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Preface

Nonlinear differential equations are ubiquitous in computational science and in 
engineering modeling, for example, in fluid dynamics, finance, quantum mechanics, 
material science, medical applications, and biology, among other areas. Nowadays, 
solving challenging problems in an industrial setting requires a continuous interplay 
between the theoretical analysis of such systems (investigation of the existence and 
stability of analytical solutions, study of bifurcation and of chaotic dynamics, etc.) 
and the development and use of sophisticated computational methods that can 
guide and support the theoretical findings by practical computer simulations.

This book is not a standard textbook on the solution of nonlinear differential 
equations. There is already an extensive treatment on the subject on the market. 
The purpose of this volume is to discuss some significant developments of the 
last years on the definition of new theories, models, computer algorithms, and 
applications relating to the solution of nonlinear differential equations in various 
scientific areas. It collects research papers written by leading world experts in the 
field, highlighting ongoing trends, progress, and open problems in this critically 
important area of mathematics and modern science.

The book includes contributions that contain both theory-oriented chapters and 
more applied ones. As such, it will lead to a deeper understanding and appreciation 
of the research produced in this fascinating field. Researchers, engineers, and 
graduate students in both pure and applied mathematics will benefit from reading 
the papers collected in this volume.

We express appreciation to IntechOpen for professional support and Author Service 
Manager Dr. Kristina Kardum Cvitan for her tireless help in the preparation of this 
book.

Bruno Carpentieri
Faculty of Computer Science,

Free University of Bozen-Bolzano,
Bolzano, Italy
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Chapter 1

Using the Boundary Element
Method to Simulate Visco-Elastic
Deformations of Rough Fractures
Hao Kang

Abstract

In many engineering applications, such as tribology and rock mechanics, it is
very important to understand the deformation of rough fractures to evaluate the
safety and profitability of the project. Since a lot of materials can be characterized as
visco-elastic materials, it is very significant to simulate the visco-elastic deforma-
tion of rough fractures. This chapter focuses on using the boundary element method
to simulate visco-elastic deformations of rough fractures. First, the principles and
procedures of the above-mentioned method will be introduced. Then, one example
will be given in detail. This example investigates the effect of surface geometry on
visco-elastic deformations of rough rock fractures under normal compressive
stresses. The rock fracture surfaces are assumed to be self-affine, and synthetic
rough surfaces are generated by systematically changing three surface roughness
parameters: the Hurst exponent, root mean square roughness, and mismatch length.
The results indicate that by decreasing the Hurst exponent or increasing the root
mean square roughness or increasing the mismatch length, the fracture mean aper-
ture increases, and the contact ratio (the number of contacting cells/total number of
cells) increases slower with time. Finally, the limitations and possible future
research directions will be briefly discussed.

Keywords: visco-elastic deformation, fast Fourier transform, Boussinesq’s solution,
linear viscoelasticity, rough fracture, self-affine

1. Introduction

A lot of natural and engineering materials can be categorized as visco-elastic
materials, such as rock, elastomers, and rubbers. In engineering applications, it is
very important to understand and simulate the visco-elastic deformation of rough
fractures. For example, in hydrocarbon extraction, we need to accurately simulate
the visco-elastic deformation of rock fractures to predict production rates. In bio-
medical devices, we need to simulate the visco-elastic deformation of artificial joints
to evaluate safety and effectiveness. Due to the geometrical complexity of rough
fractures and the time-dependent properties of engineering materials, it is
extremely difficult to obtain closed-form mathematical solutions. Thus, numerical
models are required to simulate the time-dependent behavior of rough fractures.

The boundary element method (BEM) has been extensively used in solving
rough surface contacting problems for distinct advantages compared with the
traditional finite element method (FEM). First, it only requires discretization and

1



Chapter 1

Using the Boundary Element
Method to Simulate Visco-Elastic
Deformations of Rough Fractures
Hao Kang

Abstract

In many engineering applications, such as tribology and rock mechanics, it is
very important to understand the deformation of rough fractures to evaluate the
safety and profitability of the project. Since a lot of materials can be characterized as
visco-elastic materials, it is very significant to simulate the visco-elastic deforma-
tion of rough fractures. This chapter focuses on using the boundary element method
to simulate visco-elastic deformations of rough fractures. First, the principles and
procedures of the above-mentioned method will be introduced. Then, one example
will be given in detail. This example investigates the effect of surface geometry on
visco-elastic deformations of rough rock fractures under normal compressive
stresses. The rock fracture surfaces are assumed to be self-affine, and synthetic
rough surfaces are generated by systematically changing three surface roughness
parameters: the Hurst exponent, root mean square roughness, and mismatch length.
The results indicate that by decreasing the Hurst exponent or increasing the root
mean square roughness or increasing the mismatch length, the fracture mean aper-
ture increases, and the contact ratio (the number of contacting cells/total number of
cells) increases slower with time. Finally, the limitations and possible future
research directions will be briefly discussed.

Keywords: visco-elastic deformation, fast Fourier transform, Boussinesq’s solution,
linear viscoelasticity, rough fracture, self-affine

1. Introduction

A lot of natural and engineering materials can be categorized as visco-elastic
materials, such as rock, elastomers, and rubbers. In engineering applications, it is
very important to understand and simulate the visco-elastic deformation of rough
fractures. For example, in hydrocarbon extraction, we need to accurately simulate
the visco-elastic deformation of rock fractures to predict production rates. In bio-
medical devices, we need to simulate the visco-elastic deformation of artificial joints
to evaluate safety and effectiveness. Due to the geometrical complexity of rough
fractures and the time-dependent properties of engineering materials, it is
extremely difficult to obtain closed-form mathematical solutions. Thus, numerical
models are required to simulate the time-dependent behavior of rough fractures.

The boundary element method (BEM) has been extensively used in solving
rough surface contacting problems for distinct advantages compared with the
traditional finite element method (FEM). First, it only requires discretization and

1



calculation on the boundaries of the calculation domain, which is two-dimensional.
On the contrary, FEM requires discretization and calculation for the whole calcula-
tion domain. As a result, to achieve the same stress calculation resolution, BEM
requires much fewer numbers of elements and therefore, much less calculation
time. In addition, since all the approximations are limited to the boundary, BEM has
better stress calculation accuracy compared with FEM.

In recent years, researchers have been combining the BEM and fast numerical
algorithms to achieve more efficient numerical simulations for contact problems.
Stanley and Kato [1] published the first paper using the fast Fourier Transform
(FFT) method to calculate the elastic deformation of rough surfaces under normal
stresses. The FFT method makes the BEM simulation more efficient because FFT
turns complicated convolution into simple matrix multiplication. Later, Polonsky
and Keer [2] proposed the conjugate gradient (CG) method and combined it with
the FFT method to further improve the efficiency. Liu et al. [3] improved the
drawbacks of the FFT method proposed by Stanley and Kato [1]. Then, the CG and
FFT methods have been applied to simulate plastic and visco-elastic deformations
of rough fractures. Jacq et al. [4] and Sahlin et al. [5] considered perfect plasticity to
simulate deformations of rough metal surfaces; and Wang et al. [6] considered
strain-hardening plasticity.

For visco-elasticity, Chen et al. [7] first used the CG and FFT method to simulate
visco-elastic deformations of rough fracture surfaces. They simulated three load-
driven scenarios: rigid sphere indenting into PMMA surface, contact area evolution
under constant load, and contact area evolution under harmonic cyclic load. Spinu
and Cerlinca [8] applied different cut-off values for contact pressure to account for
the plastic deformation of contacting asperities.

However, it appears that there is not much work that systematically simulates
the visco-elastic deformation of rock fracture surfaces. Kang et al. [9] reported that
for Musandam limestone fractures, the effect of mechanical compression on rock
fracture time-dependent deformation is non-negligible, and should be systemati-
cally investigated. In addition, previous articles suggest that the fracture surface
geometry has a significant effect on fracture time-dependent deformation. There-
fore, we should systematically study the effect of surface geometry on rock fracture
visco-elastic deformations.

Brown [10] proposed a simple probabilistic model to describe rock fracture sur-
face geometry. In his model, the rock fracture surface geometry can be completely
described by three key parameters: the Hurst exponent, the root mean square (RMS)
roughness, and the mismatch length scale. In this research, his model will be used to
generate synthetic fracture surface pairs, and the three key parameters will be
changed systematically. The numerical method proposed by Chen et al. [7] will be
used to simulate the visco-elastic deformation of synthetic fracture surfaces.

This chapter is organized as follows. Section 2 introduces and explains the princi-
ples and procedures of the numerical method. Section 3 provides a detailed example.
The method for generating synthetic rough surfaces is introduced, and the effect of
surface geometry parameters on the creep deformation is shown and discussed.
Section 4 mentions the limitations of this method. Section 5 summarizes the findings.

2. BEM solution for visco-elastic deformations of rough fractures

2.1 Method for calculating fracture elastic deformation

Before explaining the method for visco-elastic deformation calculation, it is
essential to introduce the method for elastic deformation calculation. The author
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has developed an in-house numerical code, which is similar to the algorithm pro-
posed by Polonsky and Keer [2]. In this section, only the key mathematical concepts
will be shown; the details can be found in their work [2]. It is worth noting that only
the compressive stress (stress normal to the fracture surface) is considered; the
shear stress (stress parallel to the fracture surface) is not considered.

First, the aperture (surface gap between two rough surfaces) distribution h (x,y)
needs to be defined:

h x, y
� � ¼ h0 x, yð Þ � ue x, yð Þ � δ (1)

where h0(x,y) is the initial aperture distribution, ue(x,y) is the elastic deforma-
tion of fracture surfaces, and δ is the rigid body displacement between two surfaces
under applied normal stress. Here, compressive stress and fracture closure are
defined as positive.

The boundary conditions are expressed as:

p x, y
� � ¼ 0 and h x, yð Þ>0 (2)

p x, y
� �

>0 and h x, yð Þ ¼ 0 (3)

where p(x,y) is the contacting stress (normal to the surface) acting on location
(x,y). Eqs. (2) and (3) indicate that the contacting stress is larger than zero at
contacting regions, and is zero at non-contacting regions.

Boussinesq and Cerrutti [11] stated that the vertical displacement ue (x,y) can be
calculated as:

ue x, yð Þ ¼
ðþ∞

�∞

ðþ∞

�∞
K x, y, x0, y0ð Þp x0, y0ð Þdx0dy0 (4)

where p(x0, y0) is the normal pressure acting on location (x0, y0), K is the
influence matrix, which represents the normal displacement at location (x, y)
caused by unit normal pressure acting on location (x0, y0), and ue (x,y) is the elastic
displacement at location (x, y). The influence matrix K can be expressed as:

K x, y, x0, y0ð Þ ¼ 1� ν

2πG
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q (5)

where G is the shear modulus, and v is the Poisson’s ratio.
As mentioned in the introduction section, it is difficult to obtain the analytical

solution for rough surface deformation under normal stress. However, the numeri-
cal solution can be obtained. To obtain the numerical solution, the fracture surface
area needs to be discretized into rectangular grids:

xi ¼ iΔx, i ¼ 1, 2, … ,N (6)

y j ¼ jΔy, j ¼ 1, 2, … ,M (7)

where xi, yj are x and y coordinates, respectively; N and M are total number of
grids in x- and y-direction, respectively; and Δx and Δy are the grid dimensions in
x- and y-direction, respectively. After discretization, the aperture distribution
function and boundary conditions can be expressed as:

hi,j ¼ h0ð Þi,j þ ueð Þi,j � δ (8)
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tion of fracture surfaces, and δ is the rigid body displacement between two surfaces
under applied normal stress. Here, compressive stress and fracture closure are
defined as positive.

The boundary conditions are expressed as:

p x, y
� � ¼ 0 and h x, yð Þ>0 (2)

p x, y
� �

>0 and h x, yð Þ ¼ 0 (3)

where p(x,y) is the contacting stress (normal to the surface) acting on location
(x,y). Eqs. (2) and (3) indicate that the contacting stress is larger than zero at
contacting regions, and is zero at non-contacting regions.

Boussinesq and Cerrutti [11] stated that the vertical displacement ue (x,y) can be
calculated as:

ue x, yð Þ ¼
ðþ∞

�∞

ðþ∞

�∞
K x, y, x0, y0ð Þp x0, y0ð Þdx0dy0 (4)

where p(x0, y0) is the normal pressure acting on location (x0, y0), K is the
influence matrix, which represents the normal displacement at location (x, y)
caused by unit normal pressure acting on location (x0, y0), and ue (x,y) is the elastic
displacement at location (x, y). The influence matrix K can be expressed as:

K x, y, x0, y0ð Þ ¼ 1� ν

2πG
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q (5)

where G is the shear modulus, and v is the Poisson’s ratio.
As mentioned in the introduction section, it is difficult to obtain the analytical

solution for rough surface deformation under normal stress. However, the numeri-
cal solution can be obtained. To obtain the numerical solution, the fracture surface
area needs to be discretized into rectangular grids:

xi ¼ iΔx, i ¼ 1, 2, … ,N (6)

y j ¼ jΔy, j ¼ 1, 2, … ,M (7)

where xi, yj are x and y coordinates, respectively; N and M are total number of
grids in x- and y-direction, respectively; and Δx and Δy are the grid dimensions in
x- and y-direction, respectively. After discretization, the aperture distribution
function and boundary conditions can be expressed as:

hi,j ¼ h0ð Þi,j þ ueð Þi,j � δ (8)
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pi,j ¼ 0 if hi,j >0 (9)

pi,j >0 if hi,j ¼ 0 (10)

Love [12] first discretized Eqs. (4) and (5) as:

ueð Þi,j ¼
XM

l¼1

XN

k¼1
Ki,k,j,l � pk,l (11)

Ki,k,j,l ¼ 1� ν

2πG
a ln

cþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2
p

dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2

p þ b ln
dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ d2

p

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p þ c ln
aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2
p

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p þ d ln
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ d2

p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2

p
 !

(12)

where

a ¼ xi � xk þ Δx=2, b ¼ xi � xk � Δx=2, c ¼ y j � yl þ Δy=2, d ¼ y j � yl � Δy=2 (13)

As mentioned before, Stanley and Kato [1] first the FFT method to solve Eq. (11)
to make the calculation more efficient. The FFT method turns complicated convo-
lution into simple matrix multiplication. By using the FFT method, Eq. (11)
becomes:

ueð Þi,j ¼ IFFT FFT Ki,k,j,l
� �� FFT pk,l

� �h i
(14)

where IFFT represents the inverse of Fourier transform. The FFT method
reduces the number of operations from N2 * M2 to N*M*log(N*M) [1]. Therefore,
when N and M are large, the FFT method can greatly reduce the calculation time.

The force balance over the entire fracture surface needs to be satisfied:

Ftotal ¼
XN

k¼1

XM

l¼1
pk,l (15)

Eqs. (8)–(10), (14), and (15) are solved iteratively using the CG method
proposed by Polonsky and Keer [2].

2.2 Method for calculating fracture visco-elastic deformation

As described before, Chen et al. [7] first combined the FFT and CG method to
simulate visco-elastic deformations of rough fractures. The author has developed an
in-house numerical code, which is similar to the algorithm described by Chen et al.
[7]. In this section, only the key mathematical aspects will be introduced; the rest
can be found in their work [7].

In this simulation, the rock materials are assumed to be linear viscoelastic.
Therefore, is it essential to introduce the concept of linear viscoelasticity first. For
linear viscoelastic materials, the stress/strain response scales linearly with the
strain/stress input, and the behavior follows the rule of linear superposition. Math-
ematically, the stress/strain at time t can be expressed as:

σ tð Þ ¼
ðt
0
E t� τð Þ dε τð Þ

dt
dτ (16)

ε tð Þ ¼
ðt
0
J t� τð Þ dσ τð Þ

dt
dτ (17)
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where J(t) and E(t) are the creep compliance function and the relaxation mod-
ulus function, respectively. J(t) represents the time-dependent strain change with a
step change in stress, and E(t) represents the time-dependent stress change with a
step change in strain. Based on Eq. (17), the Boussinesq and Cerrutti equation can
be modified to represent linear viscoelasticity by adding the creep compliance
function:

ue x, y, tð Þ ¼
ðt
0
J t� τð Þ ∂

∂τ

ðþ∞
�∞

ðþ∞
�∞

p x0, y0, τð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q dx0dy0

2
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3
75dτ (18)

In Eq. (18), the creep compliance function J(t-τ) replaces the term 1/2G.
Rearranging Eq. (18) gives:

ue x, y, tð Þ ¼
ðt
0

ðþ∞
�∞

ðþ∞
�∞

J t� τð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q ∂p x0, y0, τð Þ
∂τ

dx0dy0dτ (19)

Eq. (19) cannot be solved analytically for rough fracture surfaces. However, if
the time integration term can be de-coupled with the pressure integration term,
Eq. (19) will become a linear equation system, and can therefore be solved numer-
ically. To de-couple the time integration term, the time duration t is discretized into
Nt time steps. The time interval is uniform, and is termed as Δt. The time interval is
assumed to be sufficiently small that the pressure distribution field within each time
interval does not change. In addition, based on the fundamental theorem of calcu-
lus, the term ∂p(x0, y0, τ) dτ/ ∂τ can be substituted by a finite difference p(x0, y0,
τ + dτ) – p(x0, y0, τ). Therefore, Eq. (19) becomes:

ue x, y, αΔtð Þ ¼
Xα
α0¼1

ðþ∞
�∞

ðþ∞
�∞

J αΔt� α0Δtð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q p x0, y0, α0ð Þ � p x0, y0, α0 � 1ð Þ½ �dx0dy0
8><
>:

9>=
>;

(20)

where α = 1, 2, … , Nt.
In addition, within each time interval, the pressure distribution field does not

change. Therefore, the pressure distribution field can be removed from the inte-
gration term:

ue x, y, αΔtð Þ ¼
Xα
α0¼1

p x0, y0, α0ð Þ � p x0, y0,α0 � 1ð Þ½ �
ðþ∞
�∞

ðþ∞
�∞

J αΔt� α0Δtð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q dx0dy0

8><
>:

9>=
>;

(21)

Eq. (21) indicates that the time integration term is de-coupled with the pres-
sure integration term. The pressure integration term can then be discretized,
similar to Eq. (11). From Eqs. (4), (5), and (11), the Boussinesq equation can be
discretized as:

ðþ∞
�∞

ðþ∞
�∞

1� νð Þ
2πG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q dx0dy0 !DiscretizeXM

l¼1

XN

k¼1
Ki,k,j,l (22)

Based on Eq. (22), the integration part of Eq. (21) can then be discretized:
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pi,j ¼ 0 if hi,j >0 (9)

pi,j >0 if hi,j ¼ 0 (10)

Love [12] first discretized Eqs. (4) and (5) as:

ueð Þi,j ¼
XM

l¼1

XN

k¼1
Ki,k,j,l � pk,l (11)

Ki,k,j,l ¼ 1� ν

2πG
a ln
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p
 !

(12)

where

a ¼ xi � xk þ Δx=2, b ¼ xi � xk � Δx=2, c ¼ y j � yl þ Δy=2, d ¼ y j � yl � Δy=2 (13)

As mentioned before, Stanley and Kato [1] first the FFT method to solve Eq. (11)
to make the calculation more efficient. The FFT method turns complicated convo-
lution into simple matrix multiplication. By using the FFT method, Eq. (11)
becomes:

ueð Þi,j ¼ IFFT FFT Ki,k,j,l
� �� FFT pk,l

� �h i
(14)

where IFFT represents the inverse of Fourier transform. The FFT method
reduces the number of operations from N2 * M2 to N*M*log(N*M) [1]. Therefore,
when N and M are large, the FFT method can greatly reduce the calculation time.

The force balance over the entire fracture surface needs to be satisfied:

Ftotal ¼
XN

k¼1

XM

l¼1
pk,l (15)

Eqs. (8)–(10), (14), and (15) are solved iteratively using the CG method
proposed by Polonsky and Keer [2].

2.2 Method for calculating fracture visco-elastic deformation

As described before, Chen et al. [7] first combined the FFT and CG method to
simulate visco-elastic deformations of rough fractures. The author has developed an
in-house numerical code, which is similar to the algorithm described by Chen et al.
[7]. In this section, only the key mathematical aspects will be introduced; the rest
can be found in their work [7].

In this simulation, the rock materials are assumed to be linear viscoelastic.
Therefore, is it essential to introduce the concept of linear viscoelasticity first. For
linear viscoelastic materials, the stress/strain response scales linearly with the
strain/stress input, and the behavior follows the rule of linear superposition. Math-
ematically, the stress/strain at time t can be expressed as:

σ tð Þ ¼
ðt
0
E t� τð Þ dε τð Þ

dt
dτ (16)

ε tð Þ ¼
ðt
0
J t� τð Þ dσ τð Þ

dt
dτ (17)
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where J(t) and E(t) are the creep compliance function and the relaxation mod-
ulus function, respectively. J(t) represents the time-dependent strain change with a
step change in stress, and E(t) represents the time-dependent stress change with a
step change in strain. Based on Eq. (17), the Boussinesq and Cerrutti equation can
be modified to represent linear viscoelasticity by adding the creep compliance
function:

ue x, y, tð Þ ¼
ðt
0
J t� τð Þ ∂

∂τ

ðþ∞
�∞

ðþ∞
�∞

p x0, y0, τð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q dx0dy0
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3
75dτ (18)

In Eq. (18), the creep compliance function J(t-τ) replaces the term 1/2G.
Rearranging Eq. (18) gives:

ue x, y, tð Þ ¼
ðt
0

ðþ∞
�∞

ðþ∞
�∞

J t� τð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q ∂p x0, y0, τð Þ
∂τ

dx0dy0dτ (19)

Eq. (19) cannot be solved analytically for rough fracture surfaces. However, if
the time integration term can be de-coupled with the pressure integration term,
Eq. (19) will become a linear equation system, and can therefore be solved numer-
ically. To de-couple the time integration term, the time duration t is discretized into
Nt time steps. The time interval is uniform, and is termed as Δt. The time interval is
assumed to be sufficiently small that the pressure distribution field within each time
interval does not change. In addition, based on the fundamental theorem of calcu-
lus, the term ∂p(x0, y0, τ) dτ/ ∂τ can be substituted by a finite difference p(x0, y0,
τ + dτ) – p(x0, y0, τ). Therefore, Eq. (19) becomes:

ue x, y, αΔtð Þ ¼
Xα
α0¼1

ðþ∞
�∞

ðþ∞
�∞

J αΔt� α0Δtð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q p x0, y0, α0ð Þ � p x0, y0, α0 � 1ð Þ½ �dx0dy0
8><
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9>=
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(20)

where α = 1, 2, … , Nt.
In addition, within each time interval, the pressure distribution field does not

change. Therefore, the pressure distribution field can be removed from the inte-
gration term:

ue x, y, αΔtð Þ ¼
Xα
α0¼1

p x0, y0, α0ð Þ � p x0, y0,α0 � 1ð Þ½ �
ðþ∞
�∞

ðþ∞
�∞

J αΔt� α0Δtð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q dx0dy0

8><
>:

9>=
>;

(21)

Eq. (21) indicates that the time integration term is de-coupled with the pres-
sure integration term. The pressure integration term can then be discretized,
similar to Eq. (11). From Eqs. (4), (5), and (11), the Boussinesq equation can be
discretized as:

ðþ∞
�∞

ðþ∞
�∞

1� νð Þ
2πG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q dx0dy0 !DiscretizeXM

l¼1

XN

k¼1
Ki,k,j,l (22)

Based on Eq. (22), the integration part of Eq. (21) can then be discretized:

5

Using the Boundary Element Method to Simulate Visco-Elastic Deformations of Rough…
DOI: http://dx.doi.org/10.5772/intechopen.96229



ðþ∞
�∞

ðþ∞
�∞

J αΔt� α0Δtð Þ 1� νð Þ
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q dx0dy0 !DiscretizeXM

l¼1

XN

k¼1
2GJ α� α0ð ÞΔtð ÞKi,k,j,l (23)

Therefore, Eq. (21) can be discretized as:

ue i, j, αΔtð Þ ¼
Xα
α0¼1

XM

l¼1

XN

k¼1
2GJ α� α0ð ÞΔtð ÞKi,k,j,l pk,l,α0 � pk,l,α0�1

� �
(24)

To implement FFT, Eq. (24) can be decoupled into two equations:

ue i, j, αΔtð Þ ¼
Xα
α0¼1

ueð Þα0 (25)

and

ueð Þα0 ¼
XM

l¼1

XN

k¼1
2GJ α� α0ð ÞΔtð ÞKi,k,j,l pk,l,α0 � pk,l,α0�1

� �
(26)

Eq. (26) can be solved by the FFT method, similar to Eqs. (13) and (14):

ueð Þα0 ¼ IFFT FFT 2GJ α� α0ð ÞΔtð ÞKi,k,j,l
� �� FFT pk,l,α0 � pk,l,α0�1

� �h i
(27)

Within each time step, Eqs. (8)–(10), (15), (25), and (27) are solved using the
CGmethod. The pressure distribution field is obtained and stored. Then, a new time
step will be added (α will be increased by one), and the new deformation and
pressure fields will be solved based on the historical pressure fields. Figure 1 sum-
marizes the main calculation algorithm based on the above mathematical concepts.

2.3 Model validation

Before simulating visco-elastic deformations of rough rock fractures, it is essen-
tial to validate the numerical code against analytical solutions. In this research, the
analytical solutions provided by Radok and Lee [14] will be used for validation. In
their solutions, a rigid spherical indenter is indented into a flat visco-elastic surface;
and the visco-elastic models for the flat surface are the Maxwell and Standard
Linear Solid (SLS) model. Figure 2 illustrates the geometry setup for the analytical
solution, and Figure 3 shows the concepts of the Maxwell and SLS model.

The Maxwell model consists of a dashpot and a spring. The dashpot represents
viscosity, with a viscosity of η; the spring represents elasticity, with a shear modulus
of G. Under constant stress σ0, the strain can be obtained:

ε tð Þ ¼ σ0
1
G
þ t
η

� �
(28)

Eq. (28) implies that under constant stress, the strain rate does not change with
time. The creep compliance can be expressed as:

J tð Þ ¼ 1
G
þ t
η

(29)
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Figure 2.
Geometry setup for the analytical solution (Kang et al. [13]). R is the radius of the spherical rigid indenter, P is
the total load, δ is the indentation depth, t is the time duration, and a(t) is the radius of the contacting region.

Figure 1.
Summary of the calculation algorithm (Kang et al. [13]).

Figure 3.
Concepts of the Maxwell and SLS model (Kang et al. [13]). (a): Schematic of the Maxwell model; (b):
Schematic of the SLS model.
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Therefore, Eq. (21) can be discretized as:

ue i, j, αΔtð Þ ¼
Xα
α0¼1

XM

l¼1

XN

k¼1
2GJ α� α0ð ÞΔtð ÞKi,k,j,l pk,l,α0 � pk,l,α0�1

� �
(24)

To implement FFT, Eq. (24) can be decoupled into two equations:

ue i, j, αΔtð Þ ¼
Xα
α0¼1

ueð Þα0 (25)

and

ueð Þα0 ¼
XM

l¼1

XN

k¼1
2GJ α� α0ð ÞΔtð ÞKi,k,j,l pk,l,α0 � pk,l,α0�1

� �
(26)

Eq. (26) can be solved by the FFT method, similar to Eqs. (13) and (14):
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(27)

Within each time step, Eqs. (8)–(10), (15), (25), and (27) are solved using the
CGmethod. The pressure distribution field is obtained and stored. Then, a new time
step will be added (α will be increased by one), and the new deformation and
pressure fields will be solved based on the historical pressure fields. Figure 1 sum-
marizes the main calculation algorithm based on the above mathematical concepts.

2.3 Model validation

Before simulating visco-elastic deformations of rough rock fractures, it is essen-
tial to validate the numerical code against analytical solutions. In this research, the
analytical solutions provided by Radok and Lee [14] will be used for validation. In
their solutions, a rigid spherical indenter is indented into a flat visco-elastic surface;
and the visco-elastic models for the flat surface are the Maxwell and Standard
Linear Solid (SLS) model. Figure 2 illustrates the geometry setup for the analytical
solution, and Figure 3 shows the concepts of the Maxwell and SLS model.

The Maxwell model consists of a dashpot and a spring. The dashpot represents
viscosity, with a viscosity of η; the spring represents elasticity, with a shear modulus
of G. Under constant stress σ0, the strain can be obtained:

ε tð Þ ¼ σ0
1
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� �
(28)

Eq. (28) implies that under constant stress, the strain rate does not change with
time. The creep compliance can be expressed as:

J tð Þ ¼ 1
G
þ t
η

(29)
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Figure 2.
Geometry setup for the analytical solution (Kang et al. [13]). R is the radius of the spherical rigid indenter, P is
the total load, δ is the indentation depth, t is the time duration, and a(t) is the radius of the contacting region.

Figure 1.
Summary of the calculation algorithm (Kang et al. [13]).

Figure 3.
Concepts of the Maxwell and SLS model (Kang et al. [13]). (a): Schematic of the Maxwell model; (b):
Schematic of the SLS model.
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Another parameter, the relaxation time T, is defined as:

T ¼ η=G (30)

In the numerical simulation, Eq. (29) will be implemented into Eq. (27), and the
displacement and pressure field will be solved as described in Sections 2.1 and 2.2.
For the geometry setup shown in Figure 2, the analytical solution for the contacting
region radius and pressure field can be obtained:

p t, rð Þ ¼ 2
πR 1� υð Þ

ðt
0
Ge� t�t0ð ÞG=η d

dt0
a2 t0ð Þ � r2
� �1=2

dt0 (31)

and

a tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� νð ÞRP

4
1
G
þ t
η

� �
3

s
(32)

where p is the pressure field, t is the total time duration, υ is the Poisson’s ratio,
and r is the distance from the center of the contacting region.

The SLS model consists of one dashpot and two springs. The dashpot represents
viscosity, with a viscosity η; the two springs represent elasticity, with a shear modulus
of G1 and G2, respectively. Under constant stress σ0, the strain can be obtained:

σ tð Þ ¼ G1G2

G1 þ G2
ε tð Þ þ G1η

G1 þ G2

dε tð Þ
dt

(33)

Figure 4.
Numerical and analytical solutions for the SLS model (Kang et al. [13]).

8

Recent Developments in the Solution of Nonlinear Differential Equations

The creep compliance J(t) is expressed as:

J tð Þ ¼ 1
G1
þ 1� e�tG2=η

G2
(34)

The relaxation time T is defined as:
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where p is the pressure field, t is the total time duration, υ is the Poisson’s ratio,
and r is the distance from the center of the contacting region.
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Johnson [15] solved Eqs. (31), (32), (36), and (37), Figures 4 and 5 compare the
numerical and analytical solutions for the SLS and Maxwell models, respectively.
The solid lines are the numerical solutions obtained by the author, and the dashed
lines are the analytical solutions solved by Johnson [15]. In Figures 4 and 5, rh is the
contacting region at time zero, ph is the maximum contacting pressure at time zero,
and T is the relaxation time.

Figures 4 and 5 indicate the deviation between the numerical and analytical
results is less than 10%. Therefore, the numerical code can be used to simulate the
visco-elastic deformations of rough fractures. For the two validation cases, the
numerical simulation accuracy is not strongly dependent on the total number of
elements, but on the time interval Δt. The deviation between numerical and ana-
lytical solutions will be smaller if the time interval Δt is reduced.

3. One example: visco-elastic deformations of rough rock fractures

3.1 Brief introduction of Brown’s (1995) model

In this chapter, synthetic fracture surface pairs are generated based on Brown’s
model [10]. Brown’s probabilistic model assumes that the surface is self-affine, and
the surface height distribution follows Gaussian distribution [10]. The surface
geometry can be completely described by three parameters: the Hurst exponent H,
the mismatch length λc, and the root mean square roughness RMS.

Mathematically, a self-affine surface is defined as:

z xð Þ � ε�Hz εxð Þ (38)

where H is the Hurst exponent, z is the surface height, and ε is a constant for
scaling at the x-direction. The H value is between 0 and 1, and it describes local
roughness. A smaller H value corresponds to a rougher local surface profile.

The H value can be obtained from the power spectrum of surface height. The
power spectrum of a surface can be obtained by decomposing the surface profile
into a series of sinusoidal waves via Fourier transform, and each sinusoidal wave has
its own amplitude A, wavelength λ, and phase. Figure 6 shows the schematic of the
decomposition process. The power (A2) is defined as the square of the amplitude A;
and the plot of power versus the wavelength number (the inverse of wavelength,
which is 2π/λ) is defined as the power spectrum. Figure 7 shows the schematic of
power spectrum.

For a self-affine fracture surface, the power C (=A2) can be related to the
wavelength number q (=2π/λ) as:

C qð Þ � q�2 1þHð Þ (39)

Figure 6.
Schematic of wave decomposition via Fourier transform (Kang et al. [13]).
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In Figure 7, the q has an upper bound and a lower bound. For the lower bound,
qmin = 2π / λL, where λL is the surface dimension; for the upper bound, qmax = 2π/λ1,
where λ1 is the surface measurement resolution.

The second parameter is the mismatch length, λc. As illustrated in Figure 6, each
wave component has its own wavelength λ. Glover et al. [16] and Brown [10, 17, 18]
stated that for most natural rock joints, the two surfaces have relative shear dis-
placements. At long wavelengths, the wave components match well; at short wave-
lengths, the wave components are not identical. Based on the above observation,
Brown [10] proposed a parameter: critical wavelength λc, which is also called the
mismatch length scale. Brown [10] assumed that above the mismatch wavelength,
the decomposed wave components of two surfaces match perfectly; they have the
same amplitudes, wavelengths, and phases. On the contrary, below the mismatch
wavelength, the decomposed wave components of two surfaces do not match; they
have the same amplitudes and wavelengths, but the phases are independent.
Figure 8 illustrates the concept of the mismatch wavelength.

The third parameter is the root mean square roughness, RMS. It represents the
absolute scale of surface asperity elevation. Mathematically, the RMS is defined as:

σ2 ¼
ðqmax

qmin

C qð Þdq (40)

Figure 7.
Schematic of a power spectrum (Kang et al. [13]).

Figure 8.
Illustration of the mismatch wavelength (Kang et al. [13]).
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where C is the power, q is the wavelength number, and σ is the RMS value.
When generating the synthetic surface, the surface heights are normalized by its
own RMS value, σini, and then multiplied by the designated RMS value, σdes:

zdes ¼ zini
σdes
σini

(41)

where zini is the initial surface height and zdes is the surface height after linear
scaling. In this chapter, only the key mathematical concepts of Brown’s [10] model
is introduced; other details can be found in [10].

3.2 Generated synthetic surface pairs

Brown [10] measured the Hurst exponent H, mismatch length λc, and RMS for
23 natural rock joints. His measurement results imply that the H value is normally
between 0.5 and 1.0; the normalized λc value (λc/fracture profile length) is normally
between 0.02 and 0.2, and the normalized RMS value (RMS/fracture profile length)
is normally between 0.005 and 0.015. Based on the above conclusion, seven syn-
thetic fracture surface pairs are generated, with different H, λc, and RMS values.
Table 1 summarizes the parameters of the seven synthetic surface pairs. It is worth
noting that surface pair No. 2 is the reference surface pair.

Table 1 shows that between surface pairs 1, 2, and 3, the H value is varied;
between surface pairs 2, 4, and 5, the λc value is varied; between surface pairs 2, 6,
and 7, the RMS value is varied. For each surface pair, the aperture distribution field
can be plotted. Figure 9 plots the aperture fields for surface pairs 1, 2, and 3;
Figure 10 plots the aperture fields for surface pairs 2, 4, and 5, and Figure 11 plots
the aperture fields for surface pairs 2, 6, and 7.

Based on Figures 9–11, we have the following observations:

1.According to Figure 9, when H increases, the average and standard
deviation of the aperture decreases;

2.According to Figure 10, when λc deceases, the average and standard
deviation of aperture decreases;

3.According to Figure 11, the average and standard deviation of aperture
scales linearly with the RMS value.

Surface Pair
No.

Profile length L
(mm)

H λc RMS

λc/L Absolute value
(μm)

RMS/L Absolute value
(μm)

1 10 0.6 0.1 1000 0.005 50

2 10 0.8 0.1 1000 0.005 50

3 10 1.0 0.1 1000 0.005 50

4 10 0.8 0.2 2000 0.005 50

5 10 0.8 0.3 3000 0.005 50

6 10 0.8 0.1 1000 0.010 100

7 10 0.8 0.1 1000 0.015 150

Table 1.
The parameters of the seven synthetic surface pairs.
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Figure 9.
Aperture fields for different H values (Kang et al. [13]). (a): aperture field for surface pair 1; (b): aperture
field for surface pair 2; (c): aperture field for surface pair 3. The color bar scales are identical.

Figure 10.
Aperture fields for different λc values (Kang et al. [13]). (a): aperture field for surface pair 2; (b): aperture
field for surface pair 4; (c): aperture field for surface pair 5. The color bar scales are identical.
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Figure 9.
Aperture fields for different H values (Kang et al. [13]). (a): aperture field for surface pair 1; (b): aperture
field for surface pair 2; (c): aperture field for surface pair 3. The color bar scales are identical.
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Aperture fields for different λc values (Kang et al. [13]). (a): aperture field for surface pair 2; (b): aperture
field for surface pair 4; (c): aperture field for surface pair 5. The color bar scales are identical.
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Table 2 summarizes the mean and standard deviation of aperture for each
surface pair. In the numerical code, each calculated aperture field (shown in
Figures 9–11) is considered as the initial aperture field.

3.3 Creep simulation results for the Maxwell model

The author uses the Maxwell model to calculate the visco-elastic deformation of
seven synthetic surface pairs. The mechanical properties of Vaca Muerta Shale
measured by Mighani et al. [19] are used as the input parameters, and those prop-
erties are summarized in Table 3.

Figure 11.
Aperture fields for different RMS values (Kang et al. [13]). (a): aperture field for surface pair 2; (b): aperture
field for surface pair 6; (c): aperture field for surface pair 7. The color bar scales scale linearly with the RMS
value.

Surface pair
No.

H λc
(μm)

RMS
(μm)

Average aperture
(μm)

Standard deviation of aperture
(μm)

1 0.6 1000 50 63.41 14.29

2 0.8 1000 50 37.30 8.57

3 1.0 1000 50 21.89 5.14

4 0.8 2000 50 55.94 15.01

5 0.8 3000 50 66.10 20.12

6 0.8 1000 100 74.59 17.15

7 0.8 1000 150 111.89 25.72

Table 2.
The average and standard deviation of seven synthetic surface pairs.
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Before showing the results, two parameters are introduced: macroscopic stress σ
and contact ratio:

1.The macroscopic stress σ = total force applied to the fracture/fracture surface
area;

2.Contact ratio = 100 * (the number of grids in contact/total number of grids).

Figures 12 and 13 show the mean aperture and contact ratio evolving with time
for seven synthetic surface pairs, respectively. The total time duration is 2τ, and the
macroscopic stress σ = 10 MPa. The initial changes of the mean aperture and contact
ratio correspond to fracture elastic deformation.

Based on Figures 12 and 13, several conclusions can be drawn:

1.As H decreases, the mean aperture increases, and the contact ratio increases
slower with time;

Parameters Value

Shear modulus, G (GPa) 7.0

Poisson’s ratio, υ 0.25

Viscosity, η (GPa*s) 2.0 � 107

Relaxation time, τ = η / G (s) 2.857 � 106

Table 3.
Input parameters for the Maxwell model.

Figure 12.
Mean aperture changing with time (Kang et al. [13]). The time duration is normalized by τ.
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Figure 13.
Contact ratio changing with time (Kang et al. [13]). The time duration is normalized by τ.

Parameters Average aperture Contact ratio

Initial value Decrease rate Initial value Increase rate

H↓ ↑ ↑ ↓ ↓

λc↑ ↑ ↑ ↓ ↓

RMS↑ ↑ ↑ ↓ ↓

Table 4.
Effect of surface parameters on the mean aperture and contact ratio.

Figure 14.
Contact region and local contacting stress evolution before and after the creep stage (Kang et al. [13]). (a):
before the creep stage; (b): after the creep stage. In both x- and y-directions, the number of grids is 512. The
contact area increase is qualitatively shown.
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2.As RMS increases, the mean aperture increases, and the contact ratio increases
slower with time;

3.As λc increases, the mean aperture increases, and the contact ratio increases
slower with time.

4.Under current macroscopic stress, time duration, and surface parameters, the
contact ratio is generally less than 9.5%.

Table 4 summarizes the effect of surface parameters on the mean aperture and
contact ratio.

Figure 14 shows the contact region and local contacting stress evolution of
surface pair 3 before and after the creep stage. The macroscopic stress is 10 MPa and

Parameters Value

Shear modulus, G1 (GPa) 7.0

Shear modulus, G2 (GPa) 7.0

Poisson’s ratio, υ 0.25

Viscosity, η (GPa*s) 2.0 � 107

Relaxation time, τ = η / G2 (s) 2.857 � 106

Table 5.
Input parameters for the SLS model.

Figure 15.
Mean aperture changing with time (Kang et al. [13]). The time duration is normalized by τ.
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Table 4.
Effect of surface parameters on the mean aperture and contact ratio.

Figure 14.
Contact region and local contacting stress evolution before and after the creep stage (Kang et al. [13]). (a):
before the creep stage; (b): after the creep stage. In both x- and y-directions, the number of grids is 512. The
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Figure 15.
Mean aperture changing with time (Kang et al. [13]). The time duration is normalized by τ.
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the creep time duration is 2τ. The colored regions and white regions correspond to
the contacting regions and non-contacting regions, respectively. The color bar scale
is 2000 MPa. After the creep stage, the area of contacting regions becomes larger,
and the local contacting stress reduces. However, even after the creep stage, the
contact ratio is still less than 9.5%. Under the same time duration, if η is reduced,
the contact area will increase more rapidly.

3.4 Creep simulation results for the SLS model

The author also uses the SLS model to calculate the visco-elastic deformation of
seven synthetic surface pairs. The mechanical properties of Vaca Muerta Shale
measured by Mighani et al. [19] are used as the input parameters, and those prop-
erties are summarized in Table 5.

Parameters Average aperture Contact ratio

Initial value Decrease rate Initial value Increase rate

H↓ ↑ ↑ ↓ ↓

λc↑ ↑ ↑ ↓ ↓

RMS↑ ↑ ↑ ↓ ↓

Table 6.
Effect of surface parameters on the mean aperture and contact ratio.

Figure 16.
Contact ratio changing with time (Kang et al. [13]). The time duration is normalized by τ.
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Figures 15 and 16 show the mean aperture and contact ratio evolving with time
for seven synthetic surface pairs, respectively. The total time duration is 5τ, and the
macroscopic stress σ = 10 MPa. The total time duration is extended from 2τ to 5τ to
show the time-decaying creep rate. The initial changes of the mean aperture and
contact ratio correspond to fracture elastic deformation.

Based on Figures 15 and 16, several conclusions can be drawn:

1.As H decreases, the mean aperture increases, and the contact ratio increases
slower with time;

2.As RMS increases, the mean aperture increases, and the contact ratio increases
slower with time;

3.As λc decreases, the mean aperture increases, and the contact ratio increases
slower with time.

4.Under current macroscopic stress, time duration, and surface parameters, the
contact ratio is generally less than 7.0%.

5.Under current macroscopic stress, time duration, and surface parameters, the
creep rate decreases significantly with time. This is mainly because the SLS
model assumes an exponentially decaying creep rate.

Table 6 summarizes the effect of surface parameters on the mean aperture and
contact ratio.

Figure 17 shows the contact region and local contacting stress evolution of
surface pair 3 before and after the creep stage. The macroscopic stress is 10 MPa and
the creep time duration is 5τ. The colored regions and white regions correspond to
the contacting regions and non-contacting regions, respectively. The color bar scale
is 2000 MPa. After the creep stage, the area of contacting regions becomes larger,
and the local contacting stress reduces. However, even after the creep stage, the
contact ratio is still less than 7.0%. Under the same time duration, if η is reduced,
the contact area increase will increase more rapidly.

Figure 17.
Contact region and local contacting stress evolution before and after the creep stage (Kang et al. [13]). (a):
before the creep stage; (b): after the creep stage. In both x- and y-directions, the number of grids is 512. The
contact area increase is qualitatively shown.
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the creep time duration is 2τ. The colored regions and white regions correspond to
the contacting regions and non-contacting regions, respectively. The color bar scale
is 2000 MPa. After the creep stage, the area of contacting regions becomes larger,
and the local contacting stress reduces. However, even after the creep stage, the
contact ratio is still less than 9.5%. Under the same time duration, if η is reduced,
the contact area will increase more rapidly.
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4. Limitations of the method

In this numerical method, the contacting asperities deform visco-elastically, and
there is no upper limit on the local contacting stress. For some synthetic surfaces,
the contacting stress in a few cells exceed 1.3 GPa. In reality, under such high
contacting stresses, the asperities may deform plastically. Ignoring the plastic
deformation will underestimate the contact ratio and overestimate the local
contacting stress. In addition, asperity breakage is ignored in this numerical
method. Under high contacting stresses, asperities may break, which will further
change the contacting regions and the contacting stress distribution [20]. Further-
more, the effect of shear stress on fracture visco-elastic deformations is also not
considered. In engineering applications (especially in oil and gas production), frac-
tures may subject to shear stress, which may significantly change the visco-elastic
deformations.

5. Conclusions

This chapter explains how to use the boundary element method to calculate
visco-elastic deformations of rough fractures. Fast numerical algorithms (CG and
FFT) are implemented to further improve the efficiency. In addition, one example,
which investigates the effect of surface geometry on visco-elastic deformations of
rough rock fractures, is given. In this example, the author builds two in-house
numerical codes: one code generates synthetic fracture surface pairs using Brown’s
probabilistic model [10], and the other simulates the visco-elastic deformations of
the synthetic surface pairs. Seven synthetic surface pairs are generated by system-
atically changing the values of the root mean square roughness RMS (50 μm,
100 μm, and 150 μm), mismatch length λc (1000 μm, 2000 μm, and 3000 μm), and
Hurst exponent H (0.6, 0.8, and 1.0). Then, the author simulates the visco-elastic
deformation of the seven surface pairs by using the Standard Linear Solid (SLS) and
the Maxwell model. The following key conclusions can be drawn:

1.As RMS increases, the average aperture increases, and the contact ratio
increases slower with time;

2.As λc increases, the average aperture increases, and the contact ratio increases
slower with time;

3.As H decreases, the average aperture increases, and the contact ratio increases
slower with time;

4.For the macroscopic stress (10 MPa), time durations (5τ for the SLS model and
2τ for the Maxwell model), and the surface roughness parameters (RMS
between 50 and 150 μm, λc between 1000 and 3000 μm, H between 0.6 and
1.0) used in the examples, the contact ratio is less than 9.5%.

While the results are useful, future work would be helpful. First, more surface
roughness parameter values can be used so a quantitative relationship between
surface parameters and contact ratio or average aperture can be obtained. In addi-
tion, other visco-elastic models, such as the Burgers model and the Power Law
model, can be implemented. Furthermore, in this simulation, the plastic deforma-
tion of contacting asperities is not considered. As a result, the local contacting stress
may be overestimated. The plastic deformation of contacting asperities can be
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considered so the results can be more realistic. Last but not least, the effect of shear
stress can be simulated to make the results more applicable.
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Chapter 2

Asymptotic Behavior by
Krasnoselskii Fixed Point Theorem
for Nonlinear Neutral Differential
Equations with Variable Delays
Benhadri Mimia

Abstract

In this paper, we consider a neutral differential equation with two variable
delays. We construct new conditions guaranteeing the trivial solution of this neutral
differential equation is asymptotic stable. The technique of the proof based on the
use of Krasnoselskii’s fixed point Theorem. An asymptotic stability theorem with a
necessary and sufficient condition is proved. In particular, this paper improves
important and interesting works by Jin and Luo. Moreover, as an application, we
also exhibit some special cases of the equation, which have been studied extensively
in the literature.

Keywords: fixed points theory, stability, neutral differential equations, integral
equation, variable delays

1. Introduction

For more than one hundred years, Liapunov’s direct method has been very
effectively used to investigate the stability problems of a wide variety of ordinary,
functional, and partial differential, integro-differential equations. The success of
Liapunov’s direct method depends on finding a suitable Liapunov function or
Liapunov functional. Nevertheless, the applications of this method to problems of
stability in differential and integro-differential equations with delays have encoun-
tered serious difficulties if the delays are unbounded or if the equation has
unbounded terms (see [1–3]). Therefore, new methods and techniques are needed
to address those difficulties. Recently, Burton and his co-authors have applied fixed
point theory to investigate the stability, which shows that some of these difficulties
vanish when applying fixed point theory [1–22]. It turns out that the fixed point
method is becoming a powerful technique in dealing with stability problems for
indeterministic scenes (see for instance [16, 17, 21, 23]).

For example, Luo [16] studied the mean-square asymptotic stability for a class of
linear scalar neutral stochastic differential equations by means of Banach’s fixed
point theory. The author did not use Lyapunov’s method; he got interesting results
for the stability even when the delay is unbounded. The author also obtained
necessary and sufficient conditions for the asymptotic stability. Moreover, it
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possesses the advantage that it can yield the existence, uniqueness, and stability
criteria of the considered system in one step.

Neutral delay differential equations are often used to describe the dynamical
systems which not only depend on present and past states but also involve deriva-
tives with delays, (see [24–28]). It has been applied to describe numerous intricate
dynamical systems, such as population dynamics [18], mathematical biology [27],
heat conduction, and engineering [28], etc.

In particular, qualitative analysis for neutral type equations such as stability and
periodicity, oscillation theory, has been an active field of research, both in the
deterministic and stochastic cases. We can refer to [6, 7, 13, 15–17, 19–21, 23,
29–31], and the references cited therein.

With this motivation, in this paper, we aim to discuss the boundedness and
stability for neutral differential equations with two delays (1). It is worth noting that
our research technique is based on Krasnoselskii’s fixed point theory. We will give
some new conditions to ensure that the zero solution is asymptotically stable.
Namely, a necessary and sufficient condition ensuring the asymptotic stability is
proved. Our findings generalize and improve some results that can be found in the
literature. In our result, the delays can be unbounded and the coefficients in the
equations can change their sign. This paper is organized as follows. In Section 1
we present some basic preliminaries and the form of the neutral functional
differential equations which will be studied. In Section 2, we present the inversion of
the equation and we state Krasnoselskii’s fixed point theorem. The boundedness and
stability of the neutral differential Eq. (1) are discussed in Section 3 via Krasnoselskii’s
fixed point theory. Finally, in Section 4 an example is given to illustrate our theory
and our method, also to compare our result by using the fixed point theory with the
known results by Ardjouni and Djoudi [6].

In this work, we consider the following class of neutral differential equations
with variable delays,

x0 tð Þ ¼ �a tð Þx t� τ1 tð Þð Þ þ c tð Þx0 t� τ1 tð Þð Þ þ b tð Þxσ t� τ2 tð Þð Þ, t≥ t0, (1)

denote x tð Þ∈ the solution to (1) with the initial condition

x tð Þ ¼ ψ tð Þ for t∈ m t0ð Þ, t0½ �, (2)

where ψ ∈C m t0ð Þ, t0½ �,ð Þ, σ ∈ 0, 1ð Þ is a quotient with odd positive integer
denominator. We assume that a, b∈C þ,ð Þ, c∈C1 þ,ð Þ and τi ∈C þ,þð Þ
satisfy t� τi tð Þ ! ∞ as t! ∞, i ¼ 1, 2 and for each t0 ≥0,

mi t0ð Þ ¼ inf t� τi tð Þ, t≥ t0f g,m t0ð Þ ¼ min mi t0ð Þ, i ¼ 1, 2f g: (3)

Special cases of Eq. (1) have been recently considered and studied under various
conditions and with several methods. Particularly, in the case σ ¼ 1=3, and c tð Þ ¼ 0,
in [14] Jin and Luo using the fixed point theorem of Krasnoselskii obtained bound-
edness and asymptotic stability for the following equation:

x0 tð Þ ¼ �a tð Þx t� τ1 tð Þð Þ þ b tð Þx1
3 t� τ2 tð Þð Þ, t≥0: (4)

More precisely, the following result was established.
Theorem A (Jin and Luo [14]). Let τ1 be differentiable and suppose that there exists

α∈ 0:1ð Þ, k1, k2 >0, and a function h∈C m 0ð Þ,∞½ Þ,þð Þ such that for t1 � t2j j≤ 1,

ðt2
t1
b uð Þj jdu

����
����≤ k1 t1 � t2j j, (5)
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and
ðt2
t1
h uð Þdu

����
����≤ k2 t1 � t2j j, (6)

while for t≥0,

ðt
t�τ1 tð Þ

h uð Þj jduþ
ðt
0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þj jdu
 !

ds

þ
ðt
0
e�
Ð t

s
h uð Þdu h s� τ1 sð Þð Þ 1� τ01 sð Þ� �� a sð Þ�� ��þ b sð Þj j� �

ds≤ α:

(7)

Then there is a solution x t, 0,ψð Þ of (4) on þ with x t, 0,ψð Þj j≤ 1:
Notice that when c tð Þ ¼ 0 in the second term on the right-hand side of (1), then (1)

reduces to (4). On the other hand, in the case, τ1 tð Þ ¼ τ1, a constant, Eq. (4) reduces to
the one in [9]. Therefore, we considered the more general system than in [9, 14].
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We note that due to the presence of the term c tð Þx0 t� τ1 tð Þð Þ, once the equation
is inverted then once will face with the term c tð Þ

1�τ01 tð Þ x t� τ1 tð Þð Þ, (where, τ01 tð Þ 6¼ 1 for

t≥0) which produces a restrictive condition for the stability of (8) (as described in
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k1, k2 >0, and a function h∈C m 0ð Þ,∞½ Þ,þð Þ such that for t1 � t2j j≤ 1,

ðt2
t1
b uð Þj jdu

����
����≤ k1 t1 � t2j j, (9)

and
ðt2
t1
h uð Þdu

����
����≤ k2 t1 � t2j j, (10)

while for t≥0,

c tð Þ
1� τ01 tð Þ
����

����þ
ðt
t�τ1 tð Þ

h uð Þj jdu

þ
ðt
0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þj jdu
 !

ds

þ
ðt
0
e�
Ð t

s
h uð Þdu h s� τ1 sð Þð Þ 1� τ0 sð Þð Þ � a sð Þ � μ sð Þj j þ L b sð Þj jf gds≤ α,

(11)
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where

μ tð Þ ¼ c tð Þh tð Þ þ c0 tð Þð Þ 1� τ01 tð Þ� �þ c tð Þτ001 tð Þ
1� τ01 tð Þ� �2 :

Then there is a solution x t, 0,ψð Þ of (8) on þ with x t, 0,ψð Þj j≤ 1:
By letting c tð Þ ¼ 0 and G xσ t� τ2 tð Þð Þð Þ ¼ xσ t� τ2 tð Þð Þ in (8), the present authors

[14] have studied, the asymptotic stability and the stability by using Krasnoselskii’s
fixed point theorem, under appropriate conditions, of the Eq. (4) and improved the
results claimed in [9]. Consequently, Theorem B improves and generalizes Theorem
A. Following the technique of Jin and Luo [14], Ardjouni and Djoudi [6] studied the
stability properties of (8). However, the condition (11) in Ardjouni and Djoudi [6]
is restrictive. By employing two auxiliary functions p and g for constructing a fixed
point mapping argument, the alternative condition (21) in Theorem 3.1 is obtained.
Note that the condition

c tð Þ
1� τ01 tð Þ
����

����< α,

for some constant α∈ 0, 1ð Þ, is not needed in Theorem 3.1. In the present paper,
we also adopt Krasnoselskii’s fixed point theory to study the boundedness and
stability of (1). A new criteria for asymptotic stability with a necessary and suffi-
cient condition is given. The considered neutral differential equations, the results
and assumptions to be given here are different from those that can be found in the
literature and complete that one. These are the contributions of this paper to the
literature and its novelty and originality. In addition, an example is provided to
illustrate the effectiveness and the merits of the results introduced.

2. Inversion of equation

In this section, we use the variation of parameter formula to rewrite the equation
as an integral equation suitable for the Krasnoselskii theorem. The technique for
constructing a mapping for a fixed point argument comes from an idea in [21]. In
our consideration we suppose that:

A1) Let τ1 be twice differentiable and suppose that τ01 tð Þ 6¼ 1 for all t∈ m t0ð Þ,∞½ ½:
A2) There exists a bounded function p : m t0ð Þ,∞½ ½ ! 0,∞ð Þ with p tð Þ ¼ 1 for

t∈ m t0ð Þ, t0½ � such that p0 tð Þ exists for all t∈ m t0ð Þ,∞½ ½:
Let y tð Þ ¼ ψ tð Þ on t∈ m t0ð Þ, t0½ �, and let

x tð Þ ¼ p tð Þy tð Þ for t≥ t0: (12)

Make substitution of (12) into (1) to show

y0 tð Þ ¼ � p0 tð Þ
p tð Þ y tð Þ � a tð Þp t� τ1 tð Þð Þ � c tð Þp0 t� τ1 tð Þð Þ

p tð Þ y t� τ1 tð Þð Þ

þ c tð Þp t� τ1 tð Þð Þ
p tð Þ y0 t� τ1 tð Þð Þ

þb tð Þ p
σ t� τ2 tð Þð Þ

p tð Þ yσ t� τ2 tð Þð Þ, t≥ t0,

(13)

then it can be verified that x satisfies (1).
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We now re-write Eq. (13) in an equivalent form. To this end, we use the
variation of parameter formula and rewrite the equation in an integral from which
we derive a Krasnoselskii fixed point theorem. Besides, the integration by parts will
be applied.

We need the following lemma in our proof of the main theorem.
Lemma 2.1. Let h : m t0ð Þ,∞½ Þ ! þ be an arbitrary continuous function and

suppose that (A1) and (A2) hold. Then y is a solution of (13) if and only if

y tð Þ ¼ ψ t0ð Þ � p t0 � τ1 t0ð Þð Þ
p t0ð Þ

c t0ð Þ
1� τ01 t0ð Þ
� �ψ t0 � τ1 t0ð Þð Þ

 

�
ðt0
t0�τ1 t0ð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
y uð Þdu

!
e
�
Ð t

t0
h sð Þds

þ p t� τ1 tð Þð Þ
p tð Þ

c tð Þ
1� τ01 tð Þ y t� τ1 tð Þð Þ þ

ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
y uð Þdu

þ
ðt
t0
e�
Ð t
s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
� �

�y s� τ1 sð Þð Þds

�
ðt
t0
e�
Ð t
s
h uð Þduh sð Þ

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
y uð Þdu

 !
ds

þ
ðt
t0
e�
Ð t
s
h uð Þdub sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ yσ s� τ2 sð Þð Þds,

(14)

where

μ tð Þ ¼ a tð Þp t� τ1 tð Þð Þ � c tð Þp0 t� τ1 tð Þð Þ
p tð Þ ,C tð Þ ¼ c tð Þp t� τ1 tð Þð Þ

p tð Þ : (15)

and

β tð Þ ¼ C tð Þh tð Þ þ C0 tð Þ½ � 1� τ01 tð Þ� �þ C tð Þτ001 tð Þ
1� τ01 tð Þ� �2 : (16)

Proof. Let y tð Þ be a solution of Eq. (13). Rewrite (13) as

y0 tð Þ þ h tð Þy tð Þ ¼ h tð Þ � p0 tð Þ
p tð Þ

� �
y tð Þ � a tð Þp t� τ1 tð Þð Þ � c tð Þp0 t� τ1 tð Þð Þ

p tð Þ y t� τ1 tð Þð Þ

þ c tð Þp t� τ1 tð Þð Þ
p tð Þ y0 t� τ1 tð Þð Þ

þb tð Þ p
σ t� τ2 tð Þð Þ

p tð Þ yσ t� τ2 tð Þð Þ, t≥ t0:

(17)
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� �
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y tð Þ � a tð Þp t� τ1 tð Þð Þ � c tð Þp0 t� τ1 tð Þð Þ

p tð Þ y t� τ1 tð Þð Þ

þ c tð Þp t� τ1 tð Þð Þ
p tð Þ y0 t� τ1 tð Þð Þ

þb tð Þ p
σ t� τ2 tð Þð Þ

p tð Þ yσ t� τ2 tð Þð Þ, t≥ t0:

(17)

29

Asymptotic Behavior by Krasnoselskii Fixed Point Theorem for Nonlinear Neutral…
DOI: http://dx.doi.org/10.5772/intechopen.96040



Multiply both sides of (17) the previous equality by e
Ð t

t0
h sð Þds

and then integrate
from t0 to t, we have

y tð Þ ¼ ψ t0ð Þe�
Ð t

t0
h sð Þds þ

ðt
t0

h sð Þ � p0 sð Þ
p sð Þ

� �
e�
Ð t

s
h uð Þduy sð Þds

�
ðt
t0
e�
Ð t

s
h uð Þdu a sð Þp s� τ1 sð Þð Þ � c sð Þp0 s� τ1 sð Þð Þ

p sð Þ y s� τ1 sð Þð Þds

þ
ðt
t0
e�
Ð t

s
h uð Þdu c sð Þp s� τ1 sð Þð Þ

p sð Þ y0 s� τ1 sð Þð Þds

þ
ðt
t0
e�
Ð t

s
h uð Þdub sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ yσ s� τ2 sð Þð Þds:

(18)

Performing an integration by parts, we can conclude, for t≥ t0,

y tð Þ ¼ ψ t0ð Þe�
Ð t
t0
h sð Þds þ

ðt
t0
e�
Ð t

s
h uð Þdud

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
y uð Þdu

 !

þ
ðt
t0
e�
Ð t

s
h uð Þdu h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

� 1� τ01 sð Þ� �
y s� τ1 sð Þð Þds

�
ðt
t0
e�
Ð t

s
h uð Þdu a sð Þp s� τ1 sð Þð Þ � c sð Þp0 s� τ1 sð Þð Þ

p sð Þ y s� τ1 sð Þð Þds

þ
ðt
t0
e�
Ð t

s
h uð Þdu c sð Þp s� τ1 sð Þð Þ

p sð Þ y0 s� τ1 sð Þð Þds

þ
ðt
t0
e�
Ð t

s
h uð Þdub sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ yσ s� τ2 sð Þð Þds:

Thus,
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� �
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!
e
�
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c tð Þ
1� τ01 tð Þ y t� τ1 tð Þð Þ þ

ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
y uð Þdu

þ
ðt
t0
e�
Ð t

s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
� �

�y s� τ1 sð Þð Þds

�
ðt
t0
e�
Ð t

s
h uð Þduh sð Þ

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
y uð Þdu

 !
ds

þ
ðt
t0
e�
Ð t

s
h uð Þdub sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ yσ s� τ2 sð Þð Þds,

where μ sð Þ and β sð Þ are defined in (15) and (16), respectively. The proof is complete.
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Below we state Krasnoselskii’s fixed point theorem which will enable us to
establish a stability result of the trivial solution of (1) For more details on
Krasnoselskii’s captivating theorem, we refer to smart [20] or [3].

Theorem 2.1. (see, [Kranoselskii’s fixed point theorem, [20]]). Suppose that
X, :k kð Þ is a Banach space andM is a bounded, convex, and closed subset of X. Suppose
further that there exist, two operators, A,B !M into X such that:

i. Axþ By∈M for all x, y∈M;

ii. A is completely continuous;

iii. B is a contraction mapping.

Then Aþ B has a fixed point inM:

3. Stability by Krasnoselskii fixed point theorem

From the existence theory, which can be found in Hale [26] or Burton [3], we
conclude that for each t0,ψð Þ∈þ � C m t0ð Þ, t0½ �,ð Þ, a solution of (1) through
t0,ψð Þ is a continuous function x : m t0ð Þ, t0 þ ρ½ Þ !  for some positive constant
ρ>0 such that x satisfies (1) on t0, t0 þ ρ½ Þ and x ¼ ψ on m t0ð Þ, t0½ �. We denote such
a solution by x tð Þ ¼ x t, t0,ψð Þ. We define ψk k ¼ max ψ tð Þj j : m t0ð Þ≤ t≤ t0f g.

As we mentioned previously, our results in this section extend and improve
the work in [14] by considering more general classes of neutral differential
equations presented by (1). Our main results in this part can be applied to the
case when

c tð Þ
1� τ01 tð Þ
����

����≥ 1,

which improve [14]. In other words, we will establish and prove a necessary and
sufficient condition ensuring the boundedness of solutions and the asymptotic
stability of the zero solution to Eq. (1). However, the mathematical analysis used in
this research to construct the mapping to employ Krasnoselskii’s fixed point theo-
rem is different from that of [14].

The results of this work are news and they extend and improve previously
known results. To the best of our knowledge from the literature, there are few
authors who have used the fixed point theorem to prove the existence of a solution
and the stability of trivial equilibrium of several special cases of (1) all at once
[9, 14].

Let us know to recall the definitions of stability that will be used in the next
section. For stability definitions, we refer to [3].

Definition 3.1. The zero solution of (1) is said to be:

i. stable, if for any ε>0 and t0 ≥0, there exists a δ ¼ δ ε, t0ð Þ>0 such that
ψ ∈C m t0ð Þ, t0½ �,ð Þ and ψk k< δ imply x t, t0,ψð Þj j< ε for t≥ t0:

ii. asymptotically stable, if the zero solution is stable and for any ε>0 and
t0 ≥0, there exists a δ ¼ δ ε, t0ð Þ>0 such that ψ ∈C m t0ð Þ, t0½ �,ð Þ and
ψk k< δ imply x t, t0,ψð Þj j ! 0 as t! ∞:.

Now, we can state our main result.
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authors who have used the fixed point theorem to prove the existence of a solution
and the stability of trivial equilibrium of several special cases of (1) all at once
[9, 14].

Let us know to recall the definitions of stability that will be used in the next
section. For stability definitions, we refer to [3].

Definition 3.1. The zero solution of (1) is said to be:

i. stable, if for any ε>0 and t0 ≥0, there exists a δ ¼ δ ε, t0ð Þ>0 such that
ψ ∈C m t0ð Þ, t0½ �,ð Þ and ψk k< δ imply x t, t0,ψð Þj j< ε for t≥ t0:

ii. asymptotically stable, if the zero solution is stable and for any ε>0 and
t0 ≥0, there exists a δ ¼ δ ε, t0ð Þ>0 such that ψ ∈C m t0ð Þ, t0½ �,ð Þ and
ψk k< δ imply x t, t0,ψð Þj j ! 0 as t! ∞:.

Now, we can state our main result.
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Theorem 3.1. Suppose that assumptions (A1) and (A2) hold, and that there are
constants α∈ 0, 1ð Þ, k1, k2 >0, and an arbitrary continuous
function h∈C m t0ð Þ,∞½ Þ,þð Þ such that for t1 � t2j j≤ 1,

ðt2
t1
b uð Þ p

σ u� τ2 uð Þð Þ
p uð Þ

����
����du

����
����≤ k1 t1 � t2j j, (19)

and

ðt2
t1
h uð Þdu

����
����≤ k2 t1 � t2j j, (20)

while for t≥ t0

p t� τ1 tð Þð Þ
p tð Þ

c tð Þ
1� τ01 tð Þ

����
����þ
ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

þ
ðt
t0
e�
Ð t

s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
����

����
� �

ds

þ
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

 !
ds

þ
ðt
t0
e�
Ð t

s
h uð Þdu b sð Þj j p

σ s� τ2 sð Þð Þ
p sð Þ

����
����ds< α,

(21)

where μ sð Þ and β sð Þ are defined in (15) and (16), respectively. If ψ is a given
continuous initial function which is sufficiently small, then there is a solution x t, t0,ψð Þ of
(1) on þ with x t, t0,ψð Þj j≤ 1:

We are now ready to prove Theorem 3.1.
Proof. We start with some preparation:

Let X, :j jg
� �

be the Banach space of continuous φ : m t0ð Þ,∞½ Þ !  with

φj jg ≔ sup
t≥m t0ð Þ

φ tð Þ=g tð Þj j<∞:

For each t0 ≥0 and ψ ∈C m t0ð Þ, t0½ �,ð Þ fixed, we define Xψ as the following space

Xψ ¼ φ∈X : φ tð Þj j≤ 1 fort∈ m t0ð Þ,∞½ Þandφ tð Þ ¼ ψ tð Þift∈ m t0ð Þ, t0½ �f g:

It is easy to check that Xψ is a complete metric space with metric induced by the
norm :j jg.

We note that to apply Krasnoselskii’s fixed point theorem we need to construct
two mappings; one is contraction and the other is compact. Therefore, we use (14)
to define the operator H : Xψ ! Xψ by

Hφð Þ tð Þ≔ Aφð Þ tð Þ þ Bφð Þ tð Þ,

where A,B : Xψ ! Xψ are given by

Aφð Þ tð Þ≔
ðt
t0
e�
Ð t

s
h uð Þdub sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ φσ s� τ2 sð Þð Þds, (22)
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and

Bφð Þ tð Þ : ¼ ψ t0ð Þ � p t0 � τ1 t0ð Þð Þ
p t0ð Þ

c t0ð Þ
1� τ01 t0ð Þ
� �ψ t0 � τ1 t0ð Þð Þ

 

�
ðt0
t0�τ1 t0ð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
φ uð Þdu

!
e
�
Ð t

t0
h sð Þds

þ p t� τ1 tð Þð Þ
p tð Þ

c tð Þ
1� τ01 tð Þφ t� τ1 tð Þð Þ þ

ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
φ uð Þdu

þ
ðt
t0
e�
Ð t

s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
� �

�φ s� τ1 sð Þð Þds

�
ðt
t0
e�
Ð t

s
h uð Þduh sð Þ

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
φ uð Þdu

 !
ds:

(23)

If we are able to prove that H possesses a fixed point φ on the set Xψ , then
y t, t0,ψð Þ ¼ φ tð Þ for t≥ t0, y t, t0,ψð Þ ¼ ψ tð Þ on m t0ð Þ, t0½ �, y t, t0,ψð Þ satisfies (13)
when its derivative exists and y t, t0,ψð Þj j< 1 for t≥ t0: That A maps Xψ into itself
can be deduced from condition (21).

For α∈ 0, 1ð Þ, we choose δ>0 such that

1þ p t0 � τ1 t0ð Þð Þ
p t0ð Þ

c t0ð Þ
1� τ01 t0ð Þ
� �

�����

�����

 

þ
ðt0
t0�τ1 t0ð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du
!
e
�
Ð t
t0
h sð Þds

δþ α≤ 1:

(24)

Let ψ : m t0ð Þ, t0½ � !  be a given continuous initial function with ψk k< δ: Let
g : m t0ð Þ,∞½ Þ ! 1,∞½ Þ be any strictly increasing and continuous function with
g m t0ð Þð Þ ¼ 1, g sð Þ ! ∞ as s! ∞, such that

p t� τ1 tð Þð Þ
p tð Þ

c tð Þ
1� τ01 tð Þ

����
����þ
ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����g uð Þ=g tð Þdu

þ
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����g uð Þ=g tð Þdu

 !
ds

þ
ðt
t0
e�
Ð t

s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
����

����

�g s� τ1 sð Þð Þ=g tð Þds< α:

(25)

Now we split the rest of our proof into three steps.
First step:We now show that φ,ϕ∈Xψ implies that Aφþ Bϕ∈Xψ : Now, let :k k

be the supremum norm on m t0ð Þ,∞½ Þ of φ∈Xψ if φ is bounded. Note that if
φ,ϕ∈Xψ then

Aφð Þ tð Þ þ Bϕð Þ tð Þj j≤
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can be deduced from condition (21).

For α∈ 0, 1ð Þ, we choose δ>0 such that
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h uð Þ � p0 uð Þ
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δþ α≤ 1:

(24)

Let ψ : m t0ð Þ, t0½ � !  be a given continuous initial function with ψk k< δ: Let
g : m t0ð Þ,∞½ Þ ! 1,∞½ Þ be any strictly increasing and continuous function with
g m t0ð Þð Þ ¼ 1, g sð Þ ! ∞ as s! ∞, such that
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�g s� τ1 sð Þð Þ=g tð Þds< α:

(25)

Now we split the rest of our proof into three steps.
First step:We now show that φ,ϕ∈Xψ implies that Aφþ Bϕ∈Xψ : Now, let :k k

be the supremum norm on m t0ð Þ,∞½ Þ of φ∈Xψ if φ is bounded. Note that if
φ,ϕ∈Xψ then
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ψk k 1þ p t0 � τ1 t0ð Þð Þ
p t0ð Þ

����
����

c t0ð Þ
1� τ01 t0ð Þ
� �
�����

�����þ
ðt0
t0�τ1 t0ð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

 !
e
�
Ð t
t0
h sð Þds

þ ϕk k p t� τ1 tð Þð Þ
p tð Þ

c tð Þ
1� τ01 tð Þ

����
����

þ ϕk k
ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

þ ϕk k
ðt
t0
e�
Ð t

s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
����

����
� �

ds

þ ϕk k
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

 !
ds

þ φσk k
ðt
t0
e�
Ð t
s
h uð Þdu b sð Þj j p

σ s� τ2 sð Þð Þ
p sð Þ

����
����ds

≤ 1þ p t0 � τ1 t0ð Þð Þ
p t0ð Þ

����
����

c t0ð Þ
1� τ01 t0ð Þ
� �
�����

�����

 

þ
ðt0
t0�τ1 t0ð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du
!
e
�
Ð t

t0
h sð Þds

δþ α≤ 1:

By applying (24), we see that Aφð Þ tð Þ þ Bϕð Þ tð Þj j≤ 1 for t∈ m t0ð Þ,∞½ Þ:
We see that also B maps Xψ into itself by letting φ ¼ 0 in the preceding sum.
Second step: Next, we will show that AXψ is equicontinuous and A is

continuous. We first show that AXψ is equicontinuous. If φ∈Xψ and if 0≤ t1 < t2
with t2 � t1 < 1, then

Aφð Þ t2ð Þ � Aφð Þ t1ð Þj j ¼
ðt2

t0

e�
Ð t2

s
h uð Þdub sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ ds

������

�
ðt1

t0

b sð Þ p
σ s� τ2 sð Þð Þ

p sð Þ e�
Ð t1

s
h uð Þduds

������

≤
ðt2

t1

b sð Þ p
σ s� τ2 sð Þð Þ

p sð Þ e�
Ð t2
s
h uð Þduds

������

������

þ
ðt1

t0

e�
Ð t2

s
h uð Þdu � e�

Ð t1

s
h uð Þdu

� �
b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ ds

������

������

≤
ðt2

t1

e�
Ð t2

s
h uð Þdud

ðs

t1

b υð Þ p
σ υ� τ2 υð Þð Þ

p υð Þ
����

����dυ
0
@

1
A

þ e
�
Ð t2

t1
h uð Þdu � 1

����
����
ðt1

t0

e�
Ð t1
s
h uð Þdu b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ

����
����ds

≤
ðt2

t1

b uð Þ p
σ u� τ2 uð Þð Þ

p uð Þ
����

����du 1þ
ðt2

t1

h uð Þe�
Ð t2

s
h uð Þduds

0
@

1
Aþ α e

�
Ð t2
t1
h uð Þdu � 1

����
����
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≤ 2
ðt2

t1

b uð Þ p
σ u� τ2 uð Þð Þ

p uð Þ
����

����duþ α

ðt2
t1
h uð Þdu

����
����≤ 2k1 þ αk2ð Þ t2 � t1j j,

by (19)–(21). In the space X, :j jg
� �

, the set AXψ is uniformly bounded and

equicontinuous. Hence by Ascoli-Arzela theorem AXψ resides in a compact set.
Next, we need to show that A is continuous. Let ε>0 be given and let φ,ϕ∈Xψ .

Now yσ, is uniformly continuous on �1,þ1½ � so for a fixed T >0 with 4=g Tð Þ< ε
there is an η>0 such that y1 � y2

�� ��< ηg Tð Þ implies yσ1 � yσ2
�� ��< ε=2: Thus for

φ tð Þ � ϕ tð Þj j< ηg tð Þ and for t>T we have

Aφð Þ tð Þ � Aϕð Þ tð Þj j=g tð Þ

¼ 1=g tð Þð Þ
ðt
t0
e�
Ð t

s
h uð Þdu b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ

����
���� φσ s� τ2 sð Þð Þ � ϕσ s� τ2 sð Þð Þj jds

≤ 1=g tð Þð Þ
ðT

t0

e�
Ð t

s
h uð Þdu b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ

����
���� φσ s� τ2 sð Þð Þ � ϕσ s� τ2 sð Þð Þj jds

8<
:

þ2
ðt

T

e�
Ð t

s
h uð Þdu b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ

����
����ds
9=
;

≤ αε=2g tð Þð Þ þ 2α=g Tð Þð Þf g≤ αε:

Third step: Finally, we show that B is a contraction with respect to the norm :j jg
with constant α: Let B be defined by (23). Then for ϕ1,ϕ2 ∈Xψ we have

Bϕ1ð Þ tð Þ � Bϕ2ð Þ tð Þj j=g tð Þ≤ p t� τ1 tð Þð Þ
p tð Þ

c tð Þ
1� τ01 tð Þ

����
���� ϕ1 t� τ1 tð Þð Þ � ϕ2 t� τ1 tð Þð Þj j=g tð Þ

þ
ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
���� ϕ1 uð Þ � ϕ2 uð Þj j=g tð Þdu

þ
ðt
t0
e�
Ð t

s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
����

����
� ϕ1 s� τ1 sð Þð Þ � ϕ2 s� τ1 sð Þð Þj j=g tð Þds

þ
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
���� ϕ1 uð Þ � ϕ2 uð Þj j=g tð Þdu

 !
ds

≤ ϕ1 � ϕ2j jg
p t� τ1 tð Þð Þ

p tð Þ
c tð Þ

1� τ01 tð Þ
����

����
�

þ
ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����g uð Þ=g tð Þdu

þ
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����g uð Þ=g tð Þdu

 !
ds

þ
ðt
t0
e�
Ð t

s
h uð Þdu

� �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ
p s� τ1 sð Þð Þ

� �
1� τ01 sð Þ� �� β sð Þ

����
����g s� τ1 sð Þð Þ=g tð Þds

�

≤ α ϕ1 � ϕ2j jg, by (22).
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����

����
� ϕ1 s� τ1 sð Þð Þ � ϕ2 s� τ1 sð Þð Þj j=g tð Þds

þ
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
���� ϕ1 uð Þ � ϕ2 uð Þj j=g tð Þdu

 !
ds

≤ ϕ1 � ϕ2j jg
p t� τ1 tð Þð Þ

p tð Þ
c tð Þ

1� τ01 tð Þ
����

����
�

þ
ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����g uð Þ=g tð Þdu

þ
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����g uð Þ=g tð Þdu

 !
ds

þ
ðt
t0
e�
Ð t

s
h uð Þdu

� �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ
p s� τ1 sð Þð Þ

� �
1� τ01 sð Þ� �� β sð Þ

����
����g s� τ1 sð Þð Þ=g tð Þds

�

≤ α ϕ1 � ϕ2j jg, by (22).
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Since α∈ 0, 1ð Þ, we can conclude that B is a contraction on Xψ , :j jg
� �

:

The conditions of Krasnoselskii’s theorem are satisfied withM¼ Xψ . Hence,
we deduce that H : Xψ ! Xψ has a fixed point y tð Þ, which is a solution of (13) with
y sð Þ ¼ ψ sð Þ on s∈m t0ð Þ, t0� and y t, t0,ψð Þj j≤ 1 for t∈ m t0ð Þ,∞½ Þ. Since there exists a
bounded function p : m t0ð Þ,∞½ ½ ! 0,∞ð Þ with p tð Þ ¼ 1 for t∈ m t0ð Þ, t0½ �, by
hypotheses (12) and from the above arguments we deduce that there exists a
solution x of (1) with x ¼ ψ on m t0ð Þ, t0½ � satisfies x t, t0,ψð Þj j≤ 1 for all
t∈ m t0ð Þ,∞½ Þ. The proof is complete.

Letting σ ¼ 1=3, and c tð Þ ¼ 0 in Theorem 3.1. Then we have the following
corollary.

Corollary 3.1. Let (19) and (20) hold, and (21) be replaced by

ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

þ
ðt
t0
e�
Ð t

s
h uð Þdu h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� a sð Þ p s� τ sð Þð Þ
p sð Þ

����
����

� �
ds

þ
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

 !
ds≤ α:

(26)

Then there is a solution x t, t0,ψð Þ of (4) on þ with x t, t0,ψð Þj j≤ 1:
Remark 3.2:When p tð Þ ¼ 1, then Corollary 3.1 reduces to Theorem A, which

was recently stated in Jin and Luo [14]. Therefore, the paper (Jin and Luo [14]) is a
particular case of ours.

For the next Theorem, we manipulate function spaces defined on infinite
t -intervals. So, for compactness, we need an extension of the Arzelà-Ascoli theo-
rem. This extension is taken from ([3], Theorem 1.2.2 p. 20).

Theorem 3.2. Let (19)–(21) hold and assume that

ðt
t0
e�
Ð t

s
h uð Þdu b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ

����
����ds! 0 as t! ∞, (27)

and

lim
t!∞

inf
ðt
t0
h sð Þds> �∞: (28)

If ψ is given continuous initial function which is sufficiently small, then (1) has a
solution x t, t0,ψð Þ ! 0 as t! ∞ if and only if

ðt
t0
h sð Þds! ∞ as t! ∞: (29)

Proof. We set

K ¼ sup
t≥ t0

e
�
Ð t
t0
h sð Þds

� �
, (30)
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by (28), K is well defined. Suppose that (29) holds.
Since p is bounded, it remains to prove that the zero solution of (1) is

asymptotically stable.
All of the calculations in the proof of Theorem 3.1 hold with g tð Þ ¼ 1 when :j jg is

replaced by the supremum norm :k k:
For

φ∈Xψ ,

Aφð Þ tð Þj j≤
ðt
t0
e�
Ð t

s
h uð Þdu b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ

����
����ds≕q tð Þ, (31)

where q tð Þ ! 0 as t! ∞ by (27).
Add toXψ the condition thatφ∈Xψ implies thatφ tð Þ ! 0as t! ∞.We can see that

for φ∈Xψ then Aφð Þ tð Þ ! 0 as t! ∞ by (31), and Bφð Þ tð Þ ! 0 as t! ∞ by (29).
Since AXψ has been shown to be equicontinuous, A maps Xψ into a compact

subset of Xψ . By Krasnoselskii’s theorem, there is y∈Xψ with Ayþ By ¼ y. As
y∈Xψ , y t, t0,ψð Þ ! 0 as t! ∞: By condition (12), it is very easy to show that there
exists a solution x∈Xψ of (1) with x t, t0,ψð Þ ! 0 as t! ∞:

Conversely, we suppose that (29) fails. From (28) there exists a sequence tnf g
with tn ! ∞ as n! ∞ such that lim

n!∞

Ð tn
t0
h uð Þdu ¼ ξ for some ξ∈þ: We may also

choose a positive constant J satisfying

�J ≤
ðtn
t0
h uð Þdu≤ þ J,

for all n≥ 1: To simplify the expression, we define

ω sð Þ≔ �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ
p s� τ1 sð Þð Þ

� �
1� τ01 sð Þ� �� β sð Þ

����
����

þ h sð Þj j
ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����duþ b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ

����
����,

for all s≥0: By (21), we have

ðtn
t0
e�
Ð tn
s
h uð Þduω sð Þds≤ α:

This yields

ðtn
t0
e
Ð s
0
h uð Þduω sð Þds≤ αe

Ð tn

0
h uð Þdu ≤ eJ :

The sequence
Ð tn
t0
e
Ð s

0
h uð Þduω sð Þds

� �
is bounded, hence there exists a convergent

subsequence. Without loss of generality, we can assume that

lim
n!∞

ðtn
t0
e
Ð s
0
h uð Þduω sð Þds ¼ θ,

for some θ∈þ: Let m be an integer such that
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h uð Þdu ¼ ξ for some ξ∈þ: We may also

choose a positive constant J satisfying

�J ≤
ðtn
t0
h uð Þdu≤ þ J,

for all n≥ 1: To simplify the expression, we define

ω sð Þ≔ �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ
p s� τ1 sð Þð Þ

� �
1� τ01 sð Þ� �� β sð Þ

����
����

þ h sð Þj j
ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����duþ b sð Þ p

σ s� τ2 sð Þð Þ
p sð Þ

����
����,

for all s≥0: By (21), we have

ðtn
t0
e�
Ð tn
s
h uð Þduω sð Þds≤ α:

This yields

ðtn
t0
e
Ð s
0
h uð Þduω sð Þds≤ αe

Ð tn

0
h uð Þdu ≤ eJ :

The sequence
Ð tn
t0
e
Ð s

0
h uð Þduω sð Þds

� �
is bounded, hence there exists a convergent

subsequence. Without loss of generality, we can assume that

lim
n!∞

ðtn
t0
e
Ð s
0
h uð Þduω sð Þds ¼ θ,
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ðtn
tm
e
Ð s
0
h uð Þduω sð Þds≤ δ0

4K
,

for all n≥m, where δ0 >0 satisfies 2δ0KeJ þ α≤ 1:
We now consider the solution y tð Þ ¼ y t, tm,ψð Þ of (1) with ψ tmð Þ ¼ δ0 and

ψ sð Þj j≤ δ0 for s≤ tm: We may choose ψ so that y tð Þj j≤ 1 for t≥ tm and

ψ tmð Þ � p tm � τ1 tmð Þð Þ
p tmð Þ

c tmð Þ
1� τ01 tmð Þ
� �ψ tm � τ1 tmð Þð Þ

�
ðtm
tm�τ1 tmð Þ

h uð Þ � p0 uð Þ
p uð Þ

� �
z uð Þdu≥ 1

2
δ0:

In follows from (22) and (23) with y tð Þ ¼ Ayð Þ tð Þ þ Byð Þ tð Þ that for n≥m

y tnð Þ � p tn � τ1 tnð Þð Þ
p tnð Þ

c tnð Þ
1� τ01 tnð Þ
� � y tn � τ1 tnð Þð Þ �

ðtn
tn�τ1 tnð Þ

h sð Þ � p0 sð Þ
p sð Þ

� �
y sð Þds

�����

�����

≥
1
2
δ0e
�
Ð tn

tm
h uð Þdu �

ðtn
tm
e�
Ð tn

s
h uð Þduω sð Þds

¼ e�
Ð tn

tm
h uð Þdu 1

2
δ0 � e�

Ð tm

0
h uð Þdu

ðtn
tm
e
Ð s

0
h uð Þduω sð Þds

� �

≥ e�
Ð tn

tm
h uð Þdu 1

2
δ0 � K

ðtn
tm
e
Ð s

0
h uð Þduω sð Þds

� �

≥
1
4
δ0e
�
Ð tn
tm
h uð Þdu ≥

1
4
δ0e�2J >0:

(32)

On the other hand, if the zero solution of (13) y tð Þ ¼ y t, tm,ψð Þ ! 0 as t! ∞,
since tn � τi tnð Þ ! ∞ as t! ∞, i ¼ 1, 2, and (21) holds, we have

y tnð Þ � p tn � τ1 tnð Þð Þ
p tnð Þ

c tnð Þ
1� τ01 tnð Þ
� � y tn � τ1 tnð Þð Þ �

ðtn
tn�τ1 tnð Þ

h sð Þ � p0 sð Þ
p sð Þ

� �
y sð Þds! 0

as t! ∞, which contradicts (32). Hence condition (29) is necessary for the
asymptotic stability of the zero solution of (13), and hence the zero solution of (1) is
asymptotically stable. The proof is complete.

For the special case c tð Þ ¼ 0 and σ ¼ 1
3, we can get.

Corollary 3.2. Let (19), (20) and (27) hold and (21) be replaced by

ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

þ
ðt
t0
e�
Ð t

s
h uð Þdu h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� a sð Þ p s� τ sð Þð Þ
p sð Þ

����
����

� �
ds

þ
ðt
t0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

 !
ds≤ α:

Then the zero solution x t, t0,ψð Þ of (4) with a small continuous function ψ tð Þ is
asymptotically stable if only if
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ðt
t0
h sð Þds! ∞ as t! ∞:

Remark 3.3. The method in this paper can be applied to more general nonlinear
neutral differential equations than Eq. (1).

Remark 3.4. Theorem 3.1 is still true if condition (21) is satisfied for t≥ tρ with
some tρ ∈þ.

4. Example

In this section, we now give an example to show the applicability of Theorem 3.1.
Example. Let us consider the following neutral differential equation of first

order with two variable delays, which is a special case of (1):

x0 tð Þ ¼ �a tð Þx t� τ1 tð Þð Þ þ ln
0:95tþ 1
4 tþ 1ð Þ

� �
x0 t� τ1 tð Þð Þ

þ 0:6 0:95tþ 1ð Þ13
tþ 1ð Þ2 x

1
3 t� τ2 tð Þð Þ, (33)

for t≥0 where τ2 tð Þ ¼ 0:5t, τ1 tð Þ ¼ 0:05t, and a tð Þ satisfies

�μ tð Þ þ h t� τ1 tð Þð Þ � p0 t� τ1 tð Þð Þ
p t� τ1 tð Þð Þ

� �
1� τ01 tð Þ� �� β tð Þ

����
����≤

0:03
tþ 1

,

where μ tð Þ and β tð Þ are defined in (15) and (16), respectively. Choosing h tð Þ ¼
1:5
tþ1 and p tð Þ ¼ 1

tþ1. By straightforward computations, we can check that condition
(21) in Theorem 3.1 holds true. As t! ∞, we have

p t� τ1 tð Þð Þ
p tð Þ

c tð Þ
1� τ01 tð Þ

����
����≤

1
4� 0:95

����
����≤0:263,

ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du≤0:026,

ðt
0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

 !
ds≤0:026,

ðt
0
e�
Ð t

s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
����

����ds

≤
ðt
0
e�
Ð t

s
1:5
uþ1du 0:3

sþ 1
ds≤0:2,

and
Ð t
0e
�
Ð t

s
h uð Þdu b sð Þj j pσ s�τ2 sð Þð Þ

p sð Þ
���

���ds≤0:4, and since
Ð t
0h sð Þds! ∞ as t! ∞, p tð Þ≤ 1: Let

α ¼ 0:263þ 0:026þ 0:026þ 0:2þ 0:4. It is easy to see that all the conditions of
Theorem 3.1 hold for α≃0:915< 1: Thus, Theorem 3.1 implies that the zero solution
of (33) is asymptotic stable.

However, for the asymptotic stable of the zero solution of (33), the
corresponding conditions used by the fixed point theory in Ardjouni and Djoudi [6]
are
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ðt
t0
h sð Þds! ∞ as t! ∞:
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0:95tþ 1
4 tþ 1ð Þ
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x0 t� τ1 tð Þð Þ

þ 0:6 0:95tþ 1ð Þ13
tþ 1ð Þ2 x

1
3 t� τ2 tð Þð Þ, (33)

for t≥0 where τ2 tð Þ ¼ 0:5t, τ1 tð Þ ¼ 0:05t, and a tð Þ satisfies

�μ tð Þ þ h t� τ1 tð Þð Þ � p0 t� τ1 tð Þð Þ
p t� τ1 tð Þð Þ

� �
1� τ01 tð Þ� �� β tð Þ

����
����≤

0:03
tþ 1

,

where μ tð Þ and β tð Þ are defined in (15) and (16), respectively. Choosing h tð Þ ¼
1:5
tþ1 and p tð Þ ¼ 1

tþ1. By straightforward computations, we can check that condition
(21) in Theorem 3.1 holds true. As t! ∞, we have

p t� τ1 tð Þð Þ
p tð Þ

c tð Þ
1� τ01 tð Þ

����
����≤

1
4� 0:95

����
����≤0:263,

ðt
t�τ1 tð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du≤0:026,

ðt
0
e�
Ð t

s
h uð Þdu h sð Þj j

ðs
s�τ1 sð Þ

h uð Þ � p0 uð Þ
p uð Þ

����
����du

 !
ds≤0:026,

ðt
0
e�
Ð t

s
h uð Þdu �μ sð Þ þ h s� τ1 sð Þð Þ � p0 s� τ1 sð Þð Þ

p s� τ1 sð Þð Þ
� �

1� τ01 sð Þ� �� β sð Þ
����

����ds

≤
ðt
0
e�
Ð t

s
1:5
uþ1du 0:3

sþ 1
ds≤0:2,

and
Ð t
0e
�
Ð t

s
h uð Þdu b sð Þj j pσ s�τ2 sð Þð Þ

p sð Þ
���

���ds≤0:4, and since
Ð t
0h sð Þds! ∞ as t! ∞, p tð Þ≤ 1: Let

α ¼ 0:263þ 0:026þ 0:026þ 0:2þ 0:4. It is easy to see that all the conditions of
Theorem 3.1 hold for α≃0:915< 1: Thus, Theorem 3.1 implies that the zero solution
of (33) is asymptotic stable.

However, for the asymptotic stable of the zero solution of (33), the
corresponding conditions used by the fixed point theory in Ardjouni and Djoudi [6]
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lim
c tð Þ

1� τ01 tð Þ
����

���� ¼ lim
1

0:95
ln

0:95tþ 1
4 tþ 1ð Þ

� �����
���� ¼ 1:513ast! ∞:

This implies that condition (11) does not hold. So it is clear that the reduction of
the conservatism by our method is quite significant when compared to Ardjouni
and Djoudi [6].

Remark 4.1. It is an open problem whether the zero solution of (1) is uniform
asymptotically stable, perseverance, and so on.

5. Conclusion

This work is a new attempt at applying the fixed point theory to the stability
analysis of neutral differential equations with variable delays, several special cases
of which have been studied in [9, 14]. Some of the results, like Theorem B, is mainly
dependent on the constraint

c tð Þ
1� τ01 tð Þ
����

����< 1:

But in many environments, the constraint does not hold. So by employing two
auxiliary continuous functions g and p to define an appropriate mapping, and
present new criteria for asymptotic stability of Eq. (1) which makes stability
conditions more feasible and the results in [14] are improved and generalized. From
what has been discussed above, we see that Krasnoselskii’s fixed point theorem
is effective for not only the investigation of the existence of solution but also for
the boundedness and the stability analysis of trivial equilibrium. We introduce an
example to verify the applicability of the results established. In the future, we will
continue to explore the application of other kinds of fixed point theorems to the
stability research of fractional neutral systems with variable delays.
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Chapter 3

Spectral Properties of a
Non-Self-Adjoint Differential
Operator with Block-Triangular
Operator Coefficients
Aleksandr Kholkin

Abstract

In this chapter, the Sturm-Liouville equation with block-triangular, increasing at
infinity operator potential is considered. A fundamental system of solutions is
constructed, one of which decreases at infinity, and the second increases. The
asymptotic behavior at infinity was found out. The Green’s function and the resol-
vent for a non-self-adjoint differential operator are constructed. This allows to
obtain sufficient conditions under which the spectrum of this non-self-adjoint dif-
ferential operator is real and discrete. For a non-self-adjoint Sturm-Liouville opera-
tor with a triangular matrix potential growing at infinity, an example of operator
having spectral singularities is constructed.

Keywords: differential operators, spectrum, non-self-adjoint, block-triangular
operator coefficients, Green’s function, resolvent

1. Introduction

The question of the generalization of the oscillatory Sturm theorem for scalar
equations of higher orders and for equations with matrix coefficients for a long time
remained open. Only in recent joint papers by F. Rofe-Beketov and A. Kholkin (see
[1]) a connection was established between spectral and oscillatory properties for
self-adjoint operators generated by equations of arbitrary even order with operator
coefficients and boundary conditions of general form. Later, a Sturm-type oscilla-
tion theorem was proved [2] for a problem on finite and infinite intervals for a
second-order equation with block-triangular matrix coefficients. In the case of non-
self-adjoint differential operators, oscillation theorems have not been considered
earlier.

Results turning out in self-adjoint and non-self-adjoint cases differentiate sub-
stantially. The theory of non-self-adjoint singular differential operators, generated
by scalar differential expressions, has been well studied. An overview on the theory
of non-self-adjoint singular ordinary differential operators is provided in V.E.
Lyantse’s Appendix I to the monograph [3]. In the study of the connection between
spectral and oscillation properties of non-self-adjoint differential operators with
block-triangular operator coefficients [2, 4] the question arises of the structure of
the spectrum of such operators. For scalar non- self-adjoint differential operators
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these questions were studied in the papers [5–8]. The theory of singular non-self-
adjoint differential operators with matrix and operator coefficients is relatively
new. In the context of the inverse scattering problem, for an operator with a
triangular matrix potential decreasing at infinity, the first moment of which is
bounded, the structure of the spectrum was established in [9, 10]. The theory of
equations with block - triangular operator coefficients the first results were
published in 2012 in the works of the author [11–13].

In this works we construct the fundamental system of solutions of differential
equation with block-triangular operator potential that increases at infinity, one of
that is decreasing at infinity, and the second growing. The asymptotics of the
fundamental system of solutions of this equation is established. The Green’s func-
tion is constructed for a non-self-adjoint system with a block-triangular potential,
the diagonal blocks of which are self-adjoint operators. We obtained a resolvent for
a non-self-adjoint differential operator, using which the structure of the operator
spectrum is set. Sufficient conditions at which a spectrum of such non-self-adjoint
differential operator is real and discrete are obtained. Here the rate of growth
elements, not on the main diagonal, is subordinated to the rate of growth of the
diagonal elements. In case of infringement of this condition, the operator can have
spectral singularities [14].

2. The fundamental solutions for an non-self-adjoint differential
operator with block – triangular operator coefficients.

Let us designate Hk, k ¼ 1, r as a finite-dimensional or infinite-dimensional
separable Hilbert space with inner product �, �ð Þ and norm �j j. Denote by H ¼
H1 ⊕H2 ⊕ … ⊕Hr: Element h∈H will be written in the form of h ¼
col h1, h2, … , hr
� �

, where hk ∈Hk, k ¼ 1, 2, … , r, Ik, I- are identity operators in Hk

and H accordingly.
We denote by L2 H, 0,∞ð Þð Þ the Hilbert space of vector-valued functions y xð Þ

with values in H with inner product y, zh i ¼ Ð∞0 y xð Þ, z xð Þð Þdx and the norm �k k.
Now let us consider the equation with block-triangular operator potential in B Hð Þ

l y½ � ¼ �y00 þ V xð Þy ¼ λy, 0≤ x<∞, (1)

where

V xð Þ ¼ v xð Þ � I þ U xð Þ, U xð Þ ¼

U11 xð Þ U12 xð Þ … U1r xð Þ
0 U22 xð Þ … U2r xð Þ
… … … …

0 0 … Urr xð Þ

0
BBB@

1
CCCA, (2)

v xð Þ is a real scalar function such that 0< v xð Þ ! ∞monotonically, as x! ∞,
and it has monotone absolutely continuous derivative. Also, U xð Þ is a relatively small
perturbation, e. g. as x! ∞ U xð Þj j � v�1 xð Þ ! 0 or Uj jv�1 ∈L∞ þð Þ. The diagonal
blocks Ukk xð Þ,  k ¼ 1, r are assumed to be bounded self-adjoint operators in Hk.

In case where

v xð Þ≥Cx2α,C>0, α> 1, (3)

we suppose that coefficients of the Eq. (1) satisfy relations:
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ð∞

0

U tð Þj j � v�1
2 tð Þdt<∞, (4)

ð∞

0

v02 tð Þ � v�5
2 tð Þdt<∞,

ð∞

0

v00 tð Þ � v�3
2 tð Þdt<∞: (5)

In case of v xð Þ ¼ x2α, 0< α≤ 1, we suppose that the coefficients of the Eq. (1)
satisfy the relation

ð∞

a

U tð Þj j � t�αdt<∞, a>0: (6)

2.1 Construction of the fundamental system of solutions for an operator
differential equation with a rapidly increasing at infinity potential

Consider first the case where v xð Þ≥Cx2α,C>0, α> 1.
Condition (3) is performed, for example, quickly increasing functions

ex, exp exf g etc.
Rewrite the Eq. (1) in the form

�y00 þ v xð Þ þ q xð Þð Þy ¼ λþ q xð Þð ÞI � U xð Þð Þy, (7)

where q xð Þ determined by a formula (cf. with the monograph [15])

q xð Þ ¼ 5
16

v0 xð Þ
v xð Þ

� �2

� 1
4
v00 xð Þ
v xð Þ : (8)

Now let us denote.

γ0 x, λð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4v xð Þ4

p � exp �
ðx

0

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
A, γ∞ x, λð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

4v xð Þ4
p � exp

ðx

0

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
A: (9)

It is easy to see that γ0 x, λð Þ ! 0, γ∞ x, λð Þ ! ∞ as x! ∞. These solutions
constitute a fundamental system of solutions of the scalar differential equation

�z00 þ v xð Þ þ q xð Þð Þz ¼ 0, (10)

in such a way that for all x∈ 0,∞½ Þ one has.

W γ0, γ∞ð Þ≔ γ0 x, λð Þ � γ0∞ x, λð Þ � γ00 x, λð Þ � γ∞ x, λð Þ ¼ 1: (11)

Theorem 2.1 Under conditions (3), (4), (5) Eq. (1) has a unique decreasing at
infinity operator solution Φ x, λð Þ∈B Hð Þ, satisfying the conditions

lim
x!∞

Φ x, λð Þ
γ0 x, λð Þ ¼ I and lim

x!∞

Φ0 x, λð Þ
γ00 x, λð Þ ¼ I: (12)

Also, there exists increasing at infinity operator solution Ψ x, λð Þ∈B Hð Þ satisfying the
conditions
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lim
x!∞

Ψ x, λð Þ
γ∞ x, λð Þ ¼ I and lim

x!∞

Ψ0 x, λð Þ
γ0∞ x, λð Þ ¼ I: (13)

Proof

a. Eq. (7) equivalently to integral equation

Φ x, λð Þ ¼ γ0 x, λð ÞI þ
ð∞

x

K x, t, λð Þ �Φ t, λð Þdt, (14)

where

K x, t, λð Þ ¼ C x, t, λð Þ � λþ q tð Þð ÞI �U tð Þ½ �, (15)

C x, t, λð Þ ¼ γ∞ x, λð Þ � γ0 t, λð Þ � γ∞ t, λð Þ � γ0 x, λð Þ, (16)

with C x, t, λð Þ being the Cauchy function that in each variable satisfies Eq. (10)
and the initial conditions C x, t, λð Þ x¼tj ¼ 0, C0x x, t, λð Þ x¼t ¼ 1,j C0t x, t, λð Þ x¼t ¼ �1j .

Set χ x, λð Þ ¼ Φ x, λð Þ
γ0 x, λð Þ to rewrite Eq. (14) in form

χ x, λð Þ ¼ I þ
ð∞

x

R x, t, λð Þχ t, λð Þdt, (17)

where R x, t, λð Þ ¼ K x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ. Thus

C x, tð Þ � γ0 t, λð Þ
γ0 x, λð Þ

����
���� ¼ γ20 t, γð Þ � γ∞ x, λð Þ

γ0 x, λð Þ � γ0 t, λð Þ � γ∞ t, λð Þ
����

���� ¼

¼ 1

2
ffiffiffiffiffiffiffiffi
v tð Þp � exp �2

ðt

0

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
A � exp 2

ðx

0

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
A� 1

2
ffiffiffiffiffiffiffiffi
v tð Þp

������

������
¼

¼ 1

2
ffiffiffiffiffiffiffiffi
v tð Þp � exp �2

ðt

x

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
A� 1

������

������
(18)

and since with x≤ t one has exp �2 Ð
t

x

ffiffiffiffiffiffiffiffiffi
v uð Þp

du
� �

≤ 1, we deduce that

C x, tð Þ � γ0 t, λð Þ
γ0 x, λð Þ

����
����≤

1ffiffiffiffiffiffiffiffi
v tð Þp : (19)

Hence.

R x, t, λð Þj j ¼ C x, tð Þ � γ0 t, λð Þ
γ0 x, γð Þ � λþ q tð Þð ÞI �U tð Þ½ �

����
����≤

1ffiffiffiffiffiffiffiffi
v tð Þp λj j þ q tð Þj j þ U tð Þj jð Þ:

(20)

By virtue of (3)–(5), (8),

1ffiffiffiffiffiffiffiffi
v tð Þp λj j þ q tð Þj j þ U tð Þj jð Þ∈L 0,∞ð Þ, (21)
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and therefore integral equation has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const.
By (17), one has that lim x!∞χ x, λð Þ ¼ I, where the first part of formula (12) follows
from.

Differentiable (14) to get Φ0 x, λð Þ
γ00 xð Þ ¼ I þ Ð∞x S x, t, λð Þχ t, λð Þdt, where S x, t, λð Þ ¼

K0x x, t, λð Þ γ0 t, λð Þ
γ00 x, λð Þ ¼ C0x x, tð Þ � γ0 t, λð Þ

γ00 x, λð Þ � λþ q tð Þð ÞI �U tð Þ½ �. We have similarly (18), that

C0x x, tð Þ � γ0 t, λð Þ
γ00 x, λð Þ

���
���≤ 1ffiffiffiffiffiffi

v tð Þ
p , and therefore S x, t, λð Þj j≤ 1ffiffiffiffiffiffi

v tð Þ
p � λj j þ q tð Þj jþ½

U tð Þj j�∈L 0,∞ð Þ, where the second part of formula (12) follows from.

b. Denote by Ψ̂ x, λð Þ∈B Hð Þ block-triangular operator solution of Eq. (1) that
increases at infinity, Ψkk x, λð Þ∈B Hk,Hkð Þ, k ¼ 1, r -its diagonal blocks. Now
Eq. (7) is equivalent to the integral equation

Ψ̂ x, λð Þ ¼ γ∞ x, λð Þ � I �
ðx

0

K x, t, λð Þ � Ψ̂ t, λð Þdt, (22)

where, just as in (14), the kernel K x, t, λð Þ is given by (15). Now set χ x, λð Þ ¼
Ψ̂ x, λð Þ
γ∞ x, λð Þ to rewrite Eq. (22) in form

χ x, λð Þ ¼ I �
ðx

0

R x, t, λð Þ � χ t, λð Þdt, (23)

where R x, t, λð Þ ¼ C x, t, λð Þ � γ∞ t, λð Þ
γ∞ x, λð Þ � q tð Þ þ λð Þ � I � U tð Þ½ �. Similarly we can prove

that the integral Eq. (23) has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const. Pass in
(23) to a limit as x! ∞ to get lim x!∞χ x, λð Þ ¼ I þ ~C λð Þ where ~C λð Þ is block-
triangular operator in H, that is

lim
x!∞

Ψ̂ x, λð Þ
γ∞ x, λð Þ ¼ I þ ~C λð Þ: (24)

Now consider another block-triangular operator solution ~Ψ x, λð Þ that increases at
infinity diagonal blocks which are defined by.

~Ψkk x, λð Þ ¼ Φkk x, λð Þ
ðx

a

Φ�1kk t, λð Þ Φ ∗
kk t, λð Þ� ��1dt, k ¼ 1, r, a≥0ð Þ, (25)

Φkk x, λð Þ are the diagonal blocks of operator solution Φ x, λð Þ as in Section a).
In view (16) and the definition of the functions γ0 xð Þ, γ∞ xð Þ can be proved that

lim
x!∞

~Ψkk x, λð Þ
γ∞ x, λð Þ ¼ Ik, k ¼ 1, r: (26)

Since Ψ̂ x, λð Þ and ~Ψ x, λð Þ are the operator solutions of Eq. (1) that increase at
infinity,

Ψ̂ x, λð Þ ¼ ~Ψ x, λð Þ þΦ x, λð Þ � C0 λð Þ, (27)
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lim
x!∞

Ψ x, λð Þ
γ∞ x, λð Þ ¼ I and lim

x!∞

Ψ0 x, λð Þ
γ0∞ x, λð Þ ¼ I: (13)

Proof

a. Eq. (7) equivalently to integral equation

Φ x, λð Þ ¼ γ0 x, λð ÞI þ
ð∞

x

K x, t, λð Þ �Φ t, λð Þdt, (14)

where

K x, t, λð Þ ¼ C x, t, λð Þ � λþ q tð Þð ÞI �U tð Þ½ �, (15)

C x, t, λð Þ ¼ γ∞ x, λð Þ � γ0 t, λð Þ � γ∞ t, λð Þ � γ0 x, λð Þ, (16)

with C x, t, λð Þ being the Cauchy function that in each variable satisfies Eq. (10)
and the initial conditions C x, t, λð Þ x¼tj ¼ 0, C0x x, t, λð Þ x¼t ¼ 1,j C0t x, t, λð Þ x¼t ¼ �1j .

Set χ x, λð Þ ¼ Φ x, λð Þ
γ0 x, λð Þ to rewrite Eq. (14) in form

χ x, λð Þ ¼ I þ
ð∞

x

R x, t, λð Þχ t, λð Þdt, (17)

where R x, t, λð Þ ¼ K x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ. Thus

C x, tð Þ � γ0 t, λð Þ
γ0 x, λð Þ

����
���� ¼ γ20 t, γð Þ � γ∞ x, λð Þ

γ0 x, λð Þ � γ0 t, λð Þ � γ∞ t, λð Þ
����

���� ¼

¼ 1

2
ffiffiffiffiffiffiffiffi
v tð Þp � exp �2

ðt

0

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
A � exp 2

ðx

0

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
A� 1

2
ffiffiffiffiffiffiffiffi
v tð Þp

������

������
¼

¼ 1

2
ffiffiffiffiffiffiffiffi
v tð Þp � exp �2

ðt

x

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
A� 1

������

������
(18)

and since with x≤ t one has exp �2 Ð
t

x

ffiffiffiffiffiffiffiffiffi
v uð Þp

du
� �

≤ 1, we deduce that

C x, tð Þ � γ0 t, λð Þ
γ0 x, λð Þ

����
����≤

1ffiffiffiffiffiffiffiffi
v tð Þp : (19)

Hence.

R x, t, λð Þj j ¼ C x, tð Þ � γ0 t, λð Þ
γ0 x, γð Þ � λþ q tð Þð ÞI �U tð Þ½ �

����
����≤

1ffiffiffiffiffiffiffiffi
v tð Þp λj j þ q tð Þj j þ U tð Þj jð Þ:

(20)

By virtue of (3)–(5), (8),

1ffiffiffiffiffiffiffiffi
v tð Þp λj j þ q tð Þj j þ U tð Þj jð Þ∈L 0,∞ð Þ, (21)
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and therefore integral equation has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const.
By (17), one has that lim x!∞χ x, λð Þ ¼ I, where the first part of formula (12) follows
from.

Differentiable (14) to get Φ0 x, λð Þ
γ00 xð Þ ¼ I þ Ð∞x S x, t, λð Þχ t, λð Þdt, where S x, t, λð Þ ¼

K0x x, t, λð Þ γ0 t, λð Þ
γ00 x, λð Þ ¼ C0x x, tð Þ � γ0 t, λð Þ

γ00 x, λð Þ � λþ q tð Þð ÞI �U tð Þ½ �. We have similarly (18), that

C0x x, tð Þ � γ0 t, λð Þ
γ00 x, λð Þ

���
���≤ 1ffiffiffiffiffiffi

v tð Þ
p , and therefore S x, t, λð Þj j≤ 1ffiffiffiffiffiffi

v tð Þ
p � λj j þ q tð Þj jþ½

U tð Þj j�∈L 0,∞ð Þ, where the second part of formula (12) follows from.

b. Denote by Ψ̂ x, λð Þ∈B Hð Þ block-triangular operator solution of Eq. (1) that
increases at infinity, Ψkk x, λð Þ∈B Hk,Hkð Þ, k ¼ 1, r -its diagonal blocks. Now
Eq. (7) is equivalent to the integral equation

Ψ̂ x, λð Þ ¼ γ∞ x, λð Þ � I �
ðx

0

K x, t, λð Þ � Ψ̂ t, λð Þdt, (22)

where, just as in (14), the kernel K x, t, λð Þ is given by (15). Now set χ x, λð Þ ¼
Ψ̂ x, λð Þ
γ∞ x, λð Þ to rewrite Eq. (22) in form

χ x, λð Þ ¼ I �
ðx

0

R x, t, λð Þ � χ t, λð Þdt, (23)

where R x, t, λð Þ ¼ C x, t, λð Þ � γ∞ t, λð Þ
γ∞ x, λð Þ � q tð Þ þ λð Þ � I � U tð Þ½ �. Similarly we can prove

that the integral Eq. (23) has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const. Pass in
(23) to a limit as x! ∞ to get lim x!∞χ x, λð Þ ¼ I þ ~C λð Þ where ~C λð Þ is block-
triangular operator in H, that is

lim
x!∞

Ψ̂ x, λð Þ
γ∞ x, λð Þ ¼ I þ ~C λð Þ: (24)

Now consider another block-triangular operator solution ~Ψ x, λð Þ that increases at
infinity diagonal blocks which are defined by.

~Ψkk x, λð Þ ¼ Φkk x, λð Þ
ðx

a

Φ�1kk t, λð Þ Φ ∗
kk t, λð Þ� ��1dt, k ¼ 1, r, a≥0ð Þ, (25)

Φkk x, λð Þ are the diagonal blocks of operator solution Φ x, λð Þ as in Section a).
In view (16) and the definition of the functions γ0 xð Þ, γ∞ xð Þ can be proved that

lim
x!∞

~Ψkk x, λð Þ
γ∞ x, λð Þ ¼ Ik, k ¼ 1, r: (26)

Since Ψ̂ x, λð Þ and ~Ψ x, λð Þ are the operator solutions of Eq. (1) that increase at
infinity,

Ψ̂ x, λð Þ ¼ ~Ψ x, λð Þ þΦ x, λð Þ � C0 λð Þ, (27)
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where C0 λð Þ is some block-triangular operator. Thus lim
x!∞

Ψ̂ x, λð Þ
γ∞ xð Þ ¼ lim

x!∞

~Ψ x, λð Þ
γ∞ xð Þ ,

hence, by virtue (26), lim
x!∞

Ψkk x, λð Þ
γ∞ xð Þ ¼ Ik, k ¼ 1, r and in (24) has

~C λð Þ ¼

0 C12 λð Þ … C1r λð Þ
0 0 … C2r λð Þ
… … … …

0 0 … 0

0
BBB@

1
CCCA: (28)

The solution Ψ x, λð Þ given by Ψ x, λð Þ ¼ Ψ̂ x, λð Þ I þ ~C λð Þ� ��1
is subject to first

from condition (13). Use (12) to differentiate (27), then find the asymptotes of
~Ψ0 x, λð Þ as x! ∞ similarly to (21) to obtain the second part of formula (13).
Theorem is proved. □

In this section, the fundamental system of solution is constructed for an operator
differential equation with a rapidly increasing at infinity potential.

2.2 Asymptotic of the fundamental system solutions of equation with
block-triangular potential

Now consider the case when v xð Þ ¼ x2α, 0< α≤ 1 and coefficients of Eq. (1)
satisfy the condition (6). Rewrite Eq. (1) in the form

�y00 þ x2α � λþ q x, λð Þ� �
y ¼ q x, λð Þ � I �U xð Þð Þy, (29)

where q x, λð Þ determined by a formula

q x, λð Þ ¼ 5α2

4
x2α�1

x2α � λ

� �2

� α 2α� 1ð Þx2α�2
2 x2α � λð Þ : (30)

Denote

γ0 x, λð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 x2α � λð Þ4

p � exp �
ðx

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2α � λ
p

du

0
@

1
A, (31)

γ∞ x, λð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 x2α � λð Þ4

p � exp
ðx

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2α � λ
p

du

0
@

1
A: (32)

There solutions constitute a fundamental system of solutions of the scalar dif-
ferential equation �z00 þ x2α � λþ q x, λð Þð Þz ¼ 0, in such a way that for all x∈ 0,∞½ Þ
one has W γ0, γ∞ð Þ≔ γ0 x, λð Þ � γ0∞ x, λð Þ � γ00 x, λð Þ � γ∞ x, λð Þ ¼ 1.

We are about to establish the asymptotics1 of γ0 x, λð Þ as x! ∞:

γ0 x, λð Þ ¼ 2xαð Þ�1
2 � 1� λ

x2α

� ��1
4

� exp �
ðx

a

uα 1� λ

u2α

� �1
2

du

0
@

1
A: (33)

1 For α ¼ 1 and α ¼ 1
2, i.e., for v xð Þ ¼ x2 and v xð Þ ¼ x, the asymptotics of the functions γ0 x, λð Þ and

γ∞ x, λð Þ is known.
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After expanding here the integral, we obtain the exponential as follows

exp �
ðx

a

uα � 1� 1
2
� λ

u2α
�
X∞

k¼2

1 � 3 � … � 2k� 3ð Þ
k! � 2k � λ

u2α

� �k
 !

du

0
@

1
A: (34)

In case αþ1
2α ¼ n∈N, i.e. α ¼ 1

2n�1, this expression after integration acquires the
form:

c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�  exp 1 � 3 � … � 2n� 3ð Þ
n!

� λ

2

� �n

� ln xþ o 1ð Þ
� �

¼

¼ c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !
�

� x1�3�… � 2n�3ð Þ
n! � λ

2ð Þn � 1þ o 1ð Þð Þ: (35)

The asymptotics of γ0 x, λð Þ as x! ∞ is as follows:

γ0 x; λð Þ ¼ c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�x1�3�… � 2n�3ð Þ
n! � λ

2ð Þn�α
2 � 1þ o 1ð Þð Þ:

(36)

In particular, for α ¼ 1 n ¼ 1ð Þ, γ0 x, λð Þ has the following asymptotics at infinity:

γ0 x, λð Þ ¼ c � xλ�1
2 � exp � x2

2

� �
1þ o 1ð Þð Þ: (37)

In case αþ1
2α ∉ N we set n ¼ αþ1

2α

� �þ 1, with β½ � being the integral part of β, to
obtain the following asymptotics for γ0 x, λð Þ at infinity:

γ0 x, λð Þ ¼ c � x�α
2 exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !
�

� exp � 1 � 3 � … � 2n� 3ð Þ
n!

� λ

2

� �n

� x
�α

α

� �
� 1þ o x�αð Þð Þ

(38)

In particular, with α ¼ 1
2 n ¼ 2ð Þ one has

γ0 x, λð Þ ¼ cx�
1
4 � exp � 2

3
x

3
2 þ λx

1
2 � λ

2

� �2

x�
1
2

 !
� 1þ o x�

1
2

� �� �
: (39)

A similar procedure allows to establish the asymptotics of γ∞ xð Þ as x! ∞: If
αþ1
2α ¼ n∈N, i.e. α ¼ 1

2n�1, then
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where C0 λð Þ is some block-triangular operator. Thus lim
x!∞

Ψ̂ x, λð Þ
γ∞ xð Þ ¼ lim

x!∞

~Ψ x, λð Þ
γ∞ xð Þ ,

hence, by virtue (26), lim
x!∞

Ψkk x, λð Þ
γ∞ xð Þ ¼ Ik, k ¼ 1, r and in (24) has

~C λð Þ ¼

0 C12 λð Þ … C1r λð Þ
0 0 … C2r λð Þ
… … … …

0 0 … 0

0
BBB@

1
CCCA: (28)

The solution Ψ x, λð Þ given by Ψ x, λð Þ ¼ Ψ̂ x, λð Þ I þ ~C λð Þ� ��1
is subject to first

from condition (13). Use (12) to differentiate (27), then find the asymptotes of
~Ψ0 x, λð Þ as x! ∞ similarly to (21) to obtain the second part of formula (13).
Theorem is proved. □

In this section, the fundamental system of solution is constructed for an operator
differential equation with a rapidly increasing at infinity potential.

2.2 Asymptotic of the fundamental system solutions of equation with
block-triangular potential

Now consider the case when v xð Þ ¼ x2α, 0< α≤ 1 and coefficients of Eq. (1)
satisfy the condition (6). Rewrite Eq. (1) in the form

�y00 þ x2α � λþ q x, λð Þ� �
y ¼ q x, λð Þ � I �U xð Þð Þy, (29)

where q x, λð Þ determined by a formula

q x, λð Þ ¼ 5α2

4
x2α�1

x2α � λ

� �2

� α 2α� 1ð Þx2α�2
2 x2α � λð Þ : (30)

Denote

γ0 x, λð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 x2α � λð Þ4

p � exp �
ðx

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2α � λ
p

du

0
@

1
A, (31)

γ∞ x, λð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 x2α � λð Þ4

p � exp
ðx

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2α � λ
p

du

0
@

1
A: (32)

There solutions constitute a fundamental system of solutions of the scalar dif-
ferential equation �z00 þ x2α � λþ q x, λð Þð Þz ¼ 0, in such a way that for all x∈ 0,∞½ Þ
one has W γ0, γ∞ð Þ≔ γ0 x, λð Þ � γ0∞ x, λð Þ � γ00 x, λð Þ � γ∞ x, λð Þ ¼ 1.

We are about to establish the asymptotics1 of γ0 x, λð Þ as x! ∞:

γ0 x, λð Þ ¼ 2xαð Þ�1
2 � 1� λ

x2α

� ��1
4

� exp �
ðx

a

uα 1� λ

u2α

� �1
2

du

0
@

1
A: (33)

1 For α ¼ 1 and α ¼ 1
2, i.e., for v xð Þ ¼ x2 and v xð Þ ¼ x, the asymptotics of the functions γ0 x, λð Þ and

γ∞ x, λð Þ is known.

48

Recent Developments in the Solution of Nonlinear Differential Equations

After expanding here the integral, we obtain the exponential as follows

exp �
ðx

a

uα � 1� 1
2
� λ

u2α
�
X∞

k¼2

1 � 3 � … � 2k� 3ð Þ
k! � 2k � λ

u2α

� �k
 !

du

0
@

1
A: (34)

In case αþ1
2α ¼ n∈N, i.e. α ¼ 1

2n�1, this expression after integration acquires the
form:

c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�  exp 1 � 3 � … � 2n� 3ð Þ
n!

� λ

2

� �n

� ln xþ o 1ð Þ
� �

¼

¼ c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !
�

� x1�3�… � 2n�3ð Þ
n! � λ

2ð Þn � 1þ o 1ð Þð Þ: (35)

The asymptotics of γ0 x, λð Þ as x! ∞ is as follows:

γ0 x; λð Þ ¼ c � exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !

�x1�3�… � 2n�3ð Þ
n! � λ

2ð Þn�α
2 � 1þ o 1ð Þð Þ:

(36)

In particular, for α ¼ 1 n ¼ 1ð Þ, γ0 x, λð Þ has the following asymptotics at infinity:

γ0 x, λð Þ ¼ c � xλ�1
2 � exp � x2

2

� �
1þ o 1ð Þð Þ: (37)

In case αþ1
2α ∉ N we set n ¼ αþ1

2α

� �þ 1, with β½ � being the integral part of β, to
obtain the following asymptotics for γ0 x, λð Þ at infinity:

γ0 x, λð Þ ¼ c � x�α
2 exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !
�

� exp � 1 � 3 � … � 2n� 3ð Þ
n!

� λ

2

� �n

� x
�α

α

� �
� 1þ o x�αð Þð Þ

(38)

In particular, with α ¼ 1
2 n ¼ 2ð Þ one has

γ0 x, λð Þ ¼ cx�
1
4 � exp � 2

3
x

3
2 þ λx

1
2 � λ

2

� �2

x�
1
2

 !
� 1þ o x�

1
2

� �� �
: (39)

A similar procedure allows to establish the asymptotics of γ∞ xð Þ as x! ∞: If
αþ1
2α ¼ n∈N, i.e. α ¼ 1

2n�1, then
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γ∞ x, λð Þ ¼ c � exp x1þα

1þ α
� λ

2
� x

1�α

1� α
�
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !
�

� x� 1�3�… � 2n�3ð Þ
n! � λ

2ð Þnþα
2ð Þ � 1þ o 1ð Þð Þ:

(40)

With α ¼ 1 n ¼ 1ð Þ, this becomes

γ∞ x, λð Þ ¼ c � x�λþ1
2 � exp x2

2

� �
1þ o 1ð Þð Þ: (41)

In case αþ1
2α ∉ N, we set n ¼ αþ1

2α

� �þ 1 to get the asymptotics.

γ∞ x, λð Þ ¼ c � x�α
2 exp � x1þα

1þ α
þ λ

2
� x

1�α

1� α
þ
Xn�1

k¼2

1 � 3 � … � 2k� 3ð Þ
k!

� λ

2

� �k

� x1� 2k�1ð Þα

1� 2k� 1ð Þα

 !
�

� exp 1 � 3 � … � 2n� 3ð Þ
n!

� λ

2

� �n

� x
�α

α

� �
� 1þ o x�αð Þð Þ:

(42)

In case α ¼ 1
2 n ¼ 2ð Þ, one has

γ∞ x, λð Þ ¼ cx�
1
4 � exp 2

3
x

3
2 � λx

1
2 þ λ

2

� �2

x�
1
2

 !
� 1þ o x�

1
2

� �� �
: (43)

Theorem 2.2 Under 0< α≤ 1 and condition (6), the statement of Theorem 2.1 is also
valid for Eq. (1).

Proof is similar to Theorem 2.1. Moreover, note that

C x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ

����
���� ¼ γ20 t, λð Þ � γ∞ x, λð Þ

γ0 x, λð Þ � γ0 t, λð Þ � γ∞ t, λð Þ
����

���� ¼

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2α � λ
p � exp �2

ðt

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2α � λ
p

du

0
@

1
A � exp 2

ðx

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2α � λ
p

du

0
@

1
A� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2α � λ
p

������

������

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2α � λ
p � exp �2

ðt

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2α � λ
p

du� 1

0
@

1
A

������

������
:

(44)

As x≤ t, one has exp �2 Ð
t

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2α � λ
p

du
� �

≤ 1, and that is why

C x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ

����
����≤

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2α � λ
p : (45)

Hence

R x, t, λð Þj j ¼ C x, t, λð Þ � γ0 t, λð Þ
γ0 x, λð Þ � q t, λð Þ � I �U tð Þ½ �

����
����≤

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2α � λ
p q t, λð Þj j þ U tð Þj jð Þ: (46)

By virtue of (6) and (30), 1ffiffiffiffiffiffiffiffi
t2α�λ
p q t, λð Þj j þ U tð Þj jð Þ∈L a,∞ð Þ and therefore inte-

gral equation has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const. By (17), one has that
lim x!∞χ x, λð Þ ¼ I, where the first part of formula (12) follows from.
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The remaining statements of Theorem 2.1 are proved similarly. □
From Theorem 2.2 and the asymptotic formulas (37), (39), (41), (43) follows.
Corollary 2.1 If α ¼ 1, i.e. v xð Þ ¼ x2, then, under condition (6), the solutions

Φ x, λð Þ and Ψ x, λð Þ have common (known) asymptotics, as in the quality γ0 x, λð Þ and
γ∞ x, λð Þ you can take the following functions.

γ0 x, λð Þ ¼ x
λ�1
2 � exp � x2

2

� �
, ::γ∞ x, λð Þ ¼ x�

λþ1
2 � exp x2

2

� �
: (47)

If α ¼ 1
2, i.e. the coefficient v xð Þ ¼ x, and the condition (6) holds, then.

γ0 x, λð Þ ¼ x�
1
4 � exp � 2

3
x

3
2 þ λx

1
2

� �
, γ∞ x, λð Þ ¼ x�

1
4 � exp 2

3
x

3
2 � λx

1
2

� �
: (48)

Remark 2.1 It is known that scalar equation

�φ00 þ x2 � φ ¼ λφ (49)

for λ ¼ 2nþ 1 has the solution φn xð Þ ¼ Hn xð Þ � exp � x2
2

� �
, where Hn xð Þ is the

Chebyshev – Hermitre polynomial, that at x! ∞ has next asymptotics Hn xð Þ ¼
2xð Þn 1þ o 1ð Þð Þ. Hence the solution φn xð Þ of the Eq. (49) at x! ∞ will have the

following asymptotics at infinity: φn xð Þ ¼ 2xð Þn � exp � x2
2

� �
� 1þ o 1ð Þð Þ.

In the case of U xð Þ ¼ 0, v xð Þ ¼ x2 in (2), the Eq. (1) is splitting into infinity
system scalar equations of the form (49). The operator solution Φ x, λð Þ will be
diagonal in this case. Denote by φ x, λð Þ the diagonal elements of the operator Φ x, λð Þ.
Then, by Corollary 2.1, the solution φ x, λð Þ will have the following asymptotics at

infinity: φ x, λð Þ ¼ xð Þλ�12 � exp � x2
2

� �
1þ o 1ð Þð Þ. In particular, for λ ¼ 2nþ 1, this

yields the solution proportional to φn xð Þ.
In this section, the asymptotics of the fundamental system of solutions for the

Sturm-Liouville equation with block-triangular operator potential, increasing at
infinity is established. One of the solutions is found decreasing at infinity, the other
one increasing.

3. Green’s function for an operator differential equation with
block – triangular coefficients

Let us suppose that at the x ¼ 0 given boundary conditions

cosA � y0 0ð Þ � sinA � y 0ð Þ ¼ 0, (50)

where A- the block-triangular operator of the same structure as the coefficients
of the differential equation, Akk,  k ¼ 1, r- bounded self-adjoint operators in Hk,
which satisfy the conditions

� π

2
Ik < <Akk ≤

π

2
Ik: (51)

Together with the problem (1), (50) we consider the separated system

lk yk
� � ¼ �yk00 þ v xð ÞIk þUkk xð Þð Þyk ¼ λyk, k ¼ 1, r (52)
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Theorem 2.2 Under 0< α≤ 1 and condition (6), the statement of Theorem 2.1 is also
valid for Eq. (1).

