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Preface

This book examines some problems and current trends relating to the theory of
dynamical systems. It also discusses some significant advances made in this field in
the last several years, including new models, computer algorithms, and applications
in various scientific areas.

The book includes six chapters. Chapter 1 presents an innovative methodology that
integrates physical devices and machinery with text mining technologies to identify
anomalous behaviors, even of minimal entity, rarely perceived by other strate-

gies in a machine tool. Chapter 2 presents a vibrations analysis of elastic beams
based on the constitutive equation of Kelvin-Voigt type, which contains fractional
derivatives of real order. Chapter 3 discusses the emergence of chaos and complex
behavior in real and physical systems, reviewing problems such as the complexity of
Child’s swing dynamics, chaotic neuronal dynamics, complex food-web dynamics,
financial models, and others. Chapter 4 considers the invariant method theory for
stochastic systems with strong perturbations, representing modern approaches to
describe dynamical systems having a set of invariant functions. Chapter 5 presents
a study of a mesoscopic stochastic process derived from deterministic dynamics
studied by Kolmogorov and others in the stationary case, and extends their methods
and some of their results considering the non-stationary process, which stems from
a non-invariant initial measure. Finally, Chapter 6 introduces recent developments
on the stability analysis of dynamical systems using the powerful tool of control
Lyapunov functions.

Researchers, engineers, and graduate students in both pure and applied mathemat-
ics may benefit from the chapters collected in this volume. We express appreciation
to IntechOpen for their professional support and to Author Service Manager

Mr. Josip Knapi¢ for his tireless help in the preparation of this book.

Bruno Carpentieri
Free University of Bozen-Bolzano (Faculty of Computer Science),
Bolzano, Italy






Chapter 1

Text Mining for Industrial
Machine Predictive Maintenance
with Multiple Data Sources

Giancarlo Nota and Alberto Postiglione

Abstract

This paper presents an innovative methodology, from which an efficient system
prototype is derived, for the algorithmic prediction of malfunctions of a generic
industrial machine tool. It integrates physical devices and machinery with Text
Mining technologies and allows the identification of anomalous behaviors, even of
minimal entity, rarely perceived by other strategies in a machine tool. The system
works without waiting for the end of the shift or the planned stop of the machine.
Operationally, the system analyzes the log messages emitted by multiple data
sources associated with a machine tool (such as different types of sensors and log
files produced by part programs running on CNC or PLC) and deduces whether
they can be inferred from them future machine malfunctions. In a preliminary
offline phase, the system associates an alert level with each message and stores it in
a data structure. At runtime, three algorithms guide the system: pre-processing,
matching and analysis: Preprocessing, performed only once, builds the data struc-
ture; Matching, in which the system issues the alert level associated with the mes-
sage; Analysis, which identifies possible future criticalities. It can also analyze an
entire historical series of stored messages The algorithms have a linear execution
time and are independent of the size of the data structure, which does not need to
be sorted and therefore can be updated without any computational effort.

Keywords: industrial machine tool, predictive maintenance, log message, text
mining, efficient algorithm

1. Introduction

The concept of Predictive Maintenance [1-4] foresees the carrying out of main-
tenance activities before the equipment failure. The primary goal of predictive
maintenance is to reduce the frequency of equipment failures by preventing the
failure before it actually occurs [5]. This strategy helps to minimize breakdown
costs and downtime (loss of production) and increase product quality, well known
thanks to [6] and recently reiterated by [4]. Obviously [7] predictive maintenance
is different from corrective maintenance, as action will be taken here to “anticipate”
the error before it actually occurs. Predictive maintenance is primarily about
detecting hidden and potential failures. It does not replace, but joins the Preventive
Maintenance in the strict sense, which is linked to the execution of a specific
protocol (often agreed with the machine manufacturer) intended to periodically

1 IntechOpen
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check, or after a certain amount of work, the state of use of the machine, without
any signs of behavioral anomalies having actually occurred. According to [8], if the
maintenance strategy only involves interventions that react to failures, the mainte-
nance costs are relatively low but the losses could be high. If preventive and pre-
dictive maintenance is introduced, maintenance costs increase: for example, some
activities must be carried out using overtime, detectors for predictive maintenance
are introduced, time is dedicated to training activities for operators and mainte-
nance workers. Some clues for defining the algorithms on which the cyber-physical
system presented here is based derive from research in the field of computational
linguistics, which have appeared on papers presented at various important interna-
tional conferences [9-14].

Here we present a discrete dynamic system, based on events represented as
textual messages to which an alert level has been associated and whose data struc-
ture is a graph. The system is dynamic because the data structure adjusts itself
without additional computational costs if a new message is issued by the machine,
which has never appeared before and that is not yet included in the set of known
messages. The new message must in any case be validated by a human expert, who
must associate the message with an adequate alert level.

This paper is structured as follows: in section 2 we present the main characteris-
tics of the data emitted by the data sources associated with an industrial machine
tool, and how they are represented in the system. In section 3 we present the
system. In particular, in section 3.1 we present the model for a machine tool, in
section 3.2 we give an overview of the system, while in section 3.3 and in section 3.4
we present the two main phases of the system: pre-processing, to be performed only
once, and runtime; in section 3.5 and in section 3.6 we present the main algorithms
and their theoretical performances; in section 4 we report a brief summary of the
results of a prototype of the system applied to a simple, but real, case study. The
paper ends in section 5 with some conclusions.

2. Industrial machine tool data

In the following, the term “machine data” defines an information message
emitted by any “data source” associated with a machine tool (for example a sensor),
which concerns an event that occurred during the activity of the machine itself.
Machine data are the log files emitted by the machine itself, but also all data emitted
by external entities such as event sensors, sensors for speed, temperature, accelera-
tion and so on.

In order to reconstruct in detail the “history” of the messages, machine tool data
must be raw and immutable (as opposed to classical structured and aggregated
Relational Databases data). Data is never deleted or updated (except in very rare
cases, for example to comply with regulations), it is only added. The main disad-
vantage of this management is that the stored data tends to become very large.
From this point of view we can talk about big data. To avoid misinterpretation of
the data, they are not stored in a free format, but are “semantically normalized”,
that is, remodeled in a standard format, even if not strictly structured.

Machine tools data are represented through the “fact-based model” (see
Figure 1): a graph where each message corresponds to a single fact. In this graph,
each node corresponds to a machine tool data source entity (e.g. Sensor Y on
machine M) and each arc can represent information about an entity (dashed
connecting line) or a relationship between two entities (continuous line). Each
single message is identified by its timestamp plus the identification of the machine
(M) and the identification of the entity that emits the message (Sensor Y).
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Figure 1.
A simple fact-based model for a standard log file.

Physically, we assume that each source message emitted by a machine tool is in a
semi-structured text format (a sort of simplified JSON): that is, it is a succession of
text fields, divided by a field terminator. This provides simplicity and flexibility
with the greatest possible space savings. It is possible to store anything within the
main dataset, as long as each data has the same information placed in the same
order, with the same data type format; otherwise it will be necessary to carry out a
pre-processing of the source messages before storing them, downloading the data
that do not conform to the expected format in a separate archive.

3. System description
3.1 The model for machine tool

Manufacturing systems organize machine tools, material handling equipment,
inspection equipment, and other manufacturing assets in a variety of layouts. With
the advent of Industry 4.0 technologies, these manufacturing resources can be
networked, and cyber-physical manufacturing systems can be implemented that
integrate hardware and software with mechanical and electrical systems designed
for a specific purpose. The model of Figure 2 shows a representation of the main
components of a generic industrial machine from the point of view of data collec-
tion and is sufficiently general to be applied to many industrial machines that can be
part of process, cellular and line layouts.

The generic machine Mi receives from the network a command message known
as part program. It is a set of detailed step-by-step instructions executed by the
CONTROL system (CNC, PLC) that direct the actions implemented by the actua-
tors. The actuators act as transducers changing a physical quantity, typically electric
current, into another type of physical quantity such as rotational speed of an electric
motor. During the execution of a part program, the machine tool operates and the
CONTROL system produces a log containing data about the executed instructions
as well as control messages that indicate some particular machine state. In the
meantime, execution data captured by the sensors are sent via the communication
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Figure 2.
A simple model for machine tool data collection.

network to the factory control system. Here, the feedback loop is closed, and
feedback actions can eventually be taken.

The generic sensor is represented by its two constituent parts: the transducer
(Ti) and the control electronics (CEi); this distinction is useful because even if the
sensor is a unified whole, the transducer and the control electronics can be placed
into different area of the machine tool. For example, the accelerometer transducer
can be placed on the spindle while its control electronics is usually placed within the
cabinet together with other control subsystems.

3.2 System functionality

The event-based dynamic cyber-physical system proposed here integrates
physical devices with advanced Text Mining analytical technologies and is very
general, therefore adaptable to any production domain. It needs the ontology of the
messages emitted by the data sources of a machine tool during its normal operation
and is able to intercept its (even slightly) anomalous behaviors, which allow to
evaluate whether it is moving towards a failure state such as to require the
activation of safeguard procedures.

The system consists of a design pre-processing phase to create the main message
ontology and which is performed only once for each data source (for example a
sensor), and an algorithmic runtime phase. Each message correspond to an event
of the data source, has the form of a text messages and has associated an adequate
alert level.

3.3 Pre-processing design phase

The pre-processing phase is performed only once for each data source and allows
you to create the initial ontology of the messages. It consists of four main steps.

In the first step of the pre-processing phase, for each data source the set of all
messages that it can emits is identified and normalized. In particular, for each
industrial machine and for each data source associated with that machine, the
possible types of messages that can be issued must be identified; then, these data
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must be interpreted, choosing only the pertinent ones; finally, the data must be
semantically normalized, to adapt it to a common data semantics.

In the next step of the pre-processing phase, the system associates an alert level,
based on a chromatic scale, to each of the messages coming from the previous step.
The levels are as follows:

White Level (no problem).

Yellow Level (warning): There have been sporadic, but not serious, anomalies
and the system is able to continue without problems.

Orange Level (serious): some serious anomalies, or some cluster of anomalies,
have been found in the system, which could affect the future of work.

Red Level (very serious): Very serious anomalies were found in the system,
capable of affecting, in the very near future, the production activity.

Black Level (immediate stop): the system runs the immediate risk of irreparable
equipment or product failures.

In the third step of the pre-processing phase, to be carried out only if there are
several data sources associated with the machine tool, composite messages are
created, obtained by composing the messages with at least an yellow alert level, a
composite message. The order in which messages are juxtaposed is predefined and
must be the same as it will appear at runtime. At this point, a general alert level is
associated with each composite message.

Finally, a digital data structure is built containing all composite messages: a text
dictionary, in which each line contains a composite message and the relative general
alert level.

Steps 1 and 2 must be performed for each of the data source entities associated
with a specific machine tool. Identifying alert levels requires the help of the
machine tool expert, thus steps 2 and 3 need the help of a machine tool expert.

The whole data design process is reported in Figure 3.

3.4 Runtime phase

In the runtime phase, the real data coming from a machine tool are collected and
normalized according to the specifications identified in the pre-processing phase.
Then, all messages with a compatible timestamp are aggregated into a line of text to

E f SEMANTIC ]
Irlri;f;::(ilr Inmpluarmn Choice of ormalization ALERT Level
al < normalization
[ SEFUL data efiniti
s of data of data Definition J

DATA Choice & Normalization (E;) ALERT Def

Sxtracti MAN ]

]"""“?'.'?"0[ Interpretation Choice of B ALERT Level

all Ml;bhA[xL of data USEFUL data normalization Definition
CLASSES of data J

DATA Choice & Normalization (E;) ALERT Def COMPOSITE, DATA
MESSAGE Structure
Extract f : SEMANTIC
FEmnG Interpretation Choice of ALERT Level
all MESSAGE SEFLT normalization .
of data USEFUL data Definition
CLASSES of data
DATA Choice & Normalization () ALERT Def
Figure 3.
Data design process.
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form a single composite message that has the same layout as the composite mes-
sages in the dictionary. The layout of a composite message from a machine tool and
n Data Sources, is as follows:

Machine ID + Timestamp.
+ DS; ID + DS; Message.
+ DS, ID + DS, Message.
+

+ DS, ID + DS,, Message.

The algorithms look up this compound message in the dictionary of all com-
pound messages and extract its global alert level. They identify all occurrences of all
messages in the text, even if they are overlapped (partially or completely).

At this point the system analyzes the alert levels found, their frequency and,
possibly, their relative positioning both in time and in space, and predicts possible
future malfunctions.

The system implements different types of analysis algorithms. The simplest
algorithm catalogs the entire cluster of messages and identifies the warning levels
that appear most frequently. A more sophisticated algorithm analyzes smaller
homogeneous clusters of these composite messages. Another algorithm identifies
the presence of sub-clusters, even small ones, which indicate a possible future
malfunction of the machine.

The software is written in DELPHI (Visual Development Environment), is
highly parameterized (to allow quick modification) and is composed of about 2,000
lines of code structured in 30 operating modules, different methods for managing
the interface and uses a large number of predefined libraries.

3.5 Detailed algorithms description

The system at runtime is fast and accurate in identifying possible anomalous
situations of a machine tool. It consists of a pre-processing step (to be performed
only once, when the program starts) which has the purpose of building the entire
data structure (the dictionary of all messages with their relative alert level) and an
actual processing step.

The system is independent on the dictionary size. It reads the input text,
consisting of one or more messages, one character at a time and scrolls through a
finite automaton; when it encounters a final state (corresponding to the end of a
message), it emits the alert level associated with that message. The number of state
transitions is proportional to the number of characters read in input.

The steps are:

Pre-processing. The system builds the data structure that the algorithms will
use when running. Pre-processing only needs to be done once, at startup. In partic-
ular, the system constructs, in the central memory, a finite state automaton from all
the elements of the dictionary, and its behavior is completely determined by a
(small) set of states and by some simple functions.

Matching. The finite state automaton continuously reads the messages from
the input log file, character by character. When it reaches a final state, the autom-
aton shows the alert level of the message corresponding to this state. The algorithm
is able to identify all occurrences of all messages, even if they were partially or
totally overlapping. Lines with no messages (i.e. with “blank” content) are
ignored.

Analysis. In this step, the system analyzes a set of alert levels identified in the
previous phase. Normally, it analyzes a group of alarms, usually those issued in a
period; then, based on the frequency and “severity” of the alerts extracted, it makes
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a classification of the health of the machine. The system warns if the analysis of the
message cluster indicates a possible future malfunction of the machine tool. The
system can also provide an immediate response if a single alert is very critical.

3.6 Performance analysis of algorithms

The pre-processing step (i.e. the construction of the FA) requires a time linearly
proportional to the sum of the lengths of all the messages present in the dictionary,
i.e. the total number of characters in the dictionary.

The matching algorithm for a set of textual log messages with a total length of &
characters requires # state transitions (# <2k). Therefore, the analysis of a message
takes a linear time with respect to the number of characters, and this is a lower
limit, whatever the algorithm used among those who read the message character by
character, since all characters of the message must be read.

Algorithms with an approach different from the one proposed here, should refer
to the method that considers a whole input message as a single entity. These
methods look for a message in the set of all possible messages (the dictionary).
From the literature [15], we know that no algorithm in that class can use less than
O(logn) steps to look up a single message in a dictionary of # messages.

Therefore, the algorithms used here are independent of the size of the dictio-
nary, which can be as large as we want without worsening the search time, while the
classical algorithms are dependent on the size of the dictionary: the larger it is, the
more time it takes to search for a message within it.

The differences are even greater by admitting the possibility of editing the dictio-
nary. With our approach, the dictionary does not need to be sorted, so adding,
changing, or deleting one or more dictionary entries is done at virtually no computa-
tion cost. On the other hand, with the classical approach, the dictionary must be kept
orderly. Therefore, in case of cancelation, insertion or modification even of a single
entry, the dictionary must be reordered, and this costs at least O(logn) operations,
possibly with physical movement of the entries from one memory area to another.

Another advantage of our approach is of a technical nature: the algorithms are all
executed in central memory, while a classical method largely uses secondary mem-
ories (which are much slower by several orders of magnitude).

In addition, each log message (dictionary entry) is made up of (many) words
and other non-alphabetic symbols and this means that the dictionary size can be
very large and, furthermore, the search algorithms need the messages to be well
delimited and not superimposed, while our approach is able to identify even totally
overlapping or non-delimited messages and present within plain text sentences.

4. A simple case study

We have also implemented a prototype of the cyber-physical system presented
in this paper. In this section we report the results of some preliminary tests we
conducted on some data coming from a machine tool currently operating in an
important company, operating in Southern Italy, which produces metal molds for
other national and international companies.

In particular, we analyzed a log file relating to a period of 194 hours of continu-
ous work of a machine tool, from 4:25 on 13 / Feb / 2019 to 21:34 on 20 / Feb / 2019,
in which it issued approximately 300,000 log messages.

In the preliminary testing phase, we used data from a single data source from a
single machine tool, then we considered simple, not composite messages, because our
initial interest was to verify the feasibility of algorithmic message search in ontology.



Advances in Dynamical Systems Theory, Models, Algorithms and Applications

4.1 Case study data description

A log is the sequential and chronological recording of the operations and events
coming from a specific industrial machine tool. Log messages are stored in text
format in one or more files, one record per line with each line containing only one
message. Generally, these registrations are done in an automated way. Each record
stores everything that happens on the machine, so a log file holds both information
about normal machine operation and about errors and problems or even slight
deviations from the norm.

This section shows the actual data relating to the case study examined, but the
information contained in a log file of a generic machine tool is approximately the
same, regardless of the machine; at most it could slightly change the data format in
each individual field or their mutual position in the log file.

Therefore, the case study presented here is representative of many industrial
machines.

Here, there is an example of the industrial machine log file from the case study.

13/02/2019 04:25:24;MSG_SYS;Scrive;Fine corsa asse.., Y+;

13/02/2019 04:25:26;MSG_SYS;Scrive;E 2034:indice variabile errato in riga PLC..
4239;

13/02/2019 04:25:28;MSG_SYS;Scrive;Fine corsa asse.., Y +;

13/02/2019 04:25:30;MSG_SYS;Scrive;E 2034:indice variabile errato in riga
PLC.. 4239;

The log file has four blocks of useful data and a fifth block that is not useful for
analysis. Each field is separated from the next by the semicolon symbol (;). The
essential information contained in the first four blocks of the first row (the one in
bold) of the example above are:

13/02/2019 04:25:24; Date/time of recording of the event

MSG_SYS; Process PID, i.e. the identification of the running process,
Scrive; The operation done

Fine corsa asse.., Y+; The status or result of the execution of the event

As described in the following section, we have extracted all the different mes-
sages from the 300,000 input lines; therefore we have assigned, with the assistance
of the machine tool technician, an alert level to each single different message.

A single log record stored in the dictionary is a line containing the following
information, separated by an hashtag:

“Machine ID” + Date/Time # Process PID # Oper. Done # Result #
“Warning Level” (1).

Machine ID is a code that allows to identify the single machine. Since the same
message can be emitted several times on the same machine, but never at the same
instant, each message is identified by ID + Date/time. Each message corresponds to
a single fact and, associated with each message, there is the level of warning issued.
By adding the ID of the data source to the message, it is possible to integrate
messages from different data sources that insist on the same machine.

4.2 System prototype run and results

In the preliminary phase, we had to identify the different types of messages
emitted by the machine for which we had the log files. We analyzed 300 log files,
each containing 1000 messages, from 4:25 on feb/13/2019 to 21:34 on feb/20/2019.
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Figure 4.
One week summary of log message analysis.

Of the 300,000 messages (the non-empty ones are actually 299,998), which we
have inserted in a single file, those with different “semantic” content are 1,499. To
achieve this we have eliminated every message that does not have useful informa-
tion and the first 20 characters (date and time) of each remaining line and then we
have identified all the different messages. At the end of this first pre-processing
phase, we have a file that contains all and only 1,499 different messages.

In the next step, with the assistance of the machine tool technician, we assigned
an ALERT level to each of the 1,499 different messages. The alert levels are ordered
according to the increasing level of severity: white, yellow, orange, red and black.

The final document contains the associations between the 1,499 messages and
the related warning level. We report here the screen of the test sent by us on the log
file and the first part of the list of messages encountered with the relative multi-
plicity and alerts: In Figure 4 there is the final report of a week’ analysis of log
messages from a real industrial machine.

During this week there were three times when groups of messages occurred that
required the supervision of experienced personnel, but none of these alarms turned
into a request to stop the machine. Two interventions were due to a red alert and
another due to an anomalous aggregation of orange and yellow alerts in a short
period. At the end of the week, during a planned machine downtime, some adjust-
ments were made, suggested by the presence of some clusters of messages relating
to a slight deviation of the machine performance, compared to the estimated one.

Since the messages can be analyzed in real time, if clusters of “dangerous”
messages occurr during the operation of the machine, the machine experts would
been able to intervene in time to prevent irreparable damage. Note that the message
cluster can also be formed by several messages of mild severity issued, however, in
an anomalous configuration or within very short times.

5. Conclusions

We have presented here an innovative methodology and an associated fast and
efficient software system prototype, for the algorithmic prediction of industrial
machine tools malfunctions, adaptable to any type of company. It integrates
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machinery and physical devices with the analytical technologies of Text Mining and
allows the identification of anomalous behavior of a machine tool, even of minimal
entity, rarely perceived by other strategies.

The system performs its analysis without waiting for the end of the shift or a
machine stop. After recognition, it can initiate automatic safeguard procedures, call
a human expert, or schedule some minor tuning operations. The system works
without waiting for the shift to end or the machine to stop.

The algorithms require linear execution time on the number of input characters,
run on a data structure completely on RAM and are independent on the data
structure size, which can be modified without actual computational costs, as it is not
sorted. A classic approach, on the other hand, requires searching for a message in a
set of possible messages using efficient algorithms, which work largely on second-
ary memories and depend on the size of the data structure that need to be, neces-
sary, sorted, and therefore it takes time, not irrelevant, to add, modify or delete an
entry in it, possibly by physically moving items from one memory area to another.

Last, but not least, is the fact that a classic approach is inadequate because a log
message is made up of many words and others non-alphabetic symbols and the data
structure size could be very large.

We believe that this approach can bring significant competitive advantages to a
company in which the effective and precise predictive analysis of machine tools
is a necessity to be pursued by spending as little time as possible, obtaining as
precise a result as possible, limiting false recognition errors, as much as possible.
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Chapter 2

Vibrations of an Elastic Beam
Subjected by Two Kinds of
Moving Loads and Positioned on a
Foundation having Fractional
Order Viscoelastic Physical
Properties

Lionel Merveil Anague Tabejieu,
Blaise Roméo Nana Nbendjo and Giovanni Filatrella

Abstract

The present chapter investigates both the effects of moving loads and of sto-
chastic wind on the steady-state vibration of a first mode Rayleigh elastic beam. The
beam is assumed to lay on foundations (bearings) that are characterized by
fractional-order viscoelastic material. The viscoelastic property of the foundation is
modeled using the constitutive equation of Kelvin-Voigt type, which contain frac-
tional derivatives of real order. Based to the stochastic averaging method, an ana-
lytical explanation on the effects of the viscoelastic physical properties and number
of the bearings, additive and parametric wind turbulence on the beam oscillations is
provided. In particular, it is found that as the number of bearings increase, the
resonant amplitude of the beam decreases and shifts towards larger frequency
values. The results also indicate that as the order of the fractional derivative
increases, the amplitude response decreases. We are also demonstrated that a mod-
erate increase of the additive and parametric wind turbulence contributes to
decrease the chance for the beam to reach the resonance. The remarkable agree-
ment between the analytical and numerical results is also presented in this chapter.

