, 58, 59].

Type 1 ASD, previously known as corticosterone methyloxidase I (CMO I) 
deficiency is typically characterized by total suppression of aldosterone synthase 
activity, resulting in impairment of both 18- hydroxylation and 18-oxidation. Thus, 
patients with ASD 1 have low to normal levels of 18OHB and very low to undetect-
able levels of aldosterone [58].

Type 2 ASD (CMO II deficiency) results from mutations in CYP11B2 gene that 
selectively affect the 18-methyl oxidase activity while preserving the 18- hydrox-
ylation of corticosterone, resulting in excessive levels of 18OHB and low to normal 
levels of aldosterone. Determination of 18OHB-to-aldosterone ratio enables recog-
nition of the site of the enzyme block [10, 19, 60, 61]. Type II ASD is characterized 
by a markedly (often 100-fold) elevated ratio in either urine or serum [62].

Despite their different biochemical profile, type 1 and type 2 ASD would be 
better considered a continuous spectrum of the same disease. 18-OHB exhibits 
minimal biological affinity for the MR and there is considerable overlap between 
the clinical, hormonal and genotypic features of the two types of the disease [6, 48]. 
The condition has manifestations ranging from life-threatening salt-wasting crisis 
in neonates to asymptomatic impairment of statural growth in children. The most 
common age of onset of major clinical salt wasting is between 1 week and three 
months of age [6, 58, 60]. Notably, impairment of linear growth may be the sole or 
the predominant feature in older children [6]. Although fatalities have occasionally 
occurred, the morbidity of ASD is usually not as severe as that of the salt-wasting 
forms of CAH, reflecting normal DOC, corticosterone and cortisol synthesis. 
Moreover, family studies have identified biochemically affected but asymptomatic 
adults with abnormal ratios of 18-oxygenated steroids [6, 62].
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ASD responds well to exogenous mineralocorticoid treatment. Infants will also 
require NaCl supplements for ongoing electrolyte management. Fludrocortisone 
doses do not need to be increased with age, since mineralocorticoid sensitivity 
increases throughout childhood [10, 63]. In the first months of life, fludrocorti-
sone’s recommended dosage is 0.05–0.3 mg/day. The dosage might be adjusted to 
about half of the initial dosage during the second year of life and a third or a quarter 
during the third year [64]. Mineralocorticoid replacement is typically continued 
throughout childhood, but is often gradually weaned by adolescence, as patients 
spontaneously ameliorate their salt-wasting syndrome. Normalization of serum 
electrolyte concentrations and suppression of PRA towards the normal age-adjusted 
range seem to represent reasonable objectives in children [6, 11, 63].

6.1.3  Familial hyperreninemic hypoaldosteronism unlinked to the aldosterone 
synthase (CYP11B2) gene

Isolated hyperreninemic hypoaldosteronism in infancy is usually caused by 
mutations in CYP11B2 gene. However, there have been several reports of infants 
with the same clinical picture, in whom no mutations of CYP11B2 were detected. 
An inherited form of hyperreninemic hypoaldosteronism, distinct from ASD, seems 
to be the cause and the affected gene(s) remain to be determined [57, 62].

6.1.4 Adrenal hypoplasia congenita

AHC is a rare inherited disorder of adrenal cortex development. It occurs in 2 
distinct forms: The X-linked cytomegalic form and the autosomal recessive minia-
ture adult form. In the X-linked or cytomegalic form, the adrenals do not differenti-
ate beyond the fetal stage. They are characterized by an absence of the permanent 
zone and by abnormally large (cytomegalic) cells. The autosomal recessive or 
miniature adult form is characterized by small adrenal glands with normal architec-
ture and normal adult zone structure [65–69].

X-linked AHC is caused by a defective NR0B1 (nuclear receptor subfamily 0, 
group B, member 1) gene [70]. About two thirds of boys with AHC have point 
mutations and the other one third has gene deletions [71]. The NR0B1 gene encodes 
the DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia, critical region on the X 
chromosome, gene 1) protein on the X-chromosome (Xp21) [69, 72, 73]. DAX-1 is an 
orphan nuclear receptor expressed in the adrenal cortex, testicular Leydig and Sertoli 
cells, ovarian theca and granulosa cells, pituitary gonadotropes and hypothalamus 
[70, 74]. Its actions are mediated by repression of another orphan nuclear receptor, 
steroidogenic factor 1 (SF-1) and together they regulate the embryological develop-
ment and subsequent function of these tissues. The prevalence of NR0B1 mutations 
in the general population has been estimated as 1:70,000–1:600,000 [69, 70, 72–77].

The classic form of X-linked AHC is characterized by three main features: 
primary adrenal failure, hypogonadotropic hypogonadism (HHG) and infertility 
[10]. A family history of adrenal failure, unexpected death or HHG, in males in the 
maternal family is evident in almost 100% of affected individuals [77]. The gold 
standard for diagnosis of X-linked AHC is genetic testing, showing a deletion or 
mutation in the NR0B1 (DAX1) gene [69].

6.1.4.1 Primary adrenal failure in X-linked AHC

Classically, a bimodal presentation pattern is seen, with 60% of affected 
males presenting during the first eight weeks of life and 40% presenting between 
1 to 10 years of age with primary adrenal failure or isolated mineralocorticoid 
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deficiency [76, 78]. The initial presentation of X-linked AHC is often a combination 
of mineral and glucocorticoid deficiency but, especially during the neonatal period, 
aldosterone deficiency may precede cortisol deficiency at onset [72]. An adult-
onset form of X-linked AHC has also been described in 10 males and diagnosis was 
suspected observing the association of adrenal insufficiency and hypogonadotropic 
hypogonadism. Variability in the age of onset is evident even among patients of the 
same family, carrying the same mutation, indicating that epigenetic or environ-
mental factors are also involved in the clinical course [67, 71, 72, 76, 77, 79].