Proof is similar to Theorem 2.1. Moreover, note that

C x, t, λð Þ � γ0 t, λð Þ
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gral equation has a unique solution χ x, λð Þ and χ x, λð Þj j≤ const. By (17), one has that
lim x!∞χ x, λð Þ ¼ I, where the first part of formula (12) follows from.
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The remaining statements of Theorem 2.1 are proved similarly. □
From Theorem 2.2 and the asymptotic formulas (37), (39), (41), (43) follows.
Corollary 2.1 If α ¼ 1, i.e. v xð Þ ¼ x2, then, under condition (6), the solutions

Φ x, λð Þ and Ψ x, λð Þ have common (known) asymptotics, as in the quality γ0 x, λð Þ and
γ∞ x, λð Þ you can take the following functions.
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Remark 2.1 It is known that scalar equation

�φ00 þ x2 � φ ¼ λφ (49)

for λ ¼ 2nþ 1 has the solution φn xð Þ ¼ Hn xð Þ � exp � x2
2

� �
, where Hn xð Þ is the

Chebyshev – Hermitre polynomial, that at x! ∞ has next asymptotics Hn xð Þ ¼
2xð Þn 1þ o 1ð Þð Þ. Hence the solution φn xð Þ of the Eq. (49) at x! ∞ will have the

following asymptotics at infinity: φn xð Þ ¼ 2xð Þn � exp � x2
2

� �
� 1þ o 1ð Þð Þ.

In the case of U xð Þ ¼ 0, v xð Þ ¼ x2 in (2), the Eq. (1) is splitting into infinity
system scalar equations of the form (49). The operator solution Φ x, λð Þ will be
diagonal in this case. Denote by φ x, λð Þ the diagonal elements of the operator Φ x, λð Þ.
Then, by Corollary 2.1, the solution φ x, λð Þ will have the following asymptotics at

infinity: φ x, λð Þ ¼ xð Þλ�12 � exp � x2
2

� �
1þ o 1ð Þð Þ. In particular, for λ ¼ 2nþ 1, this

yields the solution proportional to φn xð Þ.
In this section, the asymptotics of the fundamental system of solutions for the

Sturm-Liouville equation with block-triangular operator potential, increasing at
infinity is established. One of the solutions is found decreasing at infinity, the other
one increasing.

3. Green’s function for an operator differential equation with
block – triangular coefficients

Let us suppose that at the x ¼ 0 given boundary conditions

cosA � y0 0ð Þ � sinA � y 0ð Þ ¼ 0, (50)

where A- the block-triangular operator of the same structure as the coefficients
of the differential equation, Akk,  k ¼ 1, r- bounded self-adjoint operators in Hk,
which satisfy the conditions

� π

2
Ik < <Akk ≤

π

2
Ik: (51)

Together with the problem (1), (50) we consider the separated system

lk yk
� � ¼ �yk00 þ v xð ÞIk þUkk xð Þð Þyk ¼ λyk, k ¼ 1, r (52)
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with the boundary conditions

cosAkk � yk0 0ð Þ � sinAkk � yk 0ð Þ ¼ 0, k ¼ 1, r: (53)

Let L0 denote the minimal differential operator generated by differential expres-
sion l y½ � (1) and the boundary condition (50), and let Lk

0, k ¼ 1, r denote the minimal
differential operator on L2 Hk, 0,∞ð Þð Þ generated by differential expression lk yk

� �
and

the boundary conditions (53). Taking into account the conditions on coefficients, as
well as sufficient smallness of perturbations Ukk xð Þ and conditions (51), we conclude
that, for every symmetric operator Lk

0, there is a case of limit point at infinity. Hence
their self-adjoint extensions Lk are the closures of operators Lk

0 respectively. The
operators Lk are semi-bounded below, and their spectra are discrete.

Let L denote the operator extensions L0, by requiring that L2 H, 0,∞ð Þð Þ be the
domain of operator L.

The following theorem is proved in [4].
Theorem 3.1 Suppose that, for Eq. (1) conditions (3)-(5) are satisfied for α> 1 or

condition (6) for 0< α≤ 1. Then the discrete spectrum of the operator L is real and
coincides with the union of spectra of the self-adjoint operators Lk, k ¼ 1, r , i.e.,
σd Lð Þ ¼ ∪r

k¼1σ Lkð Þ.
Comment 3.1 Note that this theorem contains a statement of the discrete spec-

trum of the non-self-adjoint operator L only and no allegations of its continuous and
residual spectrum.

Along with the Eq. (1) we consider the equation

l1 y½ � ¼ �y00 þ V ∗ xð Þy ¼ λy (54)

(V ∗ xð Þ is adjoint to the operator V xð Þ). If the space H is finite-dimensional, then
the Eq. (54) can be rewritten as

~l ~y½ � ¼ �~y00 þ ~yV xð Þ ¼ λ~y, (55)

where ~y ¼ ~y1 ~y2 …~yr
� �

and the equation is called the left.
For operator -functions Y x, λð Þ,Z x, λð Þ∈B Hð Þ let

W Z ∗ ,Yf g ¼ Z ∗ 0 x, λ
� �

Y x, λð Þ � Z ∗ x, λ
� �

Y 0 x, λð Þ: (56)

If Y x, λð Þ - operator solution of the Eq. (1), and Z x, λð Þ - operator solution of
Eq. (54), the Wronskian does not depend on x.

Now we denote Y x, λð Þ and Y1 x, λð Þ the solutions of the Eqs. (1) and (54),
respectively, satisfying the initial conditions

Y 0, λð Þ ¼ cosA,Y 0 0, λð Þ ¼ sinA,Y1 0, λð Þ ¼ cosAð Þ ∗ ,Y1
0 0, λð Þ ¼ sinAð Þ ∗ , λ∈:

(57)

Because the operator function Y ∗
1 x, λ
� �

satisfies equation

�Y ∗
1
00 x, λ
� �þ Y ∗

1 x, λ
� � � V xð Þ ¼ λY ∗

1 x, λ
� �

, (58)

the operator function ~Y x, λð Þ≕Y ∗
1 x, λ
� �

is a solution to the left of the equation

�~Y 00 x, λð Þ þ ~Y x, λð Þ � V xð Þ ¼ λ~Y x, λð Þ (59)

and satisfies the initial conditions ~Y 0, λð Þ ¼ cosA,  ~Y
0
0, λð Þ ¼ sinA,  λ∈.
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Operator solutions of Eq. (54) decreasing and increasing at infinity will be
denoted byΦ1 x, λð Þ, Ψ1 x, λð Þ, and the corresponding solutions of the Eq. (59) denote
by ~Φ x, λð Þ and ~Ψ x, λð Þ. For the system operator solutions Y x, λð Þ, ~Φ x, λð Þ∈B Hð Þ of
the Eqs. (1) and (59), respectively, will take the form of Wronskian W ~Φ,Y

� � ¼
~Φ0 x, λð ÞY x, λð Þ � ~Φ x, λð ÞY 0 x, λð Þ and do not depend on x.

Let us designate

G x, t, λð Þ ¼
Y x, λð Þ W ~Φ,Y

� �� ��1 ~Φ t, λð Þ 0≤ x≤ t

�Φ x, λð Þ W ~Y,Φ
� �� ��1 ~Y t, λð Þ x≥ t

8<
: : (60)

In the following theorem it is proved that the operator function G x, t, λð Þ
possesses all the classical properties of the Green’s function.

Theorem 3.2 The operator function G x, t, λð Þ is the Green’s function of the
differential operator L, i.e.:

1.The function G x, t, λð Þ is continuous for all values x, t∈ 0,∞½ Þ;

2.For any fixed t, the function G x, t, λð Þ has a continuous derivative with respect to x
on each of the intervals 0, t½ Þ and t,∞ð Þ, and at x ¼ t it has the jump

Gx
0 xþ 0, x, λð Þ � Gx

0 x� 0, x, λð Þ ¼ �I: (61)

3.For a fixed t, the function G x, t, λð Þ of the variable x is an operator solution of
Eq. (1) on each of the intervals 0, t½ Þ, t,∞ð Þ, and it satisfies the boundary condition
(50), and at a fixed x function G x, t, λð Þ of the variable t is an operator solution of
the Eq. (59) on each of the intervals 0, x½ Þ, x,∞ð Þ, and it satisfies the boundary
condition ~y0 0ð Þ � cosA� ~y 0ð Þ � sinA ¼ 0:

Proof The function G x, t, λð Þ is continuous with respect to x at each of the
intervals 0, t½ Þ and t,∞ð Þ. Similarly to the variable t. To prove the continuity of the
function G x, t, λð Þ for all x, t≥0, it is sufficient that the identity shown as

Y x, λð Þ W ~Φ,Y
� �� ��1 ~Φ x, λð Þ þΦ x, λð Þ W ~Y,Φ

� �� ��1 ~Y x, λð Þ � 0: (62)

is satisfied for all x≥0: This identity shown as

Y x, λð Þ ~Φ x, λð ÞY 0 x, λð Þ � ~Φ0 x, λð ÞY x, λð Þ
� ��1

~Φ x, λð Þ�

�Φ x, λð Þ ~Y
0
x, λð ÞΦ x, λð Þ � ~Y x, λð ÞΦ0 x, λð Þ

� ��1
~Y x, λð Þ � 0 (63)

or

Y 0 x, λð ÞY�1 x, λð Þ � ~Φ�1 x, λð Þ~Φ0 x, λð Þ
� ��1

� ~Y
�1

x, λð Þ~Y 0 x, λð Þ �Φ0 x, λð ÞΦ�1 x, λð Þ
� ��1

,

Y 0 x, λð ÞY�1 x, λð Þ � ~Φ�1 x, λð Þ~Φ0 x, λð Þ � ~Y
�1

x, λð Þ~Y 0 x, λð Þ �Φ0 x, λð ÞΦ�1 x, λð Þ,
(64)

which is equivalent to

Y 0 x, λð ÞY�1 x, λð Þ � ~Y
�1

x, λð Þ~Y 0 x, λð Þ � ~Φ�1 x, λð Þ~Φ0 x, λð Þ �Φ0 x, λð ÞΦ�1 x, λð Þ (65)
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with the boundary conditions
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(V ∗ xð Þ is adjoint to the operator V xð Þ). If the space H is finite-dimensional, then
the Eq. (54) can be rewritten as

~l ~y½ � ¼ �~y00 þ ~yV xð Þ ¼ λ~y, (55)

where ~y ¼ ~y1 ~y2 …~yr
� �

and the equation is called the left.
For operator -functions Y x, λð Þ,Z x, λð Þ∈B Hð Þ let

W Z ∗ ,Yf g ¼ Z ∗ 0 x, λ
� �

Y x, λð Þ � Z ∗ x, λ
� �

Y 0 x, λð Þ: (56)

If Y x, λð Þ - operator solution of the Eq. (1), and Z x, λð Þ - operator solution of
Eq. (54), the Wronskian does not depend on x.

Now we denote Y x, λð Þ and Y1 x, λð Þ the solutions of the Eqs. (1) and (54),
respectively, satisfying the initial conditions

Y 0, λð Þ ¼ cosA,Y 0 0, λð Þ ¼ sinA,Y1 0, λð Þ ¼ cosAð Þ ∗ ,Y1
0 0, λð Þ ¼ sinAð Þ ∗ , λ∈:

(57)

Because the operator function Y ∗
1 x, λ
� �

satisfies equation

�Y ∗
1
00 x, λ
� �þ Y ∗

1 x, λ
� � � V xð Þ ¼ λY ∗

1 x, λ
� �

, (58)

the operator function ~Y x, λð Þ≕Y ∗
1 x, λ
� �

is a solution to the left of the equation

�~Y 00 x, λð Þ þ ~Y x, λð Þ � V xð Þ ¼ λ~Y x, λð Þ (59)

and satisfies the initial conditions ~Y 0, λð Þ ¼ cosA,  ~Y
0
0, λð Þ ¼ sinA,  λ∈.
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Operator solutions of Eq. (54) decreasing and increasing at infinity will be
denoted byΦ1 x, λð Þ, Ψ1 x, λð Þ, and the corresponding solutions of the Eq. (59) denote
by ~Φ x, λð Þ and ~Ψ x, λð Þ. For the system operator solutions Y x, λð Þ, ~Φ x, λð Þ∈B Hð Þ of
the Eqs. (1) and (59), respectively, will take the form of Wronskian W ~Φ,Y

� � ¼
~Φ0 x, λð ÞY x, λð Þ � ~Φ x, λð ÞY 0 x, λð Þ and do not depend on x.

Let us designate

G x, t, λð Þ ¼
Y x, λð Þ W ~Φ,Y

� �� ��1 ~Φ t, λð Þ 0≤ x≤ t

�Φ x, λð Þ W ~Y,Φ
� �� ��1 ~Y t, λð Þ x≥ t

8<
: : (60)

In the following theorem it is proved that the operator function G x, t, λð Þ
possesses all the classical properties of the Green’s function.

Theorem 3.2 The operator function G x, t, λð Þ is the Green’s function of the
differential operator L, i.e.:

1.The function G x, t, λð Þ is continuous for all values x, t∈ 0,∞½ Þ;

2.For any fixed t, the function G x, t, λð Þ has a continuous derivative with respect to x
on each of the intervals 0, t½ Þ and t,∞ð Þ, and at x ¼ t it has the jump

Gx
0 xþ 0, x, λð Þ � Gx

0 x� 0, x, λð Þ ¼ �I: (61)

3.For a fixed t, the function G x, t, λð Þ of the variable x is an operator solution of
Eq. (1) on each of the intervals 0, t½ Þ, t,∞ð Þ, and it satisfies the boundary condition
(50), and at a fixed x function G x, t, λð Þ of the variable t is an operator solution of
the Eq. (59) on each of the intervals 0, x½ Þ, x,∞ð Þ, and it satisfies the boundary
condition ~y0 0ð Þ � cosA� ~y 0ð Þ � sinA ¼ 0:

Proof The function G x, t, λð Þ is continuous with respect to x at each of the
intervals 0, t½ Þ and t,∞ð Þ. Similarly to the variable t. To prove the continuity of the
function G x, t, λð Þ for all x, t≥0, it is sufficient that the identity shown as

Y x, λð Þ W ~Φ,Y
� �� ��1 ~Φ x, λð Þ þΦ x, λð Þ W ~Y,Φ

� �� ��1 ~Y x, λð Þ � 0: (62)

is satisfied for all x≥0: This identity shown as

Y x, λð Þ ~Φ x, λð ÞY 0 x, λð Þ � ~Φ0 x, λð ÞY x, λð Þ
� ��1

~Φ x, λð Þ�

�Φ x, λð Þ ~Y
0
x, λð ÞΦ x, λð Þ � ~Y x, λð ÞΦ0 x, λð Þ

� ��1
~Y x, λð Þ � 0 (63)

or

Y 0 x, λð ÞY�1 x, λð Þ � ~Φ�1 x, λð Þ~Φ0 x, λð Þ
� ��1

� ~Y
�1

x, λð Þ~Y 0 x, λð Þ �Φ0 x, λð ÞΦ�1 x, λð Þ
� ��1

,

Y 0 x, λð ÞY�1 x, λð Þ � ~Φ�1 x, λð Þ~Φ0 x, λð Þ � ~Y
�1

x, λð Þ~Y 0 x, λð Þ �Φ0 x, λð ÞΦ�1 x, λð Þ,
(64)

which is equivalent to

Y 0 x, λð ÞY�1 x, λð Þ � ~Y
�1

x, λð Þ~Y 0 x, λð Þ � ~Φ�1 x, λð Þ~Φ0 x, λð Þ �Φ0 x, λð ÞΦ�1 x, λð Þ (65)
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or to.

~Y
�1

x, λð Þ ~Y x, λð ÞY 0 x, λð Þ � ~Y
0
x, λð ÞY x, λð Þ

� �
Y�1 x, λð Þ �

� �~Φ�1 x, λð Þ ~Φ x, λð ÞΦ0 x, λð Þ � ~Φ0 x, λð ÞΦ�1 x, λð Þ
� �

Φ�1 x, λð Þ: (66)

This follows from the fact that W ~Y,Y
� � ¼W ~Φ,Φ

� � ¼ 0.
To make sure that the jump in the first derivative at t ¼ x is equal to �Ið Þ, i.e.,

that the equality (61) holds, it is sufficient to prove the identity

Y 0 x, λð Þ W ~Φ,Y
� �� ��1 ~Φ x, λð Þ þΦ0 x, λð Þ W ~Y,Φ

� �� ��1 ~Y x, λð Þ � I: (67)

Now we consider the function

C x, t, λð Þ ¼ Y x, λð Þ W ~Φ,Y
� �� ��1 ~Φ t, λð Þ þΦ x, λð Þ W ~Y,Φ

� �� ��1 ~Y t, λð Þ, (68)

which is an analogue of the Cauchy function. This function is the solution of
Eq. (1) of the variable x, and it is the solution of Eq. (59) of the variable t. By (62),
we have C x, x, λð Þ � 0. But in this case Cxx

00jt¼x ¼ V xð Þ � λIð ÞCjt¼x � 0, and,
therefore, Cx

0 x, t, λð Þjt¼x � Ω1 λð Þ, i.e.,

Y 0 x, λð Þ W ~Φ,Y
� �� ��1 ~Φ x, λð Þ þΦ0 x, λð Þ W ~Y,Φ

� �� ��1 ~Y x, λð Þ � Ω1 λð Þ: (69)

It shows that Ω1 λð Þ ¼ I, we obtain (61).
Since operator solutions Φ x, λð Þ and Ψ x, λð Þ form a fundamental system of

solutions of Eq. (1), the operator solution Y x, λð Þ of Eq. (1) satisfying the initial
conditions (57), can be written as Y x, λð Þ ¼ Φ x, λð ÞA λð Þ þΨ x, λð ÞB λð Þ, where
A λð Þ ¼ �W ~Ψ,Y

� �
,B λð Þ ¼W ~Φ,Y

� �
,

Y x, λð Þ ¼ Ψ x, λð ÞW ~Φ,Y
� ��Φ x, λð ÞW ~Ψ,Y

� �
: (70)

Similarly, operator solution ~Y x, λð Þ of Eq. (59) can be represented in the form

~Y x, λð Þ ¼ ~W ~Φ,Y
� �

~Ψ x, λð Þ � ~W ~Ψ,Y
� �

~Φ x, λð Þ, (71)

where

~W ~Φ,Y
� � ¼ sinA �Φ 0, λð Þ � cosA �Φ0 0, λð Þ ¼ �Ω 0, λð Þ ¼ �W ~Y,Φ

� �
: (72)

Similarly we get ~W ~Ψ,Y
� � ¼ �W ~Y,Ψ

� �
. Thus,

~Y x, λð Þ ¼W ~Y,Ψ
� �

~Φ x, λð Þ �W ~Y,Φ
� �

~Ψ x, λð Þ: (73)

Substituting (70) and (73) into the formula (69), using the fact that the equality
(69) is performed on x identically, we obtain

Ω1 λð Þ ¼ lim
x!∞

Ψ0 x, λð Þ~Φ x, λð Þ �Φ0 x, λð Þ~Ψ x, λð Þ� �
: (74)

By Theorem 2.1, on the asymptotic behavior of functions Φ x, λð Þ and Ψ x, λð Þ at
infinity, we have
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Ω1 λð Þ ¼ lim
x!∞

γ0 x, λð Þγ∞0 x, λð Þ � γ0
0 x, λð Þγ∞ x, λð Þ½ � � I ¼W γ0, γ∞f g � I ¼ I: (75)

This completes the proof of the formula (61), and with it the theorem 3.1. □
Corollary. By the definition (60), function G x, t, λð Þ is meromorphic of the

parameter λ with the poles coincide with the eigenvalues of the operator L.
We constructed Green’s function for the non-self-adjoint differential operator.

4. Resolvent for an non-self-adjoint operator differential equation with
block – triangular coefficients

We consider the operator Rλ defined in L2 H, 0,∞ð Þð Þ by the relation

Rλf
� �

xð Þ ¼
ð∞

0

G x, t, λð Þf tð Þdt ¼ (76)

¼ �
ðx

0

Φ x, λð Þ W ~Y,Φ
� �� ��1 ~Y t, λð Þf tð Þdtþ

ð∞

x

Y x, λð Þ W ~Φ,Y
� �� ��1 ~Φ t, λð Þf tð Þdt:

Theorem 4.1 The operator Rλ is the resolvent of the operatorL.
Proof One can directly verify that, for any function f xð Þ∈L2 H, 0,∞ð Þð Þ, the

vector-function y x, λð Þ ¼ Rλf
� �

xð Þ is a solution of the equation l y½ � � λy ¼ f when-

ever λ ∉ σ Lð Þ. We will prove that y x, λð Þ∈L2 H, 0,∞ð Þð Þ.
Since operator solutions Φ x, λð Þ and Ψ x, λð Þ form a fundamental system of

solutions of Eq. (1), the operator solution Y x, λð Þ of Eq. (1) satisfying the initial
conditions (57), can be written as Y x, λð Þ ¼ Φ x, λð ÞA λð Þ þΨ x, λð ÞB λð Þ, where
A λð Þ ¼W ~Ψ,Y

� �
,B λð Þ ¼ �W ~Φ,Y

� �
,

Y x, λð Þ ¼ Φ x, λð ÞW ~Ψ,Y
� �� Ψ x, λð ÞW ~Φ,Y

� �
: (77)

Similarly, the operator solution ~Y x, λð Þ of Eq. (59) can be represented in the
following form

~Y x, λð Þ ¼W ~Y,Φ
� �

~Ψ x, λð Þ �W ~Y,Ψ
� �

~Φ x, λð Þ: (78)

By using formulas (77) and (78), we can rewrite the relation (76) as follows:

Rλfð Þ xð Þ ¼ �
ða

0

Φ x, λð Þ W ~Y,Φ
� �� ��1 ~Y t, λð Þf tð Þdtþ χ1 x, λð Þ � χ2 x, λð Þ þ χ3 x, λð Þ � χ4 x, λð Þ,

(79)

where a>0 and

χ1 x, λð Þ ¼ Φ x, λð Þ W ~Y,Φ
� �� ��1

W ~Y,Ψ
� � ðx

a

~Φ t, λð Þf tð Þdt, (80)

χ2 x, λð Þ ¼ Φ x, λð Þ
ðx

a

~Ψ t, λð Þf tð Þdt , (81)
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or to.

~Y
�1

x, λð Þ ~Y x, λð ÞY 0 x, λð Þ � ~Y
0
x, λð ÞY x, λð Þ

� �
Y�1 x, λð Þ �

� �~Φ�1 x, λð Þ ~Φ x, λð ÞΦ0 x, λð Þ � ~Φ0 x, λð ÞΦ�1 x, λð Þ
� �

Φ�1 x, λð Þ: (66)

This follows from the fact that W ~Y,Y
� � ¼W ~Φ,Φ

� � ¼ 0.
To make sure that the jump in the first derivative at t ¼ x is equal to �Ið Þ, i.e.,

that the equality (61) holds, it is sufficient to prove the identity

Y 0 x, λð Þ W ~Φ,Y
� �� ��1 ~Φ x, λð Þ þΦ0 x, λð Þ W ~Y,Φ

� �� ��1 ~Y x, λð Þ � I: (67)

Now we consider the function

C x, t, λð Þ ¼ Y x, λð Þ W ~Φ,Y
� �� ��1 ~Φ t, λð Þ þΦ x, λð Þ W ~Y,Φ

� �� ��1 ~Y t, λð Þ, (68)

which is an analogue of the Cauchy function. This function is the solution of
Eq. (1) of the variable x, and it is the solution of Eq. (59) of the variable t. By (62),
we have C x, x, λð Þ � 0. But in this case Cxx

00jt¼x ¼ V xð Þ � λIð ÞCjt¼x � 0, and,
therefore, Cx

0 x, t, λð Þjt¼x � Ω1 λð Þ, i.e.,

Y 0 x, λð Þ W ~Φ,Y
� �� ��1 ~Φ x, λð Þ þΦ0 x, λð Þ W ~Y,Φ

� �� ��1 ~Y x, λð Þ � Ω1 λð Þ: (69)

It shows that Ω1 λð Þ ¼ I, we obtain (61).
Since operator solutions Φ x, λð Þ and Ψ x, λð Þ form a fundamental system of

solutions of Eq. (1), the operator solution Y x, λð Þ of Eq. (1) satisfying the initial
conditions (57), can be written as Y x, λð Þ ¼ Φ x, λð ÞA λð Þ þΨ x, λð ÞB λð Þ, where
A λð Þ ¼ �W ~Ψ,Y

� �
,B λð Þ ¼W ~Φ,Y

� �
,

Y x, λð Þ ¼ Ψ x, λð ÞW ~Φ,Y
� ��Φ x, λð ÞW ~Ψ,Y

� �
: (70)

Similarly, operator solution ~Y x, λð Þ of Eq. (59) can be represented in the form

~Y x, λð Þ ¼ ~W ~Φ,Y
� �

~Ψ x, λð Þ � ~W ~Ψ,Y
� �

~Φ x, λð Þ, (71)

where

~W ~Φ,Y
� � ¼ sinA �Φ 0, λð Þ � cosA �Φ0 0, λð Þ ¼ �Ω 0, λð Þ ¼ �W ~Y,Φ

� �
: (72)

Similarly we get ~W ~Ψ,Y
� � ¼ �W ~Y,Ψ

� �
. Thus,

~Y x, λð Þ ¼W ~Y,Ψ
� �

~Φ x, λð Þ �W ~Y,Φ
� �

~Ψ x, λð Þ: (73)

Substituting (70) and (73) into the formula (69), using the fact that the equality
(69) is performed on x identically, we obtain

Ω1 λð Þ ¼ lim
x!∞

Ψ0 x, λð Þ~Φ x, λð Þ �Φ0 x, λð Þ~Ψ x, λð Þ� �
: (74)

By Theorem 2.1, on the asymptotic behavior of functions Φ x, λð Þ and Ψ x, λð Þ at
infinity, we have
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Ω1 λð Þ ¼ lim
x!∞

γ0 x, λð Þγ∞0 x, λð Þ � γ0
0 x, λð Þγ∞ x, λð Þ½ � � I ¼W γ0, γ∞f g � I ¼ I: (75)

This completes the proof of the formula (61), and with it the theorem 3.1. □
Corollary. By the definition (60), function G x, t, λð Þ is meromorphic of the

parameter λ with the poles coincide with the eigenvalues of the operator L.
We constructed Green’s function for the non-self-adjoint differential operator.

4. Resolvent for an non-self-adjoint operator differential equation with
block – triangular coefficients

We consider the operator Rλ defined in L2 H, 0,∞ð Þð Þ by the relation

Rλf
� �

xð Þ ¼
ð∞

0

G x, t, λð Þf tð Þdt ¼ (76)

¼ �
ðx

0

Φ x, λð Þ W ~Y,Φ
� �� ��1 ~Y t, λð Þf tð Þdtþ

ð∞

x

Y x, λð Þ W ~Φ,Y
� �� ��1 ~Φ t, λð Þf tð Þdt:

Theorem 4.1 The operator Rλ is the resolvent of the operatorL.
Proof One can directly verify that, for any function f xð Þ∈L2 H, 0,∞ð Þð Þ, the

vector-function y x, λð Þ ¼ Rλf
� �

xð Þ is a solution of the equation l y½ � � λy ¼ f when-

ever λ ∉ σ Lð Þ. We will prove that y x, λð Þ∈L2 H, 0,∞ð Þð Þ.
Since operator solutions Φ x, λð Þ and Ψ x, λð Þ form a fundamental system of

solutions of Eq. (1), the operator solution Y x, λð Þ of Eq. (1) satisfying the initial
conditions (57), can be written as Y x, λð Þ ¼ Φ x, λð ÞA λð Þ þΨ x, λð ÞB λð Þ, where
A λð Þ ¼W ~Ψ,Y

� �
,B λð Þ ¼ �W ~Φ,Y

� �
,

Y x, λð Þ ¼ Φ x, λð ÞW ~Ψ,Y
� �� Ψ x, λð ÞW ~Φ,Y

� �
: (77)

Similarly, the operator solution ~Y x, λð Þ of Eq. (59) can be represented in the
following form

~Y x, λð Þ ¼W ~Y,Φ
� �

~Ψ x, λð Þ �W ~Y,Ψ
� �

~Φ x, λð Þ: (78)

By using formulas (77) and (78), we can rewrite the relation (76) as follows:

Rλfð Þ xð Þ ¼ �
ða

0

Φ x, λð Þ W ~Y,Φ
� �� ��1 ~Y t, λð Þf tð Þdtþ χ1 x, λð Þ � χ2 x, λð Þ þ χ3 x, λð Þ � χ4 x, λð Þ,

(79)

where a>0 and

χ1 x, λð Þ ¼ Φ x, λð Þ W ~Y,Φ
� �� ��1

W ~Y,Ψ
� � ðx

a

~Φ t, λð Þf tð Þdt, (80)

χ2 x, λð Þ ¼ Φ x, λð Þ
ðx

a

~Ψ t, λð Þf tð Þdt , (81)
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χ3 x, λð Þ ¼ Φ x, λð ÞW ~Ψ,Y
� �

W ~Φ,Y
� �� ��1 ð

∞

x

~Φ t, λð Þf tð Þdt, (82)

χ4 x, λð Þ ¼ Ψ x, λð Þ
ð∞

x

~Φ t, λð Þf tð Þdt: (83)

Let us show that each of these vector-functions χ1 x, λð Þ, χ2 x, λð Þ, χ3 x, λð Þ, χ4 x, λð Þ
belongs to L2 H, 0,∞ð Þð Þ. Since the operator solution Φ x, λð Þ decays fairly quickly as
x! ∞, then Φ x, λð Þj j∈L2 0,∞ð Þ. It follows that

χ1 x, λð Þj j≤ c λð Þ � Φ x, λð Þj j �
ðx

a

~Φ t, λð Þ�� �� � f tð Þ�� ��dt≤

≤ c λð Þ � Φ x, λð Þj j �
ðx

a

~Φ t, λð Þ�� ��dt
0
@

1
A

1
2

�
ðx

a

f tð Þ�� ��dt
0
@

1
A

1
2

<

< c λð Þ � Φ x, λð Þj j �
ð∞

a

~Φ t, λð Þ�� ��dt
0
@

1
A

1
2

�
ð∞

a

f tð Þ�� ��dt
0
@

1
A

1
2

≤ c1 λð Þ � Φ x, λð Þj j, (84)

and therefore χ1 x, λð Þ∈L2 H, 0,∞ð Þð Þ. Similarly we get that
χ3 x, λð Þ∈L2 H, 0,∞ð Þð Þ. First we prove the assertion for the function χ2 x, λð Þ, when
α> 1 and the coefficients of the Eq. (1) satisfy the conditions (3)-(5). In this case,
we have χ2 x, λð Þj j≤ Φ x, λð Þj jÐ xa ~Ψ t, λð Þ�� �� f tð Þ�� ��dt.

By virtue of the asymptotic formulas for the operator solutions Φ x, λð Þ and
Ψ x, λð Þ we obtain that

χ2 x, λð Þj j≤ c1 λð Þγ0 x, λð Þ
ðx

a

γ∞ t, λð Þ f tð Þ�� ��dt: (85)

Let us rewrite this relation in the following form

χ2 x, λð Þj j≤ c1 λð Þγ0 x, λð Þγ∞ x, λð Þ
ðx

a

γ∞ t, λð Þ
γ∞ x, λð Þ f tð Þ�� ��dt: (86)

By using the definition of the functions γ0 x, λð Þ and γ∞ x, λð Þ (see (9)) and by
applying the Cauchy-Bunyakovskii inequality we obtain

χ2 x, λð Þj j≤ 1
2
c1 λð Þ 1ffiffiffiffiffiffiffiffiffi

v xð Þp
ðx

a

ffiffiffiffiffiffiffiffiffi
v xð Þ
v tð Þ

s
exp �2

ðx

t

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
Adt

0
@

1
A

1
2 ð∞

0

f tð Þ�� ��2 dt
0
@

1
A

1
2

:

(87)

Since t≤ x, we get exp �2 Ð
x

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v uð Þdup� �

≤ 1, and then the latter estimate for

χ2 x, λð Þ can be rewritten as follows
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χ2 x, λð Þj j≤ c2 λð Þ 1ffiffiffiffiffiffiffiffiffi
v xð Þ4

p
ðx

a

1ffiffiffiffiffiffiffiffi
v tð Þp dt

0
@

1
A

1
2

≤ c2 λð Þ 1ffiffiffiffiffiffiffiffiffi
v xð Þ4

p
ð∞

a

1ffiffiffiffiffiffiffiffi
v tð Þp dt

0
@

1
A

1
2

: (88)

By formula (3), we get χ2 x, λð Þj j≤ c3 λð Þffiffiffiffiffiffi
v xð Þ4
p , and hence, if α> 1 and the coefficients

of the Eq. (1) satisfy the conditions (3)-(5), we have χ2 x, λð Þ∈L2 H, 0,∞ð Þð Þ. In the
case of v xð Þ ¼ x2α, 0< α≤ 1, the assertion can be proved similarly.

For the function χ4 x, λð Þ we will conduct the proof for the case when v xð Þ ¼
x2α, 0< α≤ 1 and the coefficients of the Eq. (1) satisfy the condition (6). As in (85)
we have χ4 x, λð Þj j≤ c1 λð Þγ∞ x, λð ÞÐ∞x γ0 t, λð Þ f tð Þ�� ��dt, which can be rewritten as fol-

lows χ4 x, λð Þj j≤ c1 λð Þγ0 x, λð Þγ∞ x, λð ÞÐ∞x γ0 t, λð Þ
γ0 x, λð Þ f tð Þ�� ��dt.

Let us use the asymptotics of the functions γ0 x, λð Þ and γ∞ x, λð Þ, for example, in
the case αþ1

2α ¼ n∈N, i.e. α ¼ 1
2n�1 (see (36) and (40)). Setting a α, λð Þ ¼ 1�3�… � 2n�3ð Þ

n! �
λ
2

� �n, we obtain

χ4 x, λð Þj j≤ c2 λð Þx�α
ð∞

x

γ0 t, λð Þ
γ0 x, λð Þ f tð Þ�� ��dt≤ c2 λð Þx�α

ðx

a

γ0 t, λð Þ
γ0 x, λð Þ
� �2

dt

0
@

1
A

1
2 ð∞

0

f tð Þ�� ��2 dt
0
@

1
A

1
2

,

(89)

χ4 x, λð Þj j≤ c3 λð Þx�α
ð∞

x

t
x

� �2a α,λð Þ�α
exp
�2xαþ1 t

x

� �αþ1 � 1
� �

1þ α
dt

0
@

1
A

1
2

: (90)

Replacing variables t ¼ xu, we get

χ4 x, λð Þj j≤ c3 λð Þx�αþ1
2

ð∞

1

u2a α,λð Þ�α exp
�2xαþ1 uαþ1 � 1ð Þ

1þ α
du

0
@

1
A

1
2

: (91)

Since the inequality exp
�xαþ1 uαþ1�1ð Þ

1þα ≤ x�2 holds for all α∈ 0, 1ð � and u∈ 1,∞½ Þ
with sufficiently large u∈ 1,∞½ Þ, we have

χ4 x, λð Þj j≤ c3 λð Þx�α�1
2

ð∞

1

u2a α,λð Þ�α exp
�xαþ1 uαþ1 � 1ð Þ

1þ α
du

0
@

1
A

1
2

: (92)

Hence it follows that χ4 x, λð Þj j≤ c4 α, λð Þx�α�1
2, therefore χ4 x, λð Þ∈L2 H, 0,∞ð Þð Þ:

In case, where 0< α≤ 1 and αþ1
2α ∉ N and where α> 1, the proof is similar.

Thus, Rλf ∈L2 H, 0,∞ð Þð Þ for any function f ∈L2 H, 0,∞ð Þð Þ. □
Since the resolvent Rλ is a meromorphic function of λ, the poles of which

coincide with the eigenvalues of the operator L, the statement of Theorem 3.1 can
be refined.

Theorem 4.2 If the conditions (3)-(5)) whereα> 1 or condition (6) where 0< α≤ 1
are satisfied for the Eq. (1), then the spectrum of the operator L is real, discrete and
coincides with the union of spectra of self-adjoint operators Lk, k ¼ 1,m, i.e.
σ Lð Þ ¼ ∪r

k¼1σ Lkð Þ.
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χ3 x, λð Þ ¼ Φ x, λð ÞW ~Ψ,Y
� �

W ~Φ,Y
� �� ��1 ð

∞

x

~Φ t, λð Þf tð Þdt, (82)

χ4 x, λð Þ ¼ Ψ x, λð Þ
ð∞

x

~Φ t, λð Þf tð Þdt: (83)

Let us show that each of these vector-functions χ1 x, λð Þ, χ2 x, λð Þ, χ3 x, λð Þ, χ4 x, λð Þ
belongs to L2 H, 0,∞ð Þð Þ. Since the operator solution Φ x, λð Þ decays fairly quickly as
x! ∞, then Φ x, λð Þj j∈L2 0,∞ð Þ. It follows that

χ1 x, λð Þj j≤ c λð Þ � Φ x, λð Þj j �
ðx

a

~Φ t, λð Þ�� �� � f tð Þ�� ��dt≤

≤ c λð Þ � Φ x, λð Þj j �
ðx

a

~Φ t, λð Þ�� ��dt
0
@

1
A

1
2

�
ðx

a

f tð Þ�� ��dt
0
@

1
A

1
2

<

< c λð Þ � Φ x, λð Þj j �
ð∞

a

~Φ t, λð Þ�� ��dt
0
@

1
A

1
2

�
ð∞

a

f tð Þ�� ��dt
0
@

1
A

1
2

≤ c1 λð Þ � Φ x, λð Þj j, (84)

and therefore χ1 x, λð Þ∈L2 H, 0,∞ð Þð Þ. Similarly we get that
χ3 x, λð Þ∈L2 H, 0,∞ð Þð Þ. First we prove the assertion for the function χ2 x, λð Þ, when
α> 1 and the coefficients of the Eq. (1) satisfy the conditions (3)-(5). In this case,
we have χ2 x, λð Þj j≤ Φ x, λð Þj jÐ xa ~Ψ t, λð Þ�� �� f tð Þ�� ��dt.

By virtue of the asymptotic formulas for the operator solutions Φ x, λð Þ and
Ψ x, λð Þ we obtain that

χ2 x, λð Þj j≤ c1 λð Þγ0 x, λð Þ
ðx

a

γ∞ t, λð Þ f tð Þ�� ��dt: (85)

Let us rewrite this relation in the following form

χ2 x, λð Þj j≤ c1 λð Þγ0 x, λð Þγ∞ x, λð Þ
ðx

a

γ∞ t, λð Þ
γ∞ x, λð Þ f tð Þ�� ��dt: (86)

By using the definition of the functions γ0 x, λð Þ and γ∞ x, λð Þ (see (9)) and by
applying the Cauchy-Bunyakovskii inequality we obtain

χ2 x, λð Þj j≤ 1
2
c1 λð Þ 1ffiffiffiffiffiffiffiffiffi

v xð Þp
ðx

a

ffiffiffiffiffiffiffiffiffi
v xð Þ
v tð Þ

s
exp �2

ðx

t

ffiffiffiffiffiffiffiffiffi
v uð Þ

p
du

0
@

1
Adt

0
@

1
A

1
2 ð∞

0

f tð Þ�� ��2 dt
0
@

1
A

1
2

:

(87)

Since t≤ x, we get exp �2 Ð
x

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v uð Þdup� �

≤ 1, and then the latter estimate for

χ2 x, λð Þ can be rewritten as follows
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χ2 x, λð Þj j≤ c2 λð Þ 1ffiffiffiffiffiffiffiffiffi
v xð Þ4

p
ðx

a

1ffiffiffiffiffiffiffiffi
v tð Þp dt

0
@

1
A

1
2

≤ c2 λð Þ 1ffiffiffiffiffiffiffiffiffi
v xð Þ4

p
ð∞

a

1ffiffiffiffiffiffiffiffi
v tð Þp dt

0
@

1
A

1
2

: (88)

By formula (3), we get χ2 x, λð Þj j≤ c3 λð Þffiffiffiffiffiffi
v xð Þ4
p , and hence, if α> 1 and the coefficients

of the Eq. (1) satisfy the conditions (3)-(5), we have χ2 x, λð Þ∈L2 H, 0,∞ð Þð Þ. In the
case of v xð Þ ¼ x2α, 0< α≤ 1, the assertion can be proved similarly.

For the function χ4 x, λð Þ we will conduct the proof for the case when v xð Þ ¼
x2α, 0< α≤ 1 and the coefficients of the Eq. (1) satisfy the condition (6). As in (85)
we have χ4 x, λð Þj j≤ c1 λð Þγ∞ x, λð ÞÐ∞x γ0 t, λð Þ f tð Þ�� ��dt, which can be rewritten as fol-

lows χ4 x, λð Þj j≤ c1 λð Þγ0 x, λð Þγ∞ x, λð ÞÐ∞x γ0 t, λð Þ
γ0 x, λð Þ f tð Þ�� ��dt.

Let us use the asymptotics of the functions γ0 x, λð Þ and γ∞ x, λð Þ, for example, in
the case αþ1

2α ¼ n∈N, i.e. α ¼ 1
2n�1 (see (36) and (40)). Setting a α, λð Þ ¼ 1�3�… � 2n�3ð Þ

n! �
λ
2

� �n, we obtain

χ4 x, λð Þj j≤ c2 λð Þx�α
ð∞

x

γ0 t, λð Þ
γ0 x, λð Þ f tð Þ�� ��dt≤ c2 λð Þx�α

ðx

a

γ0 t, λð Þ
γ0 x, λð Þ
� �2

dt

0
@

1
A

1
2 ð∞

0

f tð Þ�� ��2 dt
0
@

1
A

1
2

,

(89)

χ4 x, λð Þj j≤ c3 λð Þx�α
ð∞

x

t
x

� �2a α,λð Þ�α
exp
�2xαþ1 t

x

� �αþ1 � 1
� �

1þ α
dt

0
@

1
A

1
2

: (90)

Replacing variables t ¼ xu, we get

χ4 x, λð Þj j≤ c3 λð Þx�αþ1
2

ð∞

1

u2a α,λð Þ�α exp
�2xαþ1 uαþ1 � 1ð Þ

1þ α
du

0
@

1
A

1
2

: (91)

Since the inequality exp
�xαþ1 uαþ1�1ð Þ

1þα ≤ x�2 holds for all α∈ 0, 1ð � and u∈ 1,∞½ Þ
with sufficiently large u∈ 1,∞½ Þ, we have

χ4 x, λð Þj j≤ c3 λð Þx�α�1
2

ð∞

1

u2a α,λð Þ�α exp
�xαþ1 uαþ1 � 1ð Þ

1þ α
du

0
@

1
A

1
2

: (92)

Hence it follows that χ4 x, λð Þj j≤ c4 α, λð Þx�α�1
2, therefore χ4 x, λð Þ∈L2 H, 0,∞ð Þð Þ:

In case, where 0< α≤ 1 and αþ1
2α ∉ N and where α> 1, the proof is similar.

Thus, Rλf ∈L2 H, 0,∞ð Þð Þ for any function f ∈L2 H, 0,∞ð Þð Þ. □
Since the resolvent Rλ is a meromorphic function of λ, the poles of which

coincide with the eigenvalues of the operator L, the statement of Theorem 3.1 can
be refined.

Theorem 4.2 If the conditions (3)-(5)) whereα> 1 or condition (6) where 0< α≤ 1
are satisfied for the Eq. (1), then the spectrum of the operator L is real, discrete and
coincides with the union of spectra of self-adjoint operators Lk, k ¼ 1,m, i.e.
σ Lð Þ ¼ ∪r

k¼1σ Lkð Þ.
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In this section, a resolvent for a non-self-adjoint differential operator with a
block-triangular operator potential, increasing at infinity, is constructed. Sufficient
conditions under which the spectrum is real and discrete are obtained.

5. Spectral singularities of differential operator with triangular matrix
coefficients

Remark 5.1 If the perturbation U xð Þ in Eq. (1) does not satisfy conditions (3)-(5) or
condition (6), then the statement of Theorem 4.2 ceases to be true, which is shown by the
following example.

Example 5.1 Consider the equation:

l y½ � ¼ �y00 þ x2 q xð Þ
0 π2x2

� �
y ¼ λy, 0≤ x<∞, y ¼ y1

y2

� �
(93)

with the boundary condition

y 0ð Þ ¼ 0: (94)

Together with the problem (93), (94), consider the separated system

l1 y1
� � ¼ �y100 þ x2y1 ¼ λy1, (95)

l2 y2
� � ¼ �y002 þ π2x2y2 ¼ λy2 (96)

with the boundary conditions.

y1 0ð Þ ¼ 0, y2 0ð Þ ¼ 0: (97)

As above, denote by L0 the differential operator generated by the differential
expression l y½ � (93) and the boundary condition (94), and by L1,L2 denote the
minimal symmetric operators on L2 0;∞ð Þ, generated by the differential expressions
l1 y1
� �

, l2 y2
� �

and the boundary conditions (97). Their self-adjoint extensions ~L1, ~L2

are the closures of the operators L1,L2, respectively. The operators ~L1, ~L2 are semi-
bounded; let us denote their spectra by σ1 ¼ σ ~L1

� �
, σ2 ¼ σ ~L2

� �
.

The Eq. (95) (cf. (49)) has the solution y1,n xð Þ ¼ Hn xð Þ � exp � x2
2

� �
for λ ¼

2nþ 1. Since H2nþ1 0ð Þ ¼ 0, the eigenvalues of the operator ~L1 are λn ¼ 4nþ 3. The
sets σ1 and σ2 do not intersect.

Denote by L the extension of the operator L0 generated by the requirement on
the functions from the domain of the operator L to belong to L2 H2, 0;∞ð Þð Þ, and by
σ Lð Þ its spectrum.

Denote by Y x, λð Þ ¼ y11 x, λð Þ y12 x, λð Þ
0 y22 x, λð Þ

� �
the matrix solution of the Eq. (93),

satisfying the initial conditions Y 0, λð Þ ¼ 0,Y 0 0, λð Þ ¼ I.
If some λ0 ∈ σ ~L1

� �
, and y x, λ0ð Þ- is the corresponding eigenfunction of the

operator ~L1, then the vector function y x, λ0ð Þ ¼ y x, λ0ð Þ
0

� �
is the eigenfunction of

the operator L, corresponding to the eigenvalue λ0, i.e. λ0 ∈ σ Lð Þ. Moreover,
λ0 ∈ σ ~L2

� �
is the eigenvalue of the operator L if and only if the solution y12 x, λ0ð Þ of

the equation
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�y1200 þ x2y12 þ q xð Þy22 ¼ λ0y12, (98)

satisfying the initial conditions y12 0, λð Þ ¼ y12
0 0, λð Þ ¼ 0, belongs to L2 0;∞ð Þ. Let

u x, λð Þ, v x, λð Þ be the solutions of the Eq. (95), satisfying the initial conditions
u 0, λð Þ ¼ 0, u0 0, λð Þ ¼ 1, v 0, λð Þ ¼ �1, v0 0, λð Þ ¼ 0, and let C x, t, λð Þ ¼
u x, λð Þv t, λð Þ � v x, λð Þu t, λð Þ- be the Cauchy function of the Eq. (95). Then the
solution y12 x, λ0ð Þ is given by

y12 x, λ0ð Þ ¼
ðx

0

q tð Þ � C x, t, λ0ð Þ � y22 t, λ0ð Þdt: (99)

Choose the coefficient q xð Þ ¼ y22 x, λ0ð Þexμ, where μ> 2 (for instance, μ ¼ 4), and

show that the integral
Ð∞
0
y212 x, λ0ð Þdx diverges and, consequently, λ0 ∉ σ Lð Þ. Indeed,

since the solution y22 x, λ0ð Þ has finitely many zeros, we conclude that, for any
x≥N1 >0,

y22 x, λ0ð Þ≥ c1e�αx
2
, α>0, (100)

and the Cauchy function decays no faster than e� x�tð Þ2 . Hence, if x� tj j>N2,
we have

C x, t, λ0ð Þ≥ c2e� x�tð Þ2 : (101)

In the case of x
4 ≤ t≤ x

2 and x≥ max 4N1, 2N2ð Þ, the inequalities (100) and (101)

are fulfilled simultaneously, therefore, y12 x, λ0ð Þ> c3
Ð x

2
x
4
et

4 � e�2α t2 � e� x�tð Þ2 dt. Since

e� x�tð Þ2 ≥ e�
x2
4 for t≤ x

2, we get y12 x, λ0ð Þ> c3e�
x2
4
Ð x

2
x
4
et

4 � e�2α t2 dt. If x is sufficiently large

and t∈ x
4 ,

x
2

� �
, we have et

4�2α t2 > e
1
2 t

4 ≥ e
x4
32 , hence for x! ∞y12 x, λ0ð Þ> c3 x

4 e
�x2

4þx4
32 !

∞. It follows that y12 x, λ0ð Þ ∉ L2 0;∞ð Þ and λ0 ∉ σ Lð Þ.
There arises the question on the nature of such values λ.
Consider the equation with a triangular matrix potential:

l y½ � ¼ �y00 þ p xð Þ q xð Þ
0 r xð Þ

� �
y ¼ λy, 0≤ x<∞, y ¼ y1

y2

� �
, (102)

where p xð Þ, q xð Þ, r xð Þ are scalar functions, p xð Þ, r xð Þ are real functions and
p xð Þ, r xð Þ ! ∞ monotonically as x! ∞.

Let the boundary condition is given at x ¼ 0:

cosA � y0 0ð Þ � sinA � y 0ð Þ ¼ 0, (103)

where A is a triangular matrix, cosA ¼ cos α11 cos α12
0 cos α22

� �
.

Consider the separated system

l1 y1
� � ¼ �y100 þ p xð Þy1 ¼ λy1, (104)

l2 y2
� � ¼ �y002 þ r xð Þy2 ¼ λy2: (105)
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In this section, a resolvent for a non-self-adjoint differential operator with a
block-triangular operator potential, increasing at infinity, is constructed. Sufficient
conditions under which the spectrum is real and discrete are obtained.

5. Spectral singularities of differential operator with triangular matrix
coefficients

Remark 5.1 If the perturbation U xð Þ in Eq. (1) does not satisfy conditions (3)-(5) or
condition (6), then the statement of Theorem 4.2 ceases to be true, which is shown by the
following example.

Example 5.1 Consider the equation:

l y½ � ¼ �y00 þ x2 q xð Þ
0 π2x2

� �
y ¼ λy, 0≤ x<∞, y ¼ y1

y2

� �
(93)

with the boundary condition

y 0ð Þ ¼ 0: (94)

Together with the problem (93), (94), consider the separated system

l1 y1
� � ¼ �y100 þ x2y1 ¼ λy1, (95)

l2 y2
� � ¼ �y002 þ π2x2y2 ¼ λy2 (96)

with the boundary conditions.

y1 0ð Þ ¼ 0, y2 0ð Þ ¼ 0: (97)

As above, denote by L0 the differential operator generated by the differential
expression l y½ � (93) and the boundary condition (94), and by L1,L2 denote the
minimal symmetric operators on L2 0;∞ð Þ, generated by the differential expressions
l1 y1
� �

, l2 y2
� �

and the boundary conditions (97). Their self-adjoint extensions ~L1, ~L2

are the closures of the operators L1,L2, respectively. The operators ~L1, ~L2 are semi-
bounded; let us denote their spectra by σ1 ¼ σ ~L1

� �
, σ2 ¼ σ ~L2

� �
.

The Eq. (95) (cf. (49)) has the solution y1,n xð Þ ¼ Hn xð Þ � exp � x2
2

� �
for λ ¼

2nþ 1. Since H2nþ1 0ð Þ ¼ 0, the eigenvalues of the operator ~L1 are λn ¼ 4nþ 3. The
sets σ1 and σ2 do not intersect.

Denote by L the extension of the operator L0 generated by the requirement on
the functions from the domain of the operator L to belong to L2 H2, 0;∞ð Þð Þ, and by
σ Lð Þ its spectrum.

Denote by Y x, λð Þ ¼ y11 x, λð Þ y12 x, λð Þ
0 y22 x, λð Þ

� �
the matrix solution of the Eq. (93),

satisfying the initial conditions Y 0, λð Þ ¼ 0,Y 0 0, λð Þ ¼ I.
If some λ0 ∈ σ ~L1

� �
, and y x, λ0ð Þ- is the corresponding eigenfunction of the

operator ~L1, then the vector function y x, λ0ð Þ ¼ y x, λ0ð Þ
0

� �
is the eigenfunction of

the operator L, corresponding to the eigenvalue λ0, i.e. λ0 ∈ σ Lð Þ. Moreover,
λ0 ∈ σ ~L2

� �
is the eigenvalue of the operator L if and only if the solution y12 x, λ0ð Þ of

the equation

58

Recent Developments in the Solution of Nonlinear Differential Equations

�y1200 þ x2y12 þ q xð Þy22 ¼ λ0y12, (98)

satisfying the initial conditions y12 0, λð Þ ¼ y12
0 0, λð Þ ¼ 0, belongs to L2 0;∞ð Þ. Let

u x, λð Þ, v x, λð Þ be the solutions of the Eq. (95), satisfying the initial conditions
u 0, λð Þ ¼ 0, u0 0, λð Þ ¼ 1, v 0, λð Þ ¼ �1, v0 0, λð Þ ¼ 0, and let C x, t, λð Þ ¼
u x, λð Þv t, λð Þ � v x, λð Þu t, λð Þ- be the Cauchy function of the Eq. (95). Then the
solution y12 x, λ0ð Þ is given by

y12 x, λ0ð Þ ¼
ðx

0

q tð Þ � C x, t, λ0ð Þ � y22 t, λ0ð Þdt: (99)

Choose the coefficient q xð Þ ¼ y22 x, λ0ð Þexμ, where μ> 2 (for instance, μ ¼ 4), and

show that the integral
Ð∞
0
y212 x, λ0ð Þdx diverges and, consequently, λ0 ∉ σ Lð Þ. Indeed,

since the solution y22 x, λ0ð Þ has finitely many zeros, we conclude that, for any
x≥N1 >0,

y22 x, λ0ð Þ≥ c1e�αx
2
, α>0, (100)

and the Cauchy function decays no faster than e� x�tð Þ2 . Hence, if x� tj j>N2,
we have

C x, t, λ0ð Þ≥ c2e� x�tð Þ2 : (101)

In the case of x
4 ≤ t≤ x

2 and x≥ max 4N1, 2N2ð Þ, the inequalities (100) and (101)

are fulfilled simultaneously, therefore, y12 x, λ0ð Þ> c3
Ð x

2
x
4
et

4 � e�2α t2 � e� x�tð Þ2 dt. Since

e� x�tð Þ2 ≥ e�
x2
4 for t≤ x

2, we get y12 x, λ0ð Þ> c3e�
x2
4
Ð x

2
x
4
et

4 � e�2α t2 dt. If x is sufficiently large

and t∈ x
4 ,

x
2

� �
, we have et

4�2α t2 > e
1
2 t

4 ≥ e
x4
32 , hence for x! ∞y12 x, λ0ð Þ> c3 x

4 e
�x2

4þx4
32 !

∞. It follows that y12 x, λ0ð Þ ∉ L2 0;∞ð Þ and λ0 ∉ σ Lð Þ.
There arises the question on the nature of such values λ.
Consider the equation with a triangular matrix potential:

l y½ � ¼ �y00 þ p xð Þ q xð Þ
0 r xð Þ

� �
y ¼ λy, 0≤ x<∞, y ¼ y1

y2

� �
, (102)

where p xð Þ, q xð Þ, r xð Þ are scalar functions, p xð Þ, r xð Þ are real functions and
p xð Þ, r xð Þ ! ∞ monotonically as x! ∞.

Let the boundary condition is given at x ¼ 0:

cosA � y0 0ð Þ � sinA � y 0ð Þ ¼ 0, (103)

where A is a triangular matrix, cosA ¼ cos α11 cos α12
0 cos α22

� �
.

Consider the separated system

l1 y1
� � ¼ �y100 þ p xð Þy1 ¼ λy1, (104)

l2 y2
� � ¼ �y002 þ r xð Þy2 ¼ λy2: (105)
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with the boundary conditions

cos α11y01 0ð Þ � sin α11y1 0ð Þ ¼ 0, (106)

cos α22y02 0ð Þ � sin α22y2 0ð Þ ¼ 0: (107)

Let L0 be the differential operator generated by the differential expression l y½ �
(103) and the boundary condition (104), and let L1,L2 be minimal symmetric
operators on L2 0,∞ð Þ generated by the differential expressions l1 y1

� �
, l2 y2
� �

and the
boundary conditions (106), (108) respectively. Denote by ~L1, ~L2 the self-adjoint
extensions of the operators L1,L2 respectively. The operators ~L1, ~L2 are semi-
bounded; let us denote their spectra by σ1 and σ2 respectively. Denote by L the
extension of the operator L0 and by σ Lð Þ its spectrum.

Let u x, λð Þ, v x, λð Þ be the solutions of the Eq. (104) with the boundary conditions
u 0, λð Þ ¼ 0, u0 0, λð Þ ¼ 1, v 0, λð Þ ¼ �1, v0 0, λð Þ ¼ 0: The general solution of the
Eq. (104) has the form φ x, λð Þ ¼ u x, λð Þ þ lv x, λð Þ up to a constant. Choose an l such
that the condition φ b, λð Þ ¼ 0 holds true. This equality is valid for l ¼ l b, λð Þ ¼
� u b, λð Þ

v b, λð Þ (the solution v x, λð Þ has finitely many zeros for a fixed λ, hence v b, λð Þ 6¼ 0

whenever b is sufficiently large). Put φ bð Þ
11 x, λð Þ ¼ u x, λð Þ þ l b, λð Þv x, λð Þ. Since for

the operator L1 there is the case of a limit point, then, as is known, l b, λð Þ has a
unique limit m λð Þ as b! ∞, and the solution of the Eq. (104) satisfies φ11 x, λð Þ ¼
u x, λð Þ þm λð Þv x, λð Þ∈L2 0,∞ð Þ. Similarly we obtain that the solution of the
Eq. (105) satisfies φ22 x, λð Þ∈L2 0,∞ð Þ.

Denote by Φb x, λð Þ ¼ φ bð Þ
11 x, λð Þ φ bð Þ

12 x, λð Þ
0 φ bð Þ

22 x, λð Þ

 !
the matrix solution of the

Eq. (103) satisfying the initial conditions Φb b, λð Þ ¼ 0, Φb
0 b, λð Þ ¼ I . We have

φ bð Þ
11 x, λð Þ ! φ11 x, λð Þ∈L2 0,∞ð Þ; φ bð Þ

22 x, λð Þ ! φ22 x, λð Þ∈L2 0,∞ð Þ as b! ∞.

The solution φ bð Þ
12 x, λð Þ is given by φ bð Þ

12 x, λð Þ ¼ Ð
x

0
q tð Þ � C x, t, λð Þ � φ bð Þ

22 t, λð Þdt, where

C x, t, λð Þ ¼ u x, λð Þv t, λð Þ � v x, λð Þu t, λð Þ is the Cauchy function of the Eq. (104).

Further, we have φ bð Þ
12 x, λð Þ ! Ðx

0
q tð Þ � C x, t, λð Þ � φ22 t, λð Þdt≔φ12 x, λð Þ as b! ∞.

Put Φ x, λð Þ ¼ φ11 x, λð Þ φ12 x, λð Þ
0 φ22 x, λð Þ

� �
.

Together with the Eq. (102), we consider the left equation.

~l ~y½ � ¼ �~y00 þ ~yV xð Þ ¼ λ~y, ~y ¼ y1 y2
� �

: (108)

The matrix solutions of the Eq. (108) will be denoted by ~Φb x, λð Þ and ~Φ x, λð Þ.
Denote by Y x, λð Þ and ~Y x, λð Þ the solutions of the Eqs. (102) and (108) respec-

tively satisfying the initial conditions

Y 0, λð Þ ¼ cosA,Y 0 0, λð Þ ¼ sinA, ~Y 0, λð Þ ¼ cosA, ~Y
0
0, λð Þ ¼ sinA, λ∈:

(109)

Put

Gb x, t, λð Þ ¼ Y x, λð Þ W ~Φb,Y
� �� ��1 ~Φb t, λð Þ 0≤ x≤ t

�Φb x, λð Þ W ~Y,Φb
� �� ��1 ~Y t, λð Þ t≤ x≤ b

8<
: : (110)
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The function Gb x, t, λð Þ is the Green function of the operator L0
b generated by the

problem (102), (103), y bð Þ ¼ 0, which spectrum coincides with the union of spectra
of the operators L0

b,1,L
0
b,2 generated by the problems (104), (106), y1 bð Þ ¼ 0 and

(105), (107), y2 bð Þ ¼ 0 respectively. Eigenvalues of the operators L0
b,1 and L0

b,2 tend
to ones of the operators ~L1 and ~L2 respectively as b! ∞, Φb x, λð Þ ! Φ x, λð Þ,
~Φb x, λð Þ ! ~Φ x, λð Þ, and

W ~Y,Φb
� � ¼ cosA �Φb

0 0, λð Þ � sinA �Φb 0, λð Þ ! cosA �Φ0 0, λð Þ � sinA �Φ 0, λð Þ ¼

¼W ~Y,Φ
� �

,W ~Φb,Y
� �!W ~Φ,Y

� �
,

(111)

Gb x, t, λð Þ ! G x, t, λð Þ ¼
Y x, λð Þ W ~Φ,Y

� �� ��1 ~Φ t, λð Þ 0≤ x≤ t

�Φ x, λð Þ W ~Y,Φ
� �� ��1 ~Y t, λð Þ t≤ x

8<
: : (112)

Poles of the Green function G x, t, λð Þ of the operator L coincide with the zero set
of the determinant Δ λð Þ≔detΩ λð Þ, where.

Ω λð Þ ¼W ~Y,Φ
� ���

x¼0 ¼ cosA �Φ0 0, λð Þ � sinA �Φ 0, λð Þ: (113)

Since the matrices cosA, sinA,Φ 0, λð Þ,Φ0 0, λð Þ are triangle, we have
/Δ λð Þ ¼ Δ1 λð Þ � Δ2 λð Þ, where Δk λð Þ ¼ cos αkk � φ0kk 0, λð Þ � sin αkk � φkk 0, λð Þ, k ¼ 1, 2.
On the other hand, zeros of the function Δk λð Þ are eigenvalues of the self-adjoint
operator ~Lk. Hence the poles of the Green function G x, t, λð Þ of the operator L are
situated on the real axis, and their set coincides with the union of spectra of the
operators ~L1 and ~L2.

Consider the operator Rλ,b defined on L2 H2, 0; bð Þð Þ by.

Rλ,bf
� �

xð Þ ¼
ðb

0

Gb x, t, λð Þf tð Þdt ¼ �
ðx

0

Φb x, λð Þ W ~Y,Φb
� �� ��1~Y t, λð Þf tð Þdtþ

þ
ðb

x

Y x, λð Þ W ~Φb,Y
� �� ��1 ~Φ t, λð Þf tð Þdt: (114)

One can directly verify that the operator Rλ,b is the resolvent of the operator L0
b .

Let f xð Þ be an arbitrary vector function square integrable on 0,∞½ Þ. Choose a
sequence of finite continuous vector functions f n xð Þ

n o
n ¼ 1, 2, …ð Þ converging in

mean square to f xð Þ. Substituting f n for f in (114) and letting first b! ∞ and then
n! ∞, we obtain the following formula for the resolvent Rλ of the operator L:

Rλf
� �

xð Þ ¼ Ð∞0 G x, t, λð Þf tð Þdt, where the Green function of the operator L is defined

by the formula (112).
Theorem 5.1 The operator Rλ is the resolvent of the operator L. The resolvent’s poles

coincide with the union of the spectra of the self-adjoint operators ~L1 and ~L2.
Remark 5.2 As in Example 5.1, if λ0 ∈ σ ~L2

� �
and φ12 x, λ0ð Þ ∉ L2 0,∞ð Þ, then λ0 is

the pole of the resolvent Rλ of the operator L but it is not the eigenvalue of this operator,
i.e., λ0 is the point of the spectral singularity of the operator L.
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Denote by Φb x, λð Þ ¼ φ bð Þ
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12 x, λð Þ
0 φ bð Þ

22 x, λð Þ

 !
the matrix solution of the

Eq. (103) satisfying the initial conditions Φb b, λð Þ ¼ 0, Φb
0 b, λð Þ ¼ I . We have
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11 x, λð Þ ! φ11 x, λð Þ∈L2 0,∞ð Þ; φ bð Þ

22 x, λð Þ ! φ22 x, λð Þ∈L2 0,∞ð Þ as b! ∞.

The solution φ bð Þ
12 x, λð Þ is given by φ bð Þ

12 x, λð Þ ¼ Ð
x

0
q tð Þ � C x, t, λð Þ � φ bð Þ

22 t, λð Þdt, where

C x, t, λð Þ ¼ u x, λð Þv t, λð Þ � v x, λð Þu t, λð Þ is the Cauchy function of the Eq. (104).

Further, we have φ bð Þ
12 x, λð Þ ! Ðx

0
q tð Þ � C x, t, λð Þ � φ22 t, λð Þdt≔φ12 x, λð Þ as b! ∞.

Put Φ x, λð Þ ¼ φ11 x, λð Þ φ12 x, λð Þ
0 φ22 x, λð Þ

� �
.

Together with the Eq. (102), we consider the left equation.

~l ~y½ � ¼ �~y00 þ ~yV xð Þ ¼ λ~y, ~y ¼ y1 y2
� �

: (108)

The matrix solutions of the Eq. (108) will be denoted by ~Φb x, λð Þ and ~Φ x, λð Þ.
Denote by Y x, λð Þ and ~Y x, λð Þ the solutions of the Eqs. (102) and (108) respec-

tively satisfying the initial conditions

Y 0, λð Þ ¼ cosA,Y 0 0, λð Þ ¼ sinA, ~Y 0, λð Þ ¼ cosA, ~Y
0
0, λð Þ ¼ sinA, λ∈:

(109)

Put

Gb x, t, λð Þ ¼ Y x, λð Þ W ~Φb,Y
� �� ��1 ~Φb t, λð Þ 0≤ x≤ t

�Φb x, λð Þ W ~Y,Φb
� �� ��1 ~Y t, λð Þ t≤ x≤ b

8<
: : (110)
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The function Gb x, t, λð Þ is the Green function of the operator L0
b generated by the

problem (102), (103), y bð Þ ¼ 0, which spectrum coincides with the union of spectra
of the operators L0

b,1,L
0
b,2 generated by the problems (104), (106), y1 bð Þ ¼ 0 and

(105), (107), y2 bð Þ ¼ 0 respectively. Eigenvalues of the operators L0
b,1 and L0

b,2 tend
to ones of the operators ~L1 and ~L2 respectively as b! ∞, Φb x, λð Þ ! Φ x, λð Þ,
~Φb x, λð Þ ! ~Φ x, λð Þ, and

W ~Y,Φb
� � ¼ cosA �Φb

0 0, λð Þ � sinA �Φb 0, λð Þ ! cosA �Φ0 0, λð Þ � sinA �Φ 0, λð Þ ¼

¼W ~Y,Φ
� �

,W ~Φb,Y
� �!W ~Φ,Y

� �
,

(111)

Gb x, t, λð Þ ! G x, t, λð Þ ¼
Y x, λð Þ W ~Φ,Y

� �� ��1 ~Φ t, λð Þ 0≤ x≤ t

�Φ x, λð Þ W ~Y,Φ
� �� ��1 ~Y t, λð Þ t≤ x

8<
: : (112)

Poles of the Green function G x, t, λð Þ of the operator L coincide with the zero set
of the determinant Δ λð Þ≔detΩ λð Þ, where.

Ω λð Þ ¼W ~Y,Φ
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x¼0 ¼ cosA �Φ0 0, λð Þ � sinA �Φ 0, λð Þ: (113)

Since the matrices cosA, sinA,Φ 0, λð Þ,Φ0 0, λð Þ are triangle, we have
/Δ λð Þ ¼ Δ1 λð Þ � Δ2 λð Þ, where Δk λð Þ ¼ cos αkk � φ0kk 0, λð Þ � sin αkk � φkk 0, λð Þ, k ¼ 1, 2.
On the other hand, zeros of the function Δk λð Þ are eigenvalues of the self-adjoint
operator ~Lk. Hence the poles of the Green function G x, t, λð Þ of the operator L are
situated on the real axis, and their set coincides with the union of spectra of the
operators ~L1 and ~L2.

Consider the operator Rλ,b defined on L2 H2, 0; bð Þð Þ by.

Rλ,bf
� �

xð Þ ¼
ðb

0

Gb x, t, λð Þf tð Þdt ¼ �
ðx

0

Φb x, λð Þ W ~Y,Φb
� �� ��1~Y t, λð Þf tð Þdtþ

þ
ðb

x

Y x, λð Þ W ~Φb,Y
� �� ��1 ~Φ t, λð Þf tð Þdt: (114)

One can directly verify that the operator Rλ,b is the resolvent of the operator L0
b .

Let f xð Þ be an arbitrary vector function square integrable on 0,∞½ Þ. Choose a
sequence of finite continuous vector functions f n xð Þ

n o
n ¼ 1, 2, …ð Þ converging in

mean square to f xð Þ. Substituting f n for f in (114) and letting first b! ∞ and then
n! ∞, we obtain the following formula for the resolvent Rλ of the operator L:

Rλf
� �

xð Þ ¼ Ð∞0 G x, t, λð Þf tð Þdt, where the Green function of the operator L is defined

by the formula (112).
Theorem 5.1 The operator Rλ is the resolvent of the operator L. The resolvent’s poles

coincide with the union of the spectra of the self-adjoint operators ~L1 and ~L2.
Remark 5.2 As in Example 5.1, if λ0 ∈ σ ~L2

� �
and φ12 x, λ0ð Þ ∉ L2 0,∞ð Þ, then λ0 is

the pole of the resolvent Rλ of the operator L but it is not the eigenvalue of this operator,
i.e., λ0 is the point of the spectral singularity of the operator L.
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Theorem 5.1 implies that, if the rate of the coefficient’s growth q xð Þ of the
Eq. (102) is subordinated to one of p xð Þ and r xð Þ, then the operator L has no spectral
singularities, and its spectrum is real and coincides with the union of the spectra of
the operators ~L1 and ~L2.

For a non-self-adjoint Sturm-Liouville operator with a triangular matrix poten-
tial growing at infinity, an example of operator having spectral singularities is
constructed. A special role of these points was found first by M.A. Naimark in [16].
The notion “spectral singularity” was introduced later due to J. Schwartz [17] (see
also Supplement I in the monograph [3]).

6. Conclusion

We consider the Sturm-Liouville equation with block-triangular, increasing at
infinity operator potential. For him, built a fundamental system of solutions, one of
which is decreasing at infinity, and the second is growing. The asymptotics of these
solutions at infinity is defined. For non-self-adjoint operator generated by such
differential expression obtained the Green’s function. A resolvent of such an
operator is constructed. Sufficient conditions at which a spectrum of such
non-self-adjoint differential operator is real and discrete are obtained.
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Chapter 4

Deformed Sine-Gordon Models,
Solitons and Anomalous Charges
Harold Blas, Hector F. Callisaya, João P.R. Campos,
Bibiano M. Cerna and Carlos Reyes

Abstract

We study certain deformations of the integrable sine-Gordon model (DSG). It is
found analytically and numerically several towers of infinite number of anomalous
charges for soliton solutions possessing a special space–time symmetry. Moreover, it
is uncovered exact conserved charges associated to two-solitons with a definite
parity under space-reflection symmetry, i.e. kink-kink (odd parity) and kink-
antikink (even parity) scatterings with equal and opposite velocities. Moreover, we
provide a linear formulation of the modified SG model and a related tower of
infinite number of exact non-local conservation laws. We back up our results with
extensive numerical simulations for kink-kink, kink-antikink and breather config-

urations of the Bazeia et al. potential Vq wð Þ ¼ 64
q2 tan

2 w
2 1� sin w

2

�� ��q� �2
, q∈Rð Þ,

which contains the usual SG potential V2 wð Þ ¼ 2 1� cos 2wð Þ½ �.

Keywords: quasi-integrability, solitons, deformed sine-Gordon, anomalous
charges, non-local charges

1. Introduction

Solitons can be regarded as isolated waves that travel without loss of energy. The
solitons emerge with their velocities and shapes completely unchanged after colli-
sion to each other, the only outcome being their phase shifts. The soliton solution is
the main feature of the integrable models [1–3]. However, certain non-linear
models in physics, with solitary wave solutions, are not integrable. Recently, certain
deformations of integrable models such as the sine-Gordon (SG), nonlinear
Schrödinger (NLS), Korteweg-de Vries (KdV) and Toda models have been intro-
duced, such that they exhibit soliton-type solutions with some properties resem-
bling to their counterparts of the truly integrable ones. In this context the so-called
quasi-integrability concept has been put forward [4]. These properties have been
examined in the frameworks of the anomalous zero-curvature [4–7] and the
Riccati-type pseudo-potential approaches [8–10], respectively.

The main developments have been focused on the construction of infinite number
of quasi-conservation laws which give rise to asymptotically conserved charges, i.e.
conserved charges, such that their values vary during the scattering of the solitons
only. The main observation in the both approaches to quasi-integrability is that, in
general, the conserved charges of the standard integrable systems turn out to be the
so-called asymptotically conserved charges in the deformed models. In fact, the exact
conservation laws of the usual integrable systems become quasi-conservation laws of
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the deformed integrable models. The non-homogeneous terms of the quasi-
conservation laws are dubbed as anomalies such that they vanish when integrated on
the space–time plane, provided that the fields satisfy a special space–time symmetry.

The properties of the soliton-like configurations in the quasi-integrable models are,
so far, largely unknown.We summarize the main results. First, the one-soliton sectors
exhibit infinite conserved charges. Second, the space–time integration of the anomalies
vanish when one-soliton like solutions are located far away from each other. The
anomalies are significant around the space–time regions of their interaction. Third, a
sufficient condition for the vanishing of the space–time integrated anomalies is that the
N�soliton possesses definite parity under a shifted parity and delayed time reversion
(PsT d) symmetry.When the anomaly densities possess odd parities the space–time
integration of them vanish, which imply the existence of anomalous charges. Fourth,
the conserved charges of the usual integrable systems turn out to be the anomalous
charges upon deformation. Fifth, there exist infinite towers of infinitely many anoma-
lous charges, different in form from the ones of the usual integrable models. New
towers of anomalous charges have been uncovered in [8–10]. Remarkably, even the
usual integrable models possess quasi-conservation laws with anomalous charges for
analyticalN� soliton withCPsT d symmetry [9, 10]. For the standard SG theory it has
been discussed for the 2-soliton sector of the theory [8]. Sixth, there is a subset of exact
conserved charges for soliton eigenstates simply of the shifted space-reflectionPs. The
deformed NLSmodel for two-soliton solutions [6, 7] and the deformed sine-Gordon
model [11] for two-kink and breather solutions exhibit this property.

In the context of the Riccati-type method there have been shown that the
deformed SG, KdV and NLS models [8–10], respectively, possess linear system
formulations and that they exhibit infinite towers of exact non-local conservation
laws. The NLS-type, KdV-type and SG-type models share the same importance due
to their potential applications, since they are ubiquitous in all areas of nonlinear
physics, such as Bose-Einsten condensation and superconductivity [12–14], soliton
gas and soliton turbulence in fluid dynamics [15–20], the Alice-Bob physics [21, 22]
and the understanding of a kind of triality among the gauge theories, integrable
models and gravity theories [23].

Here, we discuss the previous results in the field by utilizing a deformed sine-
Gordonmodel.Wewill introduce the relationship between the space–time parity and
asymptotically conserved charges. Next, we clarified on the space-reflection parity
related to the linear combination of the dual sets of anomalous quantities. In addition, it
is focused on the space-reflection symmetry of some two-soliton solutions of deformed
sine-Gordonmodels. Then one proceeds to construct a tower of exactly conserved
charges for each solution possessing a definite space-reflection parity. Lastly, by con-
sidering linear combinations of the anomalous conserved charges it is showed, through
analytical and numerical methods, that there is a subset of exactly conserved charges.

A modified SG model and the space–time symmetries are presented in the next
section. In Section 3, the towers of quasi-conservation laws are presented. In Section
4 our numerical simulations are described. The linear formulation and the non-local
conservation laws are discussed in the Riccati-type pseudo-potential approach in
Section 5. Finally, in Section 6 we present some conclusions.

2. A deformation of the sine-Gordon model

Let us consider the relativistic field theories in 1þ 1ð Þ-dimensions with equation
of motion1

1 In the x and t laboratory coordinates: η ¼ tþx
2 , ξ ¼ t�x

2 , ∂η ¼ ∂t þ ∂x, ∂ξ ¼ ∂t � ∂x, ∂η∂ξ ¼ ∂
2
t � ∂

2
x
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∂ξ∂ηwþ V 1ð Þ wð Þ ¼ 0, (1)

where w is a real scalar field w, V wð Þ is the scalar potential and V 1ð Þ wð Þ � d
dw V wð Þ.

The family of potentials V wð Þ will represent certain deformations of the usual SG
model. The theory (1) has been studied using the techniques of integrable field theo-
ries, such as the anomalous zero-curvature [4, 11] and deformed Riccati-type pseudo-
potential formulations [8], respectively. In our simulations we will consider [4, 24].

V w, qð Þ ¼ 2
q2

tan 2w 1� sinwj jq½ �2, (2)

where q is a real parameter such that for q ¼ 2 the potential reduces to the SG
potential

V w, 2ð Þ ¼ 1
16

1� cos 4wð Þ½ �: (3)

So, we introduce the deformation parameter ε as q ¼ 2þ ε, such that in the limit
ε ¼ 0 one reproduces the SG model.

The model (1) possesses several towers of anomalous charges associated to
quasi-conservation laws [4, 8, 11]. In [11] it has been introduced a subset of exactly
conserved charges associated to space-reflection eigenstates as kink-antikink, kink-
kink and breather configurations, respectively. New types of two sets of dual towers
of asymptotically conserved charges have been uncovered [8]. Remarkably, even
the usual sine-Gordon models possesses anomalous charges. So far, it is attributed to
the space–time symmetry properties of the solitons. Those charges can be relevant
in the study of soliton gases and formation of certain structures, such as soliton
turbulence, soliton gas dynamics and rogue waves [16].

The quasi-integrability has been introduced for deformed sine-Gordon models
such that the field w and the potential V satisfy the symmetry [4, 8, 11].

P : w! �wþ const:; V wð Þ ! V wð Þ, (4)

under the special space–time reflection

P � PsT d, Ps : ~x! �~x, T d : ~t! �~~t, ~x � x� xΔ, ~t ¼ t� tΔ, (5)

defined around a given point xΔ, tΔð Þ. Moreover, let us consider the space-
reflection transformation

Px : x$ �x, (6)

and assume that the scalar field is an eigenstate of the operator Px

Px : w! ϱw, ϱ ¼ �1: (7)

In addition, consider an even potential V under Px

Px Vð Þ ¼ V: (8)

Several towers of quasi-conservation laws, with anomaly terms possessing
odd parities under (6)–(8), have been found [8, 11]. Next, we consider those
quasi-conservation laws and examine their anomalies in view of the symmetries
(4)–(5) and (6)–(8), respectively.
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3. Quasi-conservation laws of the deformed SG model

We will discuss some of the infinite towers of quasi-conservation laws of the
deformed SG model (1).

3.1 First type of towers: The SG-type quasi-conservation laws

The usual SG charges turn out to be the anomalous charges of the DSG. So, one
has the infinite set of quasi-conservation laws [4, 11].

d
dt

q 2nþ1ð Þ
a ¼

ð
dxβ 2nþ1ð Þ, n ¼ 1, 2, 3, … (9)

where the quantities q 2nþ1ð Þ
a define the anomalous charges, provided that the

time-integrated anomalies
Ð
dt
Ð
dxβ 2nþ1ð Þ vanish for solitons satisfying (4) and (5).

This condition, when combined with Eq. (9), implies q 2nþ1ð Þ
a t! þ∞ð Þ ¼

q 2nþ1ð Þ
a t! �∞ð Þ. So, we have that q 2nþ1ð Þ

a are anomalous for n ¼ 1, 2, 3, :… . The
charges q 2nþ1ð Þ

a maintain the same form as the ones of the usual SG.
In 1þ 1ð Þ-dimensional Lorentz invariant integrable field theories one has dual

integrability conditions or Lax equations. Analogously, for the deformations of the SG
model there exist a dual formulation for each equation as in (9) by interchanging
ξ$ η in the procedure to obtain the relevant quasi-conservation laws. So, one can get

d
dt

~q 2nþ1ð Þ
a ¼

ð
dx~β

2nþ1ð Þ
, n ¼ 1, 2, 3, … (10)

where the quantities ~q 2nþ1ð Þ
a define the dual asymptotically conserved charges,

provided that the time-integrated anomalies
Ð
dt
Ð
dx~β

2nþ1ð Þ
vanish. Likewise, this

result implies ~q 2nþ1ð Þ
a t! þ∞ð Þ ¼ ~q 2nþ1ð Þ

a t! �∞ð Þ.
These towers of quasi-conservation laws reproduce the same polynomial form as

in the usual sine-Gordon charge densities. In fact, the anomalies β 2nþ1ð Þ and ~β
2nþ1ð Þ

vanish identically provided that the deformed potential V wð Þ recovers the form of
the standard SG potential.

The importance and the relevance of such a dual construction will become clear
below when the linear combinations of the charges in (9) and (10) give rise to
infinite towers of exactly conserved charges, provided that the space-integral of the

linear combination of the anomaly densities β 2nþ1ð Þ and ~β
2nþ1ð Þ

vanish for special
two-soliton solutions.

3.1.1 Space-reflection parity and conserved charges

The above dual sets of quasi-conservation laws are used to construct a sequence
of conserved charges and vanishing anomalies. The space-reflection symmetry of
some soliton solutions of the deformed SG model will imply the existence of an
infinite tower of conserved charges. So, let us examine a linear combination, at each
order n ¼ 1, 2, … , of the above two sets of quasi-conserved charges q 2nþ1ð Þ

a (9) and
~q 2nþ1ð Þ
a (10). Consider the new quasi-conservation laws

d
dt

q 2nþ1ð Þ
a,� ¼ �

ð
dxβ 2nþ1ð Þ

� , n ¼ 1, 2, … , (11)
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with the charges q 2nþ1ð Þ
a,� and anomalies β 2nþ1ð Þ

� , respectively, defined as

q 2nþ1ð Þ
a,� � ∓

1
16

q 2nþ1ð Þ
a � ~q 2nþ1ð Þ

a

� �
, (12)

β 2nþ1ð Þ
a,� � ∓

1
16

β 2nþ1ð Þ � ~β
2nþ1ð Þ� �

(13)

in which the quantities q 2nþ1ð Þ and β 2nþ1ð Þ defined in (9) and the quantities ~q 2nþ1ð Þ
a

and ~β
2nþ1ð Þ

in (10) have been used, respectively.
Since the theory (1) is invariant under space–time translations one has that the

energy momentum tensor is conserved. In fact, one has β 1ð Þ ¼ ~β
1ð Þ ¼ 0 at the zero’th

order n ¼ 0, and the linear combinations of the charges q 1ð Þ
a and ~q 1ð Þ

a leads to the
energy and momentum, respectively [11].

q 1ð Þ
þ ¼

ðþ∞
�∞

dx
1
2

∂twð Þ2 þ 1
2

∂xwð Þ2 þ V
� �

, (14)

q 1ð Þ
� ¼

ðþ∞
�∞

dx ∂xw∂tw, (15)

where E ¼ q 1ð Þ
þ is the energy and P ¼ q 1ð Þ

� is the momentum.
The first non-trivial anomalies become [11].

β 3ð Þ
� ¼ �

1
2
Z ∂ξ ∂ξwð Þ2

h i
∓∂η ∂ηw

� �2h in o
, Z � V 2ð Þ þ 16V � 1: (16)

β 5ð Þ
� ¼ �

1
2
Z 24 ∂ξwð Þ2∂2ξwþ ∂

4
ξw

� �
∂ξw� 24 ∂ηw

� �2
∂
2
ηwþ ∂

4
ηw

� �
∂ηw

h i
: (17)

Notice that for the SG potential (3) the factor Z above vanishes identically;
therefore, the anomalies vanish β 3ð Þ

� ¼ 0, and the relevant charges q 3ð Þ
� turn out to be

the exactly conserved charges of the standard SG model at this order.

The properties of the quantities q 2nþ1ð Þ
� and

Ð
dxβ 2nþ1ð Þ

� in (11) will depend on the
symmetry properties of the solitons, in particular on the space-reflection symmetry of
β 2nþ1ð Þ
� , as we will see below. So, let us examine the space-reflection symmetry of them.
Let us write the anomalies in terms of the ∂x and ∂t derivatives. So, once the eq.

of motion (1) is used to substitute ∂2t w! ∂
2
xw� V 0 wð Þ� �

, as well as, neglecting
surface terms one has

α 3ð Þ
þ � �2

ð
dx f 3ð Þ

þ x, tð Þ, (18)

f 3ð Þ
þ x, tð Þ � V 00 þ 16V

� �
∂x ∂twð Þ2
h i

þ ∂x ∂xwð Þ2
h in o

, (19)

where we have defined the anomaly density f 3ð Þ
þ . Notice that for even parity

potentials (8) and for definite parity (even or odd) fields w the density f 3ð Þ
þ is an odd

function, and thus the x�integrated anomaly α 3ð Þ
þ vanishes.

Following analogous procedure as above one has

α 3ð Þ
� ¼ �4

ð
dx f 3ð Þ

� x, tð Þ, (20)
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with the charges q 2nþ1ð Þ
a,� and anomalies β 2nþ1ð Þ

� , respectively, defined as

q 2nþ1ð Þ
a,� � ∓

1
16

q 2nþ1ð Þ
a � ~q 2nþ1ð Þ

a

� �
, (12)

β 2nþ1ð Þ
a,� � ∓

1
16

β 2nþ1ð Þ � ~β
2nþ1ð Þ� �

(13)

in which the quantities q 2nþ1ð Þ and β 2nþ1ð Þ defined in (9) and the quantities ~q 2nþ1ð Þ
a

and ~β
2nþ1ð Þ

in (10) have been used, respectively.
Since the theory (1) is invariant under space–time translations one has that the

energy momentum tensor is conserved. In fact, one has β 1ð Þ ¼ ~β
1ð Þ ¼ 0 at the zero’th

order n ¼ 0, and the linear combinations of the charges q 1ð Þ
a and ~q 1ð Þ

a leads to the
energy and momentum, respectively [11].

q 1ð Þ
þ ¼

ðþ∞
�∞

dx
1
2

∂twð Þ2 þ 1
2

∂xwð Þ2 þ V
� �

, (14)

q 1ð Þ
� ¼

ðþ∞
�∞

dx ∂xw∂tw, (15)

where E ¼ q 1ð Þ
þ is the energy and P ¼ q 1ð Þ

� is the momentum.
The first non-trivial anomalies become [11].

β 3ð Þ
� ¼ �

1
2
Z ∂ξ ∂ξwð Þ2

h i
∓∂η ∂ηw

� �2h in o
, Z � V 2ð Þ þ 16V � 1: (16)

β 5ð Þ
� ¼ �

1
2
Z 24 ∂ξwð Þ2∂2ξwþ ∂

4
ξw

� �
∂ξw� 24 ∂ηw

� �2
∂
2
ηwþ ∂

4
ηw

� �
∂ηw

h i
: (17)

Notice that for the SG potential (3) the factor Z above vanishes identically;
therefore, the anomalies vanish β 3ð Þ

� ¼ 0, and the relevant charges q 3ð Þ
� turn out to be

the exactly conserved charges of the standard SG model at this order.

The properties of the quantities q 2nþ1ð Þ
� and

Ð
dxβ 2nþ1ð Þ

� in (11) will depend on the
symmetry properties of the solitons, in particular on the space-reflection symmetry of
β 2nþ1ð Þ
� , as we will see below. So, let us examine the space-reflection symmetry of them.
Let us write the anomalies in terms of the ∂x and ∂t derivatives. So, once the eq.

of motion (1) is used to substitute ∂2t w! ∂
2
xw� V 0 wð Þ� �

, as well as, neglecting
surface terms one has

α 3ð Þ
þ � �2

ð
dx f 3ð Þ

þ x, tð Þ, (18)

f 3ð Þ
þ x, tð Þ � V 00 þ 16V

� �
∂x ∂twð Þ2
h i

þ ∂x ∂xwð Þ2
h in o

, (19)

where we have defined the anomaly density f 3ð Þ
þ . Notice that for even parity

potentials (8) and for definite parity (even or odd) fields w the density f 3ð Þ
þ is an odd

function, and thus the x�integrated anomaly α 3ð Þ
þ vanishes.

Following analogous procedure as above one has

α 3ð Þ
� ¼ �4

ð
dx f 3ð Þ

� x, tð Þ, (20)
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f 3ð Þ
� x, tð Þ � V 00 þ 16V

� �
∂tw∂2xwþ ∂xw∂x∂tw
� �

, (21)

where we have defined the anomaly density f 3ð Þ
� . Notice that for even parity

potentials (8) and for definite parity (even or odd) fields w the density f 3ð Þ
� is an

even function, and thus the x�integrated anomaly α 3ð Þ
� will not vanish solely by a

space-reflection parity reason.
The anomalies α 3ð Þ

� and
Ð
dtα 3ð Þ

� in (18) and (20), will be computed numerically
for two-solitons and breather-like solutions below.

By direct construction it has been found new towers of anomalous charges in
[8]. In the next subsections we will discuss those charges and anomalies in relation
to the symmetry (4) and (5).

3.2 Second type of towers

The quasi-conservation laws [8].

d
dt

Q Nð Þ
a ¼ a Nð Þ, (22)

Q Nð Þ
a �

ð
dx

1
N

∂ξwð ÞN þ V ∂ξwð ÞN�2
� �

, (23)

a Nð Þ �
ð
dx N � 2ð Þ ∂ξwð ÞN�3∂2ξwV, N ≥ 3, (24)

define the asymptotically conserved charges Q Nð Þ
a and the corresponding

anomalies a Nð Þ.
The dual quasi-conservation laws become

d
dt

~Q
Nð Þ
a ¼ ~a Nð Þ, (25)

~Q
Nð Þ
a �

ð
dx

1
N

∂ηw
� �N þ V ∂ηw

� �N�2� �
, (26)

~a Nð Þ �
ð
dx N � 2ð Þ ∂ηw

� �N�3
∂
2
ηwV, N ≥ 3, (27)

where we have introduced the dual asymptotically conserved charges ~Q
Nð Þ
a and

the relevant anomalies ~a Nð Þ.
The densities of the anomalies a Nð Þ and ~a Nð Þ in (24) and (27), respectively,

possess odd parities under (4) and (5), so the quasi-conservation laws (22) and (25),
respectively, allow the construction of asymptotically conserved charges.

3.3 Third type of towers

Let us define the quasi-conservation laws [8].

d
dt

Q Nð Þ
a ¼ γ Nð Þ, (28)

Q Nð Þ
a �

ð
dx

1
2
VN�1

∂ξwð Þ2 þ 1
N
VN

� �
, (29)
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γ Nð Þ �
ð
dx

1
2

∂ξwð Þ2∂ηVN�1, N ≥ 2, (30)

where we have introduced the asymptotically conserved charges Q̂
Nð Þ
a and the

corresponding anomalies γ Nð Þ.
The interchange η$ ξ allows us to reproduce the dual quasi-conservation laws.

So, one has

d
dt

~Q
Nð Þ
a ¼ ~γ Nð Þ, (31)

~Q
Nð Þ
a �

ð
dx

1
2
VN�1

∂ξwð Þ2 þ 1
N
VN

� �
, (32)

~γ Nð Þ �
ð
dx

1
2

∂ηw
� �2

∂ξVN�1, N ≥ 2, (33)

where we have defined the dual asymptotically conserved charges ~Q
Nð Þ
a and the

anomalies ~γ Nð Þ.
Similarly, the densities of the anomalies γ Nð Þ and ~γ Nð Þ in (30) and (33), respec-

tively, possess odd parities under (4) and (5), so the quasi-conservation laws (28)
and (31), respectively, allow the construction of asymptotically conserved charges.

The relevant anomalies of the lowest order quasi-conservation laws of the above
towers will be simulated below for 2-soliton interactions.

Remarkably, the above charges turn out to be anomalous even for the standard
sine-Gordon model. In fact, the relevant 2-soliton solutions have been constructed
analytically [4, 11] which possess a definite parity under (4)–(5), such that the odd
anomaly densities vanish upon space–time integration. The usual explanation for
the appearance of novel anomalous charges in the standard sine-Gordon model is
the symmetry argument. The anomalous charges also appear in the standard KdV
and its deformations [9].

These charges have been computed for soliton collisions in the treatment of
soliton gases and formation of some structures in integrable systems, such as integra-
ble turbulence and rogue waves. In the context of the usual KdV model it has been
analyzed the behavior of the statistical moments defined by (see e.g. [16, 17])
Mn tð Þ ¼ Ðþ∞�∞ vn dx, n≥ 1; where v is the KdV field. The M1,2 cases are conserved
charges. It is remarkable that the moments,M3,4, respectively, in the interaction
region of two-solitons, behave as the anomalous charges of the quasi-integrable KdV
models [9]. In fact, in the quasi-integrable KdV models the moments M2,3 are in fact
anomalous charges [9]. So, since the two-soliton collision is an important ingredient
in the formation of soliton turbulence and the dynamics of soliton gases, we can
expect they will be important in the quasi-integrable counterparts. In the case of the
SG soliton ensemble, to our knowledge, it is needed a further theoretical research.

4. Numerical simulations

Here we will check numerically the lowest order expressions of the various
towers of quasi-conservation laws presented above. For this purpose we will
numerically solve the Eq. (1) with the particular deformed potential (2). In the
Figures 1 and 2 we plot the kink-kink and kink-antikink collisions, respectively.
Moreover, we show the first conserved charges, i.e. the energy and momentum for
these field configurations.
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Q Nð Þ
a �
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dx
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∂ξwð ÞN þ V ∂ξwð ÞN�2
� �

, (23)

a Nð Þ �
ð
dx N � 2ð Þ ∂ξwð ÞN�3∂2ξwV, N ≥ 3, (24)

define the asymptotically conserved charges Q Nð Þ
a and the corresponding

anomalies a Nð Þ.
The dual quasi-conservation laws become

d
dt

~Q
Nð Þ
a ¼ ~a Nð Þ, (25)

~Q
Nð Þ
a �

ð
dx

1
N

∂ηw
� �N þ V ∂ηw

� �N�2� �
, (26)

~a Nð Þ �
ð
dx N � 2ð Þ ∂ηw

� �N�3
∂
2
ηwV, N ≥ 3, (27)

where we have introduced the dual asymptotically conserved charges ~Q
Nð Þ
a and

the relevant anomalies ~a Nð Þ.
The densities of the anomalies a Nð Þ and ~a Nð Þ in (24) and (27), respectively,

possess odd parities under (4) and (5), so the quasi-conservation laws (22) and (25),
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3.3 Third type of towers

Let us define the quasi-conservation laws [8].

d
dt

Q Nð Þ
a ¼ γ Nð Þ, (28)

Q Nð Þ
a �

ð
dx

1
2
VN�1

∂ξwð Þ2 þ 1
N
VN

� �
, (29)
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2
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where we have introduced the asymptotically conserved charges Q̂
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a and the
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So, one has

d
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Nð Þ
a ¼ ~γ Nð Þ, (31)

~Q
Nð Þ
a �

ð
dx

1
2
VN�1
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N
VN

� �
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dx

1
2
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analytically [4, 11] which possess a definite parity under (4)–(5), such that the odd
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models [9]. In fact, in the quasi-integrable KdV models the moments M2,3 are in fact
anomalous charges [9]. So, since the two-soliton collision is an important ingredient
in the formation of soliton turbulence and the dynamics of soliton gases, we can
expect they will be important in the quasi-integrable counterparts. In the case of the
SG soliton ensemble, to our knowledge, it is needed a further theoretical research.

4. Numerical simulations

Here we will check numerically the lowest order expressions of the various
towers of quasi-conservation laws presented above. For this purpose we will
numerically solve the Eq. (1) with the particular deformed potential (2). In the
Figures 1 and 2 we plot the kink-kink and kink-antikink collisions, respectively.
Moreover, we show the first conserved charges, i.e. the energy and momentum for
these field configurations.
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4.1 First non-trivial anomalies of the SG-type quasi-conservation laws

We have checked our results by numerical simulation of the anomalies α 3ð Þ
� (18)–

(21) for kink-antikink, kink-kink and breather solutions of the model (2).
So, let us write (11) in the form

q 3ð Þ
a,� tð Þ � q 3ð Þ

a,� t0ð Þ ¼ �
ðt
t0
dtα 3ð Þ
� tð Þ, (34)

where α 3ð Þ
� tð Þ were defined in (18) and (20) and t0 is the initial time.

The simulations of the kink-antikink, kink-kink and breather systems of the
deformed SGmodel will consider, as the initial condition, two analytic solitary wave
solutions presented in Eq. (1.2) of [4], located some distance apart and stitched
together at the middle point.

4.1.1 Kink-antikink

In the Figures 3 and 4 we show the results for kink-antikink system with

velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The plots of (19) and (21) as f 3ð Þ
� x, tð Þvsx are

Figure 1.
Kink-kink with velocities v2 ¼ �v1 ¼ 0:15 and q ¼ 2:01 in (2), for initial (green), collision (blue) and final
(red) times. Bottom, the energy (E) and momentum (P) charges of the kink-kink.

Figure 2.
Kink-antikink with velocities v2 ¼ �v1 ¼ 0:15 and q ¼ 2:01 in (2), for initial (green), collision (blue) and
final (red) times. Bottom, the energy (E) and momentum (P) charges of the kink-antikink.
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shown for three successive times (top figures). Their integration in space furnish

vanishing α 3ð Þ
þ tð Þ and non-vanishing α 3ð Þ

� tð Þ (middle figures). The bottom figures

show
Ð
dt0α 3ð Þ

þ t0ð Þ, vanishing in Figure 3 and
Ð
dt0α 3ð Þ

� t0ð Þ asymptotically vanishing in
Figure 4, respectively. According to (34) our numerical simulations show the
asymptotically conservation of the charge q 3ð Þ

a,� and the exact conservation of the

charge q 3ð Þ
a,þ, within numerical accuracy.

4.1.2 kink-kink

In the Figures 5 and 6 we show the results for kink-kink system with velocities

v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The plots of (19) and (21) as f 3ð Þ
� x, tð Þvsx are shown

for three successive times (top figures). Their integration in space furnish vanishing

α 3ð Þ
þ tð Þ and non-vanishing α 3ð Þ

� tð Þ (middle figures). The bottom figures show

Figure 3.
f 3ð Þ
þ , α 3ð Þ

þ and
Ð
dtα 3ð Þ

þ in (18) and (19) for kink-antikink with velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-antikink.

Figure 4.
f 3ð Þ
� , α 3ð Þ

� and
Ð
dtα 3ð Þ

� in (20)–(21) for kink-antikink with velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-antikink.
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� tð Þ, (34)
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� tð Þ were defined in (18) and (20) and t0 is the initial time.
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together at the middle point.

4.1.1 Kink-antikink
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� x, tð Þvsx are
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Kink-antikink with velocities v2 ¼ �v1 ¼ 0:15 and q ¼ 2:01 in (2), for initial (green), collision (blue) and
final (red) times. Bottom, the energy (E) and momentum (P) charges of the kink-antikink.
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shown for three successive times (top figures). Their integration in space furnish

vanishing α 3ð Þ
þ tð Þ and non-vanishing α 3ð Þ

� tð Þ (middle figures). The bottom figures

show
Ð
dt0α 3ð Þ

þ t0ð Þ, vanishing in Figure 3 and
Ð
dt0α 3ð Þ

� t0ð Þ asymptotically vanishing in
Figure 4, respectively. According to (34) our numerical simulations show the
asymptotically conservation of the charge q 3ð Þ

a,� and the exact conservation of the

charge q 3ð Þ
a,þ, within numerical accuracy.

4.1.2 kink-kink

In the Figures 5 and 6 we show the results for kink-kink system with velocities

v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The plots of (19) and (21) as f 3ð Þ
� x, tð Þvsx are shown

for three successive times (top figures). Their integration in space furnish vanishing

α 3ð Þ
þ tð Þ and non-vanishing α 3ð Þ

� tð Þ (middle figures). The bottom figures show

Figure 3.
f 3ð Þ
þ , α 3ð Þ

þ and
Ð
dtα 3ð Þ

þ in (18) and (19) for kink-antikink with velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-antikink.

Figure 4.
f 3ð Þ
� , α 3ð Þ

� and
Ð
dtα 3ð Þ

� in (20)–(21) for kink-antikink with velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-antikink.
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Ð
dt0α 3ð Þ

þ t0ð Þ, vanishing in Figure 5 and
Ð
dt0α 3ð Þ

� t0ð Þ asymptotically vanishing in
Figure 6. According to (34) our numerical results show the asymptotically conser-

vation of the charge q 3ð Þ
a,� and the exact conservation of the charge q 3ð Þ

a,þ, within
numerical accuracy.

So, one can conclude that for kink-antikink (kink-kink) solution the definite
parity related to the space-reflection symmetry is a necessary condition in order to

achieve a conserved q 3ð Þ
a,þ charge, within numerical accuracy.

The both kink-antikink and kink-kink solitons of the SG model with opposite
and different velocities do not possess the required parity symmetry. However, it
has been shown that in the center-of-mass reference frame (x0, t0) the parity sym-
metries are recovered, as discussed in [11]. So, the simulations performed in these
reference frames, in the both kink-antikink and kink-kink cases, will provide
vanishing α 3ð Þ

þ anomalies as shown above.

Figure 5.
f 3ð Þ
þ , α 3ð Þ

þ and
Ð
dtα 3ð Þ

þ in (18) and (19) for kink-kink with velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-kink.

Figure 6.
f 3ð Þ
� , α 3ð Þ

� and
Ð
dtα 3ð Þ

� in (20) and (21) for kink-kink with velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-kink.
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4.1.3 Breather: kink-antikink bound state

Figures 7 and 8 show the results for breather (kink-antikink bound state) with

ε ¼ 0:06. The densities f 3ð Þ
� x, tð Þ in (19) and (21), respectively, have been plotted as

functions of x for three successive times (top figures). They show the vanishing α 3ð Þ
þ tð Þ

and non-vanishing (periodic in time) α 3ð Þ
� tð Þ (middle figures). The bottom figures of

Figures 7 and 8 show the vanishing
Ð
dt0α 3ð Þ

þ t0ð Þ and periodic
Ð
dt0α 3ð Þ

� t0ð Þ expressions.
According to (34) our numerical results show the oscillation of the charges q 3ð Þ

a,� around

a fixed value and the exact conservation of the charge q 3ð Þ
a,þ, within numerical accuracy.

4.2 Lowest order anomalies of the second and third types of towers

We will compute the linear combinations of the lowest order anomalies of the
second and third types of towers in (22)–(27) and (28)–(33), respectively,

Figure 7.
f 3ð Þ
þ , α 3ð Þ

þ and
Ð
dtα 3ð Þ

þ in (18) and (19) for breather with ε ¼ 0:06. The density is shown for three times
t∈ t f � T0, t f
� �

, T0 ¼ 7:025. The long-lived breather for t f≈105.

Figure 8.
f 3ð Þ
� , α 3ð Þ

� and
Ð
dtα 3ð Þ

� in (20) and (21) for breather with ε ¼ 0:06. The density is shown for three times
t∈ t f � T0, t f
� �

, T0 ¼ 7:025. The long-lived breather for t f≈105.
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Ð
dt0α 3ð Þ

þ t0ð Þ, vanishing in Figure 5 and
Ð
dt0α 3ð Þ

� t0ð Þ asymptotically vanishing in
Figure 6. According to (34) our numerical results show the asymptotically conser-

vation of the charge q 3ð Þ
a,� and the exact conservation of the charge q 3ð Þ

a,þ, within
numerical accuracy.

So, one can conclude that for kink-antikink (kink-kink) solution the definite
parity related to the space-reflection symmetry is a necessary condition in order to

achieve a conserved q 3ð Þ
a,þ charge, within numerical accuracy.

The both kink-antikink and kink-kink solitons of the SG model with opposite
and different velocities do not possess the required parity symmetry. However, it
has been shown that in the center-of-mass reference frame (x0, t0) the parity sym-
metries are recovered, as discussed in [11]. So, the simulations performed in these
reference frames, in the both kink-antikink and kink-kink cases, will provide
vanishing α 3ð Þ

þ anomalies as shown above.

Figure 5.
f 3ð Þ
þ , α 3ð Þ

þ and
Ð
dtα 3ð Þ

þ in (18) and (19) for kink-kink with velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-kink.

Figure 6.
f 3ð Þ
� , α 3ð Þ

� and
Ð
dtα 3ð Þ

� in (20) and (21) for kink-kink with velocities v2 ¼ �v1 ¼ 0:5 and ε ¼ 0:06. The
density figure shows initial ti (green), collision tc (blue) and final t f (red) times of the kink-kink.
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4.1.3 Breather: kink-antikink bound state

Figures 7 and 8 show the results for breather (kink-antikink bound state) with

ε ¼ 0:06. The densities f 3ð Þ
� x, tð Þ in (19) and (21), respectively, have been plotted as

functions of x for three successive times (top figures). They show the vanishing α 3ð Þ
þ tð Þ

and non-vanishing (periodic in time) α 3ð Þ
� tð Þ (middle figures). The bottom figures of

Figures 7 and 8 show the vanishing
Ð
dt0α 3ð Þ

þ t0ð Þ and periodic
Ð
dt0α 3ð Þ

� t0ð Þ expressions.
According to (34) our numerical results show the oscillation of the charges q 3ð Þ

a,� around

a fixed value and the exact conservation of the charge q 3ð Þ
a,þ, within numerical accuracy.

4.2 Lowest order anomalies of the second and third types of towers

We will compute the linear combinations of the lowest order anomalies of the
second and third types of towers in (22)–(27) and (28)–(33), respectively,

Figure 7.
f 3ð Þ
þ , α 3ð Þ

þ and
Ð
dtα 3ð Þ

þ in (18) and (19) for breather with ε ¼ 0:06. The density is shown for three times
t∈ t f � T0, t f
� �

, T0 ¼ 7:025. The long-lived breather for t f≈105.

Figure 8.
f 3ð Þ
� , α 3ð Þ

� and
Ð
dtα 3ð Þ

� in (20) and (21) for breather with ε ¼ 0:06. The density is shown for three times
t∈ t f � T0, t f
� �

, T0 ¼ 7:025. The long-lived breather for t f≈105.
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a� � a 3ð Þ � ~a 3ð Þ, (35)

γ� � γ 2ð Þ � ~γ 2ð Þ: (36)

4.2.1 Second and third types of towers and lowest order anomalies

The two anomalies in (35) can be written as

aþ ¼
ð
dx2 ∂

2
t wþ ∂

2
xw

� �
V, (37)

a� ¼
ð
dx4 ∂t∂xw½ �V: (38)

Similarly, the two anomalies in (36) can be written as

γþ ¼
ð
dx ∂twð Þ2 � ∂xwð Þ2
h i

∂tV, (39)

γ� ¼ �
ð
dx ∂twð Þ2 � ∂xwð Þ2
h i

∂xV: (40)

Notice that under the space–time reflection transformation (4) and (5), the
densities of the above anomalies a 3ð Þ

� and γ�, respectively, are odd; then they must
vanish upon space–time integration. Therefore, one has asymptotically conserved
charges associated to the relevant quasi-conservation laws.

Under the space-reflection symmetry (6) and (8), some of the densities of the
above anomalies will present odd parities; therefore, they must vanish upon space
integration. So, in such cases one can have exact conserved charges. These results
will be verified for certain solutions as we will see below in the numerical simula-
tions for the kink-kink and kink-antikink solutions.

Figures 9–12 show the anomalies a� and γ� and their corresponding densities.
The anomalies a� and γ� vanish as shown in the Figures 9 and 10, respectively, for
symmetric kink-antikink soliton (see Figure 2), within numerical accuracy, since
their densities are odd under space reflection. Similarly, for anti-symmetric kink-
kink soliton (see Figure 1) the anomalies aþ and γ� vanish in the Figures 11 and 12,
respectively, since their densities are odd under space reflection.

These results suggest that the quasi-integrable models set forward in the litera-
ture [4, 6, 7], and in particular the model (1), would possess more specific integra-
bility structures, such as an infinite set of exactly conserved charges, and some type

Figure 9.
Top: The anomaly densities (37) and (38), respectively, plotted in x�coordinate for three times ti(green),
tc (blue) and t f (red). Bottom: The anomalies a� vs t, for kink-antikink collision shown in Figure 2.

76

Recent Developments in the Solution of Nonlinear Differential Equations

of linear formulations for certain deformed potentials. So, in the next section we
will tackle the problem of extending the Riccati-type pseudo-potential formalism to
the deformed sine-Gordon model (1).

5. Riccati-type pseudo-potentials and non-local conservation laws

The Lax equations and Backlund transformations, as well as the conservation
laws for the well-known non-linear evolution equations can be generated from the
pseudo-potentials and the properties of the Riccati Equation [25–29].

Figure 10.
Top: Anomaly densities (39) and (40), respectively, plotted in x�coordinate for three times ti(green), tc(blue)
and t f (red). Bottom: Anomalies γ� vs t, for kink-antikink shown in Figure 2.

Figure 11.
Top: Anomaly densities of (37) and (38), respectively, plotted in x�coordinate for three successive times
ti(green), tc(blue) and t f (red). Bottom figures show the relevant anomalies a� vs t, for kink-kink shown in
Figure 1.

Figure 12.
Top: Anomaly densities of (39) and (40), respectively, plotted in x�coordinate for three successive times ti
(green), tc(blue) and t f (red). Bottom: Anomalies γ� vs t, for kink-kink shown in Figure 1.
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So, in the next steps we consider a convenient deformation of the usual
pseudo-potential approach to integrable field theories. Let us consider the system of
Riccati-type equations

∂ξu ¼ �2λ�1uþ ∂ξwþ ∂ξw u2, (41)

∂ηu ¼ �2λ V � 2ð Þu� 1
2
λV 1ð Þ þ 1

2
λV 1ð Þu2 þ ψ , (42)

and the next linear first order equation for ψ

∂ξψ þ 2λ�1ψ � 2u∂ξwψ ¼ 2λ� 2u� λ∂ξuð ÞZ, Z � V 2ð Þ wð Þ þ 16V wð Þ � 1: (43)

The compatibility condition ∂η ∂ξuð Þ � ∂ξ ∂ηu
� � ¼ 0 of the system (41) and (42),

taking into account (43), provides the equation of motion of the DSG model (1).
Moreover, the ordinary differential equation for ψ in the variable ξ can be inte-
grated by quadratures [8]. Its expression will become highly non-local and, once
inserted into (42), the system of Eqs. (41) and (42) will provide a non-local Riccati-
type representation of the DSG model (1).

From the system (41) and (42) one can get a quasi-conservation law

∂η u∂ξwð Þ þ ∂ξ λ V � 2ð Þ � 1
2
λuV 1ð Þ

� �
¼ �λ∂ξwuZ þ ∂ξwψ : (44)

This equation has been used to construct a tower of infinite number of quasi-
conservation laws [8]. For the standard SG one has Z ¼ ψ ¼ 0; so the Eq. (44) can
generate the well known conservation laws of the usual SG model.

5.1 Pseudo-potentials and a linear system associated to DSG

In this section we search for a linear system formulation of the DSG model. It is
achieved by taking into account the Riccati Eq. (41) and the conservation law (44),
as well as the Eq. (43). So, the following system of equations has been proposed as a
linear formulation of the deformed SG model [8].

L1Φ ¼ 0, L2Φ ¼ 0, (45)

L1 � ∂ξ � Aξ, Aξ � λ

2
∂ξwð Þ2 � 2

∂ξwð Þ3
∂
2
ξw

, (46)

L2 � ∂η � Aη, Aη � �2λ� λV þ ζ, (47)

where the auxiliary non-local field ζ is defined as

ζ ¼
ð
dξ0 6V 1ð Þ ∂ξ0w

� �2
∂
2
ξ0w

� 2V 2ð Þ ∂ξ0w
� �4

∂
2
ξ0w

� �2

2
64

3
75: (48)

In fact, taking into account the expression for the auxiliary field ζ, the compat-
ibility condition of the linear problem (45) provides the equation

Δ ξ, ηð Þλ� 6
∂ξw
∂
2
ξw

Δ ξ, ηð Þ þ 2
∂ξwð Þ2

∂
2
ξw

� �2 ∂ξΔ ξ, ηð Þ ¼ 0, (49)
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with

Δ ξ, ηð Þ � ∂ξ∂ηwþ V 1ð Þ wð Þ: (50)

In (49) the coefficient of the linear term in λ Δ ξ, ηð Þ must vanish, providing the
DSG equation of motion (1). The other terms in (49) must also vanish provided that
Δ ξ, ηð Þ ¼ 0 is imposed. So, L1 and L2 in (45) become a pair of linear operators
associated to the DSG model (1).

5.2 Non-local conservation laws

For non-linear equations, not necessarily integrable, which can be derived from
a compatibility condition of an associated linear system with spectral parameter,
explicit expressions of local and non-local currents can be obtained (see e.g.
[30, 31]). In the non-linear σ�model the non-local conserved charges imply the
absence of particle production and the first non-trivial one alone fixes almost
completely the on-shell dynamics of the model (see e.g. [3, 32]). These charges may
be constructed through an iterative procedure [33]. Following this method one gets
a set of infinite number of non-local conservation laws for the system (45). In fact,
this system satisfies the properties: i) Aξ,Aη

� �
is a “pure gauge”; i.e. Aμ ¼

∂μΦΦ�1, μ ¼ ξ, η; ii) Jμ ¼ Aξ,Aη

� �
is a conserved current satisfying

∂ηAξ � ∂ξAη ¼ 0: (51)

So, one can construct an infinite set of non-local conserved currents through an
inductive procedure. Let us define the currents

J nð Þ
μ ¼ ∂μχ

nð Þ, μ � ξ, η; n ¼ 0, 1, 2, … (52)

dχ 1ð Þ ¼ Aξdξþ Aηdη � dI0 ξ, ηð Þ þ λdI1 ξ, ηð Þ; (53)

J nþ1ð Þ
μ ¼ ∂μχ

nð Þ � Aμχ
nð Þ; χ 0ð Þ ¼ 1, (54)

where

dI0 ξ, ηð Þ � a0 ξ, ηð Þdξþ b0 ξ, ηð Þdη, dI1 ξ, ηð Þ � a1 ξ, ηð Þdξþ b1 ξ, ηð Þdη, (55)

where

a0 � �2 ∂ξwð Þ3
∂
2
ξw

; b0 � ζ ¼
ð
dξ0 6V 1ð Þ ∂ξ0w

� �2
∂
2
ξ0w

� 2V 2ð Þ ∂ξ0w
� �4

∂
2
ξ0w

� �2

2
64

3
75; (56)

a1 � 1
2

∂ξwð Þ2; b1 � �2� V: (57)

Then one can show by an inductive procedure that the (non-local) currents J nð Þ
μ

are conserved

∂μJ nð Þμ ¼ 0, n ¼ 1, 2, 3, … , þ∞: (58)

The first current conservation law ∂μJ 1ð Þμ ¼ 0 reduces to the Eq. (51), and then
provides the first two conservation laws
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3
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∂ηa0 � ∂ξb0 ¼ 0, ∂ηa1 � ∂ξb1 ¼ 0: (59)

The next conservation law ∂μJ 2ð Þμ ¼ 0, in powers of λ, furnishes

∂η a0I0ð Þ � ∂ξ b0I0ð Þ ¼ 0, (60)

∂η a0I1 þ a1I0ð Þ � ∂ξ b0I1 þ b1I0ð Þ ¼ 0, (61)

∂η a1I1ð Þ � ∂ξ b1I1ð Þ ¼ 0: (62)

The construction of analogous linear systems have been performed for defor-
mations of the KdV and NLS models [9, 10]. The construction of the classical
Yangian as a Poisson-Hopf type algebra [34] for those non-local currents is worth to
pursue in a future work.

6. Conclusions

Our work presents an in-depth demonstration of the quasi-integrability prop-
erty of the modified sine-Gordon models and the presence of several towers of
infinite number of asymptotically conserved charges for soliton configurations
satisfying the space–time symmetry (4) and (5). In addition, it is observed that
there exist a subset of towers of infinite number of exactly conserved charges,
provided that some two-soliton configurations are eigenstates (even or odd) of the
space-reflection symmetry (6)–(8).

Moreover, we have uncovered a linear system formulation (45) of the modified
SG model, and an infinite set of exact non-local conservation laws (58) associated to
that linear formulation.

The space–time and internal symmetries related to quasi-integrability deserve
further investigations, due to their applications in several areas of non-linear sci-
ence, but we hope that the results reported here have opened new lines of research
in the context of the quasi-integrability phenomena.
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Chapter 5

Continuous One Step Linear
Multi-Step Hybrid Block Method
for the Solution of First Order
Linear and Nonlinear Initial Value
Problem of Ordinary Differential
Equations
Kamoh Nathaniel, Kumleng Geoffrey and Sunday Joshua

Abstract

In this paper, a collocation approach for solving initial value problem of ordinary
differential equations (ODEs) of the first order is presented. This approach consists
of reducing the problem to a set of linear multi-step algebraic equations by approx-
imating the ODE with a shifted Legendre polynomial basis function to determine
the unknown constants. The proposed method is simple and efficient; it approxi-
mates the solutions very closely to the closed form solutions. Some problems were
considered using Maple Software to illustrate the simplicity, efficiency and accu-
racy of the method. The results obtained revealed that the hybrid method can be
suitable candidate for all forms of first order initial value problems of ordinary
differential equations.

Keywords: collocation, hybrid block method, consistent, zero stable, convergent

1. Introduction

The development of mathematics parallels the human endeavor to understand
our physical environment. Differential equations were discovered when the need to
understand the behavior of nearly all systems undergoing change became more
demanding. They are found in science and engineering as well as economics, social
science, biology, business and health care. Many systems described by differential
equations are so large and complex that a purely analytic solution is sometimes not
traceable [1–5]. However mathematicians have studied the nature of these equa-
tions for decades of years and there are many well-developed numerical methods
for the solution of different order initial value problems of ordinary differential
equations. Unfortunately, in trying to achieve efficient and accurate solution, the
choice of the numerical method to be adopted becomes very essential [4, 6–8].

The main goal of this paper is to derive a one step continuous hybrid block
method using shifted Legendre polynomials basis function with the expectation that

85



Chapter 5

Continuous One Step Linear
Multi-Step Hybrid Block Method
for the Solution of First Order
Linear and Nonlinear Initial Value
Problem of Ordinary Differential
Equations
Kamoh Nathaniel, Kumleng Geoffrey and Sunday Joshua

Abstract

In this paper, a collocation approach for solving initial value problem of ordinary
differential equations (ODEs) of the first order is presented. This approach consists
of reducing the problem to a set of linear multi-step algebraic equations by approx-
imating the ODE with a shifted Legendre polynomial basis function to determine
the unknown constants. The proposed method is simple and efficient; it approxi-
mates the solutions very closely to the closed form solutions. Some problems were
considered using Maple Software to illustrate the simplicity, efficiency and accu-
racy of the method. The results obtained revealed that the hybrid method can be
suitable candidate for all forms of first order initial value problems of ordinary
differential equations.

Keywords: collocation, hybrid block method, consistent, zero stable, convergent

1. Introduction

The development of mathematics parallels the human endeavor to understand
our physical environment. Differential equations were discovered when the need to
understand the behavior of nearly all systems undergoing change became more
demanding. They are found in science and engineering as well as economics, social
science, biology, business and health care. Many systems described by differential
equations are so large and complex that a purely analytic solution is sometimes not
traceable [1–5]. However mathematicians have studied the nature of these equa-
tions for decades of years and there are many well-developed numerical methods
for the solution of different order initial value problems of ordinary differential
equations. Unfortunately, in trying to achieve efficient and accurate solution, the
choice of the numerical method to be adopted becomes very essential [4, 6–8].

The main goal of this paper is to derive a one step continuous hybrid block
method using shifted Legendre polynomials basis function with the expectation that

85



the numerical (proposed) method will give a solution that is close to the close form
solution of the initial value problems of first order nonlinear ordinary differential
equations. The paper is structured as follows. In Section 2, we derived and analyze
the obtained schemes for consistency, zero stability and convergence. Some first
order nonlinear problems of ordinary differential equations were solved using the
derived schemes and the main results are presented in Section 3. Finally, we end
with some concluding remarks in Section 4, where we compared our results with
some earlier results contained in the literature.

1.1 Linear multistep methods (LMMs)

Linear Multi-step Methods (LMMs) are very popular for solving Initial Value
Problems (IVPs) of Ordinary Differential Equations (ODEs). They are also applied
in solving higher order ODEs. LMMs are not self-starting and therefore, need
starting values from single-step methods like Euler’s method and Runge–Kutta
family of methods [1, 9, 10].

The general k� step LMM of the discrete form as given in [11–14] is;

Xk
j¼0

α jynþj ¼ h
Xk
j¼0

β j f nþj, (1)

where α j and β j are uniquely determined and α j þ β j 6¼ 0. The LMM (1)
generates discrete schemes which are used to solve first order ODEs. However, the
continuous Linear Multi-step Methods (CLMMs) which is now being used was
introduced by [15] and used by so many researchers such as [6, 7, 9, 16, 17] leading
to the development of what is now called continuous Linear Multi-step Methods
(CLMMs) given by;

Xk
j¼0

α j xð Þynþj ¼ h
Xk
j¼0

β j xð Þ f nþj, (2)

where α j xð Þ and β j xð Þ are expressed as continuous functions of x and are
continuously differentiable at least m times m≥ 1ð Þ. According to [1, 2, 11, 12, 18],
the existing methods of deriving the LMMs in discrete form include the interpola-
tion approach, numerical integration, Taylor series expansion. While the collocation
and interpolation technique is widely used for the derivation of CLMMs, this
method is derived using different techniques and approaches.

The introduction of CLMMs have numerous advantages which is of great
importance; better global error is estimated, it can be used to recover some standard
schemes, it provides a simplified form of coefficients for further analytical work at
different points and guarantee easy approximation of solutions at all interior points
of the integration interval [1, 7, 16, 19, 20].

In this work, the CLMM is developed for the solution of (linear and nonlinear)
first-order initial value problems of ordinary differential equations using the shifted
Legendre polynomials basis function. The corresponding discrete schemes are
obtained from the evaluation of the continuous scheme at some selected grid points.

1.2 Shifted Legendre polynomials

The shifted Legendre polynomials are well known family of orthogonal poly-
nomials on the interval 0,A½ � and are denoted by Pi tð Þ, the Pi tð Þ can be obtained by
the recurrence formula:
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pi tð Þ ¼
Xi

k¼0
�1ð Þ iþkð Þ iþ kð Þ!tk

i� kð Þ! k!ð Þ2Ak , i ¼ 1, 2, … ,

where P0 tð Þ ¼ 1 and P1 tð Þ ¼ 2t� 1
The first few terms of the shifted Legendre polynomials on the interval [0, A]

with A ¼ 1 are:

P0 tð Þ ¼ 1,

P1 tð Þ ¼ 2t� 1,

P2 tð Þ ¼ 6t2 � 6tþ 1,

P3 tð Þ ¼ 20t3 � 30t2 þ 12t� 1,

P4 tð Þ ¼ 70t4 � 140t3 þ 90t2 � 20tþ 1,

P5 tð Þ ¼ 252t5 � 630t4 þ 560t3 � 210t2 þ 30t� 1,

P6 tð Þ ¼ 924t6 � 2772t5 þ 3150t4 � 1680t3 þ 420 t2 � 42tþ 1:

1.3 Collocation method

A collocation is a method which involves the determination of an approximate
solution of a functional equation in a suitable set of functions called trial or basis
functions. The approximate solution is required to satisfy the equation and its
supplementary conditions at certain points in the range of interest called collocation
points.

2. Derivation of one step hybrid block methods with shifted Legendre
polynomials

We consider the first order ordinary differential equation of the form

y0 xð Þ ¼ f x, y xð Þð Þ, y x0ð Þ ¼ y0, (3)

where y xð Þ is the unknown function to be determined. The idea here is to
approximate the exact solution y xð Þ of (3) in the partition In ¼
a ¼ x0 < x1 < x2 < … < xn ¼ b½ � of the integration interval a, b½ � with a constant step
size h ¼ xi � xi�1, i ¼ 1, … , n by a shifted Legendre polynomial basis function of
degree sþ r� 1 of the form;

y xð Þ ¼
Xsþr�1
i¼0

ciPi tð Þ, (4)

where ci ∈, yϵC1 a, bð Þ and t ¼ x� xnð Þ. The first derivative of (4), is
substituted into (3), to obtain a differential system of the form

y0 xð Þ ¼
Xsþr�1
i¼0

cip0i tð Þ ¼ f x, y xð Þð Þ, (5)

Now interpolating (4) at xnþs, s ¼ 1
2 ,

3
4 and collocating (5)

at xnþr, r ¼ 0, 1
4 ,

1
2 ,

3
4 , k where s and r represents the interpolation and collocation
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points respectively, and k is the step number, after some substitutions and
manipulations the continuous scheme of the form;

y xð Þ ¼ α1
2
xð Þynþ1

2
þ α3

4
xð Þynþ3

4
þ h

Xk
τ¼0

βτ xð Þf xnþτ, ynþτ
� �þ βμ xð Þf xnþμ, ynþμ

� � !
,

μ ¼ 1
4
,
1
2
,
3
4
:

(6)

is obtained with the following continuous coefficients

∝1
2
xð Þ ¼ 27

11
þ 24576

11h5
t5 � 26880

11h4
t4 þ 12800

11h³
t3 � 2304

11h2
t²� 8192

11h6
t6

∝3
4
xð Þ ¼ � 16

11
þ 2304

11h²
t²� 12800

11h³
t³þ 26880

11h4
t4 � 24576

11h5
t5 þ 8192

11h6
t6

β0 xð Þ ¼ t� 3
40

h� 149
30h

t²þ 110
9h²

t³� 16
h³

t4 þ 32
3h4

t5 � 128
45h5

t6

β1
4
xð Þ ¼ � 21

55
hþ 736

55h
t²� 5248

99h²
t³þ 2864

33h³
t4 � 2176

33h4
t5 þ 9472

495h5
t6

β1
2
xð Þ ¼ 9

55
h� 2154

55h
t²þ 6916

33h²
t³� 4608

11h³
t4 þ 4032

11h4
t5 � 19456

165h5
t6

β3
4
xð Þ ¼ 9

55
h� 3712

165h
t2 þ 12608

99h2
t3 � 3024

11h3
t4 þ 8576

33h4
t5 � 44288

495h5
t6

β1 xð Þ ¼ � 3
440

hþ 97
110h

t²� 518
99h²

t³þ 400
33h³

t4 � 416
33h4

t5 þ 2432
495h5

t6

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: (7)

In order to obtain the block discrete scheme for (K ¼ 1), Eq. (7) is evaluated
at x ¼ xn, xnþ1

8
, xnþ1

4
, xnþ1 and its first derivative at xnþ1

8
to give the following discrete

schemes;

ynþ1
8
¼ 325

352
ynþ1

2
� 15
2048

h f n þ
27
352

ynþ3
4
� 15
22528

h f nþ1 �
735
5632

h f nþ1
2
� 2895
11264
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9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(8)

Eq. (7) is the continuous scheme while (8) is the block discrete schemes for step
number K ¼ 1.

2.1 Order and error constant

Expanding (8), in Taylor’s series gives;
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and collecting like terms in powers of h, gives c0 ¼ c1 ¼ c2 ¼ … ¼ c6 ¼
0, 0, 0, 0, 0ð ÞT and c7 ¼ � 17

85155840,
311

1981808640 ,� 1
7741440,� 1

12386304,
135

2583691264

� �T. Hence,

the method has order p ¼ 6, 6, 6, 6, 6ð ÞT and with error constants

of c7 ¼ � 17
85155840,

311
1981808640 ,� 1

7741440,� 1
12386304,

135
2583691264

� �T
:

2.2 Consistency

The linear multi-step method (8) is said to be consistent if the following
conditions hold:

i. it has order �p≥ 1,

ii.
Pk

j¼0�α j ¼ 0,

iii.
Pk

j¼0j�α j ¼
Pk

j¼0�β j,

iv. ρ 1ð Þ ¼ 0 and ρ0 1ð Þ ¼ σ 1ð Þ,

where ρ rð Þ and σ rð Þ are the first and the second characteristic polynomials of (8)
respectively, [21]. Following [8, 14], (i) is sufficient condition for the block method
(8) to be consistent since p ¼ 6, 6, 6, 6, 6ð ÞT > 1. Hence, the method is consistent.