Keywords: elastic structure, moving loads, viscoelastic bearings, fractional-order,
stochastic averaging method, Fokker-Planck-Kolmogorov equation

1. Introduction

There is a large amount of vehicles passing through in-service bridges every day,
while sizable wind blows on the bridge decks. Vibrations caused by the service loads
is of great theoretical and practical significance in civil engineering. In this chapter,
it follows a list, by no means exhaustive, of research related to this kind engineer
problem. To start with, Xu et al. [1] have explored the basic dynamics interaction
between suspension bridges and the combined effects of intense wind and a single
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moving train; however, the interaction between the wind and the train dynamics
has been altogether neglected. In this limit the suspension bridge response is dom-
inated by wind force. The coupled dynamic analysis of vehicle and cable-stayed
bridge system under turbulent wind has also been recently conducted by Xu and
Guo [2] under the other limit of low wind speed. In the same view, the both effects
of turbulent wind and moving loads on the brigde response are investigated
numerically by Chen and Wu [3]. Another interesting results related to the problem
of the dynamics of bridges subjected to the combined dynamic loads of vehicles and
wind are presented in Refs. [4-6]. To summarize: from the standpoint of bridge
engineering the disturbances, either due to wind (in low or high speed limits),
passage of heavy loads (single massive trains or disordered aggregates of smaller
freight carriers, result in a complex interaction with the bridge vibrations. How-
ever, the elastic properties of the bridges are enhanced by the insertion of bearings
(the part ranging between the bridge deck and the piers) as a possible protection
against severe earthquakes. For if one wants the bearings to protect the bridge, they
should isolate the structure from ground vibrations and/or transfer the load to the
foundation [7]. Noticed that the bearings can be constituted by some elastic or
viscoelastic material. In the literature, the dynamics analysis of bridges with elastic
bearings to moving loads has received limited attention. nevertheless, some authors
like Yang et al. [8], Zhu and Law [9], Naguleswaran [10] and Abu Hilal and Zibdeh
[11] have adressed a very interesting resultats about this subjet. There are investi-
gated the pros, and the cons, of the elastic bearings.

The bearings can also be constituted by some viscoelastic materials (such as
elastomer) [12]. Therefore, The viscoelastic property of the materials may be
modelled by using the constitutive equation of Kelvin-Voigt type, which contain
fractional derivatives of real order. In this Chapter we aim to investigate first the
pros, and the cons, of the viscoelastic bearings and second the turbulence effect of
the wind actions on the response of beam. To accomplish our goal some methods
(analytical [13-15] and numerical [13-16]) are used.

2. Structural system model
2.1 Mathematical modelling

In this chapter, a simply supported Rayleigh beam [17, 18] of finite length L with
geometric nonlinearities [19, 20], subjected by two kinds of moving loads (wind and
train actions) and positioned on a foundation having fractional order viscoelastic
physical properties is considered as structural system model and presented in Figure 1.

As demonstrated in (Appendix A) and in Refs. [16, 19, 21], the governing
equation for small deformation of the beam-foundation system is given by:

*w(x,t)
S EI )
+ o2 o w2l H

dw(x,t) 3 0 |Pw(x,t) (ow(x,t)\’ Ia“w(x,t) ow(x,1t)
ot ox*t 2 ox? ( ) a

L

ESFw(x,t) [ (aw(x,t)\* " L]
2L ox? J( o > dx+;(k] +¢;Dy )w(x,t)5[x—NP+1} = Fa(x,t)+

1)
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Wind load ! d_y

..............
1iiidi

Fixed Supponts

Fixed base

Figure 1.
Sketch of a beam-foundation system subjected to wind actions and series of moving forces.

In which pS, EI, pI, u, w(x,t), are the beam mass per unit length, the flexural
rigidity of the beam, the transverse Rayleigh beam coefficient, the damping coeffi-
cient and the transverse displacement of the beam at point x and time ¢, respec-
tively. In Eq. (1), pS Pwixt)

or
4
pI? a';z(;’f) is the rotary inertia force of the beam per unit length,

represents the inertia term of the beam per unit length,
ow(x,t)
o

is the
damping force of the beam per unit length, Zl}lil (kj +c;D w(x,t)8 [x - #LH} is

d*w(x,t)
ox*

the foundation-beam interaction force (per unit length of the beam’s axis), EI

2
and 3 EI (gc—zz {M (%) ] are the linear and the nonlinear term of the rigidity of

ox?

the beam essentially due to Euler Law. The nonlinear term is obtained by using the
Taylor expansion of the exact formulation of the curvature up to the second order

ox?

L 2
[19, 22, 23]. %MI (W) dx is the inplane tension of the beam [19, 20]. The
0

terms on the right-hand side of Eq. (1) are used to describe the wind an train actions
over the beam. In particular, the first term F,4(x,t) is the aerodynamic force given
after some derivations by [24-26]:

1
Faa(,t) =5 pbU* | Ao + 5 — 7\ )

Arow(xt) | A <aw(x, t)ﬂ,

where p, is the air mass density, b is the beam width, A; (j = 0, 1, 2) are the
aerodynamic coefficients (Ao = 0.0297, A; = 0.9298, A, = -0.2400) [24]. U is the
wind velocity which can be decomposed as U = # + u(z), where % is a constant
(average) part representing the steady component and u(t) is a time varying part
representing the turbulence. It is assumed in this work that (> u(t)).

According to Figure 1, the boundary conditions of the beam are considered
as [27]

w(0,t)  *w(L,t)
w(0,1) =w(L,t) = 05 — = =—==0. (3)

The next section deals with the reduction of the main equation Eq. (1).
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2.2 Reduced model equation

According to the Galerkin’s method [27, 28] and by taking into account the
boundary conditions of the beam, the solution of the partial differential Eq. (1) is
given by:

- i q,(t) sin (?) (4)
n=1

where g, (t) are the amplitudes of vibration and sin (nzx /L) are modal functions
solutions of the beam linear natural equation with the associated boundary condi-
tions. It is convenient to adopt the following dimensionless variables:

In

u
anl;fzwot,§=;, (5)

r (4

the single one-dimensional modal equation with y, = y(z) is given as:

Np :
#(©) + @A+ 00)(2) +£(2) + (@) + 1D (kj + ¢jog/ D )y (2) sin’? (N]ﬂ )
j=1

b+ 1
dw
= 97%(7) + 9o + (60 + 017(2))E(7) + [ Zelsmﬂ[r—zTo]
(6)
With
S L T
T Loy 1O T LEY T BV 2\L) P
o P’ 2phATLY dpbLPAd,
RN P 3p[Ls + 1)
8 — 2Up,bL*U A pbLALU, ul? .
EIlrﬂ,’6 /EIp L28+I”2 72 /EIp[LZS+I7t2]
(7)
And
2 EI L
w0 =\ [ I, == (8)

L\ p(L?S +1z?)

According to Refs.[29, 30], Eq. (6) becomes:

Np 7T
) + (2 + 90i(2) +2(0) + B () + 1 ;(kj +cjwy' DY )y () sin? (NZ - 1)

= 9:7°(7) 4+ 80 + (B0 + 017 (7))E(7) + Foy sin (Qr) — Gop cos (Q).
9
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Where
2sin 7 sin (N — 1)7o) . . dn
F == P 1 N ) = 37>
o o1+ 1 — cos (27) cos (N7o) |, 7o 2L
(10)
2Py sin7g sin (N — 1)7
Goy — 20 sin 7 sin (( )70) sin (N7o).

1 — cos(27)

3. Analytical explanation of the model
3.1 Effective analytical solution of the problem

In order to directly evaluate the response of the beam, the stochastic averaging
method [13-15] is first applied to Eq. (6), then the following change in variables is
introduced:

x(7) =a¢ +a(r)cosy, y(r) =—Qa(zr)siny, y=Qr+ ¢(7), (11)
Substituting Eq. (11) into Eq. (9) we obtain:

acosy —a@siny =0
(12)

- . 1
asiny —agcosy = — o [Mi(a,y) + Ma(a, y)].

where

1
Mj(a,y) = Fon sin (w — @) — Gon cos (y — @) + (24 + 91)aQ sinya — Zﬂa3 cos 3y

a2

cosy + > [8292 - 3ﬂao} cos 2y,

N, +1

i jm 3
1+nijsin2( >+3ﬁaé+zﬂa2—92
=

N, ,
M, (a,y) = — ci0Ysin?( -2~ )D?i acosy) + (0 — 0:Qa sin 7).
o) = <Y e sin? (75 )0 acosy) 00— osusinyety

(13)

According to Eq. (13) The derivatives of the generalized amplitude 2 and phase
¢ could be solved as:

i = =2 My(a, ) + My (a, )] siny

. (14)
ad = — & IMs(a,) + Mala, ) cosy
ay satisfies the following non-linear equation:
3 3.2 .- o 7 10622
pay + |1+ pa +n;kjsm (NPH)]%:&O—E&ZQ@. (15)

Then, one could apply the stochastic averaging method [13-15] to Eq. (15) in
time interval [0, T].
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T

. 11 _

=~ Jim 1| & Ma(a,y) + Mala, )] simyedy
0

(16)

T
1
ag = —lim = J [Mi(a,y) + Ma(a, )] cosydy
0

According to this method, one could select the time terminal T as T = 27/Q in
the case of periodic function (M1(a,y) ), or T = oo in the case of aperiodic one
(M3(a,y) ). Accordingly, one could obtain the following pair of first order
differential equations for the amplitude 4(z) and the phase ¢(z):

—(24—8)

N, .
X : . . a
na ]5:1 cjw‘olQaJ—l sln2<N]7:_ 1) sm( > ) +E[G0N sin ¢ — Foy cos ¢]

1
2 b4

N

2

o 5(0) [ 505:(0) +

P 92 2
2Q0%

ﬂ61a

[356(2Q) + 25:(0)] + [Se(2Q) +25:(0)] &1(7),
(17)

and

N

. a 3 L Air a;w . T

ap =55 14 3pag — Q° +Zﬂﬂ2 +ﬂZ(kj + ¢cjwy’ QY cos (#)) sm2<N]+ 1)
=1 2

7[02 2

S¢(2Q) &5(7).

(18)

1 07 6
+ﬁ [Gon cos @ + Foy sin ] — ”4161 ¥:(2Q2) + \/ 9.5:(Q) +

Here S;(Q2) and ¥:(Q) are the cosine and sine power spectral density function,
respectively [31]:

+oo +oo 0
S:(2) = J R({) cos (Q2r)dl =2 J R({) cos (Q2r)dl =2 J R(¢) cos (27)d¢,
oo 0 —oo0
+oo 0
¥:(2)=2 J R(¢) sin (QR7)dl = -2 J R(¢) sin (Q2r)d¢,
0 —o0
| R@)sin (@n)dc = 05 R() = Bletwete+ o).

(19)
In this work, £(z) is assumed to be an harmonic function with constant ampli-

tude o; and random phases y;B;(7) + 6;. So, according to Refs. [31-33] the following
model of &(7) has been chosen:

= Z oj cos [w;T + y,Bi(7) + 6i], (20)

i=1
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this model of the turbulent component of the wind £(7) amounts to a bounded or
cosine-Wiener noise, whose spectral density is given by:

:i oy} (0? + w? +7}/4)

. (21)
i—1 41 [ - w? _71/4) —&—yiwz}
The next sections of this chapter will presents the analytical developments that
we have made in order to express the beam response as a function of the system
parameters. Then, let’s start with the case where the beam is subjected to the
moving loads only.

3.2 Analytical estimate of the beam response under moving loads only

We first consider system (1) with only deterministic moving loads
(Faa(x,t) = 0) neglecting wind effects on the beam. If §; = 6y = 6; = 0, Egs. (15)
and (16) become:

N
. 1 L Aj ~ai—1 22 jﬂ ”a]
a:—la—iﬂa;cja)onf !sin (Nerl sm( 5 )
1 .
+ 50 [Gon sing — Foy cos ¢], (22)

and

ap =

N, .

2 1_2 2 3,2 N @ AN . 2f %

oo 1-Q +3ﬁa0+4ﬁa +n;(k]+c]w091cos( 5 ))sm N, +1
+ L Gowcosp + Foysing
20 oN COS @ ON SIN@|.

(23)

By substitutinga = A,¢p = ® and @ = 0, ¢ = 0 in Egs. (22) and (23), algebraic

manipulations give for the steady-state vibrations of the system response A the
following non-linear equation:

9 3
Bﬂ2A6 - §ﬂ®1(aj)A4 + [@%(a]-) Jr@%(aj)]A F%JN + GON’ (24)
with
@(4—2__ 2_NPA a0 aj . of Jm
1(aj) = Q% —1—3pa; nZ(k]+c]wOQ cos (=) ) sin*{ =7 )
=1 j2
(25)

a jﬂ
0, (aj) —29/1—1-?7;6] Wy Q fsm( 2]) sz(Np+1)'

The stability of the steady-state vibration of the system response is investigated
by using the method of Andronov and Witt [34] associated to the Routh-Hurwitz
criterion [35]. Thus, the steady-state response is asymptotically stable if Eq. (26) is
satisfied and unstable if Eq. (27) is satisfied:
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(%)2 TS g,qz _or (aj)} . EAZ ~61(a))

<@22(§‘;’1)>2 TS BﬂAz _e, (aj)] . BﬂAZ —01(a))

The trivial solution of Eq. (15) isao = 0.
What about the case where the beam is subjected to the stochastic wind loads?

>0, (26)

<0. 27)

3.3 Approximate solution of the beam response subjected to wind loads only

In this case (F,4(x,t) # 0) and Foy = Goy = 0, Egs. (22) and (23) become:

N
1 L Aj a1 jﬂ . (T ta
-7 ]§:1 ¢jwy' QY sin? (Np n 1) sin ( 3 ) 1 [35£(2Q) +2S:(0)] pd

767 76?2 ﬂez 2
2o Sz + [T S:(@) +

NI R
N

da = {—(2,1 —9)

+

[Se(2Q) + 25:(0)]dW1(7),

and

]1 N, +1

dp = 2;{1+3ﬂﬂo Qz—i— ﬂa +nZ(k +c]w0]Q“Jcos(i))sin2( j )}dr

02 6% 9
. R Q)de + ﬁ) 0 5:(@) +° sg(zg) AW, (2).

(29)

Here W4(r) and W(7) are independent normalized Weiner processes. In order to
evaluate the effects of wind parameters on the system response, we derive an evolu-
tion equation for the Probability Density Function (PDF) of the variable amplitude
a(7). The Fokker-Planck equation corresponding to the Langevin (Eq. (28)) reads:

oP(a, 1) 0 a 1 & € a1 jm L oaim 762
% = {((2& - 191)5 —5mna ;cjcuo Q% 151n2<Np " 1> sin (%) + 292‘;5‘5(9) P(a,t)
d [n62a 1 (26} 02a? 3*P(a,
-2 {” (29) + 235(0)]1)(61,1)} +5 <%s¢(g) + [ 29) + zsf(o)o 0(012 i3
(30)
In the stationary case, % = 0, the solution of Eq. (30) is:
Py(a) = Na(T'o +a*r;) "¢, (31)
where
ﬂé% b7 -2
Fo =" s5,(2), 1y = "[s.(20) +25:(0)], Q = ,

2I

1 o j . (map\  mh?
Fz 2 2/1 191 ——?’]ZC] Q%™ sm (Np+1> ln( > ) +—[3S§( )+285(0)]

(32)
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Above N is a normalization constant that guarantees [ P(a)da = 1.
0

What about the case where the beam is subjected to the both moving vehicles
and stochastic wind loads?

3.4 Approximate solution of the beam responses subjected
to the both moving loads

Finally, the case where the beam is subjected to the series of lumped loads and
the wind actions is investigated. For the analytical purposes, we assume that the
beam is linear and it is submitted to only the additive effects of the wind loads.
Thus, Egs. (22) and (23) become:

4= [_(2/1 —9) % - %W ZNp:lcngfQ"i—l sin? (#) sin (fl]Tﬂ) + %} dr
> (33)
+ % [Gow sin ¢ — Fon cos gldz + /TodWi(z)
and
1 , Ny @ g AN Y AL
dp = o 1-0 +'1]z:1(kj +cjwy’ Q" cos (T)) sin (Np T 1) dr o)

1
—I-E[GON cos@ + Fon Sll’l(p dT+ va i) sz

The averaged Fokker-Planck-Kolmogorov equation associated with the previous
It6 Egs. (33) and (34) is

oP(a, b, 0 0 1 ¢
D) 2 @ lar) — 3 @Pla 7)) + 5 (BraPlas )
1 0
25¢2 (b22P(a, $, 7)), (35)

where

a1 & jr
711:—(2/1—191)5 iiyﬂZCa)l_Qa; sln2<m>sm<i)+—[G0Nsm¢ Fon cos @] +

_ " . jr 1 .
=55 1— .Qz—i-nZ(k +cjwy Q2 /cos< é >>s1n2<m) +;[GONCOS(/§+FONSIH(/)]
by =T

— Iy

bzzfa—2

(36)

Applying the solution procedure proposed by Huang et al. [36], one obtains the
following exact stationary solution

I-'/
Ps(a, gb) = N/ﬂ exp {I}ﬂz — L [(dOGON +FONFO) COS¢ + (doF()N — GONF()) sin ¢]}
0

Q(r3 +dj)
(37)
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where N’ is a normalization constant and
& T a;n Iy’
jQ”fflsinz sin (L),d — 93
2 ; N, +1 2 )% r

r :i 1—Qz+n§é(k —|—ca)’.(2"1cos( ]ﬂ))sinz j
T 20 = 7o 2 N, +1

| =

ry=—5( Loa—ay -

(38)

4. Numerical analysis of the model

All the parameters concerning the chosen models of beam, of foundation and of
the aerodynamic force are presented in Ref. [21]. Theses parameters clearly help to
calculated the dimensionless coefficients defined in Eq. (7). It is well know that the
validation of the results obtained through analytical investigation is guarantee by
the perfect match with the results obtained through numerical simulations. thus,
The numerical scheme used in this chapter is based on the Grunwald-Letnikov
definition of the fractional order derivative Eq. (39). [37-40] and the Newton-
Leipnik algorithm [37, 38]

D i (o) o7 S Gt (e 1), 39)
=0

where & is the integration step and the coefficients Cj satisfy the following
recursive relations:

Ci=1, C'= <1 - 1?—0’) a (40)
Now we display in some figures the effects of the main parameters of the

proposed model. For example, Figure 2(a) shows the effect of the number of the

bearings on the amplitude of vibration of the beam. This graph also shows a

0.8

b 3

08 () w&ono N =Nobemrings

o
[}
-]
‘\i }p = bearings
0.6 ‘

04 0 3

10
Figure 2.

Effects of the number of the bearings N, (a) and number of moving loads N, (b) on the amplitude response of
the beam when driving frequency Q: Analytical curves (-), numerical curves (o). All The parameters are given

in[21].
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comparison between the results from the mathematical analysis (curve with dotted
line) and the results obtained from numerical simulation of Eq. (9) using Eq. (39).
The match between the results shows a good level of precision of the approximation
made in obtaining Eq. (24). This figure also reveals that the vibration amplitude of
the beam decreases and the resonance frequency of the system increases as the
number of bearings increases. Figure 2(b), shows the effect of loads number on the
beam response. It is observed that as the value of N,, increases, the amplitude of
vibration at the resonant state merely increases.

Looking at the effects of the order of the fractional derivative a on the amplitude
of the beam, we obtain the graph of Figure 3. Small value of « leads to large value of
the maximum vibration amplitude. It is also clearly shown that the system is more
stable for the highest order of the derivative. The multivalued solution appears for
small order and disappears progressively as the order increases. The resonance (a
peak of the amplitude) appears as the parameter k;, increases, see Figure 3(a)-(d).
The good match between the analytical and the numerical results gives a validation
of the approximations made.

Also, the stochastic analysis has allowed to estimate the probabilistic distribution
as a consequence of the wind random effects. The beam response, and more specif-
ically the stationary probability density function Ps(a) of its amplitude 4, can also be
retrieved (Figures 4 and 5). This type of analysis indicates that as the additive wind
turbulence parameter increases, the peak value of the probability density function

SO ' ' ke solati
=001 « & 000 Stable solution
1
Unstable solution

0.8 [
A

0.6 o

0.4

0'20 0.5 1 1.5 2 23 0.5 1 15 2 25

"a kﬂ
08 0.6
(d)
=095
0.3

0.6

A A0.4

0.4

0.3
0.2 0% 0.5 1 1 2 25
“0 05 1 15 2 23 = 18 S
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Figure 3.
Effect of the fractional order on the amplitude of the beam A when the dimensionless stiffness k., varying:
Analytical curves (-), numerical curve (o). All The parameters are given in [21].
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Figure 4.
Stationary probability distribution function as function of the amplitude for different values of the additive
wind turbulence parameter. Analytical curves (-), numerical curve (o). All The parameters ave given in [21].

decreases and progressively shifts toward larger amplitude values, while the aver-
age center position stays in the same position. Thus, the additive (6, ) and para-
metric (01 ) wind turbulence decreases the chance for the beam to quickly reach the
amplitude resonance. It is also demonstrated that the PDF has only one maximum
situated in the vicinity of a,, = 0.2.

We have plotted curves Figure 6(a) and (b) that presents the stationary prob-
ability distribution function Ps(a, ¢) versus the amplitude a and the phase ¢. This
graph just confirm the results obtained in Figures 4 and 5 and the highest value of
the PDF is more visible.

Figure 7 presents the times histories of the maximum vibration of the beam. The
case where the beam is subjected to moving loads (), to wind actions () and to the
both wind and loads (¢).