Infants with PAI present with salt-wasting, failure to thrive, hyponatremia, 
hypoglycemia, and hyperpigmentation. Older individuals may present more insidi-
ously with chronic adrenal insufficiency until a concomitant illness precipitates 
acute adrenal crisis [71, 73].

A cortisol value within the normal range does not necessarily exclude the 
diagnosis of AHC and in several cases, children with normal basal cortisol levels 
presented with clinical adrenal failure shortly after. Glucocorticoid function should 
be carefully assessed, possibly through a short Synachten test, with sometimes an 
increase of ACTH level indicating compensated primary adrenal failure [57, 72, 78].

6.1.4.2 Hypogonadotropic hypogonadism in X-linked AHC

X-linked AHC is associated with isolated hypogonadotropic hypogonadism that 
seems to be the result of both hypothalamic and pituitary dysfunction. The deficit in 
pituitary hormones is selective for gonadotropins as other hormones’ production is 
normal. HHG usually becomes apparent in adolescence by absent or arrested puber-
tal development. Progression of puberty beyond Tanner III is extremely uncommon 
[65, 73, 76, 78, 80, 81].

Cryptorchidism may be present at birth, with at least 10% of infants having 
unilateral or more frequently bilateral undescended testes [76]. Against expecta-
tion, normal minipuberty of infancy with appropriately elevated gonadotropin and 
testosterone levels has been shown in 2 infants. The maternal uncles sharing the 
same DAX1 mutation with the infants, were affected by HHG [68, 82].

Other paradoxical features such as macrophallia or transient precocious sexual 
development have also been described in infancy and childhood, with several 
mechanisms proposed. Chronic excessive ACTH levels resulting from adrenal insuf-
ficiency may stimulate Leydig cells and lead to gonadotropin-independent preco-
cious puberty in some boys with DAX1 gene mutations [70, 83, 84].

6.1.4.3 Complex Glycerol Kinase Deficiency

Males with confirmed X- linked AHC should be evaluated for clinical signs of 
other diseases mapped in Xp21 because deletions of the NR0B1 gene may also occur 
along with contiguous gene defects as part of Complex Glycerol Kinase Deficiency 
(CGKD) [65, 69, 85]. CGKD develops from partial deletion of the Xp21 chromosomal 
locus involving all or part of the gene for glycerol kinase deficiency (GKD) together 
with that for AHC and/or Duchenne muscular dystrophy (DMD). Much larger 
deletions including the ornithine transcarbamylase locus have also been described 
[86–88]. The syndrome can be both sporadic and familial, and the phenotype varies 
according to the extension of deleted DNA [89]. Patients with CGKD may show 
dysmorphic features including prominent eyebrows and forehead and depressed 
nasal root giving the face an hourglass appearance [86]. Mental impairment is also 
described, but specific causes have not been clearly defined. The terminal 3′ end of 
the DMD gene is essential for normal development of the brain and a gene mapped 
distal to the DMD locus is associated with a form of X-linked mental retardation [89].
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6.2 Defective aldosterone action: pseudohypoaldosteronism (PHA)

Syndromes characterized by apparent aldosterone deficiency, despite elevated 
aldosterone levels are classified as PHA. This may be either primary (PHA type 1 
and 2) or secondary (PHA type 3) phenomenon. Primary PHA type 1 is subclas-
sified into two genetically distinct syndromes, that differ in the involvement of 
aldosterone target organs and the severity of salt wasting: (1) the autosomal domi-
nant (AD) or sporadic form (also called renal form) and (2) the autosomal recessive 
(AR) or generalized form. The biological characteristics of primary PHA1 and 
secondary PHA3 are dehydration accompanied by hyponatremia, hyperkalemia, 
and metabolic acidosis despite high aldosterone levels [27].

In contrast, type 2 PHA (Gordon syndrome or familial hyperkalemic hyper-
tension) is a rare potassium retaining syndrome characterized by hyperkalemia, 
normal GFR, hypertension, metabolic acidosis, suppressed PRA and variable 
aldosterone levels. It is caused by mutations affecting WNK1 and WNK4 kinases, as 
well as Cullin3 (CUL3) and Kelch-like3 (KLHL3) proteins. Comparison between the 
different types of PHA is presented in Table 2 [47, 91–93].

6.2.1 Multi-system PHA type 1

Multi-system PHA type 1 (sPHA) is characterized by multiple end-organ resis-
tance to aldosterone and is inherited as an autosomal recessive trait [94]. It is caused 
by homozygous or compound heterozygous inactivating mutations in the genes 
encoding the alpha, beta and gamma subunits of the ENaC. Both genes encoding 
the β- (SNCC1B) and γ-subunits (SNCC1G) are located in 16p12, while the gene 
encoding the α-subunit (SNCC1A) is located in 12p13 [71, 91, 95–97].