2.3 Zero stability

The block solution (8), is said to be zero stable if the roots zr; r ¼ 1, … , n of the
first characteristic polynomial p zð Þ, defined by

p zð Þ ¼ det zQ � Tj j

satisfies zrj j≤ 1 and every root with zrj j ¼ 1 has multiplicity not exceeding the
order of the differential equation in the limit as h! 0.

Calculations from all available information revealed that the block method (8)
has the following roots

z4 z� 1ð Þ ¼ 0) z ¼ 0, 0, 0, 0, 1ð Þ

Hence the block method is zero stable, since all roots with modulus one do not
have multiplicity exceeding the order of the differential equation in the limit
as h! 0.
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points respectively, and k is the step number, after some substitutions and
manipulations the continuous scheme of the form;

y xð Þ ¼ α1
2
xð Þynþ1

2
þ α3

4
xð Þynþ3
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3
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(6)
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(8)

Eq. (7) is the continuous scheme while (8) is the block discrete schemes for step
number K ¼ 1.

2.1 Order and error constant

Expanding (8), in Taylor’s series gives;
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� �T. Hence,

the method has order p ¼ 6, 6, 6, 6, 6ð ÞT and with error constants

of c7 ¼ � 17
85155840,
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� �T
:

2.2 Consistency

The linear multi-step method (8) is said to be consistent if the following
conditions hold:

i. it has order �p≥ 1,

ii.
Pk

j¼0�α j ¼ 0,

iii.
Pk

j¼0j�α j ¼
Pk

j¼0�β j,

iv. ρ 1ð Þ ¼ 0 and ρ0 1ð Þ ¼ σ 1ð Þ,

where ρ rð Þ and σ rð Þ are the first and the second characteristic polynomials of (8)
respectively, [21]. Following [8, 14], (i) is sufficient condition for the block method
(8) to be consistent since p ¼ 6, 6, 6, 6, 6ð ÞT > 1. Hence, the method is consistent.

2.3 Zero stability

The block solution (8), is said to be zero stable if the roots zr; r ¼ 1, … , n of the
first characteristic polynomial p zð Þ, defined by

p zð Þ ¼ det zQ � Tj j

satisfies zrj j≤ 1 and every root with zrj j ¼ 1 has multiplicity not exceeding the
order of the differential equation in the limit as h! 0.

Calculations from all available information revealed that the block method (8)
has the following roots

z4 z� 1ð Þ ¼ 0) z ¼ 0, 0, 0, 0, 1ð Þ

Hence the block method is zero stable, since all roots with modulus one do not
have multiplicity exceeding the order of the differential equation in the limit
as h! 0.
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2.4 Convergence

According to [8, 14, 22], we can safely assert the convergence of the block
method (8) since the method is consistent and zero stable.

2.5 Region of absolute stability of the block method

Reformulating the block (8) as a General Linear Method (GLM) containing a
partition of matrices A and B using the stability polynomial Ar� Bð Þ, where
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we obtain the region of absolute stability shown in Figure 1 below

Figure 1.
Region of absolute stability.
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3. Numerical experiments

This section discusses the implementation of the derived method by solving
some first order nonlinear initial value problems of ordinary differential equations.

Problem 1
We consider a nonlinear first order initial value problem of ordinary differential

problem which was solved by [23]. y0 xð Þ ¼ �10 y� 1ð Þ2; y 0ð Þ ¼ 2,
h ¼ 0:01With exact solution given as y xð Þ ¼ 1þ 1

1þ10x, the result is shown in Table 1,
while the theoretical and numerical results are presented graphically in Figure 2.

Problem 2
Given a nonlinear first order ordinary differential problem solved by [24] (Table 2).

y0 xð Þ ¼ 2xy, y 0ð Þ ¼ 1, h ¼ 0:1 x∈ 0, 1½ � with exact solution given by y xð Þ ¼ ex
2
, the

result is shown in Table 2, Figure 3 shows the solution curve for problem 2.

x Exact solution Result of Proposed
Method

Error in Proposed
Method

Error in [23]

0.01 1.90909090909091 1.90909090891558 1:7533� 10�10 2:829001� 10�7

0.02 1.83333333333333 1.83333333310133 2:3200� 10�10 4:045782� 10�7

0.03 1.76923076923077 1.76923076898962 2:4115� 10�10 4:472541� 10�7

0.04 1.71428571428571 1.71428571405431 2:3140� 10�10 4:509027 � 10�7

0.05 1.66666666666667 1.66666666645183 2:1484� 10�10 4:356251� 10�7

0.06 1.62500000000000 1.62499999980340 1:9660� 10�10 4:117637 � 10�7

0.07 1.58823529411765 1.58823529393878 1:7887 � 10�10 3:846989 � 10�7

0.08 1.55555555555556 1.55555555539306 1:6250� 10�10 3:572176 � 10�7

0.09 1.52631578947368 1.52631578932595 1:4773� 10�10 3:307245 � 10�7

0.10 1.50000000000000 1.49999999986543 1:3457 � 10�10 3:058785 � 10�7

Table 1.
(Problem 1): Comparing results of proposed method with [23].

x Exact solution Result of Proposed
Method

Error in Proposed
Method

Error in [24]

0.1 1.01005016708417 1.01005016708855 4:3800� 10�12 1:899500 � 10�1

0.2 1.04081077419239 1.04081077421089 1:8500� 10�11 1:714527 � 10�1

0.3 1.09417428370521 1.09417428375087 4:5660� 10�11 1:556419� 10�1

0.4 1.17351087099181 1.17351087108422 9:2410� 10�11 1:415053� 10�1

0.5 1.28402541668774 1.28402541685820 1:7046� 10�10 1:280382� 10�1

0.6 1.43332941456034 1.43332941486021 2:9987 � 10�10 1:141249 � 10�1

0.7 1.63231621995538 1.63231622047036 5:1498� 10�10 9:839200� 10�2

0.8 1.89648087930495 1.89648088017992 8:7497 � 10�10 7:9005900� 10�2

0.9 2.24790798667647 2.24790798815910 1:48263� 10�9 5:3376500� 10�2

1.0 2.71828182845905 2.71828183097715 2:51810� 10�9 1:7703800� 10�2

Table 2.
(Problem 2): Comparing results of proposed method with [24].
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2.4 Convergence

According to [8, 14, 22], we can safely assert the convergence of the block
method (8) since the method is consistent and zero stable.
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problem which was solved by [23]. y0 xð Þ ¼ �10 y� 1ð Þ2; y 0ð Þ ¼ 2,
h ¼ 0:01With exact solution given as y xð Þ ¼ 1þ 1

1þ10x, the result is shown in Table 1,
while the theoretical and numerical results are presented graphically in Figure 2.
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Given a nonlinear first order ordinary differential problem solved by [24] (Table 2).

y0 xð Þ ¼ 2xy, y 0ð Þ ¼ 1, h ¼ 0:1 x∈ 0, 1½ � with exact solution given by y xð Þ ¼ ex
2
, the

result is shown in Table 2, Figure 3 shows the solution curve for problem 2.
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0.4 1.17351087099181 1.17351087108422 9:2410� 10�11 1:415053� 10�1
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(Problem 2): Comparing results of proposed method with [24].
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solution given by y xð Þ ¼ 1
1þx with the result is shown in Table 3, Figure 4 compare

the two results (theoretical and numerical graphically).

4. Conclusion

In this paper, we derived one step block hybrid continuous linear multi-step
method for solving first order initial value problems of ordinary differential equa-
tions, the method was found to be consistent, zero stable and convergent. The
method was implemented on some nonlinear initial value problems of ordinary
differential equations and the numerical results were found to be accurate when
compared with the exact solutions and other numerical methods as contained in
Tables 1–3 and their respective solution curves. The new hybrid block method can
be suitable candidate for all forms (linear and nonlinear) of first order initial value
problems of ordinary differential equations.
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Chapter 6

Existence and Asymptotic
Behaviors of Nonoscillatory
Solutions of Third Order Time
Scale Systems
Özkan Öztürk

Abstract

Nonoscillation theory with asymptotic behaviors takes a significant role for the
theory of three-dimensional (3D) systems dynamic equations on time scales in
order to have information about the asymptotic properties of such solutions. Some
applications of such systems in discrete and continuous cases arise in control theory,
optimization theory, and robotics. We consider a third order dynamical systems on
time scales and investigate the existence of nonoscillatory solutions and asymptotic
behaviors of such solutions. Our main method is to use some well-known fixed
point theorems and double/triple improper integrals by using the sign of solutions.
We also provide examples on time scales to validate our theoretical claims.

Keywords: nonoscillation, three-dimensional time scale systems, dynamical
systems, existence, fixed point theorems

1. Introduction

This chapter deals with the nonoscillatory solutions of 3D nonlinear dynamical
systems on time scales. In addition, it is very critical to discuss whether or not there
exist such solutions. Therefore, the existence along with limit behaviors are also
studied in this chapter by using double/triple integrals and fixed point theorems.
Stefan Hilger, a German mathematician, introduced a theory in his PhD thesis in
1988 [1] that unifies continuous and discrete analysis and extend it in one compre-
hensive theory, which is called the time scale theory. A time scale, symbolized by , is
an arbitrary nonempty closed subset of the real numbers . After Hilger, the theory
and its applications have been developed by many mathematicians and other
researchers in Control Theory, Optimization, Population Dynamics and Economics,
see [2–5]. In addition to those articles, two books were published by Bohner and
Peterson in 2001 and 2003, see [6, 7].

Now we explain what we mean by continuous and discrete analysis in details.
Assuming readers are all familiar with differential and difference equations; the
results are valid for differential equations when  ¼  (set of real numbers), while
the results hold for difference equations when  ¼ ℤ (set of integers). So we might
have two different proofs and maybe similar in most cases. In order to avoid
repeating similarities, we combine continuous and discrete cases in one general
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theory and remove the duplication from both. For more details in the theory of
differential and difference equations, we refer the books [8–10] to interested
readers.

3D nonlinear dynamical systems on time scales have recently gotten a valuable
attention because of its potential in applications of control theory, population dynam-
ics and mathematical biology and Physics. For example, Akn, Güzey and Öztürk [3]
considered a 3D dynamical system to control a wheeled mobile robots on time scales

αΔ tð Þ ¼ �v tð Þ cos β tð Þ

βΔ tð Þ ¼ sin βσ tð Þ
ασ tð Þ v tð Þ � w tð Þ

γΔ tð Þ ¼ sin βσ tð Þ
ασ tð Þ v tð Þ,

8>>>>>><
>>>>>>:

(1)

where α is the distance of the reference point from the origin, β is the angle of
the pointing vector to the origin, γ is the angle with respect to the x axis, and v,w
are controllers. They showed the asymptotic stability of the system above on time
scales. Another example for  ¼ , Bernis and Peletier [11] considered an equation
that can be written as the following system

u01 ¼ u2
u02 ¼ u3
u03 ¼ h uð Þ

8><
>:

(2)

to show the existence and uniqueness and properties of solutions for flows of
thin viscous films over solid surfaces, where u1, u2, u3ð Þ is the film profile in a
coordinate frame moving with the fluid.

We assume that readers may not be familiar with the time scale basics, so we
give an introductory section to the time scale calculus. We refer the books [6, 7] for
more details and information about time scales. Structure of the rest of this chapter
is as follows: In Section 3.1 and 3.2 we consider a system with different values, 1
and � 1, respectively, and show the qualitative behavior of solutions. In Section 4,
we give some examples for readers to comprehend our theoretical results. Finally,
we give a short conclusion about the summary of our results and open problems in
the last section.

2. Time scale essentials

In the introduction section, we have only mentioned the time scales  and ℤ.
However, there are some other time scales in the literature, which also have gotten
too much attention because of the applications of them. For example, when  ¼
qℕ0 ¼ 1, q, q2,⋯,

� �
, q> 1, the results hold for so-called q-difference equations, see

[12]. Another well-known time scale is  ¼ hℤ, h>0:
Definition 2.1 Let  be a time scale. Then for all t∈,

1.σ tð Þ≔ inf s∈ : s> tf g is called forward jump operator (σ tð Þ : ! ).

2.ρ tð Þ≔ sup s∈ : s< tf g is said to be backward jump operator (ρ tð Þ : ! ).

3.μ tð Þ≔ σ tð Þ � t for all t∈ is called the graininess function ((μ tð Þ : ! 0,∞½ Þ).
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For the sake of the rest of the chapter, Table 1 summarizes how σ, ρ and μ are
defined for some time scales.

As we know, the set of real numbers are dense and set of integers are scattered.
Now we show how we classify the points on general time scales. For any t∈,
Figure 1 shows the classification of points on time scales and how we represent
those points by using σ, ρ and μ, see [6] for more details.

Now, let us introduce the derivative for general time scales. Note that

κ ¼ n ρ supð Þ, supð � if sup<∞
 if sup ¼ ∞:

�

Definition 2.2 If there exists a δ>0 such that

∣h σ tð Þð Þ � h sð Þ � hΔ tð Þ σ tð Þ � sð Þ∣ ≤ ε∣σ tð Þ � s∣ for all s∈ t� δ, tþ δð Þ∩,

for any ε, then h is said to be delta-differentiable on κ and hΔ is called the delta
derivative of h.

Theorem 2.3 Let h1, h2 : !  be functions with t∈κ. Then.

i. h1 is said to be continuous at t if h1 is differentiable at t.

ii. h1 is differentiable at t and

hΔ1 tð Þ ¼ h1 σ tð Þð Þ�h1 tð Þ
μ tð Þ ,

provided h1 is continuous at t and t is right-scattered.

iii. Suppose t is right dense, then h1 is differentiable at t if and only if

hΔ1 tð Þ ¼ lim
s!t

h1 tð Þ�h1 sð Þ
t�s

exists as a finite number.

 σ tð Þ ρ tð Þ μ tð Þ
 t t 0

hℤ t þ h t � h h

qℕ0 tq t
q t q� 1ð Þ

Table 1.
Some time scales with σ, ρ and μ.

Figure 1.
Classification of points.
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coordinate frame moving with the fluid.

We assume that readers may not be familiar with the time scale basics, so we
give an introductory section to the time scale calculus. We refer the books [6, 7] for
more details and information about time scales. Structure of the rest of this chapter
is as follows: In Section 3.1 and 3.2 we consider a system with different values, 1
and � 1, respectively, and show the qualitative behavior of solutions. In Section 4,
we give some examples for readers to comprehend our theoretical results. Finally,
we give a short conclusion about the summary of our results and open problems in
the last section.

2. Time scale essentials

In the introduction section, we have only mentioned the time scales  and ℤ.
However, there are some other time scales in the literature, which also have gotten
too much attention because of the applications of them. For example, when  ¼
qℕ0 ¼ 1, q, q2,⋯,

� �
, q> 1, the results hold for so-called q-difference equations, see

[12]. Another well-known time scale is  ¼ hℤ, h>0:
Definition 2.1 Let  be a time scale. Then for all t∈,

1.σ tð Þ≔ inf s∈ : s> tf g is called forward jump operator (σ tð Þ : ! ).

2.ρ tð Þ≔ sup s∈ : s< tf g is said to be backward jump operator (ρ tð Þ : ! ).

3.μ tð Þ≔ σ tð Þ � t for all t∈ is called the graininess function ((μ tð Þ : ! 0,∞½ Þ).
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For the sake of the rest of the chapter, Table 1 summarizes how σ, ρ and μ are
defined for some time scales.

As we know, the set of real numbers are dense and set of integers are scattered.
Now we show how we classify the points on general time scales. For any t∈,
Figure 1 shows the classification of points on time scales and how we represent
those points by using σ, ρ and μ, see [6] for more details.

Now, let us introduce the derivative for general time scales. Note that

κ ¼ n ρ supð Þ, supð � if sup<∞
 if sup ¼ ∞:

�

Definition 2.2 If there exists a δ>0 such that

∣h σ tð Þð Þ � h sð Þ � hΔ tð Þ σ tð Þ � sð Þ∣ ≤ ε∣σ tð Þ � s∣ for all s∈ t� δ, tþ δð Þ∩,

for any ε, then h is said to be delta-differentiable on κ and hΔ is called the delta
derivative of h.

Theorem 2.3 Let h1, h2 : !  be functions with t∈κ. Then.

i. h1 is said to be continuous at t if h1 is differentiable at t.

ii. h1 is differentiable at t and

hΔ1 tð Þ ¼ h1 σ tð Þð Þ�h1 tð Þ
μ tð Þ ,

provided h1 is continuous at t and t is right-scattered.

iii. Suppose t is right dense, then h1 is differentiable at t if and only if

hΔ1 tð Þ ¼ lim
s!t

h1 tð Þ�h1 sð Þ
t�s

exists as a finite number.

 σ tð Þ ρ tð Þ μ tð Þ
 t t 0

hℤ t þ h t � h h

qℕ0 tq t
q t q� 1ð Þ

Table 1.
Some time scales with σ, ρ and μ.

Figure 1.
Classification of points.
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iv. If h2 tð Þh2 σ tð Þð Þ 6¼ 0, then h1
h2
is differentiable at t with

h1
h2

� �Δ
tð Þ ¼ hΔ1 tð Þh2 tð Þ�h1 tð ÞhΔ2 tð Þ

h2 tð Þh2 σ tð Þð Þ :

A function h1 : !  is called right dense continuous (rd-continuous) if it is
continuous at right dense points in  and its left sided limits exist at left dense
points in . We denote the set of rd-continuous functions with Crd ,ð Þ. On the
other hand, the set of differentiable functions whose derivative is rd-continuous is
denoted by C1

rd ,ð Þ. Finally, we use C for the set of continuous functions
throughout this chapter.

After derivative and its properties, we also introduce integrals for any time scale
. The Cauchy integral is defined by

ðb
a
f tð ÞΔt ¼ F bð Þ � F að Þ for all a, b∈:

Every rd-continuous function has an antiderivative. Moreover, F given by

F tð Þ ¼
ðt
t0
f sð ÞΔs for t∈

is an antiderivative of f .
The following theorem leads us to the properties of integrals on time scales,

which are similar to continuous case.
Theorem 2.4 Suppose that h1 and h2 are rd-continuous functions, c, d, e∈, and

β∈,

a. h1 is nondecreasing if hΔ1 ≥0.

b. If h1 tð Þ≥0 for all c≤ t≤ d, then
Ð d
c h1 tð ÞΔt≥0:

c.
Ð d
c βh1 tð Þð Þ þ βh2 tð Þð Þ½ � ¼ β

Ð d
c h1 tð ÞΔtþ β

Ð b
a h2 tð ÞΔt:

d.
Ð e
c h1 tð ÞΔt ¼ Ð dc h1 tð ÞΔtþ Ð edh1 tð ÞΔt:

e.
Ð d
c h1 tð ÞhΔ2 tð ÞΔt ¼ h1h2ð Þ dð Þ � h1h2ð Þ cð Þ � Ð dc hΔ1 tð Þh2 σ tð Þð ÞΔt

f.
Ð a
a h1 tð ÞΔt ¼ 0:

Table 2 shows how the derivative and integral are defined for some time scales
for a, b∈.

 fΔ tð Þ Ð b
a f tð ÞΔt

 f 0 tð Þ Ð b
a f tð Þdt

ℤ Δf tð Þ ¼ f t þ 1ð Þ � f tð Þ Pb�1
t¼a f tð Þ

qℕ0 Δqf tð Þ ¼ f tqð Þ�f tð Þ
q�1ð Þt

P
a,b½ Þ

qℕ0
f tð Þμ tð Þ

Table 2.
Derivative and integral for some time scales.
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This chapter assumes that  is unbounded above and whenever it is written t≥ t1,
we mean t∈ t1,∞½ Þ ≔ t1,∞½ Þ∩. Finally, we provide Schauder’s fixed point theo-
rem, proved in 1930, see ([13], Theorem 2.A), the Knaster fixed point theorem,
proved in 1928, see [14] and the following lemma, see [15], to show the existence of
solutions.

Lemma 2.5 Let X be equi-continuous on t0, t1½ � for any t1 ∈ t0,∞½ Þ: In addition
to that, let X ⊆BC t0,∞½ Þ be bounded and uniformly Cauchy. Then X is relatively
compact.

Theorem 2.6 (Schauder’s Fixed Point Theorem) Suppose that X is a Banach
space and M is a nonempty, closed, bounded and convex subset of X. Also let T :
M!M be a compact operator. Then, T has a fixed point such that y ¼ Ty.

Theorem 2.7 (The Knaster Fixed Point Theorem) Supposing M, ≤ð Þ being a
complete lattice and F : M!M is order-preserving, we have F has a fixed point so
that y ¼ Fy. In fact, the set of fixed points of F is a complete lattice.

3. Nonoscillatory solutions of nonlinear dynamical systems

Motivated by [16, 17], we deal with the nonlinear system

xΔ tð Þ ¼ p tð Þf y tð Þð Þ
yΔ tð Þ ¼ q tð Þg z tð Þð Þ
zΔ tð Þ ¼ λr tð Þh x tð Þð Þ,

8>><
>>:

(3)

where p:q, r∈Crd t0,∞½ Þ,þ
� �

, λ ¼ �1, and f and g are nondecreasing func-
tions such that uf uð Þ>0, ug uð Þ>0 and uh uð Þ>0 for u 6¼ 0.

The other continuous and discrete cases of system (3) were studied in [18–20].
We first give the following definitions to help readers understand the terminology.

Definition 3.1 If x, y, zð Þ, where x, y, z∈C1
rd t0,∞½ Þ,ð ÞT ≥ t0, satisfies system

(3) for all large t≥T, then we say x, y, zð Þ is a solution of (3).
Definition 3.2 By a proper solution x, y, zð Þ, we mean a solution x, y, zð Þ of

system (3) that holds

supf∣x sð Þ∣, ∣y sð Þ∣, ∣z sð Þ∣ : s∈ t,∞½ Þg>0

for t≥ t0:
Finally, let us define nonoscillatory solutions of system (3).
Definition 3.3 By a nonoscillatory solution x, y, zð Þ of system (3), we mean a

proper solution and the component functions x, y and z are all nonoscillatory. In
other words, x, y, zð Þ is either eventually positive or eventually negative. Otherwise,
it is said to be oscillatory.

For the sake of simplicity, let us set

P t0, tð Þ ¼
ðt
t0
p sð ÞΔs, Q t0, tð Þ ¼

ðt
t0
q sð ÞΔs and R t0, tð Þ ¼

ðt
t0
r sð ÞΔs,

where s, t, t0 ∈ and we assume that P t0,∞ð Þ ¼ Q t0,∞ð Þ ¼ ∞ throughout the
chapter.

Suppose that N is the set of all nonoscillatory solutions x, y, zð Þ of system (3).
Then according to the possible signs of solutions of system (3), we have the follow-
ing classes:
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>>:

(3)
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, λ ¼ �1, and f and g are nondecreasing func-
tions such that uf uð Þ>0, ug uð Þ>0 and uh uð Þ>0 for u 6¼ 0.
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We first give the following definitions to help readers understand the terminology.

Definition 3.1 If x, y, zð Þ, where x, y, z∈C1
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system (3) that holds
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Na ≔ x, y, zð Þ∈N : sgnx tð Þ ¼ sgny tð Þ ¼ sgnz tð Þ, t≥ t0
� �

Nb ≔ x, y, zð Þ∈N : sgnx tð Þ ¼ sgnz tð Þ 6¼ sgny tð Þ, t≥ t0
� �

Nc ≔ x, y, zð Þ∈N : sgnx tð Þ ¼ sgny tð Þ 6¼ sgnz tð Þ, t≥ t0
� �

:

It was shown in [21] that any nonoscillatory solution of system (3) for λ ¼ 1
belongs to Na or Nc, while it belongs to Na or Nb for λ ¼ �1. In the literature,
solutions in Na, Nb and Nc are also known as Type að Þ,Type bð Þ and Type cð Þ
solutions, respectively.

Next, we consider system (3) for λ ¼ 1 and λ ¼ �1 separately in different sub-
sections, split the classes Na,Nb and Nc into some subclasses and show the existence
of nonoscillatory solutions in those subclasses. To show the existence and limit
behaviors, we use the following improper integrals:

Y1 ¼
ð∞
t0
r tð Þh

ðt
t0
p sð Þf k1

ðs
t0
q τð ÞΔτ

� �
Δs

� �
Δt,

Y2 ¼
ð∞
t0
p tð Þf k2 þ

ð∞
t
q sð Þg k3

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt,

Y3 ¼
ð∞
t0
q tð Þg k4 þ

ð∞
t
r sð Þh k5

ðs
t0
p τð ÞΔτ

� �
Δs

� �
Δt,

Y4 ¼
ð∞
t0
p tð Þf k6 �

ð∞
t
q sð Þg k7 þ k8

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt,

Y5 ¼
ð∞
t0
p tð Þf

ðt
t0
q sð Þg k9

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt,

Y6 ¼
ð∞
t0
p tð Þf k10

ðt
t0
q sð ÞΔs

� �
Δt,

Y7 ¼
ð∞
t0
q tð Þg

ð∞
t
r sð Þh k11

ð∞
s
p τð ÞΔτ

� �
Δs

� �
Δt,

Y8 ¼
ð∞
t0
q tð Þg k12 þ k13

ð∞
t
r sð ÞΔs

� �
Δt,

Y9 ¼
ð∞
t0
r tð Þh k14

ðt
t0
p sð ÞΔs

� �
Δt,

for some nonnegative ki, i ¼ 1, … , 14.

3.1 The case λ ¼ 1

In this section, we consider system (3) with λ ¼ 1 and investigate the limit behav-
iors and the criteria for the existence of nonoscillatory solutions. The limit behaviors
are characterized by Akin, Došla and Lawrence in the following lemma, see [21].

Lemma 3.4 Let x, y, zð Þ be any nonoscillatory solution of system (3). Then we
have:

i. Nonoscillatory solutions in Na satisfy

lim
t!∞

∣x tð Þ∣ ¼ lim
t!∞

∣y tð Þ∣ ¼ ∞:
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ii. Nonoscillatory solutions in Nc satisfy

lim
t!∞

∣z tð Þ∣ ¼ 0:

Therefore, for a nonoscillatory solution x, y, zð Þ, we at least know that
the components x and y tend to infinity while the other component z tends to
0 as t! ∞.

3.1.1 Existence in Na

Let x, y, zð Þ be a nonoscillatory solution of system (3) inNa such that x is eventually
positive. (x<0 can be repeated very similarly.) Then by System (3), we have that
x, y and z are positive and increasing. Hence, one can have the following cases:

(i) x! c1 or x! ∞, (ii) y! c2 or y! ∞, (iii) z! c3 or z! ∞, .

where 0< c1, c2, c3 <∞: But, the cases x! c1 and y! c2 are impossible due to
Lemma 3.4 (i). So we have that any nonoscillatory solution x, y, zð Þ of system (3) in
Na must be in one of the following subclasses:

Na
∞,∞,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ lim

t!∞
jy tð Þj¼ ∞, lim

t!∞
jz tð Þj¼ c3

� �

Na
∞,∞,∞ ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ lim

t!∞
jy tð Þj¼ lim

t!∞
jz tð Þj¼ ∞

� �
:

Now, we start with our first main result which shows that the existence of a
nonoscillatory solution in Na

∞,∞,B:

Theorem 3.5 Na
∞,∞,B 6¼ ∅ if the improper integral Y1 is finite for some k1 >0.

Proof: Suppose that Y1 <∞. Then choose t1 ≥ t0, k1 >0 such that

ð∞
t1
r tð Þh

ðt
t1
p sð Þf k1

ðs
t1
q τð ÞΔτ

� �
Δs

� �
Δt<

1
2
, t≥ t1, (4)

where k1 ¼ g 1ð Þ. Suppose that Φ is the partially ordered Banach space of all real-
valued continuous functions with the norm zk k ¼ supt≥ t1 ∣z tð Þ∣ and the usual
pointwise ordering ≤ . Let ϕ be a subset of Φ so that

ϕ≔ z∈X :
1
2
≤ z tð Þ≤ 1, t≥ t1

� �

and define an operator Tz : Φ! Φ by

Tzð Þ tð Þ ¼ 1
2
þ
ðt
t1
r sð Þh

ðs
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu

� �
Δs (5)

for t≥ t1: First, it is trivial to show that T is increasing, hence let us prove that
Tz : ϕ! ϕ. Indeed,

1
2
≤ Tzð Þ tð Þ≤ 1

2
þ
ðt
t1
r sð Þh

ðs
t1
p uð Þf

ðu
t1
q τð Þg 1ð ÞΔτ

� �
Δu

� �
Δs≤ 1
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for some nonnegative ki, i ¼ 1, … , 14.

3.1 The case λ ¼ 1

In this section, we consider system (3) with λ ¼ 1 and investigate the limit behav-
iors and the criteria for the existence of nonoscillatory solutions. The limit behaviors
are characterized by Akin, Došla and Lawrence in the following lemma, see [21].

Lemma 3.4 Let x, y, zð Þ be any nonoscillatory solution of system (3). Then we
have:

i. Nonoscillatory solutions in Na satisfy

lim
t!∞

∣x tð Þ∣ ¼ lim
t!∞

∣y tð Þ∣ ¼ ∞:
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ii. Nonoscillatory solutions in Nc satisfy

lim
t!∞

∣z tð Þ∣ ¼ 0:

Therefore, for a nonoscillatory solution x, y, zð Þ, we at least know that
the components x and y tend to infinity while the other component z tends to
0 as t! ∞.

3.1.1 Existence in Na

Let x, y, zð Þ be a nonoscillatory solution of system (3) inNa such that x is eventually
positive. (x<0 can be repeated very similarly.) Then by System (3), we have that
x, y and z are positive and increasing. Hence, one can have the following cases:

(i) x! c1 or x! ∞, (ii) y! c2 or y! ∞, (iii) z! c3 or z! ∞, .

where 0< c1, c2, c3 <∞: But, the cases x! c1 and y! c2 are impossible due to
Lemma 3.4 (i). So we have that any nonoscillatory solution x, y, zð Þ of system (3) in
Na must be in one of the following subclasses:

Na
∞,∞,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ lim

t!∞
jy tð Þj¼ ∞, lim

t!∞
jz tð Þj¼ c3

� �

Na
∞,∞,∞ ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ lim

t!∞
jy tð Þj¼ lim

t!∞
jz tð Þj¼ ∞

� �
:

Now, we start with our first main result which shows that the existence of a
nonoscillatory solution in Na

∞,∞,B:

Theorem 3.5 Na
∞,∞,B 6¼ ∅ if the improper integral Y1 is finite for some k1 >0.

Proof: Suppose that Y1 <∞. Then choose t1 ≥ t0, k1 >0 such that

ð∞
t1
r tð Þh

ðt
t1
p sð Þf k1

ðs
t1
q τð ÞΔτ

� �
Δs

� �
Δt<

1
2
, t≥ t1, (4)

where k1 ¼ g 1ð Þ. Suppose that Φ is the partially ordered Banach space of all real-
valued continuous functions with the norm zk k ¼ supt≥ t1 ∣z tð Þ∣ and the usual
pointwise ordering ≤ . Let ϕ be a subset of Φ so that

ϕ≔ z∈X :
1
2
≤ z tð Þ≤ 1, t≥ t1

� �

and define an operator Tz : Φ! Φ by

Tzð Þ tð Þ ¼ 1
2
þ
ðt
t1
r sð Þh

ðs
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu

� �
Δs (5)

for t≥ t1: First, it is trivial to show that T is increasing, hence let us prove that
Tz : ϕ! ϕ. Indeed,

1
2
≤ Tzð Þ tð Þ≤ 1

2
þ
ðt
t1
r sð Þh

ðs
t1
p uð Þf

ðu
t1
q τð Þg 1ð ÞΔτ

� �
Δu

� �
Δs≤ 1
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by (2). Also, it is trivial to show that inf B∈ϕ and supB∈ϕ for any subset B of
ϕ, i.e., ϕ, ≤ð Þ is a complete lattice. Therefore, by Theorem 2.7, we have that there
exists z∈ϕ such that z ¼ Tz, i.e.,

z tð Þ ¼ 1
2
þ
ðt
t1
r sð Þh

ðs
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu

� �
Δs: (6)

Then taking the derivative of (4) gives us

zΔ tð Þ ¼ r tð Þh
ðt
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu

� �
, t≥ t1:

By setting

x tð Þ ¼
ðt
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu (7)

and taking the derivative of (5), we have

xΔ tð Þ ¼ p tð Þf
ðt
t1
q τð Þg z τð Þð ÞΔτ

� �
, t≥ t1:

Finally letting

y tð Þ ¼
ðt
t1
q τð Þg z τð Þð ÞΔτ (8)

and taking the derivative yield

yΔ tð Þ ¼ q tð Þg z tð Þð Þ, t≥ t1,

that leads us to x, y, zð Þ is a solution of system (3). Thus, by taking the limit of
(4)–(6) as t! ∞, we have that x, y tend to infinity and z tend to a finite number,
i.e., Na

∞,∞,B 6¼ ∅. This completes the proof.
Showing existence of a nonoscillatory solution in Na

∞,∞,∞ is not easy (left as an
open problem in Conclusion section). So, we only provide the following result by
assuming the existence of such solutions in Na. We leave the proof to readers.

Theorem 3.6 Suppose that x, y, zð Þ is a nonoscillatory solution of system (3) in
Na with C t0,∞ð Þ ¼ ∞. Then any such solution belongs to Na

∞,∞,∞.

3.1.2 Existence in Nc

Similarly, for any nonoscillatory solution of system (3) in Nc with x>0, we have
x is positive increasing, z is negative increasing and y is positive decreasing, that
results in the following cases:

(i) x! c1 or x! ∞, (ii) y! c2 or y! 0, (iii) z! c3 or z! 0,

where 0< c1, c2 <∞ and �∞< c3 <0. However, the component function z cannot
tend to c3 by Lemma 3.4 (ii). Hence, any nonoscillatory solution of (3) in Nc must
belong to one of the following sub-classes:

Nc
B,B,0 ≔ x, y, zð Þ∈Nc : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ c2, limt!∞
jz tð Þj¼ 0

� �
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Nc
B,0,0 ≔ x, y, zð Þ∈Nc : lim

t!∞
jx tð Þj¼ c1 lim

t!∞
jy tð Þj¼ 0, lim

t!∞
jz tð Þj¼ 0

� �

Nc
∞,B,0 ≔ x, y, zð Þ∈Nc : lim

t!∞
jx tð Þj¼ ∞, lim

t!∞
jy tð Þj¼ c2, limt!∞

jz tð Þj¼ 0
� �

Nc
∞,0,0 ≔ x, y, zð Þ∈Nc : lim

t!∞
jx tð Þj¼ ∞, lim

t!∞
jy tð Þj¼ 0, lim

t!∞
jz tð Þj¼ 0

� �
,

where 0< c1, c2 <∞.
Next, we show the existence of nonoscillatory solutions of (3) in those subclasses

by using fixed point theorems. Observe that we have some additional assumption in
theorems such that g is an odd function. This assumption is very critical and cannot
show the existence without it.

Theorem 3.7 Let g be an odd function. Then Nc
B,B,0 6¼ ∅ if Y2 <∞ for some

k2, k3 >0.
Proof: Supposing Y2 <∞ and g is odd lead us to that we can choose k2, k3 >0 and

t1 ≥ t0 such that

ð∞
t1
p tð Þf k2 þ

ð∞
t
q sð Þg k3

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt<

1
4
, (9)

where k2 ¼ 1
2 and k3 ¼ h 1

2

� �
. Suppose Φ is the space of all bounded, continuous

and real-valued functions with xk k ¼ sup
t≥ t1

∣x tð Þ∣: It is easy to show that Φ is a Banach

space, see [22]. Let ϕ be a subset of Φ so that

ϕ≔ x∈X :
1
4
≤ x tð Þ≤ 1

2
, t≥ t1

� �
:

Set an operator Tx : Φ! Φ such that

Txð Þ tð Þ ¼ 1
4
þ
ðt
t1
p sð Þf 1

2
þ
ð∞
s
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
Δs:

One can show that ϕ is bounded, closed and convex. So, we first prove that Tx :
ϕ! ϕ. Indeed,

1
4
≤ Txð Þ tð Þ≤ 1

4
þ
ðt
t1
p sð Þf 1

2
þ
ð∞
s
q uð Þg h

1
2

� �ð∞
u
r τð ÞΔτ

� �
Δu

� �
Δs≤

1
2
:

Second, we need to show T is continuous on ϕ: Supposing xn is a sequence in ϕ
such that xn ! x∈ϕ ¼ ϕ gives us

Txnð Þ tð Þ � Txð Þ tð Þk k
≤
ðt
t1
p sð Þ f

1
2
þ
ð∞
s
q uð Þg

ð∞
u
r τð Þh xn τð Þð ÞΔτ

� �
Δu

� �
�

����

f
1
2
þ
ð∞
s
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �����Δs:

So the Lebesgue dominated convergence theorem, continuity of f , g and h lead
us to that T is continuous on ϕ. As a last step, we prove that T is relatively compact,
i.e., equibounded and equicontinuous. Since
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by (2). Also, it is trivial to show that inf B∈ϕ and supB∈ϕ for any subset B of
ϕ, i.e., ϕ, ≤ð Þ is a complete lattice. Therefore, by Theorem 2.7, we have that there
exists z∈ϕ such that z ¼ Tz, i.e.,

z tð Þ ¼ 1
2
þ
ðt
t1
r sð Þh

ðs
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu

� �
Δs: (6)

Then taking the derivative of (4) gives us

zΔ tð Þ ¼ r tð Þh
ðt
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu

� �
, t≥ t1:

By setting

x tð Þ ¼
ðt
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu (7)

and taking the derivative of (5), we have

xΔ tð Þ ¼ p tð Þf
ðt
t1
q τð Þg z τð Þð ÞΔτ

� �
, t≥ t1:

Finally letting

y tð Þ ¼
ðt
t1
q τð Þg z τð Þð ÞΔτ (8)

and taking the derivative yield

yΔ tð Þ ¼ q tð Þg z tð Þð Þ, t≥ t1,

that leads us to x, y, zð Þ is a solution of system (3). Thus, by taking the limit of
(4)–(6) as t! ∞, we have that x, y tend to infinity and z tend to a finite number,
i.e., Na

∞,∞,B 6¼ ∅. This completes the proof.
Showing existence of a nonoscillatory solution in Na

∞,∞,∞ is not easy (left as an
open problem in Conclusion section). So, we only provide the following result by
assuming the existence of such solutions in Na. We leave the proof to readers.

Theorem 3.6 Suppose that x, y, zð Þ is a nonoscillatory solution of system (3) in
Na with C t0,∞ð Þ ¼ ∞. Then any such solution belongs to Na

∞,∞,∞.

3.1.2 Existence in Nc

Similarly, for any nonoscillatory solution of system (3) in Nc with x>0, we have
x is positive increasing, z is negative increasing and y is positive decreasing, that
results in the following cases:

(i) x! c1 or x! ∞, (ii) y! c2 or y! 0, (iii) z! c3 or z! 0,

where 0< c1, c2 <∞ and �∞< c3 <0. However, the component function z cannot
tend to c3 by Lemma 3.4 (ii). Hence, any nonoscillatory solution of (3) in Nc must
belong to one of the following sub-classes:

Nc
B,B,0 ≔ x, y, zð Þ∈Nc : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ c2, limt!∞
jz tð Þj¼ 0

� �
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Nc
B,0,0 ≔ x, y, zð Þ∈Nc : lim

t!∞
jx tð Þj¼ c1 lim

t!∞
jy tð Þj¼ 0, lim

t!∞
jz tð Þj¼ 0

� �

Nc
∞,B,0 ≔ x, y, zð Þ∈Nc : lim

t!∞
jx tð Þj¼ ∞, lim

t!∞
jy tð Þj¼ c2, limt!∞

jz tð Þj¼ 0
� �

Nc
∞,0,0 ≔ x, y, zð Þ∈Nc : lim

t!∞
jx tð Þj¼ ∞, lim

t!∞
jy tð Þj¼ 0, lim

t!∞
jz tð Þj¼ 0

� �
,

where 0< c1, c2 <∞.
Next, we show the existence of nonoscillatory solutions of (3) in those subclasses

by using fixed point theorems. Observe that we have some additional assumption in
theorems such that g is an odd function. This assumption is very critical and cannot
show the existence without it.

Theorem 3.7 Let g be an odd function. Then Nc
B,B,0 6¼ ∅ if Y2 <∞ for some

k2, k3 >0.
Proof: Supposing Y2 <∞ and g is odd lead us to that we can choose k2, k3 >0 and

t1 ≥ t0 such that

ð∞
t1
p tð Þf k2 þ

ð∞
t
q sð Þg k3

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt<

1
4
, (9)

where k2 ¼ 1
2 and k3 ¼ h 1

2

� �
. Suppose Φ is the space of all bounded, continuous

and real-valued functions with xk k ¼ sup
t≥ t1

∣x tð Þ∣: It is easy to show that Φ is a Banach

space, see [22]. Let ϕ be a subset of Φ so that

ϕ≔ x∈X :
1
4
≤ x tð Þ≤ 1

2
, t≥ t1

� �
:

Set an operator Tx : Φ! Φ such that

Txð Þ tð Þ ¼ 1
4
þ
ðt
t1
p sð Þf 1

2
þ
ð∞
s
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
Δs:

One can show that ϕ is bounded, closed and convex. So, we first prove that Tx :
ϕ! ϕ. Indeed,

1
4
≤ Txð Þ tð Þ≤ 1

4
þ
ðt
t1
p sð Þf 1

2
þ
ð∞
s
q uð Þg h

1
2

� �ð∞
u
r τð ÞΔτ

� �
Δu

� �
Δs≤

1
2
:

Second, we need to show T is continuous on ϕ: Supposing xn is a sequence in ϕ
such that xn ! x∈ϕ ¼ ϕ gives us

Txnð Þ tð Þ � Txð Þ tð Þk k
≤
ðt
t1
p sð Þ f

1
2
þ
ð∞
s
q uð Þg

ð∞
u
r τð Þh xn τð Þð ÞΔτ

� �
Δu

� �
�

����

f
1
2
þ
ð∞
s
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �����Δs:

So the Lebesgue dominated convergence theorem, continuity of f , g and h lead
us to that T is continuous on ϕ. As a last step, we prove that T is relatively compact,
i.e., equibounded and equicontinuous. Since
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Txð ÞΔ tð Þ ¼ p tð Þf 1
2
þ
ð∞
t
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
<∞,

we have that T is relatively compact by Lemma 2.5 and the mean value theorem.
So, there does exist x∈ϕ such that x ¼ Tx by Theorem 2.6. In addition to that,
convergence of x tð Þ to a finite number as t! ∞ is so easy to show. Therefore,
setting

y tð Þ ¼ 1
2
þ
ð∞
t
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu>0, t≥ t1

and

z tð Þ ¼ �
ð∞
t
r τð Þh x τð Þð ÞΔτ<0, t≥ t1,

and by a similar discussion as in Theorem 3.5, we get y tð Þ ! 1
2 and z tð Þ ! 0: So

we conclude that x, y, zð Þ is a nonoscillatory solution of system (3) in Nc
B,B,0:.

Next, we focus on the existence of nonoscillatory solutions in Nc
∞,B,0 and Nc

B,0,0.
In other words, we will show there exists such a solution x, y, zð Þ such that x tend to
infinity while y and z tend to a finite number. After that, we provide the fact that it
is possible to have such a solution whose limit is finite for all component functions
x, y and z. Since the following theorems can be proved similar to the previous
theorem, the proofs are skipped.

Theorem 3.8 Let g be an odd function. Then we have the followings:

i. There does exist a nonoscillatory solution in Nc
∞,B,0 if Y3 is finite for k4 ¼ 0

and some k5 >0.

ii. There does exist a nonoscillatory solution in Nc
B,0,0 if Y2 <∞ for k2 ¼ 0 and

k3 >0.

Finally, the last theorem in this section leads us to the fact that there must be a
solution such that x! ∞while the other components converge to zero according to
the convergence and divergence of the improper integrals of Y2 and Y3.

Theorem 3.9 Supposing the fact that g is an odd function, Nc
∞,0,0 6¼ ∅ if Y2 ¼ ∞

and Y3 <∞ for k2 ¼ k4 ¼ 0 and k3, k5 >0.
Proof: Suppose that Y2 ¼ ∞ and Y3 <∞. Then choose t1 ≥ t0 and k3, k5 >0 such

that

ð∞
t1
q tð Þg

ð∞
t
r sð Þh k5

ðs
t1
p τð ÞΔτ

� �
Δs

� �
Δs<

1
2
, t≥ t1: (10)

and

ð∞
t1
p tð Þf

ð∞
t
q sð Þg k3

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt>

1
2
, t≥ t1, (11)

where k5 ¼ 1
2 and k3 ¼ h 1

2

� �
. Let Φ be the partially ordered Banach space of all

continuous functions with the supremum norm xk k ¼ supt≥ t1
x tð Þ

P t1, tð Þ and usual
pointwise ordering ≤ . Define a subset ϕ of Φ such that
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ϕ≔ x∈Φ :
1
2
≤ x tð Þ≤ 1

2

ðt
t1
p sð ÞΔs, t≥ t1

� �

and an operator Tx : Φ! Φ by

Txð Þ tð Þ ¼
ðt
t1
p sð Þf

ð∞
s
q τð Þg

ð∞
τ
r uð Þh x uð Þð ÞΔu

� �
Δτ

� �
Δs:

One can easily show that T : ϕ! ϕ is an increasing mapping and ϕ, ≤ð Þ is a
complete lattice. So by Theorem 2.7, there does exist x∈ϕ such that x ¼ Tx: So
x tð Þ ! ∞ as t! ∞: By setting

y tð Þ ¼
ð∞
t
q τð Þg

ð∞
τ
r uð Þh x uð Þð ÞΔu

� �
Δτ, t≥ t1

and

z tð Þ ¼ �
ð∞
t
r uð Þh x uð Þð ÞΔu, t≥ t1,

one can have y tð Þ>0 and z tð Þ<0 for t≥ t1 so that y tð Þ ! 0 and z tð Þ ! 0 as t!
∞: This proves the assertion.

3.2 The case λ ¼ �1

This section deals with system (3) for λ ¼ �1. The assumptions on f , g and h are
the same assumptions with the previous section. The following lemma describes the
long-term behavior of two of the components of a nonoscillatory solution, see ([21],
Lemma 4.2).

Lemma 3.10 Supposing x, y, zð Þ is a nonoscillatory solution in Nb, we have

lim
t!∞

y tð Þ ¼ lim
t!∞

z tð Þ ¼ 0:

In the next section, we examine the solutions in each class Na and Nb. We used
fixed-point theorems to establish our results.

3.2.1 Existence in Na

For any nonoscillatory solution x, y, zð Þ of system (3) in Na with x>0 eventually,
one has the following subclasses by using the same arguments as in Section 3.1.1:

Na
B,B,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ c2, limt!∞
jz tð Þj¼ c3

� �

Na
B,B,0 ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ c2, limt!∞
jz tð Þj¼ 0

� �

Na
B,∞,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ ∞, lim
t!∞
jz tð Þj¼ c3

� �

Na
B,∞,0 ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ ∞, lim
t!∞
jz tð Þj¼ 0

� �
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Txð ÞΔ tð Þ ¼ p tð Þf 1
2
þ
ð∞
t
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
<∞,

we have that T is relatively compact by Lemma 2.5 and the mean value theorem.
So, there does exist x∈ϕ such that x ¼ Tx by Theorem 2.6. In addition to that,
convergence of x tð Þ to a finite number as t! ∞ is so easy to show. Therefore,
setting

y tð Þ ¼ 1
2
þ
ð∞
t
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu>0, t≥ t1

and

z tð Þ ¼ �
ð∞
t
r τð Þh x τð Þð ÞΔτ<0, t≥ t1,

and by a similar discussion as in Theorem 3.5, we get y tð Þ ! 1
2 and z tð Þ ! 0: So

we conclude that x, y, zð Þ is a nonoscillatory solution of system (3) in Nc
B,B,0:.

Next, we focus on the existence of nonoscillatory solutions in Nc
∞,B,0 and Nc

B,0,0.
In other words, we will show there exists such a solution x, y, zð Þ such that x tend to
infinity while y and z tend to a finite number. After that, we provide the fact that it
is possible to have such a solution whose limit is finite for all component functions
x, y and z. Since the following theorems can be proved similar to the previous
theorem, the proofs are skipped.

Theorem 3.8 Let g be an odd function. Then we have the followings:

i. There does exist a nonoscillatory solution in Nc
∞,B,0 if Y3 is finite for k4 ¼ 0

and some k5 >0.

ii. There does exist a nonoscillatory solution in Nc
B,0,0 if Y2 <∞ for k2 ¼ 0 and

k3 >0.

Finally, the last theorem in this section leads us to the fact that there must be a
solution such that x! ∞while the other components converge to zero according to
the convergence and divergence of the improper integrals of Y2 and Y3.

Theorem 3.9 Supposing the fact that g is an odd function, Nc
∞,0,0 6¼ ∅ if Y2 ¼ ∞

and Y3 <∞ for k2 ¼ k4 ¼ 0 and k3, k5 >0.
Proof: Suppose that Y2 ¼ ∞ and Y3 <∞. Then choose t1 ≥ t0 and k3, k5 >0 such

that

ð∞
t1
q tð Þg

ð∞
t
r sð Þh k5

ðs
t1
p τð ÞΔτ

� �
Δs

� �
Δs<

1
2
, t≥ t1: (10)

and

ð∞
t1
p tð Þf

ð∞
t
q sð Þg k3

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt>

1
2
, t≥ t1, (11)

where k5 ¼ 1
2 and k3 ¼ h 1

2

� �
. Let Φ be the partially ordered Banach space of all

continuous functions with the supremum norm xk k ¼ supt≥ t1
x tð Þ

P t1, tð Þ and usual
pointwise ordering ≤ . Define a subset ϕ of Φ such that
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ϕ≔ x∈Φ :
1
2
≤ x tð Þ≤ 1

2

ðt
t1
p sð ÞΔs, t≥ t1

� �

and an operator Tx : Φ! Φ by

Txð Þ tð Þ ¼
ðt
t1
p sð Þf

ð∞
s
q τð Þg

ð∞
τ
r uð Þh x uð Þð ÞΔu

� �
Δτ

� �
Δs:

One can easily show that T : ϕ! ϕ is an increasing mapping and ϕ, ≤ð Þ is a
complete lattice. So by Theorem 2.7, there does exist x∈ϕ such that x ¼ Tx: So
x tð Þ ! ∞ as t! ∞: By setting

y tð Þ ¼
ð∞
t
q τð Þg

ð∞
τ
r uð Þh x uð Þð ÞΔu

� �
Δτ, t≥ t1

and

z tð Þ ¼ �
ð∞
t
r uð Þh x uð Þð ÞΔu, t≥ t1,

one can have y tð Þ>0 and z tð Þ<0 for t≥ t1 so that y tð Þ ! 0 and z tð Þ ! 0 as t!
∞: This proves the assertion.

3.2 The case λ ¼ �1

This section deals with system (3) for λ ¼ �1. The assumptions on f , g and h are
the same assumptions with the previous section. The following lemma describes the
long-term behavior of two of the components of a nonoscillatory solution, see ([21],
Lemma 4.2).

Lemma 3.10 Supposing x, y, zð Þ is a nonoscillatory solution in Nb, we have

lim
t!∞

y tð Þ ¼ lim
t!∞

z tð Þ ¼ 0:

In the next section, we examine the solutions in each class Na and Nb. We used
fixed-point theorems to establish our results.

3.2.1 Existence in Na

For any nonoscillatory solution x, y, zð Þ of system (3) in Na with x>0 eventually,
one has the following subclasses by using the same arguments as in Section 3.1.1:

Na
B,B,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ c2, limt!∞
jz tð Þj¼ c3

� �

Na
B,B,0 ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ c2, limt!∞
jz tð Þj¼ 0

� �

Na
B,∞,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ ∞, lim
t!∞
jz tð Þj¼ c3

� �

Na
B,∞,0 ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ c1, limt!∞

jy tð Þj¼ ∞, lim
t!∞
jz tð Þj¼ 0

� �
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Na
∞,B,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ ∞, lim

t!∞
jy tð Þj¼ c2, limt!∞

jz tð Þj¼ c3

� �

Na
∞,B,0 ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ ∞, lim

t!∞
jy tð Þj¼ c2, limt!∞

jz tð Þj¼ 0
� �

Na
∞,∞,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ lim

t!∞
jy tð Þj¼ ∞, lim

t!∞
jz tð Þj¼ c3

� �

Na
∞,∞,0 ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ lim

t!∞
jy tð Þj¼ ∞, lim

t!∞
jz tð Þj¼ 0

� �
,

where c1, c2 and c3 are positive constants. Finally, we have the following results:
Theorem 3.11 Suppose R t0,∞ð Þ<∞: If Y4 <∞ and Y8 <∞ for all positive

constants k6, k7, k8, k12, k13, then Na
B,B,B 6¼ ∅.

Proof: Assume Y4 <∞ and Y8 <∞ for all k6, k7, k8, k12, k13 >0. Choose t1 ≥ t0
such that

ð∞
t1
p tð Þf k6 �

ð∞
t
q sð Þg k7 þ k8

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt<

1
2

and

ð∞
t1
q sð Þg k12 þ k13

ð∞
s
r τð ÞΔτ

� �
Δs< k6,

where k8 ¼ k13 ¼ h 1
2

� �
>0 and k7 ¼ k12 for t≥ t1.

Let  be the set of all continuous and bounded functions with the norm xk k ¼
supt≥ t1 ∣x tð Þ∣. Then  is a Banach space ([22]). Define a subset Ω of  such that

Ω≔ x∈ :
1
2
≤ x tð Þ≤ 1, t≥ t1

� �

and an operator Fx : !  by

Fxð Þ tð Þ ¼ 1
2
þ
ðt
t1
p sð Þf k6 �

ð∞
s
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
Δs

for t≥ t1: First, for every x∈Ω, xk k ¼ sup
t≥ t1

∣x tð Þ∣, we have 1
2 ≤ x tð Þk k≤ 1 for t≥ t1,

which implies Ω is bounded. For showing that Ω is closed, it is enough to show that
it includes all limit points. So let xn be a sequence in Ω converging to x as n! ∞.
Then 1

2 ≤ xn tð Þ≤ 1 for t≥ t1. Taking the limit of xn as n! ∞, we have 1
2 ≤ x tð Þ≤ 1 for

t≥ t1, which implies x∈Ω. Since xn is any sequence in Ω, it follows that Ω is closed.
Now let us show Ω is also convex. For x1, x2 ∈Ω and α∈ 0, 1½ �, we have

1
2
¼ α

2
þ 1� αð Þ 1

2
≤ αx1 þ 1� αð Þx2 ≤ αþ 1� αð Þ ¼ 1,

where 1
2 ≤ x1, x2 ≤ 1, i.e., Ω is convex. Also, because

1
2
≤ Fxð Þ tð Þ≤ 1

2
þ
ðt
t1
p sð Þf k6 �

ð∞
s
q uð Þg k7 þ h

1
2

� �ð∞
u
r τð ÞΔτ

� �
Δu

� �
Δs

≤ 1,
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i.e., F : Ω! Ω. Let us now show that F is continuous on Ω. Let xnf g be a
sequence in Ω such that xn ! x∈Ω as n! ∞. Then

∣ Fxn � Fxð Þ tð Þ∣

≤
ðt
t1
p sð Þ f k6 �

ð∞
s
q uð Þg k7 þ

ð∞
u
r τð Þh xn τð Þð ÞΔτ

� �
Δu

� �����

�f k6 �
ð∞
s
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �����Δs:

Then the continuity of f , g and h and Lebesgue Dominated Convergence theo-
rem imply that F is continuous on Ω. Finally, since

Fxð ÞΔ tð Þ ¼ p tð Þf k6 �
ð∞
t
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
<∞,

we have F is relatively compact by the Mean Value theorem and Arzelà-Ascoli
theorem. So, by Theorem 2.6, we have there exists x∈Ω such that x ¼ Fx. Then by
taking the derivative of x, we obtain

xΔ tð Þ ¼ p tð Þf k6 �
ð∞
t
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
, t≥ t1:

Setting

y tð Þ≔ k6 �
ð∞
t
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

for k6 >0 and taking its derivative yields

yΔ tð Þ ¼ q tð Þg k7 þ
ð∞
t
r τð Þh x τð Þð ÞΔτ

� �
, t≥ t1:

Finally, differentiating

z tð Þ≔ k7 þ
ð∞
t
r τð Þh x τð Þð ÞΔτ

gives

zΔ tð Þ ¼ �r tð Þh x tð Þð Þ, t≥ t1:

Consequently x, y, zð Þ is a solution of system (3) such that x tð Þ ! α, y tð Þ ! k6
and z tð Þ ! k7, where 0< α<∞, i.e., Na

B,B,B 6¼ ∅.
The following theorems can be proven very similarly to Theorem 3.11 with

appropriate operators. Therefore, the proof is left to the reader, see [17].
Theorem 3.12 We have the following results:

i. Suppose R t0,∞ð Þ<∞: If Y4 <∞ and Y8 <∞ for k7 ¼ k12 ¼ 0 and for all
k6, k8, k13 >0, then Na

B,B,0 6¼ ∅.

ii. If both Y3 and Y9 are finite for k4 ¼ 0 and for all k5, k14 >0, thenNþ∞,B,0 6¼ ∅.
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Na
∞,B,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ ∞, lim

t!∞
jy tð Þj¼ c2, limt!∞

jz tð Þj¼ c3

� �

Na
∞,B,0 ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ ∞, lim

t!∞
jy tð Þj¼ c2, limt!∞

jz tð Þj¼ 0
� �

Na
∞,∞,B ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ lim

t!∞
jy tð Þj¼ ∞, lim

t!∞
jz tð Þj¼ c3

� �

Na
∞,∞,0 ≔ x, y, zð Þ∈Na : lim

t!∞
jx tð Þj¼ lim

t!∞
jy tð Þj¼ ∞, lim

t!∞
jz tð Þj¼ 0

� �
,

where c1, c2 and c3 are positive constants. Finally, we have the following results:
Theorem 3.11 Suppose R t0,∞ð Þ<∞: If Y4 <∞ and Y8 <∞ for all positive

constants k6, k7, k8, k12, k13, then Na
B,B,B 6¼ ∅.

Proof: Assume Y4 <∞ and Y8 <∞ for all k6, k7, k8, k12, k13 >0. Choose t1 ≥ t0
such that

ð∞
t1
p tð Þf k6 �

ð∞
t
q sð Þg k7 þ k8

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt<

1
2

and

ð∞
t1
q sð Þg k12 þ k13

ð∞
s
r τð ÞΔτ

� �
Δs< k6,

where k8 ¼ k13 ¼ h 1
2

� �
>0 and k7 ¼ k12 for t≥ t1.

Let  be the set of all continuous and bounded functions with the norm xk k ¼
supt≥ t1 ∣x tð Þ∣. Then  is a Banach space ([22]). Define a subset Ω of  such that

Ω≔ x∈ :
1
2
≤ x tð Þ≤ 1, t≥ t1

� �

and an operator Fx : !  by

Fxð Þ tð Þ ¼ 1
2
þ
ðt
t1
p sð Þf k6 �

ð∞
s
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
Δs

for t≥ t1: First, for every x∈Ω, xk k ¼ sup
t≥ t1

∣x tð Þ∣, we have 1
2 ≤ x tð Þk k≤ 1 for t≥ t1,

which implies Ω is bounded. For showing that Ω is closed, it is enough to show that
it includes all limit points. So let xn be a sequence in Ω converging to x as n! ∞.
Then 1

2 ≤ xn tð Þ≤ 1 for t≥ t1. Taking the limit of xn as n! ∞, we have 1
2 ≤ x tð Þ≤ 1 for

t≥ t1, which implies x∈Ω. Since xn is any sequence in Ω, it follows that Ω is closed.
Now let us show Ω is also convex. For x1, x2 ∈Ω and α∈ 0, 1½ �, we have

1
2
¼ α

2
þ 1� αð Þ 1

2
≤ αx1 þ 1� αð Þx2 ≤ αþ 1� αð Þ ¼ 1,

where 1
2 ≤ x1, x2 ≤ 1, i.e., Ω is convex. Also, because

1
2
≤ Fxð Þ tð Þ≤ 1

2
þ
ðt
t1
p sð Þf k6 �

ð∞
s
q uð Þg k7 þ h

1
2

� �ð∞
u
r τð ÞΔτ

� �
Δu

� �
Δs

≤ 1,

108

Recent Developments in the Solution of Nonlinear Differential Equations

i.e., F : Ω! Ω. Let us now show that F is continuous on Ω. Let xnf g be a
sequence in Ω such that xn ! x∈Ω as n! ∞. Then

∣ Fxn � Fxð Þ tð Þ∣

≤
ðt
t1
p sð Þ f k6 �

ð∞
s
q uð Þg k7 þ

ð∞
u
r τð Þh xn τð Þð ÞΔτ

� �
Δu

� �����

�f k6 �
ð∞
s
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �����Δs:

Then the continuity of f , g and h and Lebesgue Dominated Convergence theo-
rem imply that F is continuous on Ω. Finally, since

Fxð ÞΔ tð Þ ¼ p tð Þf k6 �
ð∞
t
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
<∞,

we have F is relatively compact by the Mean Value theorem and Arzelà-Ascoli
theorem. So, by Theorem 2.6, we have there exists x∈Ω such that x ¼ Fx. Then by
taking the derivative of x, we obtain

xΔ tð Þ ¼ p tð Þf k6 �
ð∞
t
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
, t≥ t1:

Setting

y tð Þ≔ k6 �
ð∞
t
q uð Þg k7 þ

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

for k6 >0 and taking its derivative yields

yΔ tð Þ ¼ q tð Þg k7 þ
ð∞
t
r τð Þh x τð Þð ÞΔτ

� �
, t≥ t1:

Finally, differentiating

z tð Þ≔ k7 þ
ð∞
t
r τð Þh x τð Þð ÞΔτ

gives

zΔ tð Þ ¼ �r tð Þh x tð Þð Þ, t≥ t1:

Consequently x, y, zð Þ is a solution of system (3) such that x tð Þ ! α, y tð Þ ! k6
and z tð Þ ! k7, where 0< α<∞, i.e., Na

B,B,B 6¼ ∅.
The following theorems can be proven very similarly to Theorem 3.11 with

appropriate operators. Therefore, the proof is left to the reader, see [17].
Theorem 3.12 We have the following results:

i. Suppose R t0,∞ð Þ<∞: If Y4 <∞ and Y8 <∞ for k7 ¼ k12 ¼ 0 and for all
k6, k8, k13 >0, then Na

B,B,0 6¼ ∅.

ii. If both Y3 and Y9 are finite for k4 ¼ 0 and for all k5, k14 >0, thenNþ∞,B,0 6¼ ∅.
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iii. If Y3 <∞ and Y9 <∞ for all k4, k5, k14 >0, then Na
∞,B,B 6¼ ∅.

iv. If Y1 <∞ and Y6 ¼ ∞ for all k1, k10 >0, then Na
∞,∞,B 6¼ ∅.

We continue with the case when z tð Þ converges to 0 while other components x tð Þ
and y tð Þ of solution x, y, zð Þ tend to infinity as t! ∞.

Theorem 3.13 Suppose R t0,∞ð Þ<∞. If Y1 <∞ and Y5 ¼ Y8 ¼ ∞ for all positive
constants k1, k9, k13 and k12 ¼ 0, then Na

∞,∞,0 6¼ ∅:.
Proof: Suppose Y1 <∞ and Y5 ¼ Y8 ¼ ∞ for k1, k9, k13 >0, k12 ¼ 0. Then choose

a t1 ≥ t0 such that

ð∞
t1
r tð Þh

ðt
t1
p sð Þf k1

ðs
t0
q τð ÞΔτ

� �
Δs

� �
Δt<

1
2

and

ð∞
t1
p sð Þf

ðs
t1
q τð Þg k9

ð∞
τ
r vð ÞΔv

� �
Δτ

� �
Δs> 1, t≥ t1,

where k1 ¼ g 1
2

� �
and k9 ¼ k13 ¼ h 1ð Þ. Suppose that Φ is a space of real-valued

continuous functions and partially ordered Banach space with yk k ¼ supt≥ t1 ∣y tð Þ∣
and the usual pointwise ordering ≤ . Let ϕ be a subset of Φ such that

ϕ≔ z∈Φ : h 1ð Þ
ð∞
t
r sð ÞΔs≤ z tð Þ≤ d1

2
, t≥ t1

� �
:

and set an operator F : Φ! Φ such that

Fzð Þ tð Þ ¼
ð∞
t
r sð Þh

ðs
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu

� �
Δs:

The rest of the proof can be done as in proofs of the previous theorems by using
the fact Y5 ¼ Y8 ¼ ∞, and therefore, Na

∞,∞,0 6¼ ∅.

3.2.2 Existence in Nb

Assuming x, y, zð Þ is a nonoscillatory solution of system (3) in Nb such that x>0
eventually and by a similar discussion as in the previous section, and by Lemma
3.10, we have the following subclasses:

Nb
B,0,0 ≔ x, y, zð Þ∈Nb : lim

t!∞
jx tð Þj¼ c1 lim

t!∞
jy tð Þj¼ 0, lim

t!∞
jz tð Þj¼ 0

� �

Nb
0,0,0 ≔ x, y, zð Þ∈Nb : lim

t!∞
jx tð Þj¼ 0, lim

t!∞
jy tð Þj¼ 0, lim

t!∞
jz tð Þj¼ 0

� �
,

where 0< c1 <∞.
The first result of this section considers the case when each of the component

solutions converges.
Theorem 3.14 Suppose R t0,∞ð Þ<∞ and f is odd. Then Nb

B,0,0 6¼ ∅ if Y2 <∞ and
Y8 <∞ for all k3 ¼ k13 >0 and k12 ¼ 0.
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Proof: Suppose that Y2 <∞ and Y8 <∞ for all k3 ¼ k13 >0 and k12 ¼ 0. Then
choose k3, k13 >0 and t1 ≥ t0 sufficiently large such that

ð∞
t1
p tð Þf

ð∞
t
q sð Þg k3

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt<

1
2
,

where k3 ¼ h 3
2

� �
. Let Φ be a partially ordered Banach space of real-valued

continuous functions with xk k ¼ supt≥ t1 ∣x tð Þ∣ and the usual pointwise ordering ≤ .
Let us set a subset ϕ of Φ such that

ϕ≔ x∈Φ : 1≤ x tð Þ≤ 3
2
, t≥ t1

� �

and an operator Fx : Φ! Φ by

Fxð Þ tð Þ ¼ 1þ
ð∞
t
p sð Þf

ð∞
s
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
Δs:

One can prove that F is an increasing mapping into itself and Ω, ≤ð Þ is a
complete lattice. Therefore, by Theorem 2.7, there does exist x∈Ω such that x ¼ Fx.
It follows that x tð Þ>0 for t≥ t1 and converges to 1 as t approaches infinity. Also,

xΔ tð Þ ¼ �p tð Þf
ð∞
t
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
, t≥ t1:

Now for t≥ t1, set

y tð Þ ¼ �
ð∞
t
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

and

z tð Þ ¼
ð∞
t
r τð Þh x τð Þð ÞΔτ:

Then, since f is odd, we have

xΔ tð Þ ¼ p tð Þf y tð Þð Þ

yΔ tð Þ ¼ q tð Þg z tð Þð Þ

zΔ tð Þ ¼ �r tð Þh x tð Þð Þ:

Consequently x, y, zð Þ is a solution of system (3). Since both y tð Þ and z tð Þ
converge to 0 as t approaches infinity, Nb

B,0,0 6¼ ∅:.

4. Examples

In this section, we provide some examples to highlight our theoretical claims.
The following theorem help us evaluate the integrals on a specific time scale, see
([6] Theorem 1.79 (ii)).

Theorem 4.1 Suppose that a, b½ � has only isolated points with a< b. Then
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iii. If Y3 <∞ and Y9 <∞ for all k4, k5, k14 >0, then Na
∞,B,B 6¼ ∅.

iv. If Y1 <∞ and Y6 ¼ ∞ for all k1, k10 >0, then Na
∞,∞,B 6¼ ∅.

We continue with the case when z tð Þ converges to 0 while other components x tð Þ
and y tð Þ of solution x, y, zð Þ tend to infinity as t! ∞.

Theorem 3.13 Suppose R t0,∞ð Þ<∞. If Y1 <∞ and Y5 ¼ Y8 ¼ ∞ for all positive
constants k1, k9, k13 and k12 ¼ 0, then Na

∞,∞,0 6¼ ∅:.
Proof: Suppose Y1 <∞ and Y5 ¼ Y8 ¼ ∞ for k1, k9, k13 >0, k12 ¼ 0. Then choose

a t1 ≥ t0 such that

ð∞
t1
r tð Þh

ðt
t1
p sð Þf k1

ðs
t0
q τð ÞΔτ

� �
Δs

� �
Δt<

1
2

and

ð∞
t1
p sð Þf

ðs
t1
q τð Þg k9

ð∞
τ
r vð ÞΔv

� �
Δτ

� �
Δs> 1, t≥ t1,

where k1 ¼ g 1
2

� �
and k9 ¼ k13 ¼ h 1ð Þ. Suppose that Φ is a space of real-valued

continuous functions and partially ordered Banach space with yk k ¼ supt≥ t1 ∣y tð Þ∣
and the usual pointwise ordering ≤ . Let ϕ be a subset of Φ such that

ϕ≔ z∈Φ : h 1ð Þ
ð∞
t
r sð ÞΔs≤ z tð Þ≤ d1

2
, t≥ t1

� �
:

and set an operator F : Φ! Φ such that

Fzð Þ tð Þ ¼
ð∞
t
r sð Þh

ðs
t1
p uð Þf

ðu
t1
q τð Þg z τð Þð ÞΔτ

� �
Δu

� �
Δs:

The rest of the proof can be done as in proofs of the previous theorems by using
the fact Y5 ¼ Y8 ¼ ∞, and therefore, Na

∞,∞,0 6¼ ∅.

3.2.2 Existence in Nb

Assuming x, y, zð Þ is a nonoscillatory solution of system (3) in Nb such that x>0
eventually and by a similar discussion as in the previous section, and by Lemma
3.10, we have the following subclasses:

Nb
B,0,0 ≔ x, y, zð Þ∈Nb : lim

t!∞
jx tð Þj¼ c1 lim

t!∞
jy tð Þj¼ 0, lim

t!∞
jz tð Þj¼ 0

� �

Nb
0,0,0 ≔ x, y, zð Þ∈Nb : lim

t!∞
jx tð Þj¼ 0, lim

t!∞
jy tð Þj¼ 0, lim

t!∞
jz tð Þj¼ 0

� �
,

where 0< c1 <∞.
The first result of this section considers the case when each of the component

solutions converges.
Theorem 3.14 Suppose R t0,∞ð Þ<∞ and f is odd. Then Nb

B,0,0 6¼ ∅ if Y2 <∞ and
Y8 <∞ for all k3 ¼ k13 >0 and k12 ¼ 0.

110

Recent Developments in the Solution of Nonlinear Differential Equations

Proof: Suppose that Y2 <∞ and Y8 <∞ for all k3 ¼ k13 >0 and k12 ¼ 0. Then
choose k3, k13 >0 and t1 ≥ t0 sufficiently large such that

ð∞
t1
p tð Þf

ð∞
t
q sð Þg k3

ð∞
s
r τð ÞΔτ

� �
Δs

� �
Δt<

1
2
,

where k3 ¼ h 3
2

� �
. Let Φ be a partially ordered Banach space of real-valued

continuous functions with xk k ¼ supt≥ t1 ∣x tð Þ∣ and the usual pointwise ordering ≤ .
Let us set a subset ϕ of Φ such that

ϕ≔ x∈Φ : 1≤ x tð Þ≤ 3
2
, t≥ t1

� �

and an operator Fx : Φ! Φ by

Fxð Þ tð Þ ¼ 1þ
ð∞
t
p sð Þf

ð∞
s
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
Δs:

One can prove that F is an increasing mapping into itself and Ω, ≤ð Þ is a
complete lattice. Therefore, by Theorem 2.7, there does exist x∈Ω such that x ¼ Fx.
It follows that x tð Þ>0 for t≥ t1 and converges to 1 as t approaches infinity. Also,

xΔ tð Þ ¼ �p tð Þf
ð∞
t
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

� �
, t≥ t1:

Now for t≥ t1, set

y tð Þ ¼ �
ð∞
t
q uð Þg

ð∞
u
r τð Þh x τð Þð ÞΔτ

� �
Δu

and

z tð Þ ¼
ð∞
t
r τð Þh x τð Þð ÞΔτ:

Then, since f is odd, we have

xΔ tð Þ ¼ p tð Þf y tð Þð Þ

yΔ tð Þ ¼ q tð Þg z tð Þð Þ

zΔ tð Þ ¼ �r tð Þh x tð Þð Þ:

Consequently x, y, zð Þ is a solution of system (3). Since both y tð Þ and z tð Þ
converge to 0 as t approaches infinity, Nb

B,0,0 6¼ ∅:.

4. Examples

In this section, we provide some examples to highlight our theoretical claims.
The following theorem help us evaluate the integrals on a specific time scale, see
([6] Theorem 1.79 (ii)).

Theorem 4.1 Suppose that a, b½ � has only isolated points with a< b. Then
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ðb
a
f tð ÞΔt ¼

X
t∈ a, b½ Þ

μ tð Þf tð Þ:

Example 4.2 Let  ¼ 3ℕ, k5 ¼ 1 ¼ k14 and consider the following system

Δ3x tð Þ ¼ t
t�1
� �1

3y
1
3 tð Þ

Δ3y tð Þ ¼ 1

3t
1
5
z
3
5 tð Þ

Δ3z tð Þ ¼ � 26

54t
21
5
x

1
5 tð Þ,

8>>>>><
>>>>>:

(12)

where

Δ3k tð Þ ¼ k σ tð Þð Þ � k tð Þ
μ tð Þ for σ tð Þ ¼ 3t and μ tð Þ ¼ 2t, t∈:

First we show P t0,∞ð Þ ¼ Q t0,∞ð Þ ¼ ∞. If s ¼ 3m and t ¼ 3n, m, n∈ℕ, we have

ð∞
3
p sð ÞΔs ¼ lim

t!∞

ðt
3
p sð ÞΔs ¼ 2 lim

n!∞

Xρ 3nð Þ

s¼3

s4

s� 1

� �1
3

> 2 lim
n!∞

Xn�1
m¼1

3m ¼ ∞:

Similarly one can obtain
Ð∞
3 q sð ÞΔs ¼ ∞.

Now we consider Y3. With τ ¼ 3m and s ¼ 3n, m, n∈ℕ, we have

ðs
3

τ

τ � 1

� �1
3Δτ ¼ 2

Xn�1
m¼1

34m

3m � 1

� �1
3

< 2
Xn�1
m¼1

3mð Þ43

since 3m � 1> 1 on . We claim that

Xn�1
m¼1

3mð Þ43 < 3nð Þ43:

The sum formula for a finite geometric series, 1� 3
4
3 <0, and.

3
4
3

� �1�n
� 1< 1 for n∈ yield

0≤
3
4
3

� �1�n
� 1

1� 3
4
3

< 1:

So the claim indeed holds, and consequently we have
ðs
3

τ

τ � 1

� �1
3Δτ< 2s

4
3: (13)

Also, we obtain

ðT
t
r sð Þh

ðs
3
p τð ÞΔτ

� �
Δs<

ðT
t

26
54

1

s
21
5

2s
4
3

� �1
5Δs ¼ 26 � 26

5

54

X
s∈ t,T½ Þ3

1

s
44
15
< 2

X
s∈ t,T½ Þ3

1

s
44
15

by (11). Therefore, as T ! ∞, we obtain
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X
s∈ t,∞½ Þ3

1

s
44
15
¼ α � 1

t
44
15
, (14)

where α ¼ 1� 1

3
44
15
. Finally, with t ¼ 3m and T ¼ 3n, m, n∈, we have

ðT
t0
q tð Þg

ð∞
t
r sð Þh

ðs
t0
p τð ÞΔτ

� �
Δs

� �
Δt<

2αð Þ35
3

ðT
3

1

t
1
5

1

t
44
15

� �3
5

Δt ¼ 2αð Þ35
3

ðT
3

1

t
49
25
Δt

¼ 2αð Þ35
3

Xn�1
m¼1

2
1

3mð Þ4925
3m ¼ 2 2αð Þ35

3

Xn�1
m¼1

1

3
24
25

� �m

by (12). Since the above integral converges as T approaches infinity, we have
Y3 <∞. By using a similar discussion and (12), it is shown Y9 <∞: One can also
show that t, 1� 1

t,
1
t3

� �
is a nonoscillatory solution of system (10). Hence Na

∞,B,0 6¼ ∅
by Theorem 3.12 (ii).

Example 4.3 Let  ¼ q0 : Consider the system

xΔ tð Þ ¼ 1

1þ tð Þ13
y
1
3 tð Þ

yΔ tð Þ ¼ t
2t�1
� �1

5z
1
5 tð Þ

zΔ tð Þ ¼ 1
qt3

x tð Þ:

8>>>>>><
>>>>>>:

(15)

We show that Na
∞,∞,B 6¼ ∅ by Theorem 3.5 for s ¼ qm, t ¼ qn, k1 ¼ 1 and t0 ¼ 1:

So we need to show P t0,∞ð Þ ¼ Q t0,∞ð Þ ¼ ∞ and Y1 <∞. Indeed,

ðT
1
p tð ÞΔt ¼

X
t∈ 1, ρ Tð Þ½ �

q0

1

1þ tð Þ13
� q� 1ð Þt:

So as T ! ∞, we have

P 1,∞ð Þ ¼ q� 1ð Þ
X∞
n¼0

qn

1þ qnð Þ13
¼ ∞

by the ratio test. We can also easily show Q 1,∞ð Þ ¼ ∞: As the final step, let us
show Y1 <∞ holds. Indeed,

ðT
1
r tð Þh

ðt
1
p sð Þf

ðs
1
q τð ÞΔτ

� �
Δs

� �
Δt

¼
ðT
1
r tð Þh

ðt
1
p sð Þ

X
τ∈ 1, ρ sð Þ½ �

q0

t
2t� 1

� �1
5 � q� 1ð Þt

0
B@

1
CA

1
3

Δs

0
BB@

1
CCAΔt

≤
ðT
1
r tð Þh

ðt
1
p sð Þ � s13

� �
Δt ¼ q� 1ð Þ

ðT
1
r tð Þ

X
s∈ 1, ρ tð Þ½ �

q0

1

1þ sð Þ13
� s13 � s

0
B@

1
CAΔt

≤ q� 1ð Þ
X

t∈ 1, ρ Tð Þ½ �
q0

1
t
:
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ð∞
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t!∞

ðt
3
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� �1
3
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Similarly one can obtain
Ð∞
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Now we consider Y3. With τ ¼ 3m and s ¼ 3n, m, n∈ℕ, we have

ðs
3

τ

τ � 1

� �1
3Δτ ¼ 2
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34m
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� �1
3
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3
4
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3
4
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� 1
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4
3

< 1:

So the claim indeed holds, and consequently we have
ðs
3

τ

τ � 1

� �1
3Δτ< 2s

4
3: (13)

Also, we obtain

ðT
t
r sð Þh

ðs
3
p τð ÞΔτ

� �
Δs<

ðT
t

26
54

1

s
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5

2s
4
3

� �1
5Δs ¼ 26 � 26

5

54

X
s∈ t,T½ Þ3

1

s
44
15
< 2

X
s∈ t,T½ Þ3

1

s
44
15
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112

Recent Developments in the Solution of Nonlinear Differential Equations

X
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s
44
15
¼ α � 1

t
44
15
, (14)

where α ¼ 1� 1

3
44
15
. Finally, with t ¼ 3m and T ¼ 3n, m, n∈, we have
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1

t
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1
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3m ¼ 2 2αð Þ35

3
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m¼1

1

3
24
25

� �m

by (12). Since the above integral converges as T approaches infinity, we have
Y3 <∞. By using a similar discussion and (12), it is shown Y9 <∞: One can also
show that t, 1� 1

t,
1
t3

� �
is a nonoscillatory solution of system (10). Hence Na

∞,B,0 6¼ ∅
by Theorem 3.12 (ii).

Example 4.3 Let  ¼ q0 : Consider the system

xΔ tð Þ ¼ 1

1þ tð Þ13
y
1
3 tð Þ

yΔ tð Þ ¼ t
2t�1
� �1

5z
1
5 tð Þ

zΔ tð Þ ¼ 1
qt3

x tð Þ:

8>>>>>><
>>>>>>:

(15)

We show that Na
∞,∞,B 6¼ ∅ by Theorem 3.5 for s ¼ qm, t ¼ qn, k1 ¼ 1 and t0 ¼ 1:

So we need to show P t0,∞ð Þ ¼ Q t0,∞ð Þ ¼ ∞ and Y1 <∞. Indeed,

ðT
1
p tð ÞΔt ¼

X
t∈ 1, ρ Tð Þ½ �

q0

1

1þ tð Þ13
� q� 1ð Þt:

So as T ! ∞, we have

P 1,∞ð Þ ¼ q� 1ð Þ
X∞
n¼0

qn

1þ qnð Þ13
¼ ∞

by the ratio test. We can also easily show Q 1,∞ð Þ ¼ ∞: As the final step, let us
show Y1 <∞ holds. Indeed,
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1
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1
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1
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1
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Hence, by the geometric series, and taking the limit of the latter inequality as
T ! ∞ yield us

X∞
n¼0

1
qn

<∞:

Therefore, we have Y1 <∞. One can also show that t, 1þ t, 2� 1
t

� �
is a solution of

system (13) in Na
∞,∞,B:.

Exercise 4.4 Let  ¼ 20 : Show that 1þ t, 3tþ1
t , �1t2

� �
is a solution of

xΔ tð Þ ¼ t
3tþ1
� �1

3
y
1
3 tð Þ

yΔ tð Þ ¼ 1
2
z tð Þ

zΔ tð Þ ¼ 3
4 1þ tð Þt3 x tð Þ

8>>>>>><
>>>>>>:

(16)

in Nc such that x tð Þ ! ∞, y tð Þ ! 3 and z tð Þ ! 0 as t! ∞, i.e., Nc
∞,B,0 6¼ ∅ by

Theorem 3.8 (i).

5. Conclusion and open problems

In this chapter, we consider a 3D time scale system and show the asymptotic
properties of the nonoscillatory solutions along with the existence of such solutions.
We are able to show the existence of solutions in most subclasses. On the other
hand, it is still an open problem to show the existence in Na

∞,∞,∞ for system (3),
where λ ¼ 1. In addition to that, there is one more open problem that also can be
considered as a future work, which is to find the criteria for the existence of a
nonoscillatory solution in Nb

0,0,0 of system (3), where λ ¼ �1.
Another significance of our system that we consider in this chapter is the fol-

lowing system

xΔ tð Þ ¼ p tð Þ y tð Þj jα sgn y tð Þ
yΔ tð Þ ¼ q tð Þ z tð Þj jβ sgn z tð Þ
zΔ tð Þ ¼ �r tð Þ xσ tð Þj jγ sgn xσ tð Þ,

8><
>:

(17)

which is known as the third order Emden-Fowler system. Here, p, q and r have
the same properties as System (3) and α, β, γ are positive constants. Emden-Fowler
equation has a lot of applications in fluid mechanics, astrophysics and gas dynamics.
It would be very interesting to investigate the characteristics of solutions because of
its potential in applications.
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Chapter 7

Global Existence of Solutions to a
Class of Reaction–Diffusion
Systems on n

Salah Badraoui

Abstract

We prove in this work the existence of a unique global nonnegative classical
solution to the class of reaction–diffusion systems

ut t, xð Þ ¼ aΔu t, xð Þ � g uð Þvm,
vt t, xð Þ ¼ dΔv t, xð Þ þ λ t, xð Þg uð Þvm,

where a>0, d>0, t>0, x∈n, n,m∈ ∗ , λ is a nonnegative bounded
function with λ t, :ð Þ∈BUC nð Þ for all t∈þ, the initial data u0, v0 ∈BUC nð Þ, g :
BUC nð Þ ! BUC nð Þ is a of class C1, dg uð Þ

du ∈L∞ ð Þ, g 0ð Þ ¼ 0 and g uð Þ≥0 for all
u≥0: The ideas of the proof is inspired from the work of Collet and Xin who proved
the same result in the particular case d> a ¼ 1, λ ¼ 1, g uð Þ ¼ u: Moreover, they
showed that the L∞-norm of v can not grow faster than O ln ln tð Þ for any space
dimension.

Keywords: reaction–diffusion systems, local existence, positivity,
comparison principle, global existence

1. Introduction

In the sequel, we use the notations.
þ ¼ 0,∞½ ½,  ∗

þ ¼ 0,∞� ½:
 ¼ 0, 1, …f g the set of natural numbers and  ∗ ¼ n 0f g:
For p∈ : p½ � the integer part of p.
For n∈ ∗ and x ¼ x1, … , xnð Þ∈n : xj j2 ¼Pn

j¼1x
2
j:

 ¼ ⋯,�1, 0, 1,⋯f g the set of integers.
For x 0ð Þ ∈n and ρ∈ ∗

þ , :
B0 x 0ð Þ, ρ
� � ¼ x∈n : x� x 0ð Þ�� ��≤ ρ

� �
the closed ball of center x 0ð Þ and radius ρ:

S x 0ð Þ, ρ
� � ¼ x∈n : x� x 0ð Þ�� �� ¼ ρ

� �
the boundary of B0 x 0ð Þ, ρ

� �
:

Let Q ⊂n n∈ ∗ð Þ a subset. ∂Q denote the boundary of Q:
ln : the natural logaritm function.

ωn ρð Þ ¼ 2πn=2ρn�1
Γ n=2ð Þ the surface area of S 0, ρð Þ, where Γ xð Þ ¼ Ð∞0 e�tt�xdt x∈ ∗

þ
� �

is
the Gamma function.
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BUC nð Þ the Banach space of bounded and uniformly continuous functions on
n with the supremum norm ∥u∥∞ ¼ supx∈n u xð Þj j:
X ¼ BUC nð Þ � BUC nð Þ which is a Banach space endowed with the norm

u, vð Þk kX ¼ ∥u∥∞ þ ∥v∥∞:
For u∈Lp nð Þ p∈ 1,∞½ ½ð ), we denote by ∥u∥pp ¼

Ð
n uj jpdx:

For u, v : n !  two regular functions, ∇u ¼ ∂u
∂x1

, … , ∂u
∂xn

� �
and ∇u:∇v ¼

Pn
j¼1

∂u
∂x j

: ∂v
∂x j

:

Reaction-Diffuison equations are nonlinear parabolic partial differential equa-
tions arises in many fields of sciences like chemistry, physics, biology, ecology and
even medicine. It appears usually as coupled systems.

The somewhat general form of these systems of two equations is

ut t, xð Þ ¼ aΔu t, xð Þ þ f 1 t, x, u, vð Þ,
vt t, xð Þ ¼ dΔv t, xð Þ þ f 2 t, x, u, vð Þ,

�

where t>0, x∈Ω with Ω⊂n n∈ ∗ð Þ is an open set, Δ is the Laplacian
operator, a, d are two real positive constants called the coefficients of the diffusion.
For a chemical reaction where two substances S1 and S2, u and v represent their
concentrations at time t and position x respectively, and f 1 and f 2 represent the rate
of production of these substances in the given order. For more details see [1, 2].

In this chapter, we are concerned with the existence of global solutions to the
reaction–diffusion system

ut t, xð Þ ¼ aΔu t, xð Þ � g uð Þvm, t, xð Þ∈ ∗
þ � n, (1)

vt t, xð Þ ¼ dΔv t, xð Þ þ λ t, xð Þg uð Þvm, t, xð Þ∈ ∗
þ � n, (2)

with initial data

u 0, xð Þ ¼ u0 xð Þ, v 0, xð Þ ¼ v0 xð Þ, x∈n: (3)

Whe assume that.
(H1) The constants a, d are such that a, d∈ ∗

þ :
(H2) λ : þ � n !  is a non-null, nonnegative and bounded function on þ �

n such that λ t, :ð Þ∈BUC nð Þ for all t∈þ. We denote λ∞ ¼ supt≥0 λ tð Þk k∞
� �

:

(H3) n and m are positive integers, i.e. n,m∈ ∗ :
(H4) g : BUC nð Þ ! BUC nð Þ is a function defined on BUC nð Þ such that:

i. g 0ð Þ ¼ 0 and g uð Þ≥0 pour u≥0:

ii. g is of class C1 and dg uð Þ
du is bounded on :

(H5) The initial data u0, v0 are nonnegative and are in BUC nð Þ.
One of the essential questions for (1)–(3) is the existence of global solutions and

possibly bounds uniform in time. Recently, Collet and Xin in their paper [3] published
in 1996 have studied the system (1)–(3) but with a ¼ λ ¼ 1, d> 1 and φ uð Þ ¼ u: In
this particular case, this system describes the evolution of u the mass fraction of
reactant A and that v of the product B for the autocatalytic chemical reaction of the
form AþmB! mþ 1ð ÞB: They proved the existence of global solutions and showed
that the L∞ norm of v can not grow faster than O ln ln tð Þ for any space dimension.

If we replace g uð Þvm by u exp �E=vf g where E>0 is a constant and take λ ¼ 1,
there are many works on global solutions, see Avrin [4], Larrouturou [5] for results
in one space dimension, among others.
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It is worth mentioning here the result of S. Badraoui [6] who studied the system

ut ¼ aΔu� uvm,

vt ¼ bΔuþ dΔvþ uvm,

where a>0, d>0, b 6¼ 0, x∈n, n∈ ∗ , m∈ 2 ∗ is an even positive integer.
He has proved that if u0, v0 are nonnegative and are in BUC nð Þ that:

If a> d, b>0, v0 ≥ b
a�d u0 on n, then the solution is global and uniformly

bounded.
If a< d, b<0, v0 ≥ b

a�d u0 on n, then the solution is global.
Our work here is a continuation of the work of Collet and Xin [3]. We treat the

same question in a slightly general case. Inspired by the same ideas in [3] we prove
that the system (1)–(3) under the assumptions (H1) to (H5) has a unique global
nonnegative classical solution.

The chapter is organized as follows: In section 2, we treat the existence of local
solution and reveal its positivity using the maximum principle.

In section 3, firstly, we prove by a simple comparison argument that if a≥ d, the
solution is uniformly bounded and we give an upper bound of it. Afterwards, we
attack the hard case in which a< d where we used the Lyapunov functional

L u, vð Þ ¼ αþ 2u� ln 1þ uð Þ½ �eεv α,ð ε>0Þ and the cut-off function φ xð Þ ¼
1þ xj j2
� ��n

: We show that for α sufficiently large and ε small enough we can

control the Lp-norms of v p> max 1, n=2f gð Þ on every unit spacial cub in n from
which we deduce the L∞-norm of v at any time t>0:

We emphazise here that I have engaged to calculate the constants encountered
in all equations and inequalities exactly.

2. Existence of a local solution and its positivity

We convert the system (1)–(3) to an abstract first order system in the Banach
space X≔BUC nð Þ � BUC nð Þ of the form

w0 tð Þ ¼ Aw tð Þ þ F w tð Þð Þ, t>0,

w 0ð Þ ¼ w0 ∈X:

(
(4)

Here w tð Þ ¼ u tð Þ, v tð Þð Þ; the operator A is defined as

Aw≔
aΔ 0

0 dΔ

 !
w ¼ aΔu, dΔvð Þ,

where D Að Þ≔ w ¼ u, vð Þ∈X : Δu,Δvð Þ∈Xf g. The function F is defined as
F w tð Þð Þ ¼ �φ u tð Þð Þvm tð Þ, λ tð Þφ u tð Þð Þvm tð Þð Þ.

It is known that for c>0 the operator cΔ generates an analytic semigroup G tð Þ in
the space BUC nð Þ:

G tð Þu ¼ 4πctð Þ�n=2
ð

n
exp � x� yj j2

4ct

( )
u yð Þdy: (5)
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Here w tð Þ ¼ u tð Þ, v tð Þð Þ; the operator A is defined as

Aw≔
aΔ 0

0 dΔ

 !
w ¼ aΔu, dΔvð Þ,

where D Að Þ≔ w ¼ u, vð Þ∈X : Δu,Δvð Þ∈Xf g. The function F is defined as
F w tð Þð Þ ¼ �φ u tð Þð Þvm tð Þ, λ tð Þφ u tð Þð Þvm tð Þð Þ.

It is known that for c>0 the operator cΔ generates an analytic semigroup G tð Þ in
the space BUC nð Þ:

G tð Þu ¼ 4πctð Þ�n=2
ð

n
exp � x� yj j2

4ct

( )
u yð Þdy: (5)
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Hence, the operator A generates an analytic semigroup defined by

S tð Þ ¼ S1 tð Þ 0

0 S2 tð Þ

� �
, (6)

where S1 tð Þ is the semigroup generated by the operator aΔ, and S2 tð Þ is the
semigroup generated by the operator dΔ.

Since the map F is locally Lipschitz in w in the space X, then proving the
existence of a loacl classical solution on 0, t1½ � where t1 ∈ ∗

þ is standard [7, 8].
For the positivity, let w tð Þ ¼ u tð Þ, v tð Þð Þ is a local solution of the problem (1)–(3)

under the assumptions Hjf g5j¼1 on the interval 0, t1½ �.
We can write the first equation as

ut � aΔuþ vm
d
du

g ξð Þ
� �

u ¼ 0, t, xð Þ∈ 0, t1� � � n, (7)

for some ξ∈. Thanks to the assumption (H4)-ii we deduce that vm ∂

∂u g ξð Þ is
bounded on 0, t1½ � � n:Whence, by the theorem 9 on page 43 in [9], we obtain that

u t, xð Þ≥0, forall t, xð Þ∈ 0, t1½ � � n, (8)

The second equation can be written as

vt � dΔvþ �λg uð Þvm�1� �
v, t, xð Þ∈ 0, t1� � � n: (9)

By the same theorem we get

v t, xð Þ≥0, forall t, xð Þ∈ 0, t1½ � � n: (10)

For the existence of a global solution, we use the contraposed of the characteri-
zation of the maximal existence time tmax ([8] on page 193) as follows

there existsamapC : þ ! þsuch that :
u tð Þk k∞ þ v tð Þk k∞ ≤C tð Þ forall t∈þ

� �
) tmax ¼ þ∞: (11)

3. Existence of a global solution

For this task we will use the fact that the solution is nonnegative.
Theorem 3.1. Let u, vð Þ be the solution of the problem (1)–(3) under the

assumptions Hjf g5j¼1 and such that

a≥ d: (12)

Then, the solution is global and uniformly bounded on þ � n. More precisely,
we have the estimates

u tð Þk k∞ ≤ u0k k∞, forall t∈þ, (13)

v tð Þk k∞ ≤ v0k k þ λ∞
a
d

� �n=2
u0k k∞, forall t∈þ: (14)
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Proof. By the comparison principle we get (13).
The solution u, vð Þ satisfies the integral equations

u t, xð Þ ¼ S1 tð Þu0 �
ðt
0
S1 t� τð Þg u τð Þð Þvm τð Þdτ, (15)

v t, xð Þ ¼ S2 tð Þv0 þ
ðt
0
S2 t� τð Þλ τð Þg u τð Þð Þvm τð Þdτ: (16)

Here S1 tð Þ and S2 tð Þ are the semigroups generated by the operators aΔ and dΔ in
the space BUC nð Þ respectively. As u is nonnegative, then from (15) we get

ðt
0
S1 t� τð Þg u τð Þð Þvm τð Þdτ≤ S1 tð Þu0: (17)

Since a≥ d, using the explicit expression of S1 t� τð Þg u τð Þð Þvm τð Þ and
S2 t� τð Þg u τð Þð Þvm τð Þ, one can observe that (see [10])

ðt
0
S2 t� τð Þλ τð Þg u τð Þð Þvm τð Þdτ≤ a

d

� �n=2ðt
0
S1 t� τð Þλ τð Þg u τð Þð Þvm τð Þdτ

≤ λ∞
a
d

� �n=2ðt
0
S1 t� τð Þg u τð Þð Þvm τð Þdτ:

(18)

From (17) and (18) into (16) we get

v tð Þ≤ S2 tð Þv0 þ λ∞
a
d

� �n=2
S1 tð Þu0: (19)

This last inequality leads to the veracity of (14).
Thus, from (13) and (14), we deduce that the solution u, vð Þ is global and

uniformly bounded on þ � n. ♦
In the case where d> a, it seems that the idea of comparison cannot be applied.

Nevertheless, we can prove the existence of global classical solutions; but it appears
that their boundedness is not assured.

Theorem 3.2. Let u, vð Þ be the solution of the problem (1)–(3) with the
assumptions Hjf g5j¼1. If

a< d, (20)

the solution u, vð Þ is global. More precisely we have the estimates (13) and (83).
Proof. In this case, it is not easy to prove global existence. But can derive

estimates of solutions independent of t1 by using the same method used in [3] and
the same form of the functional used in [6] but with different coefficients.

We need some lemmas.
Lemma 3.3. Let u, vð Þ be the solution of the problem (1)–(3) under the assump-

tions Hjf g5j¼1 on the local interval time 0, t1½ �. Define the functional

L u, vð Þ ¼ αþ 2u� ln 1þ uð Þ½ �eεv with α, ε∈ ∗
þ : (21)

Then for any φ ¼ φ xð Þ x∈nð Þ a smooth nonnegative function with exponential
spacial decay at infinity, we have
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d
dt

ð

n
φLdx ¼ d

ð

n
ΔφLdxþ d� að Þ

ð

n
L1∇φ:∇udx

�
ð

n
φ aL11 ∇uj j2 þ aþ dð ÞL12∇u∇vþ dL22 ∇vj j2
h i

dx

þ
ð

n
φ λL2 � L1ð Þg uð Þvmdx,

(22)

where

L1� ∂L
∂u
¼ 2� 1

1þ u

� �
eεv,L2 � ∂L

∂v
¼ ε αþ 2u� ln 1þ uð Þ½ �eεv,

L11� ∂
2L
∂u2
¼ 1

1þ uð Þ2 e
εv,L12 � ∂

2L
∂u∂v

¼ ε 2� 1
1þ u

� �
eεv,

L22� ∂
2L
∂v2
¼ ε2 αþ 2u� ln 1þ uð Þ½ �eεv:

(23)

Proof. Note that L>0, L1 >0, L2 >0, L11 >0, L12 >0 and L22 >0. We can
differentiate under the integral symbol

d
dt

ð

n
φLdx ¼ a

ð

n
φL1udxþ d

ð

n
φL2Δvdxþ

ð

n
φ λL2 � L1ð Þg uð Þvmdx: (24)

Using integration by parts, we get

ð

n
φL1Δudx ¼

ð

n
φL1ð ÞΔudx ¼ �

ð

n
∇ φL1ð Þ∇udx ¼ �

ð

n
L1∇φ∇udx

�
ð

n
φL11 ∇uj j2dx�

ð

n
φL12∇u∇vdx,

(25)

In fact, let ρ∈ ∗
þ , then we have by the Geen theorem

ð

B0 0,ρð Þ
φL1Δudx ¼

ð

B0 0,ρð Þ
φL1ð ÞΔudx

¼ �
ð

B0 0,ρð Þ
∇ φL1ð Þ:∇udxþ

ð

S 0,ρð Þ
φL1ð Þ ∂u

∂ν
dx,

(26)

where ∂u
∂ν is the derivative of u with respect to the unit outer normal ν to the

boundary S 0, ρð Þ.
We have

ð

S 0,ρð Þ
φL1 tð Þð Þ ∂u tð Þ

∂ν
dx

�����

�����≤ 2eε v tð Þk k∞ ∂u tð Þ
∂ν

����
����
∞

ð

S 0,ρð Þ
φdx

≤ 2eε v tð Þk k∞ ∂u tð Þ
∂ν

����
����
∞

1
1þ ρ2ð Þn

2πn=2ρn�1

Γ n=2ð Þ :

(27)

From (27) we obtain

lim
ρ!∞

ð

S x0,ρð Þ
φL1 tð Þ½ � ∂u tð Þ

∂ν
dx ¼ 0: (28)
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We pass to the limit for ρ! ∞ in (26) taking into account (28) we obtain (25).
By the same way we get

ð

n
φL2Δvdx ¼ �

ð

n
L2∇φ:∇vdx�

ð

n
φL22 ∇vj j2dx�

ð

n
φL12∇u∇vdx, (29)

ð

n
LΔφdx ¼ �

ð

n
L1∇φ:∇udx�

ð

n
L2∇φ:∇vdx: (30)

From (30) we find that

ð

n
L2∇φ:∇vdx ¼ �

ð

n
L1∇φ:∇udx�

ð

n
LΔφdx: (31)

From (25), (29) and (31) into (24) we get our basic identity (22). ♦
Lemma 3.4. There exist two positive real constants α ¼ α a, d, γ1, u0k k∞

� �
and

ε ¼ ε a, d, γ1, γ2, λ∞, u0k k∞
� �

such that

d
dt

ð

n
φLdx≤ d

ð

n
LΔφdxþ d� að Þ

ð

n
L1∇φ:∇udx

�γ1
ð

n
φ aL11 ∇uj j2 þ dL22 ∇vj j2
h i

dx� γ2

ð

n
φL1g uð Þvmdx,

(32)

where γ1, γ2 ∈ 0, 1� ½ are two arbitrary constants.
Proof. We seek L such that

aL11 ∇uj j2 þ aþ dð ÞL12∇u∇vþ dL22 ∇vj j2 ≥ γ1 aL11 ∇uj j2 þ dL22 ∇vj j2
h i

(33)

and

λL2 � L1 ≤ � γ2L1 (34)

for γ1, γ2 ∈ 0, 1� ½:
The inequality (33) is satisfied if

aþ dð Þ2L2
12

4ad 1� γ1ð Þ2L11L12
≤ 1: (35)

From (23); (35), then (33) is satisfied if

α≥
aþ dð Þ2 1þ 2 u0k k∞

� �2
4ad 1� γ1ð Þ2 : (36)

Also, (34) is satisfied if
ελ∞ αþ2 u0k k∞ð Þ

1�γ2 ≤ 1, i.e. ε≤ 1�γ2
λ∞ αþ2 u0k k∞ð Þ , and from (36)

we get

0< ε≤
1� γ2
λ∞

4ad 1� γ1ð Þ2
aþ dð Þ2 1þ 2 u0k k∞

� �2 þ 8ad 1� γ1ð Þ2 u0k k∞
: (37)

Whence, if α satisfies (36) and ε satisfies (37), we obtain (32). ♦
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∞
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where γ1, γ2 ∈ 0, 1� ½ are two arbitrary constants.
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4ad 1� γ1ð Þ2L11L12
≤ 1: (35)

From (23); (35), then (33) is satisfied if
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� �2
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Also, (34) is satisfied if
ελ∞ αþ2 u0k k∞ð Þ

1�γ2 ≤ 1, i.e. ε≤ 1�γ2
λ∞ αþ2 u0k k∞ð Þ , and from (36)

we get

0< ε≤
1� γ2
λ∞

4ad 1� γ1ð Þ2
aþ dð Þ2 1þ 2 u0k k∞

� �2 þ 8ad 1� γ1ð Þ2 u0k k∞
: (37)

Whence, if α satisfies (36) and ε satisfies (37), we obtain (32). ♦
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As a consequence of (33) we have

d
dt

ð

n
φLdx≤ d

ð

n
LΔφdxþ d� að Þ

ð

n
L1∇φ:∇udx� γ1a

ð

n
φL11 ∇uj j2dx: (38)

Lemma 3.5. With the functional L defined in (21) and α, ε defined in (36) and
(37) respectively and with the truncation function φ : n !  defined by

φ xð Þ ¼ 1

1þ x� x0j j2
� �n : (39)

We have

d
dt

ð

n
φLdx≤ dk1 nð Þ

ð

n
φLdxþ 1

4γ1a
d� að Þ2k22 nð Þ

ð

n
φ
L2
1

L11
dx, (40)

where

k1 nð Þ ¼ 2n 3nþ 2ð Þ, k2 nð Þ ¼ 2n: (41)

Proof. Calulate Δφ and estimate it

Δφ ¼ � 2n2

1þ x� x0j j2
� �nþ1 �

4n nþ 1ð Þ x� x0j j2

1þ x� x0j j2
� �nþ2 ;

whence

Δφj j≤ 2n 3nþ 2ð Þφ: (42)

Calulate ∇φ and estimate it

∇φj j2 ¼ 4n2
x� x0j j2

1þ x� x0j j2
� �2 nþ2ð Þ ;

whence

∇φj j≤ 2nφ: (43)

Using the Cauchy-Schwarz inequality ∇φ:∇u≤ ∇φj j ∇uj j and the inequalities
(42) and (43) into (38) we get

d
dt

ð

n
φLdx≤ dk1 nð Þ

ð

n
φLdxþ d� að Þk2 nð Þ

ð

n
φL1 ∇φj jdx� γ1a

ð

n
φL11 ∇uj j2dx:

(44)

We pove that

d� að Þk2 nð ÞφL1 ∇φj j � γ1aφL11 ∇uj j2 ≤ 1
4γ1

d� að Þ2
a

k22 nð Þφ L2
1

L11
: (45)
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To do this, it sufficies to compute the discriminant of the trinoma in ∇φj j

Δ ¼ �γ1aφL11 ∇uj j2 þ d� að Þk2 nð ÞφL1 ∇φj j � 1
4γ1

d� að Þ2
a

k22 nð Þφ L2
1

L11
:

From (45) into (42) we find the desired result (40). ♦
Lemma 3.6. For α and ε defined in (36) and (37) respectively and for all real

constant γ

γ ≥ max
1
a
, 8 u0k k∞ þ 4

� �
, (46)

we have
ð

n
φLdx≤ βeσt, forall t∈þ; (47)

where

β ¼ 2
n

αþ 2 u0k k∞
� �

ωneε v0k k∞ , (48)

and

σ ¼ dk1 nð Þ þ γ

4γ1a
d� að Þ2k22 nð Þ: (49)

Proof. We seek a constant γ ∈ ∗
þ such that

L2
1

L11
≤ γL, for all u∈ 0, u0k k∞

� �
: (50)

The inequality (50) is equivalent to 2uþ 1ð Þ2eεv ≤ γ αþ 2u� ln 1þ uð Þ½ �: We
prove that if γ satisfies (46) then (50) follows.

Whence, from (50) into (40) we obtain

d
dt

ð

n
φLdx≤ dk1 nð Þ þ γ

4γ1a
d� að Þ2k22 nð Þ

� �ð

n
φLdx, forallt∈þ: (51)

As
ð

n
φL t ¼ 0ð Þdx ¼

ð

n
φ αþ 2u0 � ln 1þ u0ð Þ½ �eεv0dx; (52)

then, from (51) and (52) we get

ð

n
φLdx≤ αþ 2 u0k k∞

� �
φk k1 exp ε v0k k∞

� �� �
eσt, forall t∈þ, (53)

where σ is defined by (49).
Now, let us estimate φk k1: We have ([11] on page 485)

φk k1 ¼
ð

n
φdx ¼

ð

n

1

1þ xj j2
� �n dx ¼ ωn

ð∞
0
rn�1

1
1þ r2ð Þn dr:
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As

ð∞
0

rn�1

1þ r2ð Þn dr ¼
ð1
0

rn�1

1þ r2ð Þn drþ
ð∞
1

rn�1

1þ r2ð Þn dr

≤
ð1
0
rn�1drþ

ð∞
1

1
rnþ1

dr≤
2
n
,

then

φk k1 ≤
2
n
ωn: (54)

Thus, from (54) in (53) we get the estimate (47) with β and σ given by (48) and
(49). ♦

In the following step we trie to control the second component v of the solution
on any unit spacial cube in the Lp� norms with p∈ 1,∞½ ½:

Let x 0ð Þ ¼ x 0ð Þ
1 , … , x 0ð Þ

n

� �
∈n be an arbitrary fixed point and

Q ¼ x ¼ x1, … , xnð Þ∈n : xk � x 0ð Þ
k

���
���≤ 1

2
, forallk ¼ 1, … , n

� �
: (55)

Lemma 3.7. Let u, vð Þ be the solution of the problem in consideration. For α and
ε satisfying (36) above and (63) below respectively, then for any unit cube Q of n

of the form (55) we have

ð

Q
vpdx≤

β pþ 1ð Þpþ1
αε p½ �þ1

4þ n
4

� �n

eσt, forall p, tð Þ∈ 1,∞½ ½ � þ: (56)

Proof. It’s obvious that

φ xð Þ≥ 4
4þ n

� �n

, forallx∈n, (57)

and

eεv ≥
εk

k!
vk, forallk∈ ∗ : (58)

Then

ð

n
φLdx≥

αεk

k!
4

4þ n

� �nð

Q
vkdx: (59)

Let us combine (47) and (59)

ð

Q
vkdx≤

βk!
αεk

4þ n
4

� �n

eσt, forall k, tð Þ∈ ∗ � þ: (60)

By induction we prove that

k!≤ pp, forallk∈ ∗ andp≥ k : (61)
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Let p≥ 1 and k ¼ p½ � þ 1, then we have by the imbedding theorem for Lp�spaces
ð

Q
vpdx≤

ð

Q
vkdx

� �p=k

: (62)

Taking ε enough small such that βk!
αεk

4þn
4

� �n ≥ 1. Combining this with (37)

0< ε≤ min

1� γ2
λ∞

4ad 1� γ1ð Þ2
aþ dð Þ2 1þ 2 u0k k∞

� �2 þ 8ad 1� γ1ð Þ2 u0k k∞
,

1
α βk!

4þn
4

� �n� �1=k

8>><
>>:

9>>=
>>;
: (63)

From (60), (61) and (63) into (62) we get (56). ♦
Lemma 3.8. Let Qi et Q j be two different unit cubes of center x ið Þ ¼

x ið Þ
1 , … , x ið Þ

n

� �
and x jð Þ ¼ x jð Þ

1 , … , x jð Þ
n

� �
respectively of the form

Qi ¼ x ¼ x1, … , xnð Þ∈n : xk � x ið Þ
k

���
���≤ 1=2

n o
, forallk ¼ 1, … , n,

Q j ¼ x ¼ x1, … , xnð Þ∈n : xk � x jð Þ
k

���
���≤ 1=2

n o
, forallk ¼ 1, … , n,

(64)

with x jð Þ ¼ x ið Þ þ l, where l ¼ l1, … , lnð Þ∈nn0n . Then, there exists a positive
constant

δ nð Þ ¼ 2þ ffiffiffi
n
p� �2, (65)

such that

dist x ið Þ,Q j

� �2
≤ x ið Þ � y
�� ��2 ≤ δ nð Þdist x ið Þ,Q j

� �2
, for all y∈Q j: (66)

Proof. By Pythagorean theorem we have

x jð Þ � y
�� ��≤

ffiffiffi
n
p
2

: (67)

As x ið Þ � x jð Þ�� ��≥ 1, then from (67)

x jð Þ � y
�� ��≤

ffiffiffi
n
p
2

x ið Þ � x jð Þ�� ��: (68)

Also, it’s clear that dist x ið Þ,Q j

� �
¼ dist x ið Þ, ∂Q j

� �
, but every point z ¼

z1, … , znð Þ∈ ∂Q j is of the form

z ¼ x jð Þ þ s, (69)

where s ¼ s1, … , snð Þ 6¼ 0 and sk ∈ � 1
2,

1
2

� �
, for all k ¼ 1, … , n with at least one of

the sk ∈ � 1
2,

1
2

� �
:

It’s easy to prove that

x jð Þ
k � x ið Þ

k

���
���≤ 2 x jð Þ

k � x ið Þ
k þ sk

���
���, forall k ¼ 1, … , n: (70)
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φ xð Þ≥ 4
4þ n
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n
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n
p
2
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ffiffiffi
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p
2
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Also, it’s clear that dist x ið Þ,Q j

� �
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, but every point z ¼

z1, … , znð Þ∈ ∂Q j is of the form

z ¼ x jð Þ þ s, (69)

where s ¼ s1, … , snð Þ 6¼ 0 and sk ∈ � 1
2,
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2

� �
, for all k ¼ 1, … , n with at least one of

the sk ∈ � 1
2,

1
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� �
:

It’s easy to prove that
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Then

x jð Þ � x ið Þ�� ��≤ 2dist x ið Þ,Q j

� �
: (71)

As x ið Þ � y
�� ��≤ x ið Þ � x jð Þ�� ��þ x jð Þ � y

�� �� we get from (68) and (71) the estimate

x ið Þ � y
�� ��≤ 2dist x ið Þ,Q j

� �
þ

ffiffiffi
n
p
2

x ið Þ � x jð Þ�� ��

≤ 2þ ffiffiffi
n
p� �

dist x ið Þ,Q j

� �
:

(72)

We have obviously

x ið Þ � y
�� ��≥ dist x ið Þ,Q j

� �
: (73)

From (71) and (73) we get (66). ♦
Proof of theorem 3.2.

Let x∈n an arbitrary point and Q j

n o
j∈

be the family of pairwise disjoint

measurable cubes of the form (64) covering n such that the center of Q0 is x 0ð Þ ¼ x.
Firstly, using the fact that n ¼ ∪∞

j¼0Q j and applying the left-hand inequality
in (66)

ð

n
e�

x�yj j2
4d t�sð Þλg uð Þvmdy ¼

X∞
j¼0

ð

Q j

e�
x�yj j2
8d t�sð Þe�

x�yj j2
8d t�sð Þλg uð Þvmdy

≤
X∞
j¼0

e�
dist x,Q jð Þ2

8d t�sð Þ

ð

Q j

� x�yj j2
8d t�sð Þ

λg uð Þvmdy
8<
:

9=
;:

(74)

By Hölder ineguality with p> max 1, n
2

� �
and q ¼ 1� 1

p

ð

Q j

� x�yj j2
8d t�sð Þ

λg uð Þvmdy≤
ð

Q j

�q x�yj j2
8d t�sð Þ

dy

2
4

3
5
1=q ð

Q j

λpgp uð Þvpmdy
" #1=p

: (75)

As

ð

Q j

e�
q x�yj j2
8d t�sð Þdy≤

ð

n

�q x�yj j2
8d t�sð Þ

dy ¼ 8πd
q

� �n=2

t� sð Þn=2 (76)

and by (56) we have

ð

Q j

λpgp uð Þvpmdy≤ λp∞g
p
∞β

pmþ 1ð Þpmþ1
αε pm½ �þ1

4þ n
4

� �n

eσt, (77)

where

g∞ ¼ sup
u∈ 0, u0k k∞½ �

g uð Þ: (78)

130

Recent Developments in the Solution of Nonlinear Differential Equations

Then, from (76) and (77) into (75)

ð

Q j

� x�yj j2
8d t�sð Þ

λg uð Þvmdy≤K
8πd
q

� �n
2 1�1

p

� �
t� sð Þn2 1�1

p

� �
λ∞g∞e

σ=pð Þt, (79)

where

K ¼ K p,m, n, α, εð Þ ¼ β
pmþ 1ð Þpmþ1
αε pm½ �þ1

4þ n
4

� �n
" #1=p

: (80)

On the other hand, we deduce from the right-hand inequality in (66) that

ð

Q j

e�
x�yj j2

8dδ nð Þ t�sð Þdy≥ e�
dist x,Q jð Þ2

8d t�sð Þ , forall j∈ ∗ : (81)

Then

X∞
j¼0

e�
dist x,Q jð Þ2

8d t�sð Þ ≤ 1þ
X∞
j¼1

e�
dist x,Q jð Þ2

8d t�sð Þ ≤ 1þ
X∞
j¼1

ð

Q j

e�
x�yj j2

8dδ nð Þ t�sð Þdy

≤ 1þ
ð

n
e�

x�yj j2
8dδ nð Þ t�sð Þdy≤ 1þ 8πdδ nð Þ½ �n=2 t� sð Þn=2:

(82)

We have from (79) and (82) into (74)

1

4πd t� sð Þ½ �n=2
ð

n
e�

x�yj j2
4d t�sð Þλg uð Þvmdy

≤ 2n=2 1� 1
p

� �n
2 1�1

p

� �
t� sð Þ� n

2pKλ∞g∞e
σ=pð Þt 1þ 8πdδ nð Þ½ �n=2 t� sð Þn=2

n o

≤ 2n=2 1� 1
p

� �n
2 1�1

p

� �
Kλ∞g∞e

σ=pð Þt t� sð Þ� n
2p þ 8πdδ nð Þ½ �n=2 t� sð Þn2 1�1

p

� �� �
:
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ðt
0
S2 t� sð Þλg uð Þvmds

≤ 2n=2 1� 1
p

� �n
2 1�1

p

� �
Kλ∞g∞e
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2p� n

t1�
n
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� �
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þ 2n=2 1� 1
p

� �n
2 1�1

p

� �
Kλ∞g∞e
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2p
2p� n

t1�
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Then

x jð Þ � x ið Þ�� ��≤ 2dist x ið Þ,Q j

� �
: (71)

As x ið Þ � y
�� ��≤ x ið Þ � x jð Þ�� ��þ x jð Þ � y

�� �� we get from (68) and (71) the estimate

x ið Þ � y
�� ��≤ 2dist x ið Þ,Q j

� �
þ

ffiffiffi
n
p
2

x ið Þ � x jð Þ�� ��

≤ 2þ ffiffiffi
n
p� �

dist x ið Þ,Q j

� �
:

(72)

We have obviously

x ið Þ � y
�� ��≥ dist x ið Þ,Q j

� �
: (73)

From (71) and (73) we get (66). ♦
Proof of theorem 3.2.

Let x∈n an arbitrary point and Q j

n o
j∈

be the family of pairwise disjoint

measurable cubes of the form (64) covering n such that the center of Q0 is x 0ð Þ ¼ x.
Firstly, using the fact that n ¼ ∪∞

j¼0Q j and applying the left-hand inequality
in (66)

ð

n
e�

x�yj j2
4d t�sð Þλg uð Þvmdy ¼

X∞
j¼0

ð

Q j

e�
x�yj j2
8d t�sð Þe�

x�yj j2
8d t�sð Þλg uð Þvmdy

≤
X∞
j¼0

e�
dist x,Q jð Þ2

8d t�sð Þ

ð

Q j

� x�yj j2
8d t�sð Þ

λg uð Þvmdy
8<
:

9=
;:

(74)

By Hölder ineguality with p> max 1, n
2

� �
and q ¼ 1� 1

p

ð

Q j

� x�yj j2
8d t�sð Þ

λg uð Þvmdy≤
ð

Q j

�q x�yj j2
8d t�sð Þ

dy

2
4

3
5
1=q ð

Q j

λpgp uð Þvpmdy
" #1=p

: (75)

As

ð

Q j

e�
q x�yj j2
8d t�sð Þdy≤

ð

n

�q x�yj j2
8d t�sð Þ

dy ¼ 8πd
q

� �n=2

t� sð Þn=2 (76)

and by (56) we have

ð

Q j

λpgp uð Þvpmdy≤ λp∞g
p
∞β

pmþ 1ð Þpmþ1
αε pm½ �þ1

4þ n
4

� �n

eσt, (77)

where

g∞ ¼ sup
u∈ 0, u0k k∞½ �

g uð Þ: (78)
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Then, from (76) and (77) into (75)
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Q j

� x�yj j2
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8πd
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� �n
2 1�1

p

� �
t� sð Þn2 1�1
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� �
λ∞g∞e

σ=pð Þt, (79)
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K ¼ K p,m, n, α, εð Þ ¼ β
pmþ 1ð Þpmþ1
αε pm½ �þ1

4þ n
4

� �n
" #1=p

: (80)
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As p> max 1, n
2

� �
, the function in t on the right-hand side of the estimate (83) is

continuous on þ. As u tð Þk k∞ ≤ u0k k∞ on 0, tmax½ ½ and v satisfied (83), we conclude
from (11) that tmax ¼ þ∞. Whence, the solution is global. ♦

Remark.We can extend the system to the case where instead of vm we put vh vð Þ
provided that.

i. h : BUC ð Þ ! BUC ð Þ is a locally continuous Lipschitz function, namely: for
all constant ρ∈þ, there exists a constant c ρð Þ∈ ∗

þ such that for all
u, v∈BUC nð Þ with uk k∞ ≤ ρ and vk k∞ ≤ ρ we have

h uð Þ � g vð Þk k∞ ≤ c ρð Þ u� vk k∞:

ii. There exist two constants M∈ ∗
þ and r∈ such that:

0≤ h vð Þ≤Mvr, forallv∈þ:

In this more general case, by examining the proof of the theorem 3.2; we see that
under the same assumptions above, the system has also a global nonnegative
classical solution. ♦

4. Illustrative example

To illustrate the previous study about global existence, we give the following
reaction–diffusion system

ut t, xð Þ ¼ aΔu t, xð Þ � c1u3

c2 þ c3u2
vm, t, xð Þ∈ ∗

þ � n,

vt t, xð Þ ¼ dΔv t, xð Þ þ c4e�c5t xj j
2 u3

c2 þ c3u2
vm, t, xð Þ∈ ∗

þ � n ,

u 0, xð Þ ¼ u0 xð Þ, v 0, xð Þ ¼ v0 xð Þ, x∈n,

8>>>>><
>>>>>:

(84)

where ck, k ¼ 1, … , 4 are real positive constants and c5 is a real nonnegative
constant. If a, b∈þ, n,m∈ ∗ , u0, v0 ∈BUC nð Þ and are nonnegative; the
system (84) admits a unique global nonnegative classical solution
u, vð Þ∈C þ;Xð Þ∩C1  ∗

þ ;X
� �

: ♦

5. Conclusion and perspectives

We have prouved in the case where a< d that the solution is global, but it
remains an interesting question that if it is uniformly bounded or not.

As perspectives, we will replace the function g ¼ g uð Þ satisfying the hypothesis
(H4) by the function g uð Þ ¼ ur with r≥ 1 is a real constant and replace the term vm

by eαv with α>0; namely that reaction term is of exponential growth. The system
was studied on bounded domain by J. I. Kanel and M. Mokhtar in [12]. ♦
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The Fourier Transform
Method for Second-Order
Integro-Dynamic Equations on
Time Scales
Svetlin G. Georgiev

Abstract

In this chapter we introduce the Fourier transform on arbitrary time scales
and deduct some of its properties. In the chapter are given some applications for
second-order integro-dynamic equations on time scales.

Keywords: time scale, Fourier transform, generalized shift problem,
integro-dynamic equation

1. Introduction

Starting with the pioneering work of Hilger [1], the measure chains and in
particular, the time scales have gained a great attention in the last decades.
Especially, theoretical studies on dynamic equations on general time scales,
which can be regarded as generalization of the differential equations, achieved
big progress [2, 3].

The main aim of this chapter is to introduce the Fourier transform on arbitrary
time scales and to deduct some of its properties. We give applications for solving of
second-order integro-dynamic equations on time scales.

The chapter is organized as follows. In the next section we give some basic
definitions and facts from time scale calculus, Laplace, bilateral Laplace transform.
In Section 3 we define the Fourier transform and deduct some of its properties.
In Section 4 we give applications for second-order integro-dynamic equations on
time scales.

2. Preliminaries and auxiliary results

2.1 Time scales

Throughout this paper, we will assume that the reader is familiar with the basics
of the time scale calculus. A detailed introduction to the time scale calculus is given
in [2, 3]. Here, we collect the definitions and theorems that will be most useful in
this paper.
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Definition 2.1. A time scale, denoted by , is a nonempty, closed subset of . For
a, b∈, we let a, b½ � denote the set a, b½ �∩.

Definition 2.2. Let  be a time scale. For t∈, we define the forward jump operator
σ : !  by σ tð Þ ¼ inf s∈ : s> tf g, and the backward jump operator ρ : !  is
given by ρ tð Þ ¼ sup x∈ : s< tf g.

By convention, we take inf ∅ ¼ sup, sup∅ ¼ inf . For a function f : ! ,
we will use the notation f σ tð Þ for the composition f σ tð Þð Þ.

Definition 2.3. The graininess function μ : ! 0,∞½ Þ is defined by μ tð Þ ¼ σ tð Þ � t,
t∈.

Definition 2.4. Let t∈. If σ tð Þ ¼ t and t< sup, then t is right-dense. If σ tð Þ> t,
then t is right-scattered. Similarly, if ρ tð Þ ¼ t and t> inf , then t is left-dense. If ρ tð Þ< t,
then t is left-scattered.

Definition 2.5. If sup ¼ m such that m is left-scattered, then define κ ¼ n mf g,
otherwise, define κ ¼ .

Definition 2.6. A function f : !  is rd-continuous provided it is continuous at
right-dense points in  and its left-sided limits exist and are finite at all left-dense points
in . A function p : !  is regressive provided 1þ μ tð Þp tð Þ 6¼ 0, t∈κ. The set of all
regressive and rd-continuous functions on a time scale  is denoted byR ¼ R ð Þ. We use
the notation Rþ to denote the subgroup of those p∈R for which 1þ μ tð Þp tð Þ>0 for all
t∈κ.

Definition 2.7. The delta derivative of f : !  at t∈κ, is defined to be

fΔ tð Þ ¼ lim
s!t

f σ tð Þð Þ � f sð Þ
σ tð Þ � s

(1)

provided this limit exists.
Definition 2.8. For p∈R, the generalized exponential function ep : � !  is

defined by

ep t, sð Þ ¼ exp
ðt
s
ξμ τð Þ p τð Þð ÞΔτ

� �
, (2)

for s, t∈, where the cylinder transformation, ξh zð Þ, is defined by

ξh zð Þ ¼
1
h
Log 1þ zhð Þ, h>0,

z, h ¼ 0:

8<
: (3)

Definition 2.9. For p, q∈R, we define the operation ⊕ and ⊖ as follows

p⊕ qð Þ tð Þ ¼ p tð Þ þ q tð Þ þ μ tð Þp tð Þq tð Þ, ⊖pð Þ tð Þ ¼ � p tð Þ
1þ μ tð Þp tð Þ : (4)

The proof of the next theorem is given in [2, 3].
Theorem 2.1. If p, q∈R and t, s, r∈, then

1.e0 t, sð Þ ¼ 1, ep t, tð Þ ¼ 1.

2.eσp t, sð Þ ¼ 1þ μ tð Þp tð Þð Þep t, sð Þ:

3.ep s, tð Þ ¼ 1
ep t, sð Þ ¼ e⊖p t, sð Þ:

136

Recent Developments in the Solution of Nonlinear Differential Equations

4.ep t, sð Þep s, rð Þ ¼ ep t, rð Þ:

5.ep t, sð Þeq t, sð Þ ¼ ep⊕ q t, sð Þ:

6.ep t, t0ð Þ>0 for any t0, t∈ if p∈R and 1þ μ tð Þp tð Þ>0 for any t∈κ.

Definition 2.10. For h>0, the Hilger complex plane is defined by h ¼ n � 1
h

� �
and we take 0 ¼  and ∞ ¼ n 0f g.

Definition 2.11. For given h∈ 0,∞½ Þ, the Hilger real part of a number z∈ is given
by the formula

Re h zð Þ ¼
Re zð Þ, h ¼ 0,
∣1þ hz∣� 1

h
, 0< h<∞,

∣z∣, h ¼ ∞:

8>><
>>:

(5)

It is known, see [4], that for a fixed z and 0< h<∞, Re h zð Þ is a nondecreasing
function of h. This relationship extends to h ¼ ∞ because for any 0< h<∞,

Re h zð Þ ¼ ∣1þ hz∣� 1
h

≤
1þ h∣z∣� 1

h
¼ ∣z∣ ¼ Re∞ zð Þ: (6)

2.2 The Laplace transform

Here we suppose that sup ¼ ∞ and s∈.
Definition 2.12. For 0≤ h≤∞ and λ∈, we define

h λð Þ ¼ z∈h : Re h zð Þ> λf g (7)

and

�h λð Þ ¼ z∈h : 0< Re h zð Þ< λf g: (8)

Definition 2.13. Define minimal graininess as follows μ ∗ sð Þ ¼ inf t∈ s,∞½ Þμ tð Þ.
If λ is positively regressive, then for any z∈μ ∗ sð Þ λð Þ, it is known (see [4]) that

∣eλ⊖z t, sð Þ∣ ≤ eλ⊖Re μ ∗ sð Þ zð Þ t, sð Þ, t∈ ½s,∞Þ,
lim
t!∞

Re μ ∗ sð Þ zð Þ t, sð Þ ¼ 0 and lim
t!∞

eλ⊖z t, sð Þ ¼ 0: (9)

Definition 2.14. If X ⊂ and α∈Rþ is a constant, then we say that f ∈ Crd ð Þ is of
exponential order α on X if there exists a constant K such that for all t∈X, the bound
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If f ∈ Crdð½s,∞ÞÞ is of exponential order α, then for any z∈μ ∗ sð Þ αð Þ (see [4])
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Definition 2.15. If f : !  and z∈ is a complex number such that for all
t∈ s,∞½ Þ we have 1þ μ tð Þz 6¼ 0, then the Laplace transform is defined by the improper
integral

L fð Þ z, sð Þ ¼
ð∞
s
f τð Þe⊖z σ τð Þ, sð ÞΔτ, (10)

whenever the integral exists.

137

The Fourier Transform Method for Second-Order Integro-Dynamic Equations on Time Scales
DOI: http://dx.doi.org/10.5772/intechopen.95622



4.ep t, sð Þep s, rð Þ ¼ ep t, rð Þ:

5.ep t, sð Þeq t, sð Þ ¼ ep⊕ q t, sð Þ:

6.ep t, t0ð Þ>0 for any t0, t∈ if p∈R and 1þ μ tð Þp tð Þ>0 for any t∈κ.