5. Conclusions

In this Chapter we have revised some aspects of the response of viscoelastic
foundation of bridges to a simplified model of moving loads and wind random
perturbations. The results have been compared to the numerical solution for the
modal equation, obtained with the deterministic and stochastic version of Newton-
Leipnik algorithm. The analysis has begun modeling the steady-state vibration of
the beam suspensions made of a fractional-order viscoelastic material. The resulting
mathematical model consists of a component for the beam, and the Kelvin-Voigt
foundation type containing fractional derivative of real order, as well as a stochastic
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Figure 5.
Stationary probability distribution function as function of the amplitude for different values of the parametric
wind turbulence parameter. Analytical curves (-), numerical curve (o). All The parameters ave given in [21].
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Figure 6.
Stationary probability distribution function versus the amplitude a and the phase ¢ for (a) 0, = 0.09 and
(b) 0, = o.2. All The parameters are given in [21].

term to account for wind pressure. We have highlighted the simplifications. Per-
haps the most significant, in the very model formulation, has been the assumption
that the load passage consists of concentrated masses, spatially periodic and moving
at constant speed. This simplification is crucial to reduce the full partial differential
equation to a single smode model — Wind load is modeled as the aerodynamic force
related to the wind that blows orthogonally to the beam axis with random velocity.
The whole system has then been modeled with a partial differential equation that
can be reduced to a one-dimensional modal equation. The beam response under
moving and/or stochastic wind loads has been estimated analytically assuming that
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Figure 7.
Vibration amplitude of the beam y(t) as function of the time t. All The pavameters are given in [21].

the first mode contains the essential information, and using the stochastic averaging
method. The analysis has therefore some limitations, namely the limited values of
parameters that have been explored, and to have retained the first mode only in the
Galerkin’s method. Also, the vehicles’ train has been (over?) simplified as a simple
periodic drive. With this limitations in mind, let us summarize the main findings.
To start with, in this framework it is possible to investigate how the main parame-
ters of the moving loads and of the bearings affect the beam response, and espe-
cially how the driving frequency, the loads number, the stiffness coefficient,
fractional-order of the viscosity term and the number of bearings affect the
dynamic behaviour of the beam. The resonance phenomenon and the stability in the
beam system strongly depends on the stiffness and fractional-order of the deriva-
tive term of the viscous properties of the bearings. There are a number of quantita-
tive results that are worth mentioning. Firstly, as the number of moving loads
increases, the resonant amplitude of the beam increases as well. Secondly, it has
been established that as the number of bearings increases, the resonant amplitude
decreases and, more importantly, shifts toward larger frequency values. Thirdly,
the system response becomes more stable as the order of the derivative increases,
for the multivalued solution only appears for the smallest order and quickly disap-
pears as the order increases. All the above results are a consequence of the analysis
of the oscillations. However, the stochastic analysis has allowed to estimate the
probabilistic distribution as a consequence of the wind random effects. The beam
response, and more specifically the stationary probability density function of its
amplitude, can also be retrieved. This type of analysis indicates that as the additive
wind turbulence parameter increases, the peak value of the probability density
function decreases and progressively shifts toward larger amplitude values, while
the average center position stays in the same position. Thus, the additive and
parametric wind turbulence decreases the chance for the beam to quickly reach the
amplitude resonance.

Numerical simulations have confirmed these predictions. This behavior is
depicted in Figures 2-5, which have practical implications, on which we would like
to comment. To make an example, the beam system frequency £ displays the
bridge response as the vehicles speed changes, see Eq. (7). In principle it could be
possible to avoid large oscillations by controlling the speed of the freight vehicles,
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albeit in practice it is more realistic to set a maximum speed at which the bridge
should be crossed. In other words, to keep resonance at bay, it is necessary to set a
speed limit below the resonance insurgence. Analogously, one could think to limit
the vehicles number, not to have a minimum number of vehicles across the bridge.
We conclude the parameters analysis, namely the stiffness and the viscoelastic
properties of the foundations, noticing that such parameters can be optimized with
an appropriated tuning, see e.g., Figure 3, or the analogous indications that stems
from the results of Figures 4 and 5 for the wind features 6, and 6;.

By way of conclusion, let us summarize that the special properties of the visco-
elastic foundations and of the time dependent perturbations, vehicles and wind,
interact. As a result also the construction and management parameters are not to be
considered independent procedures, for they are deeply interwoven if safe trans-
portation is to be guaranteed.
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Appendix A

To deal with the modelling, let us consider the dynamic equilibrium of a beam
element of length dx; w = w(x,t) and 0 = 6(x,t) be the transversal displacement
and the angle of rotation of the beam element respectively. We denote the internal
bending moment by M, the internal shear force by V, the inplane tension due to the
inplane strain, issue of the assumed negligible longitudinal displacement of the
beam by T, the foundation-beam interaction force (per unit length of the beam’s
axis) by Qy(x,t) and the external distributed loading by F,;(x,t) and f (x, t).

Setting the vertical forces on the element equal to the mass times acceleration
gives:

oV *w(x,t)
&ZQF(.X‘,I:) —f(x,t) —Fad(x,t)—FpST (41)
While summing moments produces:
oM %0(x,t) . ow(x,t)
—=V—-pl -T 42
ox P ox (42)
For small rotation 6(x, )~ méz’t), Eq. (42) becomes:
oM Pw(x,t) ow(x,t)
el 7S | -T 4
ox P o ox ox (43)
Combining Eq. (41) and Eq. (43) then yields:
*M *w(x,t) o*w(x,t) *w(x,t)
i - —F —pl T
E) Qp(x,1) f(x’ £) ad (%,1) + pS o2 P o202 o2

(44)
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From the geometry of the deformation, and using Hooke’s law o, = Ee¢,, one can
show that (see reference [19]):

*w(x,t)

~— EI 04“;?” s [azw(x’t) (aw(x’t))z- + o<<@)2>

0x? ox

(45)

where the Taylor expansion of the inverse of the radius of curvature (%) up to
the second order is carried out. According to the assumed negligible longitudinal
displacement of the beam, the tension in the beam T can be determined as (see the
details of their derivation in Ref.[19]).

L

_ES [ (ow(x,1)\°
=2 j (dx) d (46)
0

Finally taking into account the dissipation (u mg,r))’ putting Eq. (44), Eq. (45)

and Eq. (46) together gives the new desired result (Eq. (1) of the manuscript)

S - 2
p tH Ox? 0x

2 4 4 2 [ 2
o°w(x,t) pIa w(x, 1) +EIa w(x,t)  ow(x,t) 3 I 0" |0°w(x,t) (ow(x,t)
or? dx20t? ox* ot 2 ox?

L
ISP [ (P0) x4 ts) = Fateot) 450
’ (47)
where:
N-1
f(x,t)=P Ze,vé[x —x;(t — ;)]
i=0
Qste) = 30 oD wtenals - ]
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Chapter 3

Chaotic Dynamics and Complexity
in Real and Physical Systems

Mprinal Kanti Das and Lal Mohan Saha

Abstract

Emergence of chaos and complex behavior in real and physical systems has been
discussed within the framework of nonlinear dynamical systems. The problems
investigated include complexity of Child’s swing dynamics , chaotic neuronal
dynamics (FHN model), complex Food-web dynamics, Financial model (involving
interest rate, investment demand and price index) etc. Proper numerical simula-
tions have been carried out to unravel the complex dynamics of these systems and
significant results obtained are displayed through tables and various plots like
bifurcations, attractors, Lyapunov exponents, topological entropies, correlation
dimensions, recurrence plots etc. The significance of artificial neural network
(ANN) framework for time series generation of some dynamical system is
suggested.

Keywords: chaos, Poincaré map, bifurcation, Lyapunov exponents, topological
entropy, correlation dimension, permutation entropy, neural network

1. Introduction

In this chapter, we investigate the dynamical complexity of several real physical
systems. We present our analysis of various problems considered here and present
results graphically based on actual numerical simulation for various system. We
revisit the analysis of complexity of nonlinear pendulum dynamics and its applica-
tion to unravel the complex oscillations observed in a swing pumped by a child. For
the analysis, we use various tools e.g., phase plot, bifurcation diagram, Poincare
surface of section and maps, Lyapunov exponent (LCE) etc., of theory of nonlinear
dynamical system. Next we consider the problem of prey-predator system with
Allee effect and introduce correlation dimension and topological entropy to charac-
terize the fractal structure and the associated complexity in its dynamics. Further,
beside the normal analysis used to understand the complex neuronal dynamics, say
using Fitzhug-Nagumo model (FHN), recurrence plots (RPs) have been used along
with the phase plot analysis and bifurcation diagram to picturise the transition of
spike occurrence from periodic to quasi-periodic and chaotic oscillations in the
presence of external periodic stimulation. Significance of multi-scale permutation
entropy analysis to characterize nonlinear dynamical complexity of real system is
also suggested while analyzing a financial system involving interest rate, investment
demand and interest rates. Finally, we describe the utility of time series generation
of dynamical variables of chaotic system, such as Lorentz system, using artificial
neural network.
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2. Pendulum motion and dynamics behind a swing
2.1 Pendulum motion

Motion of nonlinear driven pendulum with friction are widely discussed through
numerous literature in Physics and applied Mathematics, (e.g. here, [1-3]). The
nonlinear analysis of driven nonlinear pendulum provides a basis for understanding
the complexity of various nonlinear dynamical systems. Regular and chaotic
motions are observed in such pendulums depending on the numerical values
assigned to the parameters associated in their equations of motion. A swing
dynamics is very similar to that of nonlinear driven pendulum, [4-7]. In the present
text regular and chaotic motion of a pendulum and that of the child’s swing is
discussed mathematically. Numerical results are presented in various forms of
graphics. The equation of motion of a driven pendulum having angular displace-
ment, 0, from vertical with linear damping expressed as

2
j—f-kk%—f—a%sinG:Fcos(a)t) 1)
t

where F and w are respectively the amplitude and frequency of the driving force
and k is the damping coefficient and wg = \/‘% is the natural frequency for free

small-amplitude oscillations. Here g refers to acceleration due to gravity and L the
length of the pendulum. Often it is convenient to express frequency in units of g
by setting wg — 1 and rescaling the time unit accordingly. The periodic force
F cos wt is active and influence the motion of the pendulum.

The Eq. (1) can easily be replaced by equation

d*0 a0
2 + Zﬁﬁ + @} sin @ = fw} cos (wt) (2)
Here k =24, p = L, i.e., ratio of damping coefficient per unit mass m, w% = ‘% and
f = £. One obtains a bifurcation diagram for Eq. (2), shown in Figure 1. Bifurca-
0

tion scenario indicates a period doubling phenomena followed by chaos. This
implies the pendulum oscillations may be regular or chaotic depending on the
magnitudes of external forcing.

System (1) or (2) are very common structure with very few degrees of freedom.
The simple forced pendulum is periodic in @ when the driving force applied is

Figure 1.
Bifurcation scenario of damped and driven pendulum for values p = 0.75, w = 21, w, = 37w and
1.06 <f <1.09.
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smaller than a certain threshold f - and chaotic when the force f is greater than this
threshold. An interesting case would also be when the driving force becomes com-
parable to the weight.

Keeping fixed values for k = 0.125, wo =1, @ = 2/3 and then varying forcing
amplitude F, following regular (periodic) and chaotic motion of the pendulum is
observed:

Case (a): for a value F = 0.2, a time-series plot, phase plot, surface of section and
Poincaré map, are drawn as shown in Figure 2.

Case (b): for a value F = 0.8, corresponding figures of case (a) are obtained as a
time-series plot, phase plot, surface of section and Poincaré map, are drawn as
shown in Figure 3.

The plots shown in Figure 3 indicate at a value F = 0.8 the pendulum oscillation
is chaotic and this leads to unpredictability. Pendulum may be whirling irregularly
or overturn or show very irregular oscillations.

As an application of the foregoing analysis, in the following section, we extend
the formalism to discuss the problem of swing oscillation where the length of the
pendulum varies periodically.

2.2 Problem of Swing oscillation

Oscillations of a swing pumped by a child is very familiar to us. Every time the
swing passes through its lowest point the child pumps it over and again. The
dynamics of weightless rod with a point mass sliding along the length mimics like a
pendulum swing whose length varies periodically with time. The motion of the
swing governed by the dynamical system written as [5]:

d ,d6 ,do
— \ml*—| +yl*— +mglsind = 0 3
ac|™ a| T ™ 3)
0.8
X1
. O4F
& o2 &
3 &
';& 00F %
= -02f >
z
-04F
-06F
lO\C IZI{- l-;C léﬁ 15‘5 200 L I i
=06 =04 =02 00 02 04 06 08
TIME

DISPLACEMENT

Poincare Map

i
10 -0.214 -0.212 -0.210 -0.208 —0.208

Figure 2.
Time-series plot, phase plot, surface of section and Poincaré map for periodic motion for F = o.2.
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Figure 3.
Time-series plot, phase plot, surface of section and Poincaré map for periodic motion for F = 0.8.

where m is the mass, [ is the length, 0 is the angle made by the swing from the
vertical position and g is the acceleration due to gravity. As the length of the swing
varies periodically with time, one assumes

I=1o+ap(Qt) (4)

where [ is the mean length of the swing and is constant, 2 and Q are, respec-
tively, the amplitude and frequency of excitation. The function ¢(€¢) should be a
periodic function of time. Then, by introducing the following dimensionless
parameters and variables

Q
r=Qr, 5:1, Qo = é, w="2 ﬂ:L’
lo lo

equation of motion of the swing in dimensionless form written as:

. 25¢(1) . 0)2 . _
9+|:m+ﬂw:|9+m51n9—0 (5)

where {.} in Eq. (5) corresponds to differentiation with respect 7.
Since ¢(r) is a periodic function, we may take ¢(7) = A sin (A7) and thus the
foregoing equation may be rewritten as:

2

. 2k A cos (A1) o
0 |: + m sinf =0 (6)

1+ksin(ﬂr)+ﬂw}0

where k = €A.
For stability of motion of the swing a linear stability analysis is applied. We may
write Eq. (6) as the following two first order equations:
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0=u=f(6,u)

P 2kA cos (A7) + folu
~|1+ksin(12)

»? 0= (0 (7)
1+ ksin (A7) sin6 = g(0,u)

The Jacobian for the above system may be written as,

0 1
J=1 _ w? | 2kAcos (42)
15 sin (r) <57 [l—l—ksin Go) TP

When an external periodic force F cos (97) is applied to pump the swing, final
form of the equation of motion stands as

2

2kA cos (A1) @
1+ ksin (A7)

0+ ]Mm(m+ﬂw]9+ SIDQZFCOS(ST) (8)

2.3 Regular and Chaotic motion of the swing

The swing, Eq. (8), oscillates in regular motion for significant contribution of
friction, (i.e. when the frictional coefficient § has sufficiently higher value) and
it is in chaotic motion in case of small friction and higher values of driving force.
Figures 4 and 5 showing the case of regular motion.

When the frictional contribution is insignificant, swing oscillations are chaotic
and unpredictable. Figure 6 stands for such chaotic motion of the swing when f = 0.

Figure 7 show chaotic oscillation when £ is not zero but small. Surface of section
and Poincare map shown in this figure are interesting showing typical chaotic
behavior.

We may thus conclude that the swing oscillates smoothly when the frictions are
higher but for no friction or insignificant friction, swing oscillations would be

1.0 T T . r 10
B b 1 UE
E E
2 oo} g o
= B
- =
=05 e —£5
-1 L 1 . -10 h 5
100 1o 1% L& 180 o0 -L.3 -1% -3 noe o3
TIMEt D{SPLAGEMENT
. . . .
Surtace ot Section Foincars Map
- v T r
10 . T EE R . oS F ..i,‘
- e * .
- " AL ; - -
- " ? . -
& - '. - -
- . _—
- w 05 - *
- » . -
- 4 0576 -
oo (3 B - .
- - . - .
r - 03
" - - -
- ' - - -
-0 . - - 05T . .
. -
. . .,
T, .= 05T3IE ™ #
-1 . LI i X = ® N
=LE =10 =4 &.0 10 -L.18 LI =117 -1 -L1&E -L1& -
Figure 4.
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Figure 7.

Chaotic oscillation of the swing when F = 0.2, f = o0.01,
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chaotic or unpredictable. In such a case whirling, overturn or any unpredictable
situation may happen.

Beside the application of bifurcation diagram, phase plot and Poincare surface of
section technique, we introduce the idea of Lyapunov characteristic exponents
(LCE), correlation dimension and topological entropy which provide further insight
of a complex dynamical system. In the following section, we analyze the complexity
of Prey-predator system using such tools.

3. Complexity in prey-predator system with Allee effect

In recent years many type of predator-prey problems, originated in Biological
sciences, investigated which depend on various environmental and social condi-
tions, [8-11]. Some problems solved by the application of Allee effect, which is an
interesting phenomenon, to some predator-prey systems appear to be very inter-
esting, [12-16]. The Allee effect on prey-predator system is a phenomenon
in biology which characterizes certain correlation between population size or
density and the mean individual fitness of a population or species. In the
following study we investigate the complexity in a predator — prey problem with
the Allee effect.

3.1 Discrete prey-predator model

A model for the prey-predator problem with Allee effect can represented as
X1 =X +7X,(1-X,)(1 — exp (—eX,)) —aX, Y,

Y, )
Yn = Yn Yn Xn - Yn
o +atal ) (ﬂ + Yn)

where X, and Y, refers to the density of prey and predators. Further, » corre-
spond to the growth rate parameter of the prey population and a the predation
prameter. Here,

* 1— exp (—eX,) stands for mate finding Allee effect on prey population, here ¢
is defined as the Allee effect constant and the term

o Yu
HA Yy
constant. Bigger y means the stronger the Allee effect on predator population.

stands for the Allee effect on predator and here, p is the Allee effect

For assumed values of parameters a = 2.0, » = 2.4, fixed points of system (9)
are obtained, approximately, as P; (0,0), P; (1,0), P;(0.545455,0.545455) and
by using stability analysis, we find all are unstable.

3.2 Bifurcation diagrams

The phenomena of bifurcation provide a qualitative change in the behavior of a
system during evolution. Such a change occurs when a particular parameter is
varied while keeping other parameters constant. Bifurcation diagram shows the
splitting of stable solutions within a certain range of values of the parameter. During
the processes of bifurcation, one observes different cycles of evolution which lead-
ing to the chaotic situation. Phenomena like bistability, periodic windows within
chaos etc. may also be observed for some systems. A bifurcation can be taken as a
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tool to analyze the regular, chaotic as well as complexity within the system. For

a =2.0and 1.8<r<2.4, Figure 8 shows bifurcation of system (9), where some
interesting phenomena observed that the system is not producing a period doubling
bifurcation scenario which is very common for many nonlinear systems.

3.3 Numerical simulations
Simulation of the foregoing models provides,
3.3.1 Attractors

Keeping parameters a and r fixed viz., a = 2.0, r = 2.4, attractors for different
cases are obtained through numerical technique [16], and shown in Figure 9.

Looking plots of attractor of Figure 9, one finds a chaotic attractor, figure (a),
when Allee effect is not in consideration, for a = 2.0, » = 2.4 . But, the application
of Allee effect to either of the population or to both population, system returned to
regularity, e.g. figures (b), (c) and (d) are no more chaotic. This also follow from
the plots of LCEs given below.

3.3.2 Lyapunov exponents (LCEs)

The phase space dynamics of a nonlinear chaotic physical system is very com-
plex in general. One of the important feature of such a system is its sensitivity to
initial conditions i.e., two very nearby trajectory in phase space show divergence
exponentially. Such divergence are characterized by LCEs. To indicate chaotic and
regular evolution, an appropriate measure is to find Lyapunov exponents (LCEs)
which are obtained for different cases by using appropriate procedure. Plots of
LCEs are shown in Figure 10.

3.3.3 Correlation dimension

Lorenz attractor provides an example of a fractal object with noninteger
dimension. The correlation dimension permits us to quantify the space filling
property and provides the measure of dimensionality of the chaotic attractor. It is
expressed as

. dlogC(R)
~ dlog (R)
where C(R) is defined as
1 n n ) .
C(R) = n(n—1) 2 j:1[®(R = Ilx[e] = x[j]IN]

corresponds to the correlation sum and is a measure of total number of points
contained within a hypersphere of radius R as a function of R normalized to the
total number of points squared. Using the algorithm [17, 18], the correlation
dimension can be determined from the scaling region found in the plot of
log C(R) as a function of log (R). For the Lorenz system with parameters
6 =10, p =28 and b = 8/3, the correlation dimension D¢ is found to be 2.069.
The correlation dimension of the chaotic attractor Figure 9(a) is found to be
D = 0.571 (Figure 11).
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Bifurcation diagram of system (9), (a) Prey densities, (b) Predator densities for a = 2.0 and 1.8 <r<2.4.
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Plots of regular and chaotic attractors for a = 2.0 and r = 2.4; (i) plot (a) without Allee effect, (ii) plot (b)
with Allee effect on prey only, ¢ = 4.5, (iii) plot (c) Allee effect on predator only mu = 0.1, and (iv) plot (d)
Allee effect on prey as well as on predator, € = 4.5, pu=o0.1.

3.3.4 Topological entropies

As explained in the beginning, topological entropy measures the complexity of
the system. More topological entropy implies system is more complex. Presence of
complexity does not mean the system is chaotic and vice versa. In Figure 12, we
have plots of topological entropy for different cases. In figure (a), topological
entropy increases for » > 2 but bifurcation diagrams and calculations of LCEs indi-
cate the system is regular within 2.0 <# <2.2. Similar observation can be made
looking at figures (b) and (c). In figure (d) one finds no fluctuations of topological
entropy, it establishes a steady state situation.
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Plots of Lyapunov exponents for a = 2.0, r = 2.4 and (i) figure (a) without Allee effect, (ii) figure (b) with
&= 4.5, u=o0, (iii) figure (c) Allee effect on predator only with y = 0.1, (iv) Allee effect on both
populations € = 4.5, y=o0.1.

The results obtained through bifurcation plots, Figure 8, and those of LCEs
plots, Figure 10, show that the Allee effect stabilize the motion from chaos to
regularity. The correlation dimension of the chaotic attractor is obtained as D =
0.571. Through this study we find the existence of complexity within the system,
even when system behavior is regular, we find significant amount of increase in
topological entropy. This implies the fact that the system may be regular but may
exhibit complexity.
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Plot of corvelation integral data.
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Plots of topological entropies for a = 2.0 and 1.8 <r < 2.6 : (i) figure (a) with no Allee effect, (ii) figure
(b) when e = 4.5, pu = o, figure (c) with Allee effect on predator only p = 0.1, (iv) when ¢ = 4.5, y = o1.

4. Recurrence plot

Natural system exhibits periodicities and also irregular cyclicities. Usually mea-
sures such as Lyapunov characteristic exponent (LCE), correlation dimension, Kol-
mogorov- Sinai (KS) entropy etc., have been used to characterize the complexity of
observed nonlinear dynamical behavior of a system. But the analysis based on
application of the foregoing tools inherently assumes the system to be noise free and
stationary. An alternative framework based on the idea of recurrence plot was
introduced in [19] for visualization of the dynamical behavior of a system in phase
space and subsequently the formalism has been extended to quantify the recurrence
plots to unravel the observed complexities i.e., regular, quasi-periodic, chaotic
transition etc. For a discrete time series P with N data points such that

P {x1,x2,X3, "')xN}’ (10)

where x;,i = 1,2, ....., N refers to observed values at time t1,#; + Atf, ....,t1 +
nAt. If the system has true dimension » , a sequence of vectors may be constructed
from the time series as:

Xi = (xiaxi+1,xi+2‘ra ""xi+(m—1)r); i= 1’ 2> Ny Nn= N — (m - 1)T (11)

where 7 corresponds to time lag or delay and m - the embedding dimension
of the phase space. By considering the distances in m- dimensional reconstructed
points, we construct a recurrence plot (RP). In fact RP is an # x # symmetrical
array where a dot is marked at a point (i,) if X; is close to another point X;.
We may write

43



Advances in Dynamical Systems Theory, Models, Algorithms and Applications

Rij(r) = O(r — IIX;i = Xjll); i,j =1,2,,m (12)

where O is a Heavyside function, 7 is a small threshold distance between
neighboring points and ||.|| is an Euclidean norm.