PHA sPHA type Ι rPHA type Ι PHA type ΙΙ PHA type ΙΙΙ

inheritance AR AD AD not inherited

mutated protein ENaC MR WNK1, WNK4, 
KLHL3, CUL3

none

patho-physiology salt loss  
K+ retention

salt loss  
K+ retention

salt and  
K+ retention

salt loss  
K+ retention

age of onset neonatal period neonatal period 
early infancy

scholar, 
adolescence

neonatal period  
early infancy

blood pressure hypotension hypotension hypertension hypotension

electrolyte levels hyponatremia, 
hyperkalemia

hyponatremia, 
hyperkalemia

hyperkalemia hyponatremia, 
hyperkalemia

PRA ↑ ↑ ↓ ↑

aldosterone ↑ ↑ variable ↑

treatment supplemental 
sodium, 
potassium 
binding resins

supplemental 
sodium

salt restriction, 
thiazides

treatment of 
underlying cause, 
supplemental sodium

duration persistent self-limited persistent transient

prognosis poor good good good

Table 2. 
Comparison Between the Different Types of PHA from references [47, 90] (PHA: pseudohypoaldosteronism; 
AR: autosomal recessive; AD: autosomal dominant; MR: mineralocorticoid receptor; ENaC: epithelial sodium 
channel; WNK: with-no-lysine (K) kinase; CUL3: Cullin3 and KLHL3: Kelch-like3).
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Since the ENaC is expressed in all aldosterone - dependent epithelial tissues 
(distal part of the nephron, distal colon, salivary ducts, sweat glands, respiratory 
airway, pulmonary alveoli and nasal mucosa), sPHA is associated with widespread 
systemic manifestations [91, 98]. The pattern of laboratory abnormalities is diag-
nostic and shows hyponatremia, hyperkalemia, metabolic acidosis, elevated PRA 
and aldosterone concentrations. The course of the disease is severe and lifelong 
treatment is required [92, 99].

In utero, uncontrolled saliuretic fetal polyuria due to mineralocorticoid resistance 
may lead to polyhydramnios. In the postnatal period, sPHA is characterized by 
failure to thrive, vomiting and severe dehydration. Affected infants may also have 
chronic diarrhea, excessive pulmonary secretions, cholelithiasis and recurrent skin 
rashes [99–101]. Other associated symptoms include chronic discharge of clear liquid 
from the nose and salt loss from the Meibomian glands of the eyelids [90, 93, 102].

Lower respiratory tract involvement associated with sPHA makes the disease 
an important mimic of cystic fibrosis. ENaC plays a major role in airway sodium 
absorption, airway liquid volume and composition [103]. First, the increased volume 
of intraluminal liquid results in airway narrowing. This is especially evident during 
infancy and early childhood, when the airway diameter is small. Besides, changes in 
the airways’ ionic composition may compromise normal mucociliary function, pre-
disposing to lower respiratory tract infections. However, children generally do not 
present after age 5 and do not typically develop Pseudomonas aeruginosa lung infec-
tions. These features differentiate children with sPHA from those with cystic fibrosis 
[94, 95, 103–105]. Infants with sPHA sustain recurrent episodes (3–6 per year) of 
chest congestion, coughing and tachypnea, often associated with fever, wheez-
ing and crackles. It is noteworthy, that respiratory symptoms begin within weeks 
or months after birth and only two newborns with neonatal respiratory distress 
syndrome (RDS) and sPHA have been described. Both were premature, one born at 
31 weeks of gestation and one born at 36 weeks. Older patients (more than five years 
of age) have less severe and less frequent respiratory symptoms [47, 90, 98].

Defective ENaC function is also responsible for the high sweat salt concentration 
of infants with sPHA, making the sweat test an excellent discriminant between the 
systemic and the renal type of the disease [92]. The high sodium concentration also 
causes chronic inflammatory changes around and within the sweat ducts resulting 
in recurrent skin rashes. Cutaneous manifestations of patients with sPHA1 mimic 
pustular miliaria rubra and are described as discrete erythematous pustules, that 
worsen during salt-depletion crises and clear spontaneously with stabilization. 
Interestingly, inflammatory pustules have not been noted in patients with cystic 
fibrosis. The reason for this is unknown, but may relate to higher sweat salt concen-
trations in sPHA. Typical sweat chloride concentrations in infants with sPHA range 
between 110 and 150 mmol/L. In comparison, sweat chloride concentrations higher 
than 75 mmol/L are reported in patients with cystic fibrosis [99, 102, 106].

Normalization of fluid and electrolyte balance in generalized PHA1 is particu-
larly challenging. Patients are insensitive to mineralocorticoids and require high 
doses of sodium supplementation (between 20 and 50 mEq/kg/d), together with 
orally administered ion exchange resins and dietary potassium restriction. Although 
a slight amelioration is observed with ageing, treatment is mandatory throughout 
life [102, 107].

6.2.2 Renal PHA type 1

Renal PHA type 1 (rPHA) is an autosomal dominant (AD) disease caused by 
heterozygous mutations in the NR3C2 gene. The NR3C2 gene located on chromo-
some 4q31.1 is responsible for encoding the the distal renal tubule’s mineralocorticoid 
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receptor [90, 91, 94]. More than 50 different mutations have been identified in this 
receptor, which lead to renal resistance to aldosterone [71]. The renal type of PHA 
represents the most frequent form of the disease with a prevalence of 1 per 80.000 
newborns [102].

AD-PHA is restricted to the kidneys and clinical symptoms usually remit with 
age. Although less severe in its course, rPHA has been reported to be associated with 
high infant mortality rate. In fact, patients with rPHA resemble a striking pheno-
typic diversity, with a clinical spectrum ranging from asymptomatic to severe PHA. 
Characteristic of the autosomal dominant form is an affected, symptomatic index 
case, with family members who are biochemically affected but clinically asymp-
tomatic. Sporadic cases due to de novo mutations have also been reported [90, 97, 
108–110].

Patients mainly manifest in early infancy, between 0.5 and 6 months of age, with 
isolated renal resistance to aldosterone, leading to renal salt loss, hyponatremia, 
hyperkalemia, metabolic acidosis, failure to thrive and elevated plasma renin and 
aldosterone concentrations. The main clinical symptom is failure to thrive due to 
chronic dehydration. Hyperkalemia is generally mild, and metabolic acidosis is not 
always detectable [93].