Definition 2.10. For h>0, the Hilger complex plane is defined by h ¼ n � 1
h

� �
and we take 0 ¼  and ∞ ¼ n 0f g.

Definition 2.11. For given h∈ 0,∞½ Þ, the Hilger real part of a number z∈ is given
by the formula

Re h zð Þ ¼
Re zð Þ, h ¼ 0,
∣1þ hz∣� 1

h
, 0< h<∞,

∣z∣, h ¼ ∞:

8>><
>>:

(5)

It is known, see [4], that for a fixed z and 0< h<∞, Re h zð Þ is a nondecreasing
function of h. This relationship extends to h ¼ ∞ because for any 0< h<∞,

Re h zð Þ ¼ ∣1þ hz∣� 1
h

≤
1þ h∣z∣� 1

h
¼ ∣z∣ ¼ Re∞ zð Þ: (6)

2.2 The Laplace transform

Here we suppose that sup ¼ ∞ and s∈.
Definition 2.12. For 0≤ h≤∞ and λ∈, we define

h λð Þ ¼ z∈h : Re h zð Þ> λf g (7)

and

�h λð Þ ¼ z∈h : 0< Re h zð Þ< λf g: (8)

Definition 2.13. Define minimal graininess as follows μ ∗ sð Þ ¼ inf t∈ s,∞½ Þμ tð Þ.
If λ is positively regressive, then for any z∈μ ∗ sð Þ λð Þ, it is known (see [4]) that

∣eλ⊖z t, sð Þ∣ ≤ eλ⊖Re μ ∗ sð Þ zð Þ t, sð Þ, t∈ ½s,∞Þ,
lim
t!∞

Re μ ∗ sð Þ zð Þ t, sð Þ ¼ 0 and lim
t!∞

eλ⊖z t, sð Þ ¼ 0: (9)

Definition 2.14. If X ⊂ and α∈Rþ is a constant, then we say that f ∈ Crd ð Þ is of
exponential order α on X if there exists a constant K such that for all t∈X, the bound
∣f tð Þ∣ ≤Keα t, sð Þ holds.

If f ∈ Crdð½s,∞ÞÞ is of exponential order α, then for any z∈μ ∗ sð Þ αð Þ (see [4])
lim t!∞f tð Þe⊖z t, sð Þ ¼ 0.

Definition 2.15. If f : !  and z∈ is a complex number such that for all
t∈ s,∞½ Þ we have 1þ μ tð Þz 6¼ 0, then the Laplace transform is defined by the improper
integral

L fð Þ z, sð Þ ¼
ð∞
s
f τð Þe⊖z σ τð Þ, sð ÞΔτ, (10)

whenever the integral exists.

137

The Fourier Transform Method for Second-Order Integro-Dynamic Equations on Time Scales
DOI: http://dx.doi.org/10.5772/intechopen.95622



Significant work has been conducted in [4, 5] and references therein to
understand the analytical properties of the Laplace transform.

2.3 The bilateral Laplace transform

Here we suppose that sup ¼ ∞, inf  ¼ �∞ and s∈. Denote μ ∗ sð Þ ¼
supt∈ �∞,sð �μ tð Þ, �μ sð Þ ¼ inf t∈ �∞,sð �μ tð Þ. For λ∈R, define

Mλ t, sð Þ ¼
ðs
t

1
1þ λμ τð ÞΔτ: (11)

For λ∈Rþð �∞, s�ð Þ, λ∈, it is known (see [6])

1.MΔ
λ t, sð Þ<0 for all t∈ �∞, sð Þ, where the differentiation is with respect to t.

2. lim t!�∞Mλ t, sð Þ ¼ ∞:

3. ∣eλ⊖z t, sð Þ∣ ≤ eλ⊖Re μ ∗ sð Þ zð Þ t, sð Þ:

4. lim t!�∞eλ⊖Re μ ∗ sð Þ zð Þ t, sð Þ ¼ 0:

5. lim t!�∞eλ⊖z t, sð Þ ¼ 0:

Definition 2.16. Suppose that f : !  is regulated. Then the bilateral Laplace
transform of f is defined by

Lb fð Þ z, sð Þ ¼
ð∞
�∞

f tð Þe⊖z σ tð Þ, sð ÞΔt, (12)

for regressive z∈ where the improper integral exists.
Definition 2.17. Let α, γ ∈. We say that a function f ∈ Crd ð Þ has double expo-

nential order α, γð Þ on  if the restrictions f j �∞,sð � and f j s,∞½ Þ are of exponential order α
and γ, respectively.

If f ∈ Crd ð Þ is of double exponential order α, γð Þ, in [6], they are proved the
following properties

1.for any z∈μ ∗ sð Þ γð Þ, lim t!∞f tð Þe⊖z t, sð Þ ¼ 0.

2.for any z∈ �μ ∗ sð Þ αð Þ, lim t!�∞f tð Þe⊖z t, sð Þ ¼ 0.

For z∈, we define

��μ s, zð Þ ¼ μ ∗ sð Þ, Re �μ sð Þ zð Þ≤0,

�μ sð Þ, Re �μ sð Þ zð Þ>0:

(
(13)

Definition 2.18. Let α∈Rþð �∞, s�ð Þ and γ ∈Rþð½s,∞ÞÞ, α, γ ∈. We say that
s, α, γð Þ is an admissible triple if

s,α,γ ¼ z∈ : Re μ ∗ sð Þ zð Þ< α, Re μ ∗ sð Þ zð Þ> γ, 1þ ��μðs, zÞRe �μ sð Þ zð Þ 6¼ 0
� � 6¼ ∅:

(14)
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If s, α, γð Þ is an admissible triple and if f ∈ Crd ð Þ is of double exponential order
α, γð Þ, then in [6] it is proved that Lb �, sð Þ exists on s,α,γ, converges absolutely and
uniformly, and

lim
∣z∣!∞
Lb fð Þ z, sð Þ ¼ 0: (15)

3. The Fourier transform

Suppose that  is a time scale so that inf  ¼ �∞, sup ¼ ∞ and s∈.
Definition 3.1. Suppose that f : !  is regulated. Then the Fourier transform of

the function f is defined by

F fð Þ x, sð Þ ¼
ð∞
�∞

f tð Þeσ⊖ix t, sð ÞΔt (16)

for x∈ for which 1þ ixμ tð Þ 6¼ 0 for any t∈κ and the improper integral exists.
Definition 3.2. Let α∈Rþð½s,∞ÞÞ, γ ∈Rþð �∞, s�ð Þ. We say that s, γ, αð Þ is a real

admissible triple if

Rs,γ,α ¼ x∈ : Re μ ∗ sð Þ ixð Þ< γ, Re μ ∗ sð Þ ixð Þ> α,
�

1þ ��μ sð ÞRe �μ sð Þ ixð Þ 6¼ 0
� 6¼ ∅:

(17)

If f ∈ Crd ð Þ, then the triple s, γ, αð Þ is a real admissible triple and f is of double
exponential order α, γð Þ, then F fð Þ �, sð Þ exists on Rs,γ,α and converges absolutely and
uniformly on Rs,γ,α. Below we will list some of the properties of the Fourier
transform.

Theorem 3.1. Let f , g : ! , α, β∈. Then

F αf þ βgð Þ x, sð Þ ¼ αF fð Þ x, sð Þ þ βF gð Þ x, sð Þ (18)

for those x∈ for which 1þ xμ tð Þ 6¼ 0, t∈κ, and the respective integrals exist.
Proof. We have

F αf þ βgð Þ x, sð Þ ¼
ð∞
�∞

αf þ βgð Þ tð Þeσ⊖ix t, sð ÞΔt

¼ α

ð∞
�∞

f tð Þeσ⊖ix t, sð ÞΔtþ β

ð∞
�∞

g tð Þeσ⊖ix t, sð ÞΔt ¼ αF fð Þ x, sð Þ þ βF gð Þ x, sð Þ:
(19)

This completes the proof. □
Theorem 3.2. Let f : !  be enough times Δ-differentiable. For any k∈,

we have

F fΔ
k

� �
x, sð Þ ¼ ixð ÞkF fð Þ x, sð Þ (20)

for those x∈ for which 1þ xμ tð Þ 6¼ 0, t∈κ, and the respective integrals exist and

lim
t!�∞

fΔ
l
tð Þe⊖ix t, sð Þ ¼ 0, l∈ 0, … , k� 1f g: (21)

Proof. We will use the principle of mathematical induction.
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�∞
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ð∞
�∞
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This completes the proof. □
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we have
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� �
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1.For k ¼ 1, we have

F fΔ
� �

x, sð Þ ¼
ð∞
�∞

fΔ tð Þeσ⊖ix t, sð ÞΔt ¼ lim
t!∞

f tð Þe⊖ix t, sð Þ � lim
t!�∞f tð Þe⊖ix t, sð Þ

�
ð∞
�∞

⊖ixð Þ tð Þf tð Þe⊖ix t, sð ÞΔt ¼ ix
ð∞
�∞

f tð Þeσ⊖ix t, sð ÞΔt

¼ ixF fð Þ x, sð Þ:

(22)

2.Assume that

F fΔ
k

� �
x, sð Þ ¼ ixð ÞkF fð Þ x, sð Þ (23)

for some k∈.

3.We will prove that

F fΔ
kþ1� �

x, sð Þ ¼ ixð Þkþ1F fð Þ x, sð Þ: (24)

Really, we have

F fΔ
kþ1� �

x, sð Þ ¼ ixF fΔ
k

� �
x, sð Þ ¼ ixð Þkþ1F fð Þ x, sð Þ: (25)

This completes the proof. □
Theorem 3.3. Let f : ! . Then

F fð Þ x, sð Þ ¼ F fð Þ �x, sð Þ (26)

for those x∈ for which 1� xμ tð Þ 6¼ 0, t∈κ, and the respective integrals exist.
Proof. From the definition of the Fourier transform, we have

F fð Þ x; sð Þ ¼
ð∞
�∞

e
Ð σ tð Þ
s

1
μ τð ÞLog 1þμ τð Þ ⊖ ixð Þð Þ τð Þð ÞΔτf tð ÞΔt

¼
ð∞
�∞

e
Ð σ tð Þ
s

1
μ τð ÞLog 1þμ τð Þ ⊖ ixð Þð Þ τð Þð ÞΔτf tð ÞΔt

¼
ð∞
�∞

e
Ð σ tð Þ
s

1
μ τð ÞLog 1þμ τð Þ ⊖ i �xð Þð Þð Þ τð Þð ÞΔτf tð ÞΔt

¼ F fð Þ �x; sð Þ:

(27)

This completes the proof. □
Theorem 3.4. Let f : !  be regulated and

F tð Þ ¼
ðt
a
f τð ÞΔτ, t∈, (28)

for some fixed a∈. Then

F Fð Þ x, sð Þ ¼ � i
x
F fð Þ x, sð Þ (29)
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for those x∈, x 6¼ 0, for which

lim
t!�∞

F tð Þe⊖ix t, sð Þ ¼ 0: (30)

Proof. We have

F Fð Þ x; sð Þ ¼
ð∞
�∞

F tð Þeσ⊖ix t; sð ÞΔt ¼
ð∞
�∞

F tð Þ 1þ μ tð Þ ⊖ ixð Þð Þ tð Þð Þe⊖ix t; sð ÞΔt

¼
ð∞
�∞

F tð Þ 1
1þ iμ tð Þx e⊖ix t; sð ÞΔt ¼ � 1

ix

ð∞
�∞

F tð Þ �ix
1þ iμ tð Þx e⊖ix t; sð ÞΔt

¼ i
x

ð∞
�∞

F tð Þ ⊖ixð Þ tð Þe⊖ix t; sð ÞΔt ¼ i
x

ð∞
�∞

F tð ÞeΔ⊖ix t; sð ÞΔt

¼ i
x

lim
t!∞

F tð Þe⊖ixðt; sÞ � lim
t!�∞F tð Þe⊖ixðt; sÞ

� �
� i
x

ð∞
�∞

f tð Þeσ⊖ix t; sð ÞΔt

¼ � i
x
F fð Þ x; sð Þ

(31)

for those x∈, x 6¼ 0, for which

lim
t!�∞

F tð Þe⊖ix t, sð Þ ¼ 0: (32)

This completes the proof. □

4. Applications to second-order integro-dynamic equations

Consider the equation

yΔ
2 þ a1yΔ þ a2y ¼

ðt
a
f sð ÞΔs, (33)

where a1, a2 ∈, f ∈ Crd ð Þ, f : ! . Let s∈ be fixed. Let also, x∈ be
such that

x2 � ia1x� a2 6¼ 0 (34)

and

lim
t!�∞

yΔ
l
tð Þe⊖ix t, sð Þ ¼ 0, l ¼ 0, 1, (35)

and

lim
t!�∞

F tð Þe⊖ix t, sð Þ ¼ 0, (36)

where

F tð Þ ¼
ðt
a
f sð ÞΔs, t∈: (37)
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Here a∈ is a fixed constant. Set

Y xð Þ ¼ F yð Þ x, sð Þ: (38)

Then

F yΔ
� �

x, sð Þ ¼ ixF yð Þ x, sð Þ
¼ ixY xð Þ,

F yΔ
2

� �
x, sð Þ ¼ ixð Þ2F yð Þ x, sð Þ

¼ �x2Y xð Þ

(39)

and

F fð Þ x, sð Þ ¼ � i
x
F x, sð Þ: (40)

Then the Eq. (33) takes the form

�x2Y xð Þ þ ia1xY xð Þ þ a2Y xð Þ ¼ � i
x
F x, sð Þ, (41)

or

x2 � ia1x� a2
� �

Y xð Þ ¼ i
x
F fð Þ x, sð Þ, (42)

or

Y xð Þ ¼ i
x x2 � ia1x� a2ð Þ F fð Þ x, sð Þ: (43)

Consequently

y tð Þ ¼ F�1 i
x x2 � ia1x� a2ð Þ F fð Þð�, sÞ
� �

tð Þ, t∈, (44)

provided that F�1 exists.
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Chapter 9

Effect of Additive Perturbations
on the Solution of Reflected
Backward Stochastic Differential
Equations
Jasmina Ðorđević

Abstract

This chapter has as a topic large class of general, nonlinear reflected backward
stochastic differential equations with a lower barrier, whose generator, final condi-
tion as well as barrier process arbitrarily depend on a small parameter. The solutions
of these equations which are obtained by additive perturbations, named the
perturbed equations, are compared in the Lp-sense, p∈ �1, 2½, with the solutions of
the appropriate equations of the equal type, independent of a small parameter and
named the unperturbed equations. Conditions under which the solution of the
unperturbed equation is Lp-stable are given. It is shown that for an arbitrary a>0
there exists t að Þ≤T, such that the Lp-difference between the solutions of both the
perturbed and unperturbed equations is less than a for every t∈ t að Þ,T½ �:

Keywords: reflected, backward, stochastic, perturbation, estimate

1. Introduction

This chapter is dedicated to the problem of additive perturbations of reflected
backward stochastic differential equations (shorter RBSDEs) with one lower
barrier. Motivation for the topic comes from a large application of perturbation
problems in real life problems from one side, and reflected backward stochastic
differential equations in finance from another. Perturbed stochastic differential
equations are widely applied in theory and in applications. Randomness from the
environment can be introduced via stochastic models with perturbations. In such
manner, complex phenomena under perturbations in analytical mechanics, control
theory, population dynamics or financial models, can be compared and approxi-
mated by appropriate unperturbed models of a simpler structure, i.e. the problems
are translated on more simple and familiar cases which are easier to solve and
investigate (see [1–3] for example). Problem of additively perturbed backward
stochastic differential equations is analysed by Janković, M. Jovanović, J. Ðorđević
in [4], while generally perturbed reflected backward stochastic differential equa-
tions are already observed by Ðorđević and Janković in [5]. Topic of this chapter is
additive type of perturbations for reflected backward stochastic differential equa-
tions as a special type of mention general problem for reflected backward stochastic
differential equations, and a more general one than the additive perturbation
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problem for simple backward stochastic differential equations. Finer and more
precise estimates are deduced and generalizations emphasised.

Backward stochastic differential equations (BSDEs for short) was introduced and
developed by Pardoux and Peng [6–8] in the 90s. Notation of nonlinear BSDE and
proof of the existence and uniqueness of adapted solutions is given in their fundamental
paper [6]. After that,many applications incited to introduction various types of BSDEs,
in mathematical problems in finance (see [9]), stochastic control and stochastic games
(see [10, 11]), stochastic partial differential equations, semi-linear parabolic partial
differential equations (PDEs) (see [8, 12]) etc. (for further reading see also [13–17]).

Type of RBSDEs which is observed in this chapter have been first introduced in
literature by El-Karoui et al. in [18]. Introduced RBSDEs with one lower barrier has
following form,

Yt ¼ ξþ
ðT
t
f s,Ys,Zsð Þdsþ KT � Kt �

ðT
t
Zs dBs, 0≤ t≤T,

Yt⩾Lt, t≤T and
ðT
0
Ys � Lsð ÞdKs ¼ 0 P� a:s:,

(1)

where one of the components of the solution is forced to stay above a given
barrier/obstacle process L ¼ Lt, t∈ 0,T½ �f g. The solution is a triple of adapted pro-
cesses Yt,Zt,Ktð Þ, t∈ 0,T½ �f gwhich satisfies Eq. (1). The process K ¼ Kt, t∈ 0,T½ �f g
is nondecreasing and its purpose is to push upward the state process Y ¼
Yt, t∈ 0,T½ �f g in order to keep it above the obstacle L.
As it was already mentioned, RBSDEs are connected with a wide range of applica-

tions within which, the pricing of American options (constrained or not) in markets is
most famous one. Further, the important applications of RBSDEs are in mixed control
problems, partial differential variational inequalities, real options (see [9, 18–21] and
the references therein) etc. El-Karoui et al. proved in [18] the existence and unique-
ness of the solution to Eq. (1) under conditions of square integrability of the data and
Lipschitz property for the coefficient (also called driver) f . Field of RBSDEs is
developing in two directions, some authors deal with the issue of the existence and
uniqueness results for RBSDEs under weaker assumptions (than the ones in [6] which
are for the general BSDEs), while others are introducing some new types of those
equations by adding jumps, introducing second barrier etc.

Systematization of the papers which are done in the framework of RBSDEs can
be found in paper [5] by Ðorđević and Janković.

Recently, Hamèdene and Popier in [22] proved that if ξ, supt∈ 0,T½ � L
þ
t

� �
andÐ T

0 ∣f t, 0, 0ð Þ∣dt belong to Lp for some p∈ �1, 2½, then RBSDE (1) with one reflecting
barrier associated with f , ξ,Lð Þ has a unique solution. Aman gave [23] a similar
result for a class of generalized RBSDEs with Lipschitz condition on the coefficients,
and he extended these results under non-Lipschitz condition in his paper [24].
There are several papers by Hamadène [25] and Hamadène and Ouknine [26],
Matoussi [27], Lepeltier and Xu [28] and Ren et al. [29, 30] in which authors
emphasise the significance of the case when the data are from Lp for some p∈ �1, 2½.

The aim of this chapter is a study Eq. (1) if the terminal condition ξ and
generator f are p-integrable, p∈ �1, 2½. Regarding that in several applications such as
in finance, control, games, PDEs, etc., data are not square integrable, and the
influence of some random external factors on the system can be seen as perturba-
tions of the solution of Eq.(1), it is natural to introduced additive perturbation in
the parameters of equation ξ, f and barrier process L, in order to better describe the
change of the system and find some measurement for the change.

This chapter is organized in following way; In Section 2 elementary notations,
definitions and preliminary results regarding RBSDEs are introduced. Next section
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is dedicated to the formulation of the main problem, i.e. problem of additively
perturbed RBSDEs with one lower obstacle is stated. Together with the set up for
the problem, some auxiliary estimates are proved in this section. In Section 4,
conditions under which the solutions are stable are given, and estimates for the
stability are derived. Section 5 contains the most interesting result, i.e. the estima-
tion of a time interval for a given closeness of the solutions. The chapter is finished
with the Section 6, Conclusions remarks, where the highlights of the chapter are
emphasised and ideas and open problems for the future research are stated.

2. Preliminaries

All random variables and processes are defined on a filtered probability space
Ω,F ,F t,Pð Þ, where F t, t∈ 0,T½ �f g is a natural filtration of a standard d-dimen-
sional Brownian motion B ¼ Bt, t∈ 0,T½ �f g, that is, it is right continuous and
complete. Also, all stochastic processes are defined for t∈ 0,T½ �, where T is a
positive, fixed, real constant, and they take values in n for some positive integer n.
For any k∈ and x∈k, ∣x∣ denotes the Euclidean norm of x.

Further, for any real constant p∈ �1, 2½, we recall on standard notations which
will be used:

i. Sp ð Þ is the set of -valued, adapted and continuous processes
Xt, t∈ 0,T½ �f g such that

Xk kSp ¼ E sup
t∈ 0,T½ �

Xtj jp
" #1

p

<∞:

The space Sp ð Þ endowed with the norm �k kSp is a Banach type.

ii.Mp is the set of predictable processes Zt, t∈ 0,T½ �f g with values in d such
that

Xk kMp ¼ E
ðT
0
Ztj j2dt

� �p
2

" #1
p

<∞:

Likewise,Mp nð Þ endowed with the norm �k kMp is a Banach space.

iii. The space Sp �Mp will be denoted by Bp.

Let ξ be an -valued and FT-measurable random variable and let a random
function f : 0,T½ � �Ω� � d !  be measurable with respect to P � B ð Þ�
B d� �

, where P denotes the σ-field of progressive subsets of 0,T½ � �Ω, while
L≔ Lt, t∈ 0,T½ �f g is a continuous progressively measurable -valued process.

The following hypothesis are introduced for ξ, f and L:
H1ð Þ ξ∈Lp Ωð Þ.
H2ð Þ

i. The process f t, 0, 0ð Þ, t∈ 0,T½ �f g satisfies E Ð T
0 j f t, 0, 0ð Þjdt

� �p
<∞;

ii. (ii) (Lipschitz condition) there exists a constant k>0 such that for all
t∈ 0,T½ �, y, zð Þ, y0, z0ð Þ∈� d,
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∣f t, y, zð Þ � f t, y0, z0ð Þ∣ ≤ k jy� y0j þ jz� z0jð Þ:

H3ð Þ The barrier process L satisfies:

i. LT ≤ ξ;

ii. Lþ≔L∨0∈Sp ð Þ:

The definition of the unique solution to Eq. (1), associated with the triple
ξ, f ,Lð Þ, and the existence and uniqueness theorem under Lipschitz condition are
given in [22].

Definition 1

I.(Existence of the solution.) The triple Yt,Zt,Ktð Þ, t∈ 0,T½ �f g is an Lp-solution
to RBSDE (1) with a continuous lower reflecting barrier L, terminal condition
ξ and drift/generator/driver f if:

1. Yt,Ztð Þ, t∈ 0,T½ �f g belongs to Bp;

2.K ¼ Kt, t∈ 0,T½ �f g is an adapted continuous nondecreasing process such
that K0 ¼ 0 and KT ∈Lp Ωð Þ;

3.Yt ¼ ξþ Ð Tt f s,Ys,Zsð Þdsþ KT � Kt �
Ð T
t Zs dBs a:s:, t∈ 0,T½ �;

4.Yt ≥Lt, t∈ 0,T½ �;

5.
Ð T
0 Ys � Lsð ÞdKs ¼ 0 P� a:s:

II.(Uniqueness of the solution.) The triple Yt,Zt,Ktð Þ, t∈ 0,T½ �f g is a unique Lp-
solution to RBSDE (1) if for any other solution Yt,Zt,Kt

� �
, t∈ 0,T½ �� �

, the
following holds,

Yt � Yt
�� ��

Sp ¼ 0, Zt � Zt
�� ��

Mp ¼ 0, Kt � Kt
�� ��

Sp ¼ 0: (2)

Proposition 1 [Hamèdene, Popier [22]] Let H1ð Þ � H3ð Þ hold for ξ, f and L.
Then, RBSDE (1) with one continuous lower reflecting barrier L associated with
ξ, f ,Lð Þ has a unique Lp-solution, p∈ �1, 2½, i.e. there exists a triple of processes
Yt,Zt,Ktð Þ, t∈ 0,T½ �f g satisfying Definition 1.
The following lemma is well known result and it is widely used in stability

estimates.
Lemma 1 [Hamèdene, Popier [22]] Assume that Y,Zð Þ∈Bp is a solution of the

equation

Yt ¼ ξþ
ðT
t
f s,Ys,Zsð Þdsþ AT � At �

ðT
t
Zs dBs, t∈ 0,T½ �,

where:

i. f is a function satisfying the previous assumptions;

ii. The process At, t∈ 0,T½ �f g is P� a:s: of bounded variation.
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Then, for any 0≤ t≤ u≤T it follows that

Ytj jp þ c pð Þ
ðu
t
Ysj jp�21Ys 6¼0 Zsj j2ds

≤ Yuj jp þ p
ðu
t
Ysj jp�1Ŷs dAs

þp
ðu
t
Ysj jp�1Ŷsf s,Ys,Zsð Þds� p

ðu
t
Ysj jp�1ŶsZs dBs,

where c pð Þ ¼ p p�1ð Þ
2 and ŷ ¼ y

∣y∣ 1y 6¼0.
When the model of some phenomenon is described by RBSDE, than, some

change of the system can be treated as additive perturbation of the initial equation.
The size of the change could be estimated as the difference between the solutions of
the initial equation and the perturbed one. In view of this direction, together with
Eq. (1), we study the following perturbed RBSDE,

Yt ¼ ξε þ
ðT
t
f ε s,Yε

s ,Z
ε
s , ε

� �
dsþ Kε

T � Kε
t �

ðT
t
Zε
s dBs, 0 t∈ 0,T½ �,

Yε
t ≥Lε

t , t≤T and
ðT
0

Yε
s � Lε

s

� �
dKε

s ¼ 0, P� a:s,

(3)

where ξε, f ε and the barrier Lε are defined as ξ, f and L, respectively, they
depend on a small parameter ε∈ 0, 1ð Þ, and they are of a special additive form

ξε ¼ ξþ β T, εð Þ,
f ε t, y, z, εð Þ ¼ f t, y, zð Þ þ α t, y, z, εð Þ,

Lε
t ¼ Lt þ lεt :

For a given f ε, ξε,Lεð Þ, a triple of adapted processes Yε
t ,Z

ε
t ,K

ε
t

� �
, t∈ 0,T½ �� �

is a
solution to Eq. (3). In the sequel Eq. (1) will be named the unperturbed equation,
while Eq. (3) a additively perturbed one. It is usually expected that the additively
perturbed Eq. (3) is more general and more complexed than the unperturbed one.
Furthermore, it is obvious that in case when β εð Þ � α t, y, z, εð Þ � lεt � 0, additively
perturbed equation reduces to unperturbed equation. This fact is a basic motivation
for us to introduce conditions guaranteeing the closeness of the solutions of the
additively perturbed and unperturbed equations in the Lp-sense, and to estimate the
conditions for the additive parameters in order for the solutions of these equations
to stay close in the Lp-sense in some way.

After basic notations, definitions and results are present, the formulation of the
main problem is given in following section.

3. Formulation of the problem of additively perturbed RBSDEs with one
lower obstacle & and auxiliary results

In order to deduce estimates for the closeness of the solutions of additively
perturbed and unperturbed equations, following assumptions are introduced;
A0ð Þ For the additional part in final condition of perturbed equation β T, εð Þ,

such that ξε ¼ ξþ β T, εð Þ, while ξε, ξ∈Lp Ωð Þ, there exists a non-random function
β1 εð Þ, ε∈ 0, 1ð Þ, such that

E β T, εð Þj jp ≤ β1 εð Þ:
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that K0 ¼ 0 and KT ∈Lp Ωð Þ;

3.Yt ¼ ξþ Ð Tt f s,Ys,Zsð Þdsþ KT � Kt �
Ð T
t Zs dBs a:s:, t∈ 0,T½ �;

4.Yt ≥Lt, t∈ 0,T½ �;

5.
Ð T
0 Ys � Lsð ÞdKs ¼ 0 P� a:s:

II.(Uniqueness of the solution.) The triple Yt,Zt,Ktð Þ, t∈ 0,T½ �f g is a unique Lp-
solution to RBSDE (1) if for any other solution Yt,Zt,Kt

� �
, t∈ 0,T½ �� �

, the
following holds,

Yt � Yt
�� ��

Sp ¼ 0, Zt � Zt
�� ��

Mp ¼ 0, Kt � Kt
�� ��

Sp ¼ 0: (2)

Proposition 1 [Hamèdene, Popier [22]] Let H1ð Þ � H3ð Þ hold for ξ, f and L.
Then, RBSDE (1) with one continuous lower reflecting barrier L associated with
ξ, f ,Lð Þ has a unique Lp-solution, p∈ �1, 2½, i.e. there exists a triple of processes
Yt,Zt,Ktð Þ, t∈ 0,T½ �f g satisfying Definition 1.
The following lemma is well known result and it is widely used in stability

estimates.
Lemma 1 [Hamèdene, Popier [22]] Assume that Y,Zð Þ∈Bp is a solution of the

equation

Yt ¼ ξþ
ðT
t
f s,Ys,Zsð Þdsþ AT � At �

ðT
t
Zs dBs, t∈ 0,T½ �,

where:

i. f is a function satisfying the previous assumptions;

ii. The process At, t∈ 0,T½ �f g is P� a:s: of bounded variation.
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Then, for any 0≤ t≤ u≤T it follows that

Ytj jp þ c pð Þ
ðu
t
Ysj jp�21Ys 6¼0 Zsj j2ds

≤ Yuj jp þ p
ðu
t
Ysj jp�1Ŷs dAs

þp
ðu
t
Ysj jp�1Ŷsf s,Ys,Zsð Þds� p

ðu
t
Ysj jp�1ŶsZs dBs,

where c pð Þ ¼ p p�1ð Þ
2 and ŷ ¼ y

∣y∣ 1y 6¼0.
When the model of some phenomenon is described by RBSDE, than, some

change of the system can be treated as additive perturbation of the initial equation.
The size of the change could be estimated as the difference between the solutions of
the initial equation and the perturbed one. In view of this direction, together with
Eq. (1), we study the following perturbed RBSDE,

Yt ¼ ξε þ
ðT
t
f ε s,Yε

s ,Z
ε
s , ε

� �
dsþ Kε

T � Kε
t �

ðT
t
Zε
s dBs, 0 t∈ 0,T½ �,

Yε
t ≥Lε

t , t≤T and
ðT
0

Yε
s � Lε

s

� �
dKε

s ¼ 0, P� a:s,

(3)

where ξε, f ε and the barrier Lε are defined as ξ, f and L, respectively, they
depend on a small parameter ε∈ 0, 1ð Þ, and they are of a special additive form

ξε ¼ ξþ β T, εð Þ,
f ε t, y, z, εð Þ ¼ f t, y, zð Þ þ α t, y, z, εð Þ,

Lε
t ¼ Lt þ lεt :

For a given f ε, ξε,Lεð Þ, a triple of adapted processes Yε
t ,Z

ε
t ,K

ε
t

� �
, t∈ 0,T½ �� �

is a
solution to Eq. (3). In the sequel Eq. (1) will be named the unperturbed equation,
while Eq. (3) a additively perturbed one. It is usually expected that the additively
perturbed Eq. (3) is more general and more complexed than the unperturbed one.
Furthermore, it is obvious that in case when β εð Þ � α t, y, z, εð Þ � lεt � 0, additively
perturbed equation reduces to unperturbed equation. This fact is a basic motivation
for us to introduce conditions guaranteeing the closeness of the solutions of the
additively perturbed and unperturbed equations in the Lp-sense, and to estimate the
conditions for the additive parameters in order for the solutions of these equations
to stay close in the Lp-sense in some way.

After basic notations, definitions and results are present, the formulation of the
main problem is given in following section.

3. Formulation of the problem of additively perturbed RBSDEs with one
lower obstacle & and auxiliary results

In order to deduce estimates for the closeness of the solutions of additively
perturbed and unperturbed equations, following assumptions are introduced;
A0ð Þ For the additional part in final condition of perturbed equation β T, εð Þ,

such that ξε ¼ ξþ β T, εð Þ, while ξε, ξ∈Lp Ωð Þ, there exists a non-random function
β1 εð Þ, ε∈ 0, 1ð Þ, such that

E β T, εð Þj jp ≤ β1 εð Þ:
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A1ð Þ For the additional part in the generator/driver integral, α t, y, z, εð Þ, there
exists a non-random function α1 εð Þ, ε∈ 0, 1ð Þ, such that

sup
t, y, zð Þ∈ 0,T½ ��Bp

∣α t, y, z, εð Þ∣ ≤ α1 εð Þ a:s:

A2ð Þ For the additional part in barrier processes lεt , there exists a non-random
function l1 εð Þ, ε∈ 0, 1ð Þ, such that

E sup
t∈ 0,T½ �

lεt
�� ��p ≤ l1 εð Þ:

We give first an auxiliary result for the stability of the solutions which we will
use to prove main result.

Proposition 2 Let p∈ �1, 2½ and let Yt,Zt,Ktð Þ, t∈ 0,T½ �f g and
Yε
t ,Z

ε
t ,K

ε
t

� �
, t∈ 0,T½ �� �

be the solutions to additively unperturbed and perturbed
Eqs. (1) and (3), respectively. Let also assumptions A0ð Þ � A2ð Þ and conditions
H1ð Þ � H3ð Þ be satisfied. Then,

E Yε
t � Yt

�� ��p ≤C1 ec1 T�tð Þ, t∈ 0,T½ �, (4)

where c1 ¼ p� 1þ pkþ pk2

p�1 and C1 ¼ β1 εð Þ þ αp1 εð ÞT þ l
p�1
p

1 εð Þ E K̂T
�� ��p� �1

p
.

Proof: Let us denote for t∈ 0,T½ � the differences of the processes of the solutions,
Ŷt ¼ Yε

t � Yt, Ẑt ¼ Zε
t � Zt, K̂t ¼ Kε

t � Kt:

If we subtract Eqs. (1) and (3), we obtain

Ŷt ¼ β T, εð Þ þ
ðT
t
α s,Yε

s ,Z
ε
s , ε

� �
dsþ K̂T � K̂t �

ðT
t
Ẑs dBs, t∈ 0,T½ �: (5)

Applying Lemma 1 on Ŷt
�� ��p, we have

Ŷt
�� ��p þ c pð Þ

ðT
t
Ŷs
�� ��p�21Ŷs 6¼0 Ẑs

�� ��2ds

≤ β T, εð Þj jp þ p
ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
α s,Yε

s ,Z
ε
s , ε

� �
ds

þp
ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
d ΔK̂s
� �� p

ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
Ẑs dBs

≤ β T, εð Þj jp þ p
ðT
t
Ŷs
�� ��p�1∣α s,Yε

s ,Z
ε
s , ε

� �
∣ds

þpk
ðT
t
Ŷs
�� ��p�1∣Yε

s � Ys∣dsþ pk
ðT
t
Ŷs
�� ��p�1∣Zε

s � Zs∣ds

þp
ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
d ΔK̂s
� �� p

ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
Ẑs dBs

≔ β T, εð Þj jp þ I1 tð Þ þ pk
ðT
t
Ŷs
�� ��pdsþ I2 tð Þ þ I3 tð Þ þ I4 tð Þ,

(6)

where Ii tð Þ, i ¼ 1, 2, 3, 4 are the appropriate integrals. In order to estimate I1 tð Þ,
we apply the elementary inequality ap�1b≤ p�1

p ap þ 1
p b

p, a, b≥0 and assumption
A1ð Þ. Then,
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I1 tð Þ ¼ p
ðT
t
Ŷs
�� ��p�1∣α s,Yε

s ,Z
ε
s , ε

� �
∣ds

≤ p� 1ð Þ
ðT
t
Ŷs
�� ��p dsþ α

p
1 εð Þ T � tð Þ:

(7)

In order to estimate I2 tð Þ, we use the elementary inequality 2ab≤ a2
2 þ 2b2,

I2 tð Þ≤ pk2

p� 1

ðT
t
Ŷs
�� ��p dsþ c pð Þ

2

ðT
t
Ŷs
�� ��p�2I Ŷs 6¼0f g Ẑs

�� ��2ds,

where c pð Þ ¼ p p� 1ð Þ=2.
For estimation of member I3 tð Þ, we will use mapping x, að Þ ! ~θ x, að Þ ¼

x� aj jp�21x 6¼a x� að Þ, x, að Þ∈� . Function x! ~θ x, að Þ is non-decreasing, while
the function a! ~θ x, að Þ is non-increasing. As it is known, lεs ¼ Lε

s � Ls and since
Yε

s ≥Lε
s ,Ys ≥Ls, then

I3 tð Þ ¼ p
ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
d ΔK̂s
� �

¼ p
ðT
t

~θ Yε
s ,Ys

� �
I Yε

s¼Lε
sf gdK

ε
s � p

ðT
t

~θ Yε
s ,Ys

� �
I Ys¼Lsf gdKs

≤ p
ðT
t
Lε
s � Ls

�� ��p�2I Lε
s�Ls 6¼0f g Lε

s � Ls
� �

dKε
s � p

ðT
t
Lε
s � Ls

�� ��p�2I Lε
s�Ls 6¼0f g Lε

s � Ls
� �

dKs

¼ p
ðT
t
lεs
�� ��p�1d K̂s

� �
:

(8)

Substituting estimates for Ii tð Þ, i ¼ 1, 2, 3 in in (6), we obtain

Ŷt
�� ��p þ c pð Þ

2

ðT
t
Ŷs
�� ��p�2I Ŷs 6¼0f g Ẑs

�� ��2ds

≤ β T, εð Þj jp þ p� 1þ pkþ pk2

p� 1

 !ðT
t
Ŷs
�� ��p dsþ p

ðT
t
lεs
�� ��p�1d K̂s

� �
,

þαp1 εð Þ T � tð Þ þ I4 tð Þ:

Taking expectation on last inequality, and taking into account that expectation
of I4 is 0, we have

E Ŷt
�� ��p ≤ β1 εð Þ þ α

p
1 εð ÞT þ l

p�1
p

1 εð Þ E K̂T
�� ��p� �1

p

þ p� 1þ pkþ pk2

p� 1

 !ðT
t
E Ŷs
�� ��p ds:

As KT,Kε
T ∈Lp Ωð Þ, it follows that E K̂T

�� ��p <∞. So (4) holds straightforwardly by
applying the Gronwall-Bellman inequality ([31], Theorem 1.5):

Let u tð Þ be a continuous function in a, b½ �, f tð Þ be Riemann integrable function in

a, b½ � and c ¼ const>0. If u tð Þ ¼ f tð Þ þ c
Ð b
t u sð Þds, t∈ a, b½ �, then u tð Þ≤ f tð Þ þ

c
Ð b
t f sð Þec s�tð Þds, t∈ a, b½ �.
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A1ð Þ For the additional part in the generator/driver integral, α t, y, z, εð Þ, there
exists a non-random function α1 εð Þ, ε∈ 0, 1ð Þ, such that

sup
t, y, zð Þ∈ 0,T½ ��Bp

∣α t, y, z, εð Þ∣ ≤ α1 εð Þ a:s:

A2ð Þ For the additional part in barrier processes lεt , there exists a non-random
function l1 εð Þ, ε∈ 0, 1ð Þ, such that

E sup
t∈ 0,T½ �

lεt
�� ��p ≤ l1 εð Þ:

We give first an auxiliary result for the stability of the solutions which we will
use to prove main result.

Proposition 2 Let p∈ �1, 2½ and let Yt,Zt,Ktð Þ, t∈ 0,T½ �f g and
Yε
t ,Z

ε
t ,K

ε
t

� �
, t∈ 0,T½ �� �

be the solutions to additively unperturbed and perturbed
Eqs. (1) and (3), respectively. Let also assumptions A0ð Þ � A2ð Þ and conditions
H1ð Þ � H3ð Þ be satisfied. Then,

E Yε
t � Yt

�� ��p ≤C1 ec1 T�tð Þ, t∈ 0,T½ �, (4)

where c1 ¼ p� 1þ pkþ pk2

p�1 and C1 ¼ β1 εð Þ þ αp1 εð ÞT þ l
p�1
p

1 εð Þ E K̂T
�� ��p� �1

p
.

Proof: Let us denote for t∈ 0,T½ � the differences of the processes of the solutions,
Ŷt ¼ Yε

t � Yt, Ẑt ¼ Zε
t � Zt, K̂t ¼ Kε

t � Kt:

If we subtract Eqs. (1) and (3), we obtain

Ŷt ¼ β T, εð Þ þ
ðT
t
α s,Yε

s ,Z
ε
s , ε

� �
dsþ K̂T � K̂t �

ðT
t
Ẑs dBs, t∈ 0,T½ �: (5)

Applying Lemma 1 on Ŷt
�� ��p, we have

Ŷt
�� ��p þ c pð Þ

ðT
t
Ŷs
�� ��p�21Ŷs 6¼0 Ẑs

�� ��2ds

≤ β T, εð Þj jp þ p
ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
α s,Yε

s ,Z
ε
s , ε

� �
ds

þp
ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
d ΔK̂s
� �� p

ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
Ẑs dBs

≤ β T, εð Þj jp þ p
ðT
t
Ŷs
�� ��p�1∣α s,Yε

s ,Z
ε
s , ε

� �
∣ds

þpk
ðT
t
Ŷs
�� ��p�1∣Yε

s � Ys∣dsþ pk
ðT
t
Ŷs
�� ��p�1∣Zε

s � Zs∣ds

þp
ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
d ΔK̂s
� �� p

ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
Ẑs dBs

≔ β T, εð Þj jp þ I1 tð Þ þ pk
ðT
t
Ŷs
�� ��pdsþ I2 tð Þ þ I3 tð Þ þ I4 tð Þ,

(6)

where Ii tð Þ, i ¼ 1, 2, 3, 4 are the appropriate integrals. In order to estimate I1 tð Þ,
we apply the elementary inequality ap�1b≤ p�1

p ap þ 1
p b

p, a, b≥0 and assumption
A1ð Þ. Then,
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I1 tð Þ ¼ p
ðT
t
Ŷs
�� ��p�1∣α s,Yε

s ,Z
ε
s , ε

� �
∣ds

≤ p� 1ð Þ
ðT
t
Ŷs
�� ��p dsþ α

p
1 εð Þ T � tð Þ:

(7)

In order to estimate I2 tð Þ, we use the elementary inequality 2ab≤ a2
2 þ 2b2,

I2 tð Þ≤ pk2

p� 1

ðT
t
Ŷs
�� ��p dsþ c pð Þ

2

ðT
t
Ŷs
�� ��p�2I Ŷs 6¼0f g Ẑs

�� ��2ds,

where c pð Þ ¼ p p� 1ð Þ=2.
For estimation of member I3 tð Þ, we will use mapping x, að Þ ! ~θ x, að Þ ¼

x� aj jp�21x 6¼a x� að Þ, x, að Þ∈� . Function x! ~θ x, að Þ is non-decreasing, while
the function a! ~θ x, að Þ is non-increasing. As it is known, lεs ¼ Lε

s � Ls and since
Yε

s ≥Lε
s ,Ys ≥Ls, then

I3 tð Þ ¼ p
ðT
t
Ŷs
�� ��p�1 sgn Ŷs

� �
d ΔK̂s
� �

¼ p
ðT
t

~θ Yε
s ,Ys

� �
I Yε

s¼Lε
sf gdK

ε
s � p

ðT
t

~θ Yε
s ,Ys

� �
I Ys¼Lsf gdKs

≤ p
ðT
t
Lε
s � Ls

�� ��p�2I Lε
s�Ls 6¼0f g Lε

s � Ls
� �

dKε
s � p

ðT
t
Lε
s � Ls

�� ��p�2I Lε
s�Ls 6¼0f g Lε

s � Ls
� �

dKs

¼ p
ðT
t
lεs
�� ��p�1d K̂s

� �
:

(8)

Substituting estimates for Ii tð Þ, i ¼ 1, 2, 3 in in (6), we obtain

Ŷt
�� ��p þ c pð Þ

2

ðT
t
Ŷs
�� ��p�2I Ŷs 6¼0f g Ẑs

�� ��2ds

≤ β T, εð Þj jp þ p� 1þ pkþ pk2

p� 1

 !ðT
t
Ŷs
�� ��p dsþ p

ðT
t
lεs
�� ��p�1d K̂s

� �
,

þαp1 εð Þ T � tð Þ þ I4 tð Þ:

Taking expectation on last inequality, and taking into account that expectation
of I4 is 0, we have

E Ŷt
�� ��p ≤ β1 εð Þ þ α

p
1 εð ÞT þ l

p�1
p

1 εð Þ E K̂T
�� ��p� �1

p

þ p� 1þ pkþ pk2

p� 1

 !ðT
t
E Ŷs
�� ��p ds:

As KT,Kε
T ∈Lp Ωð Þ, it follows that E K̂T

�� ��p <∞. So (4) holds straightforwardly by
applying the Gronwall-Bellman inequality ([31], Theorem 1.5):

Let u tð Þ be a continuous function in a, b½ �, f tð Þ be Riemann integrable function in

a, b½ � and c ¼ const>0. If u tð Þ ¼ f tð Þ þ c
Ð b
t u sð Þds, t∈ a, b½ �, then u tð Þ≤ f tð Þ þ

c
Ð b
t f sð Þec s�tð Þds, t∈ a, b½ �.
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The theorem is proved.
⋆

For the introduced problem, conditions for the stability of the solutions and
estimates for the stability of the solutions are derived In next section.

4. Stability estimates for additive perturbations

For the estimate of Lp-difference between the solutions to Eqs. (1) and (3), the
Lp-stability of the solution to Eq. (1) is necessary.

Following theorem provides the result, that in case of small additive perturba-
tions case, we can expect that the difference of the solutions of perturbed and
unperturbed equations tends to zero, when the perturbations are sufficiently small.

Theorem 1 Let all the conditions of Proposition 2 be satisfied and let the func-
tions β1 εð Þ, α1 εð Þ, l1 εð Þ tend to zero as ε tends to zero, uniformly in t∈ 0,T½ �. Then it
follows that

E sup
t∈ 0,T½ �

Yε
t � Yt

�� ��p ! 0, ε! 0,

E
ðT
0
Zε
s � Zs

�� ��2ds
� �p

2

! 0, ε! 0,

E sup
t∈ 0,T½ �

E Kε
t � Kt

�� ��p ! 0, ε! 0:

Proof: Let us define

ϕ εð Þ≔ max β1, εð Þ, αp1 εð Þ, l
p�1
p

1 εð Þ
� �

: (9)

From Proposition 2, we have that C1 ≤ϕ εð Þ ~C, where ~C ¼ 1þ T þ E K̂T
�� ��p� �1

p

and, therefore,

E Ŷt
�� ��p ≤ϕ εð Þ ~Cec1 T�tð Þ, t∈ 0,T½ �:

Since ϕ εð Þ ! 0 as ε! 0, then for every t0 ∈ 0,T½ �,

sup
t∈ t0,T½ �

E Ŷt
�� ��p ≤ϕ εð Þ ~Cec1 T�t0ð Þ ! 0, ε! 0: (10)

In order to estimate the Lp-closeness between the processes Zt and Zε tð Þ, as well
as Kt and Kε Tð Þ, we need estimate E supt∈ 0,T½ � Ŷt

�� ��p, that is to estimate I4 tð Þ. By
applying the Burkholder-Davis-Guandy inequality [32] and Young inequality,
uαv1�α ≤ αuþ 1� αð Þv, v≥0, α∈ 0, 1½ �, we have

E sup
t∈ t0,T½ �

I4 tð Þ≤4
ffiffiffi
2
p

pE
ðT
t0
Ŷs
�� ��2p�2 Ẑs

�� ��2ds
� �1

2

≤4
ffiffiffi
2
p

pE sup
t∈ t0,T½ �

Ŷt
�� ��p

ðT
t0
Ŷs
�� ��p�2 Ẑs

�� ��2ds
 !1

2

≤
1
2
E sup
t∈ t0,T½ �

Ŷt
�� ��p þ 16p2E

ðT
t0
Ŷs
�� ��p�2 Ẑs

�� ��2ds:
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We can conclude that

E sup
t∈ t0,T½ �

I4 tð Þ≤ 1
2
E sup
t∈ t0,T½ �

Ŷt
�� ��p þ 32p2

c pð Þ ϕ εð Þ ~Cec1 T�t0ð Þ: (11)

It follows that

E sup
t∈ t0,T½ �

Ŷt
�� ��p ≤ 1

2
E sup
t∈ t0,T½ �

Ŷs
�� ��p þ 32p2

c pð Þ ϕ εð Þ ~Cec1 T�t0ð Þ þ c1

ðT
t0
E Ŷs
�� ��p dsþ ϕ εð Þ ~C:

Hence,

E sup
t∈ t0,T½ �

Ŷt
�� ��p ≤ 2ϕ εð Þ ~C ec1 T�t0ð Þ 1þ 32p2

c pð Þ
� �

þ 1
� �

� ϕ εð ÞA1 t0ð Þ, (12)

where A1 t0ð Þ is a generic positive constant. By the assumption of the theorem,
ϕ εð Þ ! as ε! 0, then Esupt∈ t0,T½ � Ŷt

�� ��p ! 0, as ε! 0. The desired estimate holds if
we take t0 ¼ 0.

Now we can estimate the other two parts.
For every i∈ 0, 1, 2, …f g and arbitrary t0 ∈ 0,T½ �, let us define stopping times

τi ¼ inf t∈ 0,T½ �,
ðt
t0

Ẑs
�� ��2ds≥ i

� �
∧T:

Clearly, τi↑T a:s:when i! ∞. If we apply the Ito formula to ekt Ŷt
�� ��2, t∈ t0, τi½ �,

we find that

Ŷt0

�� ��2 þ
ðτi
t0
eks Ẑs
�� ��2ds

¼ ekτi Ŷτi

�� ��2 þ
ðτi
t0
eksŶs 2α s,Yε

s ,Z
ε
s , ε

� �� kŶs
� �þ 2

ðτi
t0
eksŶsdK̂s � 2

ðτi
t0
eksŶsẐs dBs

≔ ekτi Ŷτi

�� ��2 þ J1 þ J2 � 2
ðτi
t0
eksŶsẐs dBs,

(13)

where estimates J1 and J2 are the appropriate integrals. For λ1 >0 that

J1 ¼ 2
ðτi
t0
eksŶsα s,Yε

s ,Z
ε
s , ε

� �
ds� k

ðτi
t0
eksŶ

2
s ds

≤ 2 sup
s∈ t0, τi½ �

eks∣Ŷs∣α1 εð Þ T � t0ð Þ � k
ðτi
t0
eksŶ

2
s ds

≤
1
λ1

sup
s∈ t0, τi½ �

e2ks Ŷs
�� ��2 þ λ1 T � t0ð Þ2α21 εð Þ � k

ðτi
t0
eks Ŷs
�� ��2ds:

(14)
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The theorem is proved.
⋆

For the introduced problem, conditions for the stability of the solutions and
estimates for the stability of the solutions are derived In next section.

4. Stability estimates for additive perturbations

For the estimate of Lp-difference between the solutions to Eqs. (1) and (3), the
Lp-stability of the solution to Eq. (1) is necessary.

Following theorem provides the result, that in case of small additive perturba-
tions case, we can expect that the difference of the solutions of perturbed and
unperturbed equations tends to zero, when the perturbations are sufficiently small.

Theorem 1 Let all the conditions of Proposition 2 be satisfied and let the func-
tions β1 εð Þ, α1 εð Þ, l1 εð Þ tend to zero as ε tends to zero, uniformly in t∈ 0,T½ �. Then it
follows that

E sup
t∈ 0,T½ �

Yε
t � Yt

�� ��p ! 0, ε! 0,

E
ðT
0
Zε
s � Zs

�� ��2ds
� �p

2

! 0, ε! 0,

E sup
t∈ 0,T½ �

E Kε
t � Kt

�� ��p ! 0, ε! 0:

Proof: Let us define

ϕ εð Þ≔ max β1, εð Þ, αp1 εð Þ, l
p�1
p

1 εð Þ
� �

: (9)

From Proposition 2, we have that C1 ≤ϕ εð Þ ~C, where ~C ¼ 1þ T þ E K̂T
�� ��p� �1

p

and, therefore,

E Ŷt
�� ��p ≤ϕ εð Þ ~Cec1 T�tð Þ, t∈ 0,T½ �:

Since ϕ εð Þ ! 0 as ε! 0, then for every t0 ∈ 0,T½ �,

sup
t∈ t0,T½ �

E Ŷt
�� ��p ≤ϕ εð Þ ~Cec1 T�t0ð Þ ! 0, ε! 0: (10)

In order to estimate the Lp-closeness between the processes Zt and Zε tð Þ, as well
as Kt and Kε Tð Þ, we need estimate E supt∈ 0,T½ � Ŷt

�� ��p, that is to estimate I4 tð Þ. By
applying the Burkholder-Davis-Guandy inequality [32] and Young inequality,
uαv1�α ≤ αuþ 1� αð Þv, v≥0, α∈ 0, 1½ �, we have

E sup
t∈ t0,T½ �

I4 tð Þ≤4
ffiffiffi
2
p

pE
ðT
t0
Ŷs
�� ��2p�2 Ẑs

�� ��2ds
� �1

2

≤4
ffiffiffi
2
p

pE sup
t∈ t0,T½ �

Ŷt
�� ��p

ðT
t0
Ŷs
�� ��p�2 Ẑs

�� ��2ds
 !1

2

≤
1
2
E sup
t∈ t0,T½ �

Ŷt
�� ��p þ 16p2E

ðT
t0
Ŷs
�� ��p�2 Ẑs

�� ��2ds:
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We can conclude that

E sup
t∈ t0,T½ �

I4 tð Þ≤ 1
2
E sup
t∈ t0,T½ �

Ŷt
�� ��p þ 32p2

c pð Þ ϕ εð Þ ~Cec1 T�t0ð Þ: (11)

It follows that

E sup
t∈ t0,T½ �

Ŷt
�� ��p ≤ 1

2
E sup
t∈ t0,T½ �

Ŷs
�� ��p þ 32p2

c pð Þ ϕ εð Þ ~Cec1 T�t0ð Þ þ c1

ðT
t0
E Ŷs
�� ��p dsþ ϕ εð Þ ~C:

Hence,

E sup
t∈ t0,T½ �

Ŷt
�� ��p ≤ 2ϕ εð Þ ~C ec1 T�t0ð Þ 1þ 32p2

c pð Þ
� �

þ 1
� �

� ϕ εð ÞA1 t0ð Þ, (12)

where A1 t0ð Þ is a generic positive constant. By the assumption of the theorem,
ϕ εð Þ ! as ε! 0, then Esupt∈ t0,T½ � Ŷt

�� ��p ! 0, as ε! 0. The desired estimate holds if
we take t0 ¼ 0.

Now we can estimate the other two parts.
For every i∈ 0, 1, 2, …f g and arbitrary t0 ∈ 0,T½ �, let us define stopping times

τi ¼ inf t∈ 0,T½ �,
ðt
t0

Ẑs
�� ��2ds≥ i

� �
∧T:

Clearly, τi↑T a:s:when i! ∞. If we apply the Ito formula to ekt Ŷt
�� ��2, t∈ t0, τi½ �,

we find that

Ŷt0

�� ��2 þ
ðτi
t0
eks Ẑs
�� ��2ds

¼ ekτi Ŷτi

�� ��2 þ
ðτi
t0
eksŶs 2α s,Yε

s ,Z
ε
s , ε

� �� kŶs
� �þ 2

ðτi
t0
eksŶsdK̂s � 2

ðτi
t0
eksŶsẐs dBs

≔ ekτi Ŷτi

�� ��2 þ J1 þ J2 � 2
ðτi
t0
eksŶsẐs dBs,

(13)

where estimates J1 and J2 are the appropriate integrals. For λ1 >0 that

J1 ¼ 2
ðτi
t0
eksŶsα s,Yε

s ,Z
ε
s , ε

� �
ds� k

ðτi
t0
eksŶ

2
s ds

≤ 2 sup
s∈ t0, τi½ �

eks∣Ŷs∣α1 εð Þ T � t0ð Þ � k
ðτi
t0
eksŶ

2
s ds

≤
1
λ1

sup
s∈ t0, τi½ �

e2ks Ŷs
�� ��2 þ λ1 T � t0ð Þ2α21 εð Þ � k

ðτi
t0
eks Ŷs
�� ��2ds:

(14)
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Similarly, for λ2 >0,

J2 ¼ 2
ðτi
t0
eksŶs dK̂s ≤ 2 sup

s∈ t0, τi½ �
eks∣Ŷs∣

ðτi
t0
dK̂s

≤
1
λ2

sup
s∈ t0, τi½ �

e2ks Ŷs
�� ��2 þ λ2

ðτi
t0
dK̂s

� �2

¼ 1
λ2

sup
s∈ t0, τi½ �

e2ks Ŷs
�� ��2 þ λ2 K̂τi � K̂t0

� �2
:

(15)

Also,

K̂τi � K̂t0

� �2 ¼ Ŷτi � Ŷt0 �
ðτi
t0
α s,Yε

s ,Z
ε
s , ε

� �
dsþ

ðτi
t0
Ẑs dBs

� �2

≤4 Ŷτi

�� ��2 þ Ŷt0

�� ��2 þ
ðT
t0
α s,Yε

s ,Z
ε
s , ε

� �
1 s¼T∧τif gds

����
����
2

þ
ðτi
t0
Ẑs dBs

����
����
2

" #

≤4 Ŷτi

�� ��2 þ Ŷt0

�� ��2 þ 2 T � t0ð Þ2α21 εð Þ þ
ðτi
t0
Ẑs dBs

����
����
2

" #
:

(16)

Substituting (14), (15) and (16) in (13) yields

1� 4λ2ð Þ Ŷ0
�� ��2 þ

ðτi
t0
eks Ẑs
�� ��2ds

≤ ekτi þ 4λ2
� �

Ŷτi

�� ��2 þ 1
λ1
þ 1
λ2

� �
sup

s∈ t0, τi½ �
e2ks Ŷs
�� ��2

þ4λ2
ðτi
t0
Ẑs dBs

����
����
2

� 2
ðτi
t0
eksŶsẐs dBs � k

ðτi
t0
eks Ŷs
�� ��2dsþ λ1 þ 8λ2ð Þ T � t0ð Þ2α21 εð Þ:

It follows that
ðτi
t0
Ẑs
�� ��2ds≤ ekτi þ 4λ2 þ 1

λ1
þ 1
λ2

� �
sup

s∈ t0, τi½ �
e2ks Ŷs
�� ��2

þ4λ2
ðτi
t0
ẐsdBs

����
����
2

� 2
ðτi
t0
eksŶsẐs dBs

�k
ðτi
t0
eks Ŷs
�� ��2dsþ λ1 þ 8λ2ð Þ T � t0ð Þ2α21 εð Þ:

(17)

The last inequality can be written as

ðτi
t0
Ẑs
�� ��2ds≤ c2 t0ð Þ sup

s∈ t0, τi½ �
Ŷs
�� ��2 þ 4λ3

ðτi
t0
ẐsdBs

����
����
2

� 2
ðτi
t0
eksŶsẐsdBs

þ λ1 þ 8λ2ð Þ T � t0ð Þ2α21 εð Þ,
(18)

where

c2 t0ð Þ ¼ ekT þ 4λ2 þ 1
λ1
þ 1
λ2
� k T � t0ð Þ

� �
e2kT :
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By applying the inequality
Pm

i¼1ai
� �k ≤ mk�1 ∨ 1

� �Pm
i¼1a

k
i , ai ≥0, k≥0 on (18)

and by taking expectation, we obtain

E
ðτi
t0
Ẑs
�� ��2ds

� �p
2

≤ c
p
2
2 t0ð ÞE sup

s∈ t0, τi½ �
Ŷs
�� ��p þ 4

p
2λ

p
2
2E
ðτi
t0
Ẑs dBs

����
����
p

þ2p
2E
ðτi
t0
eksŶsẐs dBs

����
����
p
2

þ λ1 þ 8λ2ð Þp2 T � t0ð Þpϕ εð Þ:
(19)

It is left to estimate two integrals with respect to Brownian motion, which will be
done by applying the Burkholder–Davis–Guandy inequality,

E
ðτi
t0
Ẑs dBs

����
����
p

≤CpE
ðτi
t0
Ẑs
�� ��2ds

� �p
2

,

2
p
2E
ðτi
t0
eksŶsẐs dBs

����
����
p
2

≤Cp
2
2
p
2e

pkT
2 E

ðτi
t0
Ŷs
�� ��2 Ẑs

�� ��2ds
� �p

4

" #

≤ c3E sup
s∈ t0, τi½ �

Ŷt
�� ��p þ λ3

ðτi
t0
Ẑs
�� ��2ds

� �p
2

,

where λ3 >0, c3 ¼ 1
λ3
C2

p
2
2p�2epkT, and Cp ¼ 32=pð Þp=2 and Cp

2
¼ 64=pð Þp=4 are the

universal constants. Substituting previous estimates in (19), it follows that

E
ðτi
t0
Ẑs
�� ��2ds

� �p
2

≤ c
p
2
2 t0ð ÞE sup

s∈ t0, τi½ �
Ŷs
�� ��p þ 4

p
2λ

p
2
2CpE

ðτi
t0
Ẑs
�� ��2ds

� �p
2

þc3E sup
s∈ t0, τi½ �

Ŷt
�� ��p þ λ3E

ðτi
t0
Ẑs
�� ��2ds

� �p
2

þ λ1 þ 8λ2ð Þp2 T � t0ð Þpϕ εð Þ,

i.e.

1� 4
p
2λ

p
2
2Cp � λ3

� �
E
ðτi
t0
Ẑs
�� ��2ds

� �p
2

≤ c
p
2
2 t0ð Þ þ c3

� �
E sup
s∈ t0, τi½ �

Ŷs
�� ��p þ λ1 þ 8λ2ð Þp2 T � t0ð Þpϕ εð Þ:

(20)

The constants λ2, λ3 can be chosen such that 1� 4
p
2λ

p
2
2Cp � λ3 >0, then, from (12)

and (20) it follows that

E
ðτi
t0
Ẑs
�� ��2ds

� �p
2

≤
c
p
2
2 t0ð Þ þ c3

� �
A1 t0ð Þ þ λ1 þ 8λ2ð Þp2 T � t0ð Þp

1� 4
p
2λ

p
2
2Cp � λ3

ϕ εð Þ

� A2 t0ð Þϕ εð Þ,
(21)

where A2 t0ð Þ is a positive generic constant. By the Fatou’s Lemma,

E
ðT
t0
Ẑs
�� ��2ds

� �p
2

! 0, ε! 0:

Then, second estimate holds if we take t0 ¼ 0.
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Similarly, for λ2 >0,

J2 ¼ 2
ðτi
t0
eksŶs dK̂s ≤ 2 sup

s∈ t0, τi½ �
eks∣Ŷs∣

ðτi
t0
dK̂s

≤
1
λ2

sup
s∈ t0, τi½ �

e2ks Ŷs
�� ��2 þ λ2

ðτi
t0
dK̂s

� �2

¼ 1
λ2

sup
s∈ t0, τi½ �

e2ks Ŷs
�� ��2 þ λ2 K̂τi � K̂t0

� �2
:

(15)

Also,

K̂τi � K̂t0

� �2 ¼ Ŷτi � Ŷt0 �
ðτi
t0
α s,Yε

s ,Z
ε
s , ε

� �
dsþ

ðτi
t0
Ẑs dBs

� �2

≤4 Ŷτi

�� ��2 þ Ŷt0

�� ��2 þ
ðT
t0
α s,Yε

s ,Z
ε
s , ε

� �
1 s¼T∧τif gds

����
����
2

þ
ðτi
t0
Ẑs dBs

����
����
2

" #

≤4 Ŷτi

�� ��2 þ Ŷt0

�� ��2 þ 2 T � t0ð Þ2α21 εð Þ þ
ðτi
t0
Ẑs dBs

����
����
2

" #
:

(16)

Substituting (14), (15) and (16) in (13) yields

1� 4λ2ð Þ Ŷ0
�� ��2 þ

ðτi
t0
eks Ẑs
�� ��2ds

≤ ekτi þ 4λ2
� �

Ŷτi

�� ��2 þ 1
λ1
þ 1
λ2

� �
sup

s∈ t0, τi½ �
e2ks Ŷs
�� ��2

þ4λ2
ðτi
t0
Ẑs dBs

����
����
2

� 2
ðτi
t0
eksŶsẐs dBs � k

ðτi
t0
eks Ŷs
�� ��2dsþ λ1 þ 8λ2ð Þ T � t0ð Þ2α21 εð Þ:

It follows that
ðτi
t0
Ẑs
�� ��2ds≤ ekτi þ 4λ2 þ 1

λ1
þ 1
λ2

� �
sup

s∈ t0, τi½ �
e2ks Ŷs
�� ��2

þ4λ2
ðτi
t0
ẐsdBs

����
����
2

� 2
ðτi
t0
eksŶsẐs dBs

�k
ðτi
t0
eks Ŷs
�� ��2dsþ λ1 þ 8λ2ð Þ T � t0ð Þ2α21 εð Þ:

(17)

The last inequality can be written as

ðτi
t0
Ẑs
�� ��2ds≤ c2 t0ð Þ sup

s∈ t0, τi½ �
Ŷs
�� ��2 þ 4λ3

ðτi
t0
ẐsdBs

����
����
2

� 2
ðτi
t0
eksŶsẐsdBs

þ λ1 þ 8λ2ð Þ T � t0ð Þ2α21 εð Þ,
(18)

where

c2 t0ð Þ ¼ ekT þ 4λ2 þ 1
λ1
þ 1
λ2
� k T � t0ð Þ

� �
e2kT :
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By applying the inequality
Pm

i¼1ai
� �k ≤ mk�1 ∨ 1

� �Pm
i¼1a

k
i , ai ≥0, k≥0 on (18)

and by taking expectation, we obtain

E
ðτi
t0
Ẑs
�� ��2ds

� �p
2

≤ c
p
2
2 t0ð ÞE sup

s∈ t0, τi½ �
Ŷs
�� ��p þ 4

p
2λ

p
2
2E
ðτi
t0
Ẑs dBs

����
����
p

þ2p
2E
ðτi
t0
eksŶsẐs dBs

����
����
p
2

þ λ1 þ 8λ2ð Þp2 T � t0ð Þpϕ εð Þ:
(19)

It is left to estimate two integrals with respect to Brownian motion, which will be
done by applying the Burkholder–Davis–Guandy inequality,

E
ðτi
t0
Ẑs dBs

����
����
p

≤CpE
ðτi
t0
Ẑs
�� ��2ds

� �p
2

,

2
p
2E
ðτi
t0
eksŶsẐs dBs

����
����
p
2

≤Cp
2
2
p
2e

pkT
2 E

ðτi
t0
Ŷs
�� ��2 Ẑs

�� ��2ds
� �p

4

" #

≤ c3E sup
s∈ t0, τi½ �

Ŷt
�� ��p þ λ3

ðτi
t0
Ẑs
�� ��2ds

� �p
2

,

where λ3 >0, c3 ¼ 1
λ3
C2

p
2
2p�2epkT, and Cp ¼ 32=pð Þp=2 and Cp

2
¼ 64=pð Þp=4 are the

universal constants. Substituting previous estimates in (19), it follows that

E
ðτi
t0
Ẑs
�� ��2ds

� �p
2

≤ c
p
2
2 t0ð ÞE sup

s∈ t0, τi½ �
Ŷs
�� ��p þ 4

p
2λ

p
2
2CpE

ðτi
t0
Ẑs
�� ��2ds

� �p
2

þc3E sup
s∈ t0, τi½ �

Ŷt
�� ��p þ λ3E

ðτi
t0
Ẑs
�� ��2ds

� �p
2

þ λ1 þ 8λ2ð Þp2 T � t0ð Þpϕ εð Þ,

i.e.

1� 4
p
2λ

p
2
2Cp � λ3

� �
E
ðτi
t0
Ẑs
�� ��2ds

� �p
2

≤ c
p
2
2 t0ð Þ þ c3

� �
E sup
s∈ t0, τi½ �

Ŷs
�� ��p þ λ1 þ 8λ2ð Þp2 T � t0ð Þpϕ εð Þ:

(20)

The constants λ2, λ3 can be chosen such that 1� 4
p
2λ

p
2
2Cp � λ3 >0, then, from (12)

and (20) it follows that

E
ðτi
t0
Ẑs
�� ��2ds

� �p
2

≤
c
p
2
2 t0ð Þ þ c3

� �
A1 t0ð Þ þ λ1 þ 8λ2ð Þp2 T � t0ð Þp

1� 4
p
2λ

p
2
2Cp � λ3

ϕ εð Þ

� A2 t0ð Þϕ εð Þ,
(21)

where A2 t0ð Þ is a positive generic constant. By the Fatou’s Lemma,

E
ðT
t0
Ẑs
�� ��2ds

� �p
2

! 0, ε! 0:

Then, second estimate holds if we take t0 ¼ 0.
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It is left to estimate the difference between the processesK andKε. From (5), we have

K̂t ¼ β T, εð Þ � Ŷt þ
ðT
t
α s,Yε

s ,Z
ε
s , ε

� �
ds�

ðT
t
Ẑs dBs þ K̂T :

In view of (12) and (21), we derive that

E sup
t∈ t0,T½ �

K̂t
�� ��p

≤ 5p�1 E β T, εð Þj jp þ E sup
t∈ t0,T½ �

Ŷt
�� ��p þ

ðT
t0
α s,Yε

s ,Z
ε
s , ε

� �
ds

����
����
p(

þE sup
t∈ t0,T½ �

ðT
t
Ẑs dBs

����
����
p

þ E K̂T
�� ��p

)

≤ 5p�1 1þ A1 t0ð Þ þ T � t0ð Þp22p
2 þ CpA2 t0ð Þ

n o
ϕ εð Þ þ 5p�1E K̂T

�� ��p:

(22)

Since

K̂T ¼ Ŷ0 � β T, εð Þ �
ðT
0
α s,Yε

s ,Z
ε
s , ε

� �
dsþ

ðT
0
Ẑs dBs,

in accordance with the last estimate, we have that

E K̂T
�� ��p ≤ 4p�1 E Ŷ0

�� ��p þ E β T, εð Þj jp þ E
ðT
0
α s,Yε

s ,Z
ε
s , ε

� �
ds

����
����
p

þ E
ðT
0
Ẑs dBs

����
����
p" #

≤ 4p�1 ~Cec1T þ 1þ T
p
22

p
2 þ A2 0ð Þ

h i
ϕ εð Þ:

Hence, it follows from that there exists a generic constant A3 t0ð Þ>0 such that

E sup
t∈ 0,T½ �

K̂t
�� ��p ≤A3 t0ð Þϕ εð Þ ! 0, ε! 0: (23)

Then, the last estimate of the theorem holds if we take t0 ¼ 0, which completes
the proof.

⋆

In this section complete proof for the stability of the solutions is given, which as
a strong result and it enable us to estimate the time interval for a given closeness of
the solutions. This result is proved in next section.

5. Time interval for a given closeness of the solutions

Theorem 1 provides that the state processes Yε
t and Yt, the control processes Zε

t
and Zt, as well as Kε and K could be arbitrarily close for ε sufficiently small. I.e., if
perturbations are small enough, closeness of the solutions can be provided. But,
from the perspective of applications and modelling, it is usually important to study
the closeness between Yε

t and Yt near to the terminal values ξε and ξ. Per example,
for the application in pricing American options, an agent would be interested how
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will the price behave near the exercise time. It is interesting and useful to find the
time interval on which we could preserve the wanted closeness, i.e. that for some
permissible a>0 and ε sufficiently small, find t að Þ ¼ t∈ 0,T½ � so that the rate of the
closeness between Yε

t and Yt does not exceed a on t,T½ �. Even-more, estimate of the
closeness between the control processes Zε

t and Zt on t,T½ � can be estimated.
Theorem 2 Let all the conditions of Theorem 1 hold. Also, let the function

ϕ εð Þ, ε∈ 0, 1ð Þ defined with (9) be continuous and monotone increasing. Then, for
an arbitrary constant a>0 and ε∈ 0,Φ�1 að Þ� �

, there exists t∈ 0,T½ �, where

t ¼ max 0,T � 1
c1

ln
η

ϕ εð Þ~C

( )
,

such that

sup
t∈ t,T½ �

E Yε
t � Yt

�� ��p ≤ a, (24)

E
ðT
t
Ẑs
�� ��2ds

� �p
2

≤A2 tð Þϕ εð Þ, (25)

E sup
t∈ t,T½ �

K̂t
�� ��p ≤A3 tð Þϕ εð Þ, (26)

and A2 tð Þ and A3 tð Þ are constants defined in (21) and (23), respectively.
Proof: Let us introduce function S ε,T � tð Þ, t∈ 0,T½ �, such that

S ε,T � tð Þ ¼ ϕ εð Þ ~Cec1 T�tð Þ,

where c1 is given in Proposition 1 and ~C in Theorem 1. For an arbitrary a>0, it
must be

S ε, 0ð Þ≤ a≤ S ε,Tð Þ,

that is,

ϕ εð Þ~C≤ a≤ϕ εð Þ~Cec1T:

Since ϕ εð Þ decreases if ε decreases, it follows that

ε1 ¼ ϕ�1
a

~Cec1T

� �
≤ ε≤ϕ�1

a
~C

� �
¼ ε2,

where ϕ�1 is the inverse function of ϕ. For every ε∈ ε1, ε2½ �, it is now easy to
determine t̂ from the relation S ε,T � t̂ð Þ ¼ a, that is,

t̂ ¼ T � 1
c1

ln
η

ϕ εð Þ~C :

If ε∈ 0, ε1ð Þ, then a> S ε,Tð Þ. If ε∈ 0, ε2ð Þ, let us take

t ¼ max 0, t̂f g ¼ max 0,T � 1
c1

ln
η

ϕ εð Þ~C

( )
:
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ðT
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α s,Yε
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ε
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� �
ds�

ðT
t
Ẑs dBs þ K̂T :
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E sup
t∈ t0,T½ �

K̂t
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≤ 5p�1 E β T, εð Þj jp þ E sup
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Ŷt
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ðT
t0
α s,Yε

s ,Z
ε
s , ε

� �
ds

����
����
p(

þE sup
t∈ t0,T½ �

ðT
t
Ẑs dBs

����
����
p

þ E K̂T
�� ��p

)

≤ 5p�1 1þ A1 t0ð Þ þ T � t0ð Þp22p
2 þ CpA2 t0ð Þ

n o
ϕ εð Þ þ 5p�1E K̂T

�� ��p:

(22)
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K̂T ¼ Ŷ0 � β T, εð Þ �
ðT
0
α s,Yε

s ,Z
ε
s , ε

� �
dsþ

ðT
0
Ẑs dBs,
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E K̂T
�� ��p ≤ 4p�1 E Ŷ0

�� ��p þ E β T, εð Þj jp þ E
ðT
0
α s,Yε

s ,Z
ε
s , ε

� �
ds

����
����
p

þ E
ðT
0
Ẑs dBs

����
����
p" #

≤ 4p�1 ~Cec1T þ 1þ T
p
22

p
2 þ A2 0ð Þ

h i
ϕ εð Þ:
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Hence, for every ε∈ 0, ε2ð Þ, it is easy to see that

sup
t∈ t,T½ �

E Yε
s � Ys

�� ��p ≤ S ε,T � tð Þ ¼ a:

Clearly, t↑T as ε↑ε2 and t↓0 as ε↓ε1, that is, t↓0 as ε↓0.

⋆

This section illustrates the most important result of the chapter. Indeed, estimate
of a time interval, for the given, precise closeness of the solutions is very important
in the applications. Per example, if some random observation is modelled by
RBSDE, and its behaviour (value) on fixed time T is familiar, as well as its change
up to some other value in capital moment, and if the driver of the model is supposed
to linearly change, it is interesting to estimate the time interval on which we could.
“control” the observations, i.e. under which our change under linearisation of final
value and the drift will remain within the boundaries we impose.

6. Conclusions and remarks

It should be noted that this is a special case of generally perturbed problem
observed by Ðorđević and Janković in [5], but we have provided and explicit,
concrete estimates for the additive type of perturbations. Interesting in this case
also is, that even-though we introduce the hypothesis (H2), i.e. Lipschitz condition
for the drift/driver/generator function, this hypothesis is not explicitly used in the
estimates for perturbations. It is necessary to have it in order to have the existence
of the solutions for perturbed and unperturbed equations, but it is not necessary for
the perturbation estimates with the given assumptions A0ð Þ– A2ð Þ. It follows that
results from this chapter can be generalized in several ways:

I.assumption A1ð Þ can be weaken in the sense that it can be per example of the
form:

i. Lipschitz condition

α t, y, z, εð Þ � α t, y1, z1, εÞ
� ��2 ≤L y� y1

�� ��2 þ z� z1k k2
� �

þ α1 t, εð Þ, a:s:
���

for some Lipschitz constant L and nonrandom function α1 t, εð Þ.

ii. Non-Lipschitz condition.

There exist constants C>0 such that for any ω, tð Þ∈Ω� 0,T½ � and
y1, z1
� �

, y2, z2
� �

∈k � k�d,

α t, y1, z1, ε
� �� α t, y2, z2, εÞ

� ��2 ≤ ρ t, y1 � y2
�� ��2� �

þ C z1 � z2k k2 þ α1 t, εð Þ,
���

where ρ : 0,T½ � � Rþ ! Rþ satisfies: For fixed t∈ 0,T½ �, ρ t, �ð Þ is: a concave
and non-decreasing function with ρ t, 0ð Þ � 0;

• for fixed u,
Ð T
0 ρ t, uð Þdt<∞;

• for any M>0, the ODE
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u0 ¼ �Mρ t, uð Þ, u Tð Þ ¼ 0

has a unique solution u tð Þ � 0, t∈ 0,T½ �.

iii. Linear growth condition

∣α t, y, z, εð Þ∣ ≤K jyjþkzkð Þ þ α1 t, εð Þ, a:s:

for some constant K and nonrandom function α1 t, εð Þ.
In all alternatives, further assumption is that there exist nonrandom function
α εð Þ such that

sup
t∈ 0,T½ �

α1 t, εð Þ ¼ α εð Þ:

II.Conditions of existence and uniqueness of the solutions of perturbed and
unperturbed equations can be generalized in a sense for the driver f , f ε of
Eqs. (1) and (3) to satisfy some of mentioned conditions: non-Lipschitz or
linear growth one. In this manner, these assumptions would hold for the
additional function α in the perturbed driver also.

In the case when we change the initial conditions and assumptions, the steps will
be similar, while the main inequality at the end of the estimates will be established
by applying Bihari inequality and not Gronwall-Bellman one.
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Mathematical modeling in economics became central to economic theory during
the decade of the SecondWorldWar. The leading figure in that period was Paul
Anthony Samuelson whose 1947 book, Foundations of Economic Analysis, formalized
the problem of dynamic analysis in economics. In this brief chapter some seminal
applications of differential equations in economic growth, capital and business trade
cycles are outlined in deterministic setting. Chaos and bifurcations in economic
dynamics are not considered. Explicit analytical solutions are presented only in rela-
tively straightforward cases and in more complicated cases a path to the solution is
outlined. Differential equations in modern dynamic economic modeling are exten-
sions andmodifications of these classical works. Finally wewould like to stress that the
differential equations presented in this chapter are of the “stand-alone” type in that
they were solely introduced to model economic growth and trade cycles. Partial
differential equations such as thosewhich arise in related fields, like Bioeconomics and
Differential Games, from optimizing the Hamiltonian of the problem, and stochastic
differential equations of Finance and Macroeconomics are not considered here.
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1. Introduction

Ordinary differential equations are ubiquitous in the physical sciences and are
fundamental for the understanding of complex engineering systems [1]. In eco-
nomics they are used to model for instance, economic growth, gross domestic
product, consumption, income and investment whereas in finance stochastic dif-
ferential equations are indispensable in modeling asset price dynamics and option
pricing. The vast majority of the ordinary differential equations in economic are
autonomous differential equations or difference equations, where time is an
implicit variable, whereas the more difficult to solve delay (differential-difference)
equations have received much less attention. Difference equations seem a more
natural choice of modeling economic processes as key economic variables are mon-
itored at discrete time units but they can present significant complications in their
asymptotic behavior and are thus more difficult to analyse. Differential equations
on the other hand, can be more amenable to asymptotic stability analysis. Partial
differential equations, usually of the second order, for functions of at least two
variables arise naturally in modern macroeconomics from solving an optimization
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problem formulated in a stochastic setting and in optimal control theory. Two books
that are recommended for delving deeper into the- economic applications of differ-
ential equations are the introductory one by Gandolfo [2] and the more advanced by
Brock and Malliaris [3]. Both books are excellent sources for ordinary differential
equations in economic dynamics. A more recent book which requires strong math-
ematical background is by Acemoglu [4].

2. Some differential equations of neoclassical growth theory and
business cycles

Some of the most important differential equations developed by economists
during a period spanning over sixty years are presented in this section. Most of them
beginning with Solow’s development of a growth model, which was partly moti-
vated by the works of Harrod and Domar, are models from Neoclassical Growth
Theory. The main postulate of Neoclassical Growth Theory is that economic growth is
driven by three elements: labour, capital, and technology. Economic growth is an
important topic in economics and Solow’s growth model is the first topic taught in
undergraduate economics because of its underlying simplicity and importance as
argued by Acemoglu [5]. The differential equation by Samuelson is concerned with
demand and supply scenarios. Phillips’ work is the earliest attempt to employ clas-
sical feedback control theory in order to steer a national economy towards a desired
target. The remaining works are differential equations with time lags inherently
present in production and capital accumulation. Due to space limitations, the expo-
sition is somewhat uneven with full mathematical analyses of most models and
cursory treatments of those with time lags. The choice of the differential equations
presented in this chapter is a judicious one, the list is by no means exhaustive, but is
meant to afford a glimpse into how the mathematical thinking of some famous
economists has influenced the economic growth theory in the twentieth century.

2.1 Harrod-Domar

The Harrod-Domar model was developed independently by Roy Harrod [6] and
Evsey Domar [7] to analyze business cycles originally but later was used to explain
an economy’s growth rate through savings and capital productivity. Output, Y, is a
function of capital stock, K, Y ¼ F Kð Þ, and the marginal productivity, dY

dK ¼ c ¼
constant. The model postulates that the output growth rate is given by

1
Y
dY
dt
¼ sc� δ,

where s is the savings rate, and δ the capital depreciation rate. The straightfor-
ward solution,

Y tð Þ ¼ Y0e sc�δð Þt:

clearly demonstrates that increasing investment through savings and productiv-
ity boosts economic growth but does not take into account labour input and
population size.

2.2 Samuelson

In his 1941 Paul Samuelson [8] paper employed simple differential equations
to investigate the stability of equilibrium for several demand–supply scenarios.
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The simplest stability analysis was carried out under the Walrasian and Marshallian
assumptions. In the former price increases (decreases) if excess demand is positive
(negative), whereas in the latter quantity increases (decreases) if excess demand
price is positive (negative). Excess demand is the difference between the quantity
that buyers are willing to buy and the quantity that suppliers are willing to supply at
the same price. Excess demand price is the difference between the price that buyers
are willing to pay for a given quantity and the price required by the suppliers.

Let D p, αð Þ and S pð Þ denote the demand and supply functions of price, p,
respectively with α a shift parameter representing “taste”. At equilibrium, price, p ∗ ,
and quantity, q ∗ , are given by

q ∗ ¼ D p ∗ , αð Þ ¼ S p ∗ð Þ
∂D
∂α

>0,
∂D
∂p

<0:

It is the task of comparative statics to show the determination of the equilibrium
values of price and quantity and their sensitivity on the “taste” parameter, α.

The dynamic formulation of the Walrasian assumption is

dp
dt
¼ f D pð Þ � S pð Þð Þ, f 0ð Þ ¼ 0, f 0 0ð Þ>0:

Retaining the first order term in a Taylor series expansion near the equilibrium,
p ∗ , we obtain the following linear differential equation

dp
dt
¼ a0

dD
dp
� dS
dp

� �

p ∗
p� p ∗ð Þ,

with solution for an initial price, p0

p tð Þ ¼ p ∗ þ p ∗ � p0
� �

e
a0t dD

dp�dS
dp

� �
p ∗ :

The equilibrium is stable if dD
dp

� �
p ∗

< dS
dp

� �
p ∗
. Price must rise when demand

increases.
The dynamic formulation of the Marshallian assumption is

dq
dt
¼ g pD qð Þ � pS qð Þ� �

, g 0ð Þ ¼ 0, g0 0ð Þ>0:

Neglecting high order terms and using the trivial elementary calculus result,
dpD
dq ¼ 1

dD
dp
, dpS

dq ¼ 1
dS
dp
, we obtain

q tð Þ ¼ q ∗ þ q ∗ � q0
� �

exp b0t
1
dD
dp

� 1
dS
dp

 !

q ∗

2
4

3
5:

The equilibrium is stable if 1
dD
dp

� �

q ∗
< 1

dS
dp

� �

q ∗
. Quantity supplied must rise when

demand increases, while the change in price is dependent upon the algebraic sign of
the supply curve’s slope.
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2.3 Solow

Robert Solow [9] proposed a growth equation incorporating production, capital
growth and growth in the labour force absent from the Harrod-Domar model.

i. Production function: ¼ F K,Lð Þ, the quantity of goods by K units of capital
and L units of labour at time t. In a closed economy where all output is
invested or consumed,

Y tð Þ ¼ C tð Þ þ I tð Þ,

where C tð Þ and I tð Þ are the consumption and investment functions respectively.
An important assumption of the model are the Inada conditions [10]

∂F
∂K

>0,
∂F
∂L

>0,
∂
2F

∂K2 <0,
∂
2F
∂L2 <0:

In the limits.

lim
K!0

∂F
∂K
¼ ∞, lim

L!0

∂F
∂L
¼ ∞, lim

K!∞

∂F
∂K
¼ 0, lim

L!∞

∂F
∂L
¼ 0:

The Inada conditions ensure that F is strictly concave with slope decreasing from
infinity to zero.

The function F is linearly homogeneous of degree 1 in K and L (in economic
terms this is known as constant returns to scale, increasing capital and labour by a
certain amount, results in a proportional rise of production) if

Y ¼ F αK, aLð Þ ¼ αF K,Lð Þ, ∀α>0:

In particular, choosing α ¼ 1
L and set y ¼ Y

L , k ¼ K
L, representing the output and

capital per worker respectively

Y
L
¼ y ¼ F

K
L
, 1

� �
¼ f kð Þ:

The production function is expressed in terms of a unit of labour and the capital
to labour ratio. The assumption of constant returns to scale allows the simplified
function, f kð Þ.

ii. Growth of Capital in Economy: The growth of the capital stock, K, is
equivalent to growth in investment, I, which is used to increase capital
subject to depreciation. Depreciation of capital stock will be accounted for so
that I is essentially

investment ¼ rate of change of capitalþ capital depreciation rate

or

I tð Þ ¼ dK
dt
þ δK tð Þ,

where δ is the constant capital depreciation rate.
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Letting c tð Þ and i tð Þ denote the consumption and investment per labour unit

c tð Þ ¼ C
L
, i tð Þ ¼ I

L
,

y tð Þ ¼ c tð Þ þ i tð Þ ¼ c tð Þ þ 1
L
dK
dt
þ δk ¼ c tð Þ þ dk

dt
þ δþ 1

L
dL
dt

� �
k:

iii. Growth of the Labour Force with full employment: The assumption in the
labour market is that the labour supply is equivalent to the population. There
is no unemployment and the growth of labour as function of time follows an
exponential growth pattern:

L ¼ L0ent:

The fundamental differential equation of economic growth is then

dk
dt
¼ f kð Þ � δþ nð Þk� c tð Þ:

The differential equations and production functions outlined in these three
assumptions are the fundamental elements for Solow’s basic differential equation.
In Solow’s paper, a constant fraction of income is allocated to savings, in particular,
¼ y tð Þ � c tð Þ ¼ f kð Þ � 1� sð Þf kð Þ ¼ sf kð Þ, so that

dk
dt
¼ sf kð Þ � δþ nð Þk:

The equilibrium solution to the basic differential equation is found from sf kð Þ ¼
δþ nð Þk. A well-known function is the Cobb–Douglas production function, Y K,Lð Þ ¼
αKβL1�β, 0< β< 1, where β is the elasticity of output, KY

∂Y
∂K, with respect to capital. The

use of the Cobb–Douglas production function is justified because it exhibits constant
returns to scale: If capital and labour are both increased by the same factor, λ> 1, output
will be increased by exactly the same proportion, Y K,Lð Þ ¼ λ αKβL1�β� �

. Also the

marginal product, ∂Y
∂K ,

∂Y
∂L, diminishes as eitherK or L increases since ∂

2Y
∂K2 <0, ∂

2Y
∂L2 <0.

Introduce kð Þ ¼ α K
L

� �β ¼ αkβ, so the differential equation becomes

dk
dt
¼ sαkβ � δþ nð Þk:

From dk
dt ¼ 0, k ∗ ¼ sα

δþn
� � 1

1�β
. Substituting k ∗ ¼ sα

δþn
� � 1

1�β
into y ¼ αkβ, the steady

state level of per capita income is

y ∗ ¼ a
1

1�β
s

δþ n

� � β
1�β
:

The output per unit growth converges to n:

1
Y
dY
dt
¼ β

k
dk
dt
þ n! n:

A multiplicative factor in the form of technological progress, tð Þ ¼ A0egt, can be
introduced in the production function, so that, Y tð Þ ¼ aK tð Þβ A tð ÞL tð Þð Þ1�β and
k tð Þ ¼ K tð Þ

A tð ÞL tð Þ, leading to
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will be increased by exactly the same proportion, Y K,Lð Þ ¼ λ αKβL1�β� �

. Also the

marginal product, ∂Y
∂K ,

∂Y
∂L, diminishes as eitherK or L increases since ∂

2Y
∂K2 <0, ∂

2Y
∂L2 <0.

Introduce kð Þ ¼ α K
L

� �β ¼ αkβ, so the differential equation becomes

dk
dt
¼ sαkβ � δþ nð Þk:

From dk
dt ¼ 0, k ∗ ¼ sα

δþn
� � 1

1�β
. Substituting k ∗ ¼ sα

δþn
� � 1

1�β
into y ¼ αkβ, the steady

state level of per capita income is

y ∗ ¼ a
1

1�β
s

δþ n

� � β
1�β
:

The output per unit growth converges to n:

1
Y
dY
dt
¼ β

k
dk
dt
þ n! n:

A multiplicative factor in the form of technological progress, tð Þ ¼ A0egt, can be
introduced in the production function, so that, Y tð Þ ¼ aK tð Þβ A tð ÞL tð Þð Þ1�β and
k tð Þ ¼ K tð Þ

A tð ÞL tð Þ, leading to
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dk
dt
¼ sakβ � δþ nþ gð Þk:

The first order nonlinear differential equation has solution

k tð Þ ¼ sα
δþ nþ g

þ k1�β0 � sα
δþ nþ g

� �
e� δþnþgð Þ 1�βð Þt

� � 1
1�β
:

This solution includes the solution to the labour growth only model, n ¼ 0. The
steady state is

k ∗ ¼ sα
δþ nþ g

� � 1
1�β
:

Differentiation of dk
dt ¼ sakβ � δþ nþ gð Þk with respect to k at k ∗ gives

β � 1ð Þ δþ nþ gð Þ<0, the equilibrium is stable. The steady state level of per capita
income is

y ∗ ¼ a
1

1�β
s

δþ nþ g

� � β
1�β
,

a constant, since s, δ, n, g are all constant.

Y tð Þ ¼ αKβ A0L0e
g

1�βþnð Þt� �1�β
¼ akβA0L0e

g
1�βþnð Þt. The output per unit growth,

1
Y
dY
dt , converges to

g
1�β þ n.

The Solow residual is the part of growth unexplained by changes in capital and
labour. For Y tð Þ ¼ aK tð Þβ A tð ÞL tð Þð Þ1�β

∂Y
∂t
¼ aβK tð Þβ�1 A tð ÞL tð Þð Þ1�β dK

dt
þ aK tð Þβ 1� βð Þ A tð ÞL tð Þð Þ�β dA

dt
L tð Þ þ dL

dt
A tð Þ

� �
:

The growth rate per unit output is

1
Y
∂Y
∂t
¼ β

K
dK
dt
þ 1� βð Þ 1

L
dL
dt
þ 1� βð Þ 1

A
dA
dt

,

Solow residual ¼ 1
Y
∂Y
∂t
� β

K
dK
dt
þ 1� βð Þ 1

L
dL
dt

� �
:

A positive Solow residual would indicate a faster output growth than that of
capital and labour.

2.4 Phelps

Phelps [11] used the neoclassical growth model to address the consumption per
unit of labour at equilibrium in the so-called “golden rule”. At equilibrium with
labour force growth rate, n, only the consumption per unit of labour is

c tð Þ ¼ f kð Þ � nk:

For a maximum consumption per unit of labour
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dc
dk
¼ df

dk
� n ¼ 0:

Since d2f
dk2

<0, the turning point is a maximum given by df
dk ¼ n. The “golden rule”

concludes that the marginal output per worker must equal the growth rate of the
labour force at maximum per capita consumption.

2.5 RCK

The Ramsey–Cass–Koopmans model, or RCK model, is a neoclassical model of
economic growth which differs from Solow’s model in its inclusion of consumption,
based primarily on the work of Ramsey [12], with later significant extensions by
Cass [13] and Koopmans [14].

dk
dt
¼ f kð Þ � δþ nð Þk� c tð Þ:

A steady state is when c tð Þ ¼ f kð Þ � δþ nð Þk.
There is a second equation of the RCK model, the social planner‘s problem of

maximizing a social welfare function expressed by the integral

ð∞

0

e�ρtL tð Þu c tð Þð Þdt ¼
ð∞

0

e n�ρð Þtu c tð Þð Þdt,

where ρ>0 is the discount rate and u c tð Þð Þ is a strictly increasing concave utility
function of consumption. The objective is formally stated thus

u ∗ ¼ max
c tð Þ

ð∞

0

e n�ρð Þtu c tð Þð Þdt

subject to

dk
dt
¼ f kð Þ � δþ nð Þk� c tð Þ

k0 ¼ k 0ð Þ:

The Hamiltonian is

H cð Þ ¼ e n�ρð Þt u cð Þ þ λe ρ�nð Þt f kð Þ � δþ nð Þk� c tð Þð Þ
h i

,

where λ is the costate variable (Lagrange multiplier). From

∂H
∂c
¼ e n�ρð Þt ∂u

∂c
� λ ¼ 0,

λ ¼ e n�ρð Þt ∂u
∂c

:

Also for the costate variable

dλ
dt
¼ � ∂H

∂k
¼ �λ ∂f

∂k
� δþ nð Þ

� �
,
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¼ e n�ρð Þt ∂u
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� λ ¼ 0,
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Also for the costate variable

dλ
dt
¼ � ∂H

∂k
¼ �λ ∂f

∂k
� δþ nð Þ

� �
,

169

On Some Important Ordinary Differential Equations of Dynamic Economics
DOI: http://dx.doi.org/10.5772/intechopen.97130



and

dλ
dt
¼ n� ρð Þλþ

∂
2u
∂c2
∂u
∂c

dc
dt

λ:

Hence

n� ρð Þ þ
∂
2u
∂c2
∂u
∂c

dc
dt
¼ � ∂f

∂k
þ δþ nð Þ,

whence

dc
dt
¼

∂u
∂c
∂
2u
∂c2
� ∂f
∂k
þ δþ ρ

� �
:

This is a nonlinear differential equation that describes the optimal evolution of
consumption, known as the Keynes-Ramsey rule. Along with the differential equa-
tion, dkdt ¼ f kð Þ � δþ nð Þk� c tð Þ, form the RCK dynamical system which does not
admit an analytical solution. At equilibrium,

∂f
∂k

� �

k ∗
¼ δþ ρ,

c ∗ ¼ f k ∗ð Þ � δþ nð Þk ∗ :

The Jacobian matrix at equilibrium,

J ¼

ρ� n �1

�
∂u
∂c
∂
2u
∂c2

∂
2f

∂k2

� �

k ∗
0

2
66664

3
77775

has eigenvalues real and opposite in sign as its determinant is

� ∂u
∂c
∂2u
∂c2

∂
2f

∂k2

� �
k ∗

<0 f kð Þð and u cð Þ are both concave), therefore the equilibrium is a

saddle point.

2.6 Romer

The growth in the Solow model is exogenous, the steady state depends on the
exogenous parameters, , g, which are due to outside trends. In the absence of

A tð ÞL tð Þ growth cannot be maintained. The marginal product of capital, ∂Y
∂K ¼

aβA tð Þ1�β L
K

� �1�β ¼ aβA tð Þ1�β
K
Lð Þ1�β

, is inversely proportional to the capital per labour, KL. In

countries with lower capital per labour the marginal product of capital should be
higher which is not the case. The disparity could be attributed to the different g
values in A tð Þ, which is treated as an exogenously given parameter in the Solow
model, so an explanation is lacking.

Romer [15] proposed a mathematical theory of endogenous growth based on the
following three assumptions:
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i. The production function, Y ¼ F K,A,Lð Þ offers increasing returns to scale,
that is F λK, λA, λLð Þ> λF K,A,Lð Þ.

ii. The change in capital is identical to Solow’s model, dKdt ¼ sY � δK, where s is the
fraction in savings, δ is the exogenous capital depreciation rate. Labour, L, is
also exogenous, dLdt ¼ nL, and is comprises labour involved in research
technology, LA, and labour involved in the production of the final goods,
LY ,L ¼ LA þ LY .

iii. Technology is exogenous and evolves in time, dAdt ¼ γLθ
AA

φ, 0< θ< 1,φ< 1.

As is evident from the three assumptions, Romer’s growth model consists of
three sectors: the research sector of ideas, the intermediate goods sector which
implements the ideas of the research sector and the final goods sector which pro-
duces the final output.

Let gA be the technology growth rate, taken to be constant along the stable path,

gA ¼
1
A
dA
dt
¼ γLθ

AA
φ�1,

dgA
dt
¼ γθLθ�1

A
dLA

dt
Aφ�1 þ γ φ� 1ð ÞLθ

AA
φ�2 dA

dt
¼ 0,

θ
1
LA

dLA

dt
þ φ� 1ð Þ 1

A
dA
dt
¼ 0,

θnþ φ� 1ð ÞgA ¼ 0,

gA ¼
θn

1� φ
:

In Romer’s model, the output production function is given by

y ¼ kβ
LY

L

� �1�β
,

and the capital dynamics is

dk
dt
¼ skβ

LY

L

� �1�β
� nþ gA þ δ
� �

k:

The respective stable equilibria are

k ∗ ¼ LY

L
s

nþ gA þ δ

� � 1
1�β
,

y ∗ ¼ LY

L
s

nþ gA þ δ

� � β
1�β
:

The labour involved in the production of the final goods, LY , is determined in
Romer [15] by maximizing the net profit for the final goods sector and obtaining the
closed form expression for LY

L ¼ r�n
r�nþβgA, where r is the interest rate, and all param-

eters are exogenous except for gA which is derived endogenously.
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dt
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φ, 0< θ< 1,φ< 1.

As is evident from the three assumptions, Romer’s growth model consists of
three sectors: the research sector of ideas, the intermediate goods sector which
implements the ideas of the research sector and the final goods sector which pro-
duces the final output.

Let gA be the technology growth rate, taken to be constant along the stable path,
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1
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¼ 0,

θ
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¼ 0,

θnþ φ� 1ð ÞgA ¼ 0,
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θn

1� φ
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and the capital dynamics is
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A nice accessible exposition of both Solow’s and Romer’s growth models is Chu
[16]. Jones [17] argued that the predicted scale effects of Romer’s theory of growth
is inconsistent with the time-series evidence from industrialized economies and that
long-term growth depends on exogenous parameters including the rate of popula-
tion growth.

2.7 Mankiw, Romer and Weil

Mankiw, Romer and Weil [18] argued that the marginal product of capital, ∂Y
∂K, is

lower in poorer countries is due to their deficiency in human capital. Human capital
is the accumulation of knowledge and skills achieved through training and educa-
tion, which are essential ingredients in adding economic value. The production
function is of the Cobb–Douglas type

Y tð Þ ¼ H tð ÞαK tð Þβ A tð ÞL tð Þð Þ1�α�β ¼ H tð Þ
A tð ÞL tð Þ
� �α K tð Þ

A tð ÞL tð Þ
� �β

A tð ÞL tð Þ,

y tð Þ ¼ Y tð Þ
A tð ÞL tð Þ ¼

H tð Þ
A tð ÞL tð Þ
� �α K tð Þ

A tð ÞL tð Þ
� �β

¼ hαkβ,

where H tð Þ is the human capital stock which depreciates at the same rate, δ, as
K tð Þ. As in Solow’s model, a fraction of the output, sY tð Þ, is saved but in this model,
it is split between human and capital stock, s ¼ sH þ sK . The evolution of the
economy is determined by

dk
dt
¼ sKh

αkβ � nþ g þ δð Þk,
dh
dt
¼ sHh

αkβ � nþ g þ δð Þh:

The equilibrium is

k ∗ ¼ nþ g þ δ

s1�αK sαH

� � 1
αþβ�1

,

h ∗ ¼ nþ g þ δ

sβKs
1�β
H

 ! 1
αþβ�1

:

In the steady state,

y ∗ ¼ nþ g þ δð Þ αþβ
αþβ�1s

�β
αþβ�1
K s

�α
αþβ�1
H :

Introduce the transformations, x1 ¼ k
k ∗ , x2 ¼ h

h ∗ , so that the equilibrium shifts to
1, 1ð Þ: Then

dx1
dt
¼ nþ g þ δð Þ xβ1x

α
2 � x1

� �
,

dx2
dt
¼ nþ g þ δð Þ xβ1x

α
2 � x2

� �
:

For small deviations, ξ1, ξ2, from the equilibrium the linear system
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dξ1
dt
¼ nþ g þ δð Þ β � 1ð Þξ1 þ αξ2½ �,

dξ2
dt
¼ nþ g þ δð Þ βξ1 þ α� 1ð Þξ2½ �:

The eigenvalues of the Jacobian matrix,

nþ g þ δð Þ β � 1 α

β α� 1

� �
,

are given by the roots of the quadratic

λ2 þ 2� α� βð Þλþ 1� α� βð Þ ¼ 0:

From the production function, 1� α� β>0. Since the sum of the eigenvalues is
αþ β � 2<0, and the product is 1� α� β>0, both roots have negative real parts
and the equilibrium point is stable.

2.8 Kaldor

Kaldor [19] presented a model of the trade cycle involving non-linear invest-
ment and saving functions that shift over time in response to capital accumulation
or decumulation so that the system moves from stable equilibrium to unstable
equilibrium to stable equilibrium again. In Kaldor’s model investment, I, and sav-
ings, S, functions are non-linear with respect to the level of activity, X, measured in
terms of employment.

Kaldor used a differential equation system with general non-linear forms.
Net investment, I, and savings, S, are functions of national income, Y, and capital
stock, K:

I ¼ I Y,Kð Þ,
S ¼ S Y,Kð Þ,

∂I
∂Y

>0,
∂I
∂K

<0,
∂S
∂Y

>0,
∂S
∂K

<0,

∂I
∂K

<
∂S
∂K

:

Also growth in capital determines investment is given by

dK
dt
¼ I Y,Kð Þ:

Since income will rise if investment is greater than savings, the dynamics of the
national income is captured by the differential equation

dY
dt
¼ α I Y,Kð Þ � S Y,Kð Þ½ �, α>0:

The necessary and sufficient assumptions for the generation of a perpetual
cyclical movement are:

i. For normal income levels,
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economy is determined by

dk
dt
¼ sKh

αkβ � nþ g þ δð Þk,
dh
dt
¼ sHh

αkβ � nþ g þ δð Þh:

The equilibrium is

k ∗ ¼ nþ g þ δ

s1�αK sαH

� � 1
αþβ�1

,

h ∗ ¼ nþ g þ δ

sβKs
1�β
H

 ! 1
αþβ�1

:

In the steady state,

y ∗ ¼ nþ g þ δð Þ αþβ
αþβ�1s

�β
αþβ�1
K s

�α
αþβ�1
H :

Introduce the transformations, x1 ¼ k
k ∗ , x2 ¼ h

h ∗ , so that the equilibrium shifts to
1, 1ð Þ: Then

dx1
dt
¼ nþ g þ δð Þ xβ1x

α
2 � x1

� �
,

dx2
dt
¼ nþ g þ δð Þ xβ1x

α
2 � x2

� �
:

For small deviations, ξ1, ξ2, from the equilibrium the linear system
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dξ1
dt
¼ nþ g þ δð Þ β � 1ð Þξ1 þ αξ2½ �,

dξ2
dt
¼ nþ g þ δð Þ βξ1 þ α� 1ð Þξ2½ �:

The eigenvalues of the Jacobian matrix,

nþ g þ δð Þ β � 1 α

β α� 1

� �
,

are given by the roots of the quadratic

λ2 þ 2� α� βð Þλþ 1� α� βð Þ ¼ 0:

From the production function, 1� α� β>0. Since the sum of the eigenvalues is
αþ β � 2<0, and the product is 1� α� β>0, both roots have negative real parts
and the equilibrium point is stable.

2.8 Kaldor

Kaldor [19] presented a model of the trade cycle involving non-linear invest-
ment and saving functions that shift over time in response to capital accumulation
or decumulation so that the system moves from stable equilibrium to unstable
equilibrium to stable equilibrium again. In Kaldor’s model investment, I, and sav-
ings, S, functions are non-linear with respect to the level of activity, X, measured in
terms of employment.

Kaldor used a differential equation system with general non-linear forms.
Net investment, I, and savings, S, are functions of national income, Y, and capital
stock, K:

I ¼ I Y,Kð Þ,
S ¼ S Y,Kð Þ,

∂I
∂Y

>0,
∂I
∂K

<0,
∂S
∂Y

>0,
∂S
∂K

<0,

∂I
∂K

<
∂S
∂K

:

Also growth in capital determines investment is given by

dK
dt
¼ I Y,Kð Þ:

Since income will rise if investment is greater than savings, the dynamics of the
national income is captured by the differential equation

dY
dt
¼ α I Y,Kð Þ � S Y,Kð Þ½ �, α>0:

The necessary and sufficient assumptions for the generation of a perpetual
cyclical movement are:

i. For normal income levels,
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∂I
∂Y

>
∂S
∂Y

:

ii. For extreme income levels, either low or high,

∂I
∂Y

<
∂S
∂Y

:

iii. At equilibrium, where dK
dt ¼ 0, income levels are normal.

2.9 Phillips

National governments design their expenditure policies to steer the national
economy towards a desired income. The theory of feedback control or servomech-
anisms provides the mathematical methodology of correcting deviations of the
controlled variables from their target values. Feedback policies applied to economic
stability were implemented by Phillips [20].

If Y is national income and Da is the aggregate demand then for some adjust-
ment coefficient, a>0,

dY
dt
¼ a Da � Yð Þ:

A similar differential equation holds for the actual, Dg and target government
demand, D ∗

g , with b>0, namely,

dDg

dt
¼ b D ∗

g �Dg

� �
:

Aggregate and government demand are related by

Da ¼ mY þDg,

where m is the private sector’s marginal propensity to spend.
Eliminate Da to obtain

dY
dt
¼ a m� 1ð ÞY þ aDg:

Differentiate the above to obtain

d2Y
dt2
¼ a m� 1ð ÞdY

dt
þ ab D ∗

g �Dg

� �
¼ a m� 1ð ÞdY

dt
þ abD ∗

g þ ab m� 1ð ÞY� b
dY
dt

or

d2Y
dt2
þ bþ a 1�mð Þ½ � dY

dt
þ ab 1�mð ÞY � abD ∗

g ¼ 0:

Phillips’model is thus described by the linear second-order differential equation
where Y is the target variable and D ∗

g is the control variable. Investigated three
types of feedback policy:
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i. Proportional, D ∗
g ¼ �kPY, where kP >0. This policy does not prevent income

reduction and induces oscillations.

ii. Derivative, D ∗
g ¼ �kD dY

dt , where kD >0. This policy does not prevent income
reduction but avoids oscillations.

iii. Integral, D ∗
g ¼ �kI

Ðt
0
Ydt, where kI >0. This policy prevents income

reduction but can induce unstable movement.

2.10 Kalecki

Kalecki [21] was the first economist to investigate the relationship between
production lags and endogenous business cycles by considering a closed economic
system over a short period of time without trend. A tð Þ is the gross capital accumula-
tion (unconsumed goods). There is a “gestation period”, θ, for any investment I tð Þ.
Deliveries L tð Þ are equal to investment orders, I t� θð Þ at time, t� θ:

L tð Þ ¼ I t� θð Þ:

Any orders placed during the “gestation period”, t� θ, tð Þ, remain unfulfilled,
A tð Þ is equal to the average of investment orders I tð Þ allocated during the period
t� θ, tð Þ:

A tð Þ ¼ 1
θ

ðt

t�ϑ
I τð Þdτ:

If K tð Þ is the capital stock, and U its physical depreciation

dK
dt
¼ L tð Þ �U ¼ I t� θð Þ � U:

The rate of change in investment is for some constants, m>0, n>0:

dI
dt
¼ m

dA
dt
� n

dK
dt
¼ m

θ
I tð Þ � I t� θð Þ½ � � n I t� θð Þ � U½ �:

Denoting the deviation of I tð Þ from the constant demand for restoration of the
depreciated industrial equipment U by J tð Þ ¼ I tð Þ �U, and differentiating J tð Þ

dJ
dt
¼ m

θ
J tð Þ � J t� θð Þ½ � � nJ t� θð Þ

or

θ
dJ
dt
þ nθ þmð ÞJ t� θð Þ �mJ tð Þ ¼ 0:

During the interval t∈ �θ, 0½ � Kalecki assumed that J tð Þ ¼ 0. A standard way to
solve this differential equation with delay is to assume a solution of the form, Deαt,
with D and α (where α is a complex number), to be determined. The general
solution of the differential equation for some constants, c1 and c2 is
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J tð Þ ¼ ebt c1 cos ωtð Þ þ c2 sin ωtð Þ½ �:

The sign of the real parameter, b, classifies the behavior of the model as explo-
sive for b>0, cyclical for b ¼ 0, and damped for b<0.

2.11 A Solow model with lags

Zak [22] considered a version of the Solow model with delay. Capital can be used
τ periods later, so at time t, the capital to be put into productive use is k t� τð Þ. If
f kð Þ is the production function, s∈ 0, 1ð Þ is the constant savings rate and δ∈ 0, 1½ � is
the constant capital depreciation rate, Zak’s model is

dk
dt
¼ sf k t� τð Þð Þ � δk t� τð Þ:

At equilibrium,

sf k ∗ð Þ ¼ δk ∗ :

Deviations of the form, et, from equilibrium are governed by

dk
dt
¼ s

df
dk
� δ

� �
e�τ,

with characteristic equation

λ� s
df
dk
� δ

� �
e�λτ ¼ 0:

In many cases depending on the initial conditions, the roots of the characteristic
equation have real parts with opposite signs, indicating the presence of a saddle
point unlike Solow’s stable model. The model exhibits endogenous cycles when the
roots are purely imaginary.

2.12 Goodwin

Goodwin [23] presented a nonlinear model of nonlinear business cycles with
time lags between decisions to invest and the corresponding outlays. Changes at
time, t, in income, y tð Þ, induce investment outlays, Oi tþ θð Þ, at a later time, tþ θ.
Therefore

Oi tþ θð Þ ¼ φ
dy
dt

� �
¼ φð _yÞ:

Hence the nonlinear delay differential equation modeling the evolution of
income is

ϵ
dy tþ θð Þ

dt
þ 1� αð Þy tþ θð Þ ¼ O tð Þ þ φð _yÞ,

where O tð Þ is autonomous investment outlay and ϵ, α are constants. The deriva-

tive, dφð
_yÞ

d_y , measures the rate of growth in investment with relative to the income
growth, termed as acceleration coefficient. Expanding the two leading terms in
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Taylor series and neglecting higher order terms, Goodwin obtained the nonlinear
delay differential equation

εθ
d2y
dt2
þ 1� αð Þθ þ ϵ½ � dy

dt
þ 1� αð Þy tð Þ � φð _yÞ ¼ O tð Þ:

Goodwin assumed that O tð Þ is constant, O tð Þ ¼ O ∗ , and introduced a new
variable

z tð Þ ¼ y tð Þ � O ∗

1� α
,

where O ∗

1�α is the income at equilibrium. The transformed differential equation
is then

εθ
d2z
dt2
þ 1� αð Þθ þ ϵ½ � dz

dt
� φ _zð Þ þ 1� αð Þz ¼ 0:

The asymptotic behavior of the transformed equilibrium, z ¼ 0, is determined
by the eigenvalue solutions of the characteristic equation

εθλ2 þ 1� αð Þθ þ ϵ� _φ 0ð Þ½ �λþ 1� αð Þ ¼ 0,

with characteristic roots,

λ1,2 ¼
_φ 0ð Þ � 1� αð Þθ þ ϵ½ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αð Þθ þ ϵ� _φ 0ð Þ½ �2 � 4εθ 1� αð Þ

q

2εθ
:

Since

λ1λ2 ¼ 1� α
εθ

>0

and

λ1 þ λ2 ¼ _φ 0ð Þ � 1� αð Þθ þ ϵ½ �
εθ

,

can be either positive or negative, both eigenvalues have positive or negative real
parts. So if _φ 0ð Þ< 1� αð Þθ þ ϵ the deviations from equilibrium are damped oscilla-
tory motions, but if _φ 0ð Þ> 1� αð Þθ þ ϵ the system is unstable and drifts away from
the locally linearized region of stability.

2.13 A brief literature survey of current research

We close this chapter by providing a very brief snapshot of the current state of
the art in theories of economic growth. Most of the very recent works cited are
predominantly mathematical in nature. There is an enormous literature, not
touched upon here, which employs Econometrics methods, like for instance panel
data regression to estimate economic growth based on explanatory variables such as
income, investment, policy indicators, education and others over several decades.

In a short article Zhao [24] discusses how technology was integrated into
economic growth by Romer.
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We close this chapter by providing a very brief snapshot of the current state of
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Boyko et [25] use least squares linear regression to determine the values of the
coefficients at which the production functions of Cobb–Douglas in Solow’s growth
model provide the best fit for available statistical data. Borges et al. [26] examine
the dynamics of Solow’s economic growth model assuming that the labour force
growth rate function is a solution of a delay differential equation thereby avoiding
the use of exponential growth, L tð Þ ¼ L0ent, often criticized as a rather unrealistic
choice. Their approach is motivated by the fact that there are delays in entering and
retiring an individual from the labour force, relative to their birth date.

Zhang et al. [27] base their analysis of how the redistribution of emission quotas
would impact short-run equilibrium in a specific market of interest and long-run
growth on the Solow growth model with endogenous dynamics and exogenous
technological shocks.

Zhang [28] develops an endogenous growth model based on modifications of
both Solow’s model by introducing endogenous knowledge. and Romer’s by
allowing knowledge to be gained from learning as well as from research.

The paper by Caraballo et al. [29] is devoted to analysis of the stability of the
economy according to an extended version of Kaldor’s economic growth model.
They consider the role of the government’s monetary and fiscal policies and we
study whether or not a time delay in implementing and the fiscal policy can affect
the economic stability.

Dayal [30] considers long run historical data and uses difference equation simu-
lation to explore the Solow growth model to assess the growth changes in the recent
decade.

Perez-Trujillo et al. [31] investigate the impact of improvement in accessing
innovation and knowledge on economic growth and convergence among countries
using an augmented Solow-Swan growth model on data from 138 countries.

Turnovsky [32] discusses contemporary aspects of stabilization policy in
reference to Phillips’ contributions in a lengthy paper of substantial mathematical
control theory content.
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choice. Their approach is motivated by the fact that there are delays in entering and
retiring an individual from the labour force, relative to their birth date.

Zhang et al. [27] base their analysis of how the redistribution of emission quotas
would impact short-run equilibrium in a specific market of interest and long-run
growth on the Solow growth model with endogenous dynamics and exogenous
technological shocks.

Zhang [28] develops an endogenous growth model based on modifications of
both Solow’s model by introducing endogenous knowledge. and Romer’s by
allowing knowledge to be gained from learning as well as from research.

The paper by Caraballo et al. [29] is devoted to analysis of the stability of the
economy according to an extended version of Kaldor’s economic growth model.
They consider the role of the government’s monetary and fiscal policies and we
study whether or not a time delay in implementing and the fiscal policy can affect
the economic stability.

Dayal [30] considers long run historical data and uses difference equation simu-
lation to explore the Solow growth model to assess the growth changes in the recent
decade.

Perez-Trujillo et al. [31] investigate the impact of improvement in accessing
innovation and knowledge on economic growth and convergence among countries
using an augmented Solow-Swan growth model on data from 138 countries.

Turnovsky [32] discusses contemporary aspects of stabilization policy in
reference to Phillips’ contributions in a lengthy paper of substantial mathematical
control theory content.
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Abstract

In this chapter we study a class of second-order integro-dynamic equations on
time scales. A new topological approach is applied to prove the existence of at least
two non-negative solutions. The arguments are based upon a recent theoretical result.

Keywords: integro-dynamic equations, time scale, BVP, existence,
positive solution, fixed point, cone, sum of operators

1. Introduction

Many problems arising in applied mathematics and mathematical physics can
be modeled as differential equations, integral equations and integro-differential
equations.

Integral and integro-differential equations can be solved using the Adomian
decomposition method (ADM) [1, 2], Galerkin method [3], rationalized Haar func-
tions method [4], homotopy perturbation method (HPM) [5, 6] and variational
iteration method (VIM) [7]. ADM can be applied for linear and nonlinear problems
and it is a method that represents the solution of the considered problems in the
form of Adomian polynomials. Rationalized Haar functions and Galerkin methods
are numerical methods that can be applied in different ways for the solutions of
integral and integro-differential equations. VIM is an analytical method and can be
used for different classes linear and nonlinear problems. HPM is a semi-analytical
method for solving of linear and nonlinear differential, integral and integro-
differential equations.

In recent years, time scales and time scale analogous of some well-known dif-
ferential equations, integral equations and integro-differential equations have taken
prominent attention. The new derivative, proposed by Stefan Hilger in [8], gives
the ordinary derivative if the time scale is the set of the real numbers and the
forward difference operator if the time scale is the set of the integers. Thus, the
need for obtaining separate results for discrete and continuous cases is avoided by
using the time scales calculus.

This chapter outlines an application of a new approach for investigations of
integro-differential equations and integro-dynamic equations on time scales. The
approach is based on a new theoretical result. Let  be a time scale with forward
jump operator and delta differentiation operator σ and Δ, respectively. Let also,
a, b∈, a< b. In this chapter we will investigate the following second-order
integro-dynamic equation
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xΔ
2
tð Þ ¼

ðt
a
k t, sð Þf s, x sð Þ, xΔ sð Þ� �

Δs, t∈ a, b½ �, (1)

subject to the boundary conditions

x að Þ ¼ α, x σ2 bð Þ� � ¼ β, (2)

where
(H1) k∈ Crd a, σ2 bð Þ½ � � a, σ2 bð Þ½ �ð Þ, α, β∈, α≥0.
(H2) f ∈ C a, σ2 bð Þ½ � � 2� �

and

∣f s, u, vð Þ∣ ≤ a1 sð Þ uj jp1 þ a2 sð Þ vj jp2 þ a3 sð Þ, s∈ a, σ2 bð Þ� �
, u, v∈, (3)

a j ∈ Crd a, σ2 bð Þ½ �ð Þ, j∈ 1, 2, 3f g, are non-negative functions, p1, p2 ≥0.
We will investigate the BVP (1), (2) for existence of non-negative solutions. Our

main result in this chapter is as follows.
Theorem 1.1. Suppose H1ð Þ- H2ð Þ. Then the BVP (1), (2) has at least two

non-negative solutions.
Linear integro-dynamic equations of arbitrary order on time scales are investi-

gated in [9] using ADM. Nonlinear integro-dynamic equations of second order on
time scales are studied in [10] using the series solution method. Asymptotic behav-
ior of non-oscillatory solutions of a class of nonlinear second order integro-dynamic
equations on time scales is considered in [11].

The chapter is organized as follows. In the next section, we will give some basic
definitions and facts by time scale calculus. In Section 3, we give some auxiliary
results which will be used for the proof of our main result. In Section 4, we will
prove our main result. In Section 5, we will give an example. Conclusion is given in
Section 6.

2. Time scales revisited

Time scales calculus originates from the pioneering work of Hilger [8] in which
the author aimed to unify discrete and continuous analysis. Time scales have gained
much attention recently. This section is devoted to a brief introduction of some
basic notions and concepts on time scales. For detailed introduction to time scale
calculus we refer the reader to the books [12, 13].

Definition 2.1. A time scale  is an arbitrary nonempty closed subset of the real
numbers.

Definition 2.2.

1. The operator σ : !  given by

σ tð Þ ¼ inf s∈ : s> tf g for t∈ (4)

will be called the forward jump operator.

2. The operator ρ : !  defined by

ρ tð Þ ¼ sup s∈ : s< tf g for t∈ (5)

will be called the backward jump operator.

3. The function μ : ! 0,∞½ Þ defined by
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μ tð Þ ¼ σ tð Þ � t for t∈ (6)

will be called the graininess function.
We set

inf Ø ¼ sup, supØ ¼ inf : (7)

Observe that σ tð Þ≥ t for any t∈ and ρ tð Þ≤ t for any t∈. Below, suppose that 
is a time scale with forward jump operator and backward jump operator σ and ρ,
respectively.

Definition 2.3. We define the set

κ ¼ n ρ supð Þ, supð � if sup<∞
 otherwise:

�
(8)

Using the forward and backward jump operators, one can classify the elements
of a time scale.

Definition 2.4. The point t∈ is said to be

1.right-scattered if σ tð Þ> t.

2.right-dense if t< sup and σ tð Þ ¼ t.

3. left-scattered if ρ tð Þ< t.

4. left-dense if t> inf  and ρ tð Þ ¼ t.

5. isolated if it is left-scattered and right-scattered at the same time.

6.dense if it is left-dense and right-dense at the same time.

Definition 2.5. Let f : !  be a given function and t∈κ. The delta or Hilger
derivative of f at t will be called the number fΔ tð Þ, provided that it exists, if for any ε>0
there is a neighborhood U of t, U ¼ t� δ, tþ δð Þ∩ for some δ>0, such that

∣f σ tð Þð Þ � f sð Þ � fΔ tð Þ σ tð Þ � sð Þ∣ ≤ ε ∣σ tð Þ � s∣ for all s∈U: (9)

If fΔ tð Þ exists for any t∈κ, then we say that f is delta or Hilger differentiable in κ.
The function fΔ : !  will be called the delta derivative or Hilger derivative, shortly
derivative, of f in κ.

Remark 2.6. The delta derivative coincides with the classical derivative in the case
when  ¼ .

Note that the delta derivative is well defined.
Theorem 2.7. Let f : !  be a given function and t∈κ.

1.The function f is continuous at t, if it is differentiable at t.

2.The function f is differentiable at t and

fΔ tð Þ ¼ f σ tð Þð Þ � f tð Þ
μ tð Þ , (10)

if f is continuous at t and t is tight-scattered.
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3.Let t is right-dense. Then the function f is differentiable at t if and only if the
limit

lim
s!t

f tð Þ � f sð Þ
t� s

(11)

exists as a finite number. In this case, we have

fΔ tð Þ ¼ lim
s!t

f tð Þ � f sð Þ
t� s

: (12)

4.We have

f σ tð Þð Þ ¼ f tð Þ þ μ tð Þ fΔ tð Þ, (13)

if f is differentiable at t.
Definition 2.8. Let f : ∣to is a given function.

1.We say that f is regulated if its right-sided limits exist (finite) at all right-dense
points in  and its left-sided limits exist (finite) at all left-dense points in .

2.We say that f is pre-differentiable with region of differentiation D if

a. it is continuous,

b. D⊂κ,

c. κnD is countable and contains no right-scattered elements of ,

d. f is differentiable at each t∈D.

To define indefinite integral and Cauchy integral on time scale we have a need of
the following basic result.

Theorem 2.9. Let t0 ∈, x0 ∈, f : κ !  be a given regulated function. Then
there exists unique function F that is pre-differentiable and

FΔ tð Þ ¼ f tð Þ for any t∈D, F t0ð Þ ¼ x0: (14)

Definition 2.10.

1. Let f : !  is a regulated function. Then any function F in Theorem 2.9. is said
to be a pre-antiderivative of the function f and the indefinite integral of the
regulated function f is defined by

ð
f tð ÞΔt ¼ F tð Þ þ c: (15)

Here c is an arbitrary constant. Define the Cauchy integral as follows
ðs
τ
f tð ÞΔt ¼ F sð Þ � F τð Þ for all τ, s∈: (16)

2. A function F : !  is said to be an antiderivative of the function f : !  if

FΔ tð Þ ¼ f tð Þ holds for all t∈κ: (17)
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Definition 2.11. Let f : !  be a given function. If it is continuous at right-dense
points in  and its left-sided limits exist (finite) at left-dense points in , then we say
that f is rd-continuous. With Crd ð Þ we will denote the set of all rd-continuous functions
f : !  and with C1

rd ð Þ we will denote the set of all functions f : !  that are
differentiable and whose derivative are rd-continuous.

We will note that if f is rd-continuous, then it is regulated Below, we will list
some of the properties of the Cauchy integral.

Theorem 2.12. Let a, b, c∈, α∈ and f , g∈Crd ð Þ. Then we have the following.

i.
Ð b
a f tð Þ þ g tð Þð ÞΔt ¼ Ð ba f tð ÞΔtþ Ð ba g tð ÞΔt,

ii.
Ð b
a αfð Þ tð ÞΔt ¼ α

Ð b
a f tð ÞΔt,

iii.
Ð b
a f tð ÞΔt ¼ �Ð ab f tð ÞΔt,

iv.
Ð b
a f tð ÞΔt ¼ Ð ca f tð ÞΔtþ Ð bc f tð ÞΔt,

v.
Ð b
a f σ tð Þð ÞgΔ tð ÞΔt ¼ fgð Þ bð Þ � fgð Þ að Þ � Ð ba fΔ tð Þg tð ÞΔt,

vi.
Ð b
a f tð ÞgΔ tð ÞΔt ¼ fgð Þ bð Þ � fgð Þ að Þ � Ð ba fΔ tð Þg σ tð Þð ÞΔt,

vii.
Ð a
a f tð ÞΔt ¼ 0,

viii. If ∣f tð Þ∣ ≤ g tð Þ on a, b½ Þ, then
ðb
a
f tð ÞΔt

����
����≤
ðb
a
g tð ÞΔt, (18)

ix. If f tð Þ≥0 for all a≤ t< b, then
Ð b
a f tð ÞΔt≥0:

Let

G t, sð Þ ¼
� σ sð Þ � að Þ σ2 bð Þ � tð Þ

σ2 bð Þ � a
, σ sð Þ≤ t,

� t� að Þ σ2 bð Þ � σ sð Þð Þ
σ2 bð Þ � a

, t≤ s, t∈ a, σ2 bð Þ� �
, s∈ a, σ bð Þ½ �:

8>>>><
>>>>:

(19)

We have

∣G t, sð Þ∣ ≤ σ2 bð Þ � a, t∈ a, σ2 bð Þ� �
, s∈ a, σ bð Þ½ �: (20)

In [12], it is proved that G is the Green function for the BVP

xΔ
2 ¼ 0, x að Þ ¼ x σ2 bð Þ� � ¼ 0: (21)

3. Auxiliary results

Let X be a real Banach space.
Definition 3.1. Amapping K : X ! X that is continuous and maps bounded sets into

relatively compact sets will be called completely continuous.
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Theorem 2.12. Let a, b, c∈, α∈ and f , g∈Crd ð Þ. Then we have the following.

i.
Ð b
a f tð Þ þ g tð Þð ÞΔt ¼ Ð ba f tð ÞΔtþ Ð ba g tð ÞΔt,

ii.
Ð b
a αfð Þ tð ÞΔt ¼ α

Ð b
a f tð ÞΔt,

iii.
Ð b
a f tð ÞΔt ¼ �Ð ab f tð ÞΔt,

iv.
Ð b
a f tð ÞΔt ¼ Ð ca f tð ÞΔtþ Ð bc f tð ÞΔt,

v.
Ð b
a f σ tð Þð ÞgΔ tð ÞΔt ¼ fgð Þ bð Þ � fgð Þ að Þ � Ð ba fΔ tð Þg tð ÞΔt,

vi.
Ð b
a f tð ÞgΔ tð ÞΔt ¼ fgð Þ bð Þ � fgð Þ að Þ � Ð ba fΔ tð Þg σ tð Þð ÞΔt,

vii.
Ð a
a f tð ÞΔt ¼ 0,

viii. If ∣f tð Þ∣ ≤ g tð Þ on a, b½ Þ, then
ðb
a
f tð ÞΔt

����
����≤
ðb
a
g tð ÞΔt, (18)

ix. If f tð Þ≥0 for all a≤ t< b, then
Ð b
a f tð ÞΔt≥0:

Let

G t, sð Þ ¼
� σ sð Þ � að Þ σ2 bð Þ � tð Þ

σ2 bð Þ � a
, σ sð Þ≤ t,

� t� að Þ σ2 bð Þ � σ sð Þð Þ
σ2 bð Þ � a

, t≤ s, t∈ a, σ2 bð Þ� �
, s∈ a, σ bð Þ½ �:

8>>>><
>>>>:

(19)
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The concept for k-set contraction is related to that of the Kuratowski measure of
noncompactness which we recall for completeness.