A characteristic pattern emerges in RPs which characterizes a dynamical system.
The method of RP is suitable for both stationary and non-stationary dynamical
system. Since a trajectory may return to a point or close to it in phase space, the
deterministic dynamical system shows recurrent behavior and RP therefore exhibits
both horizontal and vertical lines. For a stochastic dynamical system, such lines in
RP are of very small size and in fact appear by chance. Therefore the distribution of
such points appear to be homogeneous. In case of periodic system the RP is filled
with longer diagonal lines. Various measures that quantify RPs are mainly, RR,
DET, ENT, DIV, LAM, TT which refers to density of recurrence points, determin-
ism, divergence, entropy, laminarity and trapping time respectively. For a periodic
system diagonal lines are longer which for chaotic system RP shows broken short
lines. Recently [20] has provided a very useful description of applying RPs and
recurrence quantification analysis to unravel the complex dynamics of general
problem of three species interaction in ecology. In the following section, we extend
the analysis of complexity to the problem associated with neuronal dynamics, an
area of current interest in neuro-bio-science [21]. We however restrict ourselves to
only RPs to supplement the analysis of complexity using phase portrait, bifurcation
diagram etc.

5. Regular and Chaotic neuronal dynamics

The neuronal communication is known to be mediated by electrical pulses called
spikes. Studies of various spiking patterns reveal nonlinear characteristics of slow-
fast neuronal dynamics. A considerable amount of information regarding neuronal
activity has been obtained by studying the dynamics of spiking pattern [22]. The
phenomenon of tonic firing, mixed mode (bursting and spiking) etc., are typical
responses exhibited by an excitable neuron [23]. Cortical neurons have been
reported to show tonic bursting wherein the neurons periodically switches between
firing state and resting state. The mixed mode firing is observed in mammalian
neocortex [24]. Spike generation in fact depends on the firing threshold and the
stimulus intensity. In recent years, the perception regarding constancy of neuron’s
firing threshold has changed to dynamic [21]. In this work, we first briefly intro-
duce the Fitzhugh-Nagumo model (FHN) that have been proposed for spike gen-
eration like well known Hodgkin-Huxley model. It is however to be noted that FHN
model reproduce the experimental results less accurately. Our interest in FHN
model emanates mainly due to its showing complex spiking pattern even though it
is mathematically simple. The basic FHN model assumes the threshold to be con-
stant. We also study the changes caused in the spiking pattern as a result of time
varying threshold. This study assumes significance as such a model may throw
insight into the model the dynamics of cortisol secretion from hypothalamus [25].
It is to be noted that the neuronal firings may take place at regular interval or
randomly due to inherent mechanism or may be due to its interaction with the
neighborhood neurons or result of exogenous stimulus [26-28].

5.1 Basic dynamics of FHN model

The FHN model describes the interaction between the voltage v across the axon
membrane driven by input current I and the recovery variable w. The recovery
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variable w is the result of mainly the reflecting outward potassium current (K*)
that results in hyperpolarization of the axon after each spike occurrence. We may
write the FHN model equation as [28-30]:

%: av(f—v)(v—bo) —ow +1
(13)
6;—1:) =e(v — bw)

where 6> 0 and the parameter a > 0 scales the amplitude of the membrane
potential v, and ¢ is used here to control the recovery variable w with respect to
action potential v. The parameter by i.e., (0 <bg <1), corresponds to the threshold
value that controls the excitable behavior of the neuron. Also  and ¢ are constants
for the system.

In our analysis of Eq. (13), we take f = ¢ = 1 and for the case of no external
input current, I = 0 the dynamical system (13) has three equilibrium points or fixed
points (v,,w,) as:

E; =(0,0),
4
(1—bo)* ——
E23:(1+b0):|: ad
’ 2 2
It may be noted that if
4
(1—bo)* — — <0, (14)

then the system possess E; as the only equilibrium point.
Further defining

h(v) =v(1—v)(v —bo) (15)
the Jacobian matrix J of the system may be written as:

ah'(v) -1

€ —&d

J= : (16)

For the equilibrium or fixed points (v, w,), the eigenvalues 4, of the Jacobian
matrix are given by

(5~ aby) £ \/ (5 — aby)* — 4¢(1 - absd)
2

Mp = 17)

where b1 = h'(v,).

Therefore (1) if ab16 < 1, the equilibrium point (v,, w,) is asymptotically stable if
ab1 < €8, a repellor if aby > ¢, (2) if ab16 > 1 the equilibrium point is a saddle point
and (3) if ab;6 = 1 then the equilibrium point is stable (unstable) if
aby < be(aby > S¢).

In case the parameters of the system are such that condition Eq. (14) holds then
using Eq. (17) we find the equilibrium point E; i.e., origin, to be asymptotically
stable if
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Re [—(abo +e6) £ \/(abo + &8)* — 4e(asho +1)| <O0. (18)

Based on Routh’s criteria we may write equivalently
aby + 5> 0, adbg +1>0. (19)

Therefore if origin is the only fixed point of the system, then following [30], it is

observed that the system has no limit cycle if (bo — %)2 + % — 3—58 < 0. This result
however assumes abg + 5> 0. In case abg + €6 < 0, the origin becomes unstable
and the system can be shown to exhibit one stable limit cycle. It is noted here that
on varying the threshold parameter by, the system may exhibit Andronov-Hopf
bifurcation when abg + €6 = 0 as per Eq. (18) and at this point the origin of the
system becomes unstable causing a bifurcation to at least one stable limit cycle. It is
to be noted that gaps exist in parameter space when origin is the only asymptotically
fixed point and where limit cycles may exists. Interestingly, we numerically show
the existence of bistable behavior [18, 30] in terms of occurrence of double cycle
bifurcation by taking ¢ = 0.015, § = 3.5, a = 1.0 and allowing the threshold value
bo <0 i.e., —0.044(Figure 13).

For the case of I # 0, the equilibrium points may be one, two or three and their
stability may be analyzed following the foregoing analysis. Taking the parameter
values:a = 0.06, by = 0.50, ¢ = 14, as in [29], the phase portrait were obtained
using numerical integration of the system, Eq. (13), for different I values
(Figure 14). The appearance of limit cycle behavior is due to supercritical Hopf
bifurcation and as a consequence of loss of stability of the unique equilibrium point
that exist for I < 4.2 [29]. Figure 14 also suggest that the amplitude of limit cycles
first increases and subsequently decreases with increase in values of I. At around
I ~ 12.45 the second bifurcation occurs and system is led to a stable equilibrium.
[29] has provided a detailed discussion on the richness of various bifurcation event
as [ is varied.

0.2 T T T T

0151

0.05r
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Figure 13.
Phase portrait of FHN system showing bistability between limit cycle and stable fixed point.
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Figure 14.
Phase portrait of FHN system showing limit cycle for 4.2 <I<12.45. (a) I = 4.23, (b) I=4.8, (c) I =5.5,
d) I=68, () I=75,(f) I=95, (g I=11.75, (h) I =12.42, and (i) I = 12.45.

5.2 FHN neuron in the presence of external periodic electrical stimulation

Chaotic systems exhibit complexity and are sensitively dependent on initial
condition of the system under investigation and also unpredictable. Chaos as a
nonlinear phenomenon has attracted researchers from different disciplines e.g.,
physics, biology, ecology, neurobioscience etc. In this section, we investigate the
effect of periodic electrical stimulation on the dynamics of an FHN system, Eq. (13).

The basic equation that governs the dynamics of FHN system in the presence of
external periodic stimulation, I(¢), may be written as:

Z—lt) =av(f—v)(v —boy) — ow + I(¢),
p (20)
d—L: =e(v — ow).

Here, we take the external periodic stimulation as given by I() = [412] cos (27u2),
where Iy, v refers to the amplitude and frequency of the input stimulus. Further,
we present the simulation results of the system, Eq. (20), by taking a = 10, f =
1, bp =0.10, § =0.25, ¢ =1, and 6 = 1 and varying both Iy and v. The variation
of both amplitude and frequency of the external periodic stimulus is found to result
in the membrane potential v exhibiting regular or chaotic temporal behavior. The
regular or periodic neuron spiking could be classified as p : g phase-locking, where p
and g corresponds to the number of spikes and number of periodic stimuli per unit
response period. For instance Figures 15 and 16 illustrates respectively the response
of the neuronal spiking corresponding to 1: 1 and 1 : 2 phase locked rhythm.

The response of the single FHN neuron to external periodic response could also
be chaotic for certain values of the amplitude Iy and frequency v of driving stimulus
ie.,ie, o =0.183, v = 0.1931, as shown in Figure 17.

The observed dynamical transition from regular/periodic to chaotic of mem-
brane potential v with increase in amplitude and frequency of external could be
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Figure 15.

1 : 1 phase locking rhythm of spiking neuron. (a) Time series of membrane potential with I, = 0.1, v = 0.05.
(b) v — w phase portrait with same parameters as in (a).
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Figure 16.
1 : 1 phase locking rhythm of spiking neuron. (a) Time series of membrane potential with
I, = 0.1, v=o0.1015. (b) v — w phase portrait with same parameters as in (a).

further seen by constructing the RPs. The construction of RP, discussed earlier in
section 4, involves the reconstruction of phase space using a time series of a
dynamical variable, say the membrane potential v, based on the information
regarding the delay parameter 7 and the embedding dimension 7. The delay
parameter 7 for the time series of v could be obtained using the method of mutual
information (MI) [31] and the embedding dimension 7 may be determined using
the algorithm of [32, 33]. The time series of Figures 15-17 for the membrane
potential v have been used to construct the RP shown in Figure 18. The change in
spiking patterns caused by external periodic stimulation from regular to chaotic is
well indicated in RP of almost equally spaced diagonal lines to irregularly occurring
broken diagonal lines of varying length.

5.3 FHN neuron with time varying threshold

The dynamics of cortisol secretion from hypothalamus could be modeled using
FHN system with time varying threshold [25]. Complexities of spike dynamics of
FHN neuron has been earlier investigated in [34] incorporating the time varying
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threshold. Models of observed tonic firing and spike bursting were simulated by
considering both periodic and noisy form of the threshold variation. The effect of a
mixed mode threshold on the spiking FHN system was also investigated. Here we
present results of bifurcation analysis of different states of neuronal firing of FHN
neuron by considering a discrete form of the system [34, 35]. Following [34], the
discrete form of the FHN system may be written as:

Vpy1 = Uy + Aa[—v, (v, — 1) (v, — b,) —w + 1] (21)
Wypi1 = wy, + A(v, — Sw,,) (22)

where A refers to the integral step size and is treated here as a bifurcation
parameter.

In case of mixed mode threshold variation, the membrane potential v exhibits a
complex behavior as shown in bifurcation diagram (Figure 19a). It is readily
observed that the temporal behavior is chaotic in the region 0.42 <A <0.68. There-
after windows of regular and chaotic regimes are observe till A = 0.8 for ] = 0. A
slight increase in I changes the dynamics to a more complex behavior as shown in
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Figure 19b wherein windows of quasi-periodic behavior that sets sets in say at

6 ~ 0.68 for I = 0 (Figure 20a) make a transition to chaos as shown in Figure 20b.
In the following section, we study the complex dynamics in economics, an area

actively pursued by researchers, by introducing another measure called *multi-scale

permutation entropy’ by considering a nonlinear financial model.

6. Chaotic dynamics in finance model

In mainstream economics, economic dynamics has assume great importance in
recent years in view of the availability of market and other data. Economic dynam-
ics has therefore influenced both micro- and macroeconomics. Therefore lot of
research output has poured in explaining irregular micro-economic fluctuation,
erratic business cycles, irregular growth and aperiodic behavior of economic data
etc. Nonlinear systems provides an alternative simple and deterministic framework
that easily can explain aperiodic or chaotic behaviors of various financial systems.
One of the important features of nonlinear system is that the irregular/chaotic
behavior supports an endogenous mechanism for the observed complexity in eco-
nomic time series. As a result nonlinear dynamic framework has been applied to
economic modeling and several examples are available in [36-46].

In the present work we revisit the synthetic chaotic financial model discussed in
[45, 46] which is based on interest rate, investment demand and price index as
dynamical variables. We numerically explored and analyze the complexity of the
model using the multiscale entropy (MPE) frame work. In this section, we briefly
describe the chaotic financial model and its basic characteristics. We also outlines
the procedure of MPE for analyzing the complexity of the finance model.

6.1 Chaotic financial model

We consider a dynamic finance model composed of three coupled first order
differential equation. This model describes the temporal evolution of the state vari-
ables viz. the interest rate X, the investment demand Y and the price index Z. The
model is described as [39]:

dX

p =Z+ (Y —-a)X,

av _ 1-bY — X2, (23)
dt

az

%7 —X—CZ

Here a, b and c are positive constants and represent the saving amount, cost per
investment and elasticity of demand of the commercial markets. First equation
appears, representing the changes in X, as a result of contradiction in the invest-
ment market and structural adjustment from the goods prices. Second equation
representing the changes in Y appears due to proportionality to the rate of invest-
ment and also to an inversion of the cost of investment and interest rate. The third
equation emerges due to contradiction between supply and demand in commercial
markets which is influenced by interest rates.

Eq. (23) has been numerically integrated using fourth-order Runge-Kutta
method to obtain the time series of the dynamic variables X, Y and Z, shown in
Figure 21 witha = 3.0, b = 0.1, ¢ = 1.0 and initial condition (X, Yo, Zo) =
(2, 3, 2). Similar choice of the parameter were made in [45].
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Time series of X, Y, and Z
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(a) Phase portrait of Finance model, (b) 3-D attractor of the Finance model.

The representation of two dimensional phase portrait (X, Y) and the attractor
are shown in Figure 22. Obviously they represent chaotic dynamics of the temporal
behavior shown in Figure 22.

6.2 Complexity analysis using multiscale permutation entropy (MPE) method

The multiscale permutation method involves two steps. A “coarse graining” is
applied first to a time series X;, i =1, N to construct a consecutive coarse-grained
time series. The coarse-grained process involves averaging a successively increasing
number of data points in non-over lapping windows. The elements of each of the

coarse graine time Serlesyj 1S Compute as,
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p_1 ¢
W=< Y x (24)

i=( j—1)r+1

“©

where 1<i <N/s and s defines the scale factor. Each time series length is of size
that is an integral multiple of N/s. For s = 1, the coarse-grained time series is just
the original time series.

The second step involves the computation of permutation entropy [47] for
each of the coarse-grained time series. For a coarse-grained time series y jwe first

consider the series of vector of length 7, and obtain S”(n) = [yn,ynﬂ, ""yn+m—1] R
1<n<(N/s) —m + 1. Subsequently, S”(n) is arranged in an increasing order viz.,

[yn+j1+1 SSTHPEPESRESTAY +1} . For m different numbers, there will be m! possible

order patterns/structures IT which are termed as permutations. If f (IT) denotes the
frequency of order pattern II, then the relative frequency and hence the probability
p =f(1)/(N/s —m + 1). The permutation entropy H(m) therefore is given by

m!

H(m) ==Y p(0) In (II). (25)

I1=1

The maximum value of H(m) is log (m!) thus showing all permutations to have
equal probability. Also, the time series is termed as regular if minimum value of
H(m) is zero. Therefore H(m) the permutation entropy provide a quantitative
measure of dynamical complexity of a time series as it refers to its local structures. It
may be noted that the permutation entropy depends on the chosen value of 7. For
m < 3, there will be very few distinct states and the foregoing scheme does not work
satisfactorily. In the present analysis we have considered sufficiently large time
series and chosen 7 = 6 to estimate the complexity measure MPE.

For the financial model, Eq. (23), we have simulated the permutation entropy as
a function of the scale s for m = 6. The simulated results have been shown in
Figure 23a where we observe a saturation behavior with increased value of the scale
factor s. It is also observed that the permutation entropy at any scale s for the
interest rate X time series is higher than the investment demand time series Y which

; Hutiscale Permuation Enropy Mtiscale Permtaton Etroy
5 I I I » T T T
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Figure 23.
Multiscale permutation of (a) Financial model time series, (b) Rossler model.
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is further higher than that of the price index Z time series. Therefore we may
conclude that the complexity measure relation for the considered financial model
time series can be expressed as MPEx > MPEy > MPEz. The behavior of the com-
plexity measure of the considered finance model has been found to be quite similar
to that of chaotic Rossler attractor [with parameters a = 0.15; b = 0.20; ¢ =10.0]
(Figure 23b).

The simulation results for the multi-scale permutation entropy, MPE, presented
for the financial model and the Rossler chaotic model exhibit long term correlation
of the respective time series of a dynamical variable. Such inference is made in view
of the increasing trend of MPE with scale factor s for a given m. In case of a standard
financial model, the efficacy of such model could be made on comparing the MPE
trend of resulting simulated time series for interest rate (X), investment demand
(Y) and that of price index (Z) with the availability of the real time series data for
the corresponding dynamical variables. Finally, we introduce the idea of generation
of time series of a nonlinear chaotic dynamical system, say a Lorenz system, using
artificial neural network.

7. Time series generation using artificial neural network (ANN)

A large class of different architecture have been used in neural network for
various application. Among these application an issue relates the approximation of a
nonlinear mapping f (x) with the network f ,y(x), x €RX where K corresponds to
the size of te input. Besides the Radial Basis Function (RBF), a Multi Layer
Perceptron (MLP) has been used extensively in function approximation. A MLP
neural network comprises an input layer, several hidden layers and an output layer as
shown in Figure 24.

An MLP comprises inputs x;, i = 1,2, -+, K to the neurons gets multiplied with
weights wy; and summed up along with the bias ;. The resulting #; is then acts as an
input to the activation function g which could be chosen as a sigmoid function or a

INPUT LAYER HIDDEN LAYER

OUTPUTLAYER

Figure 24.
A multilayer perceptron network.
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Figure 25.

Neural network generated Lorenz time series (black, red, brown) and respective deviation from input time series
(blue).

tanh function. The output at node 7 is given by y, = ¢ [lezleixj+gi} . Figure 24
illustrates a typical MLP network where the output is given by

3 K
Y=g [Zwﬁ g(Zwijxk + 9}) + 6?
j=1

k=1

. (26)

Several algorithms are available to determine the network parameters e.g.,
weights (w]’-‘;-)) and biases(G’;-). Such algorithms are termed as teaching or learning
algorithms. The basic procedure involving the learning algorithm of an MLP net-
work are: (a) Define the network structure, selecting the activation function and
initializing the weights and biases, (b) providing the error estimates and number of
epochs for training algorithm before running the training algorithm, (c) the output
is simulated using input data to the network and compared with the given output,
and (d) finally validating the result with independent data.

In this work, using the inputs as x, y and z time series from Lorenz system
exhibiting chaotic dynamics and using the newff, train and sim MATLAB commands
[31], we simulated each of these time series. In our simulation we take the learning
parameters viz., net.trainParam show = 50; net.trainParam lr = 0.05;
net trainParam.epochs = 1000; net.trainParam goal = 1le~3, and use 100 neurons
and 3 output layers [48]. Figure 25 shows the MLP network generated time series of
Lorenz variables and the corresponding deviations from the input time series.

8. Conclusion

In this chapter, we have applied phase portrait, bifurcation diagram, Poincare
surface of section, LCEs, correlation dimension, topological entropy and multi-scale
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permutation entropy method to unravel the complexity of various physical systems
e.g., nonlinear forced pendulum, child’s swing problem, prey-predator system,
periodically stimulated FHN neuron model and nonlinear financial model. Impor-
tant characterization of transition from regular to chaotic dynamics have been made
using the foregoing methods. Finally artificial neural network based on multi-layer
perceptron network have been shown to satisfactorily generate the time series of
dynamical variable of chaotic system such as Lorenz system.
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Chapter 4

Invariants for a Dynamical
System with Strong Random
Perturbations

Elena Karachanskaya

Abstract

In this chapter we consider the invariant method for stochastic system with strong
perturbations, and its application to many different tasks related to dynamical sys-
tems with invariants. This theory allows constructing the mathematical model
(deterministic and stochastic) of actual process if it has invariant functions. These
models have a kind of jump-diffusion equations system (stochastic differential It6
equations with a Wiener and a Poisson paths). We show that an invariant function
(with probability 1) for stochastic dynamical system under strong perturbations
exists. We consider a programmed control with Prob. 1 for stochastic dynamical
systems — PSP1. We study the construction of stochastic models with invariant
function based on deterministic model with invariant one and show the results of
numerical simulation. The concept of a first integral for stochastic differential equa-
tion Itd introduce by V. Doobko, and the generalized It6 — Wentzell formula for
jump-diffusion function proved us, play the key role for this research.

Keywords: It6 equation, Poisson jump, invariant function,
differential equations system construction, stochastic system with invariants,
programmed control with probability 1

1. Introduction

Models for actual dynamical processes are based on some restrictions. These
restrictions are represented as a conservation law.

The conservation law states that a particular measurable property of an isolated
dynamical system does not change as the system evolves over time.

Actual dynamical systems are open, and they are subject to strong external
disturbances that violate the laws of conservation for the given system.

Conventionally, deterministic dynamical systems have an invariant function.
Doobko® V. in [1] proved that stochastic dynamical systems have an invariant
function as well. For dynamical system which are described using a system of
stochastic differential It6 equations, a first integral — or an invariant function, exists
with probability 1 [2-10].

When we know only a conservation law for a dynamical system, and equations
which describing this system are unknown, the invariant functions are a good tool
for determination of these equations.

1 Different variant of transliteration of the name: Dubko
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Our method differs for other (see, for example, [11]) preliminary in the fact that
we construct a system of differential equation with the given first integral under
arbitrary initial conditions. Besides, this algorithm is realized as software and it
allows us to choose a set of functions for simulation. Moreover, we can construct
both a system of stochastic differential equations and a system of deterministic ones.

The goal of this chapter is representation of modern approach to describe of
dynamical systems having a set of invariant functions.

This chapter is structured as follows. Firstly, we show that the invariant functions
for stochastic systems exist. Then, the generalized It6 — Wentzell formula is
represented. It is a differentiated rule for Jump-diffusion function under variables
which solves the Jump-diffusion equations system. This rule is basic for the necessary
and sufficient conditions for the stochastic first integral (or invariant function with
probability 1) for the Jump-diffusion equations system. The next step is the construc-
tion of the differential equations system using the given invariant functions. It can be
applied for stochastic and nonstochastic cases. The concept of PCP1 (Programmed
control with Prob. 1) for stochastic dynamical systems is introduced. Finally, we show
an application of the stochastic invariant theory for a transit from deterministic model
with invariant to the same stochastic model. Several examples of application of this
theory are given and confirmed by results of numerical calculations.

2. Notation and preliminaries

Now we introduce the main concepts which we will use below.
Letw(t), t € [0, o) be a Wiener process or a (standard) Brownian motion, i. e.

* it has stationary, independent increments,

* for every >0, w(t) has a normal NV (0,¢) distribution,

* it has continuous sample paths,

* every trajectory of w(t) is not differentiated for all > 0.