In rPHA, 3–20 mEq/kg/daily dose of sodium is sufficient to compensate for the 
salt loss and is followed by a rapid clinical and biochemical improvement [105]. 
Potassium-binding resins are rarely needed. Although the primary defect persists 
for life, improvement usually occurs after the first years of life and sodium supple-
mentation generally becomes unnecessary by 2–3 years of age. Amelioration of 
the phenotype is attributed to the renal tubule’s maturation, autonomous addition 
of salt to the diet and chronic up-regulation of mineralocorticoid axis. Chronic 
salt depletion and resultant hyperreninemia possibly stimulates zona glomerulosa 
leading to the zone’s hypertrophy and tertiary hyperaldosteronism. Thus, PRA 
decreases into normal range, while high plasma aldosterone levels persist into 
 adulthood [90, 102, 105, 108].

6.2.3 Secondary PHA type 3

Secondary PHA in infancy is a transient condition characterized by lack of 
response to aldosterone in the distal tubule due to obstructive uropathy, VUR and/
or UTI [111]. Any kind of urinary tract obstruction, including posterior urethral 
valves, ureterocele, ureteropelvic junction obstruction and ureterohydronephrosis 
may lead to PHA [106, 109].

The underlying pathogenesis for secondary aldosterone resistance has not 
been fully elucidated. Early infancy, however, seems to be the main contributing 
factor, as the prevalence rate of secondary PHA diminishes considerably after 
three months of age, with the majority of infants being less than seven months 
old [106, 110, 112].

Inflammation and production of cytokines is an additional factor contributing 
to aldosterone resistance. Circulating bacterial endotoxins can directly damage 
aldosterone receptors, as well as stimulate the intrarenal synthesis of cytokines 
like prostaglandins, leukotriens, endothelin, interleukin (IL)-1 and thromboxane. 
Similarily, parenchymal renal damage in case of obstructive uropathy increases the 
intrarenal expression of tumor necrosis factor-alpha (TNF-α), IL-1, IL-6, trans-
forming growth factor beta-1 (TGF-β1), angiotensin II, endothelin, thromboxane 
A2 and prostaglandins. These cytokines induce vasoconstriction, reduction of GFR, 
natriuresis and/or decreased Na+-K+-ATPase activity [90, 111].

Secondary PHA is typically an acute condition. Electrolyte imbalance usually 
resolves after 24–48 hours of intravenous fluid replacement and antibiotic therapy 
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in the case of UTI [113]. However, signs of pseudohypoaldosteronism have been 
reported to persist even after successful surgery in infants with congenital hydro-
nephrosis, indicative of ongoing distal tubular dysfunction. The required time 
period for salt supplementation ranges from 3 to 13 months in reported cases, with 
the youngest infants requiring longer supplementation [25, 106]. If secondary PHA 
improves with treatment of UTI or obstructive uropathy, further genetic testing 
for primary PHA1 is not usually suggested [114]. Interestingly, a pathogenic muta-
tion on NR3C2 has been recently identified in an infant with UTI-associated type 
IV renal tubular acidosis (RTA). Identification of MR or epithelial sodium channel 
(ENaC) gene polymorphisms in the presence of secondary PHA is suggestive of a 
possible overlap between primary and secondary type IV RTA [106, 115].

6.3 Defective stimulation by renin: hyporeninemic hypoaldosteronism

Hyporeninemic hypoaldosteronism results from insufficient stimulation of the 
adrenal gland due to a defect of renin secretion. The syndrome has been especially 
observed in adults with chronic renal insufficiency due to diabetic nephropathy and 
rarely in children with lupus nephritis or acute post-infectious glomerulonephritis 
[15, 116].

Only five infants with hyporeninemic hypoaldosteronism have been reported 
to date. An 8-month-old boy with chronic kidney disease (CKD) stage 3 caused 
by tubulointerstitial disease manifested hyperkalemia (potassium = 7.1 mEq/L) 
with normal GFR in the context of hyporeninemic hypoaldosteronism [117]. 
Hyporeninemic hypoaldosteronism has also been reported in a 3-month-old boy 
with severe psychomotor retardation and growth failure and a 5-month-old boy 
with severe mental retardation lactic acidosis and deafness [116]. Finally, the report 
of two male siblings, presenting with hyporeninemic hypoaldosteronism at the age 
of 12 and 2 months suggested a congenital primary defect [118].

7. Conclusions

Although rare, hypoaldosteronism is a potential cause of neonatal morbidity 
and mortality due to electrolyte disturbances and hypovolemia. Early diagnosis and 
treatment represent a major challenge for pediatricians, who should be aware of this 
condition either as isolated hypoaldosteronism or in the context of PAI. A deeper 
understanding of the etiology of hypoaldosteronism is crucial, to improve care of 
affected infants [1, 119].
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Chapter 8

The Role of Renin Angiotensin 
Aldosterone System in the 
Pathogenesis and Pathophysiology 
of COVID-19
Ozlem G. Sahin

Abstract

The novel coronavirus also known as severe acute respiratory syndrome  
coronavirus 2 (SARS-CoV-2) whose origin is still having uncertainties related to 
the existence of an intermediate host, has created the currently ongoing pandemic 
of coronavirus disease 2019. (COVID-19) The binding assays of SARS-CoV-2 
spike protein receptor binding domain disclosed enhanced affinity with human 
angiotensin II-converting enzyme receptor (hACE2) comparing to the bat ACE2 
receptors. ACE2, is an essential component of the regulatory mechanism of the 
renin-angiotensin-aldosterone system, (RAAS) and this pathway is considered to 
interact with the pathophysiology of COVID-19. In this chapter, we will discuss the 
key role of RAAS in the pathogenesis of SARS-CoV-2.