Definition 3.2. Suppose that ΩX is the class of all bounded sets of X. The function
α : ΩX ! 0,∞½ Þ that is defined in the following manner

α Yð Þ ¼ inf δ>0 : Y ¼ ⋃
m

j¼1
Y j and diam Y j

� �
≤ δ, j∈ f1, … ,mg

( )
, (22)

where diam Y j
� � ¼ sup ∥x� y∥X : x, y∈Y j

� �
is the diameter of Y j, j∈ 1, … ,mf g,

is said to be Kuratowski measure of noncompactness.
For the main properties of measure of noncompactness we refer the reader to [14].
Definition 3.3. If the mapping K : X ! X is continuous and bounded and there

exists a nonnegative constant k such that

α K Yð Þð Þ≤ kα Yð Þ, (23)

for any bounded set Y ⊂X, then we say that it is a k-set contraction.
Note that any completely continuous mapping K : X ! X is a 0-set contraction

(see [15]).
Definition 3.4. Suppose that X and Y are real Banach spaces. Then the map K :

X ! Y is called expansive if there exists a constant h> 1 for which

∥Kx� Ky∥Y ≥ h∥x� y∥X (24)

for any x, y∈X.
Definition 3.5. A closed, convex set P in X is said to be cone if.

1.αx∈P for any α≥0 and for any x∈P,

2.x, � x∈P implies x ¼ 0.

Denote P ∗ ¼ Pn 0f g,

Pr1 ¼ u∈P : ∥u∥< r1f g, (25)

Pr1,r2 ¼ u∈P : r1 < ∥u∥< r2f g
for positive constants r1, r2 such that 0< r1 ≤ r2. The following result will be used

to prove our main result. We refer the reader to [16, 17] for more details.
Theorem 3.6. LetP be a cone in a Banach space E, ∥ � ∥ð Þ. LetΩ be a subset ofP, 0∈Ω

and 0< r<L<R are real constants. Let also, T : Ω! E is an expansive operator with a
constant h> 1, S : PR ! E is a k-set contractionwith0≤ k< h� 1 and S PR

� �
⊂ I � Tð Þ Ωð Þ.

Assume thatPr,L ∩Ω 6¼ Ø,PL,R ∩Ω 6¼ Ø and there exist an u0 ∈P ∗ such that
T x� λu0ð Þ∈P for all λ≥0 and x∈ ∂Pr ∩ Ωþ λu0ð Þ and the following conditions hold:

a. Sx 6¼ x� λu0, x∈ ∂Pr, λ≥0,

b. ∥Sxþ T0∥≤ h� 1ð Þ∥x∥ and Txþ Fx 6¼ x, x∈ ∂PL ∩Ω,

c. Sx 6¼ x� λu0, x∈PR, λ≥0.

Then T þ S has at least two fixed points x1 ∈Pr,L ∩Ω, x2 ∈PL,R ∩Ω, i.e.,

r< ∥x1∥<L< ∥x2∥<R: (26)
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Let

A1 ¼
α∣σ2 bð Þ∣þ αþ 2jβjð Þmax jaj, jσ2 bð Þj� �

σ2 bð Þ � a
,

A2 ¼ max
t, sð Þ∈ a, σ2 bð Þ½ �� a, σ2 bð Þ½ �

∣k t, sð Þ∣,

A3 ¼ max max
s∈ a, σ2 bð Þ½ �

a j sð Þ, j ¼ 1, 2, 3
� �

,

A4 ¼ max σ2 bð Þ � a
� �2

, σ2 bð Þ � a
n o

,

(27)

and

ϕ tð Þ ¼ ασ2 bð Þ � βaþ β � αð Þt
σ2 bð Þ � a

, t∈ a, σ2 bð Þ� �
: (28)

Then

∣ϕ tð Þ∣ ≤ α∣σ2 bð Þ∣þ ∣β∣max jaj, jσ2 bð Þj� �þ jβjþαð Þmax jaj, jσ2 bð Þj� �
σ2 bð Þ � a

¼ A1, t∈ a, σ2 bð Þ� �
:

(29)

Suppose that E ¼ C1rd a, σ2 bð Þ½ �ð Þ is endowed with the norm

∥x∥ ¼ max max
t∈ a, σ2 bð Þ½ �

jx tð Þj, max
t∈ a, σ2 bð Þ½ �

jxΔ tð Þj
� �

, (30)

provided it exists. Next two lemmas give integral representations of the solu-
tions of the BVP (1), (2).

Lemma 3.7. If x∈E is a solution to the integral equation

x tð Þ ¼
ðσ bð Þ

a
G t, sð Þ

ðs
a
k s, s1ð Þf s1, x s1ð Þ, xΔ s1ð Þ

� �
Δs1Δsþ ϕ tð Þ, t∈ a, σ2 bð Þ� �

, (31)

then x is a solution to the BVP (1), (2).
Proof. Since G is the Green function of the BVP (3) and ϕΔ2

tð Þ ¼ 0, t∈ a, σ2 bð Þ½ �,
we get

xΔ
2
tð Þ ¼

ðt
a
k t, sð Þf s, x sð Þ, xΔ sð Þ� �

Δs, t∈ a, σ2 bð Þ� �
, (32)

and

x að Þ ¼ ϕ að Þ ¼ ασ2 bð Þ � βaþ β � αð Þa
σ2 bð Þ � a

¼ α,

x σ2 bð Þ� � ¼ ϕ σ2 bð Þ� � ¼ ασ2 bð Þ � βaþ β � αð Þσ2 bð Þ
σ2 bð Þ � a

¼ β:

(33)

Thus, x is a solution to the BVP (1), (2). This completes the proof. □
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A3 ¼ max max
s∈ a, σ2 bð Þ½ �
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,
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n o
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(27)
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(29)

Suppose that E ¼ C1rd a, σ2 bð Þ½ �ð Þ is endowed with the norm

∥x∥ ¼ max max
t∈ a, σ2 bð Þ½ �

jx tð Þj, max
t∈ a, σ2 bð Þ½ �

jxΔ tð Þj
� �

, (30)

provided it exists. Next two lemmas give integral representations of the solu-
tions of the BVP (1), (2).

Lemma 3.7. If x∈E is a solution to the integral equation

x tð Þ ¼
ðσ bð Þ

a
G t, sð Þ

ðs
a
k s, s1ð Þf s1, x s1ð Þ, xΔ s1ð Þ

� �
Δs1Δsþ ϕ tð Þ, t∈ a, σ2 bð Þ� �

, (31)

then x is a solution to the BVP (1), (2).
Proof. Since G is the Green function of the BVP (3) and ϕΔ2

tð Þ ¼ 0, t∈ a, σ2 bð Þ½ �,
we get

xΔ
2
tð Þ ¼

ðt
a
k t, sð Þf s, x sð Þ, xΔ sð Þ� �

Δs, t∈ a, σ2 bð Þ� �
, (32)

and

x að Þ ¼ ϕ að Þ ¼ ασ2 bð Þ � βaþ β � αð Þa
σ2 bð Þ � a

¼ α,

x σ2 bð Þ� � ¼ ϕ σ2 bð Þ� � ¼ ασ2 bð Þ � βaþ β � αð Þσ2 bð Þ
σ2 bð Þ � a

¼ β:

(33)

Thus, x is a solution to the BVP (1), (2). This completes the proof. □
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For x∈E, define the operator

F1x tð Þ ¼
ðt
a
t� σ sð Þð Þðx sð Þ

�
ðσ bð Þ

a
G s, s1ð Þ

ðs1
a
k s1, s2ð Þf s2, x s2ð Þ, xΔ s2ð Þ

� �
Δs2Δs1 � ϕ sð ÞÞΔs,

t∈ a, σ2 bð Þ� �
:

(34)

Lemma 3.8. If x∈E is a solution to the integral equation

F1x tð Þ ¼ 0, t∈ a, σ2 bð Þ� �
, (35)

then x is a solution to the BVP (1), (2).
Proof. We have

0 ¼ F1xð ÞΔ tð Þ

¼
ðt
a

x sð Þ �
ðσ bð Þ

a
G s, s1ð Þ

ðs1
a
k s1, s2ð Þf s2, x s2ð Þ, xΔ s2ð Þ

� �
Δs2Δs1 �ϕ sð ÞÞΔs, t∈ a, σ2 bð Þ� �

,

 
(36)

whereupon

0 ¼ F1xð ÞΔ2

tð Þ

¼ x tð Þ �
ðσ bð Þ

a
G t, sð Þ

ðs
a
k s, s1ð Þf s1, x s1ð Þ, xΔ s1ð Þ

� �
Δs1 � ϕ tð Þ,

(37)

t∈ a, σ2 bð Þ½ �. Hence and Lemma 3.7, we conclude that x is a solution to the BVP
(1), (2). This completes the proof. □

Now, we will give an estimate of the norm of the operator F1.
Lemma 3.9. If x∈E and ∥x∥≤ c for some positive constant c, then

∥F1x∥≤A4 cþ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 cp1 þ cp2 þ 1ð Þ þ A1

� �
: (38)

Proof. We have

∣F1x tð Þ∣ ≤
ðt
a
t� σ sð Þð Þ jx sð Þjð

þ
ðσ bð Þ

a
∣G s, s1ð Þ∣

ðs1
a
∣k s1, s2ð Þkf s2, x s2ð Þ, xΔ s2ð Þ

� �
∣Δs2Δs1

þjϕ sð ÞjÞΔs

≤
ðt
a
t� σ sð Þð Þ cð

þ σ2 bð Þ � a
� �ðσ bð Þ

a

ðs1
a
A2 a1 s2ð Þ x s2ð Þj jp1 þ a2 s2ð Þ xΔ s2ð Þ

�� ��p2�

þa3 s2ð ÞÞΔs2Δs1 þ A1ÞΔs

≤A4 cþ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 cp1 þ cp2 þ 1ð Þ þ A1

� �
,

(39)
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t∈ a, σ2 bð Þ½ �, and

F1xð ÞΔ tð Þ�� ��≤
ðt
a
jx sð Þjð

þ
ðσ bð Þ

a
∣G s, s1ð Þ∣

ðs1
a
∣k s1, s2ð Þkf s2, x s2ð Þ, xΔ s2ð Þ

� �
∣Δs2Δs1

þ∣ϕ sð Þ∣ÞΔs

≤
ðt
a
cð

þ σ2 bð Þ � a
� �ðσ bð Þ

a

ðs1
a
A2 a1 s2ð Þ x s2ð Þj jp1 þ a2 s2ð Þ xΔ s2ð Þ

�� ��p2�

þa3 s2ð ÞÞΔs2Δs1 þ A1ÞΔs

≤A4 cþ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 cp1 þ cp2 þ 1ð Þ þ A1

� �
,

(40)

t∈ a, σ2 bð Þ½ �. Thus,

∥F1x∥≤A4 cþ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 cp1 þ cp2 þ 1ð Þ þ A1

� �
: (41)

This completes the proof. □
Below, suppose
(H3) Suppose that the positive constants A, m, ε, r1, L1, R1 and R satisfy the

following conditions

r1 <
L1

20
<L1 <R1, m∈ 0,

4
5

� �
, ε> 1, R1 < ε

L1

20
, (42)

AA4 R1 þ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 Rp1
1 þ Rp2

1 þ 1
� �þ A1

� �
<

L1

20
, (43)

AA4 L1 þ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 Lp1
1 þ Lp2

1 þ 1
� �þ A1

� �
<

4
5
�m

� �
L1: (44)

In the next section, we will give an example for constants A,m, ε, r1, L1, R1 and R
that satisfy H3ð Þ. For x∈E, define the operator

Fx tð Þ ¼ AF1x tð Þ, t∈ a, σ2 bð Þ� �
: (45)

By Lemma 3.9, we get the following result.
Lemma 3.10. If x∈E and ∥x∥≤ c for some positive constant c, then

∥Fx∥≤AA4 cþ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 cp1 þ cp2 þ 1ð Þ þ A1

� �
: (46)

Lemma 3.11. If x∈E is a solution to the integral equation

0 ¼ L1

5
þ Fx tð Þ, t∈ a, σ2 bð Þ� �

, (47)

then it is a solution to the BVP (1), (2).
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ðt
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jx sð Þjð

þ
ðσ bð Þ
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∣k s1, s2ð Þkf s2, x s2ð Þ, xΔ s2ð Þ

� �
∣Δs2Δs1
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≤
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a
cð
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� �ðσ bð Þ

a

ðs1
a
A2 a1 s2ð Þ x s2ð Þj jp1 þ a2 s2ð Þ xΔ s2ð Þ

�� ��p2�
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� �
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� �
,
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5
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� �
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<
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4
5
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L1: (44)

In the next section, we will give an example for constants A,m, ε, r1, L1, R1 and R
that satisfy H3ð Þ. For x∈E, define the operator

Fx tð Þ ¼ AF1x tð Þ, t∈ a, σ2 bð Þ� �
: (45)

By Lemma 3.9, we get the following result.
Lemma 3.10. If x∈E and ∥x∥≤ c for some positive constant c, then

∥Fx∥≤AA4 cþ σ2 bð Þ � a
� �
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� �
: (46)
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5
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Proof. We have

0 ¼ Fxð ÞΔ2

tð Þ ¼ A F1xð ÞΔ2

tð Þ, t∈ a, σ2 bð Þ� �
, (48)

whereupon

0 ¼ A x tð Þ �
ðσ bð Þ

a
Gðt, sÞ

ðs
a
kðs, s1Þf ðs1, x s1ð Þ, xΔ s1ð ÞÞΔs1 � ϕ tð Þ

 !
, (49)

t∈ a, σ2 bð Þ½ �, and

x tð Þ ¼
ðσ bð Þ

a
G t, sð Þ

ðs
a
k s, s1ð Þf s1, x s1ð Þ, xΔ s1ð Þ

� �
Δs1 þ ϕ tð Þ, (50)

t∈ a, σ2 bð Þ½ �. Now, the assertion follows from Lemma 3.7. This completes the
proof. □

4. Proof of the Main result

Let

~P ¼ fu∈E : u≥0 on t0,∞½ Þg: (51)

With P we will denote the set of all equi-continuous families in ~P. For v∈E,
define the operators

Tv tð Þ ¼ 1þmεð Þv tð Þ � ε
L1

10
,

Sv tð Þ ¼ �εFv tð Þ �mεv tð Þ � ε
L1

10
,

(52)

t∈ t0,∞½ Þ. Note that any fixed point v∈E of the operator T þ S is a solution to
the IVP (1). Define

Pr1 ¼ v∈P : ∥v∥< r1f g,
PL1 ¼ v∈P : ∥v∥<L1f g,
PR1 ¼ v∈P : ∥v∥<R1f g,
Pr1,L1 ¼ v∈P : r1 < ∥v∥<L1f g,
PL1,R1 ¼ v∈P : L1 < ∥v∥<R1f g,

R2 ¼ R1 þ A
m
A4 R1 þ σ2 bð Þ � a

� �
σ bð Þ � að Þ2A2A3 Rp1

1 þ Rp2
1 þ 1

� �þ A1

� �

þ L1

5m
,

Ω ¼ PR2 ¼ v∈P : ∥v∥<R2f g:

(53)

1.For v1, v2 ∈Ω, we have

∥Tv1 � Tv2∥ ¼ 1þmεð Þ∥v1 � v2∥, (54)

whereupon T : Ω! E is an expansive operator with a constant 1þmε> 1.
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2.For v∈PR1 , we get

∥Sv∥≤ ε∥Fv∥þmε∥v∥þ ε
L1

10

≤ ε AA4 R1 þ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 Rp1
1 þ Rp2

1 þ 1
� �þ A1

� ��

þmR1 þ L1

10

�
:

(55)

Therefore S PR1

� �
is uniformly bounded. Since S : PR1 ! E is continuous, we have

that S PR1

� �
is equi-continuous. Consequently S : PR1 ! E is a 0-set contraction.

3.Let v1 ∈PR1 . Set

v2 ¼ v1 þ 1
m
Fv1 þ L1

5m
: (56)

Note that by the second inequality of H3ð Þ and by Lemma 3.10, it follows that
εFv1 þ ε L1

5 ≥0 on t0,∞½ Þ. We have v2 ≥0 on t0,∞½ Þ and

∥v2∥≤ ∥v1∥þ 1
m
∥Fv1∥þ L1

5m

≤R1 þ A
m
A4 R1 þ σ2 bð Þ � a

� �
σ bð Þ � að Þ2A2A3 Rp1

1 þ Rp2
1 þ 1

� �þ A1

� �

þ L1

5m
¼ R2:

(57)

Therefore v2 ∈Ω and

�εmv2 ¼ �εmv1 � εFv1 � ε
L1

10
� ε

L1

10
(58)

or

I � Tð Þv2 ¼ �εmv2 þ ε
L1

10
¼ Sv1: (59)

Consequently S PR1

� �
⊂ I � Tð Þ Ωð Þ.

4.Suppose that there exists an v0 ∈P ∗ such that T v� λv0ð Þ∈P for all λ≥0,
v∈ ∂Pr1 ∩ Ωþ λv0ð Þ and Sv ¼ v� λv0 for some λ≥0 and for some v∈Pr1 . Then

r1 ≥∥v� λv0∥ ¼ ∥Sv∥≥ � Sv tð Þ

¼ εFv tð Þ þ εmv tð Þ þ ε
L1

10
≥ ε

L1

20
, t∈ t0,∞½ Þ,

(60)

because by the second inequality of H3ð Þ and by Lemma 3.10, it follows that
εFvþ ε L1

20 ≥0 on t0,∞½ Þ.

5.Let v∈ ∂PL1 . Then
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∥Svþ T0∥ ¼ ∥εFvþmεvþ ε
L1

5
∥≤ ε ∥Fv∥þm∥v∥þ L1

5

� �

≤ ε AA4 L1 þ ðσ2 bð Þ � a
� Þð�

σ bð Þ � aÞ2A2A3 Lp1
1 þ Lp2

1 þ 1
� �

þA1Þ þ mþ 1
5

� �
L1

�
≤ εL1 ¼ ε∥v∥:

(61)

Note that in the last inequality we have used the third inequality of H3ð Þ.

6.Now, assume that v∈ ∂PL1 ∩Ω is such that

v ¼ Tvþ Sv, (62)

whereupon

Fvþ L1

5
� 0 on t0,∞½ Þ: (63)

Since v∈ ∂PL, we have that v≢0 on t0,∞½ Þ and by the second inequality of H3ð Þ
and by Lemma 3.10, it follows that Fvþ L1

5 >Fvþ L1
20 ≥0 on t0,∞½ Þ. This is a

contradiction.

7.Suppose that there exists an v0 ∈P ∗ such that T v� λv0ð Þ∈P for all λ≥0,
v∈ ∂PR1 , v∈ ∂PR1 ∩ Ωþ λv0ð Þ and Sv ¼ v� λv0 for some λ≥0 and for some
v∈PR1 . Then

R1 ≥∥v� λv0∥ ¼ ∥Sv∥≥ � Sv tð Þ

¼ εFv tð Þ þ εmv tð Þ þ ε
L1

10
≥ ε

L1

20
, t∈ t0,∞½ Þ,

(64)

which is a contradiction.
Therefore all conditions of Theorem 3.6 hold. Hence, the IVP (1) has at least two

solutions u1 and u2 so that

r1 < ∥u1∥<L1 < ∥u2∥<R1: (65)

5. An example

In this section we will illustrate our main result with an example. Firstly, we will
give an example for the constants A, m, ε, r1, L1 and R1 that satisfy the hypothesis
H3ð Þ. Let  ¼ , a ¼ 0, b ¼ 10, α ¼ β ¼ 1,

a1 sð Þ ¼ a2 sð Þ ¼ a3 sð Þ ¼ 1
3
, f s, u, vð Þ ¼ 1

1þ v4
, k s, s1ð Þ ¼ s21, (66)

s∈ 0, 12½ �, s1 ∈ 0, 11½ �, and

r1 ¼ 1, L1 ¼ 100, R1 ¼ 200, ε ¼ 1010,

p1 ¼ p2 ¼ 0, m ¼ 1
2
, A ¼ 1

1050 :
(67)

Then
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A1 ¼ 12þ 12 � 3
12

¼ 4, A2 ¼ 144, A3 ¼ 1
3
, A4 ¼ 144 (68)

and

AA4 R1 þ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 Rp1
1 þ Rp2

1 þ 1
� �þ A1

� �

¼ 1
1050 � 144 200þ 123 � 144 � 1

3
� 3þ 4

� �

< 5 ¼ L1

20
,

AA4 L1 þ σ2 bð Þ � a
� �

σ bð Þ � að Þ2A2A3 Rp1
1 þ Rp2

1 þ 1
� �þ A1

� �

¼ 1
1050 � 144 100þ 123 � 144 � 1

3
� 3þ 4

� �

<
3
10
� 5 ¼ 4

5
�m

� �
L1

20
,

(69)

i.e., H1ð Þ- H3ð Þ hold. Consequently the BVP

xΔ
2
tð Þ ¼

ðt
0
s2

1

1þ xΔ sð Þð Þ4 Δs, t∈ 0, 10½ �,

x 0ð Þ ¼ x 12ð Þ ¼ 1,

(70)

has at least two non-negative solutions.

6. Conclusion

In this chapter we introduce a class of BVPs for a class second-order integro-
dynamic equations on time scales. We give some integral representations of the
solutions of the considered BVP. We apply a new multiple fixed point theorem and
we prove that the considered BVP has at least two nontrivial solutions. The
approach in this chapter can be applied for investigations of IVPs and BVPs for
dynamic equations and integro-dynamic equations of arbitrary order on time scales.
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Chapter 12

Solution of Nonlinear Partial
Differential Equations by Mixture
Adomian Decomposition Method
and Sumudu Transform
Tarig M. Elzaki and Shams E. Ahmed

Abstract

This chapter is fundamentally centering on the application of the Adomian
decomposition method and Sumudu transform for solving the nonlinear partial
differential equations. It has instituted some theorems, definitions, and properties
of Adomian decomposition and Sumudu transform. This chapter is an elegant
combination of the Adomian decomposition method and Sumudu transform.
Consequently, it provides the solution in the form of convergent series, then, it is
applied to solve nonlinear partial differential equations.

Keywords: adomian decomposition method, sumudu transform, nonlinear partial
differential equations

1. Introduction

Many of nonlinear phenomena are a necessary part in applied science and
engineering fields [1]. The wide use of nonlinear partial differential equations is the
most important reason why they have drawn mathematician’s attention. Despite
this, they are not easy to find an answer, either numerically or theoretically. In the
past, active study attempts were given a large amount of attention to the study of
getting exact or approximate solutions of this kind of equations.

Therefore, it becomes increasingly important to be familiar with all traditional
and recently developed methods for solving partial differential equations. For some
examples of the traditional methods, such as, the separation of variables method,
the method of characteristics, the σ-expansion method, the integral transforms and
Hirota bilinear method [2–5]. Moreover, the recently developed methods like,
Adomian decomposition method (ADM) [1, 6–9], He’s semi – inverse method, the
tanh method, the sinh – cosh method, the homotopy perturbation method (HPM)
[3, 4, 10, 11], the differential transform method (DTM), the variational iteration
method (VIM) [1, 5, 12], and the weighted finite difference.

In this chapter, our presentation will be based on applying the new method,
namely the Adomian Decomposition Sumudu Transform Method (ADSTM) for
solving the nonlinear partial differential equations. This method is an elegant
combination of the Sumudu transform method and decomposition method.
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2. Sumudu Transform

A long time ago, differential equationswared anecessarypart in all aspects of applied
sciences and engineering fields. In this chapter we need to develop a new technique for
help us to obtain the exact and approximate solutions of these differential equations.

Watugula [13] introduced a new integral transform and called it as Sumudu
transform, which is defined as:

F uð Þ ¼ S f tð Þ½ � ¼
ð∞

0

1
u
e �

t
uð Þ f tð Þ dt; (1)

Watugula [13] applied this transforms to the solution of ordinary differential
equations. Because of its useful properties, the Sumudu transforms helps in solving
complex problems in applied sciences and engineering mathematics. Hencefor-
ward, is the definition of the Sumudu transforms and properties describing the
simplicity of the transform.

Definition 1: The Sumudu transform of the function f tð Þ is defined by:

F uð Þ ¼ S f tð Þ½ � ¼
ð∞

0

1
u
e �

t
uð Þ f tð Þ dt (2)

Or,

F uð Þ ¼ S f tð Þ½ � ¼
ð∞

0

f u tð Þ e�t dt (3)

For any functionf tð Þ and �τ1 < u< τ2.

3. The relation between Sumudu and Laplace transform

The Sumudu transform Fs uð Þ of a function f tð Þ defined for all real numbers t≥0.
The Sumudu transform is essentially identical with the Laplace transform.

Given an initial f tð Þ its Laplace transform G uð Þ can be translated into the
Sumudu transform Fs uð Þ of f by means of the relation;

F uð Þ ¼ G 1
u

� �
u

, and it’s inverse,G sð Þ ¼ Fs
1
s

� �
s

Theorem 1: Let f tð Þ with Laplace transform G sð Þ, then, the Sumudu transform

F uð Þ of f tð Þ is given by, F uð Þ ¼ G 1
uð Þ
u .

Proof:
Form definition (1.1.1) we get:

F uð Þ ¼ Ð
∞

0
e�tf u tð Þ dt, If we set w ¼ ut and dt ¼ dw

u then:

F uð Þ ¼
ð∞

0

e �
w
uð Þf wð Þ dw

u
¼ 1

u

ð∞

0

e �
w
uð Þ f wð Þdw

By definition of the Laplace transform we get: F uð Þ ¼ G 1
uð Þ
u .
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Theorem 2: It deals with the effect of the differentiation of the function f tð Þ, k
times on the Sumudu transform F uð Þ if S f tð Þ½ � ¼ F uð Þ then:

i. S f 0 tð Þ� � ¼ 1
u F uð Þ � f 0ð Þ½ �

ii. S f 00 tð Þ� � ¼ 1
u2 F uð Þ½ � � 1

u2 f 0ð Þ � 1
u f 0 uð Þ

iii. S f nð Þ tð Þ
h i

¼ 1
un F uð Þ½ � � 1

un
Pn�1
k¼0

uk f kð Þ 0ð Þ ¼ u�n F uð Þ � Pn�1
k¼0

uk f kð Þ 0ð Þ
� �

Where f 0ð Þ 0ð Þ ¼ f 0ð Þ , f kð Þ 0ð Þ , k ¼ 1, 2, 3,⋯, n� 1 are the nth-order
derivatives of the function f tð Þ evaluated at, t ¼ 0.

Proof:

i. Using integration by parts,

ii.
S f 0 tð Þ� � ¼ 1

u
exp � t

u
f tð Þ

� �� �∞
0
þ 1
u

ð∞

0

1
u
exp � t

u

� �
f tð Þdt ¼ � 1

u
f 0ð Þ þ 1

u
F uð Þ

S f 0 tð Þ� � ¼ 1
u

F uð Þ � f 0ð Þ½ �
.

Using integration by parts;

S f 00 tð Þ� � ¼ 1
u
e �

t
uð Þ f 0 tð Þ

� �∞
0
þ 1
u

ð∞

0

1
u
e �

t
uð Þ f 0 tð Þdt

From (i)
¼ � 1

u
f 0 0ð Þ þ 1

u
S f 0 tð Þ� �

S f 00 tð Þ� � ¼ 1
u2

F uð Þ½ � � 1
u2

f 0ð Þ � 1
u
f 0 0ð Þ

.

iii. By definition the Laplace transform for f nð Þ tð Þ is given by

Gn sð Þ ¼ sn G sð Þ �
Xn�1

k¼0
sn� kþ1ð Þ f kð Þ 0ð Þ

By using the relation between Sumudu and Laplace transform;

Gn
1
u

� �
¼ G 1

u

� �
un
�
Xn�1

k¼ 0

f kð Þ 0ð Þ
un� kþ1ð Þ

Since Fn uð Þ ¼ Gn
1
uð Þ

un , we get:

u Fn uð Þ ¼ uF uð Þ
un
�
Xn�1

k¼0

f kð Þ 0ð Þ
un�k u�1

Fn uð Þ ¼ F uð Þ
un
�
Xn�1

k¼0

f kð Þ 0ð Þ
un�k

Fn uð Þ ¼ u�n F uð Þ �
Xn�1

k¼0
u�nuk f kð Þ 0ð Þ

S f nð Þ tð Þ
h i

¼ F uð Þ ¼ u�n F uð Þ �
Xn�1

k¼0
uk f kð Þ 0ð Þ

" #
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Theorem 2: It deals with the effect of the differentiation of the function f tð Þ, k
times on the Sumudu transform F uð Þ if S f tð Þ½ � ¼ F uð Þ then:

i. S f 0 tð Þ� � ¼ 1
u F uð Þ � f 0ð Þ½ �

ii. S f 00 tð Þ� � ¼ 1
u2 F uð Þ½ � � 1

u2 f 0ð Þ � 1
u f 0 uð Þ

iii. S f nð Þ tð Þ
h i

¼ 1
un F uð Þ½ � � 1

un
Pn�1
k¼0

uk f kð Þ 0ð Þ ¼ u�n F uð Þ � Pn�1
k¼0

uk f kð Þ 0ð Þ
� �

Where f 0ð Þ 0ð Þ ¼ f 0ð Þ , f kð Þ 0ð Þ , k ¼ 1, 2, 3,⋯, n� 1 are the nth-order
derivatives of the function f tð Þ evaluated at, t ¼ 0.

Proof:
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ii.
S f 0 tð Þ� � ¼ 1

u
exp � t

u
f tð Þ

� �� �∞
0
þ 1
u

ð∞

0

1
u
exp � t

u

� �
f tð Þdt ¼ � 1

u
f 0ð Þ þ 1

u
F uð Þ

S f 0 tð Þ� � ¼ 1
u

F uð Þ � f 0ð Þ½ �
.

Using integration by parts;

S f 00 tð Þ� � ¼ 1
u
e �

t
uð Þ f 0 tð Þ

� �∞
0
þ 1
u

ð∞

0

1
u
e �

t
uð Þ f 0 tð Þdt

From (i)
¼ � 1

u
f 0 0ð Þ þ 1

u
S f 0 tð Þ� �

S f 00 tð Þ� � ¼ 1
u2

F uð Þ½ � � 1
u2

f 0ð Þ � 1
u
f 0 0ð Þ

.

iii. By definition the Laplace transform for f nð Þ tð Þ is given by
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Xn�1

k¼0
sn� kþ1ð Þ f kð Þ 0ð Þ

By using the relation between Sumudu and Laplace transform;

Gn
1
u

� �
¼ G 1

u

� �
un
�
Xn�1
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f kð Þ 0ð Þ
un� kþ1ð Þ

Since Fn uð Þ ¼ Gn
1
uð Þ
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u Fn uð Þ ¼ uF uð Þ
un
�
Xn�1

k¼0

f kð Þ 0ð Þ
un�k u�1

Fn uð Þ ¼ F uð Þ
un
�
Xn�1

k¼0

f kð Þ 0ð Þ
un�k

Fn uð Þ ¼ u�n F uð Þ �
Xn�1

k¼0
u�nuk f kð Þ 0ð Þ

S f nð Þ tð Þ
h i
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Xn�1
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" #
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4. Adomian decomposition method

Many of nonlinear phenomena are a necessary part in applied science and
engineering fields. Nonlinear equations are noticed in a different type of physical
problems [1], such as fluid dynamics, plasma physics, solid mechanics, and
quantum field theory.

The wide use of these equations is the most important reason why they have
drawn mathematician’s attention. Despite this, they are not easy to find an answer,
either numerically or theoretically.

In the past, active study attempts were given a large amount of attention to the
study of getting exact or approximate solutions of this kind of equations. It is signif-
icant to note that several powerful methods have been advanced for this purpose.

The Adomian decomposition method will be used in this chapter and in other
chapters to deal with nonlinear equations. The Adomian decomposition method
proves to be powerful, effective and successfully used to handle most types of linear
or nonlinear ordinary or partial differential equations, and linear or nonlinear
integral equations.

In the following, the Adomian scheme for calculating a wide variety of forms of
nonlinearity.

5. Calculation of Adomian polynomials

It is well known that the Adomian decomposition method suggests the unknown
linear function u may be represented by the decomposition series;

u ¼
X∞
n¼0

un, (4)

Where the components un, n≥0 can be elegantly computed in a recursive way.
However, the nonlinear term F uð Þ, such as u2, u3, u4, sin u, eu, uux, ux2, etc., can be
expressed by an infinite series of the so- called Adomian polynomials An given in
the form;

F uð Þ ¼
X∞
n¼0

An u0, u1, u2, … , unð Þ: (5)

The Adomian polynomials An for the nonlinear term F uð Þ can be evaluated by
using the following expression;

An ¼ 1
n!

dn

dλn
F
Xn
i¼0

λi ui

 !" #

λ¼0
, n ¼ 0, 1, 2, … (6)

Assuming that the nonlinear function is F uð Þ, therefore, by using (6), Adomian
polynomials are given by;

A0 ¼ F u0ð Þ,
A1 ¼ u1 F0 u0ð Þ,
A2 ¼ u2 F0 u0ð Þ þ 1

2!
u12 F00 u0ð Þ,

A3 ¼ u3 F0 u0ð Þ þ u1 u2 F00 u0ð Þ þ 1
3!

u13 F‴ u0
� �

:

(7)
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Other polynomials can be generated in a similar manner.
Substituting (7) into (5) gives;

F uð Þ ¼ A0 þ A1 þ A2 þ A3 þ … ¼ F u0ð Þ þ u1 þ u2 þ u3 þ …ð ÞF0 u0ð Þ

þ 1
2!

u12 þ 2u1 u2 þ u22 þ …
� �

F00 u0ð Þ þ 1
3!

u13 þ 3u12 u2 þ 3u12 u3 þ …
� �

F‴ u0ð Þ þ …

¼ F u0ð Þ þ u� u0ð ÞF0 u0ð Þ þ 1
2!

u� u0ð Þ2 F00 u0ð Þ þ :…

The last expansion confirms a fact that the series in An polynomials is a Taylor
series about a function u0 and not about a point as is usually used.

In the following, we will calculate Adomian polynomials for several forms of
nonlinearity.

5.1 Nonlinear polynomials

If F uð Þ ¼ u2

The polynomials can be found as follows:

A0 ¼ F u0ð Þ ¼ u02, A1 ¼ u1 F0 u0ð Þ ¼ 2u0 u1, A2 ¼ u2 F0 u0ð Þ þ 1
2!

u12F00 u0ð Þ ¼ 2u0 u2 þ u12,

A3 ¼ u3F0 u0ð Þ þ u1 u2F00 u0ð Þ þ 1
3!

u13 F‴ u0
� � ¼ 2u0 u3 þ 2u1 u2:

And so on. Proceeding as before, we find u3, u4, u5, … , etc.

5.2 Nonlinear derivatives

Case1. F uð Þ ¼ uxð Þ2

A0 ¼ u0x2, A1 ¼ 2u0x u1x , A2 ¼ 2u0x u2x þ u1x2, A3 ¼ 2u0x u3x þ 2u1x u2x:

And so on. In a similar, we get ux3, ux4, ux5, :… , etc.
Case 2. F uð Þ ¼ uux ¼ 1

2 Lx u2ð Þ
The An polynomials in this case given by;

A0 ¼ F u0ð Þ ¼ u0 u0x , A1 ¼ 1
2
Lx 2u0 u1ð Þ ¼ u0x u1 þ u0 u1x ,

A2 ¼ 1
2
Lx 2u0 u2 þ u12
� � ¼ u0xu2 þ u0 u2x u0 þ u1 u1x ,

A3 ¼ 1
2
Lx 2u0 u3 þ 2u1 u2ð Þ ¼ u0xu3 þ u1xu2 þ u2xu1 þ u3xu0:

And so on.

5.3 Trigonometric nonlinearity

If F uð Þ ¼ sin u

The Adomian polynomials for this form nonlinearity are given by;
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The last expansion confirms a fact that the series in An polynomials is a Taylor
series about a function u0 and not about a point as is usually used.

In the following, we will calculate Adomian polynomials for several forms of
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5.1 Nonlinear polynomials
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� � ¼ 2u0 u3 þ 2u1 u2:
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Case 2. F uð Þ ¼ uux ¼ 1
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The An polynomials in this case given by;
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A0 ¼ sin u0, A1 ¼ u1 cos u0, A2 ¼ u2 cos u0 � 1
2!

u12 sin u0, A3

¼ u3 cos u0 � u1 u2 sin u0 � 1
3!

u13 cos u0:

And so on. In a similar way, we find F uð Þ ¼ cos u.

5.4 Hyperbolic nonlinearity

If F uð Þ ¼ sinh u

The An polynomials in this case are given by;

A0 ¼ sinh u0, A1 ¼ u1 cosh u0, A2 ¼ u2 cosh u0 þ 1
2!

u12 sinh u0, A3

¼ u3 cosh u0 þ u1 u2 sinh u0 þ 1
3!

u13 cosh u0:

And so on. In a parallel manner, Adomian polynomials can be calculated for
F uð Þ ¼ cosh u.

5.5 Exponential nonlinearity

If F uð Þ ¼ eu

The Adomian polynomials in this form of nonlinearity are given by;

A0 ¼ eu0 , A1 ¼ u1 eu0 , A2 ¼ u2 þ 1
2!

u12
� �

eu0 , A3 ¼ u3 þ u1 u2 þ 1
3!

u13
� �

eu0 :

And so on. Proceeding as a before, we find F uð Þ ¼ e�u.

5.6 Logarithmic nonlinearity

If F uð Þ ¼ ln u, u>0

The An polynomials for logarithmic nonlinearity are given by;

A0 ¼ ln u0, A1 ¼ u1
u0

, A2 ¼ u2
u0
� 1
2
u12

u02
, A3 ¼ u3

u0
� u1 u2

u02
þ 1
3
u13

u03
:

And so on. In a similar way, we find F uð Þ ¼ ln 1þ uð Þ, � 1< u≤ 1 .

6. A New algorithm for calculating Adomian polynomials
(The alternative algorithm for calculating Adomian polynomials)

It is well known about the main disadvantage of the calculating Adomian poly-
nomials An, that it is a difficult method to perform calculation so called nonlinear
terms. There is an alternative algorithm to reduce the demerits of formula
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introduced before, which depends mainly on algebraic, trigonometric identities and
on Taylor expansions.

In the alternative algorithm which is a simple and reliable may be employed to
calculate Adomian Polynomials An.

The new algorithm will be clarified by discussing the following suitable forms of
nonlinearity.

6.1 Nonlinear polynomials

If F uð Þ ¼ u2

We first set,

u ¼
X∞
n¼0

un: (8)

Substituting (8) into F uð Þ ¼ u2 gives;

F uð Þ ¼ u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ2: (9)

Expanding the expression at the right- hand side gives;

F uð Þ ¼ u02 þ 2u0 u1 þ 2u0 u2 þ u12 þ 2u0 u3 þ 2u1 u2 þ :… (10)

The expansion in (10) can be rearranged by grouping all terms with the sum
of the subscripts of the components is the same. This means that we can
rewrite (10) as;

F uð Þ ¼ u02|{z}
A0

þ 2u0 u1|fflfflffl{zfflfflffl}
A1

þ 2u0 u2 þ u12|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
A2

þ 2u0 u3 þ 2u1 u2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A3

þ … : (11)

This gives Adomian polynomials for F uð Þ ¼ u2 by;

A0 ¼ u02, A1 ¼ 2u0 u1, A2 ¼ 2u0 u2 þ u12, A3 ¼ 2u0 u3 þ 2u1 u2:

And so on. Proceeding as before, we get u3, u4, u5, :… , etc.

6.2 Nonlinear derivatives

Case 1. If F uð Þ ¼ ux2:
We first set;

ux ¼
X∞
n¼0

un x: (12)

Substituting (12) into F uð Þ ¼ ux2 giving;

F uð Þ ¼ u0x þ u1x þ u2x þ u3x þ u4x þ …ð Þ2: (13)

Squaring the right – hand side gives;

F uð Þ ¼ u0x
2 þ 2u0x u1x þ 2u0x u2x þ u1x2 þ 2u0x u3x þ 2u1x u2x þ :… (14)

201

Solution of Nonlinear Partial Differential Equations by Mixture Adomian Decomposition…
DOI: http://dx.doi.org/10.5772/intechopen.94598



A0 ¼ sin u0, A1 ¼ u1 cos u0, A2 ¼ u2 cos u0 � 1
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introduced before, which depends mainly on algebraic, trigonometric identities and
on Taylor expansions.

In the alternative algorithm which is a simple and reliable may be employed to
calculate Adomian Polynomials An.

The new algorithm will be clarified by discussing the following suitable forms of
nonlinearity.

6.1 Nonlinear polynomials

If F uð Þ ¼ u2

We first set,

u ¼
X∞
n¼0

un: (8)

Substituting (8) into F uð Þ ¼ u2 gives;

F uð Þ ¼ u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ2: (9)

Expanding the expression at the right- hand side gives;

F uð Þ ¼ u02 þ 2u0 u1 þ 2u0 u2 þ u12 þ 2u0 u3 þ 2u1 u2 þ :… (10)

The expansion in (10) can be rearranged by grouping all terms with the sum
of the subscripts of the components is the same. This means that we can
rewrite (10) as;

F uð Þ ¼ u02|{z}
A0
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This gives Adomian polynomials for F uð Þ ¼ u2 by;
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We first set;

ux ¼
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n¼0

un x: (12)
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2 þ 2u0x u1x þ 2u0x u2x þ u1x2 þ 2u0x u3x þ 2u1x u2x þ :… (14)

201

Solution of Nonlinear Partial Differential Equations by Mixture Adomian Decomposition…
DOI: http://dx.doi.org/10.5772/intechopen.94598



Grouping the terms as discussed above, we find;

F uð Þ ¼ u0x
2

|ffl{zffl}
A0

þ 2u0x u1x|fflfflfflffl{zfflfflfflffl}
A1

þ 2u0x u2x þ u1x2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
A2

þ 2u0x u3x þ 2u1x u2x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

þ :… (15)

Adomian polynomials are given by;

A0 ¼ u0x2, A1 ¼ 2u0x u1x , A2 ¼ 2u0x u2x þ u1x2, A3 ¼ 2u0x u3x þ 2u1x u2x:

Case 2. F uð Þ ¼ uux
Note that this form of nonlinearity appears in advection problems and in

nonlinear Burgers equations. We first set;

u ¼
X∞
n¼0

un, ux ¼
X∞
n¼0

unx: (16)

Substituting (16) into F uð Þ ¼ uux yields;

F uð Þ ¼ u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ � u0x þ u1x þ u2x þ u3x þ u4x þ …ð Þ;
(17)

Multiplying the two factors gives;

F uð Þ ¼ u0u0x þ u0xu1 þ u0u1x þ u0xu2 þ u1xu1 þ u2xu0 þ u0xu3 þ u1xu2þ
þu2xu1 þ u3xu0 þ u0xu4 þ u0u4x þ u1xu3 þ u1u3x þ u2u2x þ …

: (18)

Proceeding with grouping the terms are obtained;

F uð Þ ¼ u0u0x|fflffl{zfflffl}
A0

þ u0xu1 þ u0u1x|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A1

þ u0xu2 þ u1xu1 þ u2xu0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

þ u0xu3 þ u1xu2 þ u2xu1 þ u3xu0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

… (19)

Consequently, the Adomian polynomials are given by;

A0 ¼ u0 u0x , A1 ¼ u0x u1 þ u0 u1x , A2 ¼ u0xu2 þ u0 u2x u0 þ u1 u1x ,
A3 ¼ u0xu3 þ u1xu2 þ u2xu1 þ u3xu0:

Proceeding as before, we find F uð Þ ¼ u2 ux.

6.3 Trigonometric nonlinearity

If F uð Þ ¼ sin u

First, we should be separate A0 ¼ F u0ð Þ from other terms. To achieve this goal,
we first substitute;

u ¼
X∞
n¼0

un; (20)

Into F uð Þ ¼ sin u to obtain;

202

Recent Developments in the Solution of Nonlinear Differential Equations

F uð Þ ¼ sin u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ½ �: (21)

To separate A0 , recall the trigonometric identity;

sin θ þ ϕð Þ ¼ sin θ cosϕþ cos θ sinϕ: (22)

This means that;

F uð Þ ¼ sin u0 cos u1 þ u2 þ u3 þ u4 þ …ð Þ þ cos u0 sin u1 þ u2 þ u3 þ u4 þ …ð Þ:
(23)

Separating F u0ð Þ ¼ sin u0 from other factors and using Taylor expansion for,
cos u1 þ u2 þ u3 þ u4 þ :…ð Þ and, sin u1 þ u2 þ u3 þ u4 þ :…ð Þ gives;

F uð Þ ¼ sin u0 1� 1
2!

u1 þ u2 þ …ð Þ2 þ 1
4!

u1 þ u2 þ …ð Þ4 � …

� �
þ

þ cos u0 u1 þ u2 þ …ð Þ � 1
3!

u1 þ u2 þ …ð Þ3 þ …

� � , (24)

So that;

F uð Þ ¼ sin u0 1� 1
2!

u12 þ 2u1 u2 þ …
� �þ …

� �

þ cos u0 u1 þ u2 þ …ð Þ � 1
3!

u13 þ …

� �
: (25)

The last expansion can be rearranged by grouping all terms with the same sum of
subscripts. This leads to;

F uð Þ ¼ sin u0|fflffl{zfflffl}
A0

þ u1 cos u0|fflfflfflfflffl{zfflfflfflfflffl}
A1

þ u2 cos u0 � 1
2!

u12 sin u0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A2

þ

þu3 cos u0 � u1u2 sin u0 � 1
3!

u13 cos u0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A3

þ …

(26)

This completes the calculation of the Adomian polynomials for nonlinear
operator F uð Þ ¼ sin u, therefore we write;

A0 ¼ sin u0, A1 ¼ u1 cos u0, A2 ¼ u2 cos u0 � 1
2!

u12 sin u0,

A3 ¼ u3 cos u0 � u1 u2 sin u0 � 1
3!

u13 cos u0:

And so on. In a similar way, we find F uð Þ ¼ cos u.

6.4 Hyperbolic nonlinearity

If F uð Þ ¼ sinh u then, we first substitute

u ¼
X∞
n¼0

un; (27)
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Grouping the terms as discussed above, we find;

F uð Þ ¼ u0x
2

|ffl{zffl}
A0

þ 2u0x u1x|fflfflfflffl{zfflfflfflffl}
A1

þ 2u0x u2x þ u1x2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
A2

þ 2u0x u3x þ 2u1x u2x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

þ :… (15)

Adomian polynomials are given by;

A0 ¼ u0x2, A1 ¼ 2u0x u1x , A2 ¼ 2u0x u2x þ u1x2, A3 ¼ 2u0x u3x þ 2u1x u2x:

Case 2. F uð Þ ¼ uux
Note that this form of nonlinearity appears in advection problems and in

nonlinear Burgers equations. We first set;

u ¼
X∞
n¼0

un, ux ¼
X∞
n¼0

unx: (16)

Substituting (16) into F uð Þ ¼ uux yields;

F uð Þ ¼ u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ � u0x þ u1x þ u2x þ u3x þ u4x þ …ð Þ;
(17)

Multiplying the two factors gives;

F uð Þ ¼ u0u0x þ u0xu1 þ u0u1x þ u0xu2 þ u1xu1 þ u2xu0 þ u0xu3 þ u1xu2þ
þu2xu1 þ u3xu0 þ u0xu4 þ u0u4x þ u1xu3 þ u1u3x þ u2u2x þ …

: (18)

Proceeding with grouping the terms are obtained;

F uð Þ ¼ u0u0x|fflffl{zfflffl}
A0

þ u0xu1 þ u0u1x|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A1

þ u0xu2 þ u1xu1 þ u2xu0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

þ u0xu3 þ u1xu2 þ u2xu1 þ u3xu0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

… (19)

Consequently, the Adomian polynomials are given by;

A0 ¼ u0 u0x , A1 ¼ u0x u1 þ u0 u1x , A2 ¼ u0xu2 þ u0 u2x u0 þ u1 u1x ,
A3 ¼ u0xu3 þ u1xu2 þ u2xu1 þ u3xu0:

Proceeding as before, we find F uð Þ ¼ u2 ux.

6.3 Trigonometric nonlinearity

If F uð Þ ¼ sin u

First, we should be separate A0 ¼ F u0ð Þ from other terms. To achieve this goal,
we first substitute;

u ¼
X∞
n¼0

un; (20)

Into F uð Þ ¼ sin u to obtain;
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F uð Þ ¼ sin u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ½ �: (21)

To separate A0 , recall the trigonometric identity;

sin θ þ ϕð Þ ¼ sin θ cosϕþ cos θ sinϕ: (22)

This means that;

F uð Þ ¼ sin u0 cos u1 þ u2 þ u3 þ u4 þ …ð Þ þ cos u0 sin u1 þ u2 þ u3 þ u4 þ …ð Þ:
(23)

Separating F u0ð Þ ¼ sin u0 from other factors and using Taylor expansion for,
cos u1 þ u2 þ u3 þ u4 þ :…ð Þ and, sin u1 þ u2 þ u3 þ u4 þ :…ð Þ gives;

F uð Þ ¼ sin u0 1� 1
2!

u1 þ u2 þ …ð Þ2 þ 1
4!

u1 þ u2 þ …ð Þ4 � …

� �
þ

þ cos u0 u1 þ u2 þ …ð Þ � 1
3!

u1 þ u2 þ …ð Þ3 þ …

� � , (24)

So that;

F uð Þ ¼ sin u0 1� 1
2!

u12 þ 2u1 u2 þ …
� �þ …

� �

þ cos u0 u1 þ u2 þ …ð Þ � 1
3!

u13 þ …

� �
: (25)

The last expansion can be rearranged by grouping all terms with the same sum of
subscripts. This leads to;

F uð Þ ¼ sin u0|fflffl{zfflffl}
A0

þ u1 cos u0|fflfflfflfflffl{zfflfflfflfflffl}
A1

þ u2 cos u0 � 1
2!

u12 sin u0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A2

þ

þu3 cos u0 � u1u2 sin u0 � 1
3!

u13 cos u0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A3

þ …

(26)

This completes the calculation of the Adomian polynomials for nonlinear
operator F uð Þ ¼ sin u, therefore we write;

A0 ¼ sin u0, A1 ¼ u1 cos u0, A2 ¼ u2 cos u0 � 1
2!

u12 sin u0,

A3 ¼ u3 cos u0 � u1 u2 sin u0 � 1
3!

u13 cos u0:

And so on. In a similar way, we find F uð Þ ¼ cos u.

6.4 Hyperbolic nonlinearity

If F uð Þ ¼ sinh u then, we first substitute

u ¼
X∞
n¼0

un; (27)
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Into F uð Þ ¼ sinh u to obtain;

F uð Þ ¼ sinh u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ½ �: (28)

To calculate A0 , recall the hyperbolic identity;

sinh θ þ ϕð Þ ¼ sinh θ coshϕþ cosh θ sinhϕ: (29)

Accordingly, Eq. (29) becomes;

F uð Þ ¼ sinh u0 cosh u1 þ u2 þ u3 þ u4 þ …ð Þ
þ cosh u0 sinh u1 þ u2 þ u3 þ u4 þ …ð Þ: (30)

Separating F u0ð Þ ¼ sinh u0 from other factors and using Taylor expansion for
cosh u1 þ u2 þ u3 þ u4 þ :…ð Þ and sinh u1 þ u2 þ u3 þ u4 þ :…ð Þ gives;

F uð Þ ¼ sinh u0 1þ 1
2!

u1 þ u2 þ …ð Þ2 þ 1
4!

u1 þ u2 þ …ð Þ4 þ …

� �

þ cosh u0 u1 þ u2 þ …ð Þ þ 1
3!

u1 þ u2 þ …ð Þ3 þ …

� �

¼ sinh u0 1þ 1
2!

u12 þ 2u1 u2 þ …
� �þ …

� �
þ cosh u0 u1 þ u2 þ …ð Þ þ 1

3!
u13 þ …

� �

By grouping all terms with the same sum of subscripts we find

F uð Þ ¼ sinh u0|fflfflfflffl{zfflfflfflffl}
A0

þ u1 cosh u0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A1

þ u2 cosh u0 þ 1
2!

u12 sinh u0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A2

þ u3 cosh u0 þ u1u2 sinh u0 � 1
3!

u13 cosh u0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A3

þ …

Consequently, the Adomian polynomials for F uð Þ ¼ sinh u are given by;

A0 ¼ sinh u0, A1 ¼ u1 cosh u0, A2 ¼ u2 cosh u0 þ 1
2!

u12 sinh u0,

A3 ¼ u3 cosh u0 þ u1 u2 sinh u0 þ 1
3!

u13 cosh u0:

Similarly as before, we find F uð Þ ¼ cosh u.

6.5 Exponential nonlinearity

If F uð Þ ¼ eu:

Substituting

u ¼
X∞
n¼0

un; (31)

Into F uð Þ ¼ eu gives;
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F uð Þ ¼ e u0þu1þu2þu3þu4þ…ð Þ: (32)

Or equivalently;

F uð Þ ¼ eu0 � e u1þu2þu3þu4þ…ð Þ: (33)

Keeping the term F u0ð Þ ¼ eu0 and using Taylor expansion for the other factors
we obtain;

F uð Þ ¼ eu0 � 1þ u1 þ u2 þ u3 þ …ð Þ þ 1
2!

u1 þ u2 þ u3 þ …ð Þ2 þ …

� �
: (34)

By grouping all terms with an identical sum of subscripts we find

F uð Þ ¼ eu0|{z}
A0

þ u1eu0|ffl{zffl}
A1

þ u2 þ 1
2!

u12
� �

eu0

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

þ u3 þ u1u2 þ 1
3!

u13
� �

eu0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

þ :… (35)

It then follows that;

A0 ¼ eu0 , A1 ¼ u1 eu0 , A2 ¼ u2 þ 1
2!

u12
� �

eu0 , A3 ¼ u3 þ u1 u2 þ 1
3!

u13
� �

eu0 :

And so on. Proceeding as a before, we find F uð Þ ¼ e�u.

6.6 Logarithmic nonlinearity

If F uð Þ ¼ ln u, u>0

Substituting

u ¼
X∞
n¼0

un; (36)

Into F uð Þ ¼ ln u gives;

F uð Þ ¼ ln u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ: (37)

Eq. (34) can be written as;

F uð Þ ¼ ln u0 1þ u1
u0
þ u2
u0
þ u3
u0
þ …

� �� �
: (38)

Using the identity ln αβð Þ ¼ ln αþ ln β, Eq. (38) becomes;

F uð Þ ¼ ln u0ð Þ þ ln 1þ u1
u0
þ u2
u0
þ u3
u0
þ …

� �
: (39)

Separating F u0ð Þ ¼ ln u0ð Þ and using Taylor expansion of the remaining term,
we obtain;
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Into F uð Þ ¼ sinh u to obtain;

F uð Þ ¼ sinh u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ½ �: (28)

To calculate A0 , recall the hyperbolic identity;

sinh θ þ ϕð Þ ¼ sinh θ coshϕþ cosh θ sinhϕ: (29)

Accordingly, Eq. (29) becomes;

F uð Þ ¼ sinh u0 cosh u1 þ u2 þ u3 þ u4 þ …ð Þ
þ cosh u0 sinh u1 þ u2 þ u3 þ u4 þ …ð Þ: (30)

Separating F u0ð Þ ¼ sinh u0 from other factors and using Taylor expansion for
cosh u1 þ u2 þ u3 þ u4 þ :…ð Þ and sinh u1 þ u2 þ u3 þ u4 þ :…ð Þ gives;

F uð Þ ¼ sinh u0 1þ 1
2!

u1 þ u2 þ …ð Þ2 þ 1
4!

u1 þ u2 þ …ð Þ4 þ …

� �

þ cosh u0 u1 þ u2 þ …ð Þ þ 1
3!

u1 þ u2 þ …ð Þ3 þ …

� �

¼ sinh u0 1þ 1
2!

u12 þ 2u1 u2 þ …
� �þ …

� �
þ cosh u0 u1 þ u2 þ …ð Þ þ 1

3!
u13 þ …

� �

By grouping all terms with the same sum of subscripts we find

F uð Þ ¼ sinh u0|fflfflfflffl{zfflfflfflffl}
A0

þ u1 cosh u0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A1

þ u2 cosh u0 þ 1
2!

u12 sinh u0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A2

þ u3 cosh u0 þ u1u2 sinh u0 � 1
3!

u13 cosh u0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A3

þ …

Consequently, the Adomian polynomials for F uð Þ ¼ sinh u are given by;

A0 ¼ sinh u0, A1 ¼ u1 cosh u0, A2 ¼ u2 cosh u0 þ 1
2!

u12 sinh u0,

A3 ¼ u3 cosh u0 þ u1 u2 sinh u0 þ 1
3!

u13 cosh u0:

Similarly as before, we find F uð Þ ¼ cosh u.

6.5 Exponential nonlinearity

If F uð Þ ¼ eu:

Substituting

u ¼
X∞
n¼0

un; (31)

Into F uð Þ ¼ eu gives;
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F uð Þ ¼ e u0þu1þu2þu3þu4þ…ð Þ: (32)

Or equivalently;

F uð Þ ¼ eu0 � e u1þu2þu3þu4þ…ð Þ: (33)

Keeping the term F u0ð Þ ¼ eu0 and using Taylor expansion for the other factors
we obtain;

F uð Þ ¼ eu0 � 1þ u1 þ u2 þ u3 þ …ð Þ þ 1
2!

u1 þ u2 þ u3 þ …ð Þ2 þ …

� �
: (34)

By grouping all terms with an identical sum of subscripts we find

F uð Þ ¼ eu0|{z}
A0

þ u1eu0|ffl{zffl}
A1

þ u2 þ 1
2!

u12
� �

eu0

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

þ u3 þ u1u2 þ 1
3!

u13
� �

eu0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

þ :… (35)

It then follows that;

A0 ¼ eu0 , A1 ¼ u1 eu0 , A2 ¼ u2 þ 1
2!

u12
� �

eu0 , A3 ¼ u3 þ u1 u2 þ 1
3!

u13
� �

eu0 :

And so on. Proceeding as a before, we find F uð Þ ¼ e�u.

6.6 Logarithmic nonlinearity

If F uð Þ ¼ ln u, u>0

Substituting

u ¼
X∞
n¼0

un; (36)

Into F uð Þ ¼ ln u gives;

F uð Þ ¼ ln u0 þ u1 þ u2 þ u3 þ u4 þ …ð Þ: (37)

Eq. (34) can be written as;

F uð Þ ¼ ln u0 1þ u1
u0
þ u2
u0
þ u3
u0
þ …

� �� �
: (38)

Using the identity ln αβð Þ ¼ ln αþ ln β, Eq. (38) becomes;

F uð Þ ¼ ln u0ð Þ þ ln 1þ u1
u0
þ u2
u0
þ u3
u0
þ …

� �
: (39)

Separating F u0ð Þ ¼ ln u0ð Þ and using Taylor expansion of the remaining term,
we obtain;
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F uð Þ ¼ ln u0ð Þ þ
u1
u0
þ u2
u0
þ u3
u0
þ …

� �
� 1
2

u1
u0
þ u2
u0
þ u3
u0
þ …

� �2

þ 1
3

u1
u0
þ u2
u0
þ u3
u0
þ …

� �3

� 1
4

u1
u0
þ u2
u0
þ u3
u0
þ …

� �4

þ …

8>>><
>>>:

9>>>=
>>>;

(40)

Proceeding as before, Eq. (40) can be rewritten as;

F uð Þ ¼ ln u0ð Þ|fflfflffl{zfflfflffl}
A0

þ u1
u0|{z}
A1

þ u2
u0
� 1
2
u12

u02|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A2

þ u3
u0
� u1u2

u02
þ 1
3
u13

u03|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

þ :… (41)

Based on this, the Adomian polynomials are given by;

A0 ¼ ln u0ð Þ, A1 ¼ u1
u0

, A2 ¼ u2
u0
� 1
2
u12

u02
, A3 ¼ u3

u0
� u1 u2

u02
þ 1
3
u13

u03
:

And so on. In a like manner, we obtain F uð Þ ¼ ln 1þ uð Þ, � 1< u≤ 1 .

7. Adomian decomposition Sumudu transform method for solving
nonlinear partial differential equations

In this section, we will concentrate our study on the nonlinear PDEs. There are
many nonlinear partial differential equations which are quite useful and applicable
in engineering and physics.

The nonlinear phenomena that appear in the many scientific fields’ such as
solid state physics, plasma physics, fluid mechanics and quantum field theory can
be modeled by nonlinear differential equations. The significance of obtaining
exact or approximate solutions of nonlinear partial differential equations in
physics and mathematics is yet an important problem that needs new methods to
develop new techniques for obtaining analytical solutions. Several powerful
mathematical methods are used for this purpose. We, propose a new method,
namely Adomian Decomposition Sumudu Transform Method (ADSTM) for
solving nonlinear equations. This method is a combination of Sumudu transform
and decomposition method which was introduced by D. Kumar, J. Singh and
S. Rathore.

(ADSTM) provides the solution for nonlinear equations in the form of conver-
gent series. This forms the motivation for us to apply (ADSTM) for solving
nonlinear equations in understanding different physical phenomena.

To illustrate the basic idea of this method, we consider a general non-
homogeneous partial differential equation with the initial conditions of the form:

DU x, tð Þ þ RU x, tð Þ þNU x, tð Þ ¼ g x, tð Þ
U x, 0ð Þ ¼ h xð Þ ,Ut x, 0ð Þ ¼ f xð Þ: ; (42)

Where D is the second order linear differential operator D ¼ ∂
2

∂ t2, R is linear
differential operator of less order than D, N represent the general nonlinear
operator and g x, tð Þ is the source term.

Taking the Sumudu transform of both sides of Eq. (42), we get:

S DU x, tð Þ½ � þ S RU x, tð Þ½ � þ S N x, tð Þ½ � ¼ S g x, tð Þ½ �; (43)
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Using the differentiation property of the Sumudu transform and given initial
conditions, we have:

S U x, tð Þ½ � ¼ u2 S g x, tð Þ½ � þ h xð Þ þ uf xð Þ � u2 S RU x, tð Þ þNU x, tð Þ½ �: (44)

If we apply the inverse operator S�1 to both sides of Eq. (44), we obtain:

U x, tð Þ ¼ G x, tð Þ � S�1 u2 S RU x, tð Þ þNU x, tð Þ½ �� �
: (45)

Where G x, tð Þ represents the term arising from the source term and the
prescribed initial conditions. Now, apply the Adomain decomposition method:

U x, tð Þ ¼
X∞
n¼0

Un x, tð Þ; (46)

The nonlinear term can be decomposed as:

NU x, tð Þ ¼
X∞
n¼0

An Uð Þ; (47)

For some Adomain polynomials An Uð Þ that are given by:

An U0,U1,U2, … ,Unð Þ ¼ 1
n!

dn

dλn
N

X∞
n¼0

λn Un

 !" #

λ¼0
, n ¼ 0, 1, 2, :…

Substituting Eq. (46) and Eq. (47) in Eq. (45), we get:

X∞
n¼0

Un x, tð Þ ¼ G x, tð Þ � S�1 u2 S R
X∞
n¼0

Un x, tð Þ þ
X∞
n¼0

An Uð Þ
" #" #

: (48)

Accordingly, the formal recursive relation is defined by:

U0 x, tð Þ ¼ G x, tð Þ,
Ukþ1 x, tð Þ ¼ �S�1 u2 S RUk þ Ak½ �� �

:k≥0:
(49)

The Adomian decomposition Sumudu transform method will be illustrated by
discussing the following examples.

Example 1: Consider the following nonlinear partial differential equation:

Ut þ UUx ¼ 0; (50)

With the initial condition:

U x, 0ð Þ ¼ x: (51)

Taking the Sumudu transform of both sides of Eq. (50) and using the initial
condition, we have:

S U x, tð Þ½ � ¼ x� uS UUx½ �: (52)

Applying S�1 to both sides of Eq. (52) implies that:
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� 1
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u1
u0
þ u2
u0
þ u3
u0
þ …

� �2

þ 1
3

u1
u0
þ u2
u0
þ u3
u0
þ …

� �3

� 1
4

u1
u0
þ u2
u0
þ u3
u0
þ …

� �4

þ …

8>>><
>>>:

9>>>=
>>>;

(40)

Proceeding as before, Eq. (40) can be rewritten as;

F uð Þ ¼ ln u0ð Þ|fflfflffl{zfflfflffl}
A0

þ u1
u0|{z}
A1

þ u2
u0
� 1
2
u12

u02|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A2

þ u3
u0
� u1u2

u02
þ 1
3
u13

u03|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3

þ :… (41)
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u0
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u0
� 1
2
u12

u02
, A3 ¼ u3

u0
� u1 u2

u02
þ 1
3
u13

u03
:

And so on. In a like manner, we obtain F uð Þ ¼ ln 1þ uð Þ, � 1< u≤ 1 .

7. Adomian decomposition Sumudu transform method for solving
nonlinear partial differential equations
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The nonlinear phenomena that appear in the many scientific fields’ such as
solid state physics, plasma physics, fluid mechanics and quantum field theory can
be modeled by nonlinear differential equations. The significance of obtaining
exact or approximate solutions of nonlinear partial differential equations in
physics and mathematics is yet an important problem that needs new methods to
develop new techniques for obtaining analytical solutions. Several powerful
mathematical methods are used for this purpose. We, propose a new method,
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S. Rathore.

(ADSTM) provides the solution for nonlinear equations in the form of conver-
gent series. This forms the motivation for us to apply (ADSTM) for solving
nonlinear equations in understanding different physical phenomena.

To illustrate the basic idea of this method, we consider a general non-
homogeneous partial differential equation with the initial conditions of the form:

DU x, tð Þ þ RU x, tð Þ þNU x, tð Þ ¼ g x, tð Þ
U x, 0ð Þ ¼ h xð Þ ,Ut x, 0ð Þ ¼ f xð Þ: ; (42)

Where D is the second order linear differential operator D ¼ ∂
2

∂ t2, R is linear
differential operator of less order than D, N represent the general nonlinear
operator and g x, tð Þ is the source term.

Taking the Sumudu transform of both sides of Eq. (42), we get:

S DU x, tð Þ½ � þ S RU x, tð Þ½ � þ S N x, tð Þ½ � ¼ S g x, tð Þ½ �; (43)

206

Recent Developments in the Solution of Nonlinear Differential Equations

Using the differentiation property of the Sumudu transform and given initial
conditions, we have:

S U x, tð Þ½ � ¼ u2 S g x, tð Þ½ � þ h xð Þ þ uf xð Þ � u2 S RU x, tð Þ þNU x, tð Þ½ �: (44)

If we apply the inverse operator S�1 to both sides of Eq. (44), we obtain:

U x, tð Þ ¼ G x, tð Þ � S�1 u2 S RU x, tð Þ þNU x, tð Þ½ �� �
: (45)

Where G x, tð Þ represents the term arising from the source term and the
prescribed initial conditions. Now, apply the Adomain decomposition method:

U x, tð Þ ¼
X∞
n¼0

Un x, tð Þ; (46)

The nonlinear term can be decomposed as:

NU x, tð Þ ¼
X∞
n¼0

An Uð Þ; (47)

For some Adomain polynomials An Uð Þ that are given by:

An U0,U1,U2, … ,Unð Þ ¼ 1
n!

dn

dλn
N

X∞
n¼0

λn Un

 !" #

λ¼0
, n ¼ 0, 1, 2, :…

Substituting Eq. (46) and Eq. (47) in Eq. (45), we get:
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n¼0

Un x, tð Þ ¼ G x, tð Þ � S�1 u2 S R
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n¼0

Un x, tð Þ þ
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n¼0

An Uð Þ
" #" #

: (48)

Accordingly, the formal recursive relation is defined by:

U0 x, tð Þ ¼ G x, tð Þ,
Ukþ1 x, tð Þ ¼ �S�1 u2 S RUk þ Ak½ �� �

:k≥0:
(49)

The Adomian decomposition Sumudu transform method will be illustrated by
discussing the following examples.

Example 1: Consider the following nonlinear partial differential equation:

Ut þ UUx ¼ 0; (50)

With the initial condition:

U x, 0ð Þ ¼ x: (51)

Taking the Sumudu transform of both sides of Eq. (50) and using the initial
condition, we have:

S U x, tð Þ½ � ¼ x� uS UUx½ �: (52)

Applying S�1 to both sides of Eq. (52) implies that:
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U x, tð Þ ¼ x� S�1 uS UUx½ �½ �; (53)

Following the technique, if we assume an infinite series of the form (53), we
obtain:

X∞
n¼0

Un x, tð Þ ¼ x� S�1 uS
X∞
n¼0

An Uð Þ
" #" #

: (54)

Where An Uð Þ are Adomian polynomials that represent the nonlinear terms.
The first few components of the Adomian polynomials are given by;

A0 Uð Þ ¼ U0U0x ,

A1 Uð Þ ¼ U0U1x þU1U0x ,

: : : :

(55)

This gives the recursive relation:

U0 x, tð Þ ¼ x,
Ukþ1 x, tð Þ ¼ �S�1 uS Ak½ �½ �, k≥0:

(56)

The first few components are given by:

U0 x, tð Þ ¼ x,

U1 x, tð Þ ¼ �S�1 uS A0½ �½ � ¼ �xt,
U2 x, tð Þ ¼ �S�1 uS A1½ �½ � ¼ xt2,

U3 x, tð Þ ¼ �S�1 uS A2½ �½ � ¼ �xt3:

(57)

And so on. The solution in a series form is given by:

U x, tð Þ ¼ x 1� tþ t2 � t3 þ …
� �

; (58)

And in a closed form of:

U x, tð Þ ¼ x
1þ t

: (59)

Example 2: Consider the following nonlinear partial differential equation:

Ut þUUx ¼ xþ xt2; (60)

With the initial condition:

U x, 0ð Þ ¼ 0: (61)

Proceeding as in Example 1, Eq. (60) becomes:

X∞
n¼0

Un x, tð Þ ¼ xtþ xt3

3
� S�1 uS

X∞
n¼0

An Uð Þ
" #" #

: (62)

The modified decomposition method admits the of a modified recursive relation
given by:

208

Recent Developments in the Solution of Nonlinear Differential Equations

U0 x, tð Þ ¼ xt,

U1 x, tð Þ ¼ xt3

3
� S�1 uS A0½ �½ �

Ukþ1 x, tð Þ ¼ �S�1 uS Ak½ �½ �, k≥ 1:

(63)

Consequently, we obtain:

U0 x, tð Þ ¼ xt,

U1 x, tð Þ ¼ xt3

3
� S�1 uS xt2

� �� � ¼ 0

Ukþ1 x, tð Þ ¼ 0, k≥ 1:

(64)

In few of Eq. (64), the exact solution is given by:

U x, tð Þ ¼ xt: (65)

Example 3: Consider the nonlinear partial differential equation:

Utt þUx
2 þ U �U2 ¼ t e�x; (66)

With the initial condition

U x, 0ð Þ ¼ 0,Ut x, 0ð Þ ¼ e�x: (67)

By taking Sumudu transform for (66) and using (67) we obtain:

S U x, tð Þ½ � ¼ u3e�x þ ue�x � u2 S Ux
2 � U2 þU

� �
: (68)

Applying S�1 to both sides of (68) we obtain;

U x, tð Þ ¼ te�x þ 1
6
t3 e�x � S�1 u2 S Ux

2 � U2 þU
� �� �

: (69)

Substituting;

U x, tð Þ ¼
X∞
n¼0

Un x, tð Þ; (70)

And the nonlinear terms of;

Ux
2 ¼

X∞
n¼0

An ,U2 ¼
X∞
n¼0

Bn: (71)

Into (69) gives;

X∞
n¼0

Un x, tð Þ ¼ te�x þ 1
6
t3e�x � S�1 u2 S

X∞
n¼0

An þ
X∞
n¼0

Un x, tð Þ �
X∞
n¼0

Bn

 !" #

(72)

This gives the modified recursive relation;
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" #" #
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Where An Uð Þ are Adomian polynomials that represent the nonlinear terms.
The first few components of the Adomian polynomials are given by;

A0 Uð Þ ¼ U0U0x ,
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(55)
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(56)
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U2 x, tð Þ ¼ �S�1 uS A1½ �½ � ¼ xt2,

U3 x, tð Þ ¼ �S�1 uS A2½ �½ � ¼ �xt3:

(57)

And so on. The solution in a series form is given by:

U x, tð Þ ¼ x 1� tþ t2 � t3 þ …
� �

; (58)

And in a closed form of:

U x, tð Þ ¼ x
1þ t

: (59)

Example 2: Consider the following nonlinear partial differential equation:

Ut þUUx ¼ xþ xt2; (60)

With the initial condition:

U x, 0ð Þ ¼ 0: (61)

Proceeding as in Example 1, Eq. (60) becomes:

X∞
n¼0

Un x, tð Þ ¼ xtþ xt3

3
� S�1 uS

X∞
n¼0

An Uð Þ
" #" #

: (62)

The modified decomposition method admits the of a modified recursive relation
given by:
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U0 x, tð Þ ¼ xt,

U1 x, tð Þ ¼ xt3

3
� S�1 uS A0½ �½ �

Ukþ1 x, tð Þ ¼ �S�1 uS Ak½ �½ �, k≥ 1:

(63)

Consequently, we obtain:

U0 x, tð Þ ¼ xt,

U1 x, tð Þ ¼ xt3

3
� S�1 uS xt2

� �� � ¼ 0

Ukþ1 x, tð Þ ¼ 0, k≥ 1:

(64)

In few of Eq. (64), the exact solution is given by:

U x, tð Þ ¼ xt: (65)

Example 3: Consider the nonlinear partial differential equation:

Utt þUx
2 þ U �U2 ¼ t e�x; (66)

With the initial condition

U x, 0ð Þ ¼ 0,Ut x, 0ð Þ ¼ e�x: (67)

By taking Sumudu transform for (66) and using (67) we obtain:

S U x, tð Þ½ � ¼ u3e�x þ ue�x � u2 S Ux
2 � U2 þU

� �
: (68)

Applying S�1 to both sides of (68) we obtain;

U x, tð Þ ¼ te�x þ 1
6
t3 e�x � S�1 u2 S Ux

2 � U2 þU
� �� �

: (69)

Substituting;

U x, tð Þ ¼
X∞
n¼0

Un x, tð Þ; (70)

And the nonlinear terms of;

Ux
2 ¼

X∞
n¼0

An ,U2 ¼
X∞
n¼0

Bn: (71)

Into (69) gives;

X∞
n¼0

Un x, tð Þ ¼ te�x þ 1
6
t3e�x � S�1 u2 S
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n¼0

An þ
X∞
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Un x, tð Þ �
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 !" #

(72)

This gives the modified recursive relation;
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U0 x, tð Þ ¼ t e�x,

U1 x, tð Þ ¼ 1
6
t3 e�x � Lt

�1 A0 þU0 � B0ð Þ

Ukþ1 x, tð Þ ¼ � Lt
�1 Ak þUk � Bkð Þ, k≥ 1:

(73)

The first few of the components are given by;

U0 x, tð Þ ¼ t e�x,

U1 x, tð Þ ¼ 1
6
t3 e�x � Lt

�1 A0 þ U0 � B0ð Þ ¼ 0,

Ukþ1 x, tð Þ ¼ 0, k≥ 1:

(74)

The solution in a closed form is given by;

U x, tð Þ ¼ t e�x: (75)

Example 4: Consider the following nonlinear partial differential equation,

Ut t þ U2 �Ux
2 ¼ 0; (76)

With the initial conditions

U x, 0ð Þ ¼ 0 ,Ut x, 0ð Þ ¼ ex: (77)

By taking Sumudu transform for (76) and using (77) we obtain:

S U x, tð Þ½ � ¼ uex þ u2 S Ux
2 � U2� �

: (78)

By applying the inverse Sumudu transform of (78), we get:

U x, tð Þ ¼ t ex þ S�1 u2 S Ux
2 �U2� �� �

; (79)

This assumes a series solution of the function U x, tð Þis given by:

U x, tð Þ ¼
X∞
n¼0

Un x, tð Þ; (80)

Using (80) into (79), we get:

X∞
n¼0

Un x, tð Þ ¼ t ex þ S�1 u2 S
X∞
n¼0

An Uð Þ �
X∞
n¼0

Bn Uð Þ
" #" #

: (81)

Where An Uð Þ and Bn Uð Þ are Adomian polynomials that represents nonlinear
terms.

The few components of the Adomian polynomials are given as follows:

A0 Uð Þ ¼ U0x
2 , A1 Uð Þ ¼ 2U0x U1x ,

B0 Uð Þ ¼ U0
2 , B1 Uð Þ ¼ 2U0U1 ,

(82)

And so on. From the above equations we obtain:
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U0 x, tð Þ ¼ t ex,
Ukþ1 x, tð Þ ¼ S�1 u2 S Ak � Bk½ �� �

, k≥0:
(83)

The first few terms of Un x, tð Þ follows immediately upon setting:

U1 x, tð Þ ¼ S�1 u2 S A0 � B0½ �� � ¼ S�1 u2 S U0x
2 � U2

0
� �� � ¼ 0

Ukþ1 x, tð Þ ¼ 0, k≥ 1:
(84)

Therefore the solution obtained by ADSTM is given as follows:

U x, tð Þ ¼ t ex:

8. Nonlinear physical models

Now we will, concentrate our study on the linear and nonlinear particular
applications that appear in applied science. The wide use of these physical signifi-
cant problems is the most important reason why they have drawn mathematician’s
attention in recent years.

Nonlinear partial differential equations have witnessed remarkable improve-
ment. Nonlinear problems appear in the many scientific fields’ such as gravitation,
chemical reaction, fluid dynamics, dispersion, nonlinear optics, plasma physics,
acoustics, and others. Several approaches have been used such as the Adomian
decomposition method, the variational iteration method, and the characteristics
method and perturbation techniques to examine these problems.

(ADSTM) gives the solution of nonlinear equations in the form of convergent
series. The main advantage of this method is its potentiality of combining two
powerful methods for deriving exact and approximate solution of nonlinear equa-
tions. This forms the motivation for us to apply (ADSTM) for solving nonlinear
equations in understanding different physical phenomena.

The following section offers the effectiveness of the Adomian decomposition
Sumudu transform method (ADSTM) in solving nonlinear physical models.

Example 5: Consider the following inhomogeneous advection problem:

Ut þUUx ¼ 2 tþ xþ t3 þ xt2; (85)

With the initial condition:

U x, 0ð Þ ¼ 0: (86)

Following discussion presented above, we obtain the recursive relation;

U0 x, tð Þ ¼ t2 þ xtþ t4

4
þ xt

3
,

Ukþ1 x, tð Þ ¼ �S�1 uS Ak½ �½ �, k≥0:
(87)

This gives;

U0 x, tð Þ ¼ t2 þ xtþ t4

4
þ xt3

3
,

U1 x, tð Þ ¼ � t4

4
� xt3

3
� 2
15

xt5 � 7
72

t6 � 1
63

xt7 � 1
98

t8:

(88)
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Using (80) into (79), we get:
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Un x, tð Þ ¼ t ex þ S�1 u2 S
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: (81)

Where An Uð Þ and Bn Uð Þ are Adomian polynomials that represents nonlinear
terms.

The few components of the Adomian polynomials are given as follows:

A0 Uð Þ ¼ U0x
2 , A1 Uð Þ ¼ 2U0x U1x ,

B0 Uð Þ ¼ U0
2 , B1 Uð Þ ¼ 2U0U1 ,

(82)

And so on. From the above equations we obtain:
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U0 x, tð Þ ¼ t ex,
Ukþ1 x, tð Þ ¼ S�1 u2 S Ak � Bk½ �� �

, k≥0:
(83)

The first few terms of Un x, tð Þ follows immediately upon setting:

U1 x, tð Þ ¼ S�1 u2 S A0 � B0½ �� � ¼ S�1 u2 S U0x
2 � U2

0
� �� � ¼ 0

Ukþ1 x, tð Þ ¼ 0, k≥ 1:
(84)

Therefore the solution obtained by ADSTM is given as follows:

U x, tð Þ ¼ t ex:

8. Nonlinear physical models

Now we will, concentrate our study on the linear and nonlinear particular
applications that appear in applied science. The wide use of these physical signifi-
cant problems is the most important reason why they have drawn mathematician’s
attention in recent years.

Nonlinear partial differential equations have witnessed remarkable improve-
ment. Nonlinear problems appear in the many scientific fields’ such as gravitation,
chemical reaction, fluid dynamics, dispersion, nonlinear optics, plasma physics,
acoustics, and others. Several approaches have been used such as the Adomian
decomposition method, the variational iteration method, and the characteristics
method and perturbation techniques to examine these problems.

(ADSTM) gives the solution of nonlinear equations in the form of convergent
series. The main advantage of this method is its potentiality of combining two
powerful methods for deriving exact and approximate solution of nonlinear equa-
tions. This forms the motivation for us to apply (ADSTM) for solving nonlinear
equations in understanding different physical phenomena.

The following section offers the effectiveness of the Adomian decomposition
Sumudu transform method (ADSTM) in solving nonlinear physical models.

Example 5: Consider the following inhomogeneous advection problem:

Ut þUUx ¼ 2 tþ xþ t3 þ xt2; (85)

With the initial condition:

U x, 0ð Þ ¼ 0: (86)

Following discussion presented above, we obtain the recursive relation;

U0 x, tð Þ ¼ t2 þ xtþ t4

4
þ xt

3
,

Ukþ1 x, tð Þ ¼ �S�1 uS Ak½ �½ �, k≥0:
(87)

This gives;
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It is easily observed that two noise term appears in the components U0 x, tð Þ and
U1 x, tð Þ. By canceling these terms from U0 x, tð Þ, the remaining non-canceled term
of U0 x, tð Þmay provide the exact solution.

The exact solution is given by;

U x, tð Þ ¼ t2 þ xt:

Example 6: Consider the following nonlinear Klein – Gordon equation:

Utt � Uxx þ U2 ¼ x2 t2; (89)

Subject to the initial conditions:

U x, 0ð Þ ¼ 0 , Ut x, tð Þ ¼ x: (90)

Following the discussion presented above, we find a recursive relation;

U0 x, tð Þ ¼ xtþ 1
12

x2 t4,

Ukþ1 x, tð Þ ¼ S�1 u2 S Ukð Þxx
� �� �� S�1 u2 S Ak½ �

� �
, k≥0:

(91)

So the Adomian polynomials An are given as follows;

A0 ¼ U0
2,

A1 ¼ 2U0U1,

A2 ¼ 2U0U2 þ U1
2:

And so on. Using modified recursive relation Eq. (91) can be rewritten in the
scheme;

U0 x, tð Þ ¼ xt,

U1 x, tð Þ ¼ 1
12

x2 t4 þ S�1 u2 S U0ð Þxx
� �� �� S�1 u2 S A0½ �

� �
,

Ukþ1 x, tð Þ ¼ S�1 u2 S Ukð Þxx
� �� �� S�1 u2 S Ak½ �

� �
, k≥ 1:

(92)

This lead to;

U0 x, tð Þ ¼ xt,

U1 x, tð Þ ¼ 1
12

x2 t4 þ S�1 u2 S U0ð Þxx
� �� �� S�1 u2 S A0½ �

� � ¼ 0,

Ukþ1 x, tð Þ ¼ 0, k≥ 1:

(93)

Therefore, the exact solution is given by;

U x, tð Þ ¼ xt:

Example 7: Consider the following Sine-Gordon equation with the given initial
conditions:

Utt x, tð Þ � Uxx x, tð Þ ¼ sinU; (94)

Subject to the initial conditions;

U x, 0ð Þ ¼ π

2
, Ut x, tð Þ ¼ 0: (95)
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Using the recursive scheme yields;

U0 x, tð Þ ¼ π

2
,

Ukþ1 x, tð Þ ¼ S�1 u2S Ukð Þxx
� �� �þ S�1 u2S Ak½ �� �

, k≥0:
(96)

The first few the Adomian polynomials for sinU are given as;

A0 ¼ sinU0,

A1 ¼ U1 cosU0,

A2 ¼ U2 cosU0 � 1
2!

U1
2 sinU0,

A3 ¼ U3 cosU0 �U1U2 sinU0 � 1
3!

U1
3 cosU0:

(97)

Combining (96) and (97) leads to;

U0 x, tð Þ ¼ π

2
,

U1 x, tð Þ ¼ S�1 u2S U0ð Þxx
� �� �þ S�1 u2S A0½ �� � ¼ t2

2!
,

U2 x, tð Þ ¼ S�1 u2S U1ð Þxx
� �� �þ S�1 u2S A1½ �

� � ¼ 0 ,

U3 x, tð Þ ¼ S�1 u2S U2ð Þxx
� �� �þ S�1 u2S A2½ �

� � ¼ � 1
240

t6:

(98)

And so on. The series solution is;

U x, tð Þ ¼ π

2
þ t2

2!
� 1
240

t6 þ :…

Example 8: Consider the following one – dimensional Burgers equation:

Ut ¼ Uxx � UUx; (99)

Subject to the initial conditions:

U x, 0ð Þ ¼ x: (100)

Following the discussion presented above, we find a recursive relation;

U0 x, tð Þ ¼ x,
Ukþ1 x, tð Þ ¼ S�1 uS Ukð Þxx

� �� �� S�1 uS Ak½ �½ �, k≥0:
(101)

Using the Adomian polynomials we obtain;

U0 x, tð Þ ¼ x,
U1 x, tð Þ ¼ S�1 auS U0ð Þxx

� �� �� S�1 uS A0½ �½ � ¼ �xt ,
U2 x, tð Þ ¼ S�1 auS U1ð Þxx

� �� �� S�1 uS A1½ �½ � ¼ xt2,

U3 x, tð Þ ¼ S�1 auS U2ð Þxx
� �� �� S�1 uS A2½ �½ � ¼ �xt3:

(102)

Summing these iterates gives the series solution;
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U x, tð Þ ¼ x 1� tþ t2 � t3 þ …
� �

; (103)

Consequently, the exact solution is given by;

U x, tð Þ ¼ x
1þ t

:

Example 9: Consider the following nonlinear Schrodinger equation:

iUt þUxx � 2 Uj j2U ¼ 0; (104)

Subject to the initial condition:

U x, 0ð Þ ¼ ei x: (105)

Following the discussion presented above, we find;

U0 x, tð Þ ¼ ei x,
U1 x, tð Þ ¼ S�1 iuS U0ð Þxx

� �� �� S�1 2iuS A0½ �½ � ¼ �3 i t ei x,
U2 x, tð Þ ¼ S�1 iuS U1ð Þxx

� �� �� S�1 2iuS A1½ �½ � ¼ 1
2!

3 i tð Þ2ei x,

U3 x, tð Þ ¼ S�1 iuS U2ð Þxx
� �� �� S�1 2iuS A2½ �½ � ¼ � 1

3!
3 i tð Þ3ei x:

(106)

In a few of (106), the series solution is given by;

U x, tð Þ ¼ ei x 1� 3 i tð Þ þ 1
2!

3 i tð Þ2 � 1
3!

3 i tð Þ3 þ …

� �
; (107)

The exact solution is;

U x, tð Þ ¼ ei x�3 tð Þ

Example 9: Consider the following homogeneous nonlinear KdV equation:

Ut � 6UUx þ Uxxx ¼ 0; (108)

Subject to the initial condition;

U x, 0ð Þ ¼ 6x: (109)

Following the discussion presented above, we find a recursive relation;

U0 x, tð Þ ¼ 6x,
Ukþ1 x, tð Þ ¼ �S�1 uS Ukð Þxxx

� �� �þ S�1 6uS Ak½ �½ �, k≥0:
(110)

That gives the first few the components by;

U0 x, tð Þ ¼ 6x,

U1 x, tð Þ ¼ �S�1 uS U0ð Þxxx
� �� �þ S�1 6uS A0½ �½ � ¼ 63 xt,

U2 x, tð Þ ¼ �S�1 buS U1ð Þxxx
� �� �þ S�1 auS A1½ �½ � ¼ 65 xt2,

U3 x, tð Þ ¼ �S�1 buS U2ð Þxxx
� �� �þ S�1 6uS A2½ �½ � ¼ 67 xt3:

(111)
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In a few of (111), the series solution is given by;

U x, tð Þ ¼ 6x 1þ 36 tð Þ þ 36 tð Þ2 þ 36tð Þ3 þ …
� �

; (112)

The exact solution is;

U x, tð Þ ¼ 6x
1� 36 t

, 36 tj j< 1:

9. Conclusion

In this chapter, we have combined the Adomian decomposition method and
Sumudu transform to solve some of the nonlinear partial differential equations. This
method has advantages of converting to the exact or approximate solutions and can
easily handle a wide class of nonlinear differential equations.
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Chapter 13

Positive Periodic Solutions for
First-Order Difference Equations
with Impulses
Mesliza Mohamed, Gafurjan Ibragimov and
Seripah Awang Kechil

Abstract

This paper investigates the first-order impulsive difference equations with
periodic boundary conditions

Δx nð Þ ¼ f n, x nð Þð Þ, n∈ J, n 6¼ nk,

Δx nkð Þ ¼ Ik x nkð Þð Þ, k ¼ 1, 2, … ,m,

x 0ð Þ ¼ x Tð Þ,

where f ∈C J � þ,þð Þ, Ik ∈C þ,þð Þ: By using a cone theoretic fixed point
theorem, new existence theorems on positive periodic solutions are established.
Our main results enrich and complement those available in the literature.

Keywords: Impulse, difference equation, boundary value problem, Green’s
function, fixed point theorem

1. Introduction

Let  denote the real numbers and þ the positive real numbers. Let J ¼
0,T½ � ¼ 0, 1,⋯,Tf g. In this paper we investigate the existence of positive periodic
solutions for nonlinear impulsive difference equations

Δx nð Þ ¼ f n, x nð Þð Þ, n∈ J, n 6¼ nk,

Δx nkð Þ ¼ Ik x nkð Þð Þ, k ¼ 1, 2, … ,m,

x 0ð Þ ¼ x Tð Þ,
(1)

where Δ denotes the forward difference operators, i.e., Δxn ¼ xnþ1 � xn,
f ∈C J � þ,þð Þ, Ik ∈C þ,þð Þ:

Boundary value problems for difference equations and impulsive differential
equation have been widely received attentions from many authors (see [1–12]) and
reference therein. However, as far as we know, the theory of difference equation for
boundary value problems (BVPs) with impulses is rather less, there are still lots of
work and research that should be done. In [3], He and Zhang obtained the criteria
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theorem, new existence theorems on positive periodic solutions are established.
Our main results enrich and complement those available in the literature.

Keywords: Impulse, difference equation, boundary value problem, Green’s
function, fixed point theorem

1. Introduction

Let  denote the real numbers and þ the positive real numbers. Let J ¼
0,T½ � ¼ 0, 1,⋯,Tf g. In this paper we investigate the existence of positive periodic
solutions for nonlinear impulsive difference equations

Δx nð Þ ¼ f n, x nð Þð Þ, n∈ J, n 6¼ nk,

Δx nkð Þ ¼ Ik x nkð Þð Þ, k ¼ 1, 2, … ,m,

x 0ð Þ ¼ x Tð Þ,
(1)

where Δ denotes the forward difference operators, i.e., Δxn ¼ xnþ1 � xn,
f ∈C J � þ,þð Þ, Ik ∈C þ,þð Þ:

Boundary value problems for difference equations and impulsive differential
equation have been widely received attentions from many authors (see [1–12]) and
reference therein. However, as far as we know, the theory of difference equation for
boundary value problems (BVPs) with impulses is rather less, there are still lots of
work and research that should be done. In [3], He and Zhang obtained the criteria
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on the existence of minimal and maximal solutions of (1) by using the method of
upper and lower solutions and monotone iterative technique. The similar tech-
niques were applied in [11] for the problem

Δx nð Þ ¼ f n, x nð Þð Þ, n∈ J, n 6¼ nk,
Δx nkð Þ ¼ Ik x nkð Þð Þ, k ¼ 1, 2,⋯, p,

Mx 0ð Þ �Nx Tð Þ ¼ C,
(2)

where f ∈C J � þ,þð Þ, Ik ∈C þ,þð Þ: Motivated by the work of [3, 13] we
establish the existence of positive periodic solutions for (1) by using the fixed
point-theorem in cones following the ideas of [13]. The results herein improve some
of the results in [3, 11].

Throughout the paper, we make the following assumptions:

1.0<M< 1, 0<Lk <M, f n, x nð Þð Þ þMx nð Þ≥0:

2. M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð Þ≥0:

This paper is organized as follows. In Section 2,we introduce some preliminaries. In
Section 3, by applying the fixed point theorem in cones, we obtain some new existence
theorems for the impulsive difference equations with periodic boundary conditions.

2. Preliminaries

Let

E ¼ x : J !  : x 0ð Þ ¼ x Tð Þf g
with the norm ∥x∥ ¼ max n∈ J ∣x nð Þ∣: Then E is a Banach space.
Consider the following linear impulsive difference equations with periodic

boundary condition

Δx nð Þ þMx nð Þ ¼ σ nð Þ, n∈ J, n 6¼ nk,
Δx nkð Þ ¼ �Lkx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð Þ, k ¼ 1, 2, … ,m,

xð0 ¼ x Tð Þ,
(3)

where M is a constant, Ik ∈C þ,þð Þ and σ ∈C J,þð Þ.
The following lemma transforms the analysis of PBVP (3) to the analysis of

summation equation. We denote G n, jð Þ, the Green’s function of the problem (3).
Lemma 1. Let A1ð Þ and A2ð Þ hold, σ ∈C J,þð Þ. Then x∈E is a solution of PBVP

(3) if and only if x is a solution of the following impulsive summation equation

x nð Þ ¼
XT�1

j¼0, j6¼nk
G n, jð Þσ jð Þ

þ
X

0< nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ þLkx nkð Þð Þ,

(4)

where

G n, jð Þ ¼ 1

1� 1�Mð ÞT

1�Mð Þn
1�Mð Þ jþ1 , 0≤ j≤ n� 1,

1�Mð ÞTþn
1�Mð Þ jþ1 , n≤ j≤T � 1:

8>>>><
>>>>:

(5)
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Proof For convenience, we give the proof for the corresponding linear case (3).
Consider first the homogeneous equation

Δu nð Þ þMu nð Þ ¼ 0, n∈ J, n 6¼ nk,

which is easily solved by iteration. We have

u nð Þ ¼ 1�Mð Þn,

with u 0ð Þ ¼ 1. Now the first Eq. (3) can be solved by substituting x nð Þ ¼
u nð Þy nð Þ into Eq. (3), where y is to be determined:

u nþ 1ð Þy nþ 1ð Þ � u nð Þy nð Þ 1�Mð Þ ¼ σ nð Þ

or

Δy nð Þ ¼ σ nð Þ
Eu nð Þ , n 6¼ nk:

So from (3), we see that y nð Þ satisfies

Δy nð Þ ¼ σ nð Þ
1�Mð Þnþ1 , n 6¼ nk,

Δy nkð Þ ¼ M� Lk

1�M
y nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð Þ

1�Mð Þnkþ1 , k ¼ 1, 2, … ,m,

y 0ð Þ ¼ y Tð Þ 1�Mð ÞT:

(6)

From (6), we have

y nð Þ ¼ y 0ð Þ þ
Xn�1

j¼0, j6¼nk

σ jð Þ
1�Mð Þ jþ1

þ
X

0< nk ≤n�1

M� Lk

1�M
y nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð Þ

1�Mð Þnkþ1
 !

:

(7)

Letting n ¼ T in (7), we have

y Tð Þ ¼ y 0ð Þ þ
XT�1

j¼0, j6¼nk

σ jð Þ
1�Mð Þ jþ1

þ
X

0< nk ≤T�1

M� Lk

1�M
y nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð Þ

1�Mð Þnkþ1
 !

:

(8)

Applying (8) and the boundary condition y 0ð Þ ¼ y Tð Þ 1�Mð ÞT, we get

y 0ð Þ ¼ 1�Mð ÞT
1� 1�Mð ÞT

XT�1

j¼0, j6¼nk

σ jð Þ
1�Mð Þjþ1 þ

X
0< nk ≤T�1

M� Lk

1�M
y nkð Þ

�0
@

þ Ik x nkð Þð Þ þ Lkx nkð Þ
1�Mð Þnkþ1

!!
:

(9)
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Substituting (9) into (7) and using y nð Þ ¼ x nð Þ
1�Mð Þn , n∈ J, we get the unique

solution of (3)

x nð Þ ¼
XT�1

j¼0, j6¼nk
G n, jð Þσ jð Þ

þ
X

0<nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ,

where G n, jð Þ is given in (5). The proof is complete. □.
Consider the PBVP (1). To define a cone, we observe that

1�Mð Þn
1� 1�Mð ÞT ≤ ∣G n, n j

� �
∣ ≤

1

1� 1�Mð ÞT :

Define

A≔
1�Mð Þn

1� 1�Mð ÞT ,

B≔
1

1� 1�Mð ÞT :

We denote the cone in E by

K ¼ x∈E , n∈ 0,T½ � and x nð Þ≥ σ∥x∥f g,

where σ ¼ A
B ∈ 0, 1ð Þ. Define a mapping T : E! E by

Tx nð Þ ¼
XT�1

j¼0, j6¼nk
G n, jð Þσ jð Þ

þ
X

0< nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ:

(10)

Since f is continuous, T is also a continuous map. Before starting the main
results, we shall give some important lemmas. The next Lemma is essential in
obtaining our results.

Lemma 2. The mapping T maps K into K, i.e TK ⊂K.
Proof For any x∈K, it is easy to see that Tx∈E. From (10) we have

Tx nð Þ ¼
XT�1

j¼0, j6¼nk
G n, jð Þσ jð Þ

þ
X

0< nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≤
XT�1

j¼0, j6¼nk
Bσ jð Þ þ

X

0< nk ≤T�1
B M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ:
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Noting that

G n, jð Þσ jð Þ≥0, G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð Þð Þ≥0:

We can also obtain

Tx nð Þ ¼
XT�1

j¼0, j6¼nk
G n, jð Þσ jð Þ

þ
X

0< nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≥
XT�1

j¼0, j6¼nk
Aσ jð Þ þ

X

0<nk ≤T�1
A M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≥
A
B
∣Tx nð Þ∣

≥ σ∥Tx∥:

Hence TK ⊂K. The proof is complete. □.
The following lemma is crucial to prove our main results.
Lemma 3. (Guo�Krasnoselskii0s fixed point theorem [14]) Let E be a Banach space

and let K ⊂E be a cone E. Assume Ω1,Ω2 are open subsets of E with 0∈Ω1, �Ω1 ⊂Ω2,
and let

T : K ∩ �Ω2nΩ1ð Þ ! K

be a completely continuous operator such that either.

i. ∥Tx∥ ≤ ∥x∥ for x∈K ∩ ∂Ω1 and ∥Tx∥ ≥ ∥x∥ for x∈K ∩ ∂Ω2; or

ii. ∥Tx∥ ≥ ∥x∥ for x∈K ∩ ∂Ω1 and ∥Tx∥ ≤ ∥x∥ for x∈K ∩ ∂Ω2:

Then T has a fixed point in K ∩ �Ω2nΩ1ð Þ:
We are now in a position to apply the preceding results to obtain the existence of

positive periodic solutions to (1).

3. Main results

In this section, we state and prove our main findings.
Theorem 1. Suppose that the following conditions hold

lim x!0þ
f n, xð Þ
x

¼ �M, lim x!0þ
Xm

k¼1

Ik xð Þ
x
¼ 0, (11)

lim x!þ∞
f n, xð Þ
x

¼ ∞, lim x!þ∞
Xm

k¼1

Ik xð Þ
x
¼ ∞: (12)

Then the problem (1) has at least one positive periodic solution.
Proof 0< r<R<∞, setting

Ω1 ¼ x∈E : ∥x∥< rf g, Ω2 ¼ x∈E : ∥x∥<Rf g:
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We have 0∈Ω1, Ω1 ⊆Ω2. It follows from (11) that there exists r>0 so that for
any 0< x≤ r,

f n, x nð Þð Þ≤ c1x�Mx,
Xm

k¼1
Ik ≤ c2x,

where c1, c2 are positive constants satisfying

σB Tc1 þ T �mð Þ Mþ c2ð Þð Þ< 1:

Therefore for x∈K, with ∥x∥ ¼ r,

f n, x nð Þð Þ þMx≤ c1x,
Xm

k¼1
Ik ≤ c2x:

Moreover 0< σ∥x∥≤ x nð Þ≤∥x∥ ¼ r: Thus

Tx nð Þ ¼
XT�1

j¼0, j6¼nk
G n, jð Þσ jð Þ

þ
X

0<nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≤
XT�1

n¼0, n 6¼nk
B f n, x nð Þð Þ þMx nð Þð Þ

þ
X

0<nk ≤T�1
B M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≤TBc1σ∥x∥þ T �mð ÞBσ M� Lk þ c2 þ Lkð Þ∥x∥
≤ σB Tc1 þ T �mð Þ Mþ c2ð Þð Þ∥x∥
≤ ∥x∥,

which implies ∥Tx∥≤∥x∥ for ∀x∈K ∩ ∂Ω1.
On the other hand (12) yields the existence of R̂>0 such that for any x≥ R̂

f n, x nð Þð Þ≥ η1x,
Xm

k¼1
Ik ≥ η2x

where η1, η2 >0 are constants large enough such that

Aσ T η1 þMð Þ þ T �mð Þ Mþ η2ð Þð Þ> 1:

Fixing R≥ max r, R̂
σ

n o
. and letting x∈K with ∥x∥ ¼ R, we get x nð Þ≥ σ∥x∥ ¼

σR> R̂ and f n, x nð Þð Þ þMx≥ η1xþMx≥ σ η1 þMð Þ∥x∥:
Thus

Tx nð Þ ¼
XT�1

j¼0, j 6¼nk
G n, jð Þσ jð Þ

þ
X

0<nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð Þð ÞÞ

≥
XT�1

n¼0, n6¼nk
A f n, x nð Þð Þ þMx nð Þð Þ
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þ
X

0< nk ≤T�1
A M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð Þð ÞÞ

≥TAσ η1 þMð Þ∥x∥þ A T �mð Þσ M� Lk þ η2 þ Lkð Þ∥x∥
≥Aσ T η1 þMð Þ þ T �mð Þ Mþ η2ð Þð Þ∥x∥
≥∥x∥:

In particular ∥Tx∥≥∥x∥, ∀x∈K ∩ ∂Ω2.
Consequently by Lemma 3(i), T has a fixed point in

K ∩ �Ω2n Ω1f gð Þ,

which is a positive periodic solution of (1). The proof is complete. □.
Theorem 2. Suppose that the following conditions hold

lim x!0þ
f n, xð Þ
x

¼ ∞, lim x!0þ
Xm

k¼1

Ik xð Þ
x
¼ ∞, (13)

lim x!þ∞
f n, xð Þ
x

¼ �M, lim x!þ∞
Xm

k¼1

Ik xð Þ
x
¼ 0: (14)

Then the problem (1) has at least one positive periodic solution.
Proof We follow the same strategy and notations as in the proof of Theorem 1.

Firstly, we show that for r>0 sufficiently large

∥Tx∥≥ ∥x∥, ∀x∈K ∩Ω1:

From (13) it follows that there exists 0< x< r̂, where β1, β2 are constants large
enough such that σA T β1 þMð Þ þ T �mð Þ Mþ β2ð Þð Þ> 1: Therefore, for 0< x< r̂, if
x∈K and ∥x∥ ¼ r, then from (12),

f n, x nð Þð Þ þMx≥ β1xþMx≥ σ β1 þMð Þ∥x∥,
Xm

k¼1
Ik ≥ β2x≥ σβ2∥x∥:

Furthermore, we obtain

Tx nð Þ ¼
XT�1

j¼0, j6¼nk
G n, jð Þσ jð Þ

þ
X

0<nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≥
XT�1

n¼0, n 6¼nk
A f n, x nð Þð Þ þMx nð Þð Þ

þ
X

0<nk ≤T�1
A M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≥TAσ β1 þMð Þ∥x∥þ T �mð ÞAσ M� Lk þ β2 þ Lkð Þ∥x∥
≥ σA T β1 þMð Þ þ T �mð Þ Mþ β2ð Þð Þ∥x∥
≥ ∥x∥,
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≥
XT�1

n¼0, n 6¼nk
A f n, x nð Þð Þ þMx nð Þð Þ

þ
X

0<nk ≤T�1
A M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≥TAσ β1 þMð Þ∥x∥þ T �mð ÞAσ M� Lk þ β2 þ Lkð Þ∥x∥
≥ σA T β1 þMð Þ þ T �mð Þ Mþ β2ð Þð Þ∥x∥
≥ ∥x∥,
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which implies ∥Tx∥≥∥x∥, for each x∈K ∩ ∂Ω1.
Next we show that for R>0 sufficiently large, ∥Tx∥≤ ∥x∥, ∀x∈K ∩ ∂Ω2. On the

other hand (14) yields the existence of R̂>0 such that for any x≥ R̂

f n, x nð Þð Þ≤ η1x�Mx,
Xm

k¼1
Ik ≤ η2x,

where η1, η2 >0 are constants such that

Bσ Tη1 þ T �mð Þ Mþ η2ð Þð Þ< 1:

Fixing R≥ max r, R̂
σ

n o
. and letting x∈K with ∥x∥ ¼ R, we get x nð Þ≥ σ∥x∥ ¼

σR> R̂ and f n, x nð Þð Þ þMx≤ η1x≤ η1σ∥x∥ and

Tx nð Þ ¼
XT�1

j¼0, j6¼nk
G n, jð Þσ jð Þ

þ
X

0<nk ≤T�1
G n, nkð Þ M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≤
XT�1

n¼0, n 6¼nk
B f n, x nð Þð Þ þMx nð Þð Þ

þ
X

0<nk ≤T�1
B M� Lkð Þx nkð Þ þ Ik x nkð Þð Þ þ Lkx nkð ÞÞð Þ

≤TBση1∥x∥þ B T �mð Þσ M� Lkð Þ∥x∥þ η2∥x∥þ Lk∥x∥ð Þ
≤Bσ Tη1 þ T �mð Þ Mþ η2ð Þð Þ∥x∥
≤ ∥x∥:

which implies ∥Tx∥≤∥x∥, ∀x∈K ∩ ∂Ω2.
Finally, it follows from Lemma 3(ii) that T has a fixed point in

K ∩ �Ω2nΩ1ð Þ,

which is a positive periodic solution of (1). The proof is complete. □

4. Conclusion

By applying the fixed point theorem in cones, we establish new existence theo-
rems on positive periodic solutions for impulsive difference equations with periodic
boundary conditions. Our main findings enrich and complement those available in
the literature.
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Chapter 14

Peculiarities of the Fundamental
Solution of Parabolic Systems with
a Negative Genus
Vladyslav Antonovich Litovchenko

Abstract

For the parabolic Shilov-type systems with a negative genus, a method of
studying the properties of a fundamental solution of the Cauchy problem is pro-
posed. This method allows to improve the known estimates of Zhitomirskii funda-
mental solution for systems with dissipative parabolicity and describe the features
of this solution more accurately. It opens wide possibilities for constructing a clas-
sical theory of the Cauchy problem for parabolic systems with negative genus and
variable coefficients.

Keywords: parabolic Shilov systems, negative genus, fundamental solution,
Cauchy problem, matriciant, dissipative parabolicity

1. Introduction

The theory of parabolic equations dates back to the time of the classical equation
of thermal conductivity [1]. However, it acquired its most distinct features from the
fundamental work by I.G. Petrovskii [2] published in 1938. There he describes and
investigates a fairly wide class of systems of linear equations with partial deriva-
tives, the fundamental solution of which has typical properties of the fundamental
solution of the thermal conductivity equation:

G∘ t� τ; xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πa t� τð Þ

p� ��n
e�

∥x∥2
4a t�τð Þ, t> τ≥0, x∈n (1)

(here a – is the coefficient of thermal conductivity, and ∥ � ∥ – is the Euclidean
norm in n). These systems were later called “parabolic by Petrovskii” or
“2b-parabolic” systems. Due to the efforts of many researchers, the theory of 2b-
parabolic systems developed rapidly throughout the second half of the 20th century.
At that, there were considered the systems with both fixed and variable coefficients
having different properties. Comprehensive results were obtained on the structure
and properties of solutions, as well as on the correct solvability of boundary value
problems, in particular, the Cauchy problem, in different functional spaces [3–13].

In 1955, G.Ye. Shilov formulates a new definition of parabolicity, which generalizes
the concept of “2b -parabolicity” and significantly expands the class of Petrovskii’s
systems with constant coefficients by those systems, in which the order p is no longer
necessarily even, and may not coincide with the parabolicity index h [14]. The para-
bolic Shilov-type systems, mostly with constant coefficients, were studied in [15–24].
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The presence of a gap between p and h in such systems produces a peculiar
“dissipation” effect, the measure of which may be a special characteristic of the system
– its genus μ: 1� p� hð Þ≤ μ≤ 1. The parabolic systems, in which p ¼ h,� the classical
equation of thermal conductivity, in particular, as well as all 2b-parabolic systems, �
have the genus μ ¼ 1, while for the systems with p 6¼ h, generally speaking, the genus
is μ< 1. Besides, the more the parabolicity index h deviates from the order of the
system p, the more its genus μ, decreasing, gets further away from 1. In systems with
such a dissipation, even with constant coefficients, deviations from the standards set
by the classical thermal equation are observed. First of all, for their fundamental
solution G t, τ; �ð Þ, the analytic properties in the complex space n [15] are getting
worse, and the order of exponential behavior on the real hyperplane n changes [16]:

∣∂kxG t, τ; xð Þ∣ ≤Ak t� τð Þ�
nþγþ kj jþ

h
e
�δ0 ∥x∥

t�τð Þμ=p

� � p
p�μ

, 0< μ≤ 1,

e
�δ0 ∥x∥

t�τð Þμ=h

� � h
h�μ

, μ≤0,

8>>><
>>>:

γ ≥0: (2)

Another anomalous phenomenon of the systems with “dissipative parabolicity”
is their parabolic instability with respect to changes in the coefficients, even of those
found at zero derivative. This fact was first pointed out by U Hou-Sin in 1960, who
gave the example of a parabolically unstable system [17]. In this regard, the ques-
tion of the study of parabolic Shilov-type systems with variable coefficients is
problematic and still remains open.

Zhitomirskii’s estimates (2) show that the fundamental solution of G t, τ; xð Þ
parabolic systems with the positive genus μ on the set τ;þ∞ð Þ � n shows the
behavior typical for G∘ t� τ; xð Þ: it decreases exponentially and has a peculiarity at
only one point t; xð Þ ¼ τ; 0ð Þ. This fact allowed us to successfully develop the
classical theory of the Cauchy problem for parabolic systems with variable coeffi-
cients and non-negative genus μ in [25–28]. However, according to these estimates,
in the case of μ<0 the function G t, τ; xð Þ may have a peculiarity on the entire
hyperplane t ¼ τ, x∈n. This point significantly complicates the substantiation of
the convergence of the process of successive approximations, in particular, while
making the fundamental solution of the Cauchy problem for systems with variable
coefficients using the Levy method. In this regard, a natural question arises: How
accurate are the estimates (2) for systems of the genus μ<0?

The answer to this question is given in this paper. A method for studying the
function G t, τ; xð Þ for parabolic Shilov-type systems of genus μ<0, which allows us
to more accurately describe the behavior of this function in the vicinity of the point
t; xð Þ ¼ τ; 0ð Þ is also suggested in this research paper. In addition, one class of
systems with dissipative parabolicity is also defined here. These systems are para-
bolically stable to changes in their lower coefficients.

The main content of the work is as follows. Section 2 contains the necessary
information on the concept of parabolicity by Shilov. One class of systems with
dissipative parabolicity and variable coefficients is described in Section 3. The study
of the properties of the fundamental solution of the Cauchy problem for parabolic
Shilov-type systems with a negative genus is carried out in Section 4. The final
Section 5 is the conclusions.

2. Preliminary information

Let  – be the set of all natural numbers; m ¼ 1, … ;mf g; n and n – real and
complex space of n≥ 1 dimension respectively; n

þ – the set of all n-dimensional
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multi-indices; ≔1,≔1, þ≔1
þ; i – imaginary unit; �, �ð Þ – scalar product in

the space n; ∣xþ iy∣ ≔ x2 þ y2ð Þ12, if x, yf g⊂; zl ≔ zl11 … zlnn , zj jl ≔ z1j jl1 … znj jln ,
zj jhþ≔ z1j jh þ … þ znj jh, zj jþ≔ zj j1þ, if z≔ z1; … ; znð Þ∈n, l≔ l1; … ; lnð Þ∈n

þ, h∈;
∂ξ� – is the partial derivative with the variable ξ.

Let us fix m, pf g⊂, T ∈ 0;þ∞ð Þ arbitrarily and consider the system of partial
differential equations of p order

∂tu t; xð Þ ¼ A t; i∂xð Þu t; xð Þ, t; xð Þ∈Π 0;Tð �, (3)

in which Π 0;Tð �≔ 0;Tð � � n, u t; xð Þ≔ col u1 t; xð Þ; … ; um t; xÞð Þð – is an unknown
vector-function and

A t; i∂xð Þ≔
X
kj jþ ≤ p

ajlk tð Þi kj jþ∂kx

0
@

1
A

m

j,l¼1

(4)

matrix differential expression with coefficients ajlk �ð Þ.
Let us denote by A the matrix symbol of the differential expression A t; i∂xð Þ:

A t; sð Þ ¼
X
kj jþ ≤ p

ajlk tð Þsk
0
@

1
A

m

j,l¼1

, t∈ 0;Tð �, s∈n: (5)

The Shilov-type parabolicity of the system (3) depending on the constancy or
variability of its coefficients, is defined differently.

In the case when the coefficients ajlk are constant, i.e., when

A t; i∂xð Þ � A i∂xð Þ, A t; �ð Þ � A �ð Þ, (6)

the system (3) on the set Π 0;T½ � is referred to as Shilov-type parabolic system with
the parabolicity index h, 0< h≤ p, if [15]

∃δ0 >0∃δ≥0∀ξ∈n : max
j∈m

Re λ j ξð Þ≤ � δ0∥ξ∥h þ δ, (7)

where λ j sð Þ - characteristic numbers of the matrix symbol A sð Þ, s∈n.
If the coefficients of the system (3) depend on t (continuously), then the

Shilov-type parabolicity of this system is defined somewhat differently, using the
concept of the matriciant of the linear differential equations system.

For the system (3) we shall write the corresponding dual by Fourier system

∂tv t; ξð Þ ¼ A t; ξð Þv t; ξð Þ, 0≤ τ< t≤T, ξ∈n: (8)

The matriciant of the system (8) is such a matrix solution of the system
Θt

τ �ð Þ, 0≤ τ< t≤T, that

Θt
τ �ð Þ
��
t¼τ ¼ E ∀τ∈ 0;T½ �ð Þ (9)

(here E – a single matrix of m order).
Under the condition of continuity of the coefficients of the system (3), the

matriciant Θt
τ �ð Þ has the structure [29]
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Θt
τ �ð Þ ¼ Eþ

X∞
r¼1

ðt

τ

ðt1

τ

…

ðtr�1

τ

Yr
j¼1
A t j; �
� � !

dtr … dt2dt1: (10)

The system (3) with continuous coefficients on 0;T½ � is called a Shilov-type
parabolic system on the set Π 0;T½ � with parabolicity index h, 0< h≤ p, if for the
matriciant Θt

τ �ð Þ, 0≤ τ< t≤T, of the corresponding dual by Fourier system (8) the
following estimation is performed [15]

∣Θt
τ ξð Þ∣ ≤ c 1þ ∥ξ∥γð Þe�δ t�τð Þ∥ξ∥h , t; ξð Þ∈Π τ;Tð �, (11)

with some positive constants c and δ. Here

γ≔ p� hð Þ m� 1ð Þ, ∣ ajl
� �k,m

j¼1,l¼1∣ ≔ max
j l

∣ajl∣: (12)

It should be noted that for Shilov-type parabolic systems with constant coeffi-
cients, the condition (11) is a direct consequence of the corresponding condition of
parabolicity (7) [15]. For parabolic systems (3) with t-dependent coefficients at
p 6¼ h, this fact generally cannot be confirmed by classical means of the theory of
parabolic systems due to the parabolic instability of such systems to changing their
coefficients.

The Eq. (10) allows us to extend the matriciant Θt
τ �ð Þ into the complex space n

to the complete analytical function. Taking into account the estimation

∣A t; sð Þ∣ ≤ c 1þ ∥s∥pð Þ, 0≤ t≤T, s∈n, (13)

we find that

∣Θt
τ sð Þ∣ ≤ c0eδ0 t�τð Þ∥s∥p , 0≤ τ< t≤T, s∈n (14)

(here, a c0 and δ0 are positive constants independent of τ, t and s).
The smoothness of the matriciant Θt

τ �ð Þ together with the estimates (11), (14),
according to the statement of the theorem of the Phragmén-Lindelöf type
[30, p. 247], ensure the existence of the area

ν ¼ ξþ iη∈n : ∥η∥≤K 1þ ∥ξ∥ð Þνf g (15)

from ν with 1� p� hð Þ; 1½ �, in which the following estimate is performed

∣Θt
τ ξþ iηð Þ∣ ≤ c1 1þ ∥ξ∥γð Þe�δ1 t�τð Þ∥ξ∥h , 0≤ τ< t≤T: (16)

The genus μ of the Shilov-type parabolic system (3) is the exact upper boundary
of the indices ν, with which in the domain ν for the matriciant Θt

τ �ð Þ the estimate
(16) is performed [15]

Similarly to 2b-parabolicity, it is convenient to call the Shilov-type parabolicity a
p, hf g-parabolicity.
It should be noted that the fundamental solution of the Cauchy problem for

p, hf g-parabolic system (3) is represented by the function [15]

G t, τ; xð Þ ¼ 2πð Þ�n
ð

n

e�i x,ξð ÞΘt
τ ξð Þdξ: (17)
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The following section gives an example of a p, hf g-parabolic system and defines
a class of systems with dissipative parabolicity, each of which is a p, hf g-parabolic
system with variable coefficients.

3. One class of parabolically resistant systems

Due to the difficulty of establishing the fundamental condition (11), for the
system (3) with variable coefficients, the definition of parabolability according to
Shilov is somewhat specific. It is known [4] that the corresponding condition (11) is
satisfied for 2b-parabolic systems (3) with continuous coefficients. However, it is
impossible to confirm the fulfillment of this condition in a similar way for systems
(3) with p 6¼ h based on the condition (7). Therefore, it is important to be aware of
the richness of the class of the Shilov-type systems with variable coefficients, in
particular, of the examples of such systems that are not parabolic by Petrovskii.

Let us consider a system of Eq. (3), in which the differential expression A t; i∂xð Þ
allows an image

A t; i∂xð Þ ¼ A0 i∂xð Þ þ A1 t; i∂xð Þ, (18)

where

A0 i∂xð Þ≔
X
kj jþ ≤ p

aljki
kj jþ∂kx

0
@

1
A

m

l,j¼1

, A1 t; i∂xð Þ≔
X

kj jþ ≤p1

aljk tð Þi kj jþ∂kx

0
@

1
A

m

l,j¼1

: (19)

Let us assume that the corresponding system

∂tu t; xð Þ ¼ A0 i∂xð Þu t; xð Þ, t; xð Þ∈Π 0;Tð �, (20)

is p, hf g-parabolic on the set Π τ;Tð �, and the coefficients of the differential
expression A1 t; i∂xð Þ are continuous complex-valued functions defined on 0;T½ �,
while the values p, p1 and h satisfy the condition

(A): 0≤ p1 þ p� hð Þ m� 1ð Þ< h:
Example of system (3) with condition (A). Let n ¼ 1, m ¼ 2, a>0 and c j �ð Þ,

j∈5, are some continuous on 0;T½ � complex-valued functions. Then the system

∂tu1 ¼ �a∂4x þ c1 tð Þ∂2x
� �

u1 þ ∂
5
x � ∂

3
x þ c2 tð Þ∂x

� �
u2,

∂tu2 ¼ c3 tð Þ∂2x � ∂
3
x

� �
u1 � a∂4x � c4 tð Þ∂2x � c5 tð Þ� �

u2,

8<
: (21)

is the system of kind (3) with condition (A). Indeed, putting

A0 i∂xð Þ ¼ �a∂4x ∂
5
x � ∂

3
x

�∂3x �a∂4x

 !
, (22)

A1 t; i∂xð Þ ¼ c1 tð Þ∂2x c2 tð Þ∂x
c3 tð Þ∂2x c4 tð Þ∂2x þ c5 tð Þ

 !
(23)

and solving the appropriate equation

det A0 sð Þ � λEð Þ ¼ 0, s∈n, (24)
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we obtain that λ1,2 sð Þ ¼ �as4 � i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s8 þ s6
p

, p ¼ 5, p1 ¼ 2 and h ¼ 4. For these
values p, p1 and h, obviously the condition (A) holds.

Theorem 1 Let (3) be a system with continuous coefficients, for which the conditions
formulated in this clause are satisfied. Then it is an p, hf g-parabolic system with variable
coefficients.

Proof. According to the definition of p, hf g-parabolicity for the system (3) with
variable coefficients, it is enough to show that for the matrix Θt

τ �ð Þ of the
corresponding dual by Fourier system (8) on the set Π τ;T½ �, τ∈ 0;T½ Þ, the estimate
(11) is performed.

On condition of continuity of the coefficients, the matriciant Θt
τ �ð Þ is the only

solution of the Cauchy problem for the system (8) with the initial condition

v t; �ð Þjt¼τ ¼ E: (25)

Thus, the correct equality

∂tΘt
τ ξð Þ ¼ A0 ξð ÞΘt

τ ξð Þ þQ τ, t; ξð Þ, (26)

in which

Q τ, t; ξð Þ≔A1 t; ξð ÞΘt
τ ξð Þ: (27)

Having solved the Cauchy problem (26), (25), we obtain the image

Θt
τ ξð Þ ¼ e t�τð ÞP0 ξð Þ þ

ðt

τ

e t�βð ÞP0 ξð ÞQ τ, β; ξð Þdβ, t; ξð Þ∈Π τ;Tð �, τ∈ 0;T½ Þ: (28)

It should be noted that e t�τð ÞP0 �ð Þ is the matriciant of the dual by Fourier system to
p, hf g-parabolic system (20), therefore, the estimate (11) is performed for it.
Hence, considering the inequality

∣Q τ, t; ξð Þ∣ ≤ c0 1þ ∥ξ∥p1ð Þ∣Θt
τ ξð Þ∣, t; ξð Þ∈Π τ;Tð �, τ∈ 0;T½ Þ (29)

(here the positive constant c0 in independent of τ, t and ξ), the next estimate is
obtained

∣Θt
τ ξð Þ∣ ≤ c 1þ ∥ξ∥γð Þe�δ t�τð Þ∥ξ∥h þ c1 1þ ∥ξ∥γð Þ 1þ ∥ξ∥p1ð Þ

ðt

τ

e�δ t�βð Þ∥ξ∥h ∣Θβ
τ ξð Þ∣dβ, (30)

from which we come to the ratio

∣Θt
τ ξð Þ∣eδ t�τð Þ∥ξ∥h

1þ ∥ξ∥γð Þ ≤ cþ c1 1þ ∥ξ∥γð Þ 1þ ∥ξ∥p1ð Þ
ðt

τ

∣Θβ
τ ξð Þ∣eδ β�τð Þ∥ξ∥h

1þ ∥ξ∥γð Þ dβ: (31)

Using now the classic Gr€onwall’s lemma [4], we get

∣Θt
τ ξð Þ∣ ≤ c 1þ ∥ξ∥γð Þe� t�τð Þ δ∥ξ∥h�c1 1þ∥ξ∥γð Þ 1þ∥ξ∥p1ð Þð Þ, t; ξð Þ∈Π τ;Tð �, τ∈ 0;T½ Þ: (32)

This inequality, in combination with condition (A), ensures the existence of
positive constants c and δ, with which for all t; ξð Þ∈Π τ;Tð �, τ∈ 0;T½ Þ, the estimate
(11) is performed.
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The theorem is proved.
Remark 1 The proof of Theorem 1 is based on the classical idea of establishing an

estimate (11) for 2b-parabolic systems with the coefficients continuously depending on t.
Therefore, analyzing this proof, especially its last part, we can understand why, in
contrast to the 2b-parabolicity, in the case of p 6¼ h the difficulties in establishing the
condition (11).

The study of the properties of the matriciant Θt
τ �ð Þ for systems with a negative

genus μ will be continued in the next section.

4. Properties of fundamental solution

Let us move on to the search for an answer to the question posed in Section 1
concerning the accuracy of Zhitomirskii’s estimates (2) in the case of a system (3) of
genus μ<0.

Theorem 2 Let the system (3) p, hf g be parabolic with the negative genus μ, and let
l≥0 and α≥0 be such arbitrarily fixed numbers that l≤ 1þ αh and αh� lð Þμ≥ αh. Then

∃ c, δ,A,Bf g⊂ 0;þ∞ð Þ∀k∈n
þ∀q∈þ∀x∈nn 0f g∀τ∈ 0;T½ Þ∀t∈ τ;Tð � :

∣∂kxG t, τ; xð Þ∣ ≤ cAqB kj jþ

∥x∥q
q 1�μ

hð Þqkk
h t� τð Þ

lþμð Þq�n� kj jþ�l0γ
h e

�δ xj jþ
t�τð Þ lþμð Þ=h

� � 1
1�μ=h

, (33)

where l0 ≔ max 1; lf g.
Proof. To simplify the calculations, we put τ ¼ 0. The general case τ>0 is

realized similarly.
Let us consider the functional matrix

ℑl t; ξð Þ≔Θt
0 t�l=hξ
� �

, l≥0, t∈ 0;Tð �, ξ∈n, (34)

for which, according to the definition of the genus μ of the system (3), on the set

μ ¼ ξþ iη∈n : t�l=h∥η∥≤K0 1þ t�l=h∥ξ∥
� �μn o

(35)

the estimate is performed

∣ℑl t; ξþ iηð Þ∣ ≤ c 1þ t�l=h∥ξ∥
� �γ

e�δt
1�l ξj jhþ , t∈ 0;Tð �, (36)

with positive values c and δ, independent of t, ξ and η.
To estimate the derivatives ∂qξℑl we use the Cauchy integral formula

∂
q
ξℑl t; ξð Þ ¼

Yn
j¼1

q j!

2πi

ð

ΓR j

ℑl t; σð Þdσ j

σ j � ξ j

� �q jþ1 , q∈n
þ, ξ∈n, t∈ 0;Tð �, (37)

in which ΓR j – is a circle with the center in the point ξ j þ i0 of the radius

R j ¼ K0 1þ t�l=hjξ jj
� �μ

, 0<K0 < < 1: (38)

Let us put ΓR ≔ΓR1 � … � ΓRn and fix a fairly small positive K0 so that ΓR ⊂μ

(the existence of such K0 is substantiated in ([30], p. 287) when proving the
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with positive values c and δ, independent of t, ξ and η.
To estimate the derivatives ∂qξℑl we use the Cauchy integral formula

∂
q
ξℑl t; ξð Þ ¼

Yn
j¼1

q j!

2πi

ð

ΓR j

ℑl t; σð Þdσ j

σ j � ξ j

� �q jþ1 , q∈n
þ, ξ∈n, t∈ 0;Tð �, (37)

in which ΓR j – is a circle with the center in the point ξ j þ i0 of the radius

R j ¼ K0 1þ t�l=hjξ jj
� �μ

, 0<K0 < < 1: (38)

Let us put ΓR ≔ΓR1 � … � ΓRn and fix a fairly small positive K0 so that ΓR ⊂μ

(the existence of such K0 is substantiated in ([30], p. 287) when proving the
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theorem 4 of the Phragmén-Lindelöf type in the case of n independent variables).
Then, according to the estimate (36), we have

∣∂qξℑl t; ξð Þ∣ ≤ c 1þ t�l=h∥ξ̂∥
� �γ

e�δt
1�l �ξj jhþY

n

j¼1

q j!

R
q j

j

, (39)

where ξ̂;�ξ
� �

⊂n – fixed points with such coordinates

ξ̂ j;�ξ j

n o
⊂ ξ j � R j; ξ j þ R j

h i
, j∈n, (40)

that

ξ̂ j
2 ¼ max

ξ j�R j; ξ jþR j½ �
x2j, ∣�ξ j∣ ¼ min

ξ j�R j; ξ jþR j½ �
∣x j∣, (41)

that is

ξ̂ j ¼ ξ j þ χ jR j, �ξ j ¼ ξ j þ ζ jR j, (42)

at some χ j, ζ j

n o
⊂ �1; 1½ �.