A u(t,A) is called a Poisson random measure or standard Poisson measure (PM)

if it is non-negative integer random variable with the Poisson distribution v(¢, A) ~
Poi(tTI(A)), and it has the properties of measure:

* u(t,A) is a random variable for every t€[0, T], A€R",

v(t,A)eNu{0}, v(t,@) =0,

if AnB =@, then v(t,AUB) = v(t,A) + v(¢t, B),
* Eju(t, A)] =tI1(A),

* if #A is a number of random events from set A during ¢, then

(eT1(4))"

Pt(#A = k) = %!

exp {—tII(A)}.
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o(t,A) =uv(t,A) — E[u(t, A)] is called a centered Poisson measure (CPM).

Let w(t) = (w1(¢), ... ,wn(t))" be an m-dimensional Wiener process, such that
the one-dimensional Wiener processes wy (¢) for k = 1, ..., m is mutually
independent.

Take a vector y € © with values in R”. Denote by v(At, Ay) the PM on [0, T] x
R” modeling independent random variables on disjoint intervals and sets. The
Wiener processes wy(t), k =1, ...,m, and the Poisson measure v([0, T], A) defined
on the specified space are F;-measurable and independent of one another.

Consider a random process x(t) with values in R”, n >2, defined by the
Equation [12]:

dx(t) = A(t)dt + B(t)dw(t) + J gt,y,x)v(dt,dy), (1)

R,

where A(t) = {a1(t), ..., a,(2)} ", B(t) = (b j(t)) is (n x k) - matrix, and
g(t,y) =1{g,(t.7), ...g,(t,7)} €R*, andy € R"=:R,, while w(z) is an m-dimen-
sional Wiener process. In general the coefficients A(z), B(t), and g(¢, y) are random
functions depending also on x(¢). Since the restrictions on these coefficients relate
explicitly only to the variables ¢ and y, we use precisely this notation for the
coefficients of (1) instead of writing A(t, x(t)), (t,x(¢)), and g(¢, x(¢), 7).

A system (1) is the stochastic differential It6 equation with Wiener and Poisson
perturbations, which named below as a Jump-diffusion It6 equations system
(GSDES).

We will consider the dynamical system described using ordinary deterministic
differential equations (ODE) system and ordinary stochastic differential It6 equa-
tions (SDE) system of different types, taking into account the fact thatx e R", n>2.

3. An existence of an invariant function (with Prob.1) for stochastic
dynamical system under strong perturbations

Consider the diffusion It equation in R? with orthogonal random action with
respect to the vector of the solution

b
dv(e) = —pv(e)ds + s 9(0) X dw(o), @)

where veR3, weR?, and w;(t), i = 1,2,3 are independent Wiener processes.
This equation is a specific form of the Langevin equation.

V. Doobko in [1] showed that the system (2) have an invariant function called a
first integral of this system:

u(t,v) = exp {2ut} <|v(0) 2 %2)

This, in particular, implies that

lim [v(z)|* = —,

t—o0

i.e. process |v(¢)| is a nonrandom function and the random process v(t) itself is
. . b
generated in a sphere of constant radius NG
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In [4, 5, 10] it is shown that invariant function exists for other stochastic
equations of Langevin type. To obtain this result, it is necessary to use the Itd’s
formula.

4. The generalized It6 - Wentzell formula for jump-diffusion function

The rules for constructing stochastic differentials, e.g., the change rule, are very
important in the theory of stochastic random processes. These are It6’s formula
[13, 14] for the differential of a nonrandom function of a random process and the
[t6 — Wentzell? formula [15] enabling us to construct the differential of a function
which per se is a solution to a stochastic equation. Many articles address the deri-
vation of these formulas for various classes of processes by extending It6’s formula
and the It6 — Wentzell formula to a larger class of functions.

The next level is to obtain a new formula for the generalized It6 Equation [14]
which involves Wiener and Poisson components. In 2002, V. Doobko presented [7]
a generalization of stochastic differentials of random functions satisfying GSDES
with CPM based on expressions for the kernels of integral invariants (only the ideas
of a possible proof) were sketched in [7]. The result is called” the generalized It6 —
Wentzell formula”.

In contrast to [7], the generalized It6 — Wentzell formula for the noncentered
Poisson measure was represented in [9, 16, 17]. The proof [9] of the generalized It6
— Wentzell formula uses the method of stochastic integral invariants and equations
for their kernels. In this case the requirement on the character of the Poisson
distribution is only a general restriction, as the knowledge of its explicit form is
unnecessary. Other proofs in [16, 17] are based on traditional stochastic analysis and
the use of approximations to random functions related to stochastic differential
equations by averaging their values at each point.

The generalized It6 — Wentzell formula relying on the kernels of integral invari-
ants [9] requires stricter conditions on the coefficients of all equations under con-
sideration: the existence of second derivatives. The reason is that the kernels of
invariants for differential equations exist under certain restrictions on the
coefficients.

Since the random function F(z, x(¢)) has representation as stochastic diffusion
Itd equation with jumps, we can use the generalized It6 — Wentzell formula, proved
by us by several methods in accordance with different conditions for the equations
coefficients. Now we consider only one case.

We will use the following notation: C; is the space of functions having continu-
ous derivatives of order s with respect to y, C;)(y) is the space of bounded functions
having bounded continuous derivatives of order s with respect to y.

Theorem 1.1 (generalized Itd6 — Wentzell formula). Consider the real function
F(t,x) e C})’f, (t,x) €[0, T] x R" with generalized stochastic differential of the form

d;F(t,x) = Q(t,x)dt + i Dy, (¢, x)dwy, (t) + J G(t,x,y)v(dt,dy) (3)
k=1

14

whose coefficients satisfy the conditions:

Q(t,x) eCr?

tx?

Dy(t,x) eC>?

tx?

G(t,x,y) eCb>!

t,x,y "
2 Different variants of transliteration of this formula name: Itd — Wentcell, Itd — Venttcel’, It6 — Ventzell
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If a random process x(t) obeys (1) and its coefficients satisfy the conditions

ai(t,x) eCh!

t,x?

b,‘j(f, X) GC:;,

gi(t’x’ )60121 (4)

X,y "

then the stochastic differential exists and

d:F(t,x(t)) = Q(t,x(¢t))dt + zm:Dk (¢, x(t))dwyp+

k=1
n 1 n n m azF(t, X)
+ ﬂi( x=x(t) T3 bi,k(t)b]k( )
; 2 i=1 j=1 k; axiax] x=x(t
dD (t,x " & oF(t,x 5
+Zb1k ]; ) dt + Zhi,k( ) (g : ) dw+ ©)
Xi  x=x(t) i=1 k=1 Xi x=x(t)

+L [(F(e,x(t) +g(5 7)) — F(t,x(2))]v(dt, dy)+

7

+] Gt +glt).pvtat.dy).

R,

By analogy with the terminology proposed earlier, let us call formula (5) “the
generalized Itd — Wentzell formula for the GSDES with PM” (GIWF).

By analogy with the classical Ité and It6 — Wentzell formulas, the generalized It6
— Wentzell formula is promising for various applications. In particular, it helped to
obtain equations for the first and stochastic first integrals of the stochastic It6
system [9], equations for the density of stochastic dynamical invariants, Kolmogo-
rov equations for the density of transition probabilities of random processes
described by the generalized stochastic It6 differential Equation [8], as well as the
construction of program controls with probability 1 for stochastic systems [18, 19].

5. A first integral for GSDES

In the theory of ODE, there are constructed equations to find deterministic
functions, first integrals which preserve a constant value with any solutions to the
equation. The concept of a first integral plays an important role in theoretical
mechanics, for example, to solve inverse problems of mechanics or in constructing
controls of dynamical systems.

It turned out that the first integral exists in the theory of stochastic differential
equations (SDE) as well. However, there appears an additional classification
connected with different interpretations. This gives a first integral for a system of
SDE (see [1]), a first direct integral, and a first inverse integral for a system of It6
SDE (see [20]).

Definition 1.1 [1, 3]. Let x(t) be an n-dimensional random process satisfying a
system of It6 SDE

di(t) = it x(@)de + b6 xE)dwi(t),  x(6x(0))],o =x(0),  (6)
k=1

whose coefficients satisfy the conditions of the existence and uniqueness of a
solution [12]. A nonrandom function u(t,x) € C}j is called a first integral of the
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system of SDE if it takes a constant value depending only on x(0) on any trajectory
solution to (6) with probability 1:

u(t,%(,%(0)) =u(0,%(0)) almost surely,

or, in other words, its stochastic differential is equal to zero: d;u(t, x(¢)) = 0.

Another important notion in the theory of deterministic dynamical systems is
given by the notion of an integral invariant introduced by Poincaré [21].

As it turned out, there also exist integral invariants for stochastic dynamical
systems [2, 3]. In [7] V. Doobko give the concept of a kernel (=density) of a
stochastic integral invariant and, based on it, formulate the notion of a stochastic
first integral and a first integral as a deterministic function for GSDES with the
centered Poisson measure, which makes it possible to compose a list of first
integrals for stochastic differential equations.

Consider a random process x(t), x € R", which is a solution to GSDES

do(£) = 36, x(2) )t + b (6 x(2)) dwi(£) + j g6, x(t), 7 )o(dt, dy),
R, @

x(t) = x(t,x%(0), w)|,_, = x(0), i=1,..,m, t>0,

whose coefficients (in general, random functions) satisfy the conditions of the
existence and uniqueness of a solution [12] and the following smoothness
conditions:
1,1 1,2 1,2,1
a;(t,x) €Cy, by(t,x)€Cry, gt %,7) €Cl- (8)
Suppose that p(t, x, w) is a random function connected with any deterministic
function f (¢, x) € & C C5*(t, x) by the relations

| rtex ot = | pOy)f e x(ey)ar) ©)
pr(o, K)dl(x) = 1, (10)
llliinwp(o,x, ) = |l|i£nmp(0’x) =0, di(x)= gdx,-, (11)

where y:=x(0), and x(t, y) is a solution to (7), and w is a random event.
In the particular case when f (¢, x) = 1, conditions (9) and (10) imply that

| ottt - |

P(0.y)dl(y) =1, (12)

i.e., for the random function p(t, X, ®), there exists a nonrandom functional
preserving a constant value:

J (e, %, w)dl(x) = 1. (13)

Then, with conditions (10) and (11), Eq. (9) can be regarded as a stochastic
integral invariant, and the function (t, x) can be viewed as its density.
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Definition 1.2 [3]. A nonnegative random function p(¢, X, @) is referred to as a
stochastic kernel or the stochastic density of a stochastic integral invariant (of #th
order) if conditions (9), (10), and (11) are held.

Note that a substantial difference which made it possible to consider the invari-
ance of the random volume on the basis of a kernel of an integral operator in [3, 7],
is that (9) contains a functional factor. Thus, the notion of a kernel of an integral
invariant [3] for a system of ordinary differential equations can be regarded as a
particular case by taking f(t,x) = 1 and excluding from (7) the randomness
determined by the Wiener and Poisson processes.

Using the GIWF (5), we obtain equation for the stochastic kernel function [9].

op(t, X, 0)b;p (£, X)

Ap(t,x, @)ai(t, %))
0x;

ax,»

dwy, (t) + (-

dip(t, %, 0) = —

10%(p(t, %, 0)bik (1, X)b j(t, X))
_|_ —
2 dxidxj

Ydt+ (14)

+JR [p (t, x —g(t, x Nt,%,7),7, a))) : j(x’l(t, X, y)) —p(t, %, a))] v(dt,dy),

14

under restrictions

p(t, x, w)‘t:O =p(0,%,w) = p(0,x) EC%)(X)>
lim p(0,%x,w) = lim p(0,x) =0, lim (0, % ) = lim 9p(0.%) =0

x| oo x| —o00 x| —oc0 0x; [X|—o0  O0X;

This result plays a major role in obtaining of equation for the stochastic first
integral.

6. Necessary and sufficient conditions for the stochastic first integral

Lemma 1.1. If p(t, X, ) is a stochastic kernel of an integral invariant of # th order
of a stochastic process x(t) starting from a point x(0) then, for every ¢, it satisfies
the equality

p(t, x(t,x(0)), ») T (t,x(0), w) = p(0,%(0)),

where 7(t,x(0), ) is the Jacobian of transition from x(z) to x(0).

Definition 1.3 A set of kernels of integral invariants of nth order is called
complete if any other function that is the kernel of this integral invariant can be
presented as a function of the elements of this set.

In [9] it is shown that a system of GSDE (7) whose coefficients satisfy the
conditions in (8), has a complete set of kernels consisting of (n + 1) functions.

Suppose that p;(t, x, ) # 0,1 =1, ...,m, m <n + 1 are kernels of the integral

invariant (9). Lemma 1.1 implies that, for any [ # » + 1, the ratio % isa
n+1\ b X\ L @
constant depending only on the initial condition x(0) =y for every solution x(z) to

the GSDE (7) because

ptx(by),0)  p(0y)
Pui1(tX(6y), @) puia(0,y)

(15)
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Since for some realization w; we have

u(t,x(t,x(0))) =2AEXEXO) 1) _ A XO) _ 0 4 g)),

and it means, that d.u(t, x(¢)) = 0.
Definition 1.4 A random function #(z, X, w) defined on the same probability

space as a solution to (7) is referred to as a stochastic first integral of the system (7)
of Ité6 Et GSDE with NCM if the following condition holds with probability 1:

u(t,x(t,%x(0),w)) =u(0,%(0)) almost surely

for every solution x(t,x(0), w) to (7).

For practical purposes, for example, to construct program controls for a dynam-
ical system under strong random perturbations, the presence of a concrete realiza-
tion is important, i.e., the parameter w is absent in what follows. In this connection,
we introduce one more notion.

Definition 1.5 A nonrandom function %(¢, X) is called a first integral of the system
of GSDE (7) if it preserves a constant value with probability 1 for every realization
of a random process x(t) that is a solution to this system:

u(t,x(t,x(0))) =u(0,x(0)) almost surely.

Thus, a stochastic first integral includes all trajectories (or realizations) of the
random process while the first integral is related to one realization.
Construct an equation for #(t, X, w) using the relation

Inu(t,x,w) = Inp,(t,x,w) — Inp,(t,x, w), (16)

as a result of assertion (15). Let us differentiate Inp(z,x) (omit @) using gener-
alized It6 — Wentzell formula:

1 1 o(p(t, x)bir(t, %))
diInp(t,x) = mdtp(t, X) — 2206, %) (— ox; ) dt+ -

+J [1n {ps (t, X —g(t, x(t, y), 7)s y)j(x’l(t, X, y))} — Inp,(z, x)} v(dt,dy),

14

where dp(t, %) is the right side of Eq.(14) without the integral expression.
Having written down the equations for Inp(t,x) and Inp,(z,x), and taking into
account this result and Eq.(16), we obtain:

_ ou(t,x,w) 1 *u(t,x, w)
dtu(t,x,w) = [—ﬂl(t,x)T+§blk(t,x)b]k(t,x)Taxj_
bunt) o (0063 22 a0 262D o a9

ox; X j X

+JR [u(t,x —g(6,x7 (6, %,7),7), ®) — u(t,x, 0)|v(dt,dy),

14

which means that a stochastic first integral «(z, X, w) of the Itd generalized
Eq. (7) is a solution to the GSDE (18).

For a first integral which is a nonrandom function of one realization, the
differential is also defined by an equation of the form of (18).
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Theorem 1.2 Let x(¢) be a solution to the GSDES (7) with conditions (8). A
nonrandom function u(¢,x) €C;; is a first integral of system (7) if and only if it
satisfies the conditions:

1240 1 240 (g1, %) — 3 g (1) 2522 — o,

596,’

2.bix(t;x) 22X = 0, for all k = 1, m,
3.u(t,x) —u(t,x +g(t,x,7)) = 0 for any y €R, in the entire domain of definition
of the process.

Theorem (6) allows us to obtain a method for construction of differential
equations systems on the basis of the given set of invariant functions.

7. Construction of the differential equations system using the given
invariant functions

The concept of a first integral for a system of stochastic differential equations
plays a key role in our theory. In this section, we will use a set of first integrals for
the construction of a system of differential equations.

Let us write Eq. (7) in matrix form:

dX(t) = A, X(¢t))dt + B(t, X (¢))dw(t) + JR O, X (t), y)v(de,dy) (19)

X(O):xo, t>0.

Theorem 1.3 [22]. Let X(¢) be a solution of the Eq. (19) and let a nonrandom
function s(¢, x) be continuous together with its first-order partial derivatives with

respect to all its variables. Assume the set {?o, €1, ?n} defines an orthogonal

basis in R, x R". If function s(t, x) is a first integral for the system (19), then the
coefficients of Eq. (19) and the function s(t, x) together are related by the conditions:
1. Functions By (¢,x) = >__;ba(t,x)e; (k = {1, ...,m}), which determine
columns of the matrix B(t,x), belong to a set

€1 . €y
0s(t,x) s (2, x)
0x1 0%y,
Bi(t,x) €4 q,,(t,x) - det ) (20)
1 (£) € 4 Gy, (£5) fa e fa
L fnl fnn .
where g, (¢,x) is an arbitrary nonvanishing function,
2. Coefficient A(¢,x) belongs to a set of functions defined by
1< 0By, (t,x)
At,x) e {R(t,x) +5 kz_;{ ™ ] By (t,x)}, (21)
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where a column matrix R(¢,x) with components 7;(t,x), i = {1, ...,n}, is defined
as follows:

n
Cl(t,x) - detH(t,x) = €, + Y _7i(t,%) €
i=1

C(t,x) is an algebraic adjunct of the element ¢, of a matrix H(z,x) and
detC(z,x) # 0, a matrix H(t,x) is defined as

€, €1 €n
os(t,x) 0s(t,x) os(t,x)
ot 0x1 0%y,
HOX =0 by o s | @)
L hn+1,0 hn+1,1 hn+1,n i

and {%} is a Jacobi matrix for function By(t, x),

3. Coefficient (¢, X,7) = > i 17:(t,x, y) €, related to Poisson measure, is
defined by the representation O(t,x,y) = y(t,x,y) — x, where y(¢,x,7) is a
solution of the differential equations system

?1 ?2 ?n ]
Blyr)  sEyn) 7))
H(oy) 2 ¥, W,
o Y pnty(ar) entrr) - omyGrn | P
Lo (6Y(57) @n@y(s7) = @umty(57)) ]

This solution satisfies the initial condition: y (¢, x,7)|,_, = x.
The arbitrary functions fl] = fl.].(t,x), hij = hi(t,x), and @; = @;(t,y (-, 7)) are

defined by the equalities f;(t,x) = ofiltx), hi(t,x) = hit:2) and @i (t,y(57)) =

()x]' 0)(.‘]'

W. Sets of functions {¢;(t,y(-,7))} and the function g(¢, x) together form a

J
class of independent functions.

Using this theorem, we can to construct SDE system of different types and ODE
system. Choice of arbitrary functions allows us to construct a set of differential equa-
tions systems with the given invariant functions. Theorem (7) allows us to introduce a
concept of Programmed control with probability 1 for stochastic dynamical system.

8. Programmed control with Prob. 1 for stochastic dynamical systems

Definition 1.6 [18, 19]. A PCP1 is called a control of stochastic system which
allows the preservation with probability 1 of a constant value for the same function
which depends on this systems position for time periods of any length T.

Let us consider the stochastic nonlinear jump of diffusion equations system:

dX(t) = (P, X)) +Z (X)) -u(t,X(t)))dt + (B, X(¢)) + K(t,X(t)))dw(t)+
+] WX+ X))

R,

(24)
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where P(-), Z(-) are given matrix functions and B(-), L(-) are the functions that
may either be known or not. For such systems we construct a unit of programmed
control {u(z,X(t)), K(t,X(t)), M(t,X(t))} which allows the system (24) to be on the
given manifold {u(¢,X(¢))} = {#(0,x0)} with Prob. 1 (PCP1) for eacht €0, T},

T < oo.

Suppose that the nonrandom function s(¢, X (t)) is the first integral for the same
stochastic dynamical system. The PCP1 {u(t,X(¢)),K(z,X(¢)), M(¢,X(t))} is the
solution for the algebraic system of linear equations.

Theorem 1.4 Let a controlled dynamical system be subjected to Brownian per-
turbations and Poisson jumps. The unit of PCP1 {u(z, X(¢)),K(t, X(¢)), M(t,X(2))},
allowing this system to remain with probability 1 on the dynamically structured
integral mfd s(t,X(t,x,), @) = s(0,x,), is a solution of the linear equations system
(with respect to functions u(z,x(t))), K(¢, X (t)), M(¢, X (t)) which consists of
Eq. (19) and Eq. (24). The coefficients of the Eq. (19), (and the coefficients of the
Eq. (24) respectively) are determined by the theorem 7. The response to the
random action is defined completely.

We show how the stochastic invariants theory can be applied to solve different
tasks.

9. Stochastic models with invariant function which are based on
deterministic model with invariant one

In this section we consider a few examples for application of the theory above to
modeling actual random processes with invariants [23]. Firstly, we consider an
example of construction of a differential equation system with the given invariant.
Secondly, we study a general scheme for the PCP1 determination. And finally, we
show the possibility of construction of stochastic analogues for classical models
described by a differential equations system with an invariant function. The
suggested method of stochastization is based on both the concept of the first
integral for a stochastic differentialltd equations system (SDE) and the theorem for
construction of the SDE system using its first integral.

9.1 Construction of a differential equations system

It is necessary to construct a differential equations system for X € R%, £ > 0 such
that the equality

X(t) - Yi(t) + Yat) +¢ =0 (25)
is satisfied with Prob.1. The equality (25) means that the differential equations
system has a first integral s(¢, X (t), Y1(t), Y2(t)) = X(£) — Y3(t) + Y2 (t) + ¢ with

initial condition (0,1, 0)":

s@X(t), Yi(t), Ya(t)) = X(¢) — Yi(t) + Ya(2) + ¢ = 5(0,x(0), Y1(0), Y2(0)).

We have
€1 €2 €3 _2y1f3(‘) —f,0) b (-)
Be(") =qpo(-)det| 1 -2, 1 =q00()| —f30)+f1() | = | bx()
f10) f2() f30) F2() +2.f10) b3 (-)

71



Advances in Dynamical Systems Theory, Models, Algorithms and Applications

Therefore,
[0(=2Y1f5() = f,())  a(=2Yaf5() — £,()))  9(=2Y1f5() = f,()) ]
o oY, oY,
(Be()> Va)Bi(-) = g2 (") 0(*f3(';x+f1(')) a(*f3(é)yff1(')) a(*fa(é)yjfl(')) y
a( fz(')""zylfl(')) 5(f2(~)+2Y1f1(-)) 0( fz() +2Y1f1('))
L ox Y1 Y, i
=2Y1(2)f5() = £,() J210)
X —f30) +f1() = | p,()

f2() +2Ya(0)f41 () 5()

Thus the new drift coefficients are
Ad() = ¢ (haf3 — foh3) + 2V1(hof5 — fohs) +hofy — foha b
fohs —=hof s+ fihy — hagy = 2Y1(haf 5 — f1hs) 2’

et(h3f1*f3h1)+h0f3*foh3+h0f1*f0h1 P
Ax() = ==, 26
2() f2h3*h2f3+f1h2*hlngzyl(hlfaff1h3)+ 2 20

put = isfs = Fa) = bty = Foh) + hof ~ fi ps
fohs —haf +f1h2—h]g2—2Y1(h1f3—f1h3) 2

According to term 3 of Theorem 1.3, we will determine a coefficient for Poisson
measure. Now we rename variables: Z = (Z1,2,,73) *+=(X, Y1, Y>) *. Then, we have:

u(t,Z) =21 25+ 23 +¢,
ut,Z)—ut,Z+gt,Z,y)) =ut,Z) —u,V) =0,
V=Z+g(t2Zy),

g, Z,y) =V(t,2,7) - Z,

where a function V(t,Z, y) solves the a differential equations system:

?1 ?2 ?3 _ZZZ(pS('a Y) - (p2(" 7)
()V(-,y) _ d — . _ .
=det| 1 —27, 1 = o1(57) —o3(57) s

0
’ o1(57) @(57) @s(sr) »2(57) + 22201 (5 7),

and satisfies the initial condition V (-, 0) = Z. Then, we determine functions

21(57):8,(57),85(57)-
Assume, that ¢;(,7) = 15, 2(,7) = 27, @3(,7) = 1. Then, we get:

gl(t,X(t),Y(t,),y) = _2Y1(t)7 - 72 —x(t),
gz(t’X(t)) Y(t,),r) = Inly+1] —y +1-Y4(z),
&E6X(1),Y(5,),7) = =y +2Y1Inly + 1| - Y>.