Keywords: ACE2, RAAS, SARS-CoV-2, COVID-19, Ang II, ADAM17

1. Introduction

1.1  The pathogenic interaction of SARS-CoV-2 and renin: angiotensin: 
aldosterone system

Coronaviruses (CoVs) belong to the family of Coronaviridae which is further 
divided into four genera as Alphacoronavirus, (α-CoV) Betacoronavirus, (β-CoV) 
Gammacoronavirus, (γ-CoV) and Deltacoronavirus. (δ-CoV) [1] α- and β-CoVs are 
able to infect mammals, while γ-and δ-CoVs tend to infect birds [1]. HCoV-229E, 
HCoV-NL63 (α-CoVs) and HCoV-OC43, HCoV-HKU1 (β-CoVs) have crossed the 
species barriers from their bat reservoirs via various intermediate hosts to humans, 
and caused mild endemic infections of the upper respiratory tract such as common 
colds [2]. However, in recent years, several epidemic β-CoVs which were associated 
with severe acute respiratory syndrome (SARS) such as SARS-CoV-1, and middle 
east respiratory syndrome (MERS) such as MERS-CoV were considered as potential 
emergent pathogens for global pandemics [3, 4]. Most recently novel coronavirus 
(NCoV-19) also known as SARS-CoV-2 (β-CoV) which shows 96% genomic 
similarity with bat SARS-like coronavirus strain, BatCov RaTG13 have created the 
currently ongoing pandemic of coronavirus disease 2019. (COVID-19) [5, 6].

SARS-CoV-2 has a round or elliptic shape, often pleomorphic with a diameter of 
approximately 60–140 nm, and a nucleocapsid core surrounded by a lipid bilayer 
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envelope (Figure 1) [7]. The nucleocapsid core contains the viral genome, single-
stranded, non-segmented, positive-sense RNA which has a 5′ cap and a 3′ poly-A 
tail with a length of ~26.4 to ~31.7 kilobase (kb) complexed with the structural 
nucleocapsid (N) proteins (Figure 1) [7]. The lipid bilayer envelope which is taken 
by budding of RNA/nucleocapsid complex into the lumen of the ERGIC (endoplas-
mic reticulum (ER)–Golgi intermediate compartment) has the other structural gly-
coproteins including the spike (S) protein, the membrane (M) protein, the envelope 
(E) protein, and a fifth protein called hemagglutinin-esterase (HE) protein which 
binds to the terminal sialic acid residues on the host cell membrane glycoproteins and 
it manifests acetyl-esterase activity for the egress of SARS CoV-2 (Figure 1) [7, 8].  
S protein, ∼180 kDa glycoprotein is initially cleaved by the host serine protease 
furin resulting non-covalently linked transmembrane S2 subunit and a protruding 
extracellular S1 subunit during the intracellular maturation in the trans-Golgi-
network [9]. Plasma membrane-exposed or secreted furin also cleaves S protein 
during entry of the virus resulting S1/S2 protomers which appear as mushroom-like 
trimers on the viral envelope (Figure 1) [9]. Each of the protomers can have an 
open or closed conformation. The “open” conformation of S1 exposes the receptor 
binding domain, (RBD) containing receptor binding motif (RBM) which shows 
increased binding affinity with angiotensin II-converting enzyme (ACE2) [10]. 
Currently circulating SARS-CoV-2 variant has a S1 D614G mutation with N-linked 
glycosylation sites N165 and N234 which favor the open conformation resulting the 
SARS-CoV-2 D614G variant more infectious [11]. SARS-CoV2 is also unique for 
having a proline residue between S1 and S2 subunits which leads to the formation 
of a turn/stem-loop structure resulting O-linked glycosylation at the cleavage site 
residues S686, S673, and T678 [12]. Following the binding of the amino- (N) termi-
nal of S1 subunit RBM to ACE2, transmembrane protease serine 2 (TMPRSS2) and 
furin-mediated proteolytic activation/cleavage between the carboxyl- (C) terminal 
of S1 and N-terminal of S2 subunits results conformational change and fusion of 
the virus envelope and host cell membrane via C- terminal of S2 subunit, and this 
process delivers the virus genome into the host cell (Figure 2) [8]. SARS-CoV-2 also 

Figure 1. 
Coronavirus structure. (Adapted from Fehr et al. [7]).
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enters the host cell via receptor-mediated endocytosis (Figure 2) [8]. Upon binding 
of N terminal of S1 subunit RBM to ACE2 virion is taken up into the endosome, 
where S1 and S2 subunits are cleaved and activated by the pH-dependent cysteine 
protease, cathepsin L (Figure 2) [8]. Conformational change of the S1and S2 sub-
units allows fusion of the virus envelope with the endosomal membrane and release 
of the viral genome into the cytoplasm (Figure 2) [8]. ADAM17 (a disintegrin and 
metalloprotease 17) also known as tumor necrosis factor-α (TNF- α) converting 
enzyme, (TACE) is a membrane protease involved in the endogenous shedding of 
ACE2 complexed with S1 subunit RBD from the cell membranes (Figure 2) [8]. 
ADAM17-dependent ACE2 shedding is believed to promote lung pathogenesis  
[8, 13]. ACE2, is an essential component of the regulatory mechanism of the renin-
angiotensin-aldosterone system (RAAS), and this pathway is considered to interact 
with the pathophysiology of COVID-19. In this chapter, we will discuss the key role 
of RAAS in the pathogenesis of Covid-19.