First of all it should be noted that

R j ¼ K0

1þ t�l=hjξ jj
� �∣μ∣ ≤K0, ξ j ∈, t∈ 0;Tð �: (43)

Since

∥ξ∥≤
ffiffiffi
n
p

ξj jþ, ξ∈n, (44)

then

∥ξ̂∥≤
ffiffiffi
n
p Xn

j¼1
∣ξ j þ χ jR j∣ ≤

ffiffiffi
n
p Xn

j¼1
jξ jjþR j

� �
≤

ffiffiffi
n
p Xn

j¼1
jξ jjþK0

� �
≤

≤
ffiffiffi
n
p

1þ ξj jþ
� �

, K0 ≤ 1=n, ξ∈n, t∈ 0;Tð �:
(45)

Now let us estimate the value e�δt
1�l �ξj jhþ .

Let us start with the simpler case when t∈ 1;T½ �.
We assume that ∣ξ j∣ ≥ 2K0, then

�ξ j

���
���
h
¼ jξ jj�R j

� �h
≥ jξ jj�K0

� �h
≥ 2�h ξ j

���
���
h
: (46)

If ∣ξ j∣< 2K0, then

e�δt
1�l �ξ jj jh ≤ 1 ¼ eδ0t

1�l ξ jj jh e�δ0t1�l ξ jj jh ≤ e�δ0t
1�l ξ jj jhþa ∀δ0 >0ð Þ, (47)

where a ¼ δ0 2K0ð Þh max
t∈ 1;T½ �

t1�l.
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Therefore, for each δ>0 there are such positive constants c0 and δ0 that for all
ξ j ∈ and t∈ 1;T½ � the estimate is performed

e�δt
1�l �ξ jj jh ≤ c0e�δ0t

1�l ξ jj jh : (48)

We show that the statement (48) is also true in the case of t∈ 0; 1ð Þ.
We shall fix arbitrarily α≥0 and further consider that l≤ 1þ αh. Then for

∣ξ j∣< tα, we have:

e�δt
1�l �ξ jj jh ≤ eδ0t

1�l ξ jj jh�δ0t1�l ξ jj jh ≤ e�δ0 t1�l ξ jj jh�t1þαh�l
� �

≤ e�δ0 t1�l ξ jj jh�1
� �

∀δ0 >0ð Þ: (49)

Now let tα ≤ ∣ξ j∣, and α be such that the condition: l� αhð Þ∣μ∣ ≥ αh is satisfied.
Taking into consideration that

R j ≤
K0

1þ tα�l=hð Þ∣μ∣
≤K0t l=h�αð Þ∣μ∣ ≤K0tα, (50)

we obtain:

�ξ j

���
���
h
¼ jξ jj�R j

� �h
≥ jξ jj�K0tα
� �h

¼ ξ j

���
���
h

1� K0tα=jξ jj
� �h

≥

≥ ξ j

���
���
h
1� K0ð Þh ≥ 2�h ξ j

���
���
h
:

(51)

Hence we arrive at performing (48) at t∈ 0; 1ð Þ.
According to the estimates (45), (48) and equality

sup
y≥0

yβe�δy
� � ¼ β

eδ

� �β

, β>0, δ>0, (52)

we find:

c�10 1þ t�l=h∥ξ̂∥
� �γ

e�
δ
3t
1�l �ξj jhþ ≤ 2

ffiffiffi
n
p� �γt�lγ=h 1þ ξj jþ

� �γe�δ0t1�l ξj jhþ ≤

≤ 2
ffiffiffi
n
p� �γt�lγ=h 1þ ξj jþe�

δ0
γ t

1�l ξj jhþ
� �γ

≤ 2
ffiffiffi
n
p� �γt�lγ=h 1þ n

γtl�1

heδ0

� �1=h
 !γ

;

c�10 R
�q j

j e�
δ
3nt

1�l �ξj jhþ ≤R
�q j

j e�δ0t
1�l ξ jj jh ¼ K

�q j

0 1þ t�l=hjξ jj
� �∣μ∣q j

e�δ0t
1�l ξ jj jh ≤

≤ 2μK0ð Þ�q j 1þ tμlq j=h ξ j

���
���
∣μ∣q j

e�δ0t
1�l ξ jj jh

� �
≤ 2μK0ð Þ�q j 1þ

∣μ∣q j

heδ0t

� �∣μ∣q j=h
 !

:

(53)

Together with (39), these estimates ensure the existence of such positive con-
stants c, A and δ that for all ξ∈n, t∈ 0;Tð � and q∈n

þ the following inequality is
true

∣∂qξℑl t; ξð Þ∣ ≤ cA qj jþq 1�μ
hð Þqtμ qj jþ�l0γ

h e�δt
1�l ξj jhþ , (54)

in which l0 ¼ max 1; lf g.
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h
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Hence we arrive at performing (48) at t∈ 0; 1ð Þ.
According to the estimates (45), (48) and equality

sup
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yβe�δy
� � ¼ β

eδ

� �β
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we find:
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δ
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≤ 2
ffiffiffi
n
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δ0
γ t
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� �γ

≤ 2
ffiffiffi
n
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γtl�1

heδ0
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 !γ
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c�10 R
�q j

j e�
δ
3nt
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�q j

j e�δ0t
1�l ξ jj jh ¼ K

�q j
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 !
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(53)

Together with (39), these estimates ensure the existence of such positive con-
stants c, A and δ that for all ξ∈n, t∈ 0;Tð � and q∈n

þ the following inequality is
true

∣∂qξℑl t; ξð Þ∣ ≤ cA qj jþq 1�μ
hð Þqtμ qj jþ�l0γ

h e�δt
1�l ξj jhþ , (54)

in which l0 ¼ max 1; lf g.
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Next, we shall use the image

G t, 0; xð Þ ¼ 2πð Þ�nt�nl=h
ð

n

e�i x,t�l=hξð Þℑ t; ξð Þdξ, t; xð Þ∈Π 0;Tð �: (55)

Identity

tl=hLξ; x e�i x,t�l=hξð Þh i
¼ e�i x,t�l=hξð Þ, (56)

in which

Lξ; x ¼ i∥x∥�2
Xn
j¼1

x j∂ξ j , (57)

at x 6¼ 0 allows to write the previous equality in the form

G t, 0; xð Þ ¼ 2πð Þ�ntl q�nð Þ=h
ð

n

Lq
ξ; x e�i x,t�l=hξð Þh i

ℑ t; ξð Þdξ ∀q∈þð Þ: (58)

Hence, after integrating by parts q times, we arrive at the relation

G t, 0; xð Þ ¼ �1ð Þq 2πð Þ�ntl q�nð Þ=h
ð

n

e�i x,t�l=hξð ÞLq
ξ; x ℑ t; ξð Þ½ �dξ ∀q∈þð Þ, (59)

from which we obtain that

∣xr∂kxG t, 0; xð Þ∣ ≤ 2πð Þ�nt
l q�n� k�rj jþð Þ

h

ð

n

ξj jk∣∂rξ Lq
ξ; x ℑ t; ξð Þ½ �

� �
∣dξ, (60)

for all r, kf g⊂n
þ and q∈þ.

Having considered the estimate (54), for t; ξð Þ∈Π 0;Tð � and x 6¼ 0 we find:

∣∂rξ Lq
ξ; x ℑ t; ξð Þ½ �

� �
∣ ≤ cAqþ rj jþ∥x∥�qt

μ qþ rj jþð Þ�l0γ
h r 1�μ

hð Þrq 1�μ
hð Þqe�δt1�l ξj jhþ : (61)

Then

∣xr∂kxG t, 0; xð Þ∣ ≤ c1Aqþ rj jþ∥x∥�qt
lþμð Þ qþ rj jþð Þ�l nþ kj jþð Þ�l0γ

h r 1�μ
hð Þrq 1�μ

hð Þq�

�
ð

n

ξj jke�δl1�l ξj jhþdξ≤ c1Aqþ rj jþ∥x∥�qt
lþμð Þ qþ rj jþð Þ�n� kj jþ�l0γ

h r 1�μ
hð Þrq 1�μ

hð Þq�

�
Yn
j¼1

sup
y≥0

y
k j
h e�

δ
2y

� � !ð

n

e�
δ
2 ζhj jþdζ≤ c2Aqþ rj jþB kj jþ∥x∥�qt

lþμð Þ qþ rj jþð Þ�n� kj jþ�l0γ
h �

�r 1�μ
hð Þrq 1�μ

hð Þqkk
h, t∈ 0;Tð �, x 6¼ 0, q∈þ, k, rf g⊂n

þ
(62)

(here positive values c2, A and B do not depend on t, x, q, k and r).
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Thus, for all t∈ 0;Tð �, x∈nn 0f g, q∈þ and k∈n
þ the correct estimates are

∣∂kxG t, 0; xð Þ∣ ≤ c2AqB kj jþ∥x∥�qt
lþμð Þ qþ rj jþð Þ�n� kj jþ�l0γ

h q 1�μ
hð Þqkk

h�

�
Yn
j¼1

inf
r j

t
lþμ
h A

� �r j

r
r j 1�μ

hð Þ
j x j

�� ���r j

� � !
≤

≤ cAqB kj jþ∥x∥�qt
lþμð Þq�n� kj jþ�l0γ

h q 1�μ
hð Þqkk

he
�δ xj jþ

t lþμð Þ=h

� � 1
1�μ=h

,

(63)

in which the values c>0, A>0, B>0 and δ>0 do not depend on k, q, t and x.
The theorem is proved.
Remark 2 Zhitomirskii’s estimates (2) are obtained from (33) for q ¼ 0, l ¼ 0 and

α ¼ 0.
Given that l ¼ 1þ αh, αh� lð Þμ ¼ αh and q ¼ 0, from the theorem 2 we arrive at

the following statement.
Corollary 1 For p, hf g-parabolic system (3) with genus μ<0 there are such positive

constants c, B and δ that for all k∈n
þ, x∈n, τ∈ 0;T½ Þ and t∈ τ;Tð � the next estimate

is performed

∣∂kxG t, τ; xð Þ∣ ≤ cB kj jþk
k
h t� τð Þ�

nþγþ kj jþ
h e

�δ xj jþ
t�τð Þ1=h

� � 1
1�μ=h

: (64)

Therefore, according to the corollary 1, the fundamental solution G in the case of
negative genus μ also has a singularity only at the point t; xð Þ ¼ τ; 0ð Þ.

Corollary 2 Let (3) p, hf g be a parabolic system with negative genus μ, then for all
t∈ τ;Tð �, τ∈ 0;T½ Þ, x∈nn 0f g and k∈n

þ estimate is performed

∣∂kxG t, τ; xð Þ∣ ≤ cB kj jþk
k
h kj j 1�

μ
hð Þ kj jþ

þ
∥x∥nþ γ½ �þ1þ kj jþ

t� τð Þ1� γf g
h e
�δ xj jþ

t�τð Þ1=h

� � 1
1�μ=h

, (65)

in which the positive values c, δ and B do not depend on t, τ, x and k; �½ � and �f g
are integer and fractional parts of the number respectively.

Proof. Estimates (65) are obtained directly from (33) at l ¼ 1þ αh, αh� lð Þμ ¼
αh and q ¼ nþ γ½ � þ 1þ kj jþ.

The established estimates (65) provide exponential decrease when changing
t! τ þ 0 on the set nn 0f g derivatives of the function G t, τ; �ð Þ in case μ<0.
Similarly to the case μ≥0 considered in [25–28], this will allow us to successfully
study the Cauchy problem for wide classes of p, hf g-parabolic systems (3) with

negative genus μ and variable coefficients ajlk t; xð Þ. Moreover, this will also allow us
to describe in a similar way the sets of classical solutions of such systems with
generalized limit values f on the initial hyperplane and to study the local behavior of
these solutions when changing t! τ þ 0 on that part of n where the functional f
has good properties etc.

5. Conclusions

The class of systems with dissipative parabolicity and variable coefficients
defined in Section 3 proves that the class of parabolic Shilov-type systems with
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� �
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�
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�
Yn
j¼1

sup
y≥0

y
k j
h e�

δ
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δ
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(here positive values c2, A and B do not depend on t, x, q, k and r).
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Thus, for all t∈ 0;Tð �, x∈nn 0f g, q∈þ and k∈n
þ the correct estimates are

∣∂kxG t, 0; xð Þ∣ ≤ c2AqB kj jþ∥x∥�qt
lþμð Þ qþ rj jþð Þ�n� kj jþ�l0γ

h q 1�μ
hð Þqkk

h�

�
Yn
j¼1

inf
r j

t
lþμ
h A

� �r j

r
r j 1�μ

hð Þ
j x j

�� ���r j

� � !
≤

≤ cAqB kj jþ∥x∥�qt
lþμð Þq�n� kj jþ�l0γ

h q 1�μ
hð Þqkk

he
�δ xj jþ

t lþμð Þ=h

� � 1
1�μ=h

,

(63)

in which the values c>0, A>0, B>0 and δ>0 do not depend on k, q, t and x.
The theorem is proved.
Remark 2 Zhitomirskii’s estimates (2) are obtained from (33) for q ¼ 0, l ¼ 0 and

α ¼ 0.
Given that l ¼ 1þ αh, αh� lð Þμ ¼ αh and q ¼ 0, from the theorem 2 we arrive at

the following statement.
Corollary 1 For p, hf g-parabolic system (3) with genus μ<0 there are such positive

constants c, B and δ that for all k∈n
þ, x∈n, τ∈ 0;T½ Þ and t∈ τ;Tð � the next estimate

is performed

∣∂kxG t, τ; xð Þ∣ ≤ cB kj jþk
k
h t� τð Þ�

nþγþ kj jþ
h e

�δ xj jþ
t�τð Þ1=h

� � 1
1�μ=h

: (64)

Therefore, according to the corollary 1, the fundamental solution G in the case of
negative genus μ also has a singularity only at the point t; xð Þ ¼ τ; 0ð Þ.

Corollary 2 Let (3) p, hf g be a parabolic system with negative genus μ, then for all
t∈ τ;Tð �, τ∈ 0;T½ Þ, x∈nn 0f g and k∈n

þ estimate is performed

∣∂kxG t, τ; xð Þ∣ ≤ cB kj jþk
k
h kj j 1�

μ
hð Þ kj jþ

þ
∥x∥nþ γ½ �þ1þ kj jþ

t� τð Þ1� γf g
h e
�δ xj jþ

t�τð Þ1=h

� � 1
1�μ=h

, (65)

in which the positive values c, δ and B do not depend on t, τ, x and k; �½ � and �f g
are integer and fractional parts of the number respectively.

Proof. Estimates (65) are obtained directly from (33) at l ¼ 1þ αh, αh� lð Þμ ¼
αh and q ¼ nþ γ½ � þ 1þ kj jþ.

The established estimates (65) provide exponential decrease when changing
t! τ þ 0 on the set nn 0f g derivatives of the function G t, τ; �ð Þ in case μ<0.
Similarly to the case μ≥0 considered in [25–28], this will allow us to successfully
study the Cauchy problem for wide classes of p, hf g-parabolic systems (3) with

negative genus μ and variable coefficients ajlk t; xð Þ. Moreover, this will also allow us
to describe in a similar way the sets of classical solutions of such systems with
generalized limit values f on the initial hyperplane and to study the local behavior of
these solutions when changing t! τ þ 0 on that part of n where the functional f
has good properties etc.

5. Conclusions

The class of systems with dissipative parabolicity and variable coefficients
defined in Section 3 proves that the class of parabolic Shilov-type systems with
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coefficients ajlk tð Þ is quite broad and cannot be confined to the class of 2b-parabolic
systems (3) with continuous coefficients only.

Analyzing the obtained estimates (33) of the fundamental solution of the sys-
tems (3) with dissipative parabolicity, we conclude that in the case of the negative
genus μ the function G t, τ; xð Þ on the set τ;Tð � � n has only one singular point
t; xð Þ ¼ τ; 0ð Þ. Similarly to the case μ≥0, these estimates allow to perform the
expansion of the Shilov class p, hf g-parabolic systems by supplementing it with the
systems with negative genus μ and coefficients depending on space variable, and to
successfully develop the theory of the Cauchy problem for it using the classical
means. Moreover, the estimates (33) open wide possibilities for studying the prop-
erties of solutions of parabolic systems of the genus μ<0 at the approximation of
the initial hyperplane.
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Chapter 15

Boundary Element Modeling
and Simulation Algorithm for
Fractional Bio-Thermomechanical
Problems of Anisotropic Soft
Tissues
Mohamed Abdelsabour Fahmy

Abstract

The main purpose of this chapter is to propose a novel boundary element
modeling and simulation algorithm for solving fractional bio-thermomechanical
problems in anisotropic soft tissues. The governing equations are studied on the
basis of the thermal wave model of bio-heat transfer (TWMBT) and Biot’s theory.
These governing equations are solved using the boundary element method (BEM),
which is a flexible and effective approach since it deals with more complex shapes
of soft tissues and does not need the internal domain to be discretized, also, it has
low RAM and CPU usage. The transpose-free quasi-minimal residual (TFQMR)
solver are implemented with a dual-threshold incomplete LU factorization tech-
nique (ILUT) preconditioner to solve the linear systems arising from BEM.
Numerical findings are depicted graphically to illustrate the influence of fractional
order parameter on the problem variables and confirm the validity, efficiency and
accuracy of the proposed BEM technique.

Keywords: boundary element method, modeling and simulation algorithm,
bio-heat transfer, fractional bio-thermomechanical problems, anisotropic soft
tissues

1. Introduction

Human body is a complex thermal system, Arsene d’Arsonval and Claude Ber-
nard have shown that the temperature difference between arterial blood and venous
blood is due to oxygenation of blood [1]. A large number of research papers in bio-
heat transfer over the past few decades have focused on an understanding of the
impact of blood flow on the temperature distribution within living tissues. Pennes
[2] was the first attempt to explain the temperature distribution in human tissue
with blood flow effect. The improvement of numerical models for determination of
temperature distribution in living tissues has been a topic of interest for numerous
researchers. Askarizadeh and Ahmadikia [3] introduced analytical solutions for the
transient Fourier and non-Fourier bio-heat transfer equations. Li et al. [4] studied
the bio-thermomechanical interactions within the human skin in the context of
generalized thermoelasticity.
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nard have shown that the temperature difference between arterial blood and venous
blood is due to oxygenation of blood [1]. A large number of research papers in bio-
heat transfer over the past few decades have focused on an understanding of the
impact of blood flow on the temperature distribution within living tissues. Pennes
[2] was the first attempt to explain the temperature distribution in human tissue
with blood flow effect. The improvement of numerical models for determination of
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researchers. Askarizadeh and Ahmadikia [3] introduced analytical solutions for the
transient Fourier and non-Fourier bio-heat transfer equations. Li et al. [4] studied
the bio-thermomechanical interactions within the human skin in the context of
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Analytical solutions for the current problem [5, 6] are very difficult to obtain, so
numerical methods have become the main way for solving these problems [7–10].
The boundary element method (BEM) [11–21] is one of the numerical methods used
to solve the current general problem [22–31]. Generally, Laplace-domain funda-
mental solutions are easier to obtain than time-domain fundamental solutions for
engineering and scientific problems [32, 33]. consequently, the BEM is very helpful
for problems that did not have time-domain fundamental solutions, because it
requires the Laplace-domain fundamental solutions of the problem’s governing
equations. So, BEM expands the range of engineering problems that can be solved
with the classical time-domain BEM.

The main aim of this chapter is to propose a new boundary element fractional
model for describing the bio-thermomechanical properties of anisotropic soft tis-
sues. The dual reciprocity boundary element method has been used to solve the
TWMBT for obtaining the temperature distribution, and then the BEM has been
used to obtain the displacement and stress at each time step. The linear systems
from BEM were solved by the TFQMR solver with the ILUT preconditioner which
reduces the number of iterations and the total CPU time.

A brief summary of the chapter is as follows: Section 1 introduces the back-
ground and provides the readers with the necessary information to books and
articles for a better understanding of bio-thermomechanical problems in anisotropic
soft tissues Section 2 describes the BEM modeling of the bio-thermomechanical
interactions and introduces the partial differential equations that govern its related
problems. Section 3 outlines the dual reciprocity boundary element method
(DRBEM) for temperature field. Section 4 discusses the convolution quadrature
boundary element method (CQBEM) for poro-elastic field. Section 5 presents the
new numerical results that describe the bio-thermomechanical problems in aniso-
tropic soft tissues.

2. Formulation of the problem

Consider an anisotropic soft tissue in the Cartesian coordinate system Ox1x2x3 as
shown in Figure 1. It occupies the region Ω ¼ x1, x2, x3ð Þ : 0< x1 < α, 0< x2 < β, 0< x3 < γ

n o

with boundary Γ that is subdivided into two non-intersective parts ΓD and ΓN .

Figure 1.
Geometry of the current problem.
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The governing equations which model the fractional bio-thermomechanical
problems in anisotropic soft tissues can be written as follows [34, 35].

∇Tσ
� �T þ F ¼ ρ€uþ ϕρ f €u f � €u

� �
(1)

_ζ þ ∇Tq ¼ 0 (2)

σ ¼ Cailg tr∈ � Ap
� �

I �Bθ, (3)

∈ ¼ 1
2

∇uT þ ∇uT
� �T� �

(4)

ζ ¼ A tr∈ þ ϕ2

R
P (5)

where the fluid was modeled by the following Darcy’s law [36].

q ¼ �K ∇pþ ρ f €uþ
ρa þ ϕρ f

ϕ
€u f � €u
� �� �

(6)

The fractional order equationwhich describes the TWMBT can be expressed as [37].

∇K∇T r, τð Þ þWbCb Tb � Tð Þ þ Qmet þQext þ
τ

α!
�WbCbDα

τT þDα
τQmet þDα

τQext
� �

¼ ρC
τ

α!
Dαþ1

τ T þ ∂T

∂τ

� �
, 0< α≤ 1

(7)

where σ, ∈ , Cajlg, ρ ¼ ρs 1� ϕð Þ þ ϕρ f , ρs, ρ f , u, u f , FF and qq are total stress
tensor, linear strain tensor, constant elastic moduli, bulk density, solid density, fluid
density, solid displacement, fluid displacement, bulk body forces and specific flux
of the fluid, respectively,B are stress-temperature coefficients, tr denotes the trace,
A ¼ ϕ 1þQ=Rð Þ is Biot’s coefficient, Q and R are the solid–fluid coupling parame-
ters, p is the fluid pressure in the vasculature, ζ is the fluid volume variation
measured in unit reference volume, ϕ ¼ V f

V is the porosity, V f is the fluid volume,
V ¼ V f þ Vs is the bulk volume, Vs is the solid volume, τ is the time, K is the
permeability, ρa ¼ ϕρ f where  ¼ 0:66 at low frequency [38], K is the soft tissue
thermal conductivity, Wb is the blood perfusion rate, Cb is the blood specific heat,
Tb is the arterial blood temperature, T is the soft tissue temperature, τ is the thermal
relaxation time ρ is the soft tissue density, C is the soft tissue specific heat, Qmet is
the metabolic heat generation and Qext is the external heat generation.

According to Bonnet [39], our problem can be expressed as amatrix system as [40].

B̂~xûg ~xð Þ ¼ 0 for ~x∈Ω

ûg xð Þ ¼ ĝD for x∈ΓD

t̂g xð Þ ¼ ĝN for x∈ΓN

9>=
>;

(8)

where

B̂~x ¼
Be
~x þ s2 ρ� βρ f

� �
I α� βð Þ∇~x �B∇~x

s α� βð Þ∇T
~x � β

sρ f
Δ~x þ sϕ2

R
0

2
664

3
775 (9)
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Analytical solutions for the current problem [5, 6] are very difficult to obtain, so
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for problems that did not have time-domain fundamental solutions, because it
requires the Laplace-domain fundamental solutions of the problem’s governing
equations. So, BEM expands the range of engineering problems that can be solved
with the classical time-domain BEM.

The main aim of this chapter is to propose a new boundary element fractional
model for describing the bio-thermomechanical properties of anisotropic soft tis-
sues. The dual reciprocity boundary element method has been used to solve the
TWMBT for obtaining the temperature distribution, and then the BEM has been
used to obtain the displacement and stress at each time step. The linear systems
from BEM were solved by the TFQMR solver with the ILUT preconditioner which
reduces the number of iterations and the total CPU time.

A brief summary of the chapter is as follows: Section 1 introduces the back-
ground and provides the readers with the necessary information to books and
articles for a better understanding of bio-thermomechanical problems in anisotropic
soft tissues Section 2 describes the BEM modeling of the bio-thermomechanical
interactions and introduces the partial differential equations that govern its related
problems. Section 3 outlines the dual reciprocity boundary element method
(DRBEM) for temperature field. Section 4 discusses the convolution quadrature
boundary element method (CQBEM) for poro-elastic field. Section 5 presents the
new numerical results that describe the bio-thermomechanical problems in aniso-
tropic soft tissues.

2. Formulation of the problem

Consider an anisotropic soft tissue in the Cartesian coordinate system Ox1x2x3 as
shown in Figure 1. It occupies the region Ω ¼ x1, x2, x3ð Þ : 0< x1 < α, 0< x2 < β, 0< x3 < γ

n o

with boundary Γ that is subdivided into two non-intersective parts ΓD and ΓN .

Figure 1.
Geometry of the current problem.
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The governing equations which model the fractional bio-thermomechanical
problems in anisotropic soft tissues can be written as follows [34, 35].
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q ¼ �K ∇pþ ρ f €uþ
ρa þ ϕρ f

ϕ
€u f � €u
� �� �

(6)

The fractional order equationwhich describes the TWMBT can be expressed as [37].
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where σ, ∈ , Cajlg, ρ ¼ ρs 1� ϕð Þ þ ϕρ f , ρs, ρ f , u, u f , FF and qq are total stress
tensor, linear strain tensor, constant elastic moduli, bulk density, solid density, fluid
density, solid displacement, fluid displacement, bulk body forces and specific flux
of the fluid, respectively,B are stress-temperature coefficients, tr denotes the trace,
A ¼ ϕ 1þQ=Rð Þ is Biot’s coefficient, Q and R are the solid–fluid coupling parame-
ters, p is the fluid pressure in the vasculature, ζ is the fluid volume variation
measured in unit reference volume, ϕ ¼ V f

V is the porosity, V f is the fluid volume,
V ¼ V f þ Vs is the bulk volume, Vs is the solid volume, τ is the time, K is the
permeability, ρa ¼ ϕρ f where  ¼ 0:66 at low frequency [38], K is the soft tissue
thermal conductivity, Wb is the blood perfusion rate, Cb is the blood specific heat,
Tb is the arterial blood temperature, T is the soft tissue temperature, τ is the thermal
relaxation time ρ is the soft tissue density, C is the soft tissue specific heat, Qmet is
the metabolic heat generation and Qext is the external heat generation.

According to Bonnet [39], our problem can be expressed as amatrix system as [40].

B̂~xûg ~xð Þ ¼ 0 for ~x∈Ω

ûg xð Þ ¼ ĝD for x∈ΓD
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t̂g xð Þ ¼
Te
x �αnx 0

sβnTx
β

sρ f
nTx∇x 0

2
64

3
75

û xð Þ
p̂ xð Þ
θ xð Þ

2
64

3
75, β ¼ ϕ2sKρ f

ϕ2 þ sK ρa þ ϕρ f

� � (10)

3. Boundary element implementation for bioheat transfer field

Through this chapter, we supposed that Qmet and Tb are constants and θ r, τð Þ ¼
T r, τð Þ � T r, 0ð Þ. Thus, Eq. (7) can be written as

ρC
τ

α!
Dαþ1

τ θ þ ρC
∂θ

∂τ
þ τ

α!
WbCbDα

τ θ þWbCbθ ¼ K
∂
2θ

∂x2
þ q, 0< α≤ 1 (11)

According to finite difference scheme of Caputo [22] and using the fundamental
solution of difference equation resulting from fractional bio-heat Eq. (11) [41], we
can write the following dual reciprocity boundary integral equation

Ciθi þ
ð

Γ
q ∗ θdΓ�

ð

Γ
θ ∗ qdΓ ¼

XNþL
j¼1

α j C jθ̂ij þ
ð

Γ
q ∗ θ̂ jdΓ�

ð

Γ
θ ∗ q̂ jdΓ

� �
(12)

in which

Ci ¼ γ

2π
, q ¼ ∂θ

∂n
, q ∗ ¼ ∂θ ∗

∂n
, θ ∗ ¼ ln

1
r

� �
(13)

where n is the outward unit normal vector to boundary Γ, r is the distance
between source point i and considered point j, N is the number of boundary nodes
and L is the number of internal nodes.

where

α ¼ �1~f ¼ �1 ~a
∂
2θ

∂τ2
þ ~b

∂θ

∂τ
þ ~cθ þ ~d

� �
(14)

The discretization process for Eq. (12) leads to

Ciθi þ
XN

k¼1

ð

Γk

q ∗ θdΓ�
XN

k¼1

ð

Γk

θ ∗ qdΓ

¼
XNþL
j¼1

αj Ciθ̂ij þ
XN

k¼1

ð

Γk

Zikθ̂kjdΓ�
XN

k¼1

ð

Γk

Gikq̂kjdΓ

 ! (15)

After interpolation and integration processes over boundary elements, Eq. (15)
can be expressed as

Ciθi þ
XN

k¼1
Zikθk �

XN

k¼1
Gikqk ¼

XNþL
j¼1

αj Ciθ̂ij þ
XN

k¼1
Zikθ̂kj �

XN

k¼1
Gikq̂kj

 !
(16)

The matrix form of Eq. (16) can be written using (14) as

Zθ � Gq ¼ ZΘ̂� GQ̂
� �

�1 ~a
∂
2θ

∂τ2
þ ~b

∂θ

∂τ
þ ~cθ þ ~d

� �
(17)
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which also can be written

X ~a
∂
2θ

∂τ2
þ ~b

∂θ

∂τ
þ ~cθ þ ~d

� �
þ Zθ ¼ Gq (18)

where

X ¼ ZΘ̂�GQ̂
� �

�1

The boundary and initial conditions

θ x, y; τð Þ ¼ 0 (19)

∂θ x, y; 0ð Þ
∂τ

¼ ϑ x, y; 0ð Þ ¼ 0 (20)

θ x, y; 0ð Þ ¼ 1∘C �0:02≤ x, y≤0:02

0 other x, y

�
(21)

The time discretization has been performed as follows

q ¼ 1� θq
� �

qm þ θqqmþ1 (22)

θ ¼ 1� θuð Þθm þ θuθ
mþ1 (23)

∂θ

∂τ
¼ 1

Δτ
θmþ1 � θm
� �

(24)

∂
2θ

∂τ2
¼ 1

Δτ2
θmþ1 þ θm�1 � 2θm
� �

(25)

Substituting from Eqs. (22)–(25) into (20), we obtain

X~a
Δτ2
þ X~b

Δτ
þ X~cθu þ θuZ

 !
θmþ1 � θqGqmþ1 þ X~d

¼ 2X~a
Δτ2
þ X~b

Δτ
� X~c 1� θuð Þ � Z 1� θuð Þ

 !
θm � X~a

Δτ2
θm�1 þ 1� θq

� �
Gqm

(26)

Thus, with the temperature θ determined, the remaining task is to solve the
problem (8).

4. Boundary element implementation for the poro-elastic fields

The representation formula of (8) that describes the unknown field ûg can be
written as

ûg ~xð Þ ¼ V̂t̂
g

� �
Ω
~xð Þ � K̂û

g
� �

Ω
~xð Þ for ~x∈Ω (27)

where

V̂t̂
g

� �
Ω
~xð Þ ¼

ð�

Γ

Û
T
y� ~xð Þ̂tg yð Þdsy (28)
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which also can be written

X ~a
∂
2θ

∂τ2
þ ~b

∂θ

∂τ
þ ~cθ þ ~d

� �
þ Zθ ¼ Gq (18)

where

X ¼ ZΘ̂�GQ̂
� �

�1

The boundary and initial conditions

θ x, y; τð Þ ¼ 0 (19)

∂θ x, y; 0ð Þ
∂τ

¼ ϑ x, y; 0ð Þ ¼ 0 (20)

θ x, y; 0ð Þ ¼ 1∘C �0:02≤ x, y≤0:02

0 other x, y

�
(21)

The time discretization has been performed as follows

q ¼ 1� θq
� �

qm þ θqqmþ1 (22)

θ ¼ 1� θuð Þθm þ θuθ
mþ1 (23)

∂θ

∂τ
¼ 1

Δτ
θmþ1 � θm
� �

(24)

∂
2θ

∂τ2
¼ 1

Δτ2
θmþ1 þ θm�1 � 2θm
� �

(25)

Substituting from Eqs. (22)–(25) into (20), we obtain

X~a
Δτ2
þ X~b

Δτ
þ X~cθu þ θuZ

 !
θmþ1 � θqGqmþ1 þ X~d

¼ 2X~a
Δτ2
þ X~b

Δτ
� X~c 1� θuð Þ � Z 1� θuð Þ

 !
θm � X~a

Δτ2
θm�1 þ 1� θq

� �
Gqm
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Thus, with the temperature θ determined, the remaining task is to solve the
problem (8).

4. Boundary element implementation for the poro-elastic fields

The representation formula of (8) that describes the unknown field ûg can be
written as
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K̂û
g

� �
Ω
~xð Þ ¼

ð�

Γ

T̂yÛ
� �T

y� ~xð Þûg yð Þdsy (29)

For anisotropic case, the Laplace domain fundamental solution Û rð Þ and the
corresponding traction T̂v can be expressed as [40].

Û rð Þ ¼
Û

s
rð Þ Û

f
rð Þ 0

P̂
s

� �T
rð Þ P̂

f
rð Þ 0

2
64

3
75, T̂y ¼

Te
y sany 0

�βnTy
β

sρ f n
T
y ∇ 0

2
64

3
75 with r≔ y� xj j

(30)

where the solid displacement fundamental solution Û
s
rð Þ may be expressed as

Û
s
rð Þ ¼ 1

4πr ρ� βρ f� � 1
k24 � k22
� �

k21 � k22
� � e�k1r � 2

k24 � k21
� �

k21 � k22
� � e�k2r þ Ik23 � 3

� �
e�k3r

" #

(31)

with

 j ¼
3∇yr∇T

y r� I

r2
þ k j

3∇yr∇T
y r� I

r
þ k2j∇yr∇T

y r (32)

which can be expressed as [36].

Û
s
rð Þ ¼ 1

4πμr λþ 2μð Þ λþ μð Þ∇yr∇T
y rþ I λþ 3μð Þ

h i
þ O r0

� �
(33)

The fundamental solution of solid displacement Û
s
rð Þ can be dismantled into

singular Û
s
s rð Þ and regular Û

s
r rð Þ parts as

Û
s
rð Þ ¼ Û

s
s rð Þ þ Û

s
r rð Þ with r≔ y� xj j

¼ 1
μ

IΔy � λþ μ

λþ 2μ
∇y∇T

y

� �
Δyx̂ rð Þ

� 1
μ

k21 þ k22
� �

Δy � k21k
2
2

� �
I � k21 þ k22 � k24 �

k21k
2
2

k23

 !
∇y∇T

y

" #
x̂ rð Þ

(34)

in which

x̂ rð Þ ¼ 1
4πr

e�k1r

k22 � k21
� �

k23 � k21
� �þ e�k2r

k22 � k21
� �

k22 � k23
� �þ e�k3r

k21 � k23
� �

k22 � k23
� �

" #

¼ � 1

k21 � k22
� �

k21 � k23
� �

k23 � k22
� �þO r2

� �
(35)

The remaining parts of Û rð Þ as in (30) can be described as [36].
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Û
f
rð Þ ¼ ρ f α� βð Þ∇yr

4πrβ λþ 2μð Þ k21 � k22
� � k1 þ 1

r

� �
e�k1r � k2 þ 1

r

� �
e�k2r

� �
¼ O r0

� �
(36)

P̂
s
rð Þ ¼ Û

f
rð Þ

s
¼ O r0

� �
(37)

P̂
f
rð Þ ¼ sρ f

4πrβ k21 � k22
� � k21 � k24

� �
e�k1r � k22 � k24

� �
e�k2r

� � ¼ sρ f

4πrβ
þ O r0

� �
(38)

On the basis of limiting process ~x∈Ω! x∈Γ on (28) we get

lim
~x∈Ω!x∈Γ

V̂t̂
g

� �
Ω
~xð Þ ¼ V̂x̂

g
� �

xð Þ≔
ð�

Γ

Û
T
y� xð Þ̂tg yð Þdsy (39)

According to limiting process ~x∈Ω! x∈Γ on (28) we obtain [42].

lim
~x∈Ω!x∈Γ

K̂û
g

� �
Ω
~xð Þ ¼ �I xð Þ þ C xð Þ½ �ûg xð Þ þ K̂û

g
� �

xð Þ (40)

where

C xð Þ ¼ lim
ε!0

ð�

y∈Ω: y�xj j¼ε

T̂yÛ
� �T

y� xð Þdsy (41)

and

K̂û
g

� �
xð Þ ¼ lim

ε!0

ð�

y�xj j≥ ε

T̂yÛ
� �T

y� xð Þûg yð Þdsy (42)

By using (39)-(42), we can write

C xð Þûg xð Þ ¼ V̂t̂
g

� �
xð Þ � K̂û

g
� �

xð Þ (43)

By applying the inverse Laplace transform, we obtain

C xð Þug x, tð Þ ¼ V ∗ tgð Þ x, tð Þ � Kugð Þ x, tð Þ (44)

where ∗ is the time convolution.
According to [40], the fundamental solution is

T̂yÛ
� �T ¼

T̂
e
y sany

�βnTy
β

sρ f
0

nTy ∇y

2
64

3
75

Û
s

Û
f

P̂
s

� �T
P̂

f

2
4

3
5

2
64

3
75

T

¼ T̂
s

T̂
f

Q̂
s

� �T
Q̂

f

2
4

3
5 (45)

On the basis of Stokes theorem, we obtain

ð�

Γ

∇y � a, ny
� �

dsy ¼ �
ð,

∂Γ

a, vð Þdγy ¼ �
ð,

ϕ

a, vð Þdγy ¼ 0 (46)
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y� ~xð Þûg yð Þdsy (29)

For anisotropic case, the Laplace domain fundamental solution Û rð Þ and the
corresponding traction T̂v can be expressed as [40].

Û rð Þ ¼
Û

s
rð Þ Û

f
rð Þ 0

P̂
s

� �T
rð Þ P̂

f
rð Þ 0

2
64

3
75, T̂y ¼

Te
y sany 0

�βnTy
β

sρ f n
T
y ∇ 0

2
64

3
75 with r≔ y� xj j

(30)

where the solid displacement fundamental solution Û
s
rð Þ may be expressed as

Û
s
rð Þ ¼ 1

4πr ρ� βρ f� � 1
k24 � k22
� �

k21 � k22
� � e�k1r � 2

k24 � k21
� �

k21 � k22
� � e�k2r þ Ik23 � 3

� �
e�k3r

" #

(31)

with

 j ¼
3∇yr∇T

y r� I

r2
þ k j

3∇yr∇T
y r� I

r
þ k2j∇yr∇T

y r (32)

which can be expressed as [36].

Û
s
rð Þ ¼ 1

4πμr λþ 2μð Þ λþ μð Þ∇yr∇T
y rþ I λþ 3μð Þ

h i
þ O r0

� �
(33)

The fundamental solution of solid displacement Û
s
rð Þ can be dismantled into

singular Û
s
s rð Þ and regular Û

s
r rð Þ parts as

Û
s
rð Þ ¼ Û

s
s rð Þ þ Û

s
r rð Þ with r≔ y� xj j

¼ 1
μ

IΔy � λþ μ

λþ 2μ
∇y∇T

y

� �
Δyx̂ rð Þ

� 1
μ

k21 þ k22
� �

Δy � k21k
2
2

� �
I � k21 þ k22 � k24 �

k21k
2
2

k23

 !
∇y∇T

y

" #
x̂ rð Þ

(34)

in which

x̂ rð Þ ¼ 1
4πr

e�k1r

k22 � k21
� �

k23 � k21
� �þ e�k2r

k22 � k21
� �

k22 � k23
� �þ e�k3r

k21 � k23
� �

k22 � k23
� �

" #

¼ � 1

k21 � k22
� �

k21 � k23
� �

k23 � k22
� �þO r2

� �
(35)

The remaining parts of Û rð Þ as in (30) can be described as [36].
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Û
f
rð Þ ¼ ρ f α� βð Þ∇yr

4πrβ λþ 2μð Þ k21 � k22
� � k1 þ 1

r

� �
e�k1r � k2 þ 1

r

� �
e�k2r

� �
¼ O r0

� �
(36)

P̂
s
rð Þ ¼ Û

f
rð Þ

s
¼ O r0

� �
(37)

P̂
f
rð Þ ¼ sρ f

4πrβ k21 � k22
� � k21 � k24

� �
e�k1r � k22 � k24

� �
e�k2r

� � ¼ sρ f

4πrβ
þ O r0

� �
(38)

On the basis of limiting process ~x∈Ω! x∈Γ on (28) we get

lim
~x∈Ω!x∈Γ

V̂t̂
g

� �
Ω
~xð Þ ¼ V̂x̂

g
� �

xð Þ≔
ð�

Γ

Û
T
y� xð Þ̂tg yð Þdsy (39)

According to limiting process ~x∈Ω! x∈Γ on (28) we obtain [42].

lim
~x∈Ω!x∈Γ

K̂û
g

� �
Ω
~xð Þ ¼ �I xð Þ þ C xð Þ½ �ûg xð Þ þ K̂û

g
� �

xð Þ (40)

where

C xð Þ ¼ lim
ε!0

ð�

y∈Ω: y�xj j¼ε

T̂yÛ
� �T

y� xð Þdsy (41)

and

K̂û
g

� �
xð Þ ¼ lim

ε!0

ð�

y�xj j≥ ε

T̂yÛ
� �T

y� xð Þûg yð Þdsy (42)

By using (39)-(42), we can write

C xð Þûg xð Þ ¼ V̂t̂
g

� �
xð Þ � K̂û

g
� �

xð Þ (43)

By applying the inverse Laplace transform, we obtain

C xð Þug x, tð Þ ¼ V ∗ tgð Þ x, tð Þ � Kugð Þ x, tð Þ (44)

where ∗ is the time convolution.
According to [40], the fundamental solution is

T̂yÛ
� �T ¼

T̂
e
y sany

�βnTy
β

sρ f
0

nTy ∇y

2
64

3
75

Û
s

Û
f

P̂
s

� �T
P̂

f

2
4

3
5

2
64

3
75

T

¼ T̂
s

T̂
f

Q̂
s

� �T
Q̂

f

2
4

3
5 (45)

On the basis of Stokes theorem, we obtain

ð�

Γ

∇y � a, ny
� �

dsy ¼ �
ð,

∂Γ

a, vð Þdγy ¼ �
ð,

ϕ

a, vð Þdγy ¼ 0 (46)
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which can be expressed as

ð�

Γ

ny � ∇y, a
� �

dsy ¼ 0 (47)

On the basis of [40], we get

ð�

Γ

My a
� �

dsy ¼ 0 (48)

in which My ¼ ∇y∇T
y

� �T
� ∇y∇T

y .

By applying (48) to a formula a ¼ vu we obtain [43].

ð�

Γ

My v
� �

udsy ¼ �
ð,

Γ

v My u
� �

dsy (49)

ð�

Γ

My v
� �Tudsy ¼ �

ð�

Γ

vT My u
� �

dsy (50)

Making use of (34) and (45), we can express T̂
s
as

T̂
s

� �T
¼ Te

y Û
s
sin g þ Û

s
reg

� �� �T
þ sαP̂

s
nTy ¼ Te

yÛ
s
sin g

� �T
þO r0

� �
(51)

On the basis of [40], we obtain

T̂
s

� �T
¼ λþ 2μð Þny∇T

y Û
s
sin g � μ ny � ∇y � Û

s
sin g

� �� �
þ 2μMyûssin g þO r0

� �
(52)

which may be expressed using (34) as

T̂
s

� �T
¼MyΔ2

yX̂ þ I nT∇y
� �

Δ2
yX̂ þ 2μ MyÛ

s
sin g

� �T
þ o r0
� �

(53)

By applying (29) (53), we obtain

k̂û
� �s

Ω
~xð Þ ¼

ð�
Γ

MyΔ2
yX̂

� �
ûþ I nT∇y

� �
Δ2

yX̂
� �

ûþ 2μ MyÛ
s
sin g

� �T
ûþ o r0

� �
û

� �
dsy

(54)

Based on [42], we have

K̂û
� �s

Ω ~xð Þ ¼
ð�

Γ

�Δ2
yX̂ Myû
� �þ I nT∇y

� �
Δ2

yX̂
� �

ûþ 2μÛ
s
s Myû
� �þ o r0

� �
û

h i
dsy (55)

In the in right-side of (55), we can write second term as follows

nT∇y
� �

Δ2
yx̂ rð Þ ¼ nT∇yr

4πr2
þO r0

� �
(56)
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in which

Cs xð Þ ¼ I xð Þ c xð Þ with c xð Þ ¼ ϕ xð Þ
4π

(57)

According to [40], we can write

lim
Ω∈ ~x!x∈Γ

K̂û
� �s

Ω
~xð Þ ¼ �I xð Þ �1þ c xð Þ½ �û xð Þ þ K̂û

� �s
xð Þ (58)

By augmenting Û
s
s to Û

s
, we obtain

k̂û
� �s

Ω
~xð Þ ¼

ð�

Γ

�Δ2
yx̂ Myû
� �þ I nT∇y

� �
Δ2

yx̂
� �

ûþ 2μÛ
s
Myû
� �þO r0

� �
ûdsy (59)

According to [41], we get

f ∗ gð Þ tð Þ ¼
ðt

0

f t� τð Þg τð Þdτ for t∈ 0,T½ � (60)

where

f ∗ gð Þ tnð Þ≈
Xn

k¼0
ωΔt
n�k f̂
� �

g tkð Þ (61)

On the basis of Lubich [44, 45], the integration weights ωn are calculated using
Cauchy’s integral formula as

ωΔt
n�k f̂
� �

≔
1
2πi

ð

zj j¼R

f̂
γ zð Þ
Δt

� �
z� nþ1ð Þdz (62)

Polar coordinate transformation z ¼ Re �iφ is used with the trapezoidal rule to
approximate the integral (62) as

ωΔt
n f̂
� �

≈
R�1

Lþ 1

XL
ℓ¼o

f̂ sℓð Þζℓn with ζ ¼ e
2πi
Lþ1 and sℓ ¼

γ Rζ�ℓ
� �
Δt

(63)

Substitution of Eq. (63) into Eq. (61), we get

f ∗ gð Þ tnð Þ≈
XN

k¼0

R� n�kð Þ

N þ 1

XN
ℓ¼0

f̂ sℓð Þζℓ n�kð Þg tkð Þ

≈
R�n

N þ 1

XN
ℓ¼0

f̂ sℓð Þĝ sℓð Þζℓn
(64)

with

ĝ sℓð Þ ¼
XN

k¼0
Rkg tkð Þζ�ℓk: (65)
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s
, we obtain

k̂û
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According to the procedure [43], the convolution operator (44) can be
expressed as

C xð Þug x, tð Þ ¼ v ∗ tgð Þ x, tð Þ � k ∗ ugð Þ x, tð Þ (66)

which may be written as

C xð Þûg x, sℓð Þ ¼ v̂̂tg
� �

x, sℓð Þ � k̂û
g� �

x, sℓð Þ, ℓ ¼ 0… … ::N (67)

Let the boundary Γ is discretized into Ne boundary elements τe as follows

Γ ≈Γh ¼ ⋃
Ne

e¼1
τe (68)

Now, we assume that we have

Sh k½ � ΓN,hð Þ≔ span φα
i k½ �

� �
i¼1, α≥ 1 (69)

Sh k½ � ΓD,hð Þ≔ span ψβ
i k½ �

n o

j¼1
, β≥0 (70)

where

ûg k½ � xð Þ≈ ûgh k½ � xð Þ ¼
X
i¼1

ûgh,i k½ �φα
i k½ � xð Þ∈ Sh k½ � ΓN,hð Þ (71)

t̂g k½ � xð Þ≈ t̂gh k½ � xð Þ ¼
X

j¼1
t̂gh,j k½ �ψβ

j k½ � xð Þ∈ Sh k½ � ΓD,hð Þ (72)

where k ¼ 1, 2, 3, 4 are the poro-elastic degrees of freedom, φα
i k½ � are  continu-

ous polynomial shape functions and ψβ
i k½ � are  piecewise discontinuous polynomial

shape functions.
Thus, from (67), we can write the following N þ 1 algebraic systems of

equations

V̂DD � K̂DN

V̂ND � Cþ K̂NN
� �

" #

ℓ

t̂gD,h

ûgN,h

" #

ℓ

¼ �V̂DN Cþ K̂DD
� �

�V̂NN K̂ND

" #

ℓ

ĝgN,h

ĝgD,h

" #

ℓ

ℓ ¼ 0…N

(73)

5. Numerical results and discussion

In the current study, a Krylov subspace iterative method is used for solving the
resulting linear systems. In order to reduce the number of iterations, a dual thresh-
old incomplete LU factorization technique (ILUT) which is one of the well-known
preconditioning techniques is implemented as a robust preconditioner for TFQMR
(Transpose-free quasi minimal residual) [46] to accelerate the convergence of the
solver TFQMR.

To illustrate the numerical calculations computed by the proposed technique, the
physical parameters for transversely isotropic soft tissue are given as follows [47]:
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The elasticity tensor

Cablg ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

2
666666666664

3
777777777775

(74)

in which

C11 ¼ E2v20 � EE0

1þ vð Þ 2Ev20 þ E0 v� 1ð Þ� � ,C12 ¼ � E2v20 þ EE0v
1þ vð Þ 2Ev20 þ E0 v� 1ð Þ� �

C13 ¼ � EE0v
2Ev20 þ E0 v� 1ð Þ ,C33 ¼ � E2

0 v� 1ð Þ
2Ev20 þ E0 v� 1ð Þ

C44 ¼ μ0, C66 ¼ 1
2

C11 � C12ð Þ

(75)

where

v ¼ 0:196, v0 ¼ 0:163, μ0 ¼ 20:98 GPa,E ¼ 68:34 GPa,E0 ¼ 51:35 GPa (76)

and therefore

k1 ¼ 108:39 GPa, k2 ¼ �21:70 GPa (77)

where E and E0 are the respectively, v and v0 are Poisson’s ratio in the isotropy
plane and in the fiber direction respectively, and μ0 is the shear moduli in any
direction within a plane perpendicular to isotropy plane.

Since for strongly anisotropic soft tissue both bulk moduli are positive, we used
the following physical parameters for anisotropic soft tissue [48].

v ¼ 0:95, v0 ¼ 0:49, μ0 ¼ 20:98 GPa,E ¼ 22 kPa,E0 ¼ 447 kPa (78)

and therefore

k1 ¼ 1243 kPa, k2 ¼ 442 kPa (79)

and other constants considered in the calculations are as follows.

ρs ¼ 1600 kg=m3, ρF ¼ 1113 kg=m3, p ¼ 25 MPap ¼ 25MPa,

ϕ ¼ 0:15 and Q=R ¼ 0:65. (80)

The domain boundary of the current problem has been discretized into 21
boundary elements and 42 internal points as depicted in Figure 2. The computation
was done using Matlab R2018a on a MacBook Pro with 2.9GHz quad-core Intel Core
i7 processor and 16GB RAM.

Figure 3 shows the variation of the temperature T along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the
fractional order parameter has a significant influence on the temperature.
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k1 ¼ 108:39 GPa, k2 ¼ �21:70 GPa (77)

where E and E0 are the respectively, v and v0 are Poisson’s ratio in the isotropy
plane and in the fiber direction respectively, and μ0 is the shear moduli in any
direction within a plane perpendicular to isotropy plane.

Since for strongly anisotropic soft tissue both bulk moduli are positive, we used
the following physical parameters for anisotropic soft tissue [48].

v ¼ 0:95, v0 ¼ 0:49, μ0 ¼ 20:98 GPa,E ¼ 22 kPa,E0 ¼ 447 kPa (78)

and therefore

k1 ¼ 1243 kPa, k2 ¼ 442 kPa (79)

and other constants considered in the calculations are as follows.

ρs ¼ 1600 kg=m3, ρF ¼ 1113 kg=m3, p ¼ 25 MPap ¼ 25MPa,

ϕ ¼ 0:15 and Q=R ¼ 0:65. (80)

The domain boundary of the current problem has been discretized into 21
boundary elements and 42 internal points as depicted in Figure 2. The computation
was done using Matlab R2018a on a MacBook Pro with 2.9GHz quad-core Intel Core
i7 processor and 16GB RAM.

Figure 3 shows the variation of the temperature T along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the
fractional order parameter has a significant influence on the temperature.

251

Boundary Element Modeling and Simulation Algorithm for Fractional Bio-Thermomechanical…
DOI: http://dx.doi.org/10.5772/intechopen.96268



Figure 4 illustrates the variation of the displacement u1 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the
fractional order parameter has a significant influence on the displacement u1.

Figure 5 shows the variation of the displacement u2 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the frac-
tional order parameter has a significant influence on the displacement u2.

Figure 2.
Boundary element model of the current problem.

Figure 3.
Variation of the temperature T along x‐axis.

252

Recent Developments in the Solution of Nonlinear Differential Equations

Figure 6 shows the variation of the fluid pressure p along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the frac-
tional order parameter has a significant influence on the fluid pressure p.

Figure 7 shows the variation of the bio-thermal stress σ11 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the fractional
order parameter has an important influence on the bio-thermal stress σ11.

Since there are no findings available for the problem under consideration.
Therefore, some literatures may be regarded as special cases from our general
problem. In the special case under consideration, the results of the bio-thermal

Figure 4.
Variation of the displacement u1 along x‐axis.

Figure 5.
Variation of the displacement u2 along x‐axis.

253

Boundary Element Modeling and Simulation Algorithm for Fractional Bio-Thermomechanical…
DOI: http://dx.doi.org/10.5772/intechopen.96268



Figure 4 illustrates the variation of the displacement u1 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the
fractional order parameter has a significant influence on the displacement u1.

Figure 5 shows the variation of the displacement u2 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the frac-
tional order parameter has a significant influence on the displacement u2.

Figure 2.
Boundary element model of the current problem.

Figure 3.
Variation of the temperature T along x‐axis.

252

Recent Developments in the Solution of Nonlinear Differential Equations

Figure 6 shows the variation of the fluid pressure p along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the frac-
tional order parameter has a significant influence on the fluid pressure p.

Figure 7 shows the variation of the bio-thermal stress σ11 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the fractional
order parameter has an important influence on the bio-thermal stress σ11.

Since there are no findings available for the problem under consideration.
Therefore, some literatures may be regarded as special cases from our general
problem. In the special case under consideration, the results of the bio-thermal

Figure 4.
Variation of the displacement u1 along x‐axis.

Figure 5.
Variation of the displacement u2 along x‐axis.

253

Boundary Element Modeling and Simulation Algorithm for Fractional Bio-Thermomechanical…
DOI: http://dx.doi.org/10.5772/intechopen.96268



stress caused by coupling between the temperature and displacement fields are
plotted in Figure 8 to illustrate the variation of the bio-thermal stress σ11 along
x‐axis for BEM, FDM and FEM, where the boundary of the special case problem has
been discretized into 21, 42 and 84 boundary elements (bes). The validity, accuracy
and efficiency of our proposed technique have been confirmed by a graphical
comparison of the three different boundary elements (21, 42 and 84) with those
obtained using the FDM results of Shen and Zhang [49] and FEM results of Torvi
and Dale [50] for the special case under consideration, the increase of BEM bound-
ary elements leads to improve the accuracy and efficiency of the BEM, also, it can

Figure 6.
Variation of the fluid pressure p along x‐axis.

Figure 7.
Variation of the bio-thermal stress σ11 along x‐axis.
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be noted that the BEM findings are in excellent agreement with the FDM and FEM
results, we refer the interested reader to recent work [51–55] for understanding the
BEM methodology.

6. Conclusion

1.A novel boundary element model based on the TWMBT and Biot’s theory was
established for describing the bio-thermomechanical interactions in
anisotropic soft tissues.

2.The bio-heat transfer equation has been solved using the dual reciprocity
boundary element method (DRBEM) to obtain the temperature distribution.

3.The mechanical equation has been solved using the convolution quadrature
boundary element method (CQBEM) to obtain the displacement and fluid
pressure for different temperature distributions at each time step.

4.Due to the advantages of DRBEM and CQBEM such as dealing with more
complex shapes of soft tissues and not needing the discretization of the
internal domain, also, they have low RAM and CPU usage. Therefore, they are
a versatile and powerful methods for modeling of fractional bio-
thermomechanical problems in anisotropic soft tissues.

5.The linear systems resulting from BEM have been solved by TFQMR solver
with the ILUT preconditioner which reduces the number of iterations and the
total CPU time.

6.Numerical findings are presented graphically to show the effect of fractional
order parameter on the problem variables temperature, displacements and
fluid pressure.

Figure 8.
Variation of the bio-thermal stress σ11 along x‐axis for BEM, FDM and FEM.
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7.Numerical findings confirm the validity, efficiency and accuracy of the
proposed BEM technique.

8.The proposed technique can be applied to a wide variety of fractional
bio-thermomechanical problems in anisotropic soft tissues.

9.For open boundary problems of soft tissues, such as the considered problem,
the BEM users need only to deal with real geometry boundaries. But for these
problems, FDM and FEM use artificial boundaries, which are far away from
the real soft tissues. Also, these artificial boundaries are also becoming a big
challenge for FDM users and FEM users. So, BEM becomes the best method
for the considered problem.

10.The presence of fractional order parameter in the current study plays a
significant role in all the physical quantities during modeling and simulation
in medicine and healthcare.

11.From the research that has been performed, it is possible to conclude that the
proposed BEM is an easier, effective, predictable, and stable technique in the
treatment of the bio-thermomechanical soft tissue models.

12.It can be concluded from this chapter that Biot’s equations for the dynamic
response of poroelastic media can be combined with the bio-heat transfer
models to describe the fractional bio-thermomechanical interactions of
anisotropic soft tissues.

13.Current numerical results for our complex and general problem may provide
interesting information for researchers and scientists in bioengineering, heat
transfer, mechanics, neurophysiology, biology and clinicians.

Nomenclature

A ¼ ϕ 1þQ=Rð Þ Biot’s coefficient
Be
~x linear elastostatics operator

Γ considered boundary
ΓD Dirichlet boundary
ΓN Neumann boundary
C specific heat of soft tissue
 shape factor
Cb specific heat of the blood
Cp jkl specific heat of the blood
F bulk body forces
ĝD Dirichlet datum
ĝN Neumann datum
K dynamic permeability
K thermal conductivity of soft tissue
m iterative parameter
p pore pressure
P0 τð Þ heating power
Q,R solid–fluid coupling parameters
Qmet metabolic heat source
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Qext external heat source
S0 scattering coefficient
T soft tissue temperature

T
^

b
arterial blood temperature

Te
x traction derivative

u solid displacement
u f fluid displacement
V ¼ V f þ Vs bulk volume

V f fluid volume
Vs solid volume
Wb blood perfusion rate
B stress-temperature coefficients
∈ linear strain tensor
ζ fluid volume variation
ρ ¼ ρs 1� ϕð Þ þ ϕρ f bulk density
ρs ¼ ϕρ f mass density of soft tissue
ρ f blood density
σ total stress tensor
τ time
τq phase lag for heat flux
τT phase lag for temperature gradient
φα
i k½ � continuous polynomial shape functions

ϕ ¼ V f

V
porosity

ψβ
j k½ � discontinuous polynomial shape functions

Ω considered region
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Chapter 16

Solving Second-Order Differential
Equations by Decomposition
Fritz Schwarz

Abstract

The subject of this article are linear and quasilinear differential equations of
second order that may be decomposed into a first-order component with
guaranteed solution procedure for obtaining closed-form solutions. These are
homogeneous or inhomogeneous linear components, special Riccati components,
Bernoulli, Clairaut or d’Alembert components. Procedures are described how they
may be determined and how solutions of the originally given second order equation
may be obtained from them. This makes it possible to solve new classes of differ-
ential equations and opens up a new area of research. Applying decomposition to
linear inhomogeneous equations a simple procedure for determining a special solu-
tion follows. It is not based on the method of variation of constants of Lagrange, and
consequently does not require the knowledge of a fundamental system. Algorithms
based on these results are implemented in the computer algebra system ALLTYPES
which is available on the website www.alltypes.de.

Keywords: ordinary differential equations, decomposition, exact solutions,
computer algebra

1. Introduction

The history of differential equations begins shortly after the establishment of the
analysis by Newton and Leibniz in the 17th century. A brief overview of its first
hundred years can be found in Appendix A of Ince’s book [1]. These early investi-
gations were mainly limited to first-order equations, associated with the names
Riccati, Bernoulli and Euler. Starting in the early 18th century special linear
equations of higher order were also investigated.

A more systematic search for solution methods was initiated by the results of
Galois for solving algebraic equations in the early 19th century. Inspired by these
results, Picard and Pessiot in Paris founded a solution theory for linear differential
equations, known as Picard-Vessiot theory or differential Galois theory. A good
introduction into their work and its extensions by Loewy may be found in the books
[2, 3]. Completely independent of these activities Sophus Lie in Leipzig founded the
so-called symmetry analysis for solving nonlinear differential Equations [4, 5]. Its
main weaknesses are that most differential equations have no symmetries and
therefore it cannot be applied. Furthermore, there are many differential equations
with fairly simple closed form solutions that have no symmetries. That was essen-
tially the status in the early twentieth century, which did not fundamentally change
until its end.
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In this situation, a new solution method based on decompositions was proposed
[6]. Essentially a decomposition means to find a component of lower order such that
the original equation may be represented as a differential polynomial in terms of
this component. Its existence is based on the following observation. Let
F x, y, y0, y00ð Þ ¼ 0 be a second-order differential equation for a function y depending
on a variable x, and ω x, y,C1,C2ð Þ ¼ 0 its general solution depending on two
undetermined constants. It describes a two-parameter family of curves in the
x� y-plane. If C1 and C2 are constrained by a relation φ C1,C2ð Þ ¼ 0 the resulting
expression for ω contains effectively a single parameter C. It describes a family of
curves that may obey a first-order differential equation called a component. Its
solutions are also solutions of the originally given second-order equation.

Every second-order equation has an infinite number of first-order components
corresponding to the choice of φ C1,C2ð Þ. Any such component has the form

F x, y, y0, y00ð Þ ¼ f x, y, z, z0,Cð Þ z � g x, y, y0,Cð Þð Þ: (1)

Its meaningmay be described as follows. If z � g x, y, y0,Cð Þ is substituted into
f x, y, z, z0,Cð Þ the second-order equation on the left-hand side is obtained. The constant
C does not necessarily occur in f and g, the same is true for y and its occurence in f .

Solving a second-order equation by decomposition involves two steps. First a
decomposition of a certain type has to be found. Then the first order equation has to
be solved in order to get the solutions of the original second-order equation. Of
particular interest are those components the solution of which can always be deter-
mined. These are linear homogeneous and inhomogeneous components, special
Riccati components, Bernoulli, Clairaut or d’Alembert components.

In this article equations of second order for an unknown function y depending
on xwith leading term y00 or y0y00 are considered. They are assumed to be linear in y00,
polynomial in the derivatives y0, and rational in y and x. Equations of this kind are
fairly common in applications, therefore many special examples of them are given
in the collections by Kamke [7], Murphy [8], Polyanin [9], Sachdev [10] and
Zwillinger [11]. Many interesting applications of such differential equations can be
found in the textbooks by MacCluer et al. [12] and Swift and Wirkus [13].

In the following Section 2 equations with leading term y00 are considered, and
possible linear or Bernoulli components are determined. For linear inhomogeneous
equations it is shown how decomposition leads to a new procedure for determining
a special solution without first having to know a fundamental system. Equations
with leading term y0y00 and possible components of Clairaut or d’Alembert type are
the subject of Section 3. Most of the examples do not have Lie symmetries, so
decomposition is the only way to solve them. The last Section 4 discusses various
possible generalizations of the decomposition method, on the one hand more gen-
eral equations to be solved, on the other hand more general first-order components.

2. Equations with leading term y00

Equations that are linear in the highest derivative y00, but may contain powers of
y0 with coefficients that are rational in y and x are considered in this section.
Moreover it is assumed that they are primitive, i.e. the leading coefficient is unity.
Their general form is

y00 þ
XK

k¼0
ck x, yð Þy0k ¼ 0with ck x, yð Þ∈ x, yð Þ, K ∈: (2)
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Equations of this form appear in numerous applications, as can be seen in the
collections of solved examples quoted above. The following proposition has been
proved in [6], it is the basis for generating quasilinear first-order components; as
usual y0 � dy

dx and D � d
dx.

Proposition 1 Let a second-order quasilinear Eq. (2) be given. A first-order
component z � y0 þ r x, yð Þ exists if r x, yð Þ satisfies

rx � rry �
XK

k¼0
�1ð Þkck x, yð Þrk ¼ 0: (3)

Then the original second-order equation can be decomposed as

z0 � ryzþ
XK

k¼1
ck x, yð Þ z� rð Þk � �1ð Þkrk

� � !
z � y0 þ rð Þ ¼ 0: (4)

The proof may be found in Section 2 of [6]. As a first application linear first-
order components of the form z � y0 þ a xð Þyþ b xð Þ are searched for, i.e. with the
above notation r x, yð Þ ¼ a xð Þyþ b xð Þ; its coefficients a and b are solutions of the so-
called determining system, they may be in any field extension of  xð Þ. The following
proposition describes how they may be obtained.

Proposition 2. Let a second-order quasilinear Eq. (2) be given. In order that it has
a linear first-order component z � y0 þ a xð Þyþ b xð Þ the coefficients a xð Þ and b xð Þ
have to satisfy

a0 � a2
� �

yþ b0 � ab�
XK

k¼0
�1ð Þkck x, yð Þ ayþ bð Þk ¼ 0: (5)

Then (2) may be written as follows

z0 � azþ
XK

k¼1
ck x, yð Þ z� ay� bð Þk � �1ð Þk ayþ bð Þk

� � !
z � y0 þ ayþ bð Þ ¼ 0:

(6)

The coefficients a and b are solutions of a first-order algebro-differential system.
Its general form is

a0 � a2 þ p a, b, xð Þ ¼ 0,   b0 � abþ q a, b, xð Þ ¼ 0,   ri a, b, xð Þ ¼ 0 (7)

for i ¼ 1, 2… ; p a, b, xð Þ, q a, b, xð Þ and ri a, b, xð Þ are polynomials in a and b, and
rational in x; their maximal degree in a and b is K. The ri a, b, xð Þ generate an ideal
Iab ∈ xð Þ a, b½ �.

Proof. Substituting r ¼ a xð Þyþ b xð Þ into (3) yields (5). At this point y is consid-
ered as an undetermined function. Therefore the left-hand side of (5) is represented
as a partial fraction in y. Equating its coefficients to zero yields sufficient conditions
in order that (5) vanishes and z is a component of (2). The first order ode’s for a and
b in the determining system (7) originate from the coefficients of first and zeroth
degree in y of (5). The polynomials in a and b, i.e. p a, b, xð Þ, q a, b, xð Þ and ri a, b, xð Þ
in (7) originate from the powers of ayþ b and the rational coefficients ck x, yð Þ in
(5), i.e. exclusively from the nonlinearities of (2). Substitution of y0 ¼ z� ay� b
into (4) yields (6). As a result, the sums at the left-hand side of (6) are a polynomial
in z the coefficients of which may depend explicitly on y.
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It is important to represent the left side of (5) as a partial fraction in y, only in
this way the structure of the system (7) is assured.

2.1 Linear equations

If K ¼ 1, c1 x, yð Þ ¼ c1 xð Þ and c0 x, yð Þ ¼ c0 xð Þyþ cr xð Þ the above proposition
contains the decomposition of linear equations as a special case as shown next.

Corollary 1 Let K ¼ 1, c1 x, yð Þ ¼ c1 xð Þ, c0 x, yð Þ ¼ c0 xð Þyþ cr xð Þ and the linear
inhomogeneous second-order equation

y00 þ c1 xð Þy0 þ c0 xð Þyþ cr xð Þ ¼ 0 (8)

be given. A first-order component z � y0 þ a xð Þyþ b xð Þ exists if a and b are
solutions of the determining system

a0 � a2 þ c1 xð Þa� c0 xð Þ ¼ 0  and  b0 þ c1 xð Þ � að Þb� cr xð Þ ¼ 0: (9)

If it is satisfied Eq. (8) may be written as

z0 þ c1 � að Þzð Þ z � y0 þ ayþ bð Þ ¼ 0: (10)

Proof. The system (9) follows from (5) for the given special values of K and the
coefficients ck. Then reduction of (8) w.r.t. z yields (10). □

It is remarkable that in the case of linear equations the algebraic conditions
ri a, b, xð Þ are missing, i.e. they are the most significant contributions originating
from possible nonlinearities in (2).

For linear homogeneous ode’s, i.e. for cr ¼ 0 and b ¼ 0, Loewy decompositions
have been shown to be an effective method for determining a fundamental
system [3]. It is based on a factorization of the linear differential operator
corresponding to the given equation over its base field, i.e. restricting the coeffi-
cients of the factors to the field of the coefficients of the given second-order
equation. This restriction does not apply in the above corollary, the coefficients may
be in any field extension.

For linear inhomogeneous equations in addition to a fundamental system a
special solution has to be found. The above corollary avoids the usual method of
variation of constants that somehow appears like an ad hoc method. The method
described in the above corollary requires only a special solution of a Riccati
equation and subsequently solving a linear first-order equation in order to obtain
the general solution of the second-order Eq. (8). The following example applies this
procedure.

Example 1 The equation

y00 � y0 � 1
x
y ¼ xþ 1ð Þex (11)

is Equation 2.109 in Kamke’s collection [7]. Here c1 ¼ �1, c0 ¼ � 1
x and

cr ¼ � xþ 1ð Þex. The Riccati equation a0 � a2 � aþ 1
x ¼ 0 has the special solution

a ¼ �1� 1
x. From b0 þ 1

x b ¼ xþ 1ð Þex follows b ¼ C
x þ 1

x x2 � xþ 1ð Þex and leads to
the component

z ¼ y0 � 1þ 1
x

� �
yþ 1

x
Cþ x2 � xþ 1

� �
ex

� �
:
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Integration yields the general solution

y ¼ C1xex þ C2xex
ð
exp �xð Þ dx

x2
þ x2 � x log xð Þ � 1
� �

ex:

This is also the general solution of Eq. (11).
It may occur that a fundamental system of a second-order equation is rather

complicated. Usually this is the case when the Riccati equation for a in (9) does not
have a special rational solution and the usual algorithms for solving it do not apply,
but one of the special cases of Section 4.9 (a), ... (e) in [7]. Then it may be
advantageous to assume that all integration constants in (9) are zero and only a
special solution is determined as shown next.

Example 2 Consider the equation

y00 � 1
2x

y0 þ xyþ 1 ¼ 0: (12)

Here c1 ¼ � 1
2x, c0 ¼ x and cr ¼ 1. The Riccati equation a0 � a2 � 1

2x a� x ¼ 0 has
the special solution a ¼ ffiffiffi

x
p

tan 2
3 x

ffiffiffi
x
p� �

, it yields

b0 � 1
2x
þ ffiffiffi

x
p

tan
2
3

ffiffiffi
x
p� �� �

b� 1 ¼ 0:

Its special solution leads to the component

z � y0 þ ffiffiffi
x
p

tan
2
3
x
ffiffiffi
x
p� �

yþ
ffiffiffi
x
p

cos 2
3 x

ffiffiffi
x
p� �

ð
cos

2
3
x
ffiffiffi
x
p� �

dxffiffiffi
x
p :

One more integration yields a special solution of (12).

y0 ¼ � cos
2
3
x
ffiffiffi
x
p� �ð ffiffiffi

x
p

cos 2
3 x

ffiffiffi
x
p� �2

ð
cos

2
3
x
ffiffiffi
x
p� �

dxffiffiffi
x
p dx: □

The application of Corollary 1 is particularly convenient if the coefficients c1 and
c0 are constant and the solutions of the algebraic equation a2 � c1aþ c0 ¼ 0 are also
solutions of the Riccati equation for a. The following example is of this type.

Example 3 The equation y00 þ 4y0 þ 4y ¼ cosh xð Þ has coefficients c1 ¼ c0 ¼ 4 and
cr ¼ � cosh xð Þ. The solution of a� 2ð Þ2 ¼ 0 is a ¼ 2. It leads to b0 þ 2b ¼ cosh xð Þ
and the component

z ¼ y0 þ 2yþ C exp �2xð Þ þ 1
3
sinh xð Þ � 2

3
sinh xð Þ:

Its general solution

y ¼ C1 exp �2xð Þ þ C2x exp �2xð Þ þ 5
9
cosh xð Þ � 4

9
sinh xð Þ

is also the general solution of the given second-order equation. □

2.2 Quasilinear equations

The most interesting applications of Proposition 2 relate to nonlinear equations,
of course. They differ from the linear case mainly by the occurence of the ideal Iab
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have been shown to be an effective method for determining a fundamental
system [3]. It is based on a factorization of the linear differential operator
corresponding to the given equation over its base field, i.e. restricting the coeffi-
cients of the factors to the field of the coefficients of the given second-order
equation. This restriction does not apply in the above corollary, the coefficients may
be in any field extension.
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special solution has to be found. The above corollary avoids the usual method of
variation of constants that somehow appears like an ad hoc method. The method
described in the above corollary requires only a special solution of a Riccati
equation and subsequently solving a linear first-order equation in order to obtain
the general solution of the second-order Eq. (8). The following example applies this
procedure.

Example 1 The equation
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is Equation 2.109 in Kamke’s collection [7]. Here c1 ¼ �1, c0 ¼ � 1
x and

cr ¼ � xþ 1ð Þex. The Riccati equation a0 � a2 � aþ 1
x ¼ 0 has the special solution

a ¼ �1� 1
x. From b0 þ 1

x b ¼ xþ 1ð Þex follows b ¼ C
x þ 1

x x2 � xþ 1ð Þex and leads to
the component

z ¼ y0 � 1þ 1
x

� �
yþ 1

x
Cþ x2 � xþ 1

� �
ex

� �
:

266

Recent Developments in the Solution of Nonlinear Differential Equations

Integration yields the general solution
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ð
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ex:

This is also the general solution of Eq. (11).
It may occur that a fundamental system of a second-order equation is rather

complicated. Usually this is the case when the Riccati equation for a in (9) does not
have a special rational solution and the usual algorithms for solving it do not apply,
but one of the special cases of Section 4.9 (a), ... (e) in [7]. Then it may be
advantageous to assume that all integration constants in (9) are zero and only a
special solution is determined as shown next.
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The application of Corollary 1 is particularly convenient if the coefficients c1 and
c0 are constant and the solutions of the algebraic equation a2 � c1aþ c0 ¼ 0 are also
solutions of the Riccati equation for a. The following example is of this type.

Example 3 The equation y00 þ 4y0 þ 4y ¼ cosh xð Þ has coefficients c1 ¼ c0 ¼ 4 and
cr ¼ � cosh xð Þ. The solution of a� 2ð Þ2 ¼ 0 is a ¼ 2. It leads to b0 þ 2b ¼ cosh xð Þ
and the component

z ¼ y0 þ 2yþ C exp �2xð Þ þ 1
3
sinh xð Þ � 2

3
sinh xð Þ:

Its general solution

y ¼ C1 exp �2xð Þ þ C2x exp �2xð Þ þ 5
9
cosh xð Þ � 4

9
sinh xð Þ

is also the general solution of the given second-order equation. □

2.2 Quasilinear equations

The most interesting applications of Proposition 2 relate to nonlinear equations,
of course. They differ from the linear case mainly by the occurence of the ideal Iab
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in (7), which defines algebraic conditions ri a, b, xð Þ ¼ 0 for the coefficients of a
possible component. Furthermore, the first-order ode’s for a and b are modified due
to the nonlinearity by additional terms. The structure of the determining system
(7) suggests the following solution procedure.

At first the algebraic system ri a, b, xð Þ ¼ 0 is established and a Gröbner basis for
the ideal Iab is generated. Usually it may be determined rather efficiently.

If it is inconsistent a linear component does not exist in any field extension. This
applies to a generic nonlinear equation of the form (2).

If the ideal Iab is finite-dimensional each solution that satisfies the two first-
order ode’s yields a component that may be integrated and leads to a one-parameter
family of solutions of the given second-order equation.

Finally, the algebraic equations may generate a relation between a and b;
substitution into the first-order differential equations may lead to one of the above
cases, or to a solution depending on a parameter. In the latter case a one-parameter
family of linear components exists, integrating the corresponding equation yields
the general solution of the given second-order equation containing two
undetermined constants.

Subsequently this proceeding will be illustrated by several examples. They show
that all of the alternatives mentioned actually exist.

Example 4 Consider the equation

y00 þ xy02 þ x� 1ð Þyy0 þ x
xþ 1

y0 � y2 � 1
xþ 1

y ¼ 0:

Its coefficients c2 ¼ x, c1 ¼ x� 1ð Þyþ x
xþ1 and c0 ¼ �y2 � y

xþ1 result in the system

a0 � a2 � 2abxþ ax
xþ 1

þ b x� 1ð Þ ¼ 0,   b0 � ab� b2xþ bx
xþ 1

þ 1
xþ 1

¼ 0,

a2 � x� 1
x

a� 1
x
¼ 0:

The single algebraic equation has the solutions a ¼ � 1
x and a ¼ 1 and the

decompositions

z0 þ xz2 þ x3yþ 2x2yþ x2 þ xyþ xþ 1
x2 þ x

z
� �

z � y0 � 1
x
y

� �
¼ 0,

z0 þ xz2 � x2yþ 2xyþ yþ 1
xþ 1

z
� �

z � y0 þ yð Þ ¼ 0

follow. Integration of the two components yields the two one-parameter families
y ¼ C exp �xð Þ and y ¼ Cx of solution curves. It is not obvious how the general
solution of the second-order equation involving two constants is supported by them.□

The most interesting, of course, are equations that allow a one-parameter family
of linear components and whose integration gives the general solution. The next
example is of this type.

Example 5 Consider the equation

yy00 � y02 þ 2
3
y0 � 1

x
y2 ¼ 0 (13)

with K ¼ 2 and the coefficients c2 ¼ � 1
y, c1 ¼ 2

3y and c0 ¼ � y
x; they generate the

determining system
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a0 þ 1
x
¼ 0,   b0 þ abþ 2

3
a ¼ 0,   b2 þ 2

3
b ¼ 0

with solution a ¼ � log xð Þ þ C, b ¼ � 2
3 from which the decomposition

z0 � 1
y
z2 � 1

y
log xð Þy� Cyþ 2

3

� �
z

� �
z � y0 � log xð Þ � Cð Þy� 2

3

� �
¼ 0

is obtained. Integration of the first-order component leads to the general solution

y ¼ 2
3
xx exp C1xð Þ

ð
exp �C1xð Þ dx

xx
þ C2

� �

of Eq. (13), it does not have a Lie symmetry.
Here the question arises how exceptional are the equations that have a one-

parameter family of linear components of the first order and thus have a general
solution in closed form. The following example is a generalization of the previous
one. A family of second order equations is constructed whose general solution can
be given explicitly.

Example 6 The equation

yy00 � y02 þ p xð Þy0 þ q xð Þy2 ¼ 0 (14)

with undetermined coefficients p xð Þ and q xð Þ generalizes the preceding
example. Here c2 ¼ 1

y, c1 ¼ p xð Þ
y and c0 ¼ q xð Þy. A first-order linear component

z � y0 þ ayþ b exists if a and b are solutions of the system

a0 � q xð Þ ¼ 0,   b0 þ abþ p xð Þa ¼ 0,   b bþ p xð Þð Þ ¼ 0:

The result may be described as follows. If p xð Þ ¼ k is a constant, and q xð Þ is an
undetermined function then a ¼ Ð q xð Þdxþ C, b ¼ �k and the decomposition

y00 � 1
y
y02 þ k

y
y0 þ q xð Þy

¼ z0 � 1
y
z2 þ

ð
q xð Þdxþ C

� �
z� k

y
z

� �
z � y0 þ

ð
q xð Þdxþ C

� �
y� k

� �
¼ 0

exists. Defining Q x,C1ð Þ � Ð q xð Þdxþ C1 integration of the first-order
component yields

y ¼ exp �
ð
Q x,C1ð Þdx

� �
k
ð
exp

ð
Q x,C1ð ÞdxÞ þ C2

� �
:

�

This is the general solution of Eq. (14). □
It turns out that a behavior similar to that in the previous example often applies,

i.e. first-order linear components often exist not only for isolated equations, but for
entire families, which are parameterized by indefinite functions. This explains the
existence of families of solvable equations as those given in the collections
mentioned above.

Bernoulli equations are another class of first-order ode’s with guaranteed closed
form general solutions. In addition to a term linear in y they contain a nonlinearity yn

where n is an integer; n ¼ 1 or n ¼ 0 correspond to linear homogeneous or linear
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in (7), which defines algebraic conditions ri a, b, xð Þ ¼ 0 for the coefficients of a
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the ideal Iab is generated. Usually it may be determined rather efficiently.
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If the ideal Iab is finite-dimensional each solution that satisfies the two first-
order ode’s yields a component that may be integrated and leads to a one-parameter
family of solutions of the given second-order equation.

Finally, the algebraic equations may generate a relation between a and b;
substitution into the first-order differential equations may lead to one of the above
cases, or to a solution depending on a parameter. In the latter case a one-parameter
family of linear components exists, integrating the corresponding equation yields
the general solution of the given second-order equation containing two
undetermined constants.

Subsequently this proceeding will be illustrated by several examples. They show
that all of the alternatives mentioned actually exist.
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follow. Integration of the two components yields the two one-parameter families
y ¼ C exp �xð Þ and y ¼ Cx of solution curves. It is not obvious how the general
solution of the second-order equation involving two constants is supported by them.□

The most interesting, of course, are equations that allow a one-parameter family
of linear components and whose integration gives the general solution. The next
example is of this type.
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3
y0 � 1

x
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with K ¼ 2 and the coefficients c2 ¼ � 1
y, c1 ¼ 2
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a0 þ 1
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¼ 0
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of Eq. (13), it does not have a Lie symmetry.
Here the question arises how exceptional are the equations that have a one-

parameter family of linear components of the first order and thus have a general
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¼ 0
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component yields

y ¼ exp �
ð
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�

This is the general solution of Eq. (14). □
It turns out that a behavior similar to that in the previous example often applies,

i.e. first-order linear components often exist not only for isolated equations, but for
entire families, which are parameterized by indefinite functions. This explains the
existence of families of solvable equations as those given in the collections
mentioned above.

Bernoulli equations are another class of first-order ode’s with guaranteed closed
form general solutions. In addition to a term linear in y they contain a nonlinearity yn

where n is an integer; n ¼ 1 or n ¼ 0 correspond to linear homogeneous or linear
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inhomogeneous equations, respectively. Similar as for linear components, a special
Bernoulli component guarantees a one-parameter set of solution curves of a given
second-order equation, and a one-parameter family of such components guarantees the
general solution of the latter. Themain result of this section is the following proposition.

Proposition 3 Let a second-order quasilinear Eq. (2) be given. In order that it has
a first-order Bernoulli component z � y0 þ a xð Þyn þ b xð Þy, n∈, the coefficients a
and b have to satisfy

a0 � nþ 1ð Þabð Þyn þ b0 � b2
� �

y� na2y2n�1 �
XK

k¼0
�1ð Þkck x, yð Þ ayn þ byð Þk ¼ 0:

(15)

Then (2) may be written as follows

z0 � nayn�1 þ b
� �

zþ
XK

k¼1
z� ayn � byð Þk þ �1ð Þkþ1 ayn þ byð Þk

� � !

z � y0 þ ayn þ byð Þ ¼ 0:

(16)

The coefficients a and b may be obtained from a first-order algebro-differential
system; its general form is

a0 � nþ 1ð Þabþ p a, b, xð Þ ¼ 0, b0 � b2 þ q a, b, xð Þ ¼ 0, ri a, b, xð Þ ¼ 0; (17)

p a, b, xð Þ, q a, b, xð Þ and ri a, b, xð Þ are polynomials in a and b, and rational in x;
the maximal degree in a and b is K, they generate an ideal Iab in the ring  xð Þ a, b½ �.

Proof. Substituting r ¼ a xð Þyn þ b xð Þy into (3) yields condition (15).
Representing its left-hand side as partial fraction in the variable y, the coefficients of
the various terms yield sufficient conditions for its vanishing. They form the
algebro-differential system (17). The first order ode’s for a and b originate from the
coefficients of nth and first degree in y, respectively; p a, b, xð Þ, q a, b, xð Þ and
ri a, b, xð Þ originate from the coefficients ck x, yð Þ and the powers of ayn þ by.

Substitution of y0 ¼ z� ayn � by into (4) yields (16). As a result, the sums at the
left-hand side of (16) are a polynomial in z and z0 the coefficients of which may
depend explicitly on y. □

The structure of the system (17) is similar as for linear components considered
above, and consequently also the proceeding for its solution. The following
examples applies the above proposition.

Example 7 The equation

yy00 � y02 þ 2y3y0 þ xy2 ¼ 0 (18)

with K ¼ 2 has coefficients c2 ¼ � 1
y, c1 ¼ 2y2 and c0 ¼ xy. For generic n the

condition

a0 � n� 1ð Þabð Þyn þ b0 � x
� �

y� n� 1ð Þa2y2n�1 þ 2aynþ2 þ 2by3 ¼ 0 (19)

follows. The two equations b0 � x ¼ 0 and b ¼ 0 originating from the coeffi-
cients of y and y3, respectively, are inconsistent. In order for a Bernoulli component
to exist, this inconsistency must be compensated by other coefficients for a suitable
choice of n. To this end either n ¼ 1 or n ¼ 3 is required. The former leads to the
inconsistency x ¼ 0, whereas the latter yields
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a0 � 2abþ 2b ¼ 0, b0 � x ¼ 0, a2 � a ¼ 0:

This system has the solution a ¼ 1, b ¼ 1
2 x

2 þ C from which the decomposition

z0 � 1
y
z2 þ y2 þ 1

2
x2 þ C

� �
z

� �
z � y0 þ y3 þ 1

2
x2 þ C

� �
y

� �
¼ 0

follows. Integrating the right component yields the general solution

y ¼ 1ffiffiffiffiffiffiffi
2ð Þp

exp C1xþ 1
6 x

3
� � Ð

exp �2C1x� 1
3 x

3
� �

dxþ 1
2 C2

� �1=2

of Eq. (18). It does not have a Lie symmetry. □
The next example deals with a problem in hydrodynamics. The boundary layer

at a circular cylinder immersed in the uniform flow of liquid is considered [14], see
also Eq. 6.210 of [7].

Example 8 The equation

y3y00 þ yy00 � 3y2y02 þ y02 ¼ 0 (20)

has the only nonvanishing coefficient c2 ¼ � 3y2�1
y y2þ1ð Þ. Substitution into (15) yields

ð a0 � nþ 1ð Þabð Þyn þ b0 � b2
� �

y� na2y2n�1

� 1
y
� 4y
y2 þ 1

� �
a2y2n þ 2abynþ1 þ b2y2
� � ¼ 0:

(21)

It turns out that for n ¼ 3 this condition specializes to

ð a0 � 4a2 þ 2ab
� �

y3 þ b0 þ 4a2 � 8abþ 2b2
� �

y� 4 a� bð Þ2 y
y2 þ 1

¼ 0:

After some simplifications the resulting system for a and b is a0 � 2a2 ¼ 0 and

b ¼ a; Its solution a ¼ b ¼ � 1
2

xþC leads to the Bernoulli equation y0 � � 1
2

xþC y
3 �

1
2

xþC ¼ 0 with general solution

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1x� C2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1xþ C2
p :

This is also the general solution of Eq. (20) □
In general it is a priori not known whether there exists a Bernoulli component of

any order. If a component for small values of n cannot be found it is desirable to
determine bounds for its possible existence. The next example shows that this is
possible in special cases.

Example 9 Consider the equation

y00 þ x
y� 1

y02 þ y0 þ xy ¼ 0 (22)

with K ¼ 2 and non-vanishing coefficients c2 ¼ x
y�1, c1 ¼ 1 and c0 ¼ xy.

Substitution into (15) yields

271

Solving Second-Order Differential Equations by Decomposition
DOI: http://dx.doi.org/10.5772/intechopen.94993



inhomogeneous equations, respectively. Similar as for linear components, a special
Bernoulli component guarantees a one-parameter set of solution curves of a given
second-order equation, and a one-parameter family of such components guarantees the
general solution of the latter. Themain result of this section is the following proposition.

Proposition 3 Let a second-order quasilinear Eq. (2) be given. In order that it has
a first-order Bernoulli component z � y0 þ a xð Þyn þ b xð Þy, n∈, the coefficients a
and b have to satisfy

a0 � nþ 1ð Þabð Þyn þ b0 � b2
� �

y� na2y2n�1 �
XK

k¼0
�1ð Þkck x, yð Þ ayn þ byð Þk ¼ 0:

(15)

Then (2) may be written as follows

z0 � nayn�1 þ b
� �

zþ
XK

k¼1
z� ayn � byð Þk þ �1ð Þkþ1 ayn þ byð Þk

� � !

z � y0 þ ayn þ byð Þ ¼ 0:

(16)

The coefficients a and b may be obtained from a first-order algebro-differential
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a0 � nþ 1ð Þabþ p a, b, xð Þ ¼ 0, b0 � b2 þ q a, b, xð Þ ¼ 0, ri a, b, xð Þ ¼ 0; (17)
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left-hand side of (16) are a polynomial in z and z0 the coefficients of which may
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The structure of the system (17) is similar as for linear components considered
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examples applies the above proposition.

Example 7 The equation

yy00 � y02 þ 2y3y0 þ xy2 ¼ 0 (18)

with K ¼ 2 has coefficients c2 ¼ � 1
y, c1 ¼ 2y2 and c0 ¼ xy. For generic n the

condition

a0 � n� 1ð Þabð Þyn þ b0 � x
� �

y� n� 1ð Þa2y2n�1 þ 2aynþ2 þ 2by3 ¼ 0 (19)

follows. The two equations b0 � x ¼ 0 and b ¼ 0 originating from the coeffi-
cients of y and y3, respectively, are inconsistent. In order for a Bernoulli component
to exist, this inconsistency must be compensated by other coefficients for a suitable
choice of n. To this end either n ¼ 1 or n ¼ 3 is required. The former leads to the
inconsistency x ¼ 0, whereas the latter yields
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a0 � 2abþ 2b ¼ 0, b0 � x ¼ 0, a2 � a ¼ 0:

This system has the solution a ¼ 1, b ¼ 1
2 x

2 þ C from which the decomposition

z0 � 1
y
z2 þ y2 þ 1

2
x2 þ C

� �
z

� �
z � y0 þ y3 þ 1

2
x2 þ C

� �
y

� �
¼ 0

follows. Integrating the right component yields the general solution

y ¼ 1ffiffiffiffiffiffiffi
2ð Þp

exp C1xþ 1
6 x

3
� � Ð

exp �2C1x� 1
3 x

3
� �

dxþ 1
2 C2

� �1=2

of Eq. (18). It does not have a Lie symmetry. □
The next example deals with a problem in hydrodynamics. The boundary layer

at a circular cylinder immersed in the uniform flow of liquid is considered [14], see
also Eq. 6.210 of [7].

Example 8 The equation

y3y00 þ yy00 � 3y2y02 þ y02 ¼ 0 (20)

has the only nonvanishing coefficient c2 ¼ � 3y2�1
y y2þ1ð Þ. Substitution into (15) yields

ð a0 � nþ 1ð Þabð Þyn þ b0 � b2
� �

y� na2y2n�1

� 1
y
� 4y
y2 þ 1

� �
a2y2n þ 2abynþ1 þ b2y2
� � ¼ 0:

(21)

It turns out that for n ¼ 3 this condition specializes to

ð a0 � 4a2 þ 2ab
� �

y3 þ b0 þ 4a2 � 8abþ 2b2
� �

y� 4 a� bð Þ2 y
y2 þ 1

¼ 0:

After some simplifications the resulting system for a and b is a0 � 2a2 ¼ 0 and

b ¼ a; Its solution a ¼ b ¼ � 1
2

xþC leads to the Bernoulli equation y0 � � 1
2

xþC y
3 �

1
2

xþC ¼ 0 with general solution

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1x� C2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1xþ C2
p :

This is also the general solution of Eq. (20) □
In general it is a priori not known whether there exists a Bernoulli component of

any order. If a component for small values of n cannot be found it is desirable to
determine bounds for its possible existence. The next example shows that this is
possible in special cases.

Example 9 Consider the equation

y00 þ x
y� 1

y02 þ y0 þ xy ¼ 0 (22)

with K ¼ 2 and non-vanishing coefficients c2 ¼ x
y�1, c1 ¼ 1 and c0 ¼ xy.

Substitution into (15) yields
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a0 � nþ 1ð Þabð Þyn þ b0 � b2
� �

y� na2y2n�1 � xyþ ayn þ by� x
y� 1

ayn þ byð Þ2:

Expanding the last term into unique partial fractions by using the general
formula

yn

y� k
¼
Xn�1
ν¼0

kn�ν�1yν þ kn

y� k
(23)

leads to

a0 � nþ 1ð Þabð Þyn þ b0 � b2
� �

y� na2y2n�1 � xyþ ayn þ by

�a2x
X2n�1
ν¼0

yν � 2abx
Xn
ν¼0

yν � aþ bð Þ2x
y� 1

¼ 0:

The coefficients of the various terms yield a system for the unknowns a, b and n.
There is always the subsystem a0 þ a2 þ aþ x ¼ 0, aþ b ¼ 0 independent of n, it
originates from the coefficient of y and the term independent of y. Furthermore, the
leading term of the first sum in the above equation requires a ¼ 0 for for any n≥ 2.
These equations combined are inconsistent, i.e. the above Eq. (22) does not allow a
Bernoulli component for any nonnegative natural number n. A similar reasoning
exists for negative values of n. □

At the moment an algorithm for determining bounds for n is not known, it is not
even clear whether the existence of bounds is decidable in general.

3. Equations with leading term y0y00

Another important class of differential equations are those with leading term y0y00,
they are considered in this section. Their general form is

y0y00 þ c x, yð Þy00 þ
XK

k¼0
ck x, yð Þy0k ¼ 0 with c x, yð Þ, ck x, yð Þ∈ xð Þ y½ �, K ∈: (24)

Components of Clairaut or d’Alembert type z � y� xf y0ð Þ � g y0ð Þmay lead to
partial or even general solutions in closed form, mostly in a parameter representa-
tion. The main result of this section is given in the following proposition.

Proposition 4 Let a second-order differential Eq. (24) be given. A first-order
component z � y� xf y0ð Þ � g y0ð Þ exists if f y0ð Þ and g y0ð Þ satisfy

p� f pð Þð Þ c x, xf pð Þ þ g pð Þð Þ þ pð Þ

þ x f 0 pð Þ þ g0 pð Þ� �XK

k¼0
ck x, xf pð Þ þ g pð Þð Þpk ¼ 0

(25)

where p � y0 has been defined. Representing the left hand side of (25) as a partial
fraction w.r.t. x and equating the coefficients of the various terms to zero, a system
of first-order quasilinear ode’s for f pð Þ and g pð Þ is obtained; its degree in f pð Þ and
g pð Þ is not higher than the degree in y of the coefficients c x, yð Þ and ck x, yð Þ.

Proof. Reduction of (24) w.r.t. z � y� xf y0ð Þ � g y0ð Þ leads to Eq. (25). Their
properties follow directly from the assumptions about the coefficients c x, yð Þ and
ck x, yð Þ in (24), and representing the left hand side of (25) as a partial fraction in x.
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The determining system for the two functions f pð Þ and g pð Þmay be obtained
explicitly from (25) if the coefficients c x, yð Þ and ck x, yð Þ are known.Without restric-
tions on the coefficients ck x, yð Þ the derivatives f 0 pð Þ and g0 pð Þmay occur linearly in any
equation obtained after separation w.r.t. x, and an algebraic system in p, f pð Þ, g pð Þ,
f 0 pð Þ and g0 pð Þ follows. It turns out that an algebraic Gröbner basis algorithm including
factorization is a suitable tool for solving them inmany cases. If a solution has been
obtained the corresponding componentmay be applied for generating the decomposi-
tion of the given equation explicitly. The following example uses this proceeding.

Example 10 Consider the equation

y0y00 þ 1
2
yy00 þ x� 1

2x
y02 � 1

2x
yy0 þ 1

2x
¼ 0: (26)

Here J ¼ 1 and K ¼ 2, its nonvanishing coefficients are c x, yð Þ ¼ 1
2 y, c2 ¼ x�1

2x ,
c1 ¼ � y

2x and c0 ¼ 1
2x. A linear or Bernoulli component does not exist. Proposition 4

leads to the system

g0gpþ g0p2 � g0 ¼ 0, f 0fp� f 0p2 þ f 2 � fp ¼ 0,

f 0gpþ f 0p2 � f 0 þ f g0pþ fg þ 2fp� g0p2 � gp� 2p2 ¼ 0:

Transforming the left-hand sides into algebraic Gröbner bases in the term order
f 0 pð Þ> g0 pð Þ> f pð Þ> g pð Þ> p, the following two systems and their solutions are
obtained.

f � p ¼ 0, gpþ p2 � 1 ¼ 0, ! f ¼ p, g ¼ 1
p
� p,

f 0pþ f ¼ 0, gpþ p2 � 1 ¼ 0, ! f ¼ C
1
p
, g ¼ 1

p
� p:

They lead to the decompositions

zz0 þ xy02 þ y02 þ 1
y0

z0 þ xy02 � y02 � 1
xy0

z

 !
z � y� xy0 þ y0 � 1

y0

� �
¼ 0,

zz0 þ y02 þ Cxþ 1
y0

z0 � xy02 þ y02 þ 1
xy0

z

 !
z � y� C

y0
xþ y0 � 1

y0

� �
¼ 0,

respectively. The former decomposition generates a Clairaut component. It yields
the solution y ¼ Cxþ 1

C� C of (26), C is an undetermined constant. Its parameter
solution x ¼ 1

p2 þ 1, y ¼ 2
p does not solve it, it annihilates a lower-order factor of the

expression in the left-hand bracket of this decomposition and has to be discarded.
Integration of the d’Alembert component z � y02 þ yy0 � Cx� 1 leads to the

general solution of (26) in a parameter representation

x ¼ 1

C1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

q
� C1p log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

p þ pffiffiffiffiffiffi
C1
p þ C1C2 þ 1ð Þp

 !
,

y ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

p p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

q
� C1 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

p þ pffiffiffiffiffiffi
C1
p þ C1C2 þ 1

 !
:

Eq. (26) does not have a Lie symmetry. □
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a0 � nþ 1ð Þabð Þyn þ b0 � b2
� �

y� na2y2n�1 � xyþ ayn þ by� x
y� 1

ayn þ byð Þ2:

Expanding the last term into unique partial fractions by using the general
formula

yn

y� k
¼
Xn�1
ν¼0

kn�ν�1yν þ kn

y� k
(23)

leads to

a0 � nþ 1ð Þabð Þyn þ b0 � b2
� �

y� na2y2n�1 � xyþ ayn þ by

�a2x
X2n�1
ν¼0

yν � 2abx
Xn
ν¼0

yν � aþ bð Þ2x
y� 1

¼ 0:

The coefficients of the various terms yield a system for the unknowns a, b and n.
There is always the subsystem a0 þ a2 þ aþ x ¼ 0, aþ b ¼ 0 independent of n, it
originates from the coefficient of y and the term independent of y. Furthermore, the
leading term of the first sum in the above equation requires a ¼ 0 for for any n≥ 2.
These equations combined are inconsistent, i.e. the above Eq. (22) does not allow a
Bernoulli component for any nonnegative natural number n. A similar reasoning
exists for negative values of n. □

At the moment an algorithm for determining bounds for n is not known, it is not
even clear whether the existence of bounds is decidable in general.

3. Equations with leading term y0y00

Another important class of differential equations are those with leading term y0y00,
they are considered in this section. Their general form is

y0y00 þ c x, yð Þy00 þ
XK

k¼0
ck x, yð Þy0k ¼ 0 with c x, yð Þ, ck x, yð Þ∈ xð Þ y½ �, K ∈: (24)

Components of Clairaut or d’Alembert type z � y� xf y0ð Þ � g y0ð Þmay lead to
partial or even general solutions in closed form, mostly in a parameter representa-
tion. The main result of this section is given in the following proposition.

Proposition 4 Let a second-order differential Eq. (24) be given. A first-order
component z � y� xf y0ð Þ � g y0ð Þ exists if f y0ð Þ and g y0ð Þ satisfy

p� f pð Þð Þ c x, xf pð Þ þ g pð Þð Þ þ pð Þ

þ x f 0 pð Þ þ g0 pð Þ� �XK

k¼0
ck x, xf pð Þ þ g pð Þð Þpk ¼ 0

(25)

where p � y0 has been defined. Representing the left hand side of (25) as a partial
fraction w.r.t. x and equating the coefficients of the various terms to zero, a system
of first-order quasilinear ode’s for f pð Þ and g pð Þ is obtained; its degree in f pð Þ and
g pð Þ is not higher than the degree in y of the coefficients c x, yð Þ and ck x, yð Þ.

Proof. Reduction of (24) w.r.t. z � y� xf y0ð Þ � g y0ð Þ leads to Eq. (25). Their
properties follow directly from the assumptions about the coefficients c x, yð Þ and
ck x, yð Þ in (24), and representing the left hand side of (25) as a partial fraction in x.
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The determining system for the two functions f pð Þ and g pð Þmay be obtained
explicitly from (25) if the coefficients c x, yð Þ and ck x, yð Þ are known.Without restric-
tions on the coefficients ck x, yð Þ the derivatives f 0 pð Þ and g0 pð Þmay occur linearly in any
equation obtained after separation w.r.t. x, and an algebraic system in p, f pð Þ, g pð Þ,
f 0 pð Þ and g0 pð Þ follows. It turns out that an algebraic Gröbner basis algorithm including
factorization is a suitable tool for solving them inmany cases. If a solution has been
obtained the corresponding componentmay be applied for generating the decomposi-
tion of the given equation explicitly. The following example uses this proceeding.

Example 10 Consider the equation

y0y00 þ 1
2
yy00 þ x� 1

2x
y02 � 1

2x
yy0 þ 1

2x
¼ 0: (26)

Here J ¼ 1 and K ¼ 2, its nonvanishing coefficients are c x, yð Þ ¼ 1
2 y, c2 ¼ x�1

2x ,
c1 ¼ � y

2x and c0 ¼ 1
2x. A linear or Bernoulli component does not exist. Proposition 4

leads to the system

g0gpþ g0p2 � g0 ¼ 0, f 0fp� f 0p2 þ f 2 � fp ¼ 0,

f 0gpþ f 0p2 � f 0 þ f g0pþ fg þ 2fp� g0p2 � gp� 2p2 ¼ 0:

Transforming the left-hand sides into algebraic Gröbner bases in the term order
f 0 pð Þ> g0 pð Þ> f pð Þ> g pð Þ> p, the following two systems and their solutions are
obtained.

f � p ¼ 0, gpþ p2 � 1 ¼ 0, ! f ¼ p, g ¼ 1
p
� p,

f 0pþ f ¼ 0, gpþ p2 � 1 ¼ 0, ! f ¼ C
1
p
, g ¼ 1

p
� p:

They lead to the decompositions

zz0 þ xy02 þ y02 þ 1
y0

z0 þ xy02 � y02 � 1
xy0

z

 !
z � y� xy0 þ y0 � 1

y0

� �
¼ 0,

zz0 þ y02 þ Cxþ 1
y0

z0 � xy02 þ y02 þ 1
xy0

z

 !
z � y� C

y0
xþ y0 � 1

y0

� �
¼ 0,

respectively. The former decomposition generates a Clairaut component. It yields
the solution y ¼ Cxþ 1

C� C of (26), C is an undetermined constant. Its parameter
solution x ¼ 1

p2 þ 1, y ¼ 2
p does not solve it, it annihilates a lower-order factor of the

expression in the left-hand bracket of this decomposition and has to be discarded.
Integration of the d’Alembert component z � y02 þ yy0 � Cx� 1 leads to the

general solution of (26) in a parameter representation

x ¼ 1

C1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

q
� C1p log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

p þ pffiffiffiffiffiffi
C1
p þ C1C2 þ 1ð Þp

 !
,

y ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2

p p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
� C1 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ p2
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p þ C1C2 þ 1

 !
:

Eq. (26) does not have a Lie symmetry. □
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This example shows that solutions of a component must be tested to see if they
meet the second order equation, otherwise they have to be discarded; this phenom-
enon seems to be quite common.

4. Conclusions

The structure of the determining systems for linear or Bernoulli components of a
nonlinear Eq. (2) given in Propositions 2 or 3, respectively, show clearly its relation
to the corresponding system for the decomposition of a linear equation. For a
generic equation of the second order this appears to be the best possible result. The
same applies to the verious solution steps given on page 6. The corresponding result
for determining Clairaut and d’Alembert components given in Proposition 4 is less
specific. However, it should be possible, to obtain more detailed results if special
classes of second-order equations are considered. In general, this area is only at an
early stage and a better understanding of the underlying mechanisms generating the
solutions and also its limitations would be highly desirable.

There are numerous possible generalizations fairly obvious. On the one hand,
this concerns the equations to be solved. More general function fields for its coeffi-
cients like e.g. algebraic or elementary functions may be allowed. Equations of order
three or four would be interesting in many applications. The greatest challenge
however is certainly to develop similar procedures for partial differential equations
as it has been indicated in Section 5 of [6].

On the other hand, the component type offers space for extensions too. In
principle all equations of first order, as described for example in Kamke’s book [7],
Part A, Section 4, are possible components. Components that guarantee at least a
partial solution are of course particularly useful, the most important of them have
been discussed in this article.

In order to apply decompositions to concrete problems the implementation of the
procedures described in this article are available on the website www.alltypes.de [15].

Beyond that there are a number of general problems related to decompositions.
For instance the question how rare are equations that allow a particular decompo-
sition, Example 6 provides a partial answer. If two or more one-parameter families
of solution curves are known as in Example 4, does it faciliate generating the
general solution? The exact relation between Lie’s symmetry analysis and solution
by decompositions is another subject of interest.
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This example shows that solutions of a component must be tested to see if they
meet the second order equation, otherwise they have to be discarded; this phenom-
enon seems to be quite common.

4. Conclusions

The structure of the determining systems for linear or Bernoulli components of a
nonlinear Eq. (2) given in Propositions 2 or 3, respectively, show clearly its relation
to the corresponding system for the decomposition of a linear equation. For a
generic equation of the second order this appears to be the best possible result. The
same applies to the verious solution steps given on page 6. The corresponding result
for determining Clairaut and d’Alembert components given in Proposition 4 is less
specific. However, it should be possible, to obtain more detailed results if special
classes of second-order equations are considered. In general, this area is only at an
early stage and a better understanding of the underlying mechanisms generating the
solutions and also its limitations would be highly desirable.

There are numerous possible generalizations fairly obvious. On the one hand,
this concerns the equations to be solved. More general function fields for its coeffi-
cients like e.g. algebraic or elementary functions may be allowed. Equations of order
three or four would be interesting in many applications. The greatest challenge
however is certainly to develop similar procedures for partial differential equations
as it has been indicated in Section 5 of [6].

On the other hand, the component type offers space for extensions too. In
principle all equations of first order, as described for example in Kamke’s book [7],
Part A, Section 4, are possible components. Components that guarantee at least a
partial solution are of course particularly useful, the most important of them have
been discussed in this article.

In order to apply decompositions to concrete problems the implementation of the
procedures described in this article are available on the website www.alltypes.de [15].

Beyond that there are a number of general problems related to decompositions.
For instance the question how rare are equations that allow a particular decompo-
sition, Example 6 provides a partial answer. If two or more one-parameter families
of solution curves are known as in Example 4, does it faciliate generating the
general solution? The exact relation between Lie’s symmetry analysis and solution
by decompositions is another subject of interest.
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The Uniformly Parabolic
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Abstract

We study the regularity of the solutions of the Cauchy-Dirichlet problem for
linear uniformly parabolic equations of higher order with vanishing mean oscilla-
tion (VMO) coefficients. We prove continuity in generalized parabolic Morrey
spaces Mp,φ of sublinear operators generated by the parabolic Calderon-Zygmund
operator and by the commutator of this operator with bounded mean oscillation
(BMO) functions. We obtain strong solution belongs to the generalized

Sobolev-Morrey space Wm,1
p,φ

∘
Qð Þ. Also we consider elliptic equation in unbounded

domains.

Keywords: higher order parabolic equations, generalized Morrey spaces, sublinear
operators, Calderon-Zygmund integrals, VMO, Cauchy-Dirichlet problem, elliptic
equations, unbounded domain

1. Introduction

We consider the higher order linear Cauchy-Dirichlet problem in Q ¼
Ω� 0,Tð Þ, being a cylinder in nþ1, Ω⊂Rn be a bounded domain 0<T <∞

ut �
X

∣α∣ ≤m,

∣β∣ ≤m

aαβ x, tð ÞDαβu x, tð Þ ¼ f x, tð Þ, a:e: in Q (1)

u x, tð Þ ¼ 0 on ∂pQ, (2)

where ∂pQ ¼ ∂Ω� 0,T½ �ð Þ∪ Ω� t ¼ 0f gð Þ stands for the parabolic boundary of

Q and Dαβ ¼ ∂
∣α∣

∂xα11 ,⋯, ∂xαnn
⋯ ∂

∣β∣

∂yβ11 ,⋯, ∂yβnn
, ∣α∣ ¼Pn

k¼1αk, β ¼
Pn

k¼1βk.

The unique strong solvability of this type problem was proved in [1]. In [2] the
regularity of the solution in the Morrey spaces Lp,λ nþ1� �

with p∈ 1,∞ð Þ,

277



References

[1] E. L. Ince, Ordinary Differential
Equations, Longmans, Green and Co.,
1926 [Reprint by Dover Publications
Inc., 1960].

[2] A. Magid, Lectures on differential
Galois theory, AMS university lecture
series, vol 7, AMS Press, Providence,
1994.

[3] F. Schwarz, Loewy Decomposition of
Linear Differential Equations, Springer-
Verlag, Wien, 2012 and Bulletin of
Mathematical Sciences 3, page 19–71
(2012); DOI 10.1007/s13373-012-
0026-7.

[4] S. Lie, Vorlesungen über
Differentialgleichungen mit bekannten
infinitesimalen Transformationen,
Leipzig, 1891; reprinted by Chelsea
Publishing Company, New York, 1967.

[5] F. Schwarz, Algorithmic Lie Theory
for Solving Ordinary Differential
Equations, Chapman & Hall/CRC, 2007.

[6] F. Schwarz, Decomposition of
ordinary differential equations, Bulletin
of MathematicalSciences 7, 565–613
(2017); doi.org/10.1007/s13373-017-
0110-0.

[7] E. Kamke, Differentialgleichungen,
Lösungsmethoden und Lösungen I.
Gewöhnliche Differentialgleichungen,
Akademische Verlagsgesellschaft,
Leipzig, 1967.

[8] G. M. Murphy, Ordinary Differential
Equations and Their Solutions, Van
Nostrand Company, 1960.

[9] A. D. Polyanin, V. F. Zaitsev,
Handbook of Ordinary Differential
Equations, Exact Solutions, Methods
and Problems, CRC Press, 2018.

[10] P. L. Sachdev, A Compendium on
Nonlinear Ordinary Differential
Equations, John Wiley & Sons, 1997.

[11] D. Zwillinger, Handbook of
Differential Equations, Academic Press,
1998.

[12] B. D. MacCluer, P. S. Bourdon, T. L.
Kriete, Differential Equations,
Techniques, Theory, and Applications,
American Mathematical Society, 2019.

[13] R. J. Swift, S. A. Wirkus, A Course in
Ordinary Differential Equations,
Chapman & Hall/CRC, 2007.

[14] K. Hiemenz, Die Grenzschicht an
einem in den gleichförmigen
Flüssigkeitsstrom eingetauchten
geraden Kreiszylinder, Dinglers
Polytechnisches Journal 326(1911).

[15] F. Schwarz, ALLTYPES in the Web,
ACM Communications in Computer
Algebra 42, No. 3, 185–187(2008).

276

Recent Developments in the Solution of Nonlinear Differential Equations

Chapter 17

The Uniformly Parabolic
Equations of Higher Order with
Discontinuous Data in Generalized
Morrey Spaces and Elliptic
Equations in Unbounded Domains
Tair Gadjiev and Konul Suleymanova

Abstract

We study the regularity of the solutions of the Cauchy-Dirichlet problem for
linear uniformly parabolic equations of higher order with vanishing mean oscilla-
tion (VMO) coefficients. We prove continuity in generalized parabolic Morrey
spaces Mp,φ of sublinear operators generated by the parabolic Calderon-Zygmund
operator and by the commutator of this operator with bounded mean oscillation
(BMO) functions. We obtain strong solution belongs to the generalized

Sobolev-Morrey space Wm,1
p,φ

∘
Qð Þ. Also we consider elliptic equation in unbounded

domains.

Keywords: higher order parabolic equations, generalized Morrey spaces, sublinear
operators, Calderon-Zygmund integrals, VMO, Cauchy-Dirichlet problem, elliptic
equations, unbounded domain

1. Introduction

We consider the higher order linear Cauchy-Dirichlet problem in Q ¼
Ω� 0,Tð Þ, being a cylinder in nþ1, Ω⊂Rn be a bounded domain 0<T <∞

ut �
X

∣α∣ ≤m,

∣β∣ ≤m

aαβ x, tð ÞDαβu x, tð Þ ¼ f x, tð Þ, a:e: in Q (1)

u x, tð Þ ¼ 0 on ∂pQ, (2)

where ∂pQ ¼ ∂Ω� 0,T½ �ð Þ∪ Ω� t ¼ 0f gð Þ stands for the parabolic boundary of

Q and Dαβ ¼ ∂
∣α∣

∂xα11 ,⋯, ∂xαnn
⋯ ∂

∣β∣

∂yβ11 ,⋯, ∂yβnn
, ∣α∣ ¼Pn

k¼1αk, β ¼
Pn

k¼1βk.

The unique strong solvability of this type problem was proved in [1]. In [2] the
regularity of the solution in the Morrey spaces Lp,λ nþ1� �
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λ∈ 0, nþ 2ð Þ and also its Hölder regularity was studied. In [3] Nakai extend these
studies on generalized Morrey spaces Mp,φ nþ1� �

with a weight φ satisfying the
integral condition

ð∞
r

φ a, sð Þ
s

ds≤ cφ a, rð Þ, ∀a∈nþ1, r>0:

The generalized Morrey space is then defined to be the set of all f ∈Lp,loc nþ1� �
such that

∥f∥Mp,φ nþ1ð Þ ¼ sup
E

1
φ Eð Þ

1
∣E∣
ð

E
f xð Þj jpdx

� �1
p

,

where the supremum is taken over all parabolic balls E with respect to the
parabolic distance.

The main results connected with these spaces is the following celebrated lemma:
let ∣Df ∣ ∈Lp,n�λ even locally, with n� λ< p, then u is Holder continuous of exponent
α ¼ 1� n�λ

p . This result has found many applications in theory elliptic and parabolic

equations. In [2] showed boundedness of the maximal operator in Lp,λ nþ1� �
that

allows them to prove continuity in these spaces of some classical integral operators.
So was put the beginning of the study of the generalized Morrey spaces Mp,φ,p> 1
with φ belonging to various classes of weight functions. In [3] proved boundedness
of maximal and Calderon-Zygmund operators in Mp,φ imposing suitable integral
and doubling conditions on φ. These results allow to study the regularity of the
solutions of various linear elliptic and parabolic value problems in Mp,φ (see [4–6]).
Here we consider a supremum condition on the weight which is optimal and ensure
the boundedness of the maximal operator in Mp,φ. We use maximal inequality to
obtain the Calderon-Zygmund type estimate for the gradient of the solution of the
problem (1) and (2) in theMp,φ.

The results presented here are a natural extension of the previous paper [7] to
parabolic equations. Here we study the boundedness of the sublinear operators,
generated by Calderon-Zygmund operators in generalized Morrey spaces and the
regularity of the solutions of higher order uniformly elliptic boundary value problem
in local generalized Morrey spaces where domain is bounded. Also hear we study
higher order uniformly elliptic boundary value problem where domain is unbounded.

In paper [8] Byun, Palagachev and Wang is study the regularity problem for
parabolic equation in classical Lebesgue classes and of Byun, Palagchev and Softova
[9, 10] where the problem studied in weighted Lebesgue and Orlicz spaces with a
Muckenhoupt weight and the classical Morrey spaces Lp,λ Qð Þ with λ∈ 0, nþ 2ð Þ.

In papers [11, 12] the authors studied second order linear elliptic and parabolic
equations with VMO coefficients.

Denote by a the coefficient a x, tð Þ ¼ aαβ x, tð Þ� �
: Q ! Mn�n and by f x, tð Þ

nonhomogeneous term. Suppose that the operator is uniformly parabolic.
The paper is organized as follows. In section 2 we introduce some notations and

give the definition of the generalized Morrey spaces Mp,φ Qð Þ. In section 3 we study
sublinear operators generated by parabolic singular integrals in generalized Morrey
spaces. In section 4 we is consider sublinear operators generated by non-singular
integrals, in section 5 singular and non-singular integrals in generalized Morrey
spaces. In section 6 we consider uniformly parabolic equations of higher order
with VMO coefficients and proved regularity of solutions. In section 7 we study
uniformly elliptic equations in unbounded domains.
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2. Some notation and definition

The following notations are used in this paper:

x ¼ x0, tð Þ, y ¼ y0, τð Þ∈nþ1 ¼ Rn � Rn,nþ1
þ ¼ Rn � Rþ;

x ¼ x00, xn, tð Þ∈Dnþ1
þ ¼ Rn�1 � Rþ � Rþ,Dnþ1

� ¼ Rn�1 � R� � Rþ;

∣ � ∣ is the Euclidean metric, ∣x∣ ¼ Pn
i¼1 x

2
i þ t2

� �1
2; Br x0ð Þ ¼ y0 ∈Rn :jx0 � y0j< rf g,

∣Br∣ ¼ c � rn; I r x0, tð Þ ¼ y∈nþ1 :jx0 � y0j< r, jt� τj< r2
� �

,∣I r x0, tð Þ∣ ¼ c � rnþ2; Qr ¼
I r x, τð Þ∩Q for each x, τð Þ∈Q, 2I r x, τð Þ ¼ I 2r x, τð Þ.

Sn is the unit sphere in nþ1;

Diu ¼ ∂u
∂xi

,Du ¼ D1u, … ,Dnuð Þ, ut ¼ ∂u
∂t

;

Dαβu ¼ ∂
∣α∣
∂
∣β∣u

∂xα11 … ∂xαnn � ∂yβ11 � ∂yβnn

the letter C is used for various positive constants.

In the following, besides the standard parabolic metric ρ x, tð Þ ¼ max jx0j, tj j12
� �

.

We use the equivalent one

ρ x, tð Þ ¼
x0j j2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0j j4 þ 4t2

q

2

0
@

1
A

1
2

considered by Fabes and Riviere in [13]. The topology induced by ρ x, tð Þ consists
of the ellipsoids

Er xð Þ ¼ y∈nþ1 :
x0 � y0j j2

r2
þ t� τj j2

r4
< 1

( )
, ∣Er∣ ¼ C � rnþ2,

E1 xð Þ � B1 xð Þ:

It is easy to see that the this metrics ore equivalent. In fact, for each Er there exist
parabolic cylinders I and I with measure comparable to rnþ2 such that I ⊂ Er ⊂ I .

Let Q ¼ Ω� 0,Tð Þ,T >0, be a cylinder in Rnþ1
þ : We give the definitions of the

functional spaces that we are going to use. Let a∈L1,loc nþ1�
and let aEr ¼

Erj j�1
Ð
Era yð Þdy be the mean value of the integral of a. Denote

ηa Rð Þ ¼ sup
r≤R

1
∣Er∣

ð

Er
f yð Þ � f Er

���
���dy for every R>0,

where Er ranges over all ellipsoids in nþ1. We say a∈BMO (bounded mean
oscillation [14]) if

∥a∥∗ ¼ sup
R>0

ηα Rð Þ

is finite. ∥ � ∥∗ is a norm in a BMO constant functions.

279

The Uniformly Parabolic Equations of Higher Order with Discontinuous Data in Generalized…
DOI: http://dx.doi.org/10.5772/intechopen.96781



2. Some notation and definition

The following notations are used in this paper:

x ¼ x0, tð Þ, y ¼ y0, τð Þ∈nþ1 ¼ Rn � Rn,nþ1
þ ¼ Rn � Rþ;

x ¼ x00, xn, tð Þ∈Dnþ1
þ ¼ Rn�1 � Rþ � Rþ,Dnþ1

� ¼ Rn�1 � R� � Rþ;

∣ � ∣ is the Euclidean metric, ∣x∣ ¼ Pn
i¼1 x

2
i þ t2

� �1
2; Br x0ð Þ ¼ y0 ∈Rn :jx0 � y0j< rf g,

∣Br∣ ¼ c � rn; I r x0, tð Þ ¼ y∈nþ1 :jx0 � y0j< r, jt� τj< r2
� �

,∣I r x0, tð Þ∣ ¼ c � rnþ2; Qr ¼
I r x, τð Þ∩Q for each x, τð Þ∈Q, 2I r x, τð Þ ¼ I 2r x, τð Þ.

Sn is the unit sphere in nþ1;

Diu ¼ ∂u
∂xi

,Du ¼ D1u, … ,Dnuð Þ, ut ¼ ∂u
∂t

;

Dαβu ¼ ∂
∣α∣
∂
∣β∣u

∂xα11 … ∂xαnn � ∂yβ11 � ∂yβnn

the letter C is used for various positive constants.

In the following, besides the standard parabolic metric ρ x, tð Þ ¼ max jx0j, tj j12
� �

.

We use the equivalent one

ρ x, tð Þ ¼
x0j j2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0j j4 þ 4t2

q

2

0
@

1
A

1
2

considered by Fabes and Riviere in [13]. The topology induced by ρ x, tð Þ consists
of the ellipsoids

Er xð Þ ¼ y∈nþ1 :
x0 � y0j j2

r2
þ t� τj j2

r4
< 1

( )
, ∣Er∣ ¼ C � rnþ2,

E1 xð Þ � B1 xð Þ:

It is easy to see that the this metrics ore equivalent. In fact, for each Er there exist
parabolic cylinders I and I with measure comparable to rnþ2 such that I ⊂ Er ⊂ I .

Let Q ¼ Ω� 0,Tð Þ,T >0, be a cylinder in Rnþ1
þ : We give the definitions of the

functional spaces that we are going to use. Let a∈L1,loc nþ1�
and let aEr ¼

Erj j�1
Ð
Era yð Þdy be the mean value of the integral of a. Denote

ηa Rð Þ ¼ sup
r≤R

1
∣Er∣

ð

Er
f yð Þ � f Er

���
���dy for every R>0,

where Er ranges over all ellipsoids in nþ1. We say a∈BMO (bounded mean
oscillation [14]) if

∥a∥∗ ¼ sup
R>0

ηα Rð Þ

is finite. ∥ � ∥∗ is a norm in a BMO constant functions.

279

The Uniformly Parabolic Equations of Higher Order with Discontinuous Data in Generalized…
DOI: http://dx.doi.org/10.5772/intechopen.96781



We say a∈VMO (vanishing mean oscillation) [14] if a∈BMO and

lim
R!0

ηa Rð Þ ¼ 0

ηa Rð Þ is called the VMO-modulus of a. For any bounded cylinder Q we define
BMO Qð Þ and VMO Qð Þ taking a∈L1 Qð Þ and Qr ¼ Q ∩ Er xð Þ, x∈Q, instead of Er in
the definition above. If a function a∈BMO or VMO, it is possible to extend the
function in the whole of nþ1 preserving its BMO-norm or VMO-modulus, respec-
tively (see [15]). Any bounded uniformly continuous BUCð Þ function f with mod-
ulus of continuity ω f Rð Þ belongs to VMO with η f Rð Þ ¼ ω f Rð Þ: Besides, BMO and
VMO also contain discontinuous functions, and the following example shows the
inclusion W1

nþ2 nþ1� �
⊂VMO⊂BMO:

Example 2.1. We have that f xð Þ ¼ ∣ log ρ x, tð Þ∣ ∈BMOnVMO;
sin f xð Þ∈BMO∩L∞ nþ1� �

; f α xð Þ ¼ log ρ x, tÞð jα ∈VMOj for any α∈ 0, 1ð Þ;
f α ∈W1

nþ2 nþ1� �
for α∈ 0, 1� 1

nþ2
� �

; f α ∉ W1
nþ2 nþ1� �

for α∈ 1� 1
nþ2, 1

h �
:

Let φ : nþ1 � Rþ ! Rþ be a measurable function and p∈ 1,∞½ Þ: The generalized
parabolic Morrey space Mp,φ nþ1� �

consists of all f ∈Lp,loc nþ1� �
such that

∥f∥p,φ;nþ1 ¼ sup
x, rð Þ∈nþ1�Rþ

φ�1 x, rð Þ r�n�2
ð

Er xð Þ
f yð Þj jpdy

 !1
p

<∞:

The space Mp,φ Qð Þ consists of Lp Qð Þ functions provided the following norm is
finite

∥f∥p,φ;Q ¼ sup
x, rð Þ∈nþ1�Rþ

φ�1 x, rð Þ r�n�2
ð

Qr xð Þ
f yð Þj jpdy

 !1
p

:

The generalized weak parabolic Morrey space WM1,α Rnþ1ð Þ consists of all mea-
surable functions such that

∥f∥WM1,α nþ1ð Þ ¼ sup
x, rð Þ∈nþ1�Rþ

φ�1 x, rð Þr�n�2∥f∥WL1 Er xð Þð Þ,

where WL1 denotes the weak L1 space. The generalized Sobolev-Morrey space
W2m,1

p,φ Qð Þ, p∈ 1,∞½ Þ, consists of all Sobolev functions U ∈W2m,1
p Qð Þ with distribu-

tional derivatives Dl
tD

s
xu∈Mp,φ Qð Þ, 0≤ 2lþ ∣s∣ ≤ 2m, endowed by the norm

∥u∥W2m,1
p,φ Qð Þ ¼ ∥ut∥p,φ;Q þ

X
∣δ∣ ≤ 2m

∥Dsu∥p,φ;Q :

We also define the space

W
0 2m,1

p,φ Qð Þ ¼ u∈W2m,1
p,φ Qð Þ : u xð Þ ¼ 0, x∈ ∂Q

n o
,

∥u∥
W
0 2m,1

p,φ Qð Þ
¼ ∥u∥Wm,1

p,φ Qð Þ
n o

,

where ∂Q means the parabolic boundary Ω∪ ∂Ω� 0,Tð Þð Þ: In problem (1) and
(2) the coefficient matrix a x, tð Þ ¼ aα,β x, tð Þ� �n

i,j¼1, ∣α∣, ∣β∣ ¼ m satisfies
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∃γ >0 γ
X
∣α∣¼m

ξ2α ≤
X

∣α∣¼m
∣β∣¼m

aα,β x, tð Þξαξβ, (3)

for a.e. x, tð Þ∈Q, ∀ξ∈Rn,ξ ¼ ξα, jα ¼ mj∈RN� �
, N–number different

multiindeks with length equal to m, aα,β x, tð Þ ¼ aβ,α x, tð Þ, which implies
aα,β x, tð Þ∈L∞ Qð Þ:

Theorem 2.1. (Main results) Let a x, tð Þ∈VMO Qð Þ with ηα,β ¼
Pn

i,j¼1ηαβij satisfy

(3), and, for each p∈ 1,∞ð Þ, let u x, tð Þ∈W
0 2m,1

p Qð Þ be a strong solution (1) and (2). If
f ∈Mp,φ Qð Þ with φ x, rð Þ being a measurable positive function satisfying

ð∞
r

1þ ln
s
r

� � ess inf
s< ξ<∞

φ x, ξð Þξnþ2
p

s
nþ2
p þ 1

ds≤Cφ x, rð Þ (4)

x, rð Þ∈Q � Rþ, then u x, tð Þ∈W
0 2m,1

p,φ Qð Þ and

∥u∥
W
0 2m,1

p,φ Qð Þ
≤C∥f∥p,φ;Q (5)

with C ¼ C n, p, γ, ∂Ω,T, ηα, ∥a∥∞;Q
� �

.