Finally, we have constructed three variants of differential equations system:
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1. deterministic differential equations system:

dX(t) _ ¢ (haf 3 — fohs) + 2Ya(hof 3 — fohs) +hof, — foha

e fohs —haf 5+ fih — g, — 2Y1(h1f3 _f1h3>
dYa(t) e (hsfy — fih) +hofs — fohs +hof, — foh

dt fahs =haf 3+ fiha — hag, — 2Y1(h1f3 *f1h3)
dY,(t) ¢ (h2f1 _fzhl) — 27y (h0f1 _fohl) + hsz _f0h2

dt fahs —haf 5+ fr1ha — hig, — 2Y4 (h1f3 _f1h3)

2. stochastic differential equations system (Ité diffusion equations):

= e T b a3 om0
+(=21f5() = £,()) dwa(t)
_ et(h3f1*f3h1)+h0f3*foh3+h0f1*foh1 1, . .
ay.(t) = chhs ~nf+ i — g, — 201 (i f — Fyha) + 2( f3() + £1()) |dt+

+(=f30) + £1()) dwa(t)

et hz 1 h1 — 1h0 1= hl hO - h2
s { T e i 30+ 0R0)

+( L)+ 2y1f1(')) aws(t)

dt+

3. stochastic differential equations system (jump-diffusion Ité equations):

et hz — 2]’[ 2Y1 h — Oh h 2 th
o= { T hr s T e by 3 RROR0 ) a
+(=21f30) = £,()) dwi(t) + [ [-2Y1()y — v* — x(t)]v(dt, dy),
| éhafy — fih) Fhof s — fohs +hofy — foh |1
le(t) - f2h3 - h2f33+ f1h2 - Zlgz —2Y; (hlfs _f1h3) " 2 (7f3(.) +f1(.)) et
+(=f30) + £10)) dwa(t) + [ [Inly + 1=y +1 = Y1 () v(dt, dy),
_ | (haf 1 — frl) —2Vi(hofy — foh1) + hof, — foha | 1
0= { fohs = haf s + fiha = hagy — 2Y1(h1f3 _f1h3) i 2 ( fl)+ 2Y1(t)fl(.)) o
+( fz() + 2J’1f1(')) dWZ(t) + fRy [*}’2 +2Y;1ln |J’ + 1|7Y2]1/(dt, dy).
(27)

We choose the functions g, (-), f;(-) and 4;(-), i = 1,2, 3, in accordance with the
restriction of the task and taking into account the utility for modeling.

9.2 Transit from deterministic model with invariant to the same stochastic
model

Now we describe a general scheme for application of the theory above.

The suggested method of stochastization is based on both the concept of the first
integral for a stochastic differentialltd equations system (SDE) and the theorem for
construction of the SDE system using its first integral.
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Let us consider a classical model

dy,(t) = F1(t,y(t))dt,
dy,(t) = F2(t, y(t))dt, (28)
dy,(t) = F3(t, y(t))dt,

with an invariant u(z,y).

Then we construct the GSDE system, taking into account the equality
u(t,x(t)) =u(0,%x(0)) = C:

dx1(t) = aq(t,x(2))dt + b1 (¢, x(2))dw(t) + [g,(t, x(t),y)v(dt, dy),
dx;(t) = ax(t,x(t))dt + by (t,x(2))dw(t) + [g,(t,x(t), y)v(dt,dy), (29)
dxs3(t) = as(t,x(t))dt + b3(t,x(t))dw(t) + [ g;(t, x(t),y)v(dt,dy).

Hence, the stochastic model has a representation

dy,(t) = a1(t, y(t))dt + b1 (2, y(2))dw(t) + [g,(t, y(),7)v(dt, dy),

dy,(t) = ax (t, y(t))dt + by (t, y(t))dw(t) + [g,(t,y(2),7)v(de,dy), (30)
dy,(£) = a3 (t,y(0))de + b3 (6, y(6))dw() + [ g3 (& y(0), )t dy),

¥(0) =y,

Further, we determine complementary function which is unit of control func-
tions for PCP1:

y
,y(®), (1)
y

Finally, we have constructed stochastic analogue for classical model described by
a differential equations system and having an invariant function.

9.3 The SIR (susceptible-infected-recovered) model

The SIR is a simple mathematical model of epidemic [24], which divides the
(fixed) population of N individuals into three” compartments” which may vary as a
function of time .

S(t) are those susceptible but not yet infected with the disease,

I(t) is the number of infectious individuals,

R(z) are those individuals who have recovered from the disease and now have
immunity to it,

the parameter 4 describes the effective contact rate of the disease,

the parameter y is the mean recovery rate.

The SIR model describes the change in the population of each of these compart-
ments in terms of two parameters:

as@) _ ,S@I)
d ~ ~ N
RO _ o,

74



Invariants for a Dynawmical System with Strong Random Perturbations
DOI: http://dx.doi.org/10.5772 /intechopen.96235

and its restrictsion is
S(t) +I(t) + R(t) = N. (33)
Let the model with strong perturbation be

ds(t) (AW+sl(t,S(t>,I<t),R(t>>)dt+

+b1(5, S(2),1(2), R(£))dw (t) + J 18, S(2),1(2), R(2), y)v(dt, dy),

dl(z) = (AS(?;( ) ul(t) + 5208, S(0), I(t),R(t)))dtJr
+b1(t, S(),1(t),R(t))dw(t) + jRgz (¢, S(2),1(t), R(t), y)v(dt,dy),
dR(t) = (uS(t) +s3(¢,S(t), I(t), R(t )))dt+
+b1(8,S(1),1(2), R(£))dw (t) + J 258, S(2),1(t), R(2), y)v(dt, dy),
(34)

and
u(t,S(t),I(¢),R(t)) =Sk) +1(¢) + Rt) — N = 0. (35)

Suppose that the function u(t,x,y,2) =x +y +2 — N is a first integral,
v(t,x,9,2) =2¢ " +x and h(t,x,y,2) = y are complementary functions, and
q(t,x,y,2) = x is arbitrary function. The initial condition is: x(0) =1, y(0) = 0,
2(0) = 0. Then constructed differential equations system has the form

dx(t) 2e7t 0 0
dyit) | = |0 dt+ | x(¢) dw(t) + J x(t)y) |v(dt,dy).  (36)
dz(t) —2et —x(t) | —x (t)y

Let us simulate a numerical solution of Eg.(36), where N = 1 (for example).
Figure 1 shows simulation for system without jumps, the Figure 2 shows the
processes with jumps.

iy f0f 000 sEekieasvaliester
Hihos| v = ,°| Xy = X01 Wy, =l
L) \o) el
X, =X+ hl-FI(t.X) + J_ - Bb{t,X;) - W U; =ulft.X)
Up=0 Ugp=0 Uppy=0
(x) 24
l-.x'.'o |
—_— w___——_’_-'-
[X{I 0. — g ﬁ'
= -Bm Mfr“j 1"». il ap o, A 1) L
(x), 0 T ¢ N
2 08 AL U |V i 7T
U; \
S \. /H‘%u
i w
i 01 02 03 04 05 06 O 08 09 1
t

Figure 1.
Numerical solution for Eq.(36) without jumps.
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1
Z,=X01 | 0‘ Z
\0/

0= X0 Wy =wl
i i

Z,,,=Z+hl-Fift,Z) + Bl bb(t,Z) - Wy, + i[RI, < N, Z) - n1,gft,Z_T1),0)

1
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_ /]
- L.
“8% o1 o0z 03 04 0 %5 0 08 09 1

Figure 2.
Numerical solution for Eq.(36) with jumps.

In such a way we could use the system of differential equations
dy,(t) = 2¢7dt,

dy,(t) = y,(O)dw(t) + [ ry,()v(dt, dy),

dys(t) = —2e"dt +y, ()dw(t) — [y, (t)v(dt, dy),

(37)

¥(0) =y,

as initial step for construction of stochastic SIR-model. A good choice of com-
plementary functions v(z, x,y,2) and k(¢, x, y,2) allows us to obtain such coefficients
that ensure that the solution {x(t),y(t),2(t)} of the differential equations system
satisfy some reasonable limitations.

9.4 The predator-prey model

The Lotka - Volterra equations or the predator—-prey equations used to describe
the dynamics of biological systems in which two species interact, one as a predator

and the other as prey.
The Lotka - Volterra model makes a number of assumptions, not necessarily
realizable in nature, about the environment and evolution of the predator and prey

populations:
* The prey population finds ample food at all times.

* The food supply of the predator population depends entirely on the size of the
prey population.

* The rate of change of population is proportional to its size.
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* During the process, the environment does not change in favor of one species,
and genetic adaptation is inconsequential.

* Predators have limitless appetite.

Let us note: Ny () is the number of prey, and N,(¢) is the number of some
predator, &1, €, n; and #, are positive real parameters describing the interaction of
the two species.

The populations change through time according to the pair of equations:

{le (t) = N1 (t)(e1 — ; N, (t))dt, (38)
dN,(t) = —N,(t)(e2 — 1, N1(t))dt.
Eq. (38) has the invariant function
N2 (t)emN1) = CNg (£)e N0, (39)
where C = const.
We can introduce the stochastic model as a form
dx1(t) = (e161() — 1 (£)x2 () + 51(8, x1(2), x2(2) ) )dt+
18,51 (2), %2 (2))dw1 (£) + g g1(8,%1(2), %2(2), y)v(dt, dy),
dx,(t) = (—&2x2(t) + npxa (£)x2(t) + 528, x1(2), %2(2)) )dt+ (40)
ha(t, %1 (6), 62 (0))dwa (1) + [ g3(t,1(8), x2(0), )t ),
x1(0) = Ny, x2(0) = No,
with condition
u(t,x(t)) = x7 2 () ¥ — Cxit(£)e™m*2 ). (41)

Let us assume that ¢y =2, &, = 1,7, =, = 1, and C = 1, and initial condition is
x(0) = y(0) = 1. The function u(t,x,y) = x ¢ — y’¢~% is a first integral,
h(t,x,y) =y —x +e¢* and q(t,x,y) = x are complementary functions.

We cannot find an analytical solution of the differential equations system

aZl (t) x’y9 J’)
dy
022(t,%,9,7)
dy

= eizZ(t’x’y’ﬂzl (t3 xsys Y)ZZ (t; x;)h 7/) (Zz(t> x,}’, }/) - 2);

= _6,721(t,X,y,7) (1 - Zfl(t’ X579 }’)) .

Then, the constructed SDE system includes only Wiener perturbation:

[dx(t) _ | Alx(E),y@) + B x(6),y(2)) + Clt, x(2), y(1)) it
dy(t) D(t,x(t),y(t)) + E(t,x(t),y(t))
x(t)e? (y*(2) — 2(2)) (42)
+ exi(t) _ dw(t),
x(t)
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where

2
Alt,x(6),5(6) = 0.5¢70x(0) (1) - e ),
B(t,x(1),y(t)) = 057 (x()e"® — e x1(1) ) (2 - 4y(1) +57(0)),
Clt,x(t),y(t)) = — ete ! 0'2( ) (1))

eDx=1(t) — 2y(t)e Dx2(t) +yA(e)e @’
et (xfl( ) (t))
De:x6).x6) = S doe
E(t,x(t),y(t)) = —0.5¢We>® (32 (¢) — )(1 x7HE) +x(t) — 2+ 27 (t)).

(43)
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Figure 3.
Numerical simulation 1 for solution of Eq.(44).
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Figure 4.
Numerical simulation 2 for solution of Eq.(44).
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Finally, we have the stochastic Lotka Volterra model associated to (38)

(N(£) = (N1(£), Na(2))):

lle(t) _ |AGN®) +BEN(@) +CEN() it
dN;(t) D(t,N(t)) + E(t, N(t))
)e N0 (N3 () — 2N (¢)) (44)
+ N1 © dw(t),

Ni(t)

where A(t,N(t)), B(t,N(t)), C(¢,N(t)), D(t,N(t)), E(t,N(t)) are determined by
Eq.(43).

Figures 3 and 4 show two realizations for numerical solution of Eq. (44).

Another examples of a differential equation system construction and models see
n [25-29].
10. Conclusion

The invariant method widens horizons for constructing and researching into

mathematical models of real systems with the invariants that hold out under any
strong random disturbances.

Author details

Elena Karachanskaya
Far-Eastern State Transport University, Khabarovsk, Russia

*Address all correspondence to: elena_chal@mail.ru

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

79



Advances in Dynamical Systems Theory, Models, Algorithms and Applications

References

[1] Dubko V. A. First Integrals of Systems
of Stochastic Differenial Equations.
Preprint. 1978. I1zd-vo An USSR, In-t
Matematiki, Kiev. [in Russian], https://ru.
calameo.com/read/003168372f1f76b
3dbbbc [Accessed: 08 January 2021]

[2] Dubko V. A. Integral invariants for
some class of systems of stochastic
differential equations. Dokl. Akad. Nauk
Ukr. SSR, Ser. A. 1984, 18(1) : 17-20. [In
Ukranian]

(3] Dubko V. A. Questions in the Theory
and Applications of Stochastic
Differential Equations. DVO AN SSSR,
Vladivostok, 1989. [in Russian].

(4] Dubko V. A. and Chalykh E. V.
Construction of an analytic solution for
one class of equations of the Langevin
type with orthogonal random actions.
Ukr. Mat. Zh. 1998, 50(4) : 666-668. h
ttps://doi.org/10.1007/BF 02487397

[5] Chalykh E. On one generalization of
the Langevin equation with determinate
modulus of velocity. Ukr. Mat. Zh. 1998,
50(7) : 1004-1006. https://doi.org/
10.1007/BF 02528827

[6] Dubko V. A. Integral invariants of
Itds equations and their relation with
some problems of the theory of
stochastic processes. Dopov. Nats. Akad.
Nauk Ukr.,Mat. Pryr. Tekh. Nauky.
2002, 1:24-27.

[7]1 Dubko V. A. Open evolving systems.
In: The First International Scientific
Technical Conference Open Evolving
Systems (April 2627, 2002), Abstracts,
14 (VNZ VMUROoL, Kyiv, 2002), http://
openevolvingsystems.narod.ru/inde
xUkr.htm [Accessed: 08 January 2021]

[8] Doobko V. A. and Karachanskaya E.
V. Stochastic first integrals, kernel of
integral invariants and Kolmogorov
equations. Far Eastern Mathematical
Journal. 2014, , 14(2) : 1-17. [In

80

Russian] https://readera.org/14329339-¢
n [Accessed: 08 January 2021]

[9] Karachanskaya E.V. The generalized
It6Venttsel formula in the case of a
noncentered Poisson measure, a stochastic
first integral, and a first integral. Sib. Adv.
Math. 2015, 25:191-205. https://doi.org/
10.3103/S1055134415030049 [Accessed:
08 January 2021]

[10] Karachanskaya E. V. Random
processes with invariant. Khabarovsk,
Publ of Nat. Pacific Univ. 2014, P. 148. [In
Russian] http://lib.pnu.edu.ru/download
s/TextExt/uchposob/Karachanskaya.pdf?
id=1156454 [Accessed: 08 January 2021]

[11] Erugin N. P. Construction of the
whole set of differential equations having

a given integral curve. Prikl. Mat. Mekh.
1952, 16(6):658-670. [In Russian]

[12] Gikhman I. I. and Skorokhod A. V.
Stochastic Differential Equations.
Springer-Verlag, New York, 1972: viii +
354 pp. (Translation of the 1968 book,
Stokhasticheskie Differentsialnie
Uravneniya. Published by Naukova
Dumka, Kiev, U.S.S.R.)

[13] It6 K. Stochastic differential
equations in a differentiable manifold.
Nagoya Math. J. 1950, 1: 35-47.

[14] Kunita H. and Watanabe S. On
square integrable martingales. Nagoya
Math. J. 1967, 30 : 209-245. https://doi.
org/10.1017/S0027763000012484
[Accessed: 08 January 2021]

[15] Ventzel’ A. D. On equations of the
theory of conditional Markov processes.
Theory Probab. Appl. 1965,10(2) : 357
361. Translated in Russian : Teor.
Veroyatnost. i Primenen. 1965, 10(2) :
390-393. https://doi.org/10.1137/1110045

[16] Karachanskaya E. V. A Proof of the
Generalized Itd — Wentzell Formula via
the Delta-Function and the Density of



Invariants for a Dynamical System with Strong Random Perturbations

DOI: http://dx.doi.org/10.5772 /intechopen.96235

Normal Distribution. Yakutian Math. J.
2014, 21(3): 46-59 http://mzsvfu.ru/
index.php/mz/article/view/a-proof-of-
the-generalized-ito-wentzell-formula/
194 [Accessed: 08 January 2021]

[17] Karachanskaya E.V. A direct
method to prove the generalized It6 -
Venttsel’ formula for a generalized
stochastic differential equation, Siberian
Adv. Math. 2016, 26(1): 17-29. https://
doi.org/10.3103/51055134416010028

(18] Karachanskaya E. V. Construction
of program controls with probability 1
for a dynamical system with Poisson
perturbations. Vestnik Tikhookeansk.
Gosuniversiteta 2011, 2(21): 51-60. [In
Russian]. https://pnu.edu.ru/media/ve
stnik/articles/1586/en/ [Accessed: 08
January 2021]

[19] Karachanskaya E. V. Programmed
Control with Probability 1 for Stochastic
Dynamical Systems. Journal of
Mathematical Sciences. 2020, 248(2) :
67-79. https://link.springer.com/article/
10.1007/s10958-020-04856-4
[Accessed: 08 January 2021]

[20] Krylov N. V. and Rozovskii B. L.
Stochastic partial differential equations
and diffusion processes. Usp. Mat.
Nauk. 1982, 37(6 (228)) : 75-87 [Russ.
Math. Surv. 1982, 37: 81-89].

[21] Poincare A. Selected Works in Three
Volumes. Vol. II: Les Methodes
Nouvelles de la Mecanique Celeste.
Topology. Number Theory. Nauka,
Moscow. 1972.

[22] Karachanskaya E. V. Construction
of Programmed Controls for a Dynamic
System Based on the Set of its First
Integrals. Journal of Mathematical
Sciences 2014, 199(5) : 547-555. https://
doi.org/10.1007/s10958-014-1881-4
[Accessed: 08 January 2021]

[23] Karachanskaya E. V. Stochastization

of classical models with dynamical
invariants. Mathematical notes of

81

NEFU. 2020, 27(1): 69-87. [In Russin]
http://mzsvfu.ru/index.php/mz/article/
view/stochastization-of-classical-mode

ls-with-dynamical-invariants [Accessed:
08 January 2021]

[24] Kermack W. O. and McKendrick A.
G. Contributions to the mathematical
theory of epidemics. Proc. R. Soc. Lond.,
Ser. A, Math. Phys. Eng. Sci. 1927, 115
(772) : 700-721.

[25] Chalykh E. V. Constructing the set of
program controls with probability 1 for
one class of stochastic systems.
Automation and Remote Control. 2009,
70(8) :1364-1375. https://link.springer.
com/article/10.1134/S0005117909080098
[Accessed: 08 January 2021]

[26] Karachanskaya E. and Tagirova T.
Construction of stochastic transport
models with a constant function. IOP
Conference Series Earth and
Environmental Science. December 2019,
403, no. 012211. https://iopscience.iop.
org/article/10.1088/1755-1315/403/1/
012211 [Accessed: 08 January 2021]

[27] Karachanskaya E. V. and Petrova A.
P. Modeling of the programmed control
with probability 1 for some financial
tasks. Mathematical notes of NEFU.
2018, 25(1): 25-37. [In Russin] https://
doi.org/10.25587/SVFU.2018.1.12766
[Accessed: 08 January 2021]

[28] Averina T., Karachanskaya E., and
Rybakov K. Statistical modeling of
random processes with invariants.
International Multi-Conference on
Engineering, Computer and Information
Sciences (SIBIRCON). Novosibirsk. 2017 :
34-37. https://ieeexplore.ieee.org/docume
nt/8109832 [Accessed: 08 January 2021]

[29] Averina T. A., Karachanskaya E. V.,
and Rybakov K. A. Statistical analysis of
diffusion systems with invariants.
Russian Journal of Numerical Analysis
and Math. Modelling. 2018, 33(1) : 1-13.
https://doi.org/10.1515/rnam-
2018-0001 [Accessed: 08 January 2021]






Chapter 5

Stochastic Theory of
Coarse-Grained Deterministic
Systems: Martingales and
Markov Approximations

Michel Moreau and Bernard Gaveau

Abstract

Many works have been devoted to show that Thermodynamics and Statistical
Physics can be rigorously deduced from an exact underlying classical Hamiltonian
dynamics, and to resolve the related paradoxes. In particular, the concept of equi-
librium state and the derivation of Master Equations should result from purely
Hamiltonian considerations. In this chapter, we reexamine this problem, following
the point of view developed by Kolmogorov more than 60 years ago, in great part
known from the work published by Arnold and Avez in 1967. Our setting is a
discrete time dynamical system, namely the successive iterations of a measure-
preserving mapping on a measure space, generalizing Hamiltonian dynamics in
phase space. Using the notion of Kolmogorov entropy and martingale theory, we
prove that a coarse-grained description both in space and in time leads to an
approximate Master Equation satisfied by the probability distribution of partial
histories of the coarse-grained state.

Keywords: stochastic theory, coarse-grained deterministic systems, Markov
processes, martingales

1. Introduction

It is generally admitted that Thermodynamics and Statistical Physics could be
deduced from an exact classical or quantum Hamiltonian dynamics, so that the
various paradoxes related to irreversibility could also be explained, and
nonequilibrium situations could be rigorously studied as well. These questions have
been and still are discussed by many authors (see, for instance Refs. [1-4] and many
classical textbooks, for instance [5-10]), who have introduced various plausible
hypotheses [7-14], related to the ergodic principle [8-11], to solve them. It seems
that there are two major kinds of problems. First, to justify that physical systems
can reach an equilibrium state when they are isolated, or in contact with a thermal
bath (which remains to be defined). Secondly, to justify various types of reduced
stochastic dynamics, depending on the phenomena to be described: Boltzmann
equations, Brownian motions, fluid dynamics, Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchies, etc..: see for instance Refs [1-11, 15, 16]. Concerning
the first type of problems (reaching an equilibrium, if any) very rough estimations
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show [17] that the time scales to reach equilibrium, using only Hamiltonian
dynamics and measure inaccuracies, are extremely large, contrarily to everyday
experience, and quantum estimations are even worse [17]. Essentially, these times
scale as Poincaré recurrence times and they increase as an exponential of the
number of degrees of freedom (see Section 3 of this chapter for a brief discussion
and references).