2.  The renin: angiotensin: aldosterone system and pathophysiology of 
Covid 19

The RAAS is an important hormonal homeostatic mechanism of the body that 
involves the liver, kidneys, lungs and adrenal glands which plays a critical role in the 
regulation of blood pressure, fluid/electrolyte balance, systemic and pulmonary vas-
cular resistance and vascular remodeling [14]. The function of the RAAS is mainly 
regulated by angiotensinogen, prorenin, renin, angiotensin I, (Ang I) angiotensin II, 
(Ang II) aldosterone, angiotensin 1–7, (Ang 1–7) angiotensin 1–9, (Ang 1–9) angio-
tensin I-converting enzyme, (ACE) and ACE2 (Figure 3) [15]. Prorenin, the precur-
sor of renin, is proteolytically activated in the kidney by neuroendocrine convertase 
1 (proprotein convertase 1) or cathepsin B, and nonproteolytically in many tissues by 
the renin/prorenin receptors [14]. Renin is produced by the juxtaglomerular cells in 
response to sympathetic nervous system (SNS) stimulation, hypotension, decreased 
cardiac output (CO) and renal perfusion pressure, decreased distal tubular sodium 
and chloride concentration and dehydration (Figure 3) [15]. Angiotensinogen, 
synthesized in the liver is an α-2-globulin, a member of the serpin family of proteins, 
but unlike the other serpins it is not known to inhibit proteases (Figure 3) [14, 15]. 

Figure 2. 
Role of host cell proteases in the cellular entry of SARS-CoV. (Adapted from Heurich et al. [8]).
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It has an elongated N-terminus as a substrate for renin which cleaves 10 N-terminus 
amino acids from angiotensinogen and creates the decapeptide Ang I (Figure 3) [15]. 
Ang I is considered to have no direct biological activity other than being a precursor 
to Ang II which is synthesized by ACE through removal of two C-terminal residues 
from Ang I (Figure 3) [15, 16]. ACE belongs to the M2 gluzincin family of metallo-
proteinases, zinc-dependent peptidyldipeptidase and it exists in two forms, somatic 
ACE and testicular ACE [16]. Both are derived from the same gene, controlled by 
alternative promoters [17]. Testicular ACE is considered to play a role in male fertility 
and sperm physiology [18]. Somatic ACE (ACE) is expressed in high amounts by the 
vascular endothelium of the lungs, renal proximal tubular epithelium and ciliated 
intestinal epithelium [17]. ACE mRNA expression has also been identified in dif-
ferent cell types and tissues including macrophages, dendritic cells, (DC) choroidal 
plexus and brain [19, 20]. The ACE gene promoter has been shown to harbor CpG 
islands which regulate ACE gene expression during inflammation via TNF-α, 
dependent hypermethylation resulting a decrease in cellular ACE activity [21, 22]. 
ACE is an integral membrane protein, which can be also cleaved by ACE secretases to 
produce a circulating form of the enzyme [23]. This soluble ACE activity is shown to 
be inhibited by an endogenous inhibitor which restricts ACE mediated Ang I conver-
sion in the systemic circulation irrespective to the concentration of the circulating 
ACE that confines Ang II mediated responses in the tissues [24]. Changes in ACE 
expression have been shown to have minimum effect on blood pressure due to renin-
mediated compensation of Ang I and its bioactive endogenous byproduct angioten-
sin 1–12 (Ang 1–12) which is more specialized for controlling blood pressure than 
Ang II [25, 26]. Ang II is considered to be mostly associated with innate and adaptive 
immunity, oxidative stress, inflammation and fibrosis [27, 28].

The Ang II receptors, (ATR1) and (ATR2), are a class of G protein-coupled 
receptors sharing a sequence identity of ~30%, but having a similar affinity for Ang 
II, which is their main ligand (Figure 3) [15, 16]. ATR2 stimulates the G protein-
coupled receptor Gi subunit, and primarily inhibits the cAMP-dependent pathway 
by inhibiting adenylyl cyclase activity and decreasing the production of cAMP from 
ATP, which in turn results decreased activities of the cAMP-dependent protein 
kinases [29]. The downstream signaling pathways of these inhibitory processes lead 
to the modulation of protein kinase A (PKA), protein kinase C (PKC) and mitogen-
activated protein kinase (MAPK) pathways, eventually inhibiting inflammation and 