3. Sublinear operators generated by parabolic singular integrals in
generalized Morrey spaces

Let f ∈L1 nþ1� �
be a function with a compact support and a∈BMO: For any

x ∉ suppf define the sublinear operators T and Ta such that

∣Tf xð Þ∣ ≤ c
ð

nþ1

∣f yð Þ∣
ρnþ2 x� yð Þ dy, (6)

∣Taf xð Þ∣ ≤ c
ð

nþ1
∣a xð Þ � a yð Þ∣ ∣f yð Þ∣

ρnþ2 x� yð Þ dy, (7)

This operators are bounded in Lp nþ1� �
satisfy the estimates

∥Tf∥Lp
≤C∥f∥Lp

, ∥Taf∥Lp
≤C∥a∥∗ ∥f∥Lp

, (8)

where constants independent of a and f : Let we have the Hardy operator
Hg rð Þ ¼ 1

r

Ð r
0g sð Þds, r>0:

Theorem 3.1. (see [12]) The inequality

ess sup
r>0

ω rð ÞHg rð Þ≤Aess sup
r>0

ϑ rð Þg rð Þ (9)

holds for all non-increasing functions g : Rþ ! Rþ if and only if
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X
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X
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ð∞
r

1þ ln
s
r
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p

s
nþ2
p þ 1
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A ¼ Csup
r>0

ω rð Þ
r

ðr
0

ds
ess sup
0< ξ< s

ϑ ξð Þ <∞ (10)

Lemma 3.1. (see [12]) Let f ∈Lp,loc nþ1� �
, p∈ 1,∞½ Þ, be such that

ð∞
r
s�

nþ2
p �1∥f∥Lp Es γ0ð Þð Þds<∞ ∀ x0, rð Þ∈nþ1 � Rþ (11)

and let T be a sublinear operator satisfying (6).
i. If p> 1 and T is bounded on Lp nþ1� �

, then

∥Tf∥Lp Erð Þ x0ð Þ ≤ cr
nþ2
p

ð∞
2r
s�

nþ2
p �1∥f∥Lp Es γ0ð Þð Þds (12)

ii. If p ¼ 1 and T is bounded from L1 nþ1� �
on WL1 nþ1� �

, then

∥Tf∥WL1 Erð Þ x0ð Þ ≤ crnþ2
ð∞
2r
s� nþ3ð Þ∥f∥L1 Es x0ð Þð Þds, (13)

where the constants are independent of r, x0 and f :
Theorem 3.2. (see [12]) Let p∈ 1,∞½ Þ and φ x, rð Þ be a measurable positive function

satisfying

ð∞
r

ess inf
s< ξ<∞

φ x, ξð Þξ nþ2
p

s
nþ2
p þ1

ds≤Cφ x, rð Þ, ∀ x, rð Þ∈nþ1 � Rþ (14)

and let T be a sublinear operator satisfying (6).

i. If p> 1 and T is bounded on Lp nþ1� �
, then T is bounded on Mp,φ nþ1� �

, and

∥Tf∥Mp,φ nþ1ð Þ ≤C∥f∥Mp,φ nþ1ð Þ (15)

ii. If p ¼ 1 and T is bounded from L1 nþ1� �
to WL1 nþ1� �

, then it is bounded
from M1,φ nþ1� �

to WM1,φ nþ1� �
, and

∥Tf∥WM1,φ nþ1ð Þ ≤C∥f∥M1,φ nþ1ð Þ (16)

with constants independent of f :
Our next step is to show boundedness of Ta in Mp,φ nþ1� �

: For this we recall
some properties of the BMO functions.

Lemma 3.2. John-Nirenberg lemma [[12], Lemma 2.8]. Let a∈BMO and
p∈ 1,∞½ Þ: Then, for any Er,

1
∣Er∣

ð

Er
a yð Þ � aErj jpdy

� �1
p

≤ c pð Þ∥a∥∗ :

As an immediate consequence of (7) we get the following property.
Corollary 3.1. Let a∈BMO: Then, for all 0< 2r< s,
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∣aEr � aEs ∣ ≤C nð Þ 1þ ln
s
r

� �
� ∥a∥∗ (17)

Now we estimate the norm of Ta:
Lemma 3.3. (see [12]) Let a∈BMO: and Ta be a bounded operator in

Lp nþ1� �
, p∈ 1,∞ð Þ, satisfying (7) and (8). Suppose that, for any f ∈Lp,loc nþ1� �

,
ð∞
r

1þ ln
s
r

� �
∥f∥Lp Es x0ð Þð Þ

ds

s
nþ2
p þ1

<∞ ∀ x0, rð Þ∈nþ1 � Rþ (18)

Then,

∥Taf∥Lp Es x0ð Þð Þ ≤ c � ∥a∥∗ r
nþ2
p

ð∞
2r

1þ ln
s
r

� �
∥f∥Lp Es x0ð Þð Þ

ds

s
nþ2
p þ1

(19)

where C is independent of a, f , x0 and r:
Theorem 3.3. Let p∈ 1,∞ð Þ and φ x, rð Þ be measurable positive functions such that

ð∞
r

1þ ln
s
r

� � ess inf
s< ξ<∞

φ x, ξð Þξnþ2
p

s
nþ2þpð Þ

p

ds≤Cφ x, rð Þ (20)

for ∀ x, rð Þ∈nþ1 � Rþ, where C is independent of x and r: Suppose that a∈BMO
and let Ta be a sublinear operator satisfying (7). If Ta is bounded in Lp nþ1� �

, then
bounded in Mp,φ nþ1� �

, and

∥Taf∥Mp,φ nþ1ð Þ ≤C∥a∥∗ � ∥f∥Mp,φ nþ1ð Þ (21)

constant C independent of a and f .
Then basic results of the theorem follows by Lemma 3.3 and Theorem 3.1 in the

same manner as for Theorem 3.2. For example the functions φ x, rð Þ ¼ rβ�
nþ2
p ,

φ x, rð Þ ¼ rβ�
nþ2
p � logm lþ rð Þ with 0< β< nþ2

p and m≥ 1, are weight functions
satisfying the condition (20).

4. Non-singular integrals in generalized Morrey spaces

Let x∈Dnþ1
þ , define x ¼ x00,�xn, tð Þ∈Dnþ1

� and x0 ¼ x00, 0, 0ð Þ∈Rn�1: Consider
the semi-ellipsoids Eþr x0ð Þ ¼ Eþr x0ð Þ∩Dnþ1

� : Let f ∈L1 Dnþ1
þ

� �
, a∈BMO Dnþ1

þ
� �

, and
T,Ta be sublinear operators such that

∣Tf xð Þ∣ ≤C
ð

Dnþ1
þ

∣f yð Þ∣
ρ x� yð Þnþ2 dy (22)

∣Taf xð Þ∣ ≤C
ð

Dnþ1
þ

∣a xð Þ � a yð Þ∣ ∣f yð Þ∣
ρ x� yð Þnþ2 dy (23)

Let both the operators be bounded in Lp Dnþ1
þ

� �
, satisfy the estimates

∥Tf∥Lp Dnþ1
þð Þ ≤C∥f∥Lp Dnþ1

þð Þ, ∥Taf∥Lp Dnþ1
þð Þ ≤C∥a∥∗ ∥f∥Lp Dnþ1

þð Þ (24)

constants C independent of a and f :
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Then basic results of the theorem follows by Lemma 3.3 and Theorem 3.1 in the
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þ

� �
, a∈BMO Dnþ1

þ
� �

, and
T,Ta be sublinear operators such that
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ð

Dnþ1
þ

∣f yð Þ∣
ρ x� yð Þnþ2 dy (22)

∣Taf xð Þ∣ ≤C
ð

Dnþ1
þ

∣a xð Þ � a yð Þ∣ ∣f yð Þ∣
ρ x� yð Þnþ2 dy (23)

Let both the operators be bounded in Lp Dnþ1
þ

� �
, satisfy the estimates
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The following results hold, which can be proved in the some manner as in
Section 3 (see [12]).

Lemma 4.1. Let f ∈Lp,loc Dnþ1
þ

� �
, p∈ 1,∞ð Þ and for all x0, rð Þ∈Rn�1 � Rþ

ð∞
r
s�

nþ2
p �1∥f∥Lp Eþs x0ð Þð Þds<∞: (25)

If T is bounded on Lp Dnþ1
þ

� �
, then

∥Tf∥Lp Eþr x0ð Þð Þ ≤ cr
nþ2
p

ð∞
2r
s�

nþ2
p �1∥f∥Lp Eþs x0ð Þð Þds, (26)

where the constant c is independent of r, x0 and f :
Theorem 4.1. Suppose φ be a weight function satisfying (14), and let T be a sublinear

operator satisfying (22) and (24). Then T is bounded in Mp,φ Dnþ1
þ

� �
, p∈ 1,∞ð Þ and

∥Tf∥Mp,φ Dnþ1
þð Þ ≤C∥f∥Mp,φ Dnþ1

þð Þds, (27)

with a constant c independent of f :
Lemma 4.2. Let p∈ 1,∞ð Þ, a∈BMO Dnþ1

þ
� �

and Ta satisfy (23) and (24). Suppose
that, for all f ∈Lp,loc Dnþ1

þ
� �

,

ð∞
r

1þ ln
s
r

� �
∥f∥Lp Eþs x0ð Þð Þ s

�nþ2
p �1ds<∞, ∀ x0, r

� �
∈nþ1 � Rþ: (28)

Then

∥Taf∥Lp Eþr x0ð Þð Þ ≤C∥a∥∗ r
nþ2
p

ð∞
2r

1þ ln
s
r

� �
∥f∥Lp Eþs x0ð Þð Þ

ds

s
nþ2
p þ1

with a constant c independent of a, f , x0 and r.
Theorem 4.2. Let p∈ 1,∞ð Þ, a∈BMO Dnþ1

þ
� �

, let φ x0, rð Þ be a weight function
satisfying (20) and Ta be a sublinear operator satisfying (7), (8). Then sublinear
operator Ta is bounded in Mp,φ Dnþ1

þ
� �

and

∥Taf∥Mp,φ Dnþ1
þð Þ ≤C∥a∥∗ ∥f∥Mp,φ Dnþ1

þð Þ (29)

constant c independent of a and f .

5. Singular and non-singular integrals in generalized Morrey spaces

We apply the above results to Calderon-Zygmund-type operators with parabolic
kernel. Since these operators are sublinear and bounded in Lp nþ1� �

, their conti-
nuity in Mp,φ follows immediately. We are called a parabolic Calderon-Zygmund
kernel if the following a measurable function K x, ξð Þ : nþ1 � nþ1n 0f g ! R.

1.K x, �ð Þ is a parabolic Calderon-Zygmund kernel for a.e. x∈nþ1 :

1a: K x, �ð Þ∈C∞ nþ1� �n 0f g,
1b: K x, μξ0, μ2sð Þð Þ ¼ μ�n�2K x, ξð Þ for all μ>0, ξ ¼ ξ0, sð Þ,
1c:
Ð
SnK x, ξð Þdσξ ¼ 0,

Ð
Sn ∣K x, ξð Þ∣dσξ < þ∞:
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2.∥Dβ
ξK∥L∞ nþ1�Snð Þ ≤M βð Þ<∞ for every multi-index β:

Moreover,

∣K x, x� yð Þ∣ ≤ ρ x� yð Þ�n�2∣K x,
x0 � y0

ρ x� yð Þ ,
t� τ

ρ2 x� yð Þ
� �� �

∣ ≤
M

ρ x� yð Þnþ2 ,

which means the singular integrals

Bf xð Þ ¼ PV
ð

nþ1
K x, x� yð Þf yð Þdy, (30)

C a, f½ � xð Þ ¼ PV
ð

nþ1
K x, x� yð Þ a yð Þ � a xð Þ½ �f yð Þdy

are sublinear and bounded in Lp nþ1� �
according to the results in [1, 13].

Theorem 5.1. Let f ∈Mp,φ nþ1� �
m then there exist constants c depending on n, p

and the kernel such that

∥Bf∥Mp,φ nþ1ð Þ ≤C∥f∥Mp,φ nþ1ð Þ, (31)

∥C a, f½ �∥Mp,φ nþ1ð Þ ≤C∥a∥∗ ∥f∥Mp,φ nþ1ð Þ:

Corollary 5.1. For any cylinder Q in nþ1
þ , f ∈Mp,φ Qð Þ, a∈BMO Qð Þ and

K x, ξð Þ : Q � nþ1
þ n 0f g ! R: Then the operators (30) are bounded in Mp,φ Qð Þ and

∥Bf∥Mp,φ Qð Þ ≤C∥f∥Mp,φ Qð Þ, ∥C a, f½ �∥Mp,φ Qð Þ≤C∥a∥∗ ∥f∥Mp,φ Qð Þ: (32)

constant c independent of a and f .
We define the extensions

K x, ξð Þ ¼ K x, ξð Þ, x, ξð Þ∈Q � Rnþ1
þ n 0f g

0, elsewhere

(
, f xð Þ ¼ f xð Þ, x∈Q

0, x ∉ Q

�

and then the singular integral satisfying inequalities

∣Bf xð Þ∣ ≤ ∣Bf xð Þ∣ ≤C
ð

nþ1

∣f yð Þ∣
ρ x� yð Þnþ2 dy

and

∥Bf∥Mp,φ Qð Þ ≤∥Bf∥Mp,φ nþ1ð Þ ≤C∥f∥Mp,φ nþ1ð Þ ¼ C∥f∥Mp,φ Qð Þ:

Corollary 5.2. Let a∈VMO. Then for any ε>0 there exists a positive number r0 ¼
r0 ε, ηað Þ such that for any Er x0ð Þ with a radius r∈ 0, r0ð Þ and all f ∈Mp,φ Er x0ð Þð Þ

∥C a, f½ �∥Mp,φ Er x0ð Þð Þ ≤Cε∥f∥Mp,φ Er x0ð Þð Þ, (33)

where c is independent of E, f , r, and x0:
For the proof of corollary see [12].
For any x0 ∈Rn

þ and any fixed t>0, define the generalized reflexion
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For the proof of corollary see [12].
For any x0 ∈Rn

þ and any fixed t>0, define the generalized reflexion
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τ xð Þ ¼ τ0 xð Þ, tð Þ, τ0 xð Þ ¼ x0 � 2xn
anαβ x0,tð Þ
annαβ x0,tð Þ

, (34)

where ∣α∣ ≤m, ∣β∣ ≤m, anαβ xð Þ is the last row of the coefficients matrix a xð Þ ¼
aαβ xð Þ� �

of (1). The function τ0 xð Þmaps Rn
þ into Rn

�, and the kernel
K x, τ xð Þ � yð Þ ¼ K x, τ0 xð Þ � y0, t� τð Þ is non-singular for any x, y∈Dnþ1

þ : Taking
x∈Dnþ1

þ , there exists positive constants K1 and K2 such that

K1ρ x� yð Þ≤ ρ τ xð Þ � yð Þ≤K2ρ x� yð Þ: (35)

Let f ∈Mp,φ Dnþ1
þ

� �
, a∈BMO Dnþ1

þ
� �

define the non-singular integral operators

Bf xð Þ ¼
ð

Dnþ1
þ

K x, τ xð Þ � yð Þf yð Þdy,

C a, f½ � xð Þ ¼
ð

Dnþ1
þ

K x, τ xð Þ � yð Þ a yð Þ � a xð Þ½ �f yð Þdy:
(36)

Since K x, τ xð Þ � yð Þ is still homogeneous and satisfies 1b, we have

∣K x, τ xð Þ � yð Þ∣ ≤ M

ρ τ xð Þ � yð Þnþ2 ≤
C

ρ x� yð Þnþ2 :

Hence, the operators (36) are sublinear and bounded in Lp Dnþ1
þ

� �
, p∈ 1,∞ð Þ:

From section 4 the following results are obtained.
Theorem 5.2. Let a∈BMO Dnþ1

þ
� �

and f ∈Mp,φ Dnþ1
þ

� �
with p,φð Þ as in (8) Then

the non-singular operators are continuous in Mp,φ Dnþ1
þ

� �
and

∥Bf xð Þ∥Mp,φðDnþ1 ≤C∥f∥Dnþ1
þ
,

∥C a, f½ � xð Þ∥Mp,φðDnþ1 ≤C∥a∥∗ ∥f∥Dnþ1
þ

(37)

constant C independent of a and f .
Corollary 5.3. For any a∈VMO. Then there exists a positive number r0 ¼ r0 ε,φað Þ

such that for any Er x0ð Þ with a radius r∈ 0, r0ð Þ and all ∥f∥Mp,φ Eþr x0ð Þð Þ

∥C a, f½ �∥Mp,φ Eþr x0ð Þð Þ ≤Cε∥f∥Mp,φ Eþr x0ð Þð Þ (38)

where C is independent of E, f , r and x0, ε>0.

6. Proof of the first main result

Now using boundedness of singular integral of Calderon-Zygmund operators in
generalized Morrey spaces we will get interval estimates for solutions of problem
(1), (2) with coefficients from VMO spaces.

Let Ω to be open bounded domain in Rn, n≥ 3 and we suppose that its boundary
is sufficiently smoothness.

Let coefficients aαβ xð Þ, ∣α∣, ∣β∣ ≤m are symmetric and satisfying to the condition
uniform ellipticity, essential boundedness of the coefficient aαβ xð Þ∈L∞ Qð Þ and
regularity aαβ xð Þ∈VMO Qð Þ: Let f ∈Mp,φ Qð Þ, p,φð Þ as in (8) Since Mp,φ Qð Þ is a
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proper subset of Lp Qð Þ, (1) and (2) is uniquely solvable and the solution u xð Þ belongs

at least toW2m,1
p Qð Þ. Our aim is to show that this solution also belong toW

0 2m,1

p,φ Qð Þ.
For this we need an a priori estimate of u, which we prove in two steps. Before we
give interior estimate. For any x0 ∈Rnþ1

þ define the parabolic semi-cylinders
Cr x0ð Þ ¼ Br x00

� �� t0 � r2, t0ð Þ. Let ϑ∈C∞
0 Crð Þ and suppose that ϑ x, tð Þ ¼ 0, for t≤0.

According to [1, 7, 16], for any x∈ suppϑ the following representation formula for the

higher derivatives of ϑ holds true if u∈W
0 2m

p Qð Þ

D∣α∣u xð Þ ¼ P:V:

ð

nþ1
D∣α∣Γ x, x� yð Þ

X
∣α∣, ∣β∣ ≤ 2m

aαβ xð Þ � aαβ yð Þ� �
Dα,βϑ yð Þ

" #
dy

þP:V:

ð

nþ1
D∣α∣Γ x, x� yð ÞLϑ yð Þdyþ Lϑ xð Þ

ð

Sn
D∣β∣Γ x, yð Þνidσy

(39)

where ν ¼ ν1, … , νnþ1ð Þ is the outward normal to Sn. Here, Γ x, ξð Þ is the funda-
mental solution of the operator L. Γ x, tð Þ can be represented in form

Γ x, ξð Þ ¼ 1

n� 2ð Þωn detaαβ
� �1

2

Xn
i, j¼1

Aαβ xð Þξiξ j

 !2�n
2

for a.e. x∈nþ1 and ∀ξ∈Rnn 0f g, where Aαβ

� �
n�n is inverse matrix for aαβ

� �
n�n:

Since any function ϑ∈W2m,1
p Qð Þ can be approximated by C∞

0 functions, the represen-

tation formula (39) still holds for any ϑ∈W2m,1
p Cr x0ð Þð Þ. The properties of the funda-

mental solution (see [7, 17]) imply that D∣α∣Γ x, yð Þ are variable Calderon-Zygmund
kernels in the sense of our definition above. By notation above, we can write

Dα,βϑ xð Þ ¼ Dα,βC aα,β,ϑ
� �

xð Þ þDα,βB Lϑð Þ xð Þ þ Lϑ xð Þ
ð

Sn
DαΓ x, yð Þνidσy:

∣α∣, ∣β∣ ≤m:

(40)

The operators Dα,βB and Dα,βC are defined by (30) with K x, x� yð Þ ¼
Dα,βΓ x, x� yð Þ. Due to (30) and (31) and the equivalence of the metrics we obtain
for E >0 there exists r0 Eð Þ such that for any r< r0 Eð Þ

∥Dα,βϑ∥Mp,φ Cr x0ð Þð Þ ≤C ∥Dα,βϑ∥Mp,φ Cr x0ð Þð Þ þ ∥Lϑ∥Mp,φ Cr x0ð Þð Þ
� �

(41)

for some r small enough. From (41) we get that

∥Dα,βϑ∥Mp,φ Cr x0ð Þð Þ ≤C n, p,φαð Þ � ∥Dα,βΓ∥L∞ Qð ÞÞ∥Lϑ∥Mp,φ Cr x0ð Þð Þ:

Define a cut-off function ψ xð Þ ¼ ψ1 x0ð Þψ2 tð Þ, with ψ1 ∈C∞
0 Br x00

� �� �
, ψ2 ∈C∞

0 Rð Þ
such that

ψ1 x0ð Þ ¼
1, x0 ∈Bθr x00

� �

0, x0 ∉ Bθ0r x00
� �

,

ψ2 tð Þ ¼
1, t∈ t0 � θrð Þ2, t0

� i

0, t< ðt0 � θ0rð Þ2
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such that
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with θ∈ 0, 1ð Þ, θ0 ¼ θ 3� θð Þ=2>0 and ∣Dαψ ∣ ≤C θ 1� θð Þr½ ��α, ∣α∣ ≤ 2m, ∣ψ t∣ �
∣Dαψ ∣. For any solution u∈W2m,1

p Qð Þ of (1) and (2) define ϑ xð Þ ¼
φ xð Þu xð Þ∈W2m,1

p Crð Þ. Hence,

∥Dα,βu∥Mp,φ Cθ�r x0ð Þð Þ ≤∥Dα,βϑ∥Mp,φ Cθ0r x0ð Þð Þ

≤C∥Lϑ∥Mp,φ Cθ0r x0ð Þð Þ ≤C∥f∥Mp,φ Cθ0r x0ð Þð Þ þ
∥Dαu∥Mp,φ Cθ0r x0ð Þð Þ

θ 1� θð Þr þ ∥u∥Mp,φ Cθ0r x0ð Þð Þ
θ 1� θð Þr½ �2 :

As so,

θ 1� θð Þr½ �2∥Dα,βu∥Mp,φ Cθ�r x0ð Þð Þ ≤

≤C r2∥f∥Mp,φ Qð Þ
� �

þ θ0 1� θ0ð Þr∥Dαu∥Mp,φ Cθ0 �r x0ð Þð Þ þ ∥u∥Mp,φ Cθ0 �r x0ð Þð Þ:

We introduce

θα ¼ sup
0< θ< 1

θ 1� θð Þr½ �α∥Dαu∥Mp,φ Cθ�r x0ð Þð Þ, ∣α∣ ≤ 2m,

the above inequality becomes

θ 1� θð Þr½ �2 � ∥Dαu∥Mp,φ Cθ�r x0ð Þð Þ ≤ θ2m ≤C r2∥f∥Mp,φ Qð Þþθmþθ0
� �

(42)

Now we use following interpolation inequality (see [5])

θm ≤ ε � θ2m þ c
ε
θ0 for any ε∈ 0, 2mð Þ:

where there exists a positive constant C independent of r. Thus (42) becomes

θ 1� θð Þr½ �2∥Dα,βu∥Mp,φ Cθ�r x0ð Þð Þ ≤ θ2m ≤C r2 þ θ0
� �

, ∀θ∈ 0, 1ð Þ:

Taking θ ¼ 1
2 we obtain the Caccioppoli-type estimate

∥Dα,βu∥Mp,φ Cr=2 x0ð Þð Þ ≤C ∥f∥Mp,φ Qð Þ þ
1
r2
∥u∥Mp,φ Cθ�r x0ð Þð Þ

� �

We get the boundedness of the coefficients

∥ut∥Mp,φ Cr=2 x0ð Þð Þ ≤∥a∥L∞ Qð Þ � ∥Dα,βu∥Mp,φ Cr=2 x0ð Þð Þþ

þ∥f∥Mp,φ Cr=2 x0ð Þð Þ ≤C ∥f∥Mp,φ Qð Þþ 1
r2
∥u∥Mp,φ Cr x0ð Þð Þ

� �
:

Let Q 0 ¼ Ω0 � 0,Tð Þ and Q 00 ¼ Ω00 � 0,Tð Þ the cylinders with Ω0 ∈Ω00 ∈Ω. By the
standard covering procedure and partition of the unity we obtain that

∥u∥W2m,1
p,φ Q 0ð Þ ≤C ∥f∥Mp,φ Qð Þ

� �
þ ∥u∥Mp,φ Q 00ð ÞÞ (43)

where C depends on n, p,Λ,T, ∥DΓ∥L∞ Qð Þ, ηα, ∥a∥L∞ Qð Þ and dist Ω0, ∂Ω00ð Þ.
Now we give boundary estimates. For any fixed x0, rð Þ∈nþ1 � Rþ define the semi-
cylinders
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Cþr x0
� � ¼ Bþr x00

� �� 0, r2
� � ¼ ∣x0 � x0∣< r, xn >0, 0< t< r2

with Sþr ¼ x00, 0, tð Þ : ∣x0 � x00∣< r, 0< t< r2. For any solution u∈W2m,1
p Cþr x0ð Þ� �

with supp u∈Cþr x0ð Þ, the following boundary representation formula holds (see
[1, 7, 16]).

Dα,βu xð Þ ¼ Cij aα,β,Dα,βu
� �

xð Þ þ Bij Luð Þ xð Þ þ Lu xð Þ
ð

Sn
DαΓνidσy � Jij xð Þ,

where

Jij xð Þ ¼ Bij Luð Þ xð Þ þ ~Cij aα,β,Dα,βu
h i

xð Þ, i, j ¼ 1, … , n� 1,

Jin xð Þ ¼ Jni xð Þ ¼
Xn
i¼1

∂τ xð Þ
∂xn

� �l

Cil aα,β,Dα,βu

h i
xð Þ þ Bil Luð Þ xð Þ

h i
, i ¼ 1, … , n

Jnn xð Þ ¼
Xn

r, l¼1

∂τ xð Þ
∂xn

� �r
∂τ xð Þ
∂xn

� �l

Cil c,Dα,βu
� �

xð Þ þ Bil Luð Þ xð Þ� �
,

∂τ xð Þ
∂xn

� �
¼ �2 a

n1
α,β xð Þ

annα,β xð Þ, … ,�2 a
nn�1
α,β xð Þ
annα,β xð Þ ,�1, 0

 !
:

Here Bij and Cij are non-singular operators defined by (36) with a kernel
K x, τ xð Þ � yð Þ ¼ Dα,βΓ x, τ xð Þ � yð Þ. Applying the estimates (37) and (38) and having

in mind that the components of the vector ∂τ xð Þ
∂xn

� �
are bounded, we obtain that

∥Dα,βu∥Mp,φ Cr x0ð Þð Þ ≤C ∥f∥Mp,φ Qð Þ þ r2∥u∥Mp,φ Cr x0ð Þð Þ
� �

Taking r small enough we can move the norm of u on the left-hand side,
obtaining that

∥u∥Mp,φ Cr x0ð Þð Þ ≤C∥f∥Mp,φ Qð Þ

with a constant C depending on n, p,Λ,T, ηα, ∥a∥L∞ Qð Þ. By covering the bound-
ary with small cylinders, using a partition of the unit subordinated by that covering
and local flattening of ∂Ω we get that

∥u∥W2m,1
p,φ QnQ 0ð Þ ≤C∥f∥Mp,φ Qð Þ (44)

Using (43) and (44), we obtain (5).

7. The higher order elliptic equations in unbounded domains

Now we are consider boundary value the Dirichlet problem for higher order
nondivergence uniformly elliptic equations with coefficients in modified Morrey
spaces in unbounded domains Ω

Lu ¼
X

∣α∣ ≤ ∣β∣ ≤m

aα,βDα,βu ¼ f xð Þ in Ω

Dαu ¼ g xð Þ ∣α∣ ≤m� 1 on ∂Ω
(45)
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where the coefficients matrix a xð Þ ¼ aijα,β xð Þ
n on

i,j¼1
satisfies

∃Λ>0 Λ
X
∣α∣¼m

ξ2α ≤
X

∣α∣¼∣β∣¼m
aα,βξαξβ, (46)

for a.e. x∈Ω, ∀ξ∈Rn, aα,β ¼ aβ,α,ξ ¼ ξα, kαj¼ m∈RN� �
, N–number different

multiindeks with length equal to m.
Under these assumptions we prove that the maximal operator M are bounded

from the modified Morrey space ~Lp,λ Rnð Þ to ~Lq,λ Rnð Þ if and only if,

α

n
≤

1
p
� 1
q
≤

α

n� λ
:

For x∈Rn and t>0, let B x, tð Þ denote the open ball centered at x of radius t and
∁B x, tð Þ ¼ RnnB x, tð Þ. One of the most important variants of the Hardy-Littlewood
maximal function is the so-called fractional maximal function defined by the formula

Mαf xð Þ ¼ sup
t>0

B x, tÞð j�1þα
n

ð

B x,tð Þ
∣f yð Þ∣dy, 0≤ α< n,

�����

where ∣B x, tð Þ∣ is the Lebesgue measure of the ball B(x,t). The fractional maximal
function Mαf coincides for α ¼ 0 with the Hardy-Littlewood maximal function
Mf � M0f .

Let 1≤ p<∞, 0≤ λ≤ n, t½ �1 ¼ min 1, tf g. We denote by ~Lp,λ Rnð Þ the modified
Morrey space, as the set of locally integrable functions f xð Þ, x∈Rn, with the finite
norm

∥f∥~Lp,λ
¼ sup

x∈Rn, t>0
t½ ��λ1

ð

B x,tð Þ
f yð Þj jpdy

 !1
p

Note that

~Lp,0 Rnð Þ ¼ Lp,0 Rnð Þ ¼ Lp Rnð Þ,
~Lp,λ Rnð Þ↪Lp,λ Rnð Þ∩Lp Rnð Þ and max ∥f∥Lp,λ

, ∥f∥Lp

n o
≤∥f∥~Lp,λ

,

and if λ<0 or λ> n, then Lp,λ Rnð Þ ¼ ~Lp,λ Rnð Þ ¼ θ, where θ is the set of all
functions equivalent to 0 on Rn. W~Lp,λ Rnð Þ-the modified weak Morrey space as the
set of locally integrable functions f xð Þ, x∈Rn with finite norm

∥f∥W~Lp,λ
¼ sup

r>0
r sup
x∈Rn, t>0

t½ ��λ1 fy∈B x, tð Þ :j f yð Þj> rgj j
� �1

p
:

Note that

W~Lp,0 Rnð Þ ¼WLp,0 Rnð Þ ¼WLp Rnð Þ,
~Lp,λ Rnð Þ⊂W~Lp,λ Rnð Þ and ∥f∥W~Lp,λ

≤∥f∥~Lp,λ
:

We study the ~Lp,λ-boundedness of the maximal operator M.
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The classical result by Hardy-Littlewood-Sobolev states that if 1< p< q<∞, then

the Riesz potential Iα is bounded from Lp Rnð Þ to Lq Rnð Þ if and only if α ¼ n 1
p� 1

q

� �

and for p ¼ 1< q<∞, Iα is bounded from L1 Rnð Þ to WLq Rnð Þ if and only if α ¼
n 1� 1

q

� �
. D.R. Adams studied the boundedness of the Iα in Morrey spaces and

proved the follows statement.
Theorem (Adams) Let 0< α< n and 0≤ λ< n� α, 1≤ p< n�λ

α .

1. If 1< p< n�λ
α , then condition 1

p� 1
q ¼ α

n�λ is necessary and sufficient for the
boundedness of the operator Iα from Lp,λ Rnð Þ to Lq,λ Rnð Þ.

2. If p ¼ 1, then condition 1� 1
q ¼ α

n�λ is necessary and sufficient for the
boundedness of the operator Iα from L1,λ Rnð Þ to WLq,λ Rnð Þ.

If α ¼ n
p� n

q, then λ ¼ 0 and the statement of Theorem reduced to the aforemen-
tioned result by Hardy-Littlewood-Sobolev Theorem also implies the boundedness
of the fractional maximal operator Mα.

In this section we study the fractional maximal integral and the Riesz potential in
the modified Morrey space. In the case p ¼ 1 we prove that the operator Iα is
bounded from ~L1,λ Rnð Þ to W~Lq,λ Rnð Þ if and only if, αn ≤ 1� 1

q ≤
α

n�λ. In the case

1< p< n�λ
α we prove that the operator Iα is bounded from ~Lp,λ Rnð Þ to ~Lq,λ Rnð Þ if and

only if, αn ≤
1
p� 1

q ≤
α

n�λ.

Theorem 7.1. If f ∈ ~Lp,λ Rnð Þ, 1< p<∞, 0≤ λ< n, then Mf ∈ ~Lp,λ Rnð Þ and

∥Mf∥~Lp,λ
≤Cp,λ∥f∥~Lp,λ

,

where Cp,λ depends only on p, λ and n.
Proof. We use Fefferman-Stein inequality and get

ð

B x,tð Þ
Mf yð Þð Þpdy≤C

ð

Rn
f yð Þj jpMχB x,tð Þ yð Þdy:

Later from some estimates for MχB x,tð Þ we have the following inequalities

ð

B x,tð Þ
Mf yð Þð Þpdy≤C

ð

B x,tð Þ
f yð Þj jpdyþ

 

þ
X∞
j¼0

ð

B x,2 jþ1tð ÞnB x,2 jtð Þ
tn f yð Þj jpdy
jx� yjþtð Þn

!
≤C t½ �λ1 � ∥f∥p~Lp,λ

:

□
Theorem 7.2. (see [18]) Let 0< α< n, 0≤ λ< n� α and 1≤ p< n�λ

α .

1.If 1< p< n�λ
α , then condition α

n ≤
1
p� 1

q ≤
α

n�λ is necessary and sufficient for the

boundedness of the Riesz potential operator Iα from ~Lp,λ Rnð Þ to ~Lq,λ Rnð Þ.

2. If p ¼ 1< n�λ
α , then condition α

n ≤ 1� 1
q ≤

α
n�λ is necessary and sufficient for the

boundedness of the operator Iα from ~L1,λ Rnð Þ to ~Lq,λ Rnð Þ.
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Recall that, for 0< α< n

Mαf xð Þ≤ ν
α
n�1
n Iα jf jð Þ xð Þ

where νn is the volume of the unit ball in Rn. From [7] for unbounded domains
Ω⊂Rn we have following result.

Theorem 7.3. Let Ω⊂Rn be an unbounded domains with noncompact boundary ∂Ω,
and 0< α< n, 0≤ λ< n� α and 1< p< n�λ

α . Also let satisfies conditions α
n ≤

1
p� 1

q ≤
α

n�λ,

f ∈ ~Lq,λ Ωð Þ, function U xð Þ is a solution of problem (45). Then there is exist constant C
which dependent only at n, λ, p, q,Ω such that

∥U∥ ~W
2m
p,λ

Ωð Þ≤C∥f∥~Lq,λ Ωð Þ, (47)

where ~W
2m
p,λ-is correspondingly modified Sobolev-Morrey space.

The proved Theorem 7.3 consequence from methods of [7] and Theorem 7.1
and 7.2.
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Chapter 18

Gradient Optimal Control of
the Bilinear Reaction–Diffusion
Equation
El Hassan Zerrik and Abderrahman Ait Aadi

Abstract

In this chapter, we study a problem of gradient optimal control for a bilinear
reaction–diffusion equation evolving in a spatial domain Ω⊂n using distributed
and bounded controls. Then, we minimize a functional constituted of the deviation
between the desired gradient and the reached one and the energy term. We prove
the existence of an optimal control solution of the minimization problem. Then this
control is characterized as solution to an optimality system. Moreover, we discuss
two special cases of controls: the ones are time dependent, and the others are space
dependent. A numerical approach is given and successfully illustrated by
simulations.

Keywords: distributed bilinear systems, reaction–diffusion equation,
controllability, optimal control

1. Introduction

The controllability of distributed bilinear systems governed by partial differen-
tial equations has been studied by many authors: in [1], the authors developed the
weak controllability of the beam and rod equations in the mono-dimensional case.
In [2], the author considered the controllability of semilinear parabolic and hyper-
bolic systemse using distributed controls. In [3], the author studied the exact con-
trollability of the semilinear wave equations in one space dimension. The optimal
control problem for a class of infinite dimensional bilinear systems have been
consedered in many works. In [4], the author proved the existence and characteri-
zation of an optimal control of a bilinear convective-diffusive fluid model using
bounded controls. In [5], the author developed optimal control problem of a bilinear
heat equation with distributed bounded control. In [6], the authors studied optimal
control for a class of bilinear systems using unbounded control. In [7], the authors
considered the optimal control problem of the wave equation using bounded
boundary control. In [8], the authors considered the optimal control problem of the
Kirchhoff plate equation with distributed bounded controls. In [9], the author
proved the optimal control of the bilinear wave equation using distributed and
bounded controls. The regional optimal control problem of a class of infinite
dimensional bilinear systems with unbounded controls was developed in [10], then
the authors studied the existence and characterization of an optimal control.
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In [11], the authors studied the constrained regional optimal control of a bilinear
plate equation using distributed and bounded controls. The notion of gradient
controllability is very important, since its close to real applications and there
exist systems that cannot be controllable but gradient of the state is controllable.
Then in [12], the authors proved the regional controllability of parabolic systems
using HUM method.

In the present work, we study the gradient optimal control problem of the
bilinear reaction–diffusion equation using distributed and bounded controls. Then,
we examine the existence and we give characterization of an optimal control. Also,
an algorithm and simulations are given. Let Ω be an open bounded domain of
n, n≥ 1ð Þ with a C2 boundary ∂Ω, we denote by Q ¼ Ω� 0,Tð Þ and Σ ¼
∂Ω� 0,Tð Þ, and we consider the bilinear reaction–diffusion equation

yt x, tð Þ � Δy x, tð Þ ¼ u x, tð Þy x, tð Þ in Q
y x, 0ð Þ ¼ y0 xð Þ in Ω
y x, tð Þ ¼ 0 on Σ,

8><
>:

(1)

where u∈Uρ≔ u∈L∞ Qð Þ j �ρ≤ u≤ ρ a:e: inQf g is a scalar control function,
and ρ is a positive constant.

Let us consider the following state space

H≔L2 0,T;H1
0 Ωð Þ� �

:

For all y0 ∈H1
0 Ωð Þ and u∈Uρ, the system (1) has a unique weak solution y∈H

(see for example [13, 14]).
Define the operator

∇ : H1
0 Ωð Þ ! L2 Ωð Þ� �n

y! ∇y ¼ ∂y
∂x1

, … ,
∂y
∂xn

� �
,

and ∇∗ its adjoint.
Let us recall that the system (1) is weakly gradient controllable if for all

yd ∈ L2 Ωð Þ� �n
and ε>0, there exist a control u∈Uρ such that

∥∇y :,Tð Þ � yd :ð Þ∥ L2 Ωð Þð Þn ≤ ε,

where yd ¼ yd1 , … , ydn
� �

is the gradient of the desired state in L2 Ωð Þ� �n
.

Our problem consists in finding a control u that steers the gradient of state close
to yd, over the time interval 0,T½ � with a reasonable amount of energy. This may be
stated as the following minimization problem

min
u∈Uρ

J uð Þ, (2)

where

J uð Þ ¼ 1
2

ðT
0
∥∇y :, tð Þ � yd :ð Þ∥2

L2 Ωð Þð Þndtþ
β

2

ð

Q
u2 x, tð ÞdQ, (3)

with β>0.

296

Recent Developments in the Solution of Nonlinear Differential Equations

The rest of the paper is organized as follows: in section 2, we study the existence
of an optimal control solution of (2). In section 3, we give a characterization of an
optimal control solution of the problem (2), and we discuss two special cases of an
optimal control solution of such problem. Finally, in section 4, we present an
algorithm and simulations.

2. Existence of an optimal control

The main result of the existence of an optimal control solution of (2) is given by
the following theorem.

Theorem 1. There exists an optimal control u ∗ ∈Uρ, solution of (2).
Proof: Let un be a minimizing sequence in Uρ, such that

lim inf
n!þ∞ J unð Þ ¼ inf

u∈Uρ

J uð Þ: (4)

Then, according to the nature of the cost function J, we can deduce that un is
uniformly bounded in Uρ.

So, we can extract from un a subsequence also denoted by un such that un * u
weakly in Uρ.

In other hand, using the weak form of system (1), we deduce that

1
2
d
dt

∥yn∥2L2 Ωð Þ þ
ð

Ω
∇yn∇yndx ¼

ð

Ω
un ynj j2dx: (5)

By integration with respect to time and using the function un is uniformly
bounded in L∞ Qð Þ, we have

∥yn∥2L2 Ωð Þ þ
ðt
0
∥yn∥H1

0 Ωð Þds≤ c1
ðt
0
∥yn∥2L2 Ωð Þds, (6)

where c1 is a positive constant.
Using Gronwall’s Lemma, we deduce that yn uniformly bounded in

L∞ 0,T;L2 Ωð Þ� �
, and then yn uniformly bounded in L2 0,T;H1

0 Ωð Þ� �
.

Using the previous result and system (1), we obtain that ynt is uniformly bounded
in L2 0,T;H�1 Ωð Þ� �

, and then yn is uniformly bounded in H.
Using the above bounds, we can extract a subsequence satisfying the following

convergence properties

yn * y ∗ weakly in L2 0,T;H1
0 Ωð Þ� �

(7)

yn ! y ∗ strongly in L2 Qð Þ (8)

un * u ∗ weakly in L2 Qð Þ: (9)

Since Uρ is a closed and convex subset of L∞ Qð Þ⊂L2 Qð Þ, Uρ is weakly closed in
L2 Qð Þ. Then u ∗ ∈Uρ ⊂L2 Qð Þ. On the other hand, since �ρ≤ un ≤ ρ for all n, un *
u ∗ ∗ weakly ∗ in L∞ Qð Þ, and hence un * u ∗ ∗ weakly in L2 Qð Þ. By the uniqueness of
the weak limit, we obtain u ∗ ¼ u ∗ ∗ and u ∗ ∈Uρ ⊂L∞ Qð Þ.

Now, we show that unyn ! u ∗ y ∗ weakly in L2 Qð Þ.
Since unyn � u ∗ y ∗ ¼ un yn � y ∗ð Þ þ un � u ∗ð Þy ∗ , and using (7), (8) and (9), we

obtain unyn ! u ∗ y ∗ weakly in L2 Qð Þ.
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In [11], the authors studied the constrained regional optimal control of a bilinear
plate equation using distributed and bounded controls. The notion of gradient
controllability is very important, since its close to real applications and there
exist systems that cannot be controllable but gradient of the state is controllable.
Then in [12], the authors proved the regional controllability of parabolic systems
using HUM method.

In the present work, we study the gradient optimal control problem of the
bilinear reaction–diffusion equation using distributed and bounded controls. Then,
we examine the existence and we give characterization of an optimal control. Also,
an algorithm and simulations are given. Let Ω be an open bounded domain of
n, n≥ 1ð Þ with a C2 boundary ∂Ω, we denote by Q ¼ Ω� 0,Tð Þ and Σ ¼
∂Ω� 0,Tð Þ, and we consider the bilinear reaction–diffusion equation

yt x, tð Þ � Δy x, tð Þ ¼ u x, tð Þy x, tð Þ in Q
y x, 0ð Þ ¼ y0 xð Þ in Ω
y x, tð Þ ¼ 0 on Σ,

8><
>:

(1)

where u∈Uρ≔ u∈L∞ Qð Þ j �ρ≤ u≤ ρ a:e: inQf g is a scalar control function,
and ρ is a positive constant.

Let us consider the following state space

H≔L2 0,T;H1
0 Ωð Þ� �

:

For all y0 ∈H1
0 Ωð Þ and u∈Uρ, the system (1) has a unique weak solution y∈H

(see for example [13, 14]).
Define the operator

∇ : H1
0 Ωð Þ ! L2 Ωð Þ� �n

y! ∇y ¼ ∂y
∂x1

, … ,
∂y
∂xn

� �
,

and ∇∗ its adjoint.
Let us recall that the system (1) is weakly gradient controllable if for all

yd ∈ L2 Ωð Þ� �n
and ε>0, there exist a control u∈Uρ such that

∥∇y :,Tð Þ � yd :ð Þ∥ L2 Ωð Þð Þn ≤ ε,

where yd ¼ yd1 , … , ydn
� �

is the gradient of the desired state in L2 Ωð Þ� �n
.

Our problem consists in finding a control u that steers the gradient of state close
to yd, over the time interval 0,T½ � with a reasonable amount of energy. This may be
stated as the following minimization problem

min
u∈Uρ

J uð Þ, (2)

where

J uð Þ ¼ 1
2

ðT
0
∥∇y :, tð Þ � yd :ð Þ∥2

L2 Ωð Þð Þndtþ
β

2

ð

Q
u2 x, tð ÞdQ, (3)

with β>0.
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The rest of the paper is organized as follows: in section 2, we study the existence
of an optimal control solution of (2). In section 3, we give a characterization of an
optimal control solution of the problem (2), and we discuss two special cases of an
optimal control solution of such problem. Finally, in section 4, we present an
algorithm and simulations.

2. Existence of an optimal control

The main result of the existence of an optimal control solution of (2) is given by
the following theorem.

Theorem 1. There exists an optimal control u ∗ ∈Uρ, solution of (2).
Proof: Let un be a minimizing sequence in Uρ, such that

lim inf
n!þ∞ J unð Þ ¼ inf

u∈Uρ

J uð Þ: (4)

Then, according to the nature of the cost function J, we can deduce that un is
uniformly bounded in Uρ.

So, we can extract from un a subsequence also denoted by un such that un * u
weakly in Uρ.

In other hand, using the weak form of system (1), we deduce that

1
2
d
dt

∥yn∥2L2 Ωð Þ þ
ð

Ω
∇yn∇yndx ¼

ð

Ω
un ynj j2dx: (5)

By integration with respect to time and using the function un is uniformly
bounded in L∞ Qð Þ, we have

∥yn∥2L2 Ωð Þ þ
ðt
0
∥yn∥H1

0 Ωð Þds≤ c1
ðt
0
∥yn∥2L2 Ωð Þds, (6)

where c1 is a positive constant.
Using Gronwall’s Lemma, we deduce that yn uniformly bounded in

L∞ 0,T;L2 Ωð Þ� �
, and then yn uniformly bounded in L2 0,T;H1

0 Ωð Þ� �
.
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in L2 0,T;H�1 Ωð Þ� �
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yn * y ∗ weakly in L2 0,T;H1
0 Ωð Þ� �

(7)
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u ∗ ∗ weakly ∗ in L∞ Qð Þ, and hence un * u ∗ ∗ weakly in L2 Qð Þ. By the uniqueness of
the weak limit, we obtain u ∗ ¼ u ∗ ∗ and u ∗ ∈Uρ ⊂L∞ Qð Þ.

Now, we show that unyn ! u ∗ y ∗ weakly in L2 Qð Þ.
Since unyn � u ∗ y ∗ ¼ un yn � y ∗ð Þ þ un � u ∗ð Þy ∗ , and using (7), (8) and (9), we

obtain unyn ! u ∗ y ∗ weakly in L2 Qð Þ.
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Thus y ∗ ¼ y u ∗ð Þ is the solution of system (1) with control u ∗ .
Since the functional J is lower semi-continuous with respect to weak conver-

gence (basically Fatou’s lemma), we obtain

J u ∗ð Þ≤ 1
2
lim inf
n!þ∞

ðT
0
∥∇yn :, tð Þ � yd :ð Þ∥2

L2 Ωð Þð Þndtþ
β

2
lim inf
n!þ∞

ð

Q
unð Þ2 x, tð Þdxdt

≤ lim inf
n!þ∞ J unð Þ

¼ inf
u∈Uρ

J uð Þ:

Finally, we conclude that u ∗ is an optimal control.

3. Characterization of an optimal control

This section is devoted to characterization of an optimal control solution of the
problem (2).

3.1 Time and space control dependent

In this part, we give characterization of an optimal control that depend on time
and space.

The following result give the differentiability of the mapping u! y uð Þ.
Lemma 1 The mapping u∈Uρ ! y uð Þ∈H is differentiable in the following sense

y uþ εhð Þ � y uð Þ
ε

* ϕ weakly  in H as ε! 0, forany u, uþ εh∈Uρ

Moreover, ϕ ¼ ϕ y, hð Þ satisfies the following system

ϕt x, tð Þ � Δϕ x, tð Þ ¼ u x, tð Þϕ x, tð Þ þ h x, tð Þy x, tð Þ on Q
ϕ x, 0ð Þ ¼ 0 in Ω
ϕ x, tð Þ ¼ 0 in Σ:

8><
>:

(10)

Proof: Consider yε ¼ y uþ εhð Þ and y ¼ y uð Þ. Then yε�y
ε

� �
is a weak solution of

yε�y
ε

� �
t
� Δ

yε � y
ε

� �
¼ u

yε � y
ε

� �
þ hyε on Q

yε � y
ε

� �
x, 0ð Þ ¼ 0 in Ω

yε � y
ε

� �
x, tð Þ ¼ 0 in Σ:

8>>>>>>><
>>>>>>>:

Using the result (6), it follows that

∥
yε � y

ε
∥H ≤C,

where C depends on the L∞ bound on h, but is independent of ε. Hence on a
subsequence, by weak compactness, we have
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yε � y
ε

* ϕ weakly in L∞ 0,T½ �;H1
0 Ωð Þ� �

yε � y
ε

� �

t
* ϕt weakly in L∞ 0,T½ �;H�1 Ωð Þ� �

:

By the definition of weak solution, we have

yε � y
ε

� �

t
,ψ

� �
�
ð

Ω
∇

yε � y
ε

� �
∇ψdx ¼

ð

Ω
u

yε � y
ε

� �
ψdxþ

ð

Ω
hyεψdx, (11)

for any ψ ∈H1
0 Ωð Þ, and a.e 0≤ t≤T.

Letting ε! 0 in (11), we conclude that ϕ is the weak solution of system (10).
Now, we give characterization of an optimal control that depend on time and space.
Theorem 2 An optimal control solution of problem (2) is given by the formula

u ∗ x, tð Þ ¼ max �ρ, min � 1
β

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þ, ρ
 ! !

, (12)

where p∈ C 0,T½ �;Hð Þ is the weak solution of the adjoint system

pit x, tð Þ � Δpi x, tð Þ ¼ �u ∗ x, tð Þpi x, tð Þ on Q

pi x,Tð Þ ¼ ∂y Tð Þ
∂xi

� ydi

� �
in Ω

pi x, tð Þ ¼ 0 in Σ:

8>>><
>>>:

(13)

Proof: Let u ∗ ∈Uρ and y ¼ y u ∗ð Þ be the corresponding weak solution, and let
u ∗ þ εh∈Uρ, for ε>0 and yε ¼ y u ∗ þ εhð Þ.

Since J reaches its minimum at u ∗ , then

0≤ lim
ε!0þ

J u ∗ þ εhð Þ � J u ∗ð Þ
ε

¼ lim
ε!0þ

Xn
i¼1

1
2

ð

Ω

ðT
0

∂ϕ

∂xi

∂pi
∂t

dt
�

þ
ðT
0
�Δ ∂ϕ

∂xi
þ u

∂ϕ

∂xi
þ h

∂y
∂xi

pi

� �
dt
�
dx

þ lim
ε!0þ

β

2

ð

Q
2hu ∗ þ εh2
� �

dQ:

Then

0≤
ð

Q
βhudQ þ

Xn
i¼1

ð

Q
h
∂y
∂xi

pidQ ¼
ð

Q
h βuþ

Xn
i¼1

ð

Q
h
∂y
∂xi

pi

 !
dQ :

Using a standard control argument based on the choices for the variation h x, tð Þ,
an optimal control is given by

u ∗ x, tð Þ ¼ max �ρ, min � 1
β

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þ, ρ
 ! !

:

3.2 Time or space control dependent

In this subsection, we study two cases of controls: the first ones are time depen-
dent u tð Þ, and the others are space dependent u xð Þ.
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Thus y ∗ ¼ y u ∗ð Þ is the solution of system (1) with control u ∗ .
Since the functional J is lower semi-continuous with respect to weak conver-

gence (basically Fatou’s lemma), we obtain

J u ∗ð Þ≤ 1
2
lim inf
n!þ∞

ðT
0
∥∇yn :, tð Þ � yd :ð Þ∥2

L2 Ωð Þð Þndtþ
β

2
lim inf
n!þ∞

ð

Q
unð Þ2 x, tð Þdxdt

≤ lim inf
n!þ∞ J unð Þ

¼ inf
u∈Uρ

J uð Þ:

Finally, we conclude that u ∗ is an optimal control.

3. Characterization of an optimal control

This section is devoted to characterization of an optimal control solution of the
problem (2).

3.1 Time and space control dependent

In this part, we give characterization of an optimal control that depend on time
and space.

The following result give the differentiability of the mapping u! y uð Þ.
Lemma 1 The mapping u∈Uρ ! y uð Þ∈H is differentiable in the following sense

y uþ εhð Þ � y uð Þ
ε

* ϕ weakly  in H as ε! 0, forany u, uþ εh∈Uρ

Moreover, ϕ ¼ ϕ y, hð Þ satisfies the following system

ϕt x, tð Þ � Δϕ x, tð Þ ¼ u x, tð Þϕ x, tð Þ þ h x, tð Þy x, tð Þ on Q
ϕ x, 0ð Þ ¼ 0 in Ω
ϕ x, tð Þ ¼ 0 in Σ:

8><
>:

(10)

Proof: Consider yε ¼ y uþ εhð Þ and y ¼ y uð Þ. Then yε�y
ε

� �
is a weak solution of

yε�y
ε

� �
t
� Δ

yε � y
ε

� �
¼ u

yε � y
ε

� �
þ hyε on Q

yε � y
ε

� �
x, 0ð Þ ¼ 0 in Ω

yε � y
ε

� �
x, tð Þ ¼ 0 in Σ:

8>>>>>>><
>>>>>>>:

Using the result (6), it follows that

∥
yε � y

ε
∥H ≤C,

where C depends on the L∞ bound on h, but is independent of ε. Hence on a
subsequence, by weak compactness, we have
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yε � y
ε

* ϕ weakly in L∞ 0,T½ �;H1
0 Ωð Þ� �

yε � y
ε

� �

t
* ϕt weakly in L∞ 0,T½ �;H�1 Ωð Þ� �

:

By the definition of weak solution, we have

yε � y
ε

� �

t
,ψ

� �
�
ð

Ω
∇

yε � y
ε

� �
∇ψdx ¼

ð

Ω
u

yε � y
ε

� �
ψdxþ

ð

Ω
hyεψdx, (11)

for any ψ ∈H1
0 Ωð Þ, and a.e 0≤ t≤T.

Letting ε! 0 in (11), we conclude that ϕ is the weak solution of system (10).
Now, we give characterization of an optimal control that depend on time and space.
Theorem 2 An optimal control solution of problem (2) is given by the formula

u ∗ x, tð Þ ¼ max �ρ, min � 1
β

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þ, ρ
 ! !

, (12)

where p∈ C 0,T½ �;Hð Þ is the weak solution of the adjoint system

pit x, tð Þ � Δpi x, tð Þ ¼ �u ∗ x, tð Þpi x, tð Þ on Q

pi x,Tð Þ ¼ ∂y Tð Þ
∂xi

� ydi

� �
in Ω

pi x, tð Þ ¼ 0 in Σ:

8>>><
>>>:

(13)

Proof: Let u ∗ ∈Uρ and y ¼ y u ∗ð Þ be the corresponding weak solution, and let
u ∗ þ εh∈Uρ, for ε>0 and yε ¼ y u ∗ þ εhð Þ.

Since J reaches its minimum at u ∗ , then

0≤ lim
ε!0þ

J u ∗ þ εhð Þ � J u ∗ð Þ
ε

¼ lim
ε!0þ

Xn
i¼1

1
2

ð

Ω

ðT
0

∂ϕ

∂xi

∂pi
∂t

dt
�

þ
ðT
0
�Δ ∂ϕ

∂xi
þ u

∂ϕ

∂xi
þ h

∂y
∂xi

pi

� �
dt
�
dx

þ lim
ε!0þ

β

2

ð

Q
2hu ∗ þ εh2
� �

dQ:

Then

0≤
ð

Q
βhudQ þ

Xn
i¼1

ð

Q
h
∂y
∂xi

pidQ ¼
ð

Q
h βuþ

Xn
i¼1

ð

Q
h
∂y
∂xi

pi

 !
dQ :

Using a standard control argument based on the choices for the variation h x, tð Þ,
an optimal control is given by

u ∗ x, tð Þ ¼ max �ρ, min � 1
β

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þ, ρ
 ! !

:

3.2 Time or space control dependent

In this subsection, we study two cases of controls: the first ones are time depen-
dent u tð Þ, and the others are space dependent u xð Þ.
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• Case 1: u ¼ u tð Þ.

Here, we consider the admissible controls set

Uρ ¼ u∈L∞ 0,Tð Þ : �ρ≤ u≤ ρ a:e in 0,Tð Þf g (14)

and we take the functional cost

J uð Þ ¼ 1
2

ðT
0
∥∇y :, tð Þ � yd :ð Þ∥2

L2 Ωð Þð Þndtþ
β

2

ðT
0
u2 tð Þdt: (15)

Corollary 1 Under conditions (14) and (15), an optimal control is given by the
formula

u tð Þ ¼ max �ρ, min � 1
β

ð

Ω

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdx, ρ
 ! !

, (16)

where y is the weak solution of the equation

yt x, tð Þ � Δy x, tð Þ ¼ u tð Þy x, tð Þ on Q
y x, 0ð Þ ¼ y0 xð Þ, in Ω
y x, tð Þ ¼ 0 in Σ,

8><
>:

and pi is the weak solution of the adjoint equation

pit x, tð Þ � Δpi x, tð Þ ¼ �u ∗ tð Þpi x, tð Þ on Q

pi x,Tð Þ ¼ ∂y Tð Þ
∂xi

� ydi

� �
in Ω

pi x, tð Þ ¼ 0 in Σ:

8>>>><
>>>>:

Proof: Using the same steps as in the proof of Theorem 2, let h ¼ h tð Þ be an
arbitrary function with uþ εh∈Uρ for small ε.

We have

ðT
0
h tð Þ

ð

Ω

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdxþ βu tð Þ
 !

dt≥0:

By using a standard control argument concerning the sign of the variation h, we
obtain

u tð Þ ¼ max �ρ, min � 1
β

ð

Ω

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdx, ρ
 ! !

:

• Case 2: u ¼ u xð Þ.

We consider the admissible controls set

Uρ ¼ u∈L∞ Ωð Þ : �ρ≤ u≤ ρ a:e in Ωf g (17)

300

Recent Developments in the Solution of Nonlinear Differential Equations

and we take the functional cost

J uð Þ ¼ 1
2

ðT
0
∥∇y :, tð Þ � yd :ð Þ∥2

L2 Ωð Þð Þndtþ
β

2

ð

Ω
u2 xð Þdx: (18)

Corollary 2 Under conditions (17) and (18), an optimal control satisfies

u xð Þ ¼ max �ρ, min � 1
β

ðT
0

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdt, ρ
 ! !

, (19)

where y is the solution of system

yt x, tð Þ � Δy x, tð Þ ¼ u xð Þy x, tð Þ on Q
y x, 0ð Þ ¼ y0 xð Þ, in Ω
y x, tð Þ ¼ 0 in Σ,

8><
>:

and pi is the solution of system

pit x, tð Þ � Δpi x, tð Þ ¼ �u ∗ x, tð Þpi x, tð Þ on Q

pi x,Tð Þ ¼ ∂y Tð Þ
∂xi

� ydi

� �
in Ω

pi x, tð Þ ¼ 0 in Σ:

8>>><
>>>:

Proof: Using the same notations as in the proof of Theorem 2, let h ¼ h xð Þ be an
arbitrary function with uþ εh∈Uρ for small ε.

We have

ð

Ω
h xð Þ

ðT
0

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdtþ βu xð Þ
 !

dx≥0:

A standard control argument gives

u xð Þ ¼ max �ρ, min � 1
β

ðT
0

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdt, ρ
 ! !

:

4. Algorithm and simulations

We have the solution of the problem (2) is given by the formula

u ∗ x, tð Þ ¼ max �ρ, min � 1
β

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þ, ρ
 ! !

,

where y ∗ is the weak solution of the Eq. (1) and pi is the weak solution of the
adjoint Eq. (13).

The computation of an optimal control solution the problem (2) can be
realized by

u ∗
nþ1 x, tð Þ ¼ max �ρ, min � 1

β

Xn

i¼1
∂yn x, tð Þ

∂xi
pni x, tð Þ, ρ

� �� �
,

u ∗
0 ¼ 0,

8<
: (20)
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• Case 1: u ¼ u tð Þ.
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and we take the functional cost
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β

2
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0
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8><
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Proof: Using the same steps as in the proof of Theorem 2, let h ¼ h tð Þ be an
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We have
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0
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ð

Ω
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β
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Ω
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and we take the functional cost
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β
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ð

Ω
u2 xð Þdx: (18)

Corollary 2 Under conditions (17) and (18), an optimal control satisfies
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Proof: Using the same notations as in the proof of Theorem 2, let h ¼ h xð Þ be an
arbitrary function with uþ εh∈Uρ for small ε.

We have

ð

Ω
h xð Þ

ðT
0

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdtþ βu xð Þ
 !

dx≥0:

A standard control argument gives

u xð Þ ¼ max �ρ, min � 1
β

ðT
0

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdt, ρ
 ! !

:

4. Algorithm and simulations

We have the solution of the problem (2) is given by the formula

u ∗ x, tð Þ ¼ max �ρ, min � 1
β

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þ, ρ
 ! !

,

where y ∗ is the weak solution of the Eq. (1) and pi is the weak solution of the
adjoint Eq. (13).

The computation of an optimal control solution the problem (2) can be
realized by

u ∗
nþ1 x, tð Þ ¼ max �ρ, min � 1

β

Xn

i¼1
∂yn x, tð Þ

∂xi
pni x, tð Þ, ρ

� �� �
,

u ∗
0 ¼ 0,

8<
: (20)

301

Gradient Optimal Control of the Bilinear Reaction–Diffusion Equation
DOI: http://dx.doi.org/10.5772/intechopen.96041



where yn is the solution of the Eq. (1) associated to u ∗
n and pn is the solution of

the adjoint Eq. (13). Then, we consider the following algorithm

Step 1 : Initialization

⊙Initial statey0, u
∗
0 and yd:

⊙Threshold accuracyεand the final timeT:

�����
Step 2 :

⊙Solving the system 1ð Þ givesyn:
⊙Solving the system 13ð Þ givespn:
⊙Calculateu ∗

nþ1 by the formula 20ð Þ:

��������
:

Until∥u ∗
nþ1 � u ∗

n ∥L∞ Qð Þ ≤ ε stop, elsen ¼ nþ 1go to step 2:

Step 3 : The controlu ∗
n is optimal:

�����������������������

4.1 Simulations

On Ω ¼�0, 1½, we consider the following equation

yt x, tð Þ � Δy x, tð Þ ¼ u tð Þy x, tð Þ on Q
y x, 0ð Þ ¼ x 1� xð Þ 1þ xð Þ, in Ω
y x, tð Þ ¼ 0 in Σ,

8><
>:

(21)

and consider problem (2) with the control set

Uρ ¼ u∈L∞ 0,Tð Þ : �ρ≤ u≤ ρ a:e in 0,Tð Þf g:

An optimal control solution of problem (2) is given by the following formula

u ∗ tð Þ ¼ max �ρ, min � 1
β

ð1
0

Xn
i¼1

∂y x, tð Þ
∂xi

pi x, tð Þdx, ρ
 ! !

,

where y ∗ is solution of the Eq. (21) associated to the control u ∗ and p is the
solution of the following adjoint system

Figure 1.
The gradient of the state on �0, 1½.
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pi x,Tð Þ ¼ ∂y Tð Þ
∂xi

� ydi

� �
in Ω

pi x, tð Þ ¼ 0 in Σ:

8>>><
>>>:

We take T ¼ 1, ρ ¼ 1, β ¼ 0:1, y0 xð Þ ¼ x 1� xð Þ 1þ xð Þ, and yd xð Þ ¼ 0. Applying
the previous algorithm, with ε ¼ 10�4 we obtain.

Figure 1 shows that the gradient state is very close to the desired one with error
∥∇y Tð Þ∥ ¼ 5:33� 10�5 and the evolution of control is given by Figure 2.

5. Conclusion

Gradient optimal control problem of the bilinear diffusion equation with dis-
tributed and bounded controls is considered. The existence and characterized of an
optimal control are proved. The obtained results are tested by numerical examples.
Questions are still open, as is the case of gradient optimal control problem of the
semilinear reaction–diffusion equation.

Figure 2.
Evolution of the control function.
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Chapter 19

Boundary Element Method for the
Mixed BBM-KdV Equation
Compared to Non Standard
Boundary Conditions
Mostafa Abounouh, Hassan Al-Moatassime,
Sabah Kaouri and Youssef Ouakrim

Abstract

In this chapter, we are interested in the numerical resolution of the mixed
BBM-KdV equation defined in unbounded domain. Boundary Element Method
(BEM) are introduced to truncate the equation into a considered bounded domain.
BEM uses domain decomposition techniques to construct Boundary Condition (BC)
as transmission between the bounded domain and its complementary. We then pre-
sent a suitable approximation of these BC using Discrete Galerkin Method. Numerical
simulations are made to show the efficiency of these BC.We also compare with
another method that truncates the equation from unbounded to bounded domain,
called Non Standard Boundary Conditions (NSBC) which introduces new variables to
catch information at the boundary and compose a system to connect all these variables
in the bounded domain. Further discussions are made to highlight the advantages of
each method as well as the difficulties encountered in the numerical resolution.

Keywords: wave equations, transparent boundary condition, boundary element
method, non-standard boundary conditions, finite difference method

1. Introduction

We consider a combination of two linearized typical dispersive partial differen-
tial equations that model solitary waves and all interactions between them, given as
follows

∂tu t, xð Þ þ α∂3xxxu t, xð Þ � β∂3txxu t, xð Þ þ γ∂xu t, xð Þ ¼ 0 t, xð Þ∈ ∗
þ � 

u 0, xð Þ ¼ u0 xð Þ x∈

lim
∣x∣!�∞

u t, xð Þ ¼ 0 t∈ ∗
þ

8>><
>>:

(1)

such that α, β are dispersion parameters and are positive numbers, while γ ∈ is
the velocity number. In the case α ¼ 0, we obtain the BBM equation [1] and when
β ¼ 0, we get the KdV equation [2]. Our main purpose is to obtain numerical
approximation of Eq. (1) when taken in a bounded domain 0,T½ � � a, b½ � with
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suitable boundary conditions with no spurious reflections. For this regard, we use
two different techniques that are BEM and NSBC.

The Boundary Element Method (BEM), also known as the Boundary Integral
Equation Method (BIEM), is an alternative deterministic method that incorporates a
mesh located, only, at domain boundaries and therefore attractive for free surface
problems. There are two types of BEM, the direct BEM which requires a closed
boundary so that the physical variables (e.g. pressure and normal velocity in acoustics)
can only be considered from one side of the surface (interior or exterior), while the
indirect (IBEM) can consider both sides of the surface and does not need a closed
surface. In the first part of this chapter, we use this technique of BEM to derive the BC
to the Eq. (1) in the domain [0,T] � [a, b]. More precisely, we are going to introduce
the BEM to establish BC satisfied by the Eq. (1) on two interface points a and b by
solving the same equation in the complementary domain n a, b½ �. The BEM has
significant advantages over the finite element or difference methods (FEM or FDM),
as there is no need for discretizing the domain n a, b½ � into elements. It only uses
infinite boundary condition and transmission condition to compute the solution at a
and b as integral equations. Consequently, this integral equations will be fixed as the
boundary conditions of the problem (1) on the bounded domain [0,T] � a, b½ �.
Therefore, the boundary condition are approximated as Fredholm Integral Equations
of second kind.

Despite the meshing effort is limited and the system matrices are smaller, the
BEM also has disadvantages over the Finite Element Method or Difference Finite
Method. In fact, the BEM matrices are mostly populated with complex coefficients.
Furthermore, singularities may arise in the solution. These deteriorate the efficiency
of the solution and must be prevented [2].

The outline of this chapter is organized as follows. In section 2, we describe the
BEM for the mixed BBM-KdV equation [3]. Next, we discuss the special case of the
BBM equation and give the approximation of the resulting equation Finite Differ-
ence Method. Section 3 presents briefly another method to derive boundary condi-
tions for BBM equation called NSBC introduced in [4]. Finally in section 4,
comparison of both methods is given with numerical experiments to highlight the
transparency of both BC obtained in sections 2 and 3.

2. Boundary element method for the mixed BBM-KdV equation

Being in one dimensional space, , the boundary of any bounded interval
reduces to two points. Hence, we use the BEM to find two values that might depend
on time. For this regard, we consider a bounded domain ΩT ¼�0,T �Ω½ where Ω ¼
�a, b½ and a, b,T ∈ such that a< b,T >0. Note Σ ¼ a, bf g and ΣT ¼�0,T �Σ½ . we
take the decomposition  ¼ Ωg ∪Ω∪Ωd, such that, Ωg ¼� �∞, a� and Ωd ¼ b, þ∞½½ .
The corresponding equations to (1) using Dirichlet-to-Neumann domain
decomposition write

∂tu t, xð Þ þ α∂3xxxu t, xð Þ � β∂3txxu t, xð Þ þ γ∂xu t, xð Þ ¼ 0 inΩT

u 0, xð Þ ¼ u0 xð Þ atΩ
∂nu ¼ ∂nw atΣT

8><
>:

(2)

∂tw t, xð Þ þ α∂3xxxw t, xð Þ � β∂3txxw t, xð Þ þ γ∂xw t, xð Þ ¼ 0 inΩgT ∪ΩdT

w 0, xð Þ ¼ 0 inΩg ∪Ωd

w ¼ u inΣgT ∪ΣdT

lim
∣x∣!þ∞

w t, xð Þ ¼ 0 at �0,T½

8>>>><
>>>>:

(3)
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The main object of this section is to prove the following result.
Lemma 2.1 The solution of the evolution Eq. (3) satisfies the following integral

equations

w t, að Þ �U2L�1 λ1 sð Þ2
s

 !
∗wx t, að Þ �U2L�1 λ1 sð Þ

s

� �
∗wxx t, að Þ ¼ 0

w t, bð Þ � L�1 1

λ1 sð Þ2
 !

∗wxx t, bð Þ ¼ 0,

wx t, bð Þ � L�1 1
λ1 sð Þ
� �

∗wxx t, bð Þ ¼ 0

(4)

where L�1 f sð Þð Þ stands for the inverse Laplace transform of f , ∗ denotes the
convolution operator and λ1 a function of the time co-variable s.

Proof. We apply the Laplace transformation with respect to the time variable t
to the exterior problems (3), recall the Laplace transformation

L wð Þ s, xð Þ≔ ~w s, xð Þ ¼
ðþ∞
0

w t, xð Þe�tsdt, (5)

where s stands for the co-variable of time t and verify R sð Þ>0.
We obtain

s~w s, xð Þ þ α∂xxx ~w� βs∂xx ~wþ γ∂x ~w ¼ 0, x≥ b, x≤ a,R sð Þ>0 (6)

which is a cubic ordinary differential equation whose solutions are of the form
are given explicitly by

ŵ s, xð Þ ¼ c1 sð Þeλ1 sð Þx þ c2 sð Þeλ2 sð Þx þ c3 sð Þeλ3 sð Þx, x∈n a, b½ � (7)

where λ1 sð Þ, λ2 sð Þ, λ3 sð Þ denote the roots of the depressed cubic equation

αλ3 � βsλ2 þ γλþ s ¼ 0 (8)

The three solutions are given by

λk sð Þ ¼ jk�1ζ sð Þ � Θ1 sð Þ
jk�1ζ sð Þ þ Θ2 sð Þ, k ¼ 1, 2, 3 (9)

where the complex j is given by j ¼ exp 2iπ=3ð Þ,

ζ sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αγ3 � β2 s2 γ2 þ 18αβ s2 γ � 4β3 s4 þ 27α2 s2

p

2332α2
� 9αβ sγ � 2β3 s3 þ 27α2 s

54α3

 !13

,

Θ1 sð Þ ¼ 3αγ � β2 s2

9α2
,

Θ2 sð Þ ¼ βs
3α

:

(10)

Assume that R sð Þ> 2β3þ9γα2
27α2 , then roots of the cubic Eq. (8) possess the following

separation property
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∂tu t, xð Þ þ α∂3xxxu t, xð Þ � β∂3txxu t, xð Þ þ γ∂xu t, xð Þ ¼ 0 inΩT

u 0, xð Þ ¼ u0 xð Þ atΩ
∂nu ¼ ∂nw atΣT

8><
>:

(2)

∂tw t, xð Þ þ α∂3xxxw t, xð Þ � β∂3txxw t, xð Þ þ γ∂xw t, xð Þ ¼ 0 inΩgT ∪ΩdT

w 0, xð Þ ¼ 0 inΩg ∪Ωd

w ¼ u inΣgT ∪ΣdT

lim
∣x∣!þ∞

w t, xð Þ ¼ 0 at �0,T½

8>>>><
>>>>:

(3)
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The main object of this section is to prove the following result.
Lemma 2.1 The solution of the evolution Eq. (3) satisfies the following integral

equations

w t, að Þ �U2L�1 λ1 sð Þ2
s

 !
∗wx t, að Þ �U2L�1 λ1 sð Þ

s

� �
∗wxx t, að Þ ¼ 0

w t, bð Þ � L�1 1

λ1 sð Þ2
 !

∗wxx t, bð Þ ¼ 0,

wx t, bð Þ � L�1 1
λ1 sð Þ
� �

∗wxx t, bð Þ ¼ 0

(4)

where L�1 f sð Þð Þ stands for the inverse Laplace transform of f , ∗ denotes the
convolution operator and λ1 a function of the time co-variable s.

Proof. We apply the Laplace transformation with respect to the time variable t
to the exterior problems (3), recall the Laplace transformation

L wð Þ s, xð Þ≔ ~w s, xð Þ ¼
ðþ∞
0

w t, xð Þe�tsdt, (5)

where s stands for the co-variable of time t and verify R sð Þ>0.
We obtain

s~w s, xð Þ þ α∂xxx ~w� βs∂xx ~wþ γ∂x ~w ¼ 0, x≥ b, x≤ a,R sð Þ>0 (6)

which is a cubic ordinary differential equation whose solutions are of the form
are given explicitly by

ŵ s, xð Þ ¼ c1 sð Þeλ1 sð Þx þ c2 sð Þeλ2 sð Þx þ c3 sð Þeλ3 sð Þx, x∈n a, b½ � (7)

where λ1 sð Þ, λ2 sð Þ, λ3 sð Þ denote the roots of the depressed cubic equation

αλ3 � βsλ2 þ γλþ s ¼ 0 (8)

The three solutions are given by

λk sð Þ ¼ jk�1ζ sð Þ � Θ1 sð Þ
jk�1ζ sð Þ þ Θ2 sð Þ, k ¼ 1, 2, 3 (9)

where the complex j is given by j ¼ exp 2iπ=3ð Þ,

ζ sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αγ3 � β2 s2 γ2 þ 18αβ s2 γ � 4β3 s4 þ 27α2 s2

p

2332α2
� 9αβ sγ � 2β3 s3 þ 27α2 s

54α3

 !13

,

Θ1 sð Þ ¼ 3αγ � β2 s2

9α2
,

Θ2 sð Þ ¼ βs
3α

:

(10)

Assume that R sð Þ> 2β3þ9γα2
27α2 , then roots of the cubic Eq. (8) possess the following

separation property
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R λ1ð Þ< β

3α
, R λ2ð Þ> β

3α
and R λ3ð Þ> β

3α
: (11)

In fact, we consider the change of variable λ ¼ z� β
3α. Then the cubic Eq. (8)

becomes z3 þ pzþ q ¼ 0 such that p ¼ 3αγ�β2
3α2 and q ¼ 27α2sþ2β3�9αβγ

27α .

Hence under the condition R qð Þ ¼ 27α2R sð Þþ2β3�9αβγ
27α , it follows that the roots

ri, i ¼ 1, 2, 3 of the equation z3 þ pzþ q ¼ 0 satisfy

R r1ð Þ<0, R r2ð Þ>0, R r3ð Þ>0

Now back to Eq. (7), for x≥ b we have from the infinite condition that the
coefficients c2 and c3 must vanishe, hence ~w x, sð Þ ¼ c1 sð Þer1 sð Þx, deriving over x and
using the continuity of w in the interface yield

ŵ s, bð Þ � 1
λ21 sð Þ ŵxx s, bð Þ ¼ 0, ŵx s, bð Þ � 1

λ1 sð Þ ŵxx s, bð Þ ¼ 0 (12)

Idem for x≤ a, we have c1 ¼ 0 and hence

ŵxx s, að Þ � λ2 sð Þ þ λ3 sð Þð Þŵx s, að Þ þ λ2 sð Þλ3 sð Þŵ s, að Þ ¼ 0: (13)

As λ1, λ2, and λ3 are roots of the cubic Eq. (8) we obtain immediately

λ1 sð Þλ2 sð Þλ3 sð Þ ¼ � s
α
and λ2 sð Þ þ λ3 sð Þ þ λ1 sð Þ ¼ � β

α
(14)

Then the Eq. (13) becomes in terms of λ1 sð Þ

ŵxx s, að Þ þ λ1 sð Þ þ β

s

� �
ŵx s, að Þ � s

αλ1 sð Þ ŵ s, að Þ ¼ 0 (15)

Now applying the inverse Laplace transform to Eqs. (8) and (10), we infer

w t, að Þ � αL�1 λ21 sð Þsþ λ1 sð Þβ
s

� �
∗wx t, að Þ � αL�1 λ1 sð Þ

s

� �
∗wxx t, að Þ ¼ 0

w t, bð Þ � L�1 1
λ21 sð Þ

� �
∗wxx t, bð Þ ¼ 0, wx t, bð Þ � L�1 1

λ1 sð Þ
� �

∗wxx t, bð Þ ¼ 0

(16)

Therefore, we get the following result describing the problem in the bounded
domain satisfied by the restriction on ΩT of the original problem (1).

Theorem 1.1 Let α, β be non negative numbers and γ ∈. The restriction of (1) to
Ω is described by the following Initial Boundary Value Problem (IBVP)

∂tuþ α∂xxxu� β∂txxuþ γ∂xu ¼ 0 inΩT

u 0, xð Þ ¼ u0 xð Þ atΩ

∂nu t, xð Þ ¼ Bu t, xð Þ atΣT

8>><
>>:

(17)

where B is derived on ΣT from equations

u t, að Þ � αL�1 λ21 sð Þsþ βλ1 sð Þ
s

� �
∗ ux t, að Þ � αL�1 λ1 sð Þ

s

� �
∗ uxx t, að Þ ¼ 0
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u t, bð Þ � L�1 1
λ21 sð Þ

� �
∗ uxx t, bð Þ ¼ 0, ux t, bð Þ � L�1 1

λ1 sð Þ
� �

∗ uxx t, bð Þ ¼ 0

We emphasize that those boundary conditions strongly depend on α and β
through the root λ1 sð Þ. Some simplifications can be obtained for particular cases
allowing direct evaluation of the inverse Laplace transform. Taking for example the
BBM equation (for α ¼ 0), we can get after applying Laplace transformation to (3),

∂x ~w s, bð Þ ¼ γ

2βs
~w s, bð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4βs2

p
2βs

~w s, bð Þ

¼ γ

2β
~w s, bð Þ

s
� γ2

2β
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p ~w s, bð Þ

s
� 2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4βs2

p ~w s, bð Þ:
(18)

∂x ~w s, að Þ ¼ γ

2βs
~w s, að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4βs2

p
2βs

~w s, að Þ

¼ γ

2β
~w s, að Þ

s
þ γ2

2β
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p ~w s, að Þ

s
þ 2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4βs2

p ~w s, að Þ:
(19)

In this case, we obtain convolution products with Bessel functions after the
Laplace inverse transformation as follows

∂xw t, bð Þ ¼ C1It wð Þ tð Þ � C2 Jc0 ∗ It wð Þ
� �

tð Þ þ C3 Jc1 ∗w
� �

tð Þ,

∂xw t, að Þ ¼ C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ
� �

tð Þ � C3 Jc1 ∗w
� �

tð Þ:

where we have used the expressions

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c

c2 þ s2

r
¼ L H tð ÞJ0 ctð Þð Þ sð Þ≔L H tð ÞJc0 tð Þ� �

sð Þ , and Jc0
� �0 ¼ �Jc1,

and the notations c ¼ γ

2
ffiffi
β
p , C1 ¼ γ

2β , C2 ¼ γ
2

� �3
2β�

5
4, C3 ¼

ffiffiffiffiffiffiffiffi
2

γ
ffiffi
β
pq

:.

Recall that the Bessel functions can be defined by the following integrals

Jc0 tð Þ ¼ 1
π

ðπ
0
cos ctsinτð Þdτ, Jc1 tð Þ ¼ 1

π

ðπ
0
cos ctsinτ � τð Þdτ:

From this, we may compute

∂nw t, bð Þ ¼ �C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ
� �

tð Þ � C3 Jc1 ∗w
� �

tð Þ,
∂nw t, að Þ ¼ C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ

� �
tð Þ � C3 Jc1 ∗w

� �
tð Þ:

Thus the boundary operator B in (2) writes, in the case α ¼ 0,

Bu t, xð Þ≔
C1Itu tð Þ þ C2 Jc0 ∗ Itu

� �
tð Þ � C3 Jc1 ∗ u

� �
tð Þ x ¼ a

�C1Itu tð Þ þ C2 Jc0 ∗ Itu
� �

tð Þ � C3 Jc1 ∗ u
� �

tð Þ x ¼ b

8<
: (20)

Next, we propose an approximation, always for the case α ¼ 0, of the BBM
equation in ΩT supplemented with constructed boundary conditions.
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R λ1ð Þ< β

3α
, R λ2ð Þ> β

3α
and R λ3ð Þ> β

3α
: (11)

In fact, we consider the change of variable λ ¼ z� β
3α. Then the cubic Eq. (8)

becomes z3 þ pzþ q ¼ 0 such that p ¼ 3αγ�β2
3α2 and q ¼ 27α2sþ2β3�9αβγ

27α .

Hence under the condition R qð Þ ¼ 27α2R sð Þþ2β3�9αβγ
27α , it follows that the roots

ri, i ¼ 1, 2, 3 of the equation z3 þ pzþ q ¼ 0 satisfy

R r1ð Þ<0, R r2ð Þ>0, R r3ð Þ>0

Now back to Eq. (7), for x≥ b we have from the infinite condition that the
coefficients c2 and c3 must vanishe, hence ~w x, sð Þ ¼ c1 sð Þer1 sð Þx, deriving over x and
using the continuity of w in the interface yield

ŵ s, bð Þ � 1
λ21 sð Þ ŵxx s, bð Þ ¼ 0, ŵx s, bð Þ � 1

λ1 sð Þ ŵxx s, bð Þ ¼ 0 (12)

Idem for x≤ a, we have c1 ¼ 0 and hence

ŵxx s, að Þ � λ2 sð Þ þ λ3 sð Þð Þŵx s, að Þ þ λ2 sð Þλ3 sð Þŵ s, að Þ ¼ 0: (13)

As λ1, λ2, and λ3 are roots of the cubic Eq. (8) we obtain immediately

λ1 sð Þλ2 sð Þλ3 sð Þ ¼ � s
α
and λ2 sð Þ þ λ3 sð Þ þ λ1 sð Þ ¼ � β

α
(14)

Then the Eq. (13) becomes in terms of λ1 sð Þ

ŵxx s, að Þ þ λ1 sð Þ þ β

s

� �
ŵx s, að Þ � s

αλ1 sð Þ ŵ s, að Þ ¼ 0 (15)

Now applying the inverse Laplace transform to Eqs. (8) and (10), we infer

w t, að Þ � αL�1 λ21 sð Þsþ λ1 sð Þβ
s

� �
∗wx t, að Þ � αL�1 λ1 sð Þ

s

� �
∗wxx t, að Þ ¼ 0

w t, bð Þ � L�1 1
λ21 sð Þ

� �
∗wxx t, bð Þ ¼ 0, wx t, bð Þ � L�1 1

λ1 sð Þ
� �

∗wxx t, bð Þ ¼ 0

(16)

Therefore, we get the following result describing the problem in the bounded
domain satisfied by the restriction on ΩT of the original problem (1).

Theorem 1.1 Let α, β be non negative numbers and γ ∈. The restriction of (1) to
Ω is described by the following Initial Boundary Value Problem (IBVP)

∂tuþ α∂xxxu� β∂txxuþ γ∂xu ¼ 0 inΩT

u 0, xð Þ ¼ u0 xð Þ atΩ

∂nu t, xð Þ ¼ Bu t, xð Þ atΣT

8>><
>>:

(17)

where B is derived on ΣT from equations

u t, að Þ � αL�1 λ21 sð Þsþ βλ1 sð Þ
s

� �
∗ ux t, að Þ � αL�1 λ1 sð Þ

s

� �
∗ uxx t, að Þ ¼ 0
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u t, bð Þ � L�1 1
λ21 sð Þ

� �
∗ uxx t, bð Þ ¼ 0, ux t, bð Þ � L�1 1

λ1 sð Þ
� �

∗ uxx t, bð Þ ¼ 0

We emphasize that those boundary conditions strongly depend on α and β
through the root λ1 sð Þ. Some simplifications can be obtained for particular cases
allowing direct evaluation of the inverse Laplace transform. Taking for example the
BBM equation (for α ¼ 0), we can get after applying Laplace transformation to (3),

∂x ~w s, bð Þ ¼ γ

2βs
~w s, bð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4βs2

p
2βs

~w s, bð Þ

¼ γ

2β
~w s, bð Þ

s
� γ2

2β
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p ~w s, bð Þ

s
� 2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4βs2

p ~w s, bð Þ:
(18)

∂x ~w s, að Þ ¼ γ

2βs
~w s, að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4βs2

p
2βs

~w s, að Þ

¼ γ

2β
~w s, að Þ

s
þ γ2

2β
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p ~w s, að Þ

s
þ 2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4βs2

p ~w s, að Þ:
(19)

In this case, we obtain convolution products with Bessel functions after the
Laplace inverse transformation as follows

∂xw t, bð Þ ¼ C1It wð Þ tð Þ � C2 Jc0 ∗ It wð Þ
� �

tð Þ þ C3 Jc1 ∗w
� �

tð Þ,

∂xw t, að Þ ¼ C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ
� �

tð Þ � C3 Jc1 ∗w
� �

tð Þ:

where we have used the expressions

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c

c2 þ s2

r
¼ L H tð ÞJ0 ctð Þð Þ sð Þ≔L H tð ÞJc0 tð Þ� �

sð Þ , and Jc0
� �0 ¼ �Jc1,

and the notations c ¼ γ

2
ffiffi
β
p , C1 ¼ γ

2β , C2 ¼ γ
2

� �3
2β�

5
4, C3 ¼

ffiffiffiffiffiffiffiffi
2

γ
ffiffi
β
pq

:.

Recall that the Bessel functions can be defined by the following integrals

Jc0 tð Þ ¼ 1
π

ðπ
0
cos ctsinτð Þdτ, Jc1 tð Þ ¼ 1

π

ðπ
0
cos ctsinτ � τð Þdτ:

From this, we may compute

∂nw t, bð Þ ¼ �C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ
� �

tð Þ � C3 Jc1 ∗w
� �

tð Þ,
∂nw t, að Þ ¼ C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ

� �
tð Þ � C3 Jc1 ∗w

� �
tð Þ:

Thus the boundary operator B in (2) writes, in the case α ¼ 0,

Bu t, xð Þ≔
C1Itu tð Þ þ C2 Jc0 ∗ Itu

� �
tð Þ � C3 Jc1 ∗ u

� �
tð Þ x ¼ a

�C1Itu tð Þ þ C2 Jc0 ∗ Itu
� �

tð Þ � C3 Jc1 ∗ u
� �

tð Þ x ¼ b

8<
: (20)

Next, we propose an approximation, always for the case α ¼ 0, of the BBM
equation in ΩT supplemented with constructed boundary conditions.
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2.1 Numerical approximation

This subsection is devoted to the numerical approximation of the obtained IBVP
(17) for α ¼ 0 and B given in (20). Our strategy is to seek numerical simulations
that permits to avoid any boundary reflections and in some way renders the fully
discrete scheme unconditionally stable.

Let N,M be integers, we define time step Δt ¼ T
M and spatial step h ¼ b�a

N . The
grids tn ¼ nΔt, 0≤ n≤M and xi ¼ aþ ih, 0≤ i≤N are used to discretize ΩT.
Throughout this paper, we denote uni the considered approximation of u tn, xið Þ and
the set l

k ¼ m∈, k≤m≤ lf g:

2.1.1 Approximation of the governing equation

We describe a discretization for the BBM equation by the Crank-Nicholson time
scheme as follows

u tnþ1, xð Þ � u tn, xð Þ
Δt

� β
∂xxu tnþ1, xð Þ � ∂xxu tn, xð Þ

Δt
þ γ

∂xu tnþ1, xð Þ þ ∂xu tn, xð Þ
2

¼ 0,

(21)

u t0, xð Þ ¼ u0 xð Þ, n∈M�1
0 :

For the space finite difference scheme, we use the approximations

∂xu t, xð Þ≈ 1
2h

u t, xþ hð Þ � u t, x� hÞð Þ,ð

∂xxu t, xð Þ≈ 1
h2

u t, xþ hð Þ � 2u t, xÞ þ u t, x� hÞð Þ:ðð

The fully discretization then writes,

unþ1i � uni
Δt

� β
unþ1iþ1 � 2unþ1i þ unþ1i�1
� �� uniþ1 � 2uni þ uni�1

� �

h2Δt

þγ unþ1iþ1 � unþ1i�1
� �þ uniþ1 � uni�1

� �
4h

¼ 0, i, nð Þ∈N�1
1 � M�1

0

u0i ¼ u0 xið Þ, i∈N
0 :

(22)

2.1.2 Approximation of the boundary condition

The constructed boundary conditions (BC) contains time convolutions that are
non-local and introduces many difficulties, for example, using a direct implemen-
tation leads to long and low accuracy. Several techniques have been used to over-
come these problems by trying to localize the BC, see [5–8] for more details. The
resulting localized BC are easy to implement and more efficient but tends to depend
sensitively on the initial data. In our case, we utilize the Discrete Galerkin Method.
The BC are formulated as Fredholm integral equations of second kind. The basic
idea is to write the boundary condition on (20) in the form

∂nu t, að Þ �
ðt
0
K1 t, sð Þu s, að Þds ¼ 0, (23)

∂nu t, bð Þ �
ðt
0
K2 t, sð Þu s, bð Þds ¼ 0: (24)
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where, the introduced KernelsK1,K2 represent a linear combination of the two
Bessel functions of order 0 and 1 at the time t� sð Þ. After a space discretizationweobtain

u t, x0ð Þ �
ðt
0
K1 t, sð Þu s, x0ð Þds ¼ u t, x1ð Þ, (25)

u t, xNð Þ �
ðt
0
K2 t, sð Þu s, xNð Þds ¼ u t, xN�1ð Þ, (26)

where K1 ¼ �hK1 and K2 ¼ hK2. Both resulting Eqs. (25) and (26) can be
identified to the linear integral equation

y tð Þ �
ð

D
K t, sð Þy sð Þdσ sð Þ ¼ z tð Þ, t∈D: (27)

The Eq. (27) is a Fredholm integral equation of second kind, where D is a closed
bounded set in m, withm≥ 1. The approximation of such integral equation could be
made by a discrete Galerkin method using the quadrature rule of Gauss-Legendre as
presented in [9]. Based on this, the BC can be similarly discretized while considering
the domain D as the time interval 0, t½ �. Precisely, we use the Gauss Legendre Quadra-
ture of order q, labeled GLQq with zeros ξ j and weights w j being in the interval �1, 1½ �
for j∈q

0. Let i∈N�1
0 , we introduce the following transformation

Fi : �1, 1½ � ! ti, tiþ1½ �
ξ ↦ ti

1� ξ

2
þ tiþ1

1þ ξ

2
(28)

The approximation of the BC is now given by

u tnþ1, x0ð Þ �
ðtnþ1
0

K1 tnþ1, sð Þu s, x0ð Þds ¼ u tnþ1, x1ð Þ (29)

u tnþ1, xNð Þ �
ðtnþ1
0

K2 tnþ1, sð Þu s, xNð Þds ¼ u tnþ1, xN�1ð Þ (30)

that is

unþ10 �
ðtnþ1
0

K1 tnþ1, sð Þu s, x0ð Þds ¼ unþ11 (31)

unþ1N �
ðtnþ1
0

K2 tnþ1, sð Þu s, xNð Þds ¼ unþ1N�1 (32)

For the seek of simplicity, we rewrite the integral terms of (31) and (32) in the form

ðtnþ1
0

Ki tnþ1, sð Þu s, xkð Þds ¼ Ai

ðtnþ1
0

u s, xkð Þdsþ Bi

ðtnþ1
0

Jc0 tnþ1 � sð Þ
ðs
0
u r, xkð Þdr

� �
ds

þDi

ðtnþ1
0

Jc0 tnþ1 � sð Þu s, xkð Þds

≔AiI1 tnþ1, xkð Þ þ BiI2 tnþ1, xkð Þ þDiI3 tnþ1, xkð Þ,

such that i, kð Þ∈ 1, 0ð Þ, 2,Nð Þf g, A1 ¼ A2 ¼ �hC1,B2 ¼ �B1 ¼ hC2 and D1 ¼
�D2 ¼ hC3, all constants Ci are defined in (??). Thus, basing on the approach
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2.1 Numerical approximation

This subsection is devoted to the numerical approximation of the obtained IBVP
(17) for α ¼ 0 and B given in (20). Our strategy is to seek numerical simulations
that permits to avoid any boundary reflections and in some way renders the fully
discrete scheme unconditionally stable.

Let N,M be integers, we define time step Δt ¼ T
M and spatial step h ¼ b�a

N . The
grids tn ¼ nΔt, 0≤ n≤M and xi ¼ aþ ih, 0≤ i≤N are used to discretize ΩT.
Throughout this paper, we denote uni the considered approximation of u tn, xið Þ and
the set l

k ¼ m∈, k≤m≤ lf g:

2.1.1 Approximation of the governing equation

We describe a discretization for the BBM equation by the Crank-Nicholson time
scheme as follows

u tnþ1, xð Þ � u tn, xð Þ
Δt

� β
∂xxu tnþ1, xð Þ � ∂xxu tn, xð Þ

Δt
þ γ

∂xu tnþ1, xð Þ þ ∂xu tn, xð Þ
2

¼ 0,

(21)

u t0, xð Þ ¼ u0 xð Þ, n∈M�1
0 :

For the space finite difference scheme, we use the approximations

∂xu t, xð Þ≈ 1
2h

u t, xþ hð Þ � u t, x� hÞð Þ,ð

∂xxu t, xð Þ≈ 1
h2

u t, xþ hð Þ � 2u t, xÞ þ u t, x� hÞð Þ:ðð

The fully discretization then writes,

unþ1i � uni
Δt

� β
unþ1iþ1 � 2unþ1i þ unþ1i�1
� �� uniþ1 � 2uni þ uni�1

� �

h2Δt

þγ unþ1iþ1 � unþ1i�1
� �þ uniþ1 � uni�1

� �
4h

¼ 0, i, nð Þ∈N�1
1 � M�1

0

u0i ¼ u0 xið Þ, i∈N
0 :

(22)

2.1.2 Approximation of the boundary condition

The constructed boundary conditions (BC) contains time convolutions that are
non-local and introduces many difficulties, for example, using a direct implemen-
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come these problems by trying to localize the BC, see [5–8] for more details. The
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sensitively on the initial data. In our case, we utilize the Discrete Galerkin Method.
The BC are formulated as Fredholm integral equations of second kind. The basic
idea is to write the boundary condition on (20) in the form

∂nu t, að Þ �
ðt
0
K1 t, sð Þu s, að Þds ¼ 0, (23)

∂nu t, bð Þ �
ðt
0
K2 t, sð Þu s, bð Þds ¼ 0: (24)
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where, the introduced KernelsK1,K2 represent a linear combination of the two
Bessel functions of order 0 and 1 at the time t� sð Þ. After a space discretizationweobtain

u t, x0ð Þ �
ðt
0
K1 t, sð Þu s, x0ð Þds ¼ u t, x1ð Þ, (25)

u t, xNð Þ �
ðt
0
K2 t, sð Þu s, xNð Þds ¼ u t, xN�1ð Þ, (26)

where K1 ¼ �hK1 and K2 ¼ hK2. Both resulting Eqs. (25) and (26) can be
identified to the linear integral equation

y tð Þ �
ð

D
K t, sð Þy sð Þdσ sð Þ ¼ z tð Þ, t∈D: (27)

The Eq. (27) is a Fredholm integral equation of second kind, where D is a closed
bounded set in m, withm≥ 1. The approximation of such integral equation could be
made by a discrete Galerkin method using the quadrature rule of Gauss-Legendre as
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for j∈q

0. Let i∈N�1
0 , we introduce the following transformation

Fi : �1, 1½ � ! ti, tiþ1½ �
ξ ↦ ti

1� ξ

2
þ tiþ1

1þ ξ

2
(28)

The approximation of the BC is now given by

u tnþ1, x0ð Þ �
ðtnþ1
0

K1 tnþ1, sð Þu s, x0ð Þds ¼ u tnþ1, x1ð Þ (29)

u tnþ1, xNð Þ �
ðtnþ1
0

K2 tnþ1, sð Þu s, xNð Þds ¼ u tnþ1, xN�1ð Þ (30)

that is

unþ10 �
ðtnþ1
0

K1 tnþ1, sð Þu s, x0ð Þds ¼ unþ11 (31)

unþ1N �
ðtnþ1
0

K2 tnþ1, sð Þu s, xNð Þds ¼ unþ1N�1 (32)

For the seek of simplicity, we rewrite the integral terms of (31) and (32) in the form

ðtnþ1
0

Ki tnþ1, sð Þu s, xkð Þds ¼ Ai

ðtnþ1
0

u s, xkð Þdsþ Bi

ðtnþ1
0

Jc0 tnþ1 � sð Þ
ðs
0
u r, xkð Þdr

� �
ds

þDi

ðtnþ1
0

Jc0 tnþ1 � sð Þu s, xkð Þds

≔AiI1 tnþ1, xkð Þ þ BiI2 tnþ1, xkð Þ þDiI3 tnþ1, xkð Þ,

such that i, kð Þ∈ 1, 0ð Þ, 2,Nð Þf g, A1 ¼ A2 ¼ �hC1,B2 ¼ �B1 ¼ hC2 and D1 ¼
�D2 ¼ hC3, all constants Ci are defined in (??). Thus, basing on the approach

313

Boundary Element Method for the Mixed BBM-KdV Equation Compared to Non Standard…
DOI: http://dx.doi.org/10.5772/intechopen.96617



presented in [9], the GLQq applied to the integrals previously defined is described

by the following, for n∈M�1
0 and k∈ 0,Nf g,

I1 tnþ1, xkð Þ ¼ Δt
2

Xn
i¼0

Xq

j¼0
w ju Fi ξ j

� �
, xk

� �
: (33)

The second integral is more complicated since it involves two composing inte-
grals, using Gauss-Legendre quadrature twice yields

I2 tnþ1, xkð Þ ¼ Δt2

4

Xn
i¼0

Xq

j¼0
w jJ0 tnþ1 � Fi ξ j

� �� �Xj

l¼0

Xq

m¼0
wmu Fl ξmð Þ, xkð Þ (34)

and the remained integral is approximated by

I3 tnþ1, xkð Þ ¼ Δt
2

Xn
i¼0

Xq

j¼0
w jJ1 tnþ1 � Fi ξ j

� �� �
u Fi ξ j

� �
, xk

� �
: (35)

From approximations (33)–(35), the numerical solution on the interface of (17)
can be given by

unþ10 ¼ unþ11 þ f nþ11 , (36)

unþ1N ¼ unþ1N�1 þ f nþ12 : (37)

We accomplish this by simply adding (36) and (37) to the discretization of the
interior governing Eq. (22). We obtain an implicit scheme that we illustrate by the
following system in matrix form

I þ ~Aþ ~B
� �

Unþ1 ¼ I þ A� Bð ÞUn þ Fn, n∈M�1
0 ,

unþ10 ¼ unþ11 þ f nþ11 ,

unþ1N ¼ unþ1N�1 þ f nþ12 :

8>>>>><
>>>>>:

(38)

with

Un ¼
un1
⋮

unN�1

0
B@

1
CA I ¼

1 0

⋱
0 1

0
B@

1
CA, Fn ¼

Cd1 þ Cd2ð Þ f n1 � un1
� �

0

⋮
0

Cd1 � Cd2ð Þ f n2 � unN�1
� �

0
BBBBBB@

1
CCCCCCA
,

A ¼ Cd1

2 �1 0

�1 ⋱ �1
0 �1 2

0
BB@

1
CCA, B ¼ Cd2

0 1 0

�1 ⋱ 1

0 �1 0

0
BB@

1
CCA

and
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~A ¼ Cd1

2� Cd1 �1 0

�1 ⋱ �1
0 �1 2� Cd1

0
BB@

1
CCA, ~B ¼ Cd2

�Cd2 1 0

�1 ⋱ 1

0 �1 Cd2

0
BB@

1
CCA:

where the discretization constants are Cd1 ¼ β
h2
,Cd2 ¼ γΔt

4h .

3. Non standard boundary conditions for the BBM equation

In [4], we have presented a new method to derive transparent boundary condi-
tions for the BBM equation. These boundary conditions have the advantage of being
local in time but needs an additional function construct the BC which means bigger
system to be solved. We recall that the problem designed to be the restriction in ΩT
of the BBM initial Eq. (1) with α ¼ 0 is given by

∂tu� β∂txxuþ γ∂xu ¼ f in �0,T���a, b½
∂tv� β∂txxvþ γ∂xv ¼ g in �0,T���a, b½

∂xu ¼ v on �0,T� � a, bf g
β∂txv� γv ¼ ∂tu� f on �0,T� � a, bf g

u 0, xð Þ ¼ u0 xð Þ on a, b½ �
v 0, xð Þ ¼ v0 xð Þ on a, b½ �

8>>>>>>>>><
>>>>>>>>>:

(39)

4. Numerical examples

We take an initial condition as solitary wave like function locally supported in Ω.
The evolution of the solutions are plotted in different time steps before, under and
after traveling the right boundary of the considered bounded domain. We save a
reference solution that is numerically calculated in a broaden domain of Ω with
Dirichlet boundary condition. We compute infinite error between numerical solu-
tions using both formulations presented in this paper and the reference solution.
We denote GLQi for approached solution with BEM and Gauss Legendre Quadra-
ture in (2) for i∈ 0, 1, 2f g, while NSBC refers to numerical solution with non
standard boundary conditions given in (3). We define the following errors

∥ u� uref
� �

t, að Þ∥∞ ¼ sup
t∈ 0,T½ �

∣u t, að Þ � uref t, að Þ∣, (40)

∥ u� uref
� �

t, bð Þ∥∞ ¼ sup
t∈ 0,T½ �

∣u t, bð Þ � uref t, bð Þ∣, (41)

∥ u� uref
� �

t, xð Þ∥∞ ¼ sup
t, xð Þ∈ 0,T½ ���a, b ∣u t, xð Þ�uref t, xð Þ∣:½

(42)

Let β ¼ γ ¼ 1, T ¼ 10 and u0 xð Þ ¼ sech2 xð Þ. The considered initial data is locally
supported in the interval Ω ¼� � 10, 10½, since u0 10ð Þ ¼ u0 �10ð Þ≈ 8, 25:10�9.
We fix h ¼ 10�2 and we vary the time step Δt. For a better comparison of these
methods, we compute CPU time, in seconds, needed for each one to obtain
numerical solution.
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� �
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From approximations (33)–(35), the numerical solution on the interface of (17)
can be given by

unþ10 ¼ unþ11 þ f nþ11 , (36)

unþ1N ¼ unþ1N�1 þ f nþ12 : (37)

We accomplish this by simply adding (36) and (37) to the discretization of the
interior governing Eq. (22). We obtain an implicit scheme that we illustrate by the
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0 ,
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(38)
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1
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⋱
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~A ¼ Cd1

2� Cd1 �1 0
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0 �1 2� Cd1

0
BB@
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CCA, ~B ¼ Cd2

�Cd2 1 0

�1 ⋱ 1

0 �1 Cd2

0
BB@

1
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where the discretization constants are Cd1 ¼ β
h2
,Cd2 ¼ γΔt

4h .

3. Non standard boundary conditions for the BBM equation

In [4], we have presented a new method to derive transparent boundary condi-
tions for the BBM equation. These boundary conditions have the advantage of being
local in time but needs an additional function construct the BC which means bigger
system to be solved. We recall that the problem designed to be the restriction in ΩT
of the BBM initial Eq. (1) with α ¼ 0 is given by

∂tu� β∂txxuþ γ∂xu ¼ f in �0,T���a, b½
∂tv� β∂txxvþ γ∂xv ¼ g in �0,T���a, b½

∂xu ¼ v on �0,T� � a, bf g
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u 0, xð Þ ¼ u0 xð Þ on a, b½ �
v 0, xð Þ ¼ v0 xð Þ on a, b½ �

8>>>>>>>>><
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(39)

4. Numerical examples

We take an initial condition as solitary wave like function locally supported in Ω.
The evolution of the solutions are plotted in different time steps before, under and
after traveling the right boundary of the considered bounded domain. We save a
reference solution that is numerically calculated in a broaden domain of Ω with
Dirichlet boundary condition. We compute infinite error between numerical solu-
tions using both formulations presented in this paper and the reference solution.
We denote GLQi for approached solution with BEM and Gauss Legendre Quadra-
ture in (2) for i∈ 0, 1, 2f g, while NSBC refers to numerical solution with non
standard boundary conditions given in (3). We define the following errors

∥ u� uref
� �

t, að Þ∥∞ ¼ sup
t∈ 0,T½ �

∣u t, að Þ � uref t, að Þ∣, (40)
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t, bð Þ∥∞ ¼ sup
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t, xð Þ∥∞ ¼ sup
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Let β ¼ γ ¼ 1, T ¼ 10 and u0 xð Þ ¼ sech2 xð Þ. The considered initial data is locally
supported in the interval Ω ¼� � 10, 10½, since u0 10ð Þ ¼ u0 �10ð Þ≈ 8, 25:10�9.
We fix h ¼ 10�2 and we vary the time step Δt. For a better comparison of these
methods, we compute CPU time, in seconds, needed for each one to obtain
numerical solution.
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Table 1 shows that both methods give a good approximation of the restriction to
ΩT of the reference solution. NSBC give better approximation than GLQ . We can
remark a slow convergence of GLQi with respect to i and also time step. However,
NSBC gives a good approximation in as much as Δt goes to zero. Furthermore,
GLQi is more expensive in CPU time when i increases than NSBC due to the
presence of non local convolutions in time in the boundary condition.

We also plot in Figure 1, captions at different times of either reference solution
and approximated solutions using NSBC and GLQi for i ¼ 2. We can see that NSBC
follows the refrence solution better than GLQ especially at last times in the right
figure. One remarks that no reflections turn back to the bounded domain when the
wave is going out from the right boundary using both methods.

BC dt u� urefð Þ t, aÞð k∞
�� u� urefð Þ t, bÞð k∞

�� u� urefð Þ t,xÞð k∞
�� CPU time(s)

GLQ0 10�2 1:06� 10�4 6:33� 10�2 6:03� 10�2 4

GLQ1 1:06� 10�4 6:3� 10�2 5:9304� 10�2 9

GLQ2 1:06� 10�4 5:895� 10�2 5:9187 � 10�2 15

NSBC 7:39� 10�5 5:8� 10�3 6:8� 10�3 5

GLQ0 10�3 1:06� 10�4 5:92� 10�2 5:86� 10�2 39

GLQ1 1:06� 10�4 5:86� 10�2 5:857 � 10�2 62

GLQ2 1:06� 10�4 5:852� 10�2 5:85� 10�2 80

NSBC 6:7 � 10�5 1:41� 10�3 1:4� 10�3 50

GLQ0 10�4 1:06� 10�4 5:855� 10�2 5:858� 10�2 436

GLQ1 1:06� 10�4 5:853� 10�2 5:852� 10�2 1040

GLQ2 1:06� 10�4 5:85� 10�2 5:85� 10�2 3205

NSBC 5:9� 10�6 7:35� 10�4 7:3� 10�4 1015

Table 1.
Infinite errors using different boundary conditions.

Figure 1.
Reference solution and approximated solutions NSBC and GLQi for i ¼ 2 at different times for Δt ¼ 10�3.
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5. Conclusion

We have compared two methods of deriving and approaching boundary condi-
tions for the BBM equation. We presented the BEM for a general equation that is the
mixed BBM-KdV equation and that shows the hardness to put easy implemented
BC. Furthermore, being non local in time, BC seems to be low accurate and slowly
convergent as presented in numerical example. However, this point opens many
possibilities trying to improve the accuracy of such BC whether by improving the
approximation of convolution product, that comes from Inverse Laplace transfor-
mation, via quadrature or exploring a numerical equivalent to such operation such
as Z transformation. We have proposed an other manner to derive local BC that
gives better approximation than non local BC. All these conclusions have been made
in one space dimension but nothing can be said about the comparison in higher
dimension to decide which method is more adapted, this matter will be our interest
in future works.
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1. Introduction

Despite the advent of supercomputers in numerical methods, increasing activi-
ties are devoted to solving nonlinear differential equations by analytical method in
recent years [1–3]. Analytical solutions have their own importance concerning the
physical phenomena as they are often pave the way to the construction of right
theory [4]. Many methods have been proposed concerning this important problem
and generally, for the problems with constant coefficients. One of the useful
methods is the method of simplest Equation [5] or for some authors, the auxiliary
Equations [6]. The method is built by the utilization of the first integral of simplest
nonlinear differential equations, such as Bernoulli and Riccati Equations [7]. The
method had produced many new solutions of the considered nonlinear differential
equations, generally with constant coefficients [8, 9].

For the more general cases, we have found that the method can be extended
such as involving the solution of the nonlinear differential equations with variable
coefficients. The nature of variable coefficients often arises in the equation describ-
ing the heterogenous media and composites [10] or in other cases are produced by
the coordinate transformation of the partial differential Equations [11]. Those two
categories are developed rapidly in recent years with the capacity of high-speed
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theory [4]. Many methods have been proposed concerning this important problem
and generally, for the problems with constant coefficients. One of the useful
methods is the method of simplest Equation [5] or for some authors, the auxiliary
Equations [6]. The method is built by the utilization of the first integral of simplest
nonlinear differential equations, such as Bernoulli and Riccati Equations [7]. The
method had produced many new solutions of the considered nonlinear differential
equations, generally with constant coefficients [8, 9].

For the more general cases, we have found that the method can be extended
such as involving the solution of the nonlinear differential equations with variable
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ing the heterogenous media and composites [10] or in other cases are produced by
the coordinate transformation of the partial differential Equations [11]. Those two
categories are developed rapidly in recent years with the capacity of high-speed
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super computers which sufficient for computing nonlinear problem with complex
geometries [12, 13], as sometimes desired by engineering design activities. The role
of analytical solutions is as a benchmark to validate the computer algorithm with
simpler geometries as it is usually performed [14].

In this chapter, the solution method of the simplest equations is different from
the cases of constant coefficients except, on Bernoulli equation. Hence, we will start
from Riccati equation instead of Bernoulli equation as the simplest equation to
highlight the novelty of the procedure. The method is then followed by examples
and conclusion.

2. The first integral of the simplest equations with variable coefficients

2.1 Riccati equation

Consider the Riccati equation with variable coefficients as follows,

Aξ ¼ a1 ξð ÞA2 þ a2 ξð ÞAþ a3 ξð Þ (1)

Let A ¼ β1β2 and the above equation can be rearranged as,

β2β1ξ þ β1β2ξ ¼ a1β21β
2
2 þ a2β1β2 þ a3 or

β2β1ξ � a1β21β
2
2 � a2β1β2 ¼ �β1β2ξ þ a3 ¼ γβ1β2:

and is separated as

β1ξ � a1β21β2 � a2 þ γð Þβ1 ¼ 0 and β2ξ þ γβ2 �
a3
β1
¼ 0 (2)

The solutions for β1 and β2 are

β2 ¼ e
Ð
ξ
a2þγð Þdξ

ð

ξ
e
Ð
ξ
a2þγð Þdξa1β2dξþ C1

� ��1

and

β3 ¼ e�
Ð
ξ
γdξ

ð

ξ
e
Ð
ξ
γdξ a3

β1
dξþ C2

� �
(3)

The relation for A ¼ β1β2 is thus,

A ¼ β1β2 ¼ e
Ð
ξ
a2dξ

ð

ξ
e
Ð
ξ
a2þγð Þdξa1β2dξþ C1

� ��1 ð

ξ
e
Ð
ξ
γdξ a3

β1
dξþ C2

� �
(4)

Without loss of generality, suppose that β1 ¼ e
Ð
ξ
γdξ and thus the above relation is

performed as,

β1β2 ¼ e
Ð
ξ
a2dξ

ð

ξ
e
Ð
ξ
a2dξa1β1β2dξþ C1

� ��1 ð

ξ
a3dξþ C2

� �
(5)
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Rearrange Eq. (5) and integrate once,

a1e
Ð
ξ
a2dξβ1β2

ð

ξ
e
Ð
ξ
a2dξa1β1β2dξþ C1

� �
¼ a1e

2
Ð
ξ
a2dξ

ð

ξ
a3dξþ C2

� �

or

ð

ξ
e
Ð
ξ
a2dξa1β1β2dξþ C1

� �2
¼ 2
ð

ξ
a1e

2
Ð
ξ
a2dξ

ð

ξ
a3dξþ C2

� �
dξþ C3

The solution for A is then,

A ¼ β1β2 ¼
ffiffiffi
2
p

2
e
Ð
ξ
a2dξ

ð

ξ
a3dξþ C2

� � ð

ξ
a1e

2
Ð
ξ
a2dξ

ð

ξ
a3dξþ C2

� �
dξþ C3

� ��1
2

(6)

where the coefficients ai will be determined later from the substitution into the
considered nonlinear differential equations.

2.2 The Jacobi and Weierstrass equations

It is interesting to know that other simplest equations can also be rearranged into
the Riccati-type equations. The famous examples are Jacobi [15] and Weierstrass
Equations [16], which can solve a large class of nonlinear differential equations. Let
us consider Jacobi type equation with variable coefficients,

ϕ2
ξ ¼ b1 ξð Þϕ4 þ b2 ξð Þϕ3 þ b3 ξð Þϕ2 þ b4 ξð Þϕþ b5 ξð Þ (7)

and the Weierstrass equation as follows,

ϕ2
ξ ¼ b1 ξð Þϕ3 þ b2 ξð Þϕ2 þ b3 ξð Þϕþ b4 ξð Þ (8)

Here, the reader should not be confused by the coefficients which represent
different functions with the same index. Take ϕ ¼ 1

νþ a ξð Þ and the Weierstrass
equation becomes Jacobi equation which admits the similar method of solution.

Concerning the search for obtaining solution of (7) and (8), the balancing princi-
ple suggests the substitution of the first order series ϕ ¼ b6 þ b7A as in the following,

b6ξ þ b7ξAþ b7Aξð Þ2 ¼ b1b
4
7A

4 þ 4b1b6b
3
7 þ b2b

3
7

� �
A3 þ 6b1b

2
6b

2
7 þ 3b2b6b

2
7 þ b3b

2
7

� �
A2

þ 4b1b
3
6b7 þ 3b2b

2
6b7 þ 2b3b6b7 þ b4b7

� �
Aþ b1b

4
6 þ b2b

3
6 þ b3b

2
6 þ b4b6 þ b5

(9)

Performing the Riccati equation Aξ ¼ a1b7A2 þ a2Aþ a3 into (9) and we
generate the following expression,

b6ξ þ b7ξAþ b7Aξð Þ2 ¼ a1b
2
7A

2 þ a2b7 þ b7ξð ÞAþ a3b7 þ b6ξ
� �2 ¼ a21b

4
7A

4 þ 2a1b7 a2b7 þ b7ξð ÞA3

þ 2a1b7 a3b7 þ b6ξð Þ þ a2b7 þ b7ξð Þ2
h i

A2 þ 2 a2b7 þ b7ξð Þ a3b7 þ b6ξð ÞAþ a3b7 þ b6ξð Þ2

The coefficients of polynomial are then related with the coefficients in (9) in
order to determine a1, a2, a3, b6, b7 as functions of the known b1, b2, b3, b4 and b5 as
follows,
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considered nonlinear differential equations.

2.2 The Jacobi and Weierstrass equations

It is interesting to know that other simplest equations can also be rearranged into
the Riccati-type equations. The famous examples are Jacobi [15] and Weierstrass
Equations [16], which can solve a large class of nonlinear differential equations. Let
us consider Jacobi type equation with variable coefficients,

ϕ2
ξ ¼ b1 ξð Þϕ4 þ b2 ξð Þϕ3 þ b3 ξð Þϕ2 þ b4 ξð Þϕþ b5 ξð Þ (7)

and the Weierstrass equation as follows,

ϕ2
ξ ¼ b1 ξð Þϕ3 þ b2 ξð Þϕ2 þ b3 ξð Þϕþ b4 ξð Þ (8)

Here, the reader should not be confused by the coefficients which represent
different functions with the same index. Take ϕ ¼ 1

νþ a ξð Þ and the Weierstrass
equation becomes Jacobi equation which admits the similar method of solution.

Concerning the search for obtaining solution of (7) and (8), the balancing princi-
ple suggests the substitution of the first order series ϕ ¼ b6 þ b7A as in the following,

b6ξ þ b7ξAþ b7Aξð Þ2 ¼ b1b
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3
7 þ b2b

3
7

� �
A3 þ 6b1b

2
6b

2
7 þ 3b2b6b

2
7 þ b3b

2
7

� �
A2

þ 4b1b
3
6b7 þ 3b2b

2
6b7 þ 2b3b6b7 þ b4b7

� �
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4
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3
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(9)
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generate the following expression,
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b1b
4
7 ¼ a21b

4
7

4b1b6b
3
7 þ b2b

3
7 ¼ 2a1b7 a2b7 þ b7ξð Þ

6b1b
2
6b

2
7 þ 3b2b6b

2
7 þ b3b

2
7 ¼ 2a1b7 a3b7 þ b6ξð Þ þ a2b7 þ b7ξð Þ2

4b1b
3
6b7 þ 3b2b

2
6b7 þ 2b3b6b7 þ b4b7 ¼ 2 a2b7 þ b7ξð Þ a3b7 þ b6ξð Þ

b1b
4
6 þ b2b

3
6 þ b3b

2
6 þ b4b6 þ b5 ¼ a3b7 þ b6ξð Þ2

(10)

Hence, the first equation gives,

a1 ¼ f 0 b1ð Þ (11)

and the second equation is then,

a2b7 þ b7ξ ¼ 4b1b6b
2
7 þ b2b

2
7

2 f 0
(12)

The next relation produces,

a3b7 þ b6ξ ¼ 6b1b
2
6b7 þ 3b2b6b7 þ b3b7

2 f 0
� 1

8 f 30
4b1b6 þ b2ð Þ2b37 (13)

Eqs. (12) and (13) are thus substituted into the fourth relation of (12) to form
the third order polynomial equation in term of b6 as follows,

32 f 40b1 þ 64b31b
4
7 � 192 f 20b

2
1b

2
7

� �
b36 þ 24 f 40b2 þ 32b21b2b

4
7 � 16b21b2b

4
7 � 96 f 20b1b2b

2
7 � 48 f 20b1b2b

2
7

� �
b26

þ 16 f 40b3 þ 4b1b
2
2b

4
7 þ 8b1b

2
2b

2
7 � 32 f 20b1b3b

2
7 � 24 f 20b

2
2b

2
7

� �
b6 þ 8 f 40b4 þ b32b

4
7 � 8 f 20b2b3b

2
7 ¼ 0

(14)

which the roots will determine the solution for b6 as functions of b1, b2, b3, b4, b7,
or b6 ¼ f 1 b7ð Þ in simple unknown variable. The step now is to find the polynomial
expression for b7 from the last relation of (10) as,

b1 f
4
1 b7ð Þ þ b2 f

3
1 b7ð Þ þ b3 f

2
1 b7ð Þ þ b4 f 1 b7ð Þ þ b5 ¼

6b1 f
2
1 b7ð Þb7 þ 3b2 f 1 b7ð Þb7 þ b3b7

2 f 0
� 1

8 f 30
4b1 f 1 b7ð Þ þ b2
� �2b37

" #2 (15)

Therefore, the last equation gives the expression for b7 as polynomial equation of
higher order, and the generated polynomial is,

anb
n
7 þ an�1b

n�1
7 þ an�2b

n�2
7 þ an�3b

n�3
7 þ ::……… þ a2b

2
7 þ a1b7 þ a0 ¼ 0 (16)

In this case the higher order polynomial will be solved by reducing the order.

3. Reduction of higher order polynomial

Consider the sixth order polynomial equation as in the following,

b67 þ a4b
5
7 þ a5b

4
7 þ a6b

3
7 þ a7b

2
7 þ a8b7 þ a9 ¼ 0
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First, multiply the above equation with the functionα and rearranged as,

B6 þ a4αB5 þ a5α2B4 þ a6α3B3 þ a7α4B2 þ a8α5Bþ a9α6 þ φ ¼ φ (17)

where B ¼ αb7. The polynomial equation is cut as in the following,

B4 þ b1B3 þ b2B2 þ b3Bþ b4
� �

B2 þ b5B2 � B4 þ b1B3 þ b2B2 þ b3Bþ b4
� �

b6 ¼ φ

Note that, the coefficients bi in this section is different from the previous
section. Expanding for the new coefficients,

B6 þ b1B5 þ b2 � b5ð ÞB4 þ b3 � b1b5ð ÞB3 þ b4 þ b5 � b2b5ð ÞB2 � b3b5B� b4b6 ¼ φ

(18)

Hence, the relation for coefficients is,

b1 ¼ a1α

b2 � b6 ¼ a2α2

b3 � b1b6 ¼ a3α3

b4 þ b5 � b2b6 ¼ a4α4 or

�b3b6 ¼ a5α5

�b4b6 ¼ a6α6 þ φ

b6 ¼ φ

b5

b1 ¼ a1α

b2 � b6 ¼ a2α2

b3 � a1α b2 � a2α2
� � ¼ a3α3

b4 þ b5 � b2 � a2α2
� �2 ¼ a4α4 þ a2α2 b2 � a2α2

� �

� a3α3 þ a1α b2 � a2α2
� �� �

b2 � a2α2
� � ¼ a5α5

� a4α4 þ a2α2 b2 � a2α2
� �þ b2 � a2α2

� �2 � b5
h i

b2 � a2α2
� � ¼ a6α6 þ φ

b2 � a2α2
� � ¼ �

a4α4 þ a2α2 b2 � a2α2ð Þ þ b2 � a2α2ð Þ2 � b5
h i

b2 � a2α2ð Þ þ a6α6

b5

:

The fifth coefficient relation is rearranged as,

b2 � a2α2
� �2 þ a3

a1
α2 b2 � a2α2
� �þ a5

a1
α4 ¼ 0 (19)

and the roots are,

b2 � a2α2
� � ¼ 1

2
α2 � a3

a1
� a23

a21
� 4

a5
a1

� �1
2

" #
¼ f 0α

2 (20)

323

On the Generalized Simplest Equations: Toward the Solution of Nonlinear Differential…
DOI: http://dx.doi.org/10.5772/intechopen.95620



b1b
4
7 ¼ a21b

4
7

4b1b6b
3
7 þ b2b

3
7 ¼ 2a1b7 a2b7 þ b7ξð Þ

6b1b
2
6b

2
7 þ 3b2b6b

2
7 þ b3b

2
7 ¼ 2a1b7 a3b7 þ b6ξð Þ þ a2b7 þ b7ξð Þ2

4b1b
3
6b7 þ 3b2b

2
6b7 þ 2b3b6b7 þ b4b7 ¼ 2 a2b7 þ b7ξð Þ a3b7 þ b6ξð Þ

b1b
4
6 þ b2b

3
6 þ b3b

2
6 þ b4b6 þ b5 ¼ a3b7 þ b6ξð Þ2

(10)

Hence, the first equation gives,

a1 ¼ f 0 b1ð Þ (11)

and the second equation is then,

a2b7 þ b7ξ ¼ 4b1b6b
2
7 þ b2b

2
7

2 f 0
(12)

The next relation produces,

a3b7 þ b6ξ ¼ 6b1b
2
6b7 þ 3b2b6b7 þ b3b7

2 f 0
� 1

8 f 30
4b1b6 þ b2ð Þ2b37 (13)

Eqs. (12) and (13) are thus substituted into the fourth relation of (12) to form
the third order polynomial equation in term of b6 as follows,

32 f 40b1 þ 64b31b
4
7 � 192 f 20b

2
1b

2
7

� �
b36 þ 24 f 40b2 þ 32b21b2b

4
7 � 16b21b2b

4
7 � 96 f 20b1b2b

2
7 � 48 f 20b1b2b

2
7

� �
b26

þ 16 f 40b3 þ 4b1b
2
2b

4
7 þ 8b1b

2
2b

2
7 � 32 f 20b1b3b

2
7 � 24 f 20b

2
2b

2
7

� �
b6 þ 8 f 40b4 þ b32b

4
7 � 8 f 20b2b3b

2
7 ¼ 0

(14)

which the roots will determine the solution for b6 as functions of b1, b2, b3, b4, b7,
or b6 ¼ f 1 b7ð Þ in simple unknown variable. The step now is to find the polynomial
expression for b7 from the last relation of (10) as,

b1 f
4
1 b7ð Þ þ b2 f

3
1 b7ð Þ þ b3 f

2
1 b7ð Þ þ b4 f 1 b7ð Þ þ b5 ¼

6b1 f
2
1 b7ð Þb7 þ 3b2 f 1 b7ð Þb7 þ b3b7

2 f 0
� 1

8 f 30
4b1 f 1 b7ð Þ þ b2
� �2b37

" #2 (15)

Therefore, the last equation gives the expression for b7 as polynomial equation of
higher order, and the generated polynomial is,

anb
n
7 þ an�1b

n�1
7 þ an�2b

n�2
7 þ an�3b

n�3
7 þ ::……… þ a2b

2
7 þ a1b7 þ a0 ¼ 0 (16)

In this case the higher order polynomial will be solved by reducing the order.

3. Reduction of higher order polynomial

Consider the sixth order polynomial equation as in the following,

b67 þ a4b
5
7 þ a5b

4
7 þ a6b

3
7 þ a7b

2
7 þ a8b7 þ a9 ¼ 0
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First, multiply the above equation with the functionα and rearranged as,

B6 þ a4αB5 þ a5α2B4 þ a6α3B3 þ a7α4B2 þ a8α5Bþ a9α6 þ φ ¼ φ (17)

where B ¼ αb7. The polynomial equation is cut as in the following,

B4 þ b1B3 þ b2B2 þ b3Bþ b4
� �

B2 þ b5B2 � B4 þ b1B3 þ b2B2 þ b3Bþ b4
� �

b6 ¼ φ

Note that, the coefficients bi in this section is different from the previous
section. Expanding for the new coefficients,

B6 þ b1B5 þ b2 � b5ð ÞB4 þ b3 � b1b5ð ÞB3 þ b4 þ b5 � b2b5ð ÞB2 � b3b5B� b4b6 ¼ φ

(18)

Hence, the relation for coefficients is,

b1 ¼ a1α

b2 � b6 ¼ a2α2

b3 � b1b6 ¼ a3α3

b4 þ b5 � b2b6 ¼ a4α4 or

�b3b6 ¼ a5α5

�b4b6 ¼ a6α6 þ φ

b6 ¼ φ

b5

b1 ¼ a1α

b2 � b6 ¼ a2α2

b3 � a1α b2 � a2α2
� � ¼ a3α3

b4 þ b5 � b2 � a2α2
� �2 ¼ a4α4 þ a2α2 b2 � a2α2

� �

� a3α3 þ a1α b2 � a2α2
� �� �

b2 � a2α2
� � ¼ a5α5

� a4α4 þ a2α2 b2 � a2α2
� �þ b2 � a2α2

� �2 � b5
h i

b2 � a2α2
� � ¼ a6α6 þ φ

b2 � a2α2
� � ¼ �

a4α4 þ a2α2 b2 � a2α2ð Þ þ b2 � a2α2ð Þ2 � b5
h i

b2 � a2α2ð Þ þ a6α6

b5

:

The fifth coefficient relation is rearranged as,

b2 � a2α2
� �2 þ a3

a1
α2 b2 � a2α2
� �þ a5

a1
α4 ¼ 0 (19)

and the roots are,

b2 � a2α2
� � ¼ 1

2
α2 � a3

a1
� a23

a21
� 4

a5
a1

� �1
2

" #
¼ f 0α

2 (20)
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Also, the last relation is rewritten as,

b2 � a2α2
� �3 þ a2α2 b2 � a2α2

� �2 þ a4α4 b2 � a2α2
� �þ a6α6 ¼ 0 (21)

Note that performing (19) into (21) will remove b5 and α. Thus, it is necessary to
take other relation, i.e. a6α6 ¼ α12 þ b5, which will produce the cubic equation as
follows,

α12 þ f 30 þ a2 f
2
0 þ a4 f 0

� �
α6 þ b5 ¼ 0 (22)

which has the roots as,

α6 ¼ � 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �� 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �2 � 4b5
h i1

2
(23)

Substituting back into a6α6 ¼ α12 þ b5 to get,

� 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �� 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �2 � 4b5
h i1

2

� �2

þb5 ¼ � 1
2
a6 f 30 þ a2 f

2
0 þ a4 f 0

� �� 1
2
a6 f 30 þ a2 f

2
0 þ a4 f 0

� �2 � 4b5
h i1

2

or

1
4

f 30 þ a2 f
2
0 þ a4 f 0

� �2 � 4b5
h i

� 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �
f 30 þ a2 f

2
0 þ a4 f 0

� �2 � 4b5
h i1

2

þ 1
4

f 30 þ a2 f
2
0 þ a4 f 0

� �2 þ b5 ¼ � 1
2
a6 f 30 þ a2 f

2
0 þ a4 f 0

� �� 1
2
a6 f 30 þ a2 f

2
0 þ a4 f 0

� �2 � 4b5
h i1

2

or

b5 ¼ 1
4

f 30 þ a2 f
2
0 þ a4 f 0

� �2 � 1
4

f 30 þ a2 f
2
0 þ a4 f 0

� �2 þ a6 f 30 þ a2 f
2
0 þ a4 f 0

� �

f 30 þ a2 f
2
0 þ a4 f 0 þ a6

� �
" #2

(24)

Therefore,α is also determined by (24) and so all the coefficients,
b1, b2, b3, b4, b6,φ. The polynomial equation of sixth order is then re-expressed as,

B4 þ b1B3 þ b2B2 þ b3Bþ b4
� �

B2 � b6
� � ¼ �b5 B2 � φ

b5

� �
(25)

as reduced into the quartic equation the roots can be obtained by radical
solution.