Here we concentrate on the second type of problems: is it possible to derive a
stochastic Markovian process from an “exact” deterministic dynamics, just by
coarse graining the microscopic state space? We generalize and complete the for-
malism recently presented [18] for Hamiltonian systems. Our framework is now
more general and applies to all deterministic systems with a measure preserving
dynamics, which, by Liouville theorem, include Hamiltonian dynamics.

Following Kolmogorov, we start with a measure space with a discrete time
dynamics given by the successive iterations of a measure preserving mapping. The
Kolmogorov entropy, or trajectory entropy, has been defined by Kolmogorov as an
invariant of stationary dynamical systems (see Arnold and Avez book [19] for a
pedagogical presentation). We follow his work and generalize part of his results.
We also use martingale theory [20-23] to show that the stationary coarse-grained
process almost surely tends to a Markov process on partial histories including #
successive times, when z tends to infinity. From this result, we show that in the
nonstationary situation, the probability distribution of such partial histories
approximately satisfies a Master equation. Its probability transitions can be com-
puted from the stationary distribution, expressed in terms of the invariant measure.
It follows that, with relevant hypotheses, the mesoscopic distribution indeed tends
to the stationary distribution, as expected.

Our next step is to coarse grain time also. The new, coarse-grained time step is
now # 7, = being the elementary time step of the microscopic description, and 7
being the number of elementary steps necessary to approximately “erase” the
memory with a given accuracy. The microscopic dynamics induces new dynamics
on partial histories of length #n. We show that it is approximately Markovian if # is
large enough. This idea is a generalization of the Brownian concept: a particle in a
fluid is submitted to a white noise force which is the result of the coarse-graining of
many collisions, and the time step is thus the coarse-graining of many microscopic
time steps [8, 24]. The Brownian motion emerges as a time coarse-grained
dynamics.

In Section 2, we recall various mathematical concepts (Kolmogorov entropy,
martingale theory) and use them to derive the approximate Markov property of the
partial histories, and eventually to obtain an approximate Master Equation for the
time coarse-grained mesoscopic distribution [18].

In Section 3, we briefly consider the problem of relaxation times and recall very
rough estimations showing that an exact Hamiltonian dynamics predicts unrealistic,
excessively large relaxation times [17], unless the description is completed by
introducing other sources of randomness than the measure inaccuracies leading to
space coarse-graining. Note that, following Kolmogorov [19], we do not address the
Quantum Mechanics formalism.

2. Microscopic and mesoscopic processes in deterministic dynamics
2.1 Microscopic dynamics: Definitions and notations

It has been shown recently [18] that coarse-grained Hamiltonian systems can be
approximated by Markov processes provided that they satisfy reasonable
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properties, covering many realistic cases. These conclusions can be extended to a
large class of deterministic systems generalizing classical Hamiltonian systems,
which we now describe. We first specify our hypotheses and notations.

2.1.1 Deterministic microdynamics

Consider a deterministic system S. Its states x, belonging to a state space X, will
be called “microstates”, in agreement with the usual vocabulary of Statistical
Physics. The deterministic trajectory due to the microscopic dynamics transfers the
microstate x at time 0 to the microstate x;, = ¢,(xo) at time ¢. The evolution function
@, satisfies the current properties of dynamic systems: ¢, ¢, = ¢,, 9o =1, t and s
being real numbers and I being the identical function.

The dynamics is often invariant by time reversion, as assumed in many works on
Statistical Physics: we refer to classical textbooks on the subject for details [5-8], but
we will not use such properties in this chapter.

2.1.2 Microscopic distribution

Assume that the exact microstate x is unknown at time 0, but is distributed
according to the probability measure y on the phase space X. The microscopic
probability distribution y, at time ¢ is given by

He (A) = u(p_, A). (1)

for any measurable subset A of X. If y is stationary, it is preserved by the
dynamics: 4, (A) = u (A). This condition, however, it not necessarily satisfied, in
particular for physical systems during their evolution.

We will focus on two important cases:

a. the finite case: X is finite and consists in N microstates.

b. the absolutely continuous case: X CR”, where (i) R is the set of real numbers
and # is an integer (usually very large, and even in the case of Hamiltonian
dynamics), and (i7) the measure y is absolutely continuous with respect to the
Lebesgue measure @ on R”": these exists an integrable probability density p (x)
such that for any measurable subset A of X

u(A) = j p)dax). @)

A

Furthermore, we assume that (ii7) the Lebesgue measure of X (or volume of X)
V =vol(X) = [ydw(x) is finite, and (iv) the Lebesgue measure w is preserved by the
dynamics for any ¢ and any measurable subset A of X.:

volA =vol (¢p_,A). (3)
The last two assumptions obviously generalize basic properties of Hamiltonian
dynamics in a finite volume of phase space. Thus, by (1)-(3), the probability

density is conserved along any trajectory: at time ¢ the probability density is

pix,t) =p(0,¢0_x) =p(p_x) 4)
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2.1.3 Initial microscopic distribution: The stationary situation

Suppose that S is an isolated physical system and no observation was made on &
at time O nor before 0. Then, in the absence of any knowledge on S, we admit that
at the initial time S is distributed according to the only unbiased probability law,
which is the uniform law. This is clearly justified in the finite case, according to the
physical meaning traditionally given to probability: in fact, attributing different
probabilities for two distinct microstates of X would imply that some measurement
would allow one to distinguish them objectively, which is not the case at time 0.

In the absolutely continuous case, initial uniformity is less obvious: it amounts to
assuming that the system should be found with equal probability in two regions of
the state space with equal volumes if no information allows one to give preference
to any of these regions. This is of course a subjective assertion, but for Hamiltonian
systems it agrees with the semi-quantum principle which asserts that, in canonical
coordinates, equal volumes of the phase space correspond to equal numbers of
quantum states.

Another way for choosing the initial probability distribution is to make use of
Jaynes’ principle [25], which is to maximize the Shannon entropy of the distribution
under the known constraints over this distribution: in the present case of an isolated
system which has not been previously observed, this principle also leads to the
uniform law. It is not really better founded than the previous, elementary reason-
ing, but it may be more satisfying and it can be safely used in more complex
situations. We refer to most textbooks on statistical mechanics for discussing these
well-known, basic questions.

The uniform distribution in a finite space, either discrete or absolutely continu-
ous, is clearly stationary. In addition to the previous hypotheses, we will assume
that the space X is indecomposable [26]: the only subsets of X which are preserved
by the evolution function ¢, are the empty set @ and X itself. Then, the stationary
probability distribution is unique [18].

For simplicity, we will henceforth assume that the phase space X is finite.

Initial, nonstationary situation. In certain situations, the system can be pre-
pared by submitting it to specific constraints before the initial time 0. Then it may
not be distributed uniformly in X at¢ = 0. We will consider this case in the next
paragraph.

2.2 Mesoscopic distributions
2.2.1 Mesoscopic states

Because of the imprecision of the physical observations, it is impossible to
determine exactly the microstate of the system, but it is currently admitted that the
available measure instruments allow one to define a finite partition of X into subsets
ie M=),k =1,2,...M, such that it is impossible to distinguish two microstates
belonging to the same subset i. So, in practice the best possible description of the
system consists in specifying the subset i where its microstate x lies: i can be called
the mesostate of the system. The probability for the system to be in the mesostate 7 at
time ¢ will be denoted p (i t). It is not sure, however, that two microstates belonging
two different mesostates can always be distinguished: this point will be considered
in Section 3.2.2.

Remark: for convenience, we use the same letter p to denote the probability in a
countable state space, as well as the probability density in the continuous case. This
creates no confusion when the variable type is explicitly mentioned. This is the case
now since, as mentioned previously, we assume that the space X is discrete. The
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transposition to the continuous case is generally obvious, although the complete
derivations may be more difficult.

2.2.2 The stationary situation

If time O is the beginning of all observations and actions, we assume that the
initial microscopic distribution y is uniform and stationary, as discussed previously,
and the probability to find system S in the mesostate iy at time 0 is p (i, 0) = p(io,)-
The probability to be in i at time ¢ is p°(i, ) = p,(i) = u(¢_,(7)). The stationary joint
probability to find S in iy at time 0 and in 7 at time ¢ is

p°(i0, 051,1)) = u(ep_,inio) = u(ingio) (5)

and the conditional probability of finding S in the i at time ¢, knowing that it was
inig at time O is

0(i,800,0)  p(p_,inio)  pu(ing,io)
O, tlo, 0) = L0510 0) _ Klo-tiio) _ plin 6
PO = s 0) T k) sG] ©
Similarly, the stationary #-times joint probability and related conditional proba-
bilities are readily obtained from

po(io,o;il,tl; el 15bn1) = M(¢7t”71itn,ln“'ni0) ) @

with, for any #: p°(io, t3i1, 81 + 3 o ip—1,tn-1 + 1) = p°(i0, 0501, 15 wov Ty—1,80-1)-

For the sake of simplicity, we will discretize the times 0 < #; < t;..., and write
t; = k;7, k; being a nonnegative integer and 7 a constant time step, which will be
taken as time unit.

2.2.3 Non stationary situation

If S is a physical system, interactions may exist before or at time 0, so that the S
can be constrained to lie in a certain subset A of X at time 0. However, since it is not
possible to distinguish two microstates corresponding to the same mesostate, A
should be a union of mesostates, or at least one mesostate. If it is known that at time
0 the microsate x of the system belongs to the mesostate i, we should assume that
the initial microscopic distribution is uniform over i, since no available observation
can give further information on x: so, in the discrete case, if 7#(7) is the number of
microstates included in 7 and y, (x) the characteristic function of i

plx, 0jx i) = 71) 2:%) ®)

In the absolutely continuous case, the similar conditional density is obtained in
the same way, replacing the number of microscopic states contained in the
mesostate i by its volume v (i). For simplicity, we follow considering the discrete
case, with obvious adaptations to the continuous case.

If one only knows the mesoscopic initial distribution p(7,0) that at time O the
system belongs to i, for each mesostate i of M, the initial microscopic distribution
becomes

P 0) = 3, plh,0) ) = 30, L0 210 )
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N being the total number of microstates in X.
The n-times nonstationary mesoscopic probabilities are obtained from (9)

p,(i0,05i1,1, 58, 1,m — 1) :p(ioﬂ(/)_liln NPy qin—1, O)
:p(lo) n (ioﬂ(p,ll'lﬂ ﬂ(p7n+1in_1) (10)
p(io) N

where #(A) is the number of microstates belonging to some subset A of X. So

2,(i0,03i1, 1,305 1,m — 1) = p(ioN@_1i1N ... 0@_, ,1in-1)

and all multiple probabilities follow, for instance

Pl 1 i, m) = Z,u(zongo_lzm...ngo_nzn) o O). (12)

io

=
—
<
=)
Nty

The corresponding process is generally not Markovian. For instance, if io N ¢4
W# @, iiN¢_1iy# @andio N ¢_yir = @, it is easily seen that
Py, 2Ji, 13ig, 0) = 0 but p (i, 2]i;, 1) # 0.

From the definition of the relative probabilities, one can formally write

p(iz, tz) = Zp (iz, I |i1,t1)p(il, tl). (13)

but in general this equation is useless, since the conditional probability p(i2, 12|
i1, t1) cannot be computed independently of p (i1, £1).

It results from (11) that the nonstationary conditional probabilities, conditioned
by the whole past up to time 0, are identical to the corresponding stationary proba-
bilities: as an example

Plinsn|in_1,m —1; ..3i0,0) = p°in,n|in_1,m — 15 ... 340, 0)

_ ulioN@_1i10 ... NP _,1,) (14)

1 (i0N@_1i1N .. 0@,y 1in—1)

We will make use of this simple but important property later.

2.3 Entropy of the mesoscopic process resulting from deterministic,
microscopic system

Kolmogorov and other authors [19] studied the entropy and ergodic properties
of the stationary mesoscopic process defined previously, following methods intro-
duced by Shannon in the framework of signal theory [27-30]. These methods, and
part of Kolmogorov’s results, can be extended to the nonstationary process (11).

2.3.1 The n-times entropy and the instantaneous entropy of the mesoscopic system

Following Kolmogorov, we consider y the Shannon entropy [27-30] of the
trajectory (i), = (i, ..., i,1) in the phase space

S(p.) =

Z p,(i0,0; ...5ip—1,m — 1) Inp, (i9, 0; ...535_1,m — 1). (15)

0y wlp—1
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On the other hand, the new information obtained by observing the system in the
mesoscopic state i, at time ,,, knowing that it was in the respective states io, ...,
at the prior times O, ...#n-1, will be called the instantaneous entropy

52 () = Snsa(p) = S,(p) = = Y plios 05 et m) In p (i, mlin 1,m — 15 ...335, 0) > O
105555 0n
= Zio);;;imp(io, 0; . eweiy—1,m — 1) S(p (% nfin_1,m — 15 ... 34, 0)). (16)

where p denotes the infinite process. The properties of S(p,,) and s,,(p) have been
extensively studied by Kolmogorov and other authors in the case of the stationary
process (6) [19]: they are summarily mentioned in 2.5. They are not necessarily
valid for the nonstationary process.

2.3.2 Maximiging the n-times entropy of the mesoscopic system: The “Markov scheme”

If one knows the first two distributions p; and p,, one can mimics the exact
mesoscopic distributions p,, by using the Jaynes’ principle, maximizing the
entropy S(g,) of a ditribution ¢,, under the constraints g; = p; and ¢, = p,. Then it is
found that optimal distribution ¢, is the Markov distribution g, satifying these
constraints [18].

It is shown in Ref. [18] that for n > 2, both the n-times entropy S, (7) and the
instantaneous entropy s, (7) are larger than the correponding entropies S, (p) and
su(p) of the exact process p, except if p is Markov: p = g.

The Markov process g, is not really an approximation of the mesoscopic process
p, because g, does not tend to p,, when # — co. Approximating the exact mesoscopic
process by a Markov process will be the main purpose of the next section.

2.4 Entropy and memory in the stationary situation
2.4.1 Kolmogorov entropy of the stationary process

Here we consider the stationary process arising from the initial uniform micro-
scopic distribution u(x), when the n-times stationary probability is p? given by (7).
For the sake of simplicity we omit the index ° in the present Section, unless other-

wise specified. It can be shown [19] that the entropy S, (p) is an increasing, concave
function of

50 = Sus1(p) — Su(p) 2 0. 17)
Sn+1 — Sn = Sn+1 (P) - ZSn(p) + Snfl (P) < 0. (18)

It results from (17) and (18), and also from 2.5.2, that the limits
limnﬂw% Su(p) = lim s, (p) = s(p). (19)

exist: s(p) is the Kolmogorov entropy of the evolution function f with respect to
the partition (i) of the mesoscopic states [19]. More simply, we can call it entropy of
the mesoscopic process.

2.4.2 Memory decrease in the stationary mesoscopic process

It has been proved recently [18] that, although it is infinite, the memory of the
mesoscopic process fades out with time: for # large enough, if N > # the probability
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of i)y at time N conditioned by the # last events, is practically equal to the probabil-
ity at time N, conditioned by the whole past down to time O.

p(lN,Nl iNfl,N — 1; ln,N — n) %p(lN,Nl Z'Nfl,N — 1; ...i(), O) when n — oo.
(20)

More precisely, for any ¢ > 0, there exists a positive integer z such that for any
N>n

0<sy <sp<e. (21)
where s, is the instantaneous entropy given by (14). In fact, let us write

Iy (in) = p(in, Nlin-1,N — 15 .. i, 0) = u( f_yin| f_yigin-1N..Nig);  (22)

a3 (in) = p(in, Nlin-1,N = L oo osin-ns N = 1) = u( f_yin| fonaqin-a0 e OF yoninn)-
(23)
For a given , formula (23) allows one to define a new process p™ from the
original process p, which can be called “the approximate process of order n” of p
(see Section 2.6). It results from (21) and from the stationarity of p that for any

€ > 0, there is an integer n(¢e) depending only on ¢, such that for any integers N,
n>n(e)

0<su () =swp) = 3 w(ioNf 40 0F yyoyin-a) So,wva (M| ) <e.

10, . IN-1

(24)

where So, . n-1 (HN|H](\7)) is the relative entropy of 1y with respect to HIY;): the

last right hand member of Eq. (22) is the average of this relative entropy on the past
of N. Because s)(p) decreases to a limit 5(p) when N — oo, it results that

0<85,(p) =50 (p) —5(p) < eif n>nle). (25)

The total variation distance d(P,Q) between two distributions P; and Q; over the
states j of a finite set (j) is

ar,Q) =1 S |p - 26)
J

Then, the total variation distance dy, . n_1 (HN, HI(\’;)> between I1y and H1<\7) (for a

given past trajectory between times 0 and N-1) is related to the relative entropy
[18, 31] and it can be concluded that

<do,mN,1 (HN,IL(\’;)) >2 < < {do,mN,l (HN,H,<$>) T > <e/2if n(e)<n<N. (27)

2.4.3 Convergence properties of the approximate process

Let us write m = N-n > 0. It follows [18] from (25) that for any fixed m, the total
variation distance between the exact and the approximate probabilities

Ao, ..m+n-1 (Hmw,Hﬁﬁn) tends to O in probability whenn — oo
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dO,‘..m+n71 (nm+m H;(:j_n) L 0 if n — oo. (28)

So, the probability that this distance exceeds a given accuracy 2 > 0 can be made
as small as desired by choosing z large enough.

Further results can be obtained by newly using the sationnarity of process p. In
fact, it can be shown [18] that p is a martingale [20-22]. Then, general results from
martingales theory (see below) show that when # — « the distance between the

stationary conditional probability 7, , , and its approximation Hﬁﬂ_n tends to 0
almost surely [18], as well as and in probability

dO,...ernfl (Hern; H;(«:in) N 0 if n — oo. (29)

So, the approximation Hiﬁn converges to I1,, , , for almost all trajectories [18].

We now sketch the derivation of this conclusion from martingale theory.
2.5 Martingale theory and almost sure convergence

For convenience, we first summarize some definitions and results of martingale
theory [20-22], before applying them to the mesoscopic laws of deterministic
systems. We refer to [20] for adressing more general cases.

2.5.1 Definitions

i. simplified definition: a (discrete time) sequence of stochastic variables X,, is
a martingale if for all x:

(X,) <o and (X, ,4[X,, ..X;) =X, (30)

n

where (X) denotes the average (mathematical expectation) of the stochastic
variable X.

ii. more generally (see the general definition, for instance, in [20])

If « (Q, F, P) is a probability space (where Q is the state space, P is the probability
law, and F is the set of all subspaces (c-algebra) for which P is defined),

* F , is an increasing sequence of s-algebras extracted from  (F ,C F ,, , 1
C .. CJF),and.

e for all# > 0, X,, is a stochastic variable defined on (Q,F ., P),

the sequence X,, is a martingale if (|X,|) <o and (X, ,|F,) =X,.

2.5.2 Convergence theorem for martingales

Among the remarkable properties of martingales, the following convergence
theorem holds [20, 21]:

If (X,,) is a positive martingale, the sequence X,, converges almost surely to a
stochastic variable X.

So, for almost all trajectories w, X, (@) — X(w) with probability 1 when # — .

Stronger and more general results can be found in the references.
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2.5.3 Application to the n™ approximation of the stationary mesocopic process

The stochastic variable Y, = p°(in, N|in_1, N — 1; ...;i0, 0) is a martingale. In
fact, because of the stationarity of p° we have, renumbering the states

P°(i,N|i-1,N = 15 ...5i_p, 0) = p°(3,0]i1, =15 ...5i_y, —N) = p°(i, 0| Fn). (31)
where Fy is the c-algebra generated by i_4, ...i_y. Let us write
an =p°(i,0)i_1, —1; ...5i_y, —N) = p°(i, 0| Fy). (32)
We have, because Fny_1 CFpn
(an|Fn-1) = (p°3,01FN)|Fn-1) = p°(i, 0| Fn-1) = an-1. (33)
So, my is a martingale on the c-algebra Fpy, and by the convergence theorem, it
converges almost surely to a.
limit 7 when N — oo.
Now if N > 7, let us write m = N-n > 0. Because of the stationarity of p°
pP(in+mli_,n+m—1; 5i_,,m) =p°(i,0]ii1, =15 .5i_,, —n) = m,(i).  (34)
Thus, for any fixed, positive m

Tnim — T . (35)

The absolute value distance between z, . ,,, and 7z, is obtained by summing
|7n+m (i) — 7, (7)| over the M possible states 7, So

dO, on+m—1 (qn+m’q;(ﬁzm> - d(”m+n, ﬂn) a_5> O lf 7 — oo, (36)

which is (29), one of our main, formal results.

2.6 n-times Markov approximation of the mesoscopic stationary process

Returning to inequalities (19), when the value ¢ is fixed for obtaining a required
precision, the value # = n(¢) is determined and a satisfying approximation of the
exact mesoscopic process is obtained by neglecting the memory effects at time
differences larger than z [18] Thus, one replaces p(in, N|in-1, N — 1; .. ...79, 0) by

p™ (in,N|in_1,N = 1; .. ...50,0) = p(in, N|in_1,N = 1; .. .iy_, N =) if N> n
(37)

With the convention
p™(io, 0; ...in, N) = plio,0; ...in,N) if N< n. (38)

all the probabilities related to the approximate process p™ are defined from the
probabilities of p: this defines p™, the approximate process of order # of p. So, p™
has a finite memory of size n, whereas p has in general an infinite memory.

The process p™ is a Markov process on the partial trajectories I consisting of
groups of 7 successive mesocopic states
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Iy = (ikn>ikns1s - igstp-1) € M" (39)
Its probability distributions can be written in abbreviated notations

PP (To, Tos 1, Tas Ik 1, Tic 1) = p™ (I0, 0,1, oot — LIy, mym +1,..20 — 15 3 Iy,
(K—=1mn, ..,Kn—1). (40)

Tk being the group of # successive times: T, = kn,kn + 1, ..., (k 4+ 1)z — 1. From
the approximation (18) it follows (see Appendix A) that

PO (I, Ty |Tk—1, T3 - T0, T ) &P (I, Ty |Ix—1, Tie_1 ) - (41)

where we now use the upper index® in P° and P°™ to recall that, in the present
section, p is the stationary distribution. Note that, because of this stationarity

PO (I, Ty |Ik—1, Ty ) = P°™ (Ix, Ty -1, To ) = P°(Ix, Ty |Ixk-1, )
= W(I[( |IK,1 ) (42)

So, the transition matrix W is well defined from the known stationary
distribution p°.