Figure 3. 
The renin-angiotensin-aldosterone system (Adapted from Ames et al. [15]).
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growth-specific functional processes mostly affecting cardiac and vascular tissues 
[30]. ATR2 activation was reported to induce the activation of peroxisome prolifera-
tor-activated receptor, (PPARγ) a powerful anti-inflammatory factor in the post-
ischemic cardiac tissue of rabbits that was accompanied by a down-regulation of 
MAPKs p42/44 [31]. ATR1 which stimulates the G protein-coupled receptor Gq 
protein alpha subunit on the vascular smooth muscle cell membranes which in turn 
activates an inositol triphosphate (IP3)-dependent mechanism leading to increase 
intracellular calcium levels and vasoconstriction (Figure 3) [15, 27]. Ang II stimu-
lates aldosterone secretion from the adrenal gland cortex (Figure 3) [15]. 
Aldosterone increases sodium, chloride and bicarbonate reabsorption coupled with 
potassium and hydrogen excretion from the distal convoluted tubules, and amplifies 
the pathophysiologic effects of Ang II in the heart, kidney and vasculature via acting 
on the mineralocorticoid (MR) receptors (Figure 3) [15, 24]. More importantly, 
aldosterone was associated with inflammation via ER unfolded protein responses, 
mitochondrial dysfunction, as well as increased synthesis of pro-inflammatory 
cytokines such as interleukin 6. (IL-6) [32, 33]. It was also disclosed that activation 
of ATR1-receptors promotes Ang II-induced reactive oxygen species (ROS) genera-
tion, inflammation and angiogenesis via stimulating the Nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase, (NOX) nuclear factor kappa-light-chain-
enhancer of activated B cells, (NF-κB) extracellular signal-regulated kinases, 
(ERK1/2) MAPK and signal transducer and activator of transcription 1 (STAT1) 
pathways [34, 35]. NOX is the best known non-mitochondrial source of ROS 
generation [36]. p22phox subunit of NOX is required for activating, stabilizing and/
or regulating NOX homologs [36]. Ang II reportedly induces oxidative stress by 
elevating the expression of p22phox [37]. ROS are considered to oxidize membrane 
phospholipids, proteins and nucleic acids, and lead to tissue hypertrophy and 
inflammation mainly in the alveolar epithelial cells, endothelium and heart via 
triggering the synthesis of adhesion molecules including intercellular adhesion 
molecule 1, (ICAM-1) vascular cell adhesion protein 1, (VCAM-1) monocyte 
chemoattractant protein 1, (MCP-1) and macrophage colony stimulating factor. 
(M-CSF) [34, 35]. Moreover, Ang II stimulates production of ROS from NO leading 
to depletion of NO causing further injury to blood vessels [14]. Additionally, 
C- reactive protein (CRP) induces ATR1 transcription and translation as well as 
enhanced ATR1 levels in blood vessel wall [14, 35]. Heat shock proteins (HSPs) have 
been found to be a regulator of NF-κB cascade in inflammation induced by Ang II 
via activation of the inhibitor of nuclear factor kappa B (IκB) kinase (IKK) complex 
and phosphorylation of IκBα. This process leads to ubiquitination and degradation 
of IκBα, and permits NF-κB translocation to the nucleus. NF-κB stimulates the 
transcription of proinflammatory cytokines including TNF-α, IL-6, IL-8, MCP-1, 
and cyclooxygenase [38]. Cyclooxygenase 1-derived prostaglandin E2 and prosta-
glandin E2 type 1 receptors are considered to play a role in Ang II-dependent 
hypertension via AT1R/phospholipase A2 pathway which promotes ROS production 
coupled with Ca2+ influx [39]. TNF-α, primary substrate for ADAM17 is cleaved and 
released from the cell membrane forming the soluble TNF-α which in turn binds and 
activates TNF-α receptors on the cell surfaces [40]. ADAM17 activity is upregulated 
by the binding of soluble TNF-α to its receptors, and also via the ATR1/Ang II axis 
[40]. Ang II enhances activation of MAPK cascades including ERK1/2, c-Jun 
N-terminal kinase (JNK) and ERK5 via ATR1 resulting increased synthesis of matrix 
metalloproteinase-2 (MMP-2) which amplifies the inflammation associated with the 
proinflammatory cytokines and results to angiogenesis, widespread disruption of 
endothelial barriers and cardiac abnormalities [41]. Activation of STAT1/STAT2 
downstream pathway via Ang II – ATR1 binding stimulates interferon-stimulated 
genes (ISG) expression by inducing the interferon-stimulated response element 
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(ISRE) promoter and increases the maturation and activation of the antigen pre-
senting cells, natural killer cells and T-box expressed in T cells (T-bet) cells which are 
bridging between innate and adaptive immunity and leading to autoimmune 
reactions and cardiovascular diseases [42]. Ang II-induced vasoconstriction and 
inflammatory endothelial cell injury have been associated with accelerated throm-
bus development in the arteries, veins, and capillaries via activation of different 
components of the coagulation cascade [42, 43]. ACE2 is a zinc-carboxypeptidase 
consisting of 805 amino acids with an extracellular N-terminal domain, transmem-
brane (TM) domain and an intracellular C-terminal tail (Figure 4) [44]. The 
zinc-binding motif (HEMGH) is located within the carboxypeptidase domain which 
also recognizes RBM of S1 subunit of SARS-CoV-2 (Figure 4) [44]. Collectrin 
domain is the site for ACE2 shedding with ADAM17 and TMPPSS2, and it is crucial 
for interacting with neutral amino acid transporters (Figure 4) [44]. ACE2, which 
has 42% identical nucleotide sequence with ACE indicating that the two genes, 
ACE2 and ACE arise through duplication [45]. ACE2 is expressed in a diverse group 
of cells including the oral, nasal, type II lung alveolar, tongue and esophageal 
epithelial cells, enterocytes, endothelial cells, cardiomyocytes, arterial smooth 
muscle cells in most organs, cortical neurons and glia, renal tubules, ductal cells, 
bladder urothelial cells and male reproductive cells [44–46]. ACE2 cleaves the 
carboxyl (C)-terminal amino acid phenylalanine from Ang II, (Asp-Arg-Val-Tyr-Ile-
His-Pro-Phe) and hydrolyses it into the vasodilator Ang (1–7), (Asp-Arg-Val-Tyr-Ile-
His-Pro) a ligand for the G-protein coupled receptor Mas receptor (MasR) (Figure 5)  
[47]. ACE2 also converts Ang I to Ang 1–9 that can be further hydrolyzed to Ang 1–7 
by the action of neprilysin, (Nep) which is a zinc-dependent metalloprotease, and 
cleaves peptides at the N-side of hydrophobic residues (Figure 5) [47, 48]. Nep also 
directly converts Ang I to Ang 1–7 which is further enzymatically decarboxylated to 
alamandine, a ligand for Mas-related G-protein-coupled receptor, member D 
(MrgD) (Figure 5) [47, 49]. Activation of Mas and MrgD receptors upon binding 
with Ang 1–7 and alamandine respectively promote anti-inflammatory responses via 
increasing the levels of anti-inflammatory cytokines IL-4 and IL-10 which have been 
disclosed in macrophages and microglial cells [50, 51]. ACE2 is considered as a key 
modulator of the RAAS via regulating physiological and pathological functions of 
cardiovascular, renal and pulmonary systems via counterbalancing the hypertensive, 
vasoconstrictor, hypertrophic and inflammatory effects of ACE [47, 52]. Thus, the 
ratio of Ang II/ACE2 plays an important role in the pathogenesis of several diseases 
including Covid-19 [47, 52, 53]. Two forms of ACE2 have been reported [44].  