The procedure described by (17–25) can be applied and iterated into (16) until
the polynomial equation of b7 is reduced into quartic equation. Hence, all the
coefficients for Riccati equation the first order series, i.e. a1, a2, a3, b6, b7 are
determined and produce the solution as,

ϕ ¼ b6 þ b7A or

ϕ ¼ b6 þ
ffiffiffi
2
p

2
b7e
Ð
ξ
a2dξ

ð

ξ
a3dξþ C2

� � ð

ξ
a1b7e

2
Ð
ξ
a2dξ

ð

ξ
a3dξþ C2

� �
dξþ C3

� ��1
2

(26)

Thus, following the method explained by (2–6) and (17–25), we have arrived at
the solution of Jacobi and Weierstrass equations with variable coefficients.
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4. Solution examples

4.1 The elliptic-like equation

As an application, consider the elliptic-like equation with forcing function,

ϕξξ þ b1 ξð Þϕ3 þ b2 ξð Þϕ ¼ b3 ξð Þ (27)

The balance principle suggests that the solution should be in the form,

ϕ ¼ b4 þ b5A (28)

Substituting into (27) will reproduce the following expression,

b5Aξξ þ 2b5ξAξ þ b1b
3
5A

3 þ 3b1b4b
2
5A

2 þ b5ξξ þ 3b1b
2
4b5 þ b2b5

� �
Aþ b4ξξ þ b1b

3
4 þ b2b4 ¼ b3

(29)

The next step is to differentiate the Riccati equation once,

Aξξ ¼ 2a21A
3 þ 3a1a2 þ a1ξð ÞA2 þ 2a1a3 þ a22 þ a2ξ

� �
Aþ a2a3 þ a3ξ

Substituting into Eq. (29) and it will produce the polynomial equation as in the
following,

2a21b5 þ b1b
3
5

� �
A3 þ 3a1a2b5 þ a1ξb5 þ 2a1b5ξ þ 3b1b4b

2
5

� �
A2

þ 2a1a3b5 þ a22b5 þ a2ξb5 þ 2a2b5ξ þ b5ξξ þ 3b1b
2
4b5 þ b2b5

� �
A

þa2a3b5 þ a3ξb5 þ 2a3b5ξ þ b4ξξ þ b1b
3
4 þ b2b4 ¼ b3

or the next step is to relate the coefficients as,

2a21b5 þ b1b
3
5 ¼ 0

3a1a2b5 þ a1ξb5 þ 2a1b5ξ þ 3b1b4b
2
5 ¼ 0

2a1a3b5 þ a22b5 þ a2ξb5 þ 2a2b5ξ þ b5ξξ þ 3b1b
2
4b5 þ b2b5 ¼ 0

a2a3b5 þ a3ξb5 þ 2a3b5ξ þ b4ξξ þ b1b
3
4 þ b2b4 ¼ b3

In this case, the first equation gives,

a1 ¼ f b1ð Þb5 (30)

For the second equation,

3fa2b5 þ f ξb5 þ 3fb5ξ þ 3b1b4b5 ¼ 0

Thus, provide the expression for b5 as,

b5 ¼ C4 f
�1

3e
�
Ð
ξ

a2þb1b4
f

� �
dξ

(31)
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Also, the last relation is rewritten as,

b2 � a2α2
� �3 þ a2α2 b2 � a2α2

� �2 þ a4α4 b2 � a2α2
� �þ a6α6 ¼ 0 (21)

Note that performing (19) into (21) will remove b5 and α. Thus, it is necessary to
take other relation, i.e. a6α6 ¼ α12 þ b5, which will produce the cubic equation as
follows,

α12 þ f 30 þ a2 f
2
0 þ a4 f 0

� �
α6 þ b5 ¼ 0 (22)

which has the roots as,

α6 ¼ � 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �� 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �2 � 4b5
h i1

2
(23)

Substituting back into a6α6 ¼ α12 þ b5 to get,

� 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �� 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �2 � 4b5
h i1

2

� �2

þb5 ¼ � 1
2
a6 f 30 þ a2 f

2
0 þ a4 f 0

� �� 1
2
a6 f 30 þ a2 f

2
0 þ a4 f 0

� �2 � 4b5
h i1

2

or

1
4

f 30 þ a2 f
2
0 þ a4 f 0

� �2 � 4b5
h i

� 1
2

f 30 þ a2 f
2
0 þ a4 f 0

� �
f 30 þ a2 f

2
0 þ a4 f 0

� �2 � 4b5
h i1

2

þ 1
4

f 30 þ a2 f
2
0 þ a4 f 0

� �2 þ b5 ¼ � 1
2
a6 f 30 þ a2 f

2
0 þ a4 f 0

� �� 1
2
a6 f 30 þ a2 f

2
0 þ a4 f 0

� �2 � 4b5
h i1

2

or

b5 ¼ 1
4

f 30 þ a2 f
2
0 þ a4 f 0

� �2 � 1
4

f 30 þ a2 f
2
0 þ a4 f 0

� �2 þ a6 f 30 þ a2 f
2
0 þ a4 f 0

� �

f 30 þ a2 f
2
0 þ a4 f 0 þ a6

� �
" #2

(24)

Therefore,α is also determined by (24) and so all the coefficients,
b1, b2, b3, b4, b6,φ. The polynomial equation of sixth order is then re-expressed as,

B4 þ b1B3 þ b2B2 þ b3Bþ b4
� �

B2 � b6
� � ¼ �b5 B2 � φ

b5

� �
(25)

as reduced into the quartic equation the roots can be obtained by radical
solution.

The procedure described by (17–25) can be applied and iterated into (16) until
the polynomial equation of b7 is reduced into quartic equation. Hence, all the
coefficients for Riccati equation the first order series, i.e. a1, a2, a3, b6, b7 are
determined and produce the solution as,

ϕ ¼ b6 þ b7A or

ϕ ¼ b6 þ
ffiffiffi
2
p

2
b7e
Ð
ξ
a2dξ

ð

ξ
a3dξþ C2

� � ð

ξ
a1b7e

2
Ð
ξ
a2dξ

ð

ξ
a3dξþ C2

� �
dξþ C3

� ��1
2

(26)

Thus, following the method explained by (2–6) and (17–25), we have arrived at
the solution of Jacobi and Weierstrass equations with variable coefficients.
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4. Solution examples

4.1 The elliptic-like equation

As an application, consider the elliptic-like equation with forcing function,

ϕξξ þ b1 ξð Þϕ3 þ b2 ξð Þϕ ¼ b3 ξð Þ (27)

The balance principle suggests that the solution should be in the form,

ϕ ¼ b4 þ b5A (28)

Substituting into (27) will reproduce the following expression,

b5Aξξ þ 2b5ξAξ þ b1b
3
5A

3 þ 3b1b4b
2
5A

2 þ b5ξξ þ 3b1b
2
4b5 þ b2b5

� �
Aþ b4ξξ þ b1b

3
4 þ b2b4 ¼ b3

(29)

The next step is to differentiate the Riccati equation once,

Aξξ ¼ 2a21A
3 þ 3a1a2 þ a1ξð ÞA2 þ 2a1a3 þ a22 þ a2ξ

� �
Aþ a2a3 þ a3ξ

Substituting into Eq. (29) and it will produce the polynomial equation as in the
following,

2a21b5 þ b1b
3
5

� �
A3 þ 3a1a2b5 þ a1ξb5 þ 2a1b5ξ þ 3b1b4b

2
5

� �
A2

þ 2a1a3b5 þ a22b5 þ a2ξb5 þ 2a2b5ξ þ b5ξξ þ 3b1b
2
4b5 þ b2b5

� �
A

þa2a3b5 þ a3ξb5 þ 2a3b5ξ þ b4ξξ þ b1b
3
4 þ b2b4 ¼ b3

or the next step is to relate the coefficients as,

2a21b5 þ b1b
3
5 ¼ 0

3a1a2b5 þ a1ξb5 þ 2a1b5ξ þ 3b1b4b
2
5 ¼ 0

2a1a3b5 þ a22b5 þ a2ξb5 þ 2a2b5ξ þ b5ξξ þ 3b1b
2
4b5 þ b2b5 ¼ 0

a2a3b5 þ a3ξb5 þ 2a3b5ξ þ b4ξξ þ b1b
3
4 þ b2b4 ¼ b3

In this case, the first equation gives,

a1 ¼ f b1ð Þb5 (30)

For the second equation,

3fa2b5 þ f ξb5 þ 3fb5ξ þ 3b1b4b5 ¼ 0

Thus, provide the expression for b5 as,

b5 ¼ C4 f
�1

3e
�
Ð
ξ

a2þb1b4
f

� �
dξ

(31)

325

On the Generalized Simplest Equations: Toward the Solution of Nonlinear Differential…
DOI: http://dx.doi.org/10.5772/intechopen.95620



The third and fourth equations produce,

a3b5 ¼ b�15 e�
Ð
ξ
a2dξ

ð

ξ
b5e
Ð
ξ
a2dξ b3 � b4ξξ � b1b

3
4 � b2b4

� �
dξþ C4

� �
(32)

Substituting (32) into (31),

�a22 � a2ξ � 2a2
b5ξ
b5
� b5ξξ

b5
� 3b1b

2
4 � b2 ¼ 2fb�15 e�

Ð
ξ
a2dξ

ð
ξ
b5e
Ð
ξ
a2dξ b3 � b4ξξ � b1b

3
4 � b2b4

� �
dξþ C4

� �

Replace b5 with (10),

2
3

f ξ
f
a2 þ 1

3

f ξξ
f
� 4

9

f ξ
f

� �2

� b1b4
f

� �2

þ b1b4
f

� �

ξ

� 3b1b
2
4 � b2 ¼

2fe
Ð
ξ

b1b4
f dξ

ð

ξ
e�
Ð
ξ

b1b4
f dξ b3 � b4ξξ � b1b

3
4 � b2b4

� �
dξþ C4

� � (33)

which then solves a2 regardless of b4. In this case, we take b4 as the chosen
fundamental variable and the resulted coefficients, b5, a1, a2, a3 depend on b4
and with the known coefficients b1, b2, b3. Therefore, the solution of (27) is
generated as,

ϕ ξð Þ ¼ b5 b4ð Þ
ffiffiffi
2
p

2
e
Ð
ξ
a2 b4ð Þdξ

ð

ξ
a3 b4ð Þdξþ C2

� � ð

ξ
a1 b4ð Þe2

Ð
ξ
a2 b4ð Þdξ

ð

ξ
a3 b4ð Þdξþ C2

� �
dξþ C3

� ��1
2

( )

þb4
(34)

4.2 Korteweg de Vries equation

The next example is for the Korteweg de Vries type equation,

ϕξξξ þ b1 ξð Þϕϕξ þ b2 ξð Þϕξ þ b3 ξð Þϕþ b4 ξð Þ ¼ 0 (35)

The balancing principle with application of Riccati equation will determined the
ansatz,

ϕ ¼ b5 þ b6Aþ b7A2 (36)

Performing into (35) will produce,

2b7AAξξξ þ b6Aξξξ þ 6b7AξAξξ þ 6b7ξA2
ξ þ 6b7ξAAξξ þ 2b1b

2
7A

3Aξ þ 3b1b6b7A2Aξ

þ 6b7ξξ þ b1b
2
6 þ 2b1b5b7 þ 2b2b7

� �
AAξ þ 3b6ξAξξ þ 3b6ξξ þ b1b5b6 þ b2b6ð ÞAξ þ b1b7b7ξA4

þ b1b6ξb7 þ b1b6b7ξð ÞA3 þ b7ξξξ þ b1b5b7ξ þ b1b6b6ξ þ b1b5ξb7 þ b2b7ξ þ b3b7ð ÞA2

þ b6ξξξ þ b1b5b6ξ þ b1b5ξb6 þ b2b6ξ þ b3b6ð ÞAþ b5ξξξ þ b1b5b5ξ þ b2b5ξ þ b3b5 þ b4 ¼ 0

(37)
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Performing the Riccati equation into (37) will produce the following polynomial,

12b7a31 þ 2b1b
2
7a1 þ 12a31b7

� �
A5 þ

18a1a1ξb7 þ 54a21a2b7 þ 6a31b6 þ b1b7b7ξ þ 2a2b1b
2
7

þ18a21b7ξ þ 3a1b1b6b7

0
@

1
AA4

þ

40a21a3b7 þ 32a1a22b7 þ 12a1ξa2b7 þ 18a1a2ξb7 þ 2a1ξξb7 þ 6a1a1ξb6 þ 12a21a2b6 þ b1b6ξb7

þb1b6b7ξ þ 2a3b1b
2
7 þ 6a32b7 þ 30a1a2b7ξ þ 6a1ξb7ξ þ 6a21b6ξ þ 3a2b1b6b7 þ 6a1b7ξξ

þa1b1b26 þ 2a1b1b5b7 þ 2a1b2b7

0
BBB@

1
CCCAA3

þ

52a1a2a3b7 þ 14a1ξa3b7 þ 10a1a3ξb7 þ 12a2a2ξb7 þ 2a2ξξb7 þ 8a32b7 þ 8a21a3b6 þ 7a1a22b6

þ3a1ξa2b6 þ 6a1a2ξb6 þ a1ξξb6 þ 24a1a3b7ξ þ 12a22b7ξ þ 6a2ξb7ξ þ 9a1a2b6ξ þ 3a1ξb6ξ þ b7ξξξ

þb1b5b7ξ þ b1b6b6ξ þ b1b5ξb7 þ b2b7ξ þ b3b7 þ 3a3b1b6b7 þ 6a2b7ξξ þ a2b1b
2
6 þ 2a2b1b5b7

þ2a2b2b7 þ 3a1b6ξξ þ a1b1b5b6 þ a1b2b6

0
BBBBBBB@

1
CCCCCCCA
A2

þ

16a1a23b7 þ 14a22a3b7 þ 10a2ξa3b7 þ 8a2a3ξb7 þ 2a3ξξb7 þ 8a1a2a3b6 þ 4a1ξa3b6 þ 2a1a3ξb6

þ3a2a2ξb6 þ a2ξξb6 þ a32b6 þ 18a2a3b7ξ þ 6a3ξb7ξ þ 6a1a3b6ξ þ 3a22b6ξ þ 3a2ξb6ξ þ b6ξξξ

þb1b5b6ξ þ b1b5ξb6 þ b2b6ξ þ b3b6 þ 6a3b7ξξ þ a3b1b
2
6 þ 2a3b1b5b7 þ 2a3b2b7 þ 3a2b6ξξ

þa2b1b5b6 þ a2b2b6

0
BBBBBBB@

1
CCCCCCCA
A

þ
2a1a23b6 þ a22a3b6 þ 2a2ξa3b6 þ a2a3ξb6 þ a3ξξb6 þ 6a2a23b7 þ 6a3a3ξb7 þ 3a2a3b6ξ

þ3a3ξb6ξ þ b5ξξξ þ b1b5b5ξ þ b2b5ξ þ 6a23b7ξ þ 3a3b6ξξ þ a3b1b5b6 þ a3b2b6 þ b3b5 þ b4

0
@

1
A ¼ 0

(38)

From this step on, there is a little hope to solve all the coefficients as they are
equal to zero. As it has also to be reduced, it is important to note that the problem of
reduction here is different from the case of Jacobi equation since all the coefficients
are in principle solvable in algebraic form. In this case, it is not practical to reduce
the fifth order polynomial as the even highest power, i.e., as a tenth order polyno-
mial equation. The calculation will become too tedious as the detail expression is
needed in the reduced polynomial equation. The next sub section will illustrate the
reduction of an odd highest power polynomial equation.

4.3 Reduction of fifth order polynomial

Consider Eq. (38) as follows,

d1A5 þ d2A4 þ d3A3 þ d4A2 þ d5Aþ d6 ¼ 0

Multiply by the function, β and rearrange,

d1B5 þ d2βB4 þ d3β2B3 þ d4β3B2 þ d5β4Bþ d6β5 þ φ ¼ φ (39)

where, B ¼ βA. Rearranged Eq. (39) as given by,

b1B3 þ b2B2 þ b3Bþ b4
� �

B2 þ b5B2 � b1B3 þ b2B2 þ b3Bþ b4
� �

b6 ¼ φ (40)

Expanding the all the coefficients as,

b1B5 þ b2B4 þ b3 � b1b6ð ÞB3 þ b4 þ b5 � b2b6ð ÞB2 � b3b6B� b4b6 ¼ φ
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The third and fourth equations produce,

a3b5 ¼ b�15 e�
Ð
ξ
a2dξ

ð

ξ
b5e
Ð
ξ
a2dξ b3 � b4ξξ � b1b

3
4 � b2b4

� �
dξþ C4

� �
(32)

Substituting (32) into (31),

�a22 � a2ξ � 2a2
b5ξ
b5
� b5ξξ

b5
� 3b1b

2
4 � b2 ¼ 2fb�15 e�

Ð
ξ
a2dξ

ð
ξ
b5e
Ð
ξ
a2dξ b3 � b4ξξ � b1b

3
4 � b2b4

� �
dξþ C4

� �

Replace b5 with (10),

2
3

f ξ
f
a2 þ 1

3

f ξξ
f
� 4

9

f ξ
f

� �2

� b1b4
f

� �2

þ b1b4
f

� �

ξ

� 3b1b
2
4 � b2 ¼

2fe
Ð
ξ

b1b4
f dξ

ð

ξ
e�
Ð
ξ

b1b4
f dξ b3 � b4ξξ � b1b

3
4 � b2b4

� �
dξþ C4

� � (33)

which then solves a2 regardless of b4. In this case, we take b4 as the chosen
fundamental variable and the resulted coefficients, b5, a1, a2, a3 depend on b4
and with the known coefficients b1, b2, b3. Therefore, the solution of (27) is
generated as,

ϕ ξð Þ ¼ b5 b4ð Þ
ffiffiffi
2
p

2
e
Ð
ξ
a2 b4ð Þdξ

ð

ξ
a3 b4ð Þdξþ C2

� � ð

ξ
a1 b4ð Þe2

Ð
ξ
a2 b4ð Þdξ

ð

ξ
a3 b4ð Þdξþ C2

� �
dξþ C3

� ��1
2

( )

þb4
(34)

4.2 Korteweg de Vries equation

The next example is for the Korteweg de Vries type equation,

ϕξξξ þ b1 ξð Þϕϕξ þ b2 ξð Þϕξ þ b3 ξð Þϕþ b4 ξð Þ ¼ 0 (35)

The balancing principle with application of Riccati equation will determined the
ansatz,

ϕ ¼ b5 þ b6Aþ b7A2 (36)

Performing into (35) will produce,

2b7AAξξξ þ b6Aξξξ þ 6b7AξAξξ þ 6b7ξA2
ξ þ 6b7ξAAξξ þ 2b1b

2
7A

3Aξ þ 3b1b6b7A2Aξ

þ 6b7ξξ þ b1b
2
6 þ 2b1b5b7 þ 2b2b7

� �
AAξ þ 3b6ξAξξ þ 3b6ξξ þ b1b5b6 þ b2b6ð ÞAξ þ b1b7b7ξA4

þ b1b6ξb7 þ b1b6b7ξð ÞA3 þ b7ξξξ þ b1b5b7ξ þ b1b6b6ξ þ b1b5ξb7 þ b2b7ξ þ b3b7ð ÞA2

þ b6ξξξ þ b1b5b6ξ þ b1b5ξb6 þ b2b6ξ þ b3b6ð ÞAþ b5ξξξ þ b1b5b5ξ þ b2b5ξ þ b3b5 þ b4 ¼ 0

(37)
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Performing the Riccati equation into (37) will produce the following polynomial,

12b7a31 þ 2b1b
2
7a1 þ 12a31b7

� �
A5 þ

18a1a1ξb7 þ 54a21a2b7 þ 6a31b6 þ b1b7b7ξ þ 2a2b1b
2
7

þ18a21b7ξ þ 3a1b1b6b7

0
@

1
AA4

þ

40a21a3b7 þ 32a1a22b7 þ 12a1ξa2b7 þ 18a1a2ξb7 þ 2a1ξξb7 þ 6a1a1ξb6 þ 12a21a2b6 þ b1b6ξb7

þb1b6b7ξ þ 2a3b1b
2
7 þ 6a32b7 þ 30a1a2b7ξ þ 6a1ξb7ξ þ 6a21b6ξ þ 3a2b1b6b7 þ 6a1b7ξξ

þa1b1b26 þ 2a1b1b5b7 þ 2a1b2b7

0
BBB@

1
CCCAA3

þ

52a1a2a3b7 þ 14a1ξa3b7 þ 10a1a3ξb7 þ 12a2a2ξb7 þ 2a2ξξb7 þ 8a32b7 þ 8a21a3b6 þ 7a1a22b6

þ3a1ξa2b6 þ 6a1a2ξb6 þ a1ξξb6 þ 24a1a3b7ξ þ 12a22b7ξ þ 6a2ξb7ξ þ 9a1a2b6ξ þ 3a1ξb6ξ þ b7ξξξ

þb1b5b7ξ þ b1b6b6ξ þ b1b5ξb7 þ b2b7ξ þ b3b7 þ 3a3b1b6b7 þ 6a2b7ξξ þ a2b1b
2
6 þ 2a2b1b5b7

þ2a2b2b7 þ 3a1b6ξξ þ a1b1b5b6 þ a1b2b6

0
BBBBBBB@

1
CCCCCCCA
A2

þ

16a1a23b7 þ 14a22a3b7 þ 10a2ξa3b7 þ 8a2a3ξb7 þ 2a3ξξb7 þ 8a1a2a3b6 þ 4a1ξa3b6 þ 2a1a3ξb6

þ3a2a2ξb6 þ a2ξξb6 þ a32b6 þ 18a2a3b7ξ þ 6a3ξb7ξ þ 6a1a3b6ξ þ 3a22b6ξ þ 3a2ξb6ξ þ b6ξξξ

þb1b5b6ξ þ b1b5ξb6 þ b2b6ξ þ b3b6 þ 6a3b7ξξ þ a3b1b
2
6 þ 2a3b1b5b7 þ 2a3b2b7 þ 3a2b6ξξ

þa2b1b5b6 þ a2b2b6

0
BBBBBBB@

1
CCCCCCCA
A

þ
2a1a23b6 þ a22a3b6 þ 2a2ξa3b6 þ a2a3ξb6 þ a3ξξb6 þ 6a2a23b7 þ 6a3a3ξb7 þ 3a2a3b6ξ

þ3a3ξb6ξ þ b5ξξξ þ b1b5b5ξ þ b2b5ξ þ 6a23b7ξ þ 3a3b6ξξ þ a3b1b5b6 þ a3b2b6 þ b3b5 þ b4

0
@

1
A ¼ 0

(38)

From this step on, there is a little hope to solve all the coefficients as they are
equal to zero. As it has also to be reduced, it is important to note that the problem of
reduction here is different from the case of Jacobi equation since all the coefficients
are in principle solvable in algebraic form. In this case, it is not practical to reduce
the fifth order polynomial as the even highest power, i.e., as a tenth order polyno-
mial equation. The calculation will become too tedious as the detail expression is
needed in the reduced polynomial equation. The next sub section will illustrate the
reduction of an odd highest power polynomial equation.

4.3 Reduction of fifth order polynomial

Consider Eq. (38) as follows,

d1A5 þ d2A4 þ d3A3 þ d4A2 þ d5Aþ d6 ¼ 0

Multiply by the function, β and rearrange,

d1B5 þ d2βB4 þ d3β2B3 þ d4β3B2 þ d5β4Bþ d6β5 þ φ ¼ φ (39)

where, B ¼ βA. Rearranged Eq. (39) as given by,

b1B3 þ b2B2 þ b3Bþ b4
� �

B2 þ b5B2 � b1B3 þ b2B2 þ b3Bþ b4
� �

b6 ¼ φ (40)

Expanding the all the coefficients as,

b1B5 þ b2B4 þ b3 � b1b6ð ÞB3 þ b4 þ b5 � b2b6ð ÞB2 � b3b6B� b4b6 ¼ φ
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Relate the coefficients as in the following,

b1 ¼ d1
b2 ¼ d2β
b3 � b1b6 ¼ d3β2

b4 þ b5 � d2β
1
d1

b3 � d3β2
� � ¼ d4β3

� 1

d21
b3 � d3β2
� �2 ¼ d5β4 þ d3β2

1
d1

b3 � d3β2
� �

� d4β3 þ d2β
1
d1

b3 � d3β2
� �� b5

� �
1
d1

b3 � d3β2
� � ¼ d6β5 þ φ

1
d1

b3 � d3β2
� � ¼ �

d4β3 þ d2β
1
d1

b3 � d3β2
� �� b5

� �
1
d1

b3 � d3β2
� �þ d5β5

b5

8>><
>>:

9>>=
>>;
(41)

The fifth equation of (41) gives the roots as,

1
d1

b3 � d3β2
� � ¼ 1

2
β2 d3 � d23 � 4d5

� �1
2

h i
¼ β2 f 0 (42)

Moving to the last equation, the functions b5 and β disappear from the operation.
In this case we will consider the test function, b5 þ β10 ¼ d6β5, and will perform as,

β10 þ d4β3
1
d1

b3 � d3β2
� �þ d2β

1

d21
b3 � d3β2
� �2 þ b5 ¼ 0 (43)

Substituting for b3, the expression for β is,

β10 þ d4 f 0 þ d2 f
2
0

� �
d4β5 þ b5 ¼ 0

β5 ¼ � 1
2

d4 f 0 þ d2 f
2
0

� �� 1
2

d4 f 0 þ d2 f
2
0

� �2 � 4b5
h i1

2
(44)

Substitute back to, b5 þ β10 ¼ d6β5 as follows

� 1
2

d4 f 0 þ d2 f
2
0

� �� 1
2

d4 f 0 þ d2 f
2
0

� �2 � 4b5
h i1

2

� �2

þ b5

¼ � 1
2
d6 d4 f 0 þ d2 f

2
0

� �� 1
2
d6 d4 f 0 þ d2 f

2
0

� �2 � 4b5
h i1

2
or

1
4

d4f 0 þ d2f
2
0

� �2 � 4b5
h i

� 1
2

d4f 0 þ d2f
2
0

� �
d4f 0 þ d2f

2
0

� �2 � 4b5
h i1

2

þ 1
4

d4f 0 þ d2f
2
0

� �2 þ b5 ¼ � 1
2
d6 d4f 0 þ d2f

2
0

� �� 1
2
d6 d4f 0 þ d2f

2
0

� �2 � 4b5
h i1

2

or

b5 ¼ 1
4

d4 f 0 þ d2 f
2
0

� �2 � 1
4

d4 f 0 þ d2 f
2
0

� �2 þ d6 d4 f 0 þ d2 f
2
0

� �

d4 f 0 þ d2 f
2
0 þ d6

� �
" #2

(45)

which then solves b5, β, φ and thus generates all the coefficients of bi. The
polynomial is then rewritten as,
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b1B3 þ b2B2 þ b3Bþ b4
� �

B2 � b6
� � ¼ �b5 B2 � φ

b5

� �

which is reduced as,

d1A3 þ d2A2 þ 1
2
d1 d3 � d23 � 4d5

� �1
2

h i
þ d3

� �
Aþ d4 þ 1

2
d2 d3 � d23 � 4d5

� �1
2

h i
¼ 0

(46)

Eq. (46) dictates that the relations, d1 ¼ d2 ¼ d3 ¼ d4 ¼ 0 will satisfy for the
solution. Hence, the coefficients are then,

12b7a31 þ 2b1b
2
7a1 þ 12a31b7 ¼ 0

18a1a1ξb7 þ 54a21a2b7 þ 6a31b6 þ b1b7b7ξ þ 2a2b1b
2
7 þ 18a21b7ξ þ 3a1b1b6b7 ¼ 0

40a21a3b7 þ 32a1a22b7 þ 12a1ξa2b7 þ 18a1a2ξb7 þ 2a1ξξb7 þ 6a1a1ξb6 þ 12a21a2b6

þb1b6ξb7 þ b1b6b7ξ þ 2a3b1b
2
7 þ 6a32b7 þ 30a1a2b7ξ þ 6a1ξb7ξ þ 6a21b6ξ þ 3a2b1b6b7

þ6a1b7ξξ þ a1b1b
2
6 þ 2a1b1b5b7 þ 2a1b2b7 ¼ 0

52a1a2a3b7 þ 14a1ξa3b7 þ 10a1a3ξb7 þ 12a2a2ξb7 þ 2a2ξξb7 þ 8a32b7 þ 8a21a3b6

þ7a1a22b6 þ 3a1ξa2b6 þ 6a1a2ξb6 þ a1ξξb6 þ 24a1a3b7ξ þ 12a22b7ξ þ 6a2ξb7ξ þ 9a1a2b6ξ

þ3a1ξb6ξ þ b7ξξξ þ b1b5b7ξ þ b1b6b6ξ þ b1b5ξb7 þ b2b7ξ þ b3b7 þ 3a3b1b6b7 þ 6a2b7ξξ

þa2b1b26 þ 2a2b1b5b7 þ 2a2b2b7 þ 3a1b6ξξ þ a1b1b5b6 þ a1b2b6 ¼ 0

(47)

The first equation gives,

b7 ¼ f b1ð Þa21 (48)

The second equation is rewritten as,

18a1ξfa
3
1 þ 54fa31a2 þ 6a31b6 þ b1ff ξa

4
1 þ 2b1 f

2a31a1ξ þ 2a2b1 f
2a41 þ 18 f ξa

4
1 þ 18fa31a1ξ

þ 3b1b6fa
2
1 ¼ 0 or

18a1ξf þ 54fa2 þ 6b6 þ b1ff ξa1 þ 2b1 f
2a1ξ þ 2a2b1 f

2a1 þ 18 f ξa1 þ 18fa1ξ þ 3b1b6f
¼ 0 or

36f þ 2b1 f
2� �
a1ξ þ 54fa2 þ 6b6 þ b1ff ξ þ 2a2b1 f

2 þ 18 f ξ
� �

a1 þ 3b1b6f ¼ 0

The solution for b6 is then,

36f þ 2b1 f
2� �
a1ξ ¼ � b1ff ξ þ 2a2b1 f

2 þ 18 f ξ
� �

a1 � 54fa2 � 6þ 3fb1
� �

b6

b6 ¼ � 1
6þ 3fb1
� � b1ff ξ þ 2a2b1 f

2 þ 18 f ξ
� �

a1 þ 36f þ 2b1 f
2� �
a1ξ þ 54fa2

h i
¼ h1 a1, a2ð Þ

(49)
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Relate the coefficients as in the following,

b1 ¼ d1
b2 ¼ d2β
b3 � b1b6 ¼ d3β2

b4 þ b5 � d2β
1
d1

b3 � d3β2
� � ¼ d4β3

� 1

d21
b3 � d3β2
� �2 ¼ d5β4 þ d3β2

1
d1

b3 � d3β2
� �

� d4β3 þ d2β
1
d1

b3 � d3β2
� �� b5

� �
1
d1

b3 � d3β2
� � ¼ d6β5 þ φ

1
d1

b3 � d3β2
� � ¼ �

d4β3 þ d2β
1
d1

b3 � d3β2
� �� b5

� �
1
d1

b3 � d3β2
� �þ d5β5

b5

8>><
>>:

9>>=
>>;
(41)

The fifth equation of (41) gives the roots as,

1
d1

b3 � d3β2
� � ¼ 1

2
β2 d3 � d23 � 4d5

� �1
2

h i
¼ β2 f 0 (42)

Moving to the last equation, the functions b5 and β disappear from the operation.
In this case we will consider the test function, b5 þ β10 ¼ d6β5, and will perform as,

β10 þ d4β3
1
d1

b3 � d3β2
� �þ d2β

1

d21
b3 � d3β2
� �2 þ b5 ¼ 0 (43)

Substituting for b3, the expression for β is,

β10 þ d4 f 0 þ d2 f
2
0

� �
d4β5 þ b5 ¼ 0

β5 ¼ � 1
2

d4 f 0 þ d2 f
2
0

� �� 1
2

d4 f 0 þ d2 f
2
0

� �2 � 4b5
h i1

2
(44)

Substitute back to, b5 þ β10 ¼ d6β5 as follows

� 1
2

d4 f 0 þ d2 f
2
0

� �� 1
2

d4 f 0 þ d2 f
2
0

� �2 � 4b5
h i1

2

� �2

þ b5

¼ � 1
2
d6 d4 f 0 þ d2 f

2
0

� �� 1
2
d6 d4 f 0 þ d2 f

2
0

� �2 � 4b5
h i1

2
or

1
4

d4f 0 þ d2f
2
0

� �2 � 4b5
h i

� 1
2

d4f 0 þ d2f
2
0

� �
d4f 0 þ d2f

2
0

� �2 � 4b5
h i1

2

þ 1
4

d4f 0 þ d2f
2
0

� �2 þ b5 ¼ � 1
2
d6 d4f 0 þ d2f

2
0

� �� 1
2
d6 d4f 0 þ d2f

2
0

� �2 � 4b5
h i1

2

or

b5 ¼ 1
4

d4 f 0 þ d2 f
2
0

� �2 � 1
4

d4 f 0 þ d2 f
2
0

� �2 þ d6 d4 f 0 þ d2 f
2
0

� �

d4 f 0 þ d2 f
2
0 þ d6

� �
" #2

(45)

which then solves b5, β, φ and thus generates all the coefficients of bi. The
polynomial is then rewritten as,
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b1B3 þ b2B2 þ b3Bþ b4
� �

B2 � b6
� � ¼ �b5 B2 � φ

b5

� �

which is reduced as,

d1A3 þ d2A2 þ 1
2
d1 d3 � d23 � 4d5

� �1
2

h i
þ d3

� �
Aþ d4 þ 1

2
d2 d3 � d23 � 4d5

� �1
2

h i
¼ 0

(46)

Eq. (46) dictates that the relations, d1 ¼ d2 ¼ d3 ¼ d4 ¼ 0 will satisfy for the
solution. Hence, the coefficients are then,

12b7a31 þ 2b1b
2
7a1 þ 12a31b7 ¼ 0

18a1a1ξb7 þ 54a21a2b7 þ 6a31b6 þ b1b7b7ξ þ 2a2b1b
2
7 þ 18a21b7ξ þ 3a1b1b6b7 ¼ 0

40a21a3b7 þ 32a1a22b7 þ 12a1ξa2b7 þ 18a1a2ξb7 þ 2a1ξξb7 þ 6a1a1ξb6 þ 12a21a2b6

þb1b6ξb7 þ b1b6b7ξ þ 2a3b1b
2
7 þ 6a32b7 þ 30a1a2b7ξ þ 6a1ξb7ξ þ 6a21b6ξ þ 3a2b1b6b7

þ6a1b7ξξ þ a1b1b
2
6 þ 2a1b1b5b7 þ 2a1b2b7 ¼ 0

52a1a2a3b7 þ 14a1ξa3b7 þ 10a1a3ξb7 þ 12a2a2ξb7 þ 2a2ξξb7 þ 8a32b7 þ 8a21a3b6

þ7a1a22b6 þ 3a1ξa2b6 þ 6a1a2ξb6 þ a1ξξb6 þ 24a1a3b7ξ þ 12a22b7ξ þ 6a2ξb7ξ þ 9a1a2b6ξ

þ3a1ξb6ξ þ b7ξξξ þ b1b5b7ξ þ b1b6b6ξ þ b1b5ξb7 þ b2b7ξ þ b3b7 þ 3a3b1b6b7 þ 6a2b7ξξ

þa2b1b26 þ 2a2b1b5b7 þ 2a2b2b7 þ 3a1b6ξξ þ a1b1b5b6 þ a1b2b6 ¼ 0

(47)

The first equation gives,

b7 ¼ f b1ð Þa21 (48)

The second equation is rewritten as,

18a1ξfa
3
1 þ 54fa31a2 þ 6a31b6 þ b1ff ξa

4
1 þ 2b1 f

2a31a1ξ þ 2a2b1 f
2a41 þ 18 f ξa

4
1 þ 18fa31a1ξ

þ 3b1b6fa
2
1 ¼ 0 or

18a1ξf þ 54fa2 þ 6b6 þ b1ff ξa1 þ 2b1 f
2a1ξ þ 2a2b1 f

2a1 þ 18 f ξa1 þ 18fa1ξ þ 3b1b6f
¼ 0 or

36f þ 2b1 f
2� �
a1ξ þ 54fa2 þ 6b6 þ b1ff ξ þ 2a2b1 f

2 þ 18 f ξ
� �

a1 þ 3b1b6f ¼ 0

The solution for b6 is then,

36f þ 2b1 f
2� �
a1ξ ¼ � b1ff ξ þ 2a2b1 f

2 þ 18 f ξ
� �

a1 � 54fa2 � 6þ 3fb1
� �

b6

b6 ¼ � 1
6þ 3fb1
� � b1ff ξ þ 2a2b1 f

2 þ 18 f ξ
� �

a1 þ 36f þ 2b1 f
2� �
a1ξ þ 54fa2

h i
¼ h1 a1, a2ð Þ

(49)
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The third equation will produce,

40a21a3f þ 32a21a
2
2f þ 12a1ξa2fa1 þ 18a2ξfa

2
1 þ 2a1ξξfa1 þ 6a1ξb6 þ 12a1a2b6 þ b1b6ξfa1 þ b1b6 f ξa1

þ2fa1ξb1b6 þ 2a3b1 f
2a31 þ 6a32fa1 þ 30 f ξa

2
1a2 þ 30ff ξa

2
1a2 þ 60 f 2a1ξa1a2 þ 6a1ξ f ξa1 þ 12fa21ξ

þ6a1b6ξ þ 3a2b1b6fa1 þ 6 f ξξa
2
1 þ 24 f ξa1ξa1 þ 12fa1ξξa1 þ 12fa21ξ þ b1b

2
6 þ 2b1b5fa

2
1 þ 2b2fa

2
1 ¼ 0

Take the expression for b5 as,

b5 ¼ � 1

2b1fa
2
1

h2 a1, a2ð Þ þ 40fa21 þ 2b1 f
2a31

� �
a3

� �

with,

h2 a1, a2ð Þ ¼ 32a21a
2
2f þ 12a1ξa2fa1 þ 18a2ξfa

2
1 þ 2a1ξξfa1 þ 6a1ξh1 þ 12a1a2h1

þb1h1ξfa1 þ b1h1 f ξa1 þ 24 f ξa1ξa1 þ 6a32fa1 þ 30 f ξa
2
1a2 þ 30ff ξa

2
1a2 þ 60 f 2a1ξa1a2

þ6a1ξ f ξa1 þ 12fa21ξ þ 6a1h1ξ þ 3a2b1h1fa1 þ 6 f ξξa
2
1 þ 2fa1ξb1h1 þ 12fa1ξξa1 þ 12fa21ξ

þb1h21 þ 2b2fa
2
1

(50)

The fourth relation of (47) will generate,

h3 a1, a2ð Þ ¼ 24 f ξa
3
1 þ 48fa21a1ξ þ 3b1b6fa

2
1

� �
a3 þ 6fa1ξa1ξξ12a2a2ξfa

2
1 þ 2a2ξξfa

2
1

þ8a32fa21 þ 7a1a22h1 þ 3a1ξa2h1 þ 6a1a2ξh1 þ a1ξξh1 þ 12 f ξa
2
1a

2
2 þ 24fa1a1ξa

2
2 þ 6 f ξa

2
1a2ξ

þ12fa1a1ξa2ξ þ 9a1a2h1ξ þ 3a1ξh1ξ þ f ξξξa
2
1 þ 2 f ξξa1a1ξ þ 4 f ξξa1a1ξ þ 6 f ξa

2
1ξ þ 6 f ξa1a1ξξ

þ2fa1a1ξξξ þ b1h1h1ξ þ f ξa
2
1b2 þ 2fa1a1ξb2 þ b3fa

2
1 þ 2a2b2fa

2
1 þ 3a1h1ξξ þ a1b2h1

þ6 f ξξa21a2 þ 24 f ξa1a1ξa2 þ 12fa21ξa2 þ 12fa1a1ξξa2 þ a2b1h
2
1 þ

h2
2b1fa

2
1

þ b1fa
2
1

h2
2b1fa

2
1

 !

ξ

(51)

which then produce the solution of a3.
Note that a1 and a2 are the chosen fundamental variables and according to (48–51)

and with the known coefficients b1, b2, b3, b4, they will define, b5, b6, b7, a3, β. There-
fore, the solution of Korteweg de Vries equation is generated as,

ϕ ξð Þ ¼ b5 a1, a2ð Þ þ b6 a1, a2ð Þ
ffiffiffi
2
p

2

e
Ð
ξ
a2dξ Ð

ξa3 a1, a2ð Þdξþ C2

� �

Ð
ξa1e

2
Ð
ξ
a2dξ Ð

ξa3 a1, a2ð Þdξþ C2

� �
dξþ C3

� �1
2

8>>><
>>>:

9>>>=
>>>;

þb7 a1, a2ð Þ 1
2

e2
Ð
ξ
a2dξ Ð

ξa3 a1, a2ð Þdξþ C2

� �2

Ð
ξa1e

2
Ð
ξ
a2dξ Ð

ξa3 a1, a2ð Þdξþ C2

� �
dξþ C3

� �

8>><
>>:

9>>=
>>;

(52)

Since only a few of the considered equation has a special polynomial to be solved
by equating all the variable coefficients to zero, it is important to note that the
reduction of polynomial order would be an important step. Solving all coefficients
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to zero often be an obstacle because the difficulty would be the same or even more
than the original nonlinear ODEs. In this case, the reduction of polynomial manip-
ulates and reduces the need for solving all coefficients.

However, it is possible not to search for the expression of variable coefficients,
i.e., b5, b6, b7, a1, a2 and a3. First the roots of Eq. (37) are determined first as ϕ, and
then Eq. (1) is decomposed as,

Dξ ¼ a1BD2 þ a2 � Bξ

B

� �
Dþ a3

B
(53)

with A ¼ BD. The solution of (53) is then,

D ¼
ffiffiffi
2
p

2B
e
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� � ð

ξ

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
dξþ C3

� ��1
2

or

A ¼ BD ¼
ffiffiffi
2
p

2
e
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� � ð

ξ

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
dξþ C3

� ��1
2

(54)

The definition for B is determined by substituting the polynomial solution, ϕ
into (54) as in the following,

A ¼ ϕ ¼
ffiffiffi
2
p

2
e
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� � ð

ξ

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
dξþ C3

� ��1
2

Rearranging the above equation as,

ϕ2
ð

ξ

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
dξþ C3

� �
¼ 1

2
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �2

Differentiating once,

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
¼ a2

ϕ2 e
2
Ð
ξ
a2dξ � ϕξ

ϕ3 e
2
Ð
ξ
a2dξ

� � ð

ξ

a3
B
dξþ C2

� �2

þ a3
B

1
ϕ2 e

2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
or

a1
B
¼ a2

ϕ2 �
ϕξ

ϕ3

� � ð

ξ

a3
B
dξþ C2

� �
þ a3

B
1
ϕ2 (55)

Eq. (55) is a first order ODE in B and can be easily solved, which then prove that
A ¼ ϕ without establishing the explicit expression for variable coefficients.

5. Generalized method

In this section, the method of solution to the Riccati equation is extended for the
class of the first order polynomial differential equation as,

Aξ ¼ anAn þ an�1An�1 þ an�2An�2 þ ……… þ a3A3 þ a2A2 þ a1Aþ a0 (56)
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The third equation will produce,

40a21a3f þ 32a21a
2
2f þ 12a1ξa2fa1 þ 18a2ξfa

2
1 þ 2a1ξξfa1 þ 6a1ξb6 þ 12a1a2b6 þ b1b6ξfa1 þ b1b6 f ξa1

þ2fa1ξb1b6 þ 2a3b1 f
2a31 þ 6a32fa1 þ 30 f ξa

2
1a2 þ 30ff ξa

2
1a2 þ 60 f 2a1ξa1a2 þ 6a1ξ f ξa1 þ 12fa21ξ

þ6a1b6ξ þ 3a2b1b6fa1 þ 6 f ξξa
2
1 þ 24 f ξa1ξa1 þ 12fa1ξξa1 þ 12fa21ξ þ b1b

2
6 þ 2b1b5fa

2
1 þ 2b2fa

2
1 ¼ 0

Take the expression for b5 as,

b5 ¼ � 1

2b1fa
2
1

h2 a1, a2ð Þ þ 40fa21 þ 2b1 f
2a31

� �
a3

� �

with,

h2 a1, a2ð Þ ¼ 32a21a
2
2f þ 12a1ξa2fa1 þ 18a2ξfa

2
1 þ 2a1ξξfa1 þ 6a1ξh1 þ 12a1a2h1

þb1h1ξfa1 þ b1h1 f ξa1 þ 24 f ξa1ξa1 þ 6a32fa1 þ 30 f ξa
2
1a2 þ 30ff ξa

2
1a2 þ 60 f 2a1ξa1a2

þ6a1ξ f ξa1 þ 12fa21ξ þ 6a1h1ξ þ 3a2b1h1fa1 þ 6 f ξξa
2
1 þ 2fa1ξb1h1 þ 12fa1ξξa1 þ 12fa21ξ

þb1h21 þ 2b2fa
2
1

(50)

The fourth relation of (47) will generate,

h3 a1, a2ð Þ ¼ 24 f ξa
3
1 þ 48fa21a1ξ þ 3b1b6fa

2
1

� �
a3 þ 6fa1ξa1ξξ12a2a2ξfa

2
1 þ 2a2ξξfa

2
1

þ8a32fa21 þ 7a1a22h1 þ 3a1ξa2h1 þ 6a1a2ξh1 þ a1ξξh1 þ 12 f ξa
2
1a

2
2 þ 24fa1a1ξa

2
2 þ 6 f ξa

2
1a2ξ

þ12fa1a1ξa2ξ þ 9a1a2h1ξ þ 3a1ξh1ξ þ f ξξξa
2
1 þ 2 f ξξa1a1ξ þ 4 f ξξa1a1ξ þ 6 f ξa

2
1ξ þ 6 f ξa1a1ξξ

þ2fa1a1ξξξ þ b1h1h1ξ þ f ξa
2
1b2 þ 2fa1a1ξb2 þ b3fa

2
1 þ 2a2b2fa

2
1 þ 3a1h1ξξ þ a1b2h1

þ6 f ξξa21a2 þ 24 f ξa1a1ξa2 þ 12fa21ξa2 þ 12fa1a1ξξa2 þ a2b1h
2
1 þ

h2
2b1fa

2
1

þ b1fa
2
1

h2
2b1fa

2
1

 !

ξ

(51)

which then produce the solution of a3.
Note that a1 and a2 are the chosen fundamental variables and according to (48–51)

and with the known coefficients b1, b2, b3, b4, they will define, b5, b6, b7, a3, β. There-
fore, the solution of Korteweg de Vries equation is generated as,

ϕ ξð Þ ¼ b5 a1, a2ð Þ þ b6 a1, a2ð Þ
ffiffiffi
2
p

2

e
Ð
ξ
a2dξ Ð

ξa3 a1, a2ð Þdξþ C2

� �

Ð
ξa1e

2
Ð
ξ
a2dξ Ð

ξa3 a1, a2ð Þdξþ C2

� �
dξþ C3

� �1
2

8>>><
>>>:

9>>>=
>>>;

þb7 a1, a2ð Þ 1
2

e2
Ð
ξ
a2dξ Ð

ξa3 a1, a2ð Þdξþ C2

� �2

Ð
ξa1e

2
Ð
ξ
a2dξ Ð

ξa3 a1, a2ð Þdξþ C2

� �
dξþ C3

� �

8>><
>>:

9>>=
>>;

(52)

Since only a few of the considered equation has a special polynomial to be solved
by equating all the variable coefficients to zero, it is important to note that the
reduction of polynomial order would be an important step. Solving all coefficients
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to zero often be an obstacle because the difficulty would be the same or even more
than the original nonlinear ODEs. In this case, the reduction of polynomial manip-
ulates and reduces the need for solving all coefficients.

However, it is possible not to search for the expression of variable coefficients,
i.e., b5, b6, b7, a1, a2 and a3. First the roots of Eq. (37) are determined first as ϕ, and
then Eq. (1) is decomposed as,

Dξ ¼ a1BD2 þ a2 � Bξ

B

� �
Dþ a3

B
(53)

with A ¼ BD. The solution of (53) is then,

D ¼
ffiffiffi
2
p

2B
e
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� � ð

ξ

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
dξþ C3

� ��1
2

or

A ¼ BD ¼
ffiffiffi
2
p

2
e
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� � ð

ξ

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
dξþ C3

� ��1
2

(54)

The definition for B is determined by substituting the polynomial solution, ϕ
into (54) as in the following,

A ¼ ϕ ¼
ffiffiffi
2
p

2
e
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� � ð

ξ

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
dξþ C3

� ��1
2

Rearranging the above equation as,

ϕ2
ð

ξ

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
dξþ C3

� �
¼ 1

2
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �2

Differentiating once,

a1
B
e2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
¼ a2

ϕ2 e
2
Ð
ξ
a2dξ � ϕξ

ϕ3 e
2
Ð
ξ
a2dξ

� � ð

ξ

a3
B
dξþ C2

� �2

þ a3
B

1
ϕ2 e

2
Ð
ξ
a2dξ

ð

ξ

a3
B
dξþ C2

� �
or

a1
B
¼ a2

ϕ2 �
ϕξ

ϕ3

� � ð

ξ

a3
B
dξþ C2

� �
þ a3

B
1
ϕ2 (55)

Eq. (55) is a first order ODE in B and can be easily solved, which then prove that
A ¼ ϕ without establishing the explicit expression for variable coefficients.

5. Generalized method

In this section, the method of solution to the Riccati equation is extended for the
class of the first order polynomial differential equation as,

Aξ ¼ anAn þ an�1An�1 þ an�2An�2 þ ……… þ a3A3 þ a2A2 þ a1Aþ a0 (56)
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The above equation can be always re-expressed as,

Aξ ¼ bnAn�2 þ bn�1An�3 þ bn�2An�4 þ ……… þ b3Aþ b2
� �

A2 þ b1A
þ bnAn�2 þ bn�1An�3 þ bn�2An�4 þ ……… þ b3Aþ b2
� �

b0

or

Aξ ¼ bnAn þ bn�1An�1 þ bn�2 þ bnb0ð ÞAn�2 þ …… þ b3 þ bn�1b0ð ÞA3

þ b2 þ bn�2b0ð ÞA2 þ b1 þ b3b0ð ÞAþ b2b0 (57)

which the coefficients will be reformulated as,

bn ¼ an, bn�1 ¼ an�1, b2b0 ¼ a0

bn�2 þ bnb0 ¼ an�2

b3 þ bn�1b0 ¼ a3

b2 þ bn�2b0 ¼ a2

b1 þ b3b0 ¼ a1

or

bn ¼ an, bn�1 ¼ an�1, b2b0 ¼ a0

a2b
2
2 � b32 þ ana0 ¼ an�2a0b2

b3 þ an�1
a0
b2
¼ a3

b22 þ bn�2a0 ¼ a2b2

b1 þ b3
a0
b2
¼ a1

(58)

In this case, we will always obtain the new coefficients bi. Proceeding into the
other equations andmultiply the equation by the function α, to get,

αAξ ¼ bnAn�2 þ bn�1An�3 þ bn�2An�4 þ ……… þ b3Aþ b2
� �

αA2 þ b1αA

þ bnAn�2 þ bn�1An�3 þ bn�2An�4 þ ……… þ b3Aþ b2
� �

αb0
or

Bξ ¼ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�1B2 þ b1 þ αt
α

� �
B

þ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αb0

(59)

where B ¼ αA. Then, all the new coefficients in bi will be determined. The step is
now to solve the Riccati equation. Let B ¼ β2β3, the equation can be rearranged as,

β3β2ξ þ β2β3ξ ¼ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�1β22β
2
3

þ b1 þ αξ
α

� �
β2β3 þ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2

� �
αb0

or

β3β2ξ � bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�1β22β
2
3

� b1 þ αξ
α

� �
β2β3 ¼ �β2β3ξ þ

bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

 !
αb0 ¼ γβ2β3

(60)

and is separated as,

β2ξ � bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�2β22β3

� b1 þ αξ
α
þ γ

� �
β2 ¼ 0

and
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β3ξ þ γβ3 �
1
β2

bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αb0 ¼ 0

(61)

The solutions for β2 and β3 are,

β2 ¼ �e
Ð
ξ
b1þαξ

αþγð Þdξx
ð

ξ
e
Ð
t
b1þαξ

αþγð Þdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

0
@

1
Aα�1β3dξþ C1

2
4

3
5
�1 and

β3 ¼ e�
Ð
ξ
γdξ

ð

ξ
e
Ð
ξ
γdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

 !
α
b0
β2

dξþ C2

" #

(62)

The relation for B ¼ β2β3 is thus,

B ¼ β2β3 ¼ �e
Ð
ξ
b1þαξ

αð Þdξ
Ð
ξe
Ð
ξ
b1þαξ

αþγð Þdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�1β3dξ

þC1

2
4

3
5
�1

x

ð

ξ
e
Ð
ξ
γdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αb0dξþ C2

� �

Without loss of generality, suppose that β2 ¼ φe
Ð
ξ
γdξ and the above relation is

performed as,

β2β3 ¼ �e
Ð
ξ
b1þαξ

αð Þdξ ð

ξ
e
Ð
ξ
b1þαξ

αð Þdξ
bnα2�nBn�2 þ bn�1α3�nBn�3

þbn�2α4�nBn�4 þ ……… þ b3α�1B

þb2

0
BBB@

1
CCCAα�1φβ2β3dξþ C1

2
6664

3
7775

�1

ð

ξ
bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αφ�1b0dξþ C2

� �
or

β2β3

ð

ξ
e
Ð
ξ
b1þαξ

αð Þdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

0
@

1
Aα�1φβ2β3dξþ C1

2
4

3
5 ¼

�e
Ð
ξ
b1þαξ

αð Þdξ ð

t

bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

0
@

1
Aαφ�1b0dξþ C2

2
4

3
5

Rearrange the above equation as,

e
Ð
ξ
b1dξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

φβ2β3

ð

ξ
e
Ð
ξ
b1dξ bnyn�2 þ bn�1yn�3 þ bn�2yn�4 þ ……… þ b3yþ b2
� �

φβ2β3dξþ C1

� �
¼

�e2
Ð
ξ
b1dξαφ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2

� �

ð

ξ
bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αφ�1b0dξþ C2

� �
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The above equation can be always re-expressed as,

Aξ ¼ bnAn�2 þ bn�1An�3 þ bn�2An�4 þ ……… þ b3Aþ b2
� �

A2 þ b1A
þ bnAn�2 þ bn�1An�3 þ bn�2An�4 þ ……… þ b3Aþ b2
� �

b0

or

Aξ ¼ bnAn þ bn�1An�1 þ bn�2 þ bnb0ð ÞAn�2 þ …… þ b3 þ bn�1b0ð ÞA3

þ b2 þ bn�2b0ð ÞA2 þ b1 þ b3b0ð ÞAþ b2b0 (57)

which the coefficients will be reformulated as,

bn ¼ an, bn�1 ¼ an�1, b2b0 ¼ a0

bn�2 þ bnb0 ¼ an�2

b3 þ bn�1b0 ¼ a3

b2 þ bn�2b0 ¼ a2

b1 þ b3b0 ¼ a1

or

bn ¼ an, bn�1 ¼ an�1, b2b0 ¼ a0

a2b
2
2 � b32 þ ana0 ¼ an�2a0b2

b3 þ an�1
a0
b2
¼ a3

b22 þ bn�2a0 ¼ a2b2

b1 þ b3
a0
b2
¼ a1

(58)

In this case, we will always obtain the new coefficients bi. Proceeding into the
other equations andmultiply the equation by the function α, to get,

αAξ ¼ bnAn�2 þ bn�1An�3 þ bn�2An�4 þ ……… þ b3Aþ b2
� �

αA2 þ b1αA

þ bnAn�2 þ bn�1An�3 þ bn�2An�4 þ ……… þ b3Aþ b2
� �

αb0
or

Bξ ¼ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�1B2 þ b1 þ αt
α

� �
B

þ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αb0

(59)

where B ¼ αA. Then, all the new coefficients in bi will be determined. The step is
now to solve the Riccati equation. Let B ¼ β2β3, the equation can be rearranged as,

β3β2ξ þ β2β3ξ ¼ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�1β22β
2
3

þ b1 þ αξ
α

� �
β2β3 þ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2

� �
αb0

or

β3β2ξ � bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�1β22β
2
3

� b1 þ αξ
α

� �
β2β3 ¼ �β2β3ξ þ

bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

 !
αb0 ¼ γβ2β3

(60)

and is separated as,

β2ξ � bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�2β22β3

� b1 þ αξ
α
þ γ

� �
β2 ¼ 0

and
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β3ξ þ γβ3 �
1
β2

bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αb0 ¼ 0

(61)

The solutions for β2 and β3 are,

β2 ¼ �e
Ð
ξ
b1þαξ

αþγð Þdξx
ð

ξ
e
Ð
t
b1þαξ

αþγð Þdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

0
@

1
Aα�1β3dξþ C1

2
4

3
5
�1 and

β3 ¼ e�
Ð
ξ
γdξ

ð

ξ
e
Ð
ξ
γdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

 !
α
b0
β2

dξþ C2

" #

(62)

The relation for B ¼ β2β3 is thus,

B ¼ β2β3 ¼ �e
Ð
ξ
b1þαξ

αð Þdξ
Ð
ξe
Ð
ξ
b1þαξ

αþγð Þdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

α�1β3dξ

þC1

2
4

3
5
�1

x

ð

ξ
e
Ð
ξ
γdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αb0dξþ C2

� �

Without loss of generality, suppose that β2 ¼ φe
Ð
ξ
γdξ and the above relation is

performed as,

β2β3 ¼ �e
Ð
ξ
b1þαξ

αð Þdξ ð

ξ
e
Ð
ξ
b1þαξ

αð Þdξ
bnα2�nBn�2 þ bn�1α3�nBn�3

þbn�2α4�nBn�4 þ ……… þ b3α�1B

þb2

0
BBB@

1
CCCAα�1φβ2β3dξþ C1

2
6664

3
7775

�1

ð

ξ
bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αφ�1b0dξþ C2

� �
or

β2β3

ð

ξ
e
Ð
ξ
b1þαξ

αð Þdξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

0
@

1
Aα�1φβ2β3dξþ C1

2
4

3
5 ¼

�e
Ð
ξ
b1þαξ

αð Þdξ ð

t

bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4

þ……… þ b3α�1Bþ b2

0
@

1
Aαφ�1b0dξþ C2

2
4

3
5

Rearrange the above equation as,

e
Ð
ξ
b1dξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

φβ2β3

ð

ξ
e
Ð
ξ
b1dξ bnyn�2 þ bn�1yn�3 þ bn�2yn�4 þ ……… þ b3yþ b2
� �

φβ2β3dξþ C1

� �
¼

�e2
Ð
ξ
b1dξαφ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2

� �

ð

ξ
bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αφ�1b0dξþ C2

� �
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Let e2
Ð
ξ
b1dξαφ ¼ αφ�1b0 and integrate the above equation to get,

ð

ξ
e
Ð
ξ
b1dξ bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

φβ2β3dtþ C1

� �2
¼

�
ð

ξ
bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αφ�1b0dξþ C2

� �2

or

e
Ð
ξ
b1dξ bnα2�nBn�1 þ bn�1α3�nBn�2 þ bn�2α4�nBn�3 þ ……… þ b3α�1B2 þ b2B
� �

φ2 ¼
� bnα2�nBn�2 þ bn�1α3�nBn�3 þ bn�2α4�nBn�4 þ ……… þ b3α�1Bþ b2
� �

αb0

The solution for B is then reduced into the solution of the polynomial equation.
Thus, let A ¼ α�1B ¼ ϕ, whereϕ is the expression from the solution of the resulting
polynomial equation which is similar to (38). The expression for α can be deter-
mined by the inverse method as in (53–55) for the first order polynomial differential
Eq. (56).

6. Conclusion

In this chapter, we propose the method of the simplest or the auxiliary equation
to solve the nonlinear differential equation with variable coefficients. The method is
based on the solution of the generalized Riccati equation as the simplest equation. It
is found that the other known simplest equations, i.e., Jacobi and Weierstrass
equation, are also solved by the Riccati equation. The applications with the variable
coefficients elliptic-like and Korteweg de Vries equations show that the problem of
solving nonlinear differential equations with variable coefficients are simplified,
especially by the reduction of the resulting polynomial equation in solving the
Korteweg de Vries equation. The generalization of the method is also derived in
detail.
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Chapter 21

Thermodynamic Stability
Conditions as an Eigenvalues
Fundamental Problem
Francisco Nogueira Lima

Abstract

Quadratic forms diagonalization methods can be used in addressing the stability
of physical systems. Thermodynamic stability conditions appears as an eigenvalues
fundamental problem, in particular when postulational approaches is taken. The
second-order derivatives or appropriate relations between such derivatives of the
energy, entropy or any considered thermodynamic potential, as Helmholtz,
enthalpy and Gibbs, have interesting mathematical features that directly imply in
the physical stability, obtained by use and as consequence of analytical techniques.
Formal aspects on the thermal and mechanical stability become simple conse-
quences, but no less formal, of the superposition of rigorously established physical
laws, and appropriate applications of mathematical techniques.

Keywords: quadratic forms, Taylor’s series, themodynamic stability, eigenvalues,
thermodynamic potentials

1. Introduction

In physics, there is a time-independent theory, namely, thermodynamics that is
used to determine the macroscopic equilibrium of physical systems. In practice, to
compute the equilibrium conditions and the physical properties of a system, a
physicist must find a function that completely describes the system, being capable
of capturing all involved properties. The existence of such a function arises as a
postulate of the themodynamics, having an extremum to the equilibrium states [1].
The function is called entropy and has a maximum at final equilibrium state. On the
other hand, the same understanding about the physical properties of the system can
be extracted through another relevant physical function, namely, energy. This
treatment of using energy function instead of entropy to investigate the physical
properties is completely equivalent but now the energy has a minimum and its
existence also occurs by postulational reason, as for entropy function. A broad
discussion on themodynamic’s postulates can be found in Ref. [1].

In practical problems, it woud be impossible to computing the total energy of a
system taking all time-dependent freedom degrees, such as atomic coordinates of
the components of the system each with its translational, rotation energies, etc.,
among others time-dependent properties. The thermodynamics theory emerges
from the fact that a great number of those freedom degrees are eliminated by
considering statistical averages, and not macroscopically manifesting. Thus, as the
physical principle of energy conservation keeps unaltered over decades, having
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discussion on themodynamic’s postulates can be found in Ref. [1].

In practical problems, it woud be impossible to computing the total energy of a
system taking all time-dependent freedom degrees, such as atomic coordinates of
the components of the system each with its translational, rotation energies, etc.,
among others time-dependent properties. The thermodynamics theory emerges
from the fact that a great number of those freedom degrees are eliminated by
considering statistical averages, and not macroscopically manifesting. Thus, as the
physical principle of energy conservation keeps unaltered over decades, having
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been already rigorously tried and confirmed, a well-defined thermodynamic energy
function appears somewhat intuitive. Indeed, the energy must be interpreted as a
function capable of providing the macroscopic properties of the system. Besides,
due to the complexity in measuring the energy of a system, it is relevant to assume
some state whereby the energy is arbitrary defined as zero and measuring the
energy in connection that state because only energy differences have any physical
meaning [1–3].

There are equivalent approaches to investigate the thermodynamics properties
of a system in terms of thermodynamic functions (or thermodynamic potentials)
of Helmholtz, enthalpy and Gibbs instead of the energy or entropy. Such thermo-
dynamic potentials are obtained by using Legendre transformations in order to
change the original extensive variables, or part of them, in the function
thermodynamic energy by the intensive variables. Besides, other thermodynamic
functions (in addition to those already mentioned) can appear when making
Legendre transformations in specific extensive parameters of the energy or in the
extensive parameters of the entropy, such as grand canonical potential, and
Massieu, Planck and Krammers functions. The function to be used must be
defined by the practical characteristics of the problem and these last mentioned
functions are less common in more elementary approaches of postulational ther-
modynamics [1, 4].

A solid understanding of postulational thermodynamic theory is necessary in
order to investigate the thermal or mechanic stability of the most diverse systems.
The increase in the thermal stability of DNA against thermal denaturation can be
experimentally investigated using a methodology in which the differences or
changes in the standard values of negativity and positivity of enthalpy and
entropy, or even between them, are decisive for the study’s conclusions [5]. The
formalism of free energy (or Helmholtz potential) can be used for practical deter-
mination of the level of stored energy accumulated in material during plastic
processing applied as well as the stored energy for the simple stretching of aus-
tenitic steel [6]. There are an infinity of applications of thermodynamic theory in
wich the stability of a system is intimately related to some physical feature of
thermodynamic functions, and whose the convenience of the choice is determined
by practical situation.

Interesting formalisms or analytical techniques that combine the superposition
of the thermodynamic theory and mathematical methods appear as support for
problems of applied physics aimed to investigate the stability conditions of a sys-
tem, either through experimental or computational studies. In order to show of a
physical point of view, as arises the thermal and mechanical stability of a system,
let us invoke the known physical origin of the energy U, i. e., its existence is
determined by a postulate and the same way we know that U is a function of the
extensive parameters, entropy S, volume V and the mole numbers of the chemical
components N1, N2, … , Nr. This physical consideration can be mathematically
written as U ¼ U S,V,N1,N2, … ,Nrð Þ. Similarly, entropy S is a function of the
extensive parameters, energy U, volume V and the mole numbers of the chemical
components N1, N2, … , Nr, and so S ¼ S U,V,N1,N2, … ,Nrð Þ [1].

In this chapter, we discuss in details the postulate of maximum entropy or
minimum energy through which it is possible to see that the thermodynamic func-
tions S or U, or any potential/function derived them by Legendre transformations,
have mathematical features that can be obtained of an eingenvalues fundamental
problem, that is, the diagonalization of the hypersurfaces defined by U ¼
U S,V,N1,N2, … ,Nrð Þ or S ¼ S U,V,N1,N2, … ,Nrð Þ that conveniently expanded
in Taylor’s series provides the signs its second-order derivatives in an
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rþ 2ð Þ-dimensional thermodynamic space. Besides, some relations between these
derivatives by diagonalization of the quadratic form of U, S or other thermody-
namic function, naturally appear and as consequence relevant conclusions about the
system stability. Quadratic forms appear in several physical problems, especially in
quantum mechanics [7], and in thermodynamic theory this is not different. In
particular, we precisely investigate the mathematical caracteristics of the hypersur-
face of energy and other thermodynamic functions for a system of single chemical
component. In this case, it is possible to reduce the hypersurface
U S,V,N1,N2, … ,Nrð Þ, in an rþ 2ð Þ-dimensional thermodynamic space, to a
three dimensional hypersurface where U ¼ U S,V,Nð Þ (see that r ¼ 1). Analytical
calculations of quadratic forms diagonalization are used to reveal the signs of the
second-order derivatives of the three-dimensional thermodynamic functions.
Accordingly, the stability conditions are obtained.

This chapter is organized as follows. In Section 2, we discuss the general pro-
cedures to diagonalize the thermodynamic energy as well as obtain Talyor’s series in
an rþ 2ð Þ-dimensional thermodynamic space. It is also presented the same way to
entropy function. In Section 3, we diagonalize thermodynamic energy in a three-
dimensional space, and derived Helmholtz, enthalpy, and Gibbs potentials as well
as grand canonical potential. In addition, the signs of second-order derivatives of
such thermodynamic functions are calculated. In Section 4, stability conditions are
presented as consequences of the obtained signs in previous section. As it turns, we
summarize our main findings and draw some perspectives in Section 5.

2. The quadratic form of the energy hypersurface in an
rþ 2ð Þ-dimensional thermodynamic space

We already addressed in the introduction about the postulational existence of
the thermodynamic energy function U ¼ U S,V,N1,N2, … ,Nrð Þ that is a function
on extensive parameters entropy S, volume V and the mole numbers of the
chemical components N1, N2, … , Nr, where r represents the amount of chemical
components in the system. Besides, U is capable of describing all thermodynamic
macroscopic properties of treated system. A formal discussion on extensive
parameters can be found in Ref. [1]. However, understand them as those are
dependent on the amount of matter or mass of the system.

Remembering the most general form of Taylor’s series for a function
f ¼ f x1, x2, … , xnð Þ of n variables expanded around x10, x20, … , xn0ð Þ [8]:

f x1; x2; … ; xnð Þ ¼  f x10; x20; … ; xn0ð Þ þ
X
i

∂f
∂xi

Δxi

þ 1
2!

X
i

X
j

∂
2f

∂xi∂xj
ΔxiΔxj þ … ,

(1)

where Δxi ¼ xi � xi0, and all partial derivatives are evaluated at
x10, x20, … , xn0ð Þ. Here xi0 denotes the coordinates of some arbitrary stationary
point around which the function is expanded, with zero index to differentiate it
from all other points in the n-dimensional space.

Let us carefully expanding the energy U S,V,N1,N2, … ,Nrð Þ using Taylor’s
series given by Eq. (1) around S0,V0,N10,N20, … ,Nr0ð Þ point in
rþ 2ð Þ-dimensional space.
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been already rigorously tried and confirmed, a well-defined thermodynamic energy
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function capable of providing the macroscopic properties of the system. Besides,
due to the complexity in measuring the energy of a system, it is relevant to assume
some state whereby the energy is arbitrary defined as zero and measuring the
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mination of the level of stored energy accumulated in material during plastic
processing applied as well as the stored energy for the simple stretching of aus-
tenitic steel [6]. There are an infinity of applications of thermodynamic theory in
wich the stability of a system is intimately related to some physical feature of
thermodynamic functions, and whose the convenience of the choice is determined
by practical situation.

Interesting formalisms or analytical techniques that combine the superposition
of the thermodynamic theory and mathematical methods appear as support for
problems of applied physics aimed to investigate the stability conditions of a sys-
tem, either through experimental or computational studies. In order to show of a
physical point of view, as arises the thermal and mechanical stability of a system,
let us invoke the known physical origin of the energy U, i. e., its existence is
determined by a postulate and the same way we know that U is a function of the
extensive parameters, entropy S, volume V and the mole numbers of the chemical
components N1, N2, … , Nr. This physical consideration can be mathematically
written as U ¼ U S,V,N1,N2, … ,Nrð Þ. Similarly, entropy S is a function of the
extensive parameters, energy U, volume V and the mole numbers of the chemical
components N1, N2, … , Nr, and so S ¼ S U,V,N1,N2, … ,Nrð Þ [1].

In this chapter, we discuss in details the postulate of maximum entropy or
minimum energy through which it is possible to see that the thermodynamic func-
tions S or U, or any potential/function derived them by Legendre transformations,
have mathematical features that can be obtained of an eingenvalues fundamental
problem, that is, the diagonalization of the hypersurfaces defined by U ¼
U S,V,N1,N2, … ,Nrð Þ or S ¼ S U,V,N1,N2, … ,Nrð Þ that conveniently expanded
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rþ 2ð Þ-dimensional thermodynamic space. Besides, some relations between these
derivatives by diagonalization of the quadratic form of U, S or other thermody-
namic function, naturally appear and as consequence relevant conclusions about the
system stability. Quadratic forms appear in several physical problems, especially in
quantum mechanics [7], and in thermodynamic theory this is not different. In
particular, we precisely investigate the mathematical caracteristics of the hypersur-
face of energy and other thermodynamic functions for a system of single chemical
component. In this case, it is possible to reduce the hypersurface
U S,V,N1,N2, … ,Nrð Þ, in an rþ 2ð Þ-dimensional thermodynamic space, to a
three dimensional hypersurface where U ¼ U S,V,Nð Þ (see that r ¼ 1). Analytical
calculations of quadratic forms diagonalization are used to reveal the signs of the
second-order derivatives of the three-dimensional thermodynamic functions.
Accordingly, the stability conditions are obtained.

This chapter is organized as follows. In Section 2, we discuss the general pro-
cedures to diagonalize the thermodynamic energy as well as obtain Talyor’s series in
an rþ 2ð Þ-dimensional thermodynamic space. It is also presented the same way to
entropy function. In Section 3, we diagonalize thermodynamic energy in a three-
dimensional space, and derived Helmholtz, enthalpy, and Gibbs potentials as well
as grand canonical potential. In addition, the signs of second-order derivatives of
such thermodynamic functions are calculated. In Section 4, stability conditions are
presented as consequences of the obtained signs in previous section. As it turns, we
summarize our main findings and draw some perspectives in Section 5.

2. The quadratic form of the energy hypersurface in an
rþ 2ð Þ-dimensional thermodynamic space

We already addressed in the introduction about the postulational existence of
the thermodynamic energy function U ¼ U S,V,N1,N2, … ,Nrð Þ that is a function
on extensive parameters entropy S, volume V and the mole numbers of the
chemical components N1, N2, … , Nr, where r represents the amount of chemical
components in the system. Besides, U is capable of describing all thermodynamic
macroscopic properties of treated system. A formal discussion on extensive
parameters can be found in Ref. [1]. However, understand them as those are
dependent on the amount of matter or mass of the system.

Remembering the most general form of Taylor’s series for a function
f ¼ f x1, x2, … , xnð Þ of n variables expanded around x10, x20, … , xn0ð Þ [8]:
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where Δxi ¼ xi � xi0, and all partial derivatives are evaluated at
x10, x20, … , xn0ð Þ. Here xi0 denotes the coordinates of some arbitrary stationary
point around which the function is expanded, with zero index to differentiate it
from all other points in the n-dimensional space.

Let us carefully expanding the energy U S,V,N1,N2, … ,Nrð Þ using Taylor’s
series given by Eq. (1) around S0,V0,N10,N20, … ,Nr0ð Þ point in
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U S,V,N1,N2, … ,Nrð Þ ¼ U S0,V0,N10,N20, … ,Nr0ð Þ þ ∂U
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∂Xi∂X j
ΔXiΔX j
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(2)

where ΔXi � Xi � Xi0, with Xi ¼ S,V,N1,N2, … ,Nr and Xi0 ¼
S0,V0,N10,N20, … ,Nr0. Notice that last term that explicitly appears in Eq. (2) in
wich the simplified notation Xi is introduced represents all possible combinations of
double partial derivatives obtained from the extensive variables of the energy. Besides,
see that i 6¼ j in the same term due to already computed previous terms to i ¼ j.

By analogy with the one-variable differential calculus and due to the postulate of
minimum energy (d2U >0, see Refs. [1–3]), taking a stationary point
S0,V0,N10,N20, … ,Nr0ð Þ, we know that all first-order derivatives in Eq. (2) are
null at this point

∂U
∂S
¼ 0,

∂U
∂V
¼ 0and

∂U
∂Nk
¼ 0withk ¼ 1, ::, rð Þ, (3)

and therefore
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2!

∂
2U
∂S2

S� S0ð Þ2
�

þ ∂
2U
∂V2 V � V0ð Þ2 þ

Xr

k¼1

∂
2U
∂N2

k
Nk �Nk0ð Þ2 þ

X
i

X
j i 6¼jð Þ

∂
2U

∂Xi∂X j
ΔXiΔX j
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(4)

Let us define in Eq. (4) ΔS � S� S0, ΔV � V � V0, ΔNk � Nk �Nk0, ΔU �
U S,V,N1,N2, … ,Nkð Þ � U S0,V0,N10,N20, … ,Nr0ð Þ, and also ~U � 2! ΔUð Þ. Thus,
it is possible rewriting Eq. (4) as follows.

~U S,V,N1,N2, … ,Nrð Þ ¼ ∂
2U
∂S2

ΔSð Þ2 þ ∂
2U
∂V2 ΔVð Þ2 þ
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X
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X
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∂
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∂Xi∂X j
ΔXiΔX j þ …

(5)

Notice that ~U in above expression must be interpreted the same way as the U,
being only mathematically multiplied and suppressed by the constants 2! and
U S0,V0,N10,N20, … ,Nr0ð Þ, respectively. Physically, ~U also obeys minimum
energy postulate and keep the dependence with the extensive parameters, ~U ¼
~U S,V,N1,N2, … ,Nrð Þ. On the other words, ~U is the original energy function U, at
less than a multiplicative constant, and additive. We should not forget that the
expression given by Eq. (5) has more terms than those explicitly listed, with third-
order, fourth-order derivatives and so on. However, if we take only terms until the
second-order derivatives, it is possible to see that hypersurface defined by ~U is a
complete quadratic form, in an rþ 2ð Þ-dimensional thermodynamic space (see
quadratic forms in Refs. [8, 9]). Then, some mathematical generalities can be
extracted of the thermodynamic energy written as Eq. (6) below:
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The matricial form of the quadratic expression in Eq. (6) is given by
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where the second-order derivatives above and below of main diagonal represent
all combinations of double partial derivatives in relation to the extensive variables
of the energy. Explicitly showing the terms of mixed partial derivatives in the
matricial equation given by Eq. (7), we have
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Resuming the previous discussion in which the extensive variables are
compactly defined as Xi, we can also express the energy in Eq. (8) of a compact way

~U ¼ ΔXið ÞTM ΔXið Þ, (9)
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Notice that ~U in above expression must be interpreted the same way as the U,
being only mathematically multiplied and suppressed by the constants 2! and
U S0,V0,N10,N20, … ,Nr0ð Þ, respectively. Physically, ~U also obeys minimum
energy postulate and keep the dependence with the extensive parameters, ~U ¼
~U S,V,N1,N2, … ,Nrð Þ. On the other words, ~U is the original energy function U, at
less than a multiplicative constant, and additive. We should not forget that the
expression given by Eq. (5) has more terms than those explicitly listed, with third-
order, fourth-order derivatives and so on. However, if we take only terms until the
second-order derivatives, it is possible to see that hypersurface defined by ~U is a
complete quadratic form, in an rþ 2ð Þ-dimensional thermodynamic space (see
quadratic forms in Refs. [8, 9]). Then, some mathematical generalities can be
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where the second-order derivatives above and below of main diagonal represent
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of the energy. Explicitly showing the terms of mixed partial derivatives in the
matricial equation given by Eq. (7), we have
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:

(8)

Resuming the previous discussion in which the extensive variables are
compactly defined as Xi, we can also express the energy in Eq. (8) of a compact way

~U ¼ ΔXið ÞTM ΔXið Þ, (9)

where

M �
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1
…
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ΔXi is a column vector with ΔS, ΔV, ΔN1, … , ΔNr components, and ΔXT
i is the

transpose of ΔXi. As M is a symmetric matrix, a diagonalization procedure can be
applied to simplify the investigation of mathematical features of ~U and its physical
consequences. At first, the choice to expanding the thermodynamic energy in
Taylor’s series up to the second-order is due to the appearance of a complete
quadratic form with a known mathematics of many-variable calculus. Accordingly,
the canonical form ~U ¼ ΔX0Ti DΔXi

0 obtained by diagonalization allows visualizing
interesting physical features more easily. Notice that D is the eigenvalues matrix of
M with rþ 2ð Þ-components, and the ΔX0i is the column eigenvector (with ΔS0, ΔV 0,
ΔN01, … , ΔN0r components) of the diagonal matrix D as well as ΔX0T is the
transpose. A review on quadratic forms diagonalization can be found in Ref. [9].
The canonical form to ~U can be expressed by Eq. (11)

~U ¼ ΔX0i
� �TD ΔX0i

� � ¼

ΔS0 ΔV 0 ΔN01 ΔN02 … ΔN0r
� �

λS 0 0 0 0

0 λV 0 0 0

0 0 λN1 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋱ 0

0 0 0 0 λNr

0
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1
CCCCCCCCCCCCCCA

ΔS0

ΔV 0

ΔN01

ΔN02

⋮

ΔN0r

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼ λS ΔS0ð Þ2 þ λV ΔV 0ð Þ2 þ λN1 ΔN01
� �2 þ … þ λNr ΔN0r

� �2
:

(11)

See that in the canonical form of ~U given by Eq. (11) are eliminated the mixed
partial derivatives of Eq. (6). Besides, the minimum energy postulate imposes to the
function ~U S,V,N1,N2, ::,Nrð Þ in Eq. (11) the following mathematical condition:

~U ¼ λS ΔS0ð Þ2 þ λV ΔV 0ð Þ2 þ λN1 ΔN01
� �2 þ … þ λNr ΔN0r

� �2 >0: (12)

It is possible to see that this conditon occurs only when λS >0, λV >0, λN1 >0,
… , λNr >0 for any sets of values of ΔS0, ΔV 0, ΔN01, … , ΔN0r. To obtain the λi
(i ¼ S,V,N1, … ,Nr) eigenvalues, it is necessary diagonalize M (see Eq. (8)) by
solving the equation λiI �Mð ÞXi ¼ 0, where I is an indentity matrix (see Ref. [9])
that provides the determinant below

∂
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� λ

� �
∂
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∂S∂V
∂
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∂S∂N1
…

∂
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∂S∂Nr

∂
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∂V∂S
∂
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∂V2 � λ

� �
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∂V∂N1
…
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∂V∂Nr

∂
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∂N1∂S
∂
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∂N1∂V
∂
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∂N2

1
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…

∂
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∂N1∂Nr

⋮ ⋮ ⋮ ⋱ ⋮

∂
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∂Nr∂S
∂
2U

∂Nr∂V
∂
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∂Nr∂N1
…

∂
2U
∂N2

r
� λ

� �

�����������������������

�����������������������

¼ 0: (13)
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Observe that Eq. (13) implies an equation in λ of rþ 2ð Þ-degree. Besides, all λi
are necessarily positive due to the minimum energy postulate.

So far, we have show some generalities about thermodynamic energy in an
rþ 2ð Þ-dimensional space. Notice that diagonalizing M by solving Eq. (13) is not an
easy task. For a system with great number of chemical components analytical
solutions of Eq. (13) can become increasingly hard.

If we take the entropy of the system instead of energy, all above formalism
remains valid by simple exchanging U and S variables in the equations. In addition,
due to the maximum entropy postulate, all eigenvalues of second-order derivatives
matrix (similar to M by exchanging U and S) must be negatives (λU <0, λV <0,
λN1 <0, … , λNr <0). Then, in this case we have Eq. (14) instead Eq. (12).

~S ¼ λS ΔU0ð Þ2 þ λV ΔV 0ð Þ2 þ λN1 ΔN01
� �2 þ … þ λNr ΔN0r

� �2 <0: (14)

In a two-dimensional thermodynamic space, a discussion on the eigenvalues of
M and the physical consequences of its positivity is presented in Ref. [10]. In this
case, the conditions of thermal and mechanical stability are naturally demonstrated
through the signs of the second-order derivatives of some thermodynamic function
of two-variables. The two-dimensional problem arises when is considered a one-
component system and, in particular, we can take the thermodynamic energy per
mol, reducing the dependence of such energy function for only the variables
entropy (s) and volume (v) per mol (u ¼ u s, vð Þ).

The stability conditions of a thermodynamic system are intrinsically related to
the signs of the second-order derivatives of the energy, being the exact calculating
of the eigenvalues of Eq. (13) (of previously known signs) an important factor in
order to understand the physical origin of the stability of the system. In next
section, we present a discussion of eigenvalues of the energy in a three-dimensional
thermodynamic space.

3. Diagonalization of the energy in a three-dimensional thermodynamic
space

Let us define the energy in a three-dimensional thermodynamic space. To do
this, we consider a system with one chemical component and explicitly write the
energy U ¼ U S,V,Nð Þ in terms of the involved extensive parameters S,V and N.
Similarly of Eq. (3) and by analogy with one-variable calculus, we have ∂U

∂S ¼ ∂U
∂V ¼

∂U
∂N ¼ 0 (at a stationary point (S0,V0,N0)) due to the minimum energy principle.
Besides, in order to investigate the second-order derivatives of U (or ~U, there are no
physical difference), a simple matricial quadratic form can be obtained by
application of Eqs. (6), (7) and (8), as follows:

~U ¼ ΔS ΔV ΔNð Þ

∂
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∂
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∂S∂V
∂
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∂
2U
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∂
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∂N∂V
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2U
∂N2

0
BBBBBBBBBBB@

1
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ΔS
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0
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1
CA ¼ ΔXið ÞTM 3x3ð Þ ΔXið Þ,

(15)

345

Thermodynamic Stability Conditions as an Eigenvalues Fundamental Problem
DOI: http://dx.doi.org/10.5772/intechopen.95777



ΔXi is a column vector with ΔS, ΔV, ΔN1, … , ΔNr components, and ΔXT
i is the

transpose of ΔXi. As M is a symmetric matrix, a diagonalization procedure can be
applied to simplify the investigation of mathematical features of ~U and its physical
consequences. At first, the choice to expanding the thermodynamic energy in
Taylor’s series up to the second-order is due to the appearance of a complete
quadratic form with a known mathematics of many-variable calculus. Accordingly,
the canonical form ~U ¼ ΔX0Ti DΔXi

0 obtained by diagonalization allows visualizing
interesting physical features more easily. Notice that D is the eigenvalues matrix of
M with rþ 2ð Þ-components, and the ΔX0i is the column eigenvector (with ΔS0, ΔV 0,
ΔN01, … , ΔN0r components) of the diagonal matrix D as well as ΔX0T is the
transpose. A review on quadratic forms diagonalization can be found in Ref. [9].
The canonical form to ~U can be expressed by Eq. (11)

~U ¼ ΔX0i
� �TD ΔX0i

� � ¼

ΔS0 ΔV 0 ΔN01 ΔN02 … ΔN0r
� �

λS 0 0 0 0

0 λV 0 0 0

0 0 λN1 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋱ 0

0 0 0 0 λNr

0
BBBBBBBBBBBBBB@

1
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ΔV 0
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⋮
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0
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1
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¼ λS ΔS0ð Þ2 þ λV ΔV 0ð Þ2 þ λN1 ΔN01
� �2 þ … þ λNr ΔN0r

� �2
:

(11)

See that in the canonical form of ~U given by Eq. (11) are eliminated the mixed
partial derivatives of Eq. (6). Besides, the minimum energy postulate imposes to the
function ~U S,V,N1,N2, ::,Nrð Þ in Eq. (11) the following mathematical condition:

~U ¼ λS ΔS0ð Þ2 þ λV ΔV 0ð Þ2 þ λN1 ΔN01
� �2 þ … þ λNr ΔN0r

� �2 >0: (12)

It is possible to see that this conditon occurs only when λS >0, λV >0, λN1 >0,
… , λNr >0 for any sets of values of ΔS0, ΔV 0, ΔN01, … , ΔN0r. To obtain the λi
(i ¼ S,V,N1, … ,Nr) eigenvalues, it is necessary diagonalize M (see Eq. (8)) by
solving the equation λiI �Mð ÞXi ¼ 0, where I is an indentity matrix (see Ref. [9])
that provides the determinant below
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∂
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∂S∂V
∂
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∂S∂N1
…

∂
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∂S∂Nr

∂
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∂
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∂N1∂S
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∂N2
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� λ
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…

∂
2U

∂N1∂Nr

⋮ ⋮ ⋮ ⋱ ⋮

∂
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∂Nr∂S
∂
2U

∂Nr∂V
∂
2U

∂Nr∂N1
…

∂
2U
∂N2

r
� λ

� �

�����������������������

�����������������������

¼ 0: (13)

344

Recent Developments in the Solution of Nonlinear Differential Equations

Observe that Eq. (13) implies an equation in λ of rþ 2ð Þ-degree. Besides, all λi
are necessarily positive due to the minimum energy postulate.

So far, we have show some generalities about thermodynamic energy in an
rþ 2ð Þ-dimensional space. Notice that diagonalizing M by solving Eq. (13) is not an
easy task. For a system with great number of chemical components analytical
solutions of Eq. (13) can become increasingly hard.

If we take the entropy of the system instead of energy, all above formalism
remains valid by simple exchanging U and S variables in the equations. In addition,
due to the maximum entropy postulate, all eigenvalues of second-order derivatives
matrix (similar to M by exchanging U and S) must be negatives (λU <0, λV <0,
λN1 <0, … , λNr <0). Then, in this case we have Eq. (14) instead Eq. (12).

~S ¼ λS ΔU0ð Þ2 þ λV ΔV 0ð Þ2 þ λN1 ΔN01
� �2 þ … þ λNr ΔN0r

� �2 <0: (14)

In a two-dimensional thermodynamic space, a discussion on the eigenvalues of
M and the physical consequences of its positivity is presented in Ref. [10]. In this
case, the conditions of thermal and mechanical stability are naturally demonstrated
through the signs of the second-order derivatives of some thermodynamic function
of two-variables. The two-dimensional problem arises when is considered a one-
component system and, in particular, we can take the thermodynamic energy per
mol, reducing the dependence of such energy function for only the variables
entropy (s) and volume (v) per mol (u ¼ u s, vð Þ).

The stability conditions of a thermodynamic system are intrinsically related to
the signs of the second-order derivatives of the energy, being the exact calculating
of the eigenvalues of Eq. (13) (of previously known signs) an important factor in
order to understand the physical origin of the stability of the system. In next
section, we present a discussion of eigenvalues of the energy in a three-dimensional
thermodynamic space.

3. Diagonalization of the energy in a three-dimensional thermodynamic
space

Let us define the energy in a three-dimensional thermodynamic space. To do
this, we consider a system with one chemical component and explicitly write the
energy U ¼ U S,V,Nð Þ in terms of the involved extensive parameters S,V and N.
Similarly of Eq. (3) and by analogy with one-variable calculus, we have ∂U

∂S ¼ ∂U
∂V ¼

∂U
∂N ¼ 0 (at a stationary point (S0,V0,N0)) due to the minimum energy principle.
Besides, in order to investigate the second-order derivatives of U (or ~U, there are no
physical difference), a simple matricial quadratic form can be obtained by
application of Eqs. (6), (7) and (8), as follows:

~U ¼ ΔS ΔV ΔNð Þ

∂
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∂
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∂S∂V
∂
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∂S∂N

∂
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∂V∂S
∂
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0
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(15)
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where

M 3x3ð Þ ¼

∂
2U
∂S2

∂
2U

∂S∂V
∂
2U

∂S∂N

∂
2U

∂V∂S
∂
2U
∂V2

∂
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∂V∂N

∂
2U

∂N∂S
∂
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∂N∂V
∂
2U
∂N2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(16)

ΔXi is a column vector with ΔS, ΔV, ΔN components, ΔXT
i is the transpose of

ΔXi, and M 3x3ð Þ is a symmetric matrix that provides three eigenvalues for ~U by
diagonalization of M 3x3ð Þ. Thus, by using the canonical form of ~U combined with
minimum energy principle, we know that all signs of the eigenvalues λ1, λ2, and λ3
of M 3x3ð Þ are positive

~U  ¼ ΔX0i
� �TD 3x3ð Þ ΔX0i

� � ¼ ΔS0 ΔV 0 ΔN0ð Þ
λ1 0 0

0 λ2 0

0 0 λ3

0
BBB@

1
CCCA

ΔS0

ΔV 0

ΔN0

0
BBB@

1
CCCA

¼ λ1 ΔS0ð Þ2 þ λ2 ΔV 0ð Þ2 þ λ3 ΔN0ð Þ2 >0:

(17)

Note that D 3x3ð Þ in Eq. (17) is the eigenvalues matrix of M 3x3ð Þ given by Eq. (16).
As in Eq. (13), here we need solve the eigenvalues equation λI 3x3ð Þ �M 3x3ð Þ

� �
Xi ¼ 0

that provides the following determinant
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∂S2
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� �
∂
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� �
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���������������

���������������

¼ 0: (18)

The determinant given by Eq. (18) provides a third-degree equation in λ.
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�
¼ 0:

(19)
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The above equation is commonly known as characteristic equation, and its
solution necessarily imply in three positive roots due to the minimum energy
postulate. After some algebraic manipulations [8, 11, 12] in order to solve Eq. (19)
and considering λ1 >0, λ2 >0 and λ3 >0 (three positive roots), we find the following
relations

∂
2U
∂S2

>0,
∂
2U
∂V2 >0,

∂
2U
∂N2 >0 asexpected fromone� variable calculusð Þ, (20)

∂
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∂S2

∂
2U
∂V2 �

∂
2U

∂S∂V
∂
2U

∂V∂S
>0, (21)

∂
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∂
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∂
2U
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þ ∂
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∂S∂N

�
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� ∂
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∂
2U
∂V2 �

∂
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∂S∂V
∂
2U

∂V∂S
∂
2U
∂N2

�
>0:

(22)

Observe that Eq. (22) is equivalent to the determinant of M 3x3ð Þ (see Eq. (16)),
being positive to energy representaion, and so ∣M 3x3ð Þ∣>0. Besides, considering that
the product of the three roots x1x2x3 ¼ �d=a in a general third-degree equation
ax3 þ bx2 þ cxþ d ¼ 0 is a known expression of more elementary courses, Eq. (22)
can be easily obtained due to the positivity of all eigenvalues of ~U (see that d is the
last bracket term in Eq. (19), and a ¼ �1) in the condition of minimum introduced
by the thermodynamic postulate. In addition, notice that first relation in Eq. (19) is
the determinant of the upper left 1x1 submatrix of M 3x3ð Þ, while Eq. (20) is the
determinant of the upper left 2x2 submatrix of M 3x3ð Þ.

In short, to obtaining in which conditions at equilibrium point (S0,V0,N0)
~U ¼ ~U S,V,Nð Þ has a minimum in this three-dimensional thermodynamic space,
the set of relations given by Eqs. (20)-(22) must occur, where the relations ∂

2U
∂V2 >0

and ∂
2U
∂N2 >0 in Eq. (20) were introduced for a more physical than mathematical

reason during analytical solution of Eq. (19). A general approach about mathemat-
ical second derivative test for many variable functions can be found in Ref. [8].

We must solve Eq. (19) permuting U and S in an equivalent entropy represen-
tation. Besides, by imposing all negative values due to maximum entropy postulate,
it is possible to obtain a set of relations as in Eqs. (20)-(22). Solving eigenvalues
equation below
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∂
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�
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(23)

and imposing λ1 <0, λ2 <0 and λ3 <0 (all negative eigenvalues due to maximum
entropy postulate), we obtain
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where

M 3x3ð Þ ¼

∂
2U
∂S2

∂
2U

∂S∂V
∂
2U

∂S∂N

∂
2U

∂V∂S
∂
2U
∂V2

∂
2U

∂V∂N

∂
2U

∂N∂S
∂
2U

∂N∂V
∂
2U
∂N2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(16)

ΔXi is a column vector with ΔS, ΔV, ΔN components, ΔXT
i is the transpose of

ΔXi, and M 3x3ð Þ is a symmetric matrix that provides three eigenvalues for ~U by
diagonalization of M 3x3ð Þ. Thus, by using the canonical form of ~U combined with
minimum energy principle, we know that all signs of the eigenvalues λ1, λ2, and λ3
of M 3x3ð Þ are positive
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¼ λ1 ΔS0ð Þ2 þ λ2 ΔV 0ð Þ2 þ λ3 ΔN0ð Þ2 >0:

(17)

Note that D 3x3ð Þ in Eq. (17) is the eigenvalues matrix of M 3x3ð Þ given by Eq. (16).
As in Eq. (13), here we need solve the eigenvalues equation λI 3x3ð Þ �M 3x3ð Þ
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that provides the following determinant
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2U

∂N∂S
∂
2U

∂N∂V
∂
2U
∂N2 � λ

� �

���������������

���������������

¼ 0: (18)

The determinant given by Eq. (18) provides a third-degree equation in λ.

�λ3 þ ∂
2U
∂S2
þ ∂

2U
∂V2 þ

∂
2U
∂N2

� �
λ2 þ ∂

2U
∂S2

∂
2U
∂V2 þ

∂
2U
∂S2

∂
2U
∂N2 þ

∂
2U
∂V2

∂
2U
∂N2 þ

∂
2U

∂S∂N
∂
2U

∂N∂S

�

þ ∂
2U

∂V∂N
∂
2U

∂N∂V
þ ∂

2U
∂S∂V

∂
2U

∂V∂S

�
λþ ∂

2U
∂S2

∂
2U
∂V2

∂
2U
∂N2 þ

∂
2U

∂S∂V
∂
2U

∂V∂N
∂
2U

∂N∂S

�

þ ∂
2U

∂V∂S
∂
2U

∂N∂V
∂
2U

∂S∂N
� ∂

2U
∂N∂V

∂
2U

∂V∂N
∂
2U
∂S2
� ∂

2U
∂N∂S

∂
2U

∂S∂N
∂
2U
∂V2

� ∂
2U

∂S∂V
∂
2U

∂V∂S
∂
2U
∂N2

�
¼ 0:

(19)
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The above equation is commonly known as characteristic equation, and its
solution necessarily imply in three positive roots due to the minimum energy
postulate. After some algebraic manipulations [8, 11, 12] in order to solve Eq. (19)
and considering λ1 >0, λ2 >0 and λ3 >0 (three positive roots), we find the following
relations

∂
2U
∂S2

>0,
∂
2U
∂V2 >0,

∂
2U
∂N2 >0 asexpected fromone� variable calculusð Þ, (20)

∂
2U
∂S2

∂
2U
∂V2 �

∂
2U

∂S∂V
∂
2U

∂V∂S
>0, (21)

∂
2U
∂S2

∂
2U
∂V2

∂
2U
∂N2 þ

∂
2U

∂S∂V
∂
2U

∂V∂N
∂
2U

∂N∂S
þ ∂

2U
∂V∂S

∂
2U

∂N∂V
∂
2U

∂S∂N

�

� ∂
2U

∂N∂V
∂
2U

∂V∂N
∂
2U
∂S2
� ∂

2U
∂N∂S

∂
2U

∂S∂N
∂
2U
∂V2 �

∂
2U

∂S∂V
∂
2U

∂V∂S
∂
2U
∂N2

�
>0:

(22)

Observe that Eq. (22) is equivalent to the determinant of M 3x3ð Þ (see Eq. (16)),
being positive to energy representaion, and so ∣M 3x3ð Þ∣>0. Besides, considering that
the product of the three roots x1x2x3 ¼ �d=a in a general third-degree equation
ax3 þ bx2 þ cxþ d ¼ 0 is a known expression of more elementary courses, Eq. (22)
can be easily obtained due to the positivity of all eigenvalues of ~U (see that d is the
last bracket term in Eq. (19), and a ¼ �1) in the condition of minimum introduced
by the thermodynamic postulate. In addition, notice that first relation in Eq. (19) is
the determinant of the upper left 1x1 submatrix of M 3x3ð Þ, while Eq. (20) is the
determinant of the upper left 2x2 submatrix of M 3x3ð Þ.

In short, to obtaining in which conditions at equilibrium point (S0,V0,N0)
~U ¼ ~U S,V,Nð Þ has a minimum in this three-dimensional thermodynamic space,
the set of relations given by Eqs. (20)-(22) must occur, where the relations ∂

2U
∂V2 >0

and ∂
2U
∂N2 >0 in Eq. (20) were introduced for a more physical than mathematical

reason during analytical solution of Eq. (19). A general approach about mathemat-
ical second derivative test for many variable functions can be found in Ref. [8].

We must solve Eq. (19) permuting U and S in an equivalent entropy represen-
tation. Besides, by imposing all negative values due to maximum entropy postulate,
it is possible to obtain a set of relations as in Eqs. (20)-(22). Solving eigenvalues
equation below

�λ3 þ ∂
2S

∂U2 þ
∂
2S

∂V2 þ
∂
2S

∂N2

� �
λ2 þ ½ ∂

2S
∂U2

∂
2S

∂V2 þ
∂
2S

∂U2
∂
2S

∂N2 þ
∂
2S

∂V2
∂
2S

∂N2 þ
∂
2S

∂U∂N
∂
2S

∂N∂U

þ ∂
2S

∂V∂N
∂
2S

∂N∂V
þ ∂

2S
∂U∂V

∂
2S

∂V∂U

�
λþ ∂

2S
∂U2

∂
2S

∂V2
∂
2S

∂N2 þ
∂
2S

∂S∂V
∂
2S

∂V∂N
∂
2S

∂N∂U

�

þ ∂
2S

∂V∂U
∂
2S

∂N∂V
∂
2S

∂U∂N
� ∂

2S
∂N∂V

∂
2S

∂V∂N
∂
2S

∂U2 �
∂
2S

∂N∂U
∂
2S

∂U∂N
∂
2S

∂V2

� ∂
2S

∂U∂V
∂
2S

∂V∂U
∂
2S

∂N2

�
¼ 0,

(23)

and imposing λ1 <0, λ2 <0 and λ3 <0 (all negative eigenvalues due to maximum
entropy postulate), we obtain
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∂
2S

∂U2 <0,
∂
2S

∂V2 <0,
∂
2S

∂N2 <0 asexpected fromone� variable calculusð Þ (24)

∂
2S

∂U2
∂
2S

∂V2 �
∂
2S

∂U∂V
∂
2S

∂V∂U
>0 (25)

∂
2S

∂U2
∂
2S

∂V2
∂
2S

∂N2 þ
∂
2S

∂U∂V
∂
2S

∂V∂N
∂
2S

∂N∂U
þ ∂

2S
∂V∂U

∂
2S

∂N∂V
∂
2S

∂U∂N

�

� ∂
2S

∂N∂V
∂
2S

∂V∂N
∂
2S

∂U2 �
∂
2S

∂N∂U
∂
2S

∂U∂N
∂
2S

∂V2 �
∂
2S

∂U∂V
∂
2S

∂V∂U
∂
2S

∂N2

�
<0:

(26)

As it happened for energy, here Eq. (24) is expected from one-variable calculus
and its last two relations were introduced for a more physical than mathematical
reason during analytical solution of Eq. (23). It is important to emphasize that
although Eq. (25) keeps the same format and sign of Eq. (21), the sign in Eq. (26)
for the entropy formalism is now negative. This should not cause any surprise and
can be concluded even without explicitly calculate the three eigenvalues of charac-
teristic equation due to the known expression to the product between the three
roots, x1x2x3 ¼ �d=a in a general third-degree equation ax3 þ bx2 þ cxþ d ¼ 0.
Then, as all eigenvalues are now negative, Eq. (26) is easy verified from character-
istic equation (see Eq. (23) where d is the last bracket term, and a ¼ �1). The set of
Eqs. (24)-(26) provides the mathematical conditions of maximum for entropy
thermodynamic function ~S ¼ ~S U,V,Nð Þ at U0,V0,N0ð Þ.

Some physical problems require the use of thermodynamic potentials of Helm-
holtz, enthalpy and Gibbs as well as the grand canonical potential instead of ther-
modynamic energy to be more easy solved. These thermodynamic functions are
introduced in the next topic.

3.1 Second-order derivatives of other thermodynamic functions

By using Legendre transformations, it is possible to change the extensive vari-
ables, or part of them, in the thermodynamic energy function. In this subsection,
we are considering the same energy of three extensive variables defined by U ¼
U S,V,Nð Þ in which making appropriate Legendre transformations the intensive
variables are introduced. A discussion on extensive and intensive thermodynamic
variables can be found in Ref. [1]. Legendre’s transformation is, in short, a process
of change of variables.

3.1.1 Helmholtz potential

In order to introduce Helmholtz potential that is an energy function that instead
of being a function of S, V and N it is written in terms of T, V and N, we need to
make Legendre transformation (change S by T) in extensive parameter S. This
process of introducing intensive parameter T is described below. Before let us write
U S,V,Nð Þ as

dU S,V,Nð Þ ¼ ∂U
∂S

dSþ ∂U
∂V

dV þ ∂U
∂N

dN, (27)

where the temperature can be defined by T � ∂U
∂S with V and N constant, the

pressure is defined by P � � ∂U
∂V with S and N constant, and the chemical potential is

defined by μ � ∂U
∂N with S and V constant. With these definitions, we have to Eq. (27)
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dU ¼ TdS� PdV þ μdN: (28)

Taking

d TSð Þ ¼ TdSþ SdT
TdS ¼ d TSð Þ � SdT,

(29)

and substituting Eq. (29) into Eq. (28)

dU ¼ d TSð Þ � SdT � PdV þ μdN
d U � TSð Þ ¼ �SdT � PdV þ μdN

dF ¼ �SdT � PdV þ μdN,

(30)

where

F � U � TS beingFknownasHelmholtz potentialð Þ: (31)

See of the Eq. (30) that F is a function of T, V and N. Then F ¼ F T,V,Nð Þ,
and the energy F defined as function of T, V and N has modified its concavite in
relation to the new introduced parameter by Legendre transformation in S, i. e.,
the second-order derivatives of F on T is negative now, keeping positive the signs of
F on V and N as in original energy (see Eq. (32) below).

∂
2F

∂T2 <0,
∂
2F

∂V2 >0,
∂
2F

∂N2 >0: (32)

It is a general fact that Legendre transformation change the sign of the second-
order derivatives of the new introduced function in relation that intensive parame-
ter. A demonstration of this consideration to molar Helmholtz potential f ¼ f s, vð Þ is
shown in Re. [10], and a treatment on Legendre transformations can be found in
Ref. [13]. Recently, the thermodynamic stability of chignolin protein was theoreti-
cally investigated by using of a computational methodology of decomposition of the
Helmholtz energy profile that indicates that intramolecular interactions predomi-
nantly stabilized certain conformations of the protein [14]. Besides, in the same
study the direct Helmholtz energy decomposition provides the predominant factor
in the thermodynamic stability of proteins.

Following the same procedure used to derive the stability conditions of the
energy and entropy functions, it is possible to obtain a complete set of relations that
Helmholtz potential must obey. Mathematically F is known as a saddle surface. This
feature of F stems from the imposition that some eigenvalue of the canonical form
of F (similarly to the Eq. (17)) have opposite sign to the others. The saddle surface
of Helmholtz of three variables has a maximum in relation to the temperature but a
minimum in relation to the volume and mole number. The relations given by
Eq. (32) are sufficient to conclude on the physical stability of a system, as demon-
strated in Section 4, and the other expressions to the second-order derivatives of F
are not shown here. However, the curious reader can be computing all signs of the
second-order derivatives to Helmoltz and to other thermodynamic functions that
follow below, as already discussed to energy and entropy functions.

3.1.2 Enthalpy potential

The enthalpy potential is also mathematically a saddle surface. In this case,
Legendre transformation is applied in the extensive parameter V and introduced
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∂
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∂N2 <0 asexpected fromone� variable calculusð Þ (24)
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∂U∂N

�

� ∂
2S

∂N∂V
∂
2S

∂V∂N
∂
2S

∂U2 �
∂
2S

∂N∂U
∂
2S
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∂
2S

∂V2 �
∂
2S

∂U∂V
∂
2S

∂V∂U
∂
2S
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�
<0:

(26)

As it happened for energy, here Eq. (24) is expected from one-variable calculus
and its last two relations were introduced for a more physical than mathematical
reason during analytical solution of Eq. (23). It is important to emphasize that
although Eq. (25) keeps the same format and sign of Eq. (21), the sign in Eq. (26)
for the entropy formalism is now negative. This should not cause any surprise and
can be concluded even without explicitly calculate the three eigenvalues of charac-
teristic equation due to the known expression to the product between the three
roots, x1x2x3 ¼ �d=a in a general third-degree equation ax3 þ bx2 þ cxþ d ¼ 0.
Then, as all eigenvalues are now negative, Eq. (26) is easy verified from character-
istic equation (see Eq. (23) where d is the last bracket term, and a ¼ �1). The set of
Eqs. (24)-(26) provides the mathematical conditions of maximum for entropy
thermodynamic function ~S ¼ ~S U,V,Nð Þ at U0,V0,N0ð Þ.

Some physical problems require the use of thermodynamic potentials of Helm-
holtz, enthalpy and Gibbs as well as the grand canonical potential instead of ther-
modynamic energy to be more easy solved. These thermodynamic functions are
introduced in the next topic.

3.1 Second-order derivatives of other thermodynamic functions

By using Legendre transformations, it is possible to change the extensive vari-
ables, or part of them, in the thermodynamic energy function. In this subsection,
we are considering the same energy of three extensive variables defined by U ¼
U S,V,Nð Þ in which making appropriate Legendre transformations the intensive
variables are introduced. A discussion on extensive and intensive thermodynamic
variables can be found in Ref. [1]. Legendre’s transformation is, in short, a process
of change of variables.

3.1.1 Helmholtz potential

In order to introduce Helmholtz potential that is an energy function that instead
of being a function of S, V and N it is written in terms of T, V and N, we need to
make Legendre transformation (change S by T) in extensive parameter S. This
process of introducing intensive parameter T is described below. Before let us write
U S,V,Nð Þ as

dU S,V,Nð Þ ¼ ∂U
∂S

dSþ ∂U
∂V

dV þ ∂U
∂N

dN, (27)

where the temperature can be defined by T � ∂U
∂S with V and N constant, the

pressure is defined by P � � ∂U
∂V with S and N constant, and the chemical potential is

defined by μ � ∂U
∂N with S and V constant. With these definitions, we have to Eq. (27)
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dU ¼ TdS� PdV þ μdN: (28)

Taking

d TSð Þ ¼ TdSþ SdT
TdS ¼ d TSð Þ � SdT,

(29)

and substituting Eq. (29) into Eq. (28)

dU ¼ d TSð Þ � SdT � PdV þ μdN
d U � TSð Þ ¼ �SdT � PdV þ μdN

dF ¼ �SdT � PdV þ μdN,

(30)

where

F � U � TS beingFknownasHelmholtz potentialð Þ: (31)

See of the Eq. (30) that F is a function of T, V and N. Then F ¼ F T,V,Nð Þ,
and the energy F defined as function of T, V and N has modified its concavite in
relation to the new introduced parameter by Legendre transformation in S, i. e.,
the second-order derivatives of F on T is negative now, keeping positive the signs of
F on V and N as in original energy (see Eq. (32) below).

∂
2F

∂T2 <0,
∂
2F

∂V2 >0,
∂
2F

∂N2 >0: (32)

It is a general fact that Legendre transformation change the sign of the second-
order derivatives of the new introduced function in relation that intensive parame-
ter. A demonstration of this consideration to molar Helmholtz potential f ¼ f s, vð Þ is
shown in Re. [10], and a treatment on Legendre transformations can be found in
Ref. [13]. Recently, the thermodynamic stability of chignolin protein was theoreti-
cally investigated by using of a computational methodology of decomposition of the
Helmholtz energy profile that indicates that intramolecular interactions predomi-
nantly stabilized certain conformations of the protein [14]. Besides, in the same
study the direct Helmholtz energy decomposition provides the predominant factor
in the thermodynamic stability of proteins.

Following the same procedure used to derive the stability conditions of the
energy and entropy functions, it is possible to obtain a complete set of relations that
Helmholtz potential must obey. Mathematically F is known as a saddle surface. This
feature of F stems from the imposition that some eigenvalue of the canonical form
of F (similarly to the Eq. (17)) have opposite sign to the others. The saddle surface
of Helmholtz of three variables has a maximum in relation to the temperature but a
minimum in relation to the volume and mole number. The relations given by
Eq. (32) are sufficient to conclude on the physical stability of a system, as demon-
strated in Section 4, and the other expressions to the second-order derivatives of F
are not shown here. However, the curious reader can be computing all signs of the
second-order derivatives to Helmoltz and to other thermodynamic functions that
follow below, as already discussed to energy and entropy functions.

3.1.2 Enthalpy potential

The enthalpy potential is also mathematically a saddle surface. In this case,
Legendre transformation is applied in the extensive parameter V and introduced
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the intensive parameter P. Further, H keep unaltered with a minimum in relation to
the entropy S and N but becomes a maximum on P, and so H ¼ H S,P,Nð Þ.
Remembering that dU ¼ TdS� PdV þ μdN, then

d pVð Þ ¼ PdV þ VdP

�PdV ¼ �d PVð Þ þ VdP,
(33)

and substituting Eq. (33) into Eq. (28), we have

dU ¼ TdS� d PVð Þ þ VdPþ μdN

d U þ PVð Þ ¼ TdSþ VdPþ μdN

dH ¼ TdSþ VdPþ μdN,

(34)

where

H � U þ PV beingHknownasenthalpy potential� �
: (35)

Due to Legendre transformations, it is possible to conclude that

∂
2H
∂S2

>0,
∂
2H
∂P2 <0,

∂
2H
∂N2 >0, (36)

and other inequalities can be obtained the same way as previously presented to
energy and entropy functions,i. e., by diagonalization of H S,P,Nð Þ.

3.1.3 Gibbs potential

It is possible to write a function obtained by double Legendre transformation in
the extensive parameters S and V, namely Gibbs potential. This is a function on
introduced intensive variables T and P. To do that, we combine Eqs. (29) and (33)
into Eq. (28). Then,

dU ¼ TdS� PdV þ μdN

dU ¼ d TSð Þ � SdT � d PVð Þ þ VdPþ μdN

dU � d TSð Þ þ d PVð Þ ¼ �SdT þ VdPþ μdN

d U � TSþ PVð Þ ¼ �SdT þ VdPþ μdN

dG ¼ �SdT þ VdPþ μdN,

(37)

where

G � U � TSþ PV beingGknownasGibbs potentialð Þ: (38)

Legendre transformations provide the following relations, and G ¼ G T,P,Nð Þ as
seen in Eq. (37).

∂
2G
∂T2 <0,

∂
2G
∂P2 <0,

∂
2G

∂N2 >0: (39)

Here the second-order derivatives in relation to T and P are negative now as well
as the G ¼ G T,P,Nð Þ becomes a surface of maximum in relation of these two
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parameters. See that energy keeps unaltered in relation to N, and Gibbs potential
has a minimum in relation to mole number because Legendre transformations are
applied only in S and V, introducing T and P respectively. Besides, by diagonaliza-
tion of quadratic form obtained by expanding of G, it is possible to compute other
inequalities in additon those expressed by Eq. (39), as already discussed to the
energy and entropy formalisms.

3.1.4 Grand canonical potential

A function of T, V and μ is known as grand canonical potential J. To obtaining
J ¼ J T,V, μð Þ let us introduce the intensive parameter μ of the extensive parameter
N as follows. Taking

d μNð Þ ¼ Ndμþ μdN

μdN ¼ d μNð Þ �Ndμ,
(40)

and combining the above equation with Eq. (29) into (28), we have

dU ¼ TdS� PdV þ μdN

dU ¼ d TSð Þ � SdT � PdV þ d μNð Þ �Ndμ

dU � d TSð Þ � d μNð Þ ¼ �SdT � PdV �Ndμ

d U � TS� μNð Þ ¼ �SdT � PdV �Ndμ

dJ ¼ �SdT � PdV �Ndμ,

(41)

where

J ¼ U � TS� μN ¼ F � μN being Jknownasgrand canonical potentialð Þ: (42)

Thus, by Legendre transformations in S and N, T and μ intensive variables are
introduced, respectively, the relations below are naturally obtained.

∂
2J

∂T2 <0,
∂
2J

∂V2 >0,
∂
2J

∂μ2
<0: (43)

These relations indicate that G has now a maximum in relation to intensive
parameters T and μ, keeping a minimum on V. Legendre transformations applied in
the entropy formalism are also useful to derive other thermodynamic functions that
are not treated here. The appropriate choice of the thermodynamic function is
relevant in practical problems. Besides, thermodynamic functions are convex func-
tions of their extensive variables (positive signs of the second-order derivatives)
and concave functions (negative signs of the second-order derivatives) of their
intensive variables [1].

Novel geometric approaches aimed at obtaining thermodynamic relations
in a systematic way for a number of thermodynamic potentials and formally
derived the classical Gibbs stability condition has been recently investigated [15].

So far, we demonstrate the mathematical conditions that second-order deriva-
tives of the thermodynamic functions must satisfied. In the next section, we use
these conditions to directly obtain the mechanical and thermal stability of a general
system.
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the intensive parameter P. Further, H keep unaltered with a minimum in relation to
the entropy S and N but becomes a maximum on P, and so H ¼ H S,P,Nð Þ.
Remembering that dU ¼ TdS� PdV þ μdN, then

d pVð Þ ¼ PdV þ VdP

�PdV ¼ �d PVð Þ þ VdP,
(33)

and substituting Eq. (33) into Eq. (28), we have

dU ¼ TdS� d PVð Þ þ VdPþ μdN

d U þ PVð Þ ¼ TdSþ VdPþ μdN

dH ¼ TdSþ VdPþ μdN,

(34)

where

H � U þ PV beingHknownasenthalpy potential� �
: (35)

Due to Legendre transformations, it is possible to conclude that

∂
2H
∂S2

>0,
∂
2H
∂P2 <0,

∂
2H
∂N2 >0, (36)

and other inequalities can be obtained the same way as previously presented to
energy and entropy functions,i. e., by diagonalization of H S,P,Nð Þ.

3.1.3 Gibbs potential

It is possible to write a function obtained by double Legendre transformation in
the extensive parameters S and V, namely Gibbs potential. This is a function on
introduced intensive variables T and P. To do that, we combine Eqs. (29) and (33)
into Eq. (28). Then,

dU ¼ TdS� PdV þ μdN

dU ¼ d TSð Þ � SdT � d PVð Þ þ VdPþ μdN

dU � d TSð Þ þ d PVð Þ ¼ �SdT þ VdPþ μdN

d U � TSþ PVð Þ ¼ �SdT þ VdPþ μdN

dG ¼ �SdT þ VdPþ μdN,

(37)

where

G � U � TSþ PV beingGknownasGibbs potentialð Þ: (38)

Legendre transformations provide the following relations, and G ¼ G T,P,Nð Þ as
seen in Eq. (37).

∂
2G
∂T2 <0,

∂
2G
∂P2 <0,

∂
2G

∂N2 >0: (39)

Here the second-order derivatives in relation to T and P are negative now as well
as the G ¼ G T,P,Nð Þ becomes a surface of maximum in relation of these two
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parameters. See that energy keeps unaltered in relation to N, and Gibbs potential
has a minimum in relation to mole number because Legendre transformations are
applied only in S and V, introducing T and P respectively. Besides, by diagonaliza-
tion of quadratic form obtained by expanding of G, it is possible to compute other
inequalities in additon those expressed by Eq. (39), as already discussed to the
energy and entropy formalisms.

3.1.4 Grand canonical potential

A function of T, V and μ is known as grand canonical potential J. To obtaining
J ¼ J T,V, μð Þ let us introduce the intensive parameter μ of the extensive parameter
N as follows. Taking

d μNð Þ ¼ Ndμþ μdN

μdN ¼ d μNð Þ �Ndμ,
(40)

and combining the above equation with Eq. (29) into (28), we have

dU ¼ TdS� PdV þ μdN

dU ¼ d TSð Þ � SdT � PdV þ d μNð Þ �Ndμ

dU � d TSð Þ � d μNð Þ ¼ �SdT � PdV �Ndμ

d U � TS� μNð Þ ¼ �SdT � PdV �Ndμ

dJ ¼ �SdT � PdV �Ndμ,

(41)

where

J ¼ U � TS� μN ¼ F � μN being Jknownasgrand canonical potentialð Þ: (42)

Thus, by Legendre transformations in S and N, T and μ intensive variables are
introduced, respectively, the relations below are naturally obtained.

∂
2J

∂T2 <0,
∂
2J

∂V2 >0,
∂
2J

∂μ2
<0: (43)

These relations indicate that G has now a maximum in relation to intensive
parameters T and μ, keeping a minimum on V. Legendre transformations applied in
the entropy formalism are also useful to derive other thermodynamic functions that
are not treated here. The appropriate choice of the thermodynamic function is
relevant in practical problems. Besides, thermodynamic functions are convex func-
tions of their extensive variables (positive signs of the second-order derivatives)
and concave functions (negative signs of the second-order derivatives) of their
intensive variables [1].

Novel geometric approaches aimed at obtaining thermodynamic relations
in a systematic way for a number of thermodynamic potentials and formally
derived the classical Gibbs stability condition has been recently investigated [15].

So far, we demonstrate the mathematical conditions that second-order deriva-
tives of the thermodynamic functions must satisfied. In the next section, we use
these conditions to directly obtain the mechanical and thermal stability of a general
system.
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4. The stability conditions of a system

Let us start this section remembering some quantities of physical interest
defined below [1–3]:

α � 1
V
∂V
∂T

(44)

cV � T
N

∂S
∂T

(45)

cP � T
N

∂S
∂T

(46)

kT � � 1
V
∂V
∂P

(47)

kS � � 1
V
∂V
∂P

, (48)

where α (at p constant) in Eq. (44) is the coefficient of thermal expansion, cV
and cP in Eqs. (45) and (46) respectively, are the specific heats at V or P constant,
kT (T constant) in Eq. (47) is the isothermal compressibility and kS (S constant) in
Eq. (48) is the adiabatic compressibility. All these quantities are relevant in physical
applications and their exact values as well as their increase or decrease tendencies
can say a lot about the stability of the physical system.

The thermal expansion is related to changes in dimensions of physical systems
due to temperature variations. We can understand the behavior of materials on the
macroscopic or microscopic scale when subjected to temperature changes by the
abosolute values of α that can be positive or negative.

Specific heats are useful to understand the thermal properties of physical sys-
tems in several length scales (macroscale and microscale). Besides, the specific
heats are positive physical quantities associated to the thermal stability of the
system, as will be mathematically demonstrated in this section.

The isothermal and adiabatic compressibilities are positive physical quantities,
being related to the mechanical stability of the system. A deep comprehension of
the physical origin of the mentioned quantities in terms of the signs of the
second-order derivatives of thermodynamis functions, it is relevant to theoretical or
experimental researchers.

In order to better investigate the physical consequences of the signs of the
second-order derivatives of the energy, see the first relation in Eq. (20)

∂
2U
∂S2

>0: (49)

Remembering the temperature definition T ¼ ∂U
∂S , we have by derivation of

temperature T side by side in relation to the S entropy

∂T
∂S
¼ ∂

2U
∂S2

>0: (50)

Then, if we combine Eq. (50) and the definition of specific heat (at V constant)
given by Eq. (45), it is possible to obtain

T
NcV

¼ ∂
2U
∂S2

>0

) cV >0:
(51)
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A positive specific heat (cV >0) is obtained due to the absolute temperature is
positive. Besides, N is a positive amount. The same physical conclusion can be
obtained of the first relation in Eq. (32), ∂

2F
∂T2 <0. As F is a function of T, V and N

(F ¼ F T,V,Nð Þ), an infinitesimal of dF is given by

dF ¼ ∂F
∂T

dT þ ∂F
∂V

dV þ ∂F
∂N

dN (52)

that compared with Eq. (30) provides

�S ¼ ∂F
∂T

, (53)

�P ¼ ∂F
∂V

, (54)

and

μ ¼ ∂F
∂N

: (55)

If we take the derivation side by side of Eq. (53) in relation to T considering V
and N constant

� ∂S
∂T
¼ ∂

2F
∂T2 : (56)

It is possible to observe that the left side of Eq. (56) is relationed to the specific
heat at V constant and the sign of the second-order derivatives can be checked by
comparing with Eq. (32), and so

� ∂S
∂T
¼ ∂

2F
∂T2 <0, (57)

and from definition of specific heat in Eq. (45)

�NcV
T

<0) Ncv
T

>0) cv >0: (58)

Note that Eq. (58) represents the same result already obtained in Eq. (51), only
taking different formalisms to thermodynamic function, and so analyzing distinct
second-order derivatives. The specific heat must be interpreted as the necessary
amount of heat to increase or decrease the temperature of the physical system. A
negative specific heat would imply in an inexistent physical situation because we
would have a system capable of receiving some quantity of heat (postive) and
decreasing its temperature (negative dT). There is still another non-physical situa-
tion with negative specific heat in the hypothetical situation in which the system
loses heat but increases its temperature.

We investigate now the signs of second-order derivatives of Gibbs potential. The
relation given by first inequality in Eq. (39) provides an important conclusion to
specific heat at P constant, with cP >0. To demonstrate that, let us take a differential
element dG of Gibbs potential G ¼ G T,P,Nð Þ

dG ¼ ∂G
∂T

dT þ ∂G
∂P

dPþ ∂G
∂N

dN: (59)
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The above equation can be compared with Eq. (37), and we obtain

�S ¼ ∂G
∂T

, (60)

V ¼ ∂G
∂P

, (61)

and

μ ¼ ∂G
∂N

: (62)

Deriving Eq. (60) side by side in relation to T at P constant, we have

� ∂S
∂T
¼ ∂

2G
∂T2 , (63)

and from definition of specific heat at P constant in Eq. (46) and by comparing
with the first inequality in Eq. (39)

�NcP
T
¼ ∂

2G
∂T2 <0

NcP
T

>0) cP >0:
(64)

Notice that specific heat at P constant is also positive. The positivity of the
specific heats previous shown is related to the thermal stability of the physical
system. Then, it is possible to see that the thermal stability emerge as consequence
of the signs of the second-order derivatives previously treated. Thus, appropriately
computing the eigenvalues of the matricial energy or other thermodynamic func-
tion is essencial to finding the stability conditions.

Resuming Eq. (54) and by derivation of the left and right sides in relation to V
keeping T constant

∂P
∂V
¼ � ∂

2F
∂V2 : (65)

Comparing Eq. (66) with the definition to isothermal compressibility in
Eq. (47), we can obtain

∂P
∂V
¼ � 1

VkT
: (66)

As the sign of the second-order derivative in Eq. (66) is positive, we have

� 1
VkT

¼ � ∂
2F

∂V2

1
VkT

¼ ∂
2F

∂V2 >0) kT >0:
(67)

Notice that the sign of the second-order derivative of the appropriately chosen
potential leads to a relevant relation for the sign of physical quantity of interest.
Besides, in the definition given by Eq. (47) that increments of pressure in the
system leads to decrease in volume due to the ever positive isothermal
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compressibility, and this is an intuitive conclusion. From Eq. (67) we mathemati-
cally demonstrated that isothermal compressibility is always positive due to specific
features of the potentials. In particular, the positive value of kT appears from
curvature of some chosen potential. The same way kS >0 can be obtained from
enthalpy potential through the the sign of the second relation (∂

2H
∂P2 <0) in Eq. (36),

and after some algebraic manipulations. A positive value of this physical quantity is
associated with the mechanical stability of the physical system, as in kT .

It is relevant to clarify that α does not to have a positive defined sign that can be
obtained from some function. The well-known case of the water shows that volume
increases when temperature decreases below at 4oC, being negative α in this regime.
Yet, thermodynamic books [1–3] show some relations between the physical quanti-
ties, as cp ¼ cv þ TVα2=NkT, cp=cv ¼ kT=kS as well as cp ≥ cv and kT ≥ ks obtained by
reduction of thermodynamic derivatives and by using Maxwell’s relations. But this
is not the purpose of this chapter.

It is worthy of emphasis that some stability condition can be deduced by the
signs of the second-order derivatives of energy (or any thermodynamic function),
as presented in this chapter. In a three-dimensional (or higher) thermodynamic
space the complexity in obtain with success the stability conditions for some poten-
tial is associated to the matrix order of the second-order derivatives. Besides, to all
cases one or several second-order relations must be manipulated to conclude about
the thermal and mechanical stability of the system.

5. Conclusions

In this chapter, we show the useful of specific linear algebra topics in addition
with many-variable calculus that coupled to minimum energy postulate appear as in
important insight to understand the stability of thermodynamic systems. We find
the thermal and mechanical stability of physical systems are directly associated with
the signs of the second-order derivatves of thermodynamic energy or other taken
representation.

We present a general addressing to the energy representation in terms of matrial
equations whereby the stability conditions arise of an eigenvalues fundamental
problem. Besides, the minimum energy postulate provides the signs of the second-
order derivatives. Accordingly, of a physical point of view the stabilility of a system
occurs due to minimum energy postulate.

Formal caracteristics of postulational thermodynamic theory and, particularly,
about the second-order derivatives of the thermodynamic functions are discussed
with relevant consequences on the thermal and mechanical stability. The presented
analytical formalism is an important support to conclude how the stability of a
system arises, and can be useful in any field of the exact sciences. We hope that this
methodology can be extended to higher-order matrices of energy as well as some of
the obtained relations can be used in specific problems of applied physics.
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