Figure 4. 
Domain structure and function of angiotensin-converting enzyme 2. (Adapted from Bian et al. [44]).
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The full-length membrane-bound ACE2 (mACE2) is located on the apical surface of 
epithelial cells, differently from ACE, which is located between the apical and 
basolateral membranes in polarized cells [19, 44]. S1 trimeric subunit RBM of 
SARS-CoV-2 binds to the widely expressed mACE2 extracellular domain (Figures 2 
and 4) [8, 44]. The second form soluble ACE2 (sACE2) is shed into the circulation 
via Ang II/AT1R/ADAM17 axis (Figure 2) [8, 54, 55]. Although the levels of sACE2 
may be increased in plasma or urine in some pathological processes, such as hyper-
tension, the expression levels of mACE2 is not affected [45]. The majority of ACE2 is 
membrane-bound, and it has a compensatory balancing effect on the RAAS [49]. 
Ang II counterbalances the number of mACE2 via cellular internalization through 
endocytosis and degradation in the lysosomes, thus inhibits the antioxidative, 
anti-inflammatory, anti-hypertrophic and antifibrotic effects of ACE2 [55]. ACE2 
inactivity via shedding, cellular internalization and degradation at early stages of 
COVID-19 might have a disturbing effect on the RAAS homeostasis which leads to 
increased vascular permeability, fluid accumulation in the extra-alveolar spaces, 
oxidant/antioxidant imbalance and impaired tissue repair [56, 57]. COVID-19 
patients were found to suffer more frequently from severe endothelial injury due to 
the membrane damage by binding of SARS-CoV-2 [58]. Widespread thrombosis 
with microangiopathies were reported, and the COVID-19 patients were found 9 
times more likely to experience alveolar capillary microthrombi, and 2.7 times more 
likely to experience intussusceptive angiogenesis than the patients with flu [59]. This 
phenomenon of thrombosis and other vascular events in COVID-19 were considered 
more likely associated with abundance of ACE2 on the endothelial cell membranes 
which permit SARS-CoV-2 infection along the endothelium resulting endothelial 
damage, complement activation, release of Von-Willebrand factor from the endo-
thelial cells, hypercoagulability and microthrombi formation [58, 59]. ACE2 expres-
sion is regulated by genetic and epigenetic factors, body mass index, inflammatory 
cytokines, cigarette smoking, sex hormones and aging. ACE2 expression in different 

Figure 5. 
A classic model of RAAS showing deleterious and protective effects. (Adapted from Gul et al. [47]).
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tissues across human individuals were found to be high in Asian ethnic groups [60]. 
The upregulation of ACE2 expression was associated with the decline in the levels of 
estrogen and androgen, aging, inflammation and cigarette smoking [60, 61].

Cis-elements in the proximal promoters of ACE2 genes have binding sites for 
canonical interferon- (IFN) dependent transcription factors including ISRE/
STAT1, interferon regulatory factor 1 (IRF1), IRF3/7 and IRF8 [62]. Type I IFNs, 
and to a lesser extent type II and type III IFNs have been shown to upregulate ACE2 
expression especially in the human upper airway basal cells and bronchial cells [63]. 
Higher enrichment of ISRE/STAT1/3 and/or IRF3/7 binding sites were detected 
in single cell RNA-sequence data sets from the nasal epithelium and upper airway 
goblet secretory cells of the patients with the severe manifestations of COVID-19 
suggesting dual roles of ACE2 in the pathogenesis of SARS- COV-2 [64]. First, 
ACE2 serves as an innate immune receptor for SARS-CoV-2 which might compete 
with Ang II for the binding sites located at the carboxypeptidase domain of ACE2, 
and SARS-COV-2 gains access into the cells via ACE2 receptor. The similar func-
tional innate protein–protein interactions between the human toll-like receptors 
(TLRs) TLR1, TLR4, and TLR6 with a binding energy values of −57.3, −120.2, −68.4 
respectively, being the TLR4-S protein interaction strongest have been demon-
strated by the molecular docking [65]. Secondly, innate IFN responses against 
SARS-CoV-2 upregulate ACE2 expression on the cell membranes which augments 
anti-inflammatory responses via counter-balancing the effects of Ang II, but also 
allows further cellular entry of SARS-CoV-2. However; the balancing arm of the 
RAAS functioning as ADAM17 mediated ACE2 shedding and ADAM17 mediated 
TNF-α activation/hypermethylation of the CpG islands at the ACE gene promoter 
eventually decrease cellular entry of SARS-CoV-2 and ACE expression.

In summary, there are couple of balancing and counter-balancing factors exist-
ing in the pathogenesis of Covid-19. The main counter-balancing arm is between 
Renin/ACE/Ang II/ATR1 and ATR2/ACE2/Mas/MrgD. The second counter-balanc-
ing arm is between the innate immune responses including SARS- CoV-2 induced 
IFN response/increased membrane expression of ACE2, and ADAM17 mediated 
ACE2 shedding activated by ATR1/Ang II and TNF-α mediated downregulation 
of ACE expression. The second arm has its own feedback via TNF-α. However, the 
main arm counter-balancing the protective and deleterious effects of RAAS which 
is being abused by SARS- CoV-2 via competing with Ang II for binding to the ACE2 
receptor plays a crucial role in the pathogenesis of Covid-19 via the unopposed 
effects of Ang II including oxidative stress, inflammation, stimulation of innate and 
adaptive immunity via T-bet cells, thrombosis, angiogenesis and fibrosis.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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