From the approximate relation (41) if follows that the exact stationnary process
P° on the partial history Ix during the time interval Ty approximately obeys the
n-times Markov Equation (see Section 2.7)

P°(Ix, Tx) ~ Z WIK|IK 1) P°(Ix-1, Tx—1). (43)

0(n)

while the 7™ approximation P °™ satisfies (33) exactly.

2.7 Markov approximations of the nonstationary mesoscopic process

We return to the nonstationary process p generated by the deterministic micro-
scopic process from an arbitrary initial distribution of the mesoscopic states, given
by (11). As in paragraph 2.6, it is now necessary to distinguish the stationary process
p° by the upper index’.

One can write the trivial equality

P(iN;N, lN+n 1,N+7’l—1 Z P 1N+n 1,N+Vl 5 ';iNaN

in_p> = lg

lin-1, N —1; ...540,0)p(i0, 05 . ... ;in—1, N — 1).  (44)

We now use remark (14): the conditional probabilities, conditioned by the
whole past up to time 0, are 1dentlca1 in the stationary and nonstatlonary situations.
The stationary distributions p° can be approximated by its n™ approximation p°™
introduced in Section 2.6. Thus we can write

po(iN+n,1,N +n—-1; .. ;iN,N\iN,l,n —1; ...5 10, 0) =
PO(ingn-1 N +n—1]intn2 N +n—2; 500, 0)p°(inin-2s N +7 — 2| inin3, N +7 — 35 ... 0, 0) ...
oo PP(ins N in-1, N =15 ...500,0) = p°™ (i1, N+71 =15 5in, Nin_1,7 — 15 o3 inns N — 1)
(45)
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With (35), Eq. (34) yields the approximate #-times Markov Equation

p(insN; sinim 1, N+n—1) Z P (inin1, N +n—1; .. 5in, N

iy_p> ol

|iN_1,7l — 1; ey iN_n,N — ﬂ)p( Z.N,n,N —n; ...;Z'Nfl,N — 1) (46)

0

Taking N = Kz for an integrer K > 0, using the condensed notations of § 2.6 and
definition (42), Eq. (46) yields an approximate Master Equation for the probability
P(Ig, T) of the partial history Ix during the time interval Tx

P(Ix, Tx) » Z[ W (I [Ix-1) P(Ix-1,Tk-1) (47)

which is the Eq. (43) obtained for the stationary probability P°(Ix, T). Let
pn (Ix, T)be the exact solution of Eq. (47) that coincides with the exact P at the n
first elementary times 0, 1, ... #-1 of the system history: p) (Io, T) = P(Iy, T).
Then, P™ (Ix, T) defines the nh approximation of P(Ix, T): in principle, it can be
computed from Eq. (47) since the probability transitions W are known by (41).
The stationary probabilities approximation P°™ deduced from p° provide the
stationary solution of (47)

PO(n) (IK’ TK) =p (ZKn,I<7’l, e .iK(Hl),l,K(n + 1) — 1)
=p (lKn, 5 e il((n+1)—1’n - 1) (48)

So, when K — oo,
P (I, T) — P°™ (I, Tk). (49)

and consequently, for any integer k € [0, #-1], the n™ approximation of the
mesoscopic distribution p satisfies

p™ (i, Kn + k) — u(i k) = pu(i) if K — oo. (50)

for any initial mesocopic distribution, which is the basic assumption of statistical
thermodynamics. Supplementary assumptions allow one to conclude that, in
realistic situations, the mesoscopic distribution p itself satisfies this property (see
Appendix B).

2.8 Time averages and simple Markov approximation

Up to now, we took as time unit some time step 7 which gives the time scale of
microscopic phenomena. By considering some finite partition (i) of the phase space
X and replacing the microscopic states x € X by the mesocopic states i € (i¥), we
have performed a space coarse graining, as necessary for taking practical observa-
tions into account. For the same purpose, one should also introduce [18] a space
coarse graining, since the time scale € = n 7 of current observations is much larger
thanzn > > 1.

All mesoscopic functions remaining practically constant on the time scale 6, their
averages can be computed from the time averages Pk of the probabilities p;, over 0

1
n ZkeTI(pk' (51)
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where K is an integer > 1 and Tk is the time interval (z being the time unit)
Te = (K-Dn, K + 1, ... Kn-1.

Suppose (a) that the mesoscopic probabilities p are slowly variating functions of
the mesoscopic states, (i.e. for any positive a, [p(i) — p(j)| < « if the distance
between the mesostates i and j is small enough, with an appropriate metric in the
spase of mesostates), and (b) that discontinuous trajectories have low probabilities
and can be neglected. Of course, these assumptions are not verified for some
important, well known processes such as Brownian processes, but they seem to be
reasonable for modeling physical processes where the inertial effects are strong
enough. Then, a simple approximation is to consider that

po(l'f(nq,Kn =1 ik (K —1)n ’1(1( V-1 (K= 1)m — 15 ...5 ig—gyn, (K — 2)n)

~p (zE, Kn =15 wsiny (K = D |ig_p (K =D — 15 s ige_p, (K — 2)11)
= Wliglig ,) - (52)

where

_ 1 1 Kn—1
I o ZkeTKk = k=K1 (53)

Consider the time-averaged probability

1 .
K’ ZkeTI(p 1k’ Z ZkETKp (ZE, k) (4

Using the Markov Eq. (47) and the complementary approximations (42), we
obtain the new Master Equation

P(i,K)~ ZW ilj) P(j,K—1). (55)

This equation is much simpler than Eq. (47), since it applies in the space M of
the M mesostates (i), whereas (47) is valid in the space M " of n successive
mesostates. However, Eq. (45) relies on several approximations that are difficult to
control. In spite of these difficulties, which can only be precisely discussed for
specific examples, Master Equations like (55), resulting from deterministic micro-
scopic systems by coarse-graining both their states and time, are a practical way to
study their evolution of a mesoscopic scale, used in innumerable works.

3. Discussion of the Markov representation derived from Hamiltonian
dynamics, and estimation of the uniformization time

The previous results show that the coarse grained mesoscopic dynamics can
eventually be represented by a Master Equation, because the memory of this dynam-
ics is gradually lost over time. However, they do not provide the time scale of this
fading. In order to estimate its order of magnitude simply, we make an intuitive
remark: the conditional probability to jump from some mesostate i to another one can
be evaluated without knowing the past history of the system if one knows the initial
microscopic distribution over i. The only unbiaised initial distribution is the uniform
one. Thus, one can consider that the system has a memory limited to one time step if
uniformity is approximately realized in each mesoscopic cell: this is the basis of the
elementary Markov models of mesoscopic evolution. Let T' be the average time
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needed to reach uniformity in a mesoscopic scale, starting from strong inhomogene-
ity. In a first approximation it is reasonable to use this uniformization time T to
characterize the time scale over which a Markov evolution can describe the system.

3.1 Uniformization time in a mesoscopic cell: An elementary estimation
for Hamiltonian systems

Using oversimplified, but reasonable arguments [17], we now coarsely estimate
the uniformization time T in a mesoscopic cell. As an example, we consider #
identical particles initially located in this cell, among N identical particles in an
isolated vessel. The complete system obeys Hamilton mechanics.

Assume that the particles constitute a gas under normal conditions, with density
p ~ 3.10” molecules.m . A mesocopic state can be reasonably represented by a
cube of size | ~ 10 ® m (as an order of magnitude), which contains z = 3. 107
molecules. We now divide the mesoscopic cell into 7 “microscopic” cells whose size
A is comparable to the size of a molecule: each of these microscopic cells, however,
should contain a sufficient number particles for allowing them to interact from time
to time. We can take A ~ 10~ m, so each microscopic cell approximately contains
30 molecules, and there are 7 ~ 10° microscopic cells in a mesocopic cell. The
particles have an average absolute value v ~ 500 m.s™ " in typical conditions. They
can jump between the various microcells of the same mesocopic cell. They can also
jump out of their initial mesoscopic cell, but they are replaced by molecules pro-
ceeding from other cells, and we assume that these contrary effects coarsely com-
pensate themselves, except in the first stage of the evolution if the initial mesocopic
distribution is strongly inhomogeneous.

Because all particles are identical, an almost microscopic configuration of a
mesoscopic cell can be defined by specifying the number of particles in each of its
microscopic cells. Focusing on a given mesoscopic cell, we compute the number of
its possible configurations, and we estimate the average time 6 necessary for the
system to visit all these configurations. Note that the uniformization time T is
obviously much larger than 6: T > > 0. So, 0 is a lower bound of T.

The number of ways of partitioning the z identical particles into the m
microscopic cells is

C= %_1)1')' ~ exp [(m + n) p(x)] with ¢(x)
=—xlnx—(1—x) In(1—x)andx =n/(m+n). (56)

The system jumps from one of these configurations to another one each time one
the present particles jumps to another microscopic cell. The order of magnitude of
the time needed for a particle to cross a micro-cell is /v, and the time between two
configurations changes is r ~ (1/n) A/v.. In order that all configurations are visited
during time 6 we should have at least  ~ C 7 (in fact, 0 should be much larger than
Cr because of the multiple visits during ). So we conclude from (46) and relevant
approximations that a lower bound of @ satisfies

p(x)
X

n zln? withx =n/(m +n)=1. (57)
With the previous numerical values

- A n m~ 1 10
o~ > (%) ~2.1071.(30)' s. (58)
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which is far larger than the age of universe (now estimated to be about
14 x 10° years, or 4.4 x 10 s)!

Although these calculations are very rudimentary, it is clear that, in the frame-
work of purely Hamiltonian systems, the microscopic distribution within a
mesocopic cell remains far from uniformity during any realistic time if it is initially
fairly inhomogeneous.

More generally, it is clear that the uniformization time T should be of the order
of Poincaré time [32-36] in a mesoscopic cell, which is known to be extraordinarily
long [9, 37].

3.2 An elementary, empirical approach of mesoscopic systems

The practical relevance of Markov processes to model a large class of physical
systems is supported by a vast literature. We have seen that the progressive erasure
of its memory over time allows one to justify the use of a Markov process to
represents the evolution of the coarse-grained system. However, such representa-
tion can also stem from random disturbances due to the measurements or other
sources of stochasticity: then, one has to renounce to a purely deterministic micro-
scopic dynamics, as formerly proposed by many authors, even without adopting the
formalism of Quantum Mechanics. It is interesting to compare the time scales of the
relaxation to equilibrium in both approaches with an elementary example.

3.2.1 Uniformigation induced by randomization

Suppose now that the measure process does not induce any significant change in
the average molecules energy - so, their average velocity remains unchanged - but
that it causes a random reorientation of their velocity. A rudimentary, one dimen-
sional model of such a randomization could be to assume that each time a molecule
is about to pass to a neighboring cell, it will go indifferently to one of the neighbor-
ing microscopic cell. In a one dimensional version of the model, a molecule perform
a random walk on the 7 = I/ = 10” points representing the microscopic cells
contained in the mesoscopic cell, and we adopt periodic conditions at the bound-
aries of the mesocopic cell. The 5 x 7 transition matrix of the process is a circulant
matrix which, in its simplest version, has transition probabilities %2 to jump from
any state to one of its neighbors, and it is known that its eigenvalues J, are 4, = cos
(2nk/n), k = 0,1, ... [7/2]. The number of jumps necessary for relaxing to the
uniform, asymptotic distribution is of the order

1/(—InA1)e2(2n/n) > 2500 s.

which correspond to a relaxation time of 500. A/v ~ 10~ ® s, which is very short
for current measurements, but comparable with (or even larger than) the time scale
of fast modern experiments. Considering a 3-dim model would not change this time
scale significantly. It is conceivable that he molecules are not necessarily reoriented
each time they leave a microscopic cell. Even if the proportion of reoriented mole-
cules is as low as 107, the relaxation time is of order 102 s, which is insignificant in
many simple measures. In this case the Markov representation can be justified.

3.2.2 Semi-classical Hamiltonian systems
In analogy with the previous randomized system, we can introduce a new source

of stochasticity in the coarse-grained deterministc systems considered in Sections 2
and 3. This could be done by assuming that a particle cannot be described by a
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point, but by a probability density centered on the point that would represent it
classically: such a description borrows one, but not all, of the axioms of wave
mechanics, and it can be qualified as a “semi-quantical” description. A similar
assumption can be introduced without referring to quantum mechanics, by noticing
that a particle cannot be localized in a given mesoscopic cell with complete cer-
tainty, because of its finite size: if it is mainly attributed to a given cell, there exists a
small probability that it also belongs to a neighboring cell. Even without formalizing
these possibilities, one can presume that such random effects shorten drastically the
memory of the mesoscopic process, and make it short with respect to ordinary
measure times: then the Markov approximation described in Section 2 can correctly
represent the evolution of the observed coarse-grained process.

4, Conclusion

We have studied the mesoscopic, stochastic process derived from a deterministic
dynamics applied to the cells determined by measure inaccuracies. The stationary
process, which arises when the microscopic initial state is distributed according to a
time invariant measure, was studied by Kolmogorov and further authors: we
extended their methods and some of their results, and considered the nonstationary
process which stems from a noninvariant initial measure. We have shown that,
according to Jaynes’ principle, the “exact” mesocopic process can be approximately
replaced by the Markov process which, at any time #, reproduces the one-time
probability of each mesostate and the transition probabilities from it. This Markov
process maximizes the trajectory entropy up to time 7, as well as the entropy at time
n, conditioned by prior events. The Jaynes’ principle, however, does not control the
accuracy of this estimate: this was our next concern.

So, a sequence of successive approximations has been defined for the stationary
mesoscopic process, based on one of our main results: the probability of any
mesostate state conditioned by all past events, can be approximated by its proba-
bility conditioned by the # last past events only, the integer # being determined by
the maximum distance allowed between these probabilities, as small as it may be.
This property entails that the nonstationary mesoscopic process can be approxi-
mated by a n-times Markov process or even, after a time coarse-graining, by an
ordinary one-time Markov process. These approximations require certain
conditions which should be fulfilled by “normal” physical systems, with possible
exceptions for slowly relaxing systems. If they are satisfied, the existence of a
thermodynamic equilibrium is derived for a coarse-grained system obeying a
measure-preserving deterministic dynamics, in particular an Hamiltonian dynam-
ics, without introducing ad-hoc external noises. However, very rough estimations of
the relaxation time show that for reasonable values of the parameters this time is
extraordinarily long and completely unrealistic.

We conclude that, although the basic hypotheses of thermodynamics can be justified
from a Hamiltonian or deterministic microscopic dynamics applied to the mesoscopic
cells, the observed time scales of the relaxation to equilibrium cannot be explained
without going beyond pure Hamilton mechanics, by introducing additional random
effects, in particular due to the intrinsic imprecision of the particles localization.

Appendix A: Approximating the n-times conditional probability
With the notations of Section 4.2, we consider approximation (55), which is the

basis of the #-times Markov approximation both in the stationary and nonstationary
situations. Repeating approximation (51) we can write
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p(iNMA, N+n—1; ..;ip, N|in-1, N =15 .50y _,, N —n; ...540,0) =
=p(inin N+n—1)iy, 0 N+n—2; ..5.00,0)....p(in, N|in-1,N — 15 ... 340, 0)
~p™ (inp1> N+1 = 1|iy o3 win-1,N = 1) ccp™ (i, Nlin-1,N = 1; ...3in—n, N — 1).
(59)

The last line of (49) is p™ (iy,,_1» N +n — 15 ...3ip, N|in_1, N — 1; ... 340, 0).
We write

Pliyen1 N+n =1 50y, Nlin-1,N =1 .5iy_s N — 15 ... 340, 0) =

P (it N+ 71— B iy N in 1N = 15 iy N = 15 310, 0) QY.

(60)
and for k > n we define [, using the abbreviations (32)
L (io, ip1) = In ”@5’?) . (61)
I, (ik)
We have by (24)
. . I (i ) .
sa(p) —sk(p) = Zio Z,k}r71\,(10,0; w3ik, k) In H(:fé@) = (I(ig, .- ip1)) = or(n).
k(T

(62)

(Note that o}, is positive, although this not necessarily true for [;). By (24) for
any positive &

2 <d2 (Pk’Plin>)> < (op(io, .- ik—1)) < eif nis large enough. (63)

Averaging the logarithm of Eq. (60) we have

(L) = (mQ) = S0 tlsalp) —snelp)] o [salp) —sup)] = ()
(64)

8s5(n) =5, (p) — 5« (p) can be interpreted as an entropy fluctuation with respect
to its equilibrium thermodynamic value. If such a fluctuation relaxes exponentially
to 0 with time, as usual, the last term of (54) tends to 0 when #n — oo. Then, the
n-times Markov approximations 4.2 and 5.1 are justified. Although exponential
relaxation can be considered as a characteristic of “normal” physical systems,
slower relaxations can occur: in this case the Markov approximation may be invalid.

Appendix B: Tendency to the stationary mesoscopic distribution

This tendency can be reasonably expected from the approximation of the exact
mesocopic process by Markov processes, but it can only be affirmed by adding addi-
tional assumptions to the basic assumptions. We first prove a simple, useful lemma.

B.1. Lemma. Consider a 4-dim sequence u,, , with 2 positive, integer indices #, k,
satisfying the following properties:
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i. it is absolutely bounded: there is a positive real number M such that |u,, 4|
< M for all integers #, k.

ii. for all n, k, there are positive numbers ¢, (independent of #) and v
(independent of # and k) such that

[tng| < €n +V|thyp—1]| and &, — 0 if n — oo. (65)

Thenu,;, — 0ifn — o0 and k — oo.
In fact, for any positive ¢, there is an integer 7o such that ¢, < e if n > 9, and

&

gl < e(A+v+ o +F7Y) +ku, o < -

+ [tn,0] if 7> nq. (66)

So, |#,,k| can be made as small as desired by chosing # and k large enough.

B.2. For given integers z# and K larger than 1, and states i, € M, k = 0, 1, ...
(K + 1)n-1, we will write.

p(io, 05i1, 15 .5k 41)n—1, (K + 1) — 1) =p(0,1, ..., (K + 1)n — 1) for the sake of
simplicity. In these abbreviated notations, we have

p(Kn,Kn+1;.,(K+1)n—1) = p((K+1)n, —1...Kn|Kn —1,...0)

p(0; 1;..,Kn —1). (67)

We know that

p((K+1)n, —1..Kn|Kn —1,..0) = p°((K+1)n, —1..Kn|Kn —1,...0) .
(68)

p° being the stationary probabilities, and that, for large
P°((K+1n, —1..Kn|Kn—1,..0)~ p°(K+1)n, —1..Kn|Kn -1, ..K(n —1)). (69)

More precisely, in the conditions discussed previously, for any given positive ¢,
there is an integer #(¢) such that

|p°((K + 1)m, —1...Kn|Kn — 1,..0)—p°((K + 1)n, —1...Kn|Kn — 1, ..K(n — 1)) | < & ifn>n(e)
(70)
So, Eq. (67) becomes

p(Kn,Kn+1;..,(K +1)n —1)
Z s [p((K+1)n, —1..Kn|Kn —1,...0) — p°((K + 1)n, —1...Kn|Kn — 1,...0) |p(0; 1;..,Kn —1)
2
=a,x+ Ziu’_" o PO(K +D)n, —1 . Kn|Kn — 1, ... (K — 1)) p(K — 1)ns .., Kn —1).

(71)

; P°((K +1)n, —1..Kn|Kn — 1, ... (K — \)n)p(K — 1)n; .., Kn — 1)
Kn—1

iy e

where the 1st term of the last line satisfies |a (n,K)| <¢eif n > n(e).
The second term in the last line of (71) is, in other notations, the righth hand side
term of the approximate Master Eq. (47) of Section 2.8
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P(Ig, Tk) =~ ZI W(Ig Ixk-1) P(Ix-1, Tk-1). (72)
K

This approximate Master Equation can now be written more precisely, in the
notations of 2.8

P(Ix,Tx) = Anx(k,Tk) + Zz W (Ix, Tk |11<—1, Tx_1) P(Ix-1,Tk-1) . (73)
K

where A, x(Ig, T}) is just the a,, x term of (71) expressed in the notations of 2.8
where T is the group of n successive times: kn,kn + 1, .., (k +1)n —1,and I, =
(iK,,, IKnils o i(1<+1)n—1) € M" describes the corresponding partial history of the
mesoscopic system.

On the other hand, we know that the stationary distribution PP satisfies the
Master Eq. (72) exactly. So, writing

Unx(Ix, Tx) = P(Ix, Tx) — P°(Ix, Tk). (74)

we have
Uni(Ix, Tx) = Anx Ik, Te) + ZI W(Ik [Ik-1) Upk-1Ik-1,Tk-1).  (75)
K

Note that W depends of #, but is independent of K.

From (72)—(75) it results that U, x (Ix, Tx) tend to 0 when z and K tend to
infinite if, furthermore, the following.

condition (c¢) holds. In fact, the (M"- dim) vector U, g is orthogonal to the left-
eigenstate with eigenvalue 1.

of matrix W. All the eigenvalues of the projection of W in the corresponding
subspace have an absolute value smaller than 1. Thus the lemma 1 applies if condi-
tion (c) is satisfied:

(c) When 7 increases, the absolute values of the nonstationary eigenvalues of W
have an upper bound <1.

This property is likely to hold if the actual stationary mesoscopic process is not
too different from an exact Markov process. So, it is reasonable to conjecture that
property (c) holds for typical actual systems.
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Chapter 6

Qualitative Analysis for
Controllable Dynamical Systems:
Stability with Control Lyapunov
Functions

Adela Ionescu

Abstract

The present chapter focuses on some recent work on the qualitatively analysis of
dynamical systems, namely stability, a powerful tool with multiple connected
appliances. Among them, feedback is a powerful idea which is used extensively in
natural and technological systems. In engineering, feedback has been rediscovered
and patented many times in many different contexts. Stabilizing a dynamical sys-
tem could be often easier if we approach controllable systems. When the dynamical
system is in a controllable form, we can place bounds on its behavior by analyzing
the improvement of the linear and nonlinear operators that describe the system. In
this chapter it is analyzed how a control in a simple form, could influence the
possibility to construct the so-called Control Lyapunov Function (CLF) in order to
stabilize the dynamical system in study. The main idea is to test multiple cases, in
order to get a rich information panel and to make easier the problem of finding a
CLF, which is generally a difficult task. As applications, models from excitable
media are chosen.

Keywords: dynamical systems in control, Lyapunov stabilities, stabilization by
feedback, Lyapunov and storage function, feedback control, computational
methods, algebraic methods

1. Introduction: general outlines in feedback and stability
for dynamical systems

The term feedback is used to refer to a situation in which two (or more) dynamical
systems are connected together such that each system influences the other and their
dynamics are thus strongly coupled. Feedback is a powerful idea whose principle is
based on corrections on the difference between desired and current performance. It
was applied, rediscovered and patented in different contexts in engineering. The feed-
back methods had important improvements in time and, due to its remarkable prop-
erties, these improvements had significant importance in all applied sciences models.

A basic feature of feedback is that it changes the dynamics of a system. By
modifying the behavior in the sense needed by the application, we can stabilize
the model which is initially unstable, or we can obtain responsive systems from
sluggish ones.
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A survey on control process strategies and applications shows that: (1) a variety
of nonlinear controller design techniques are based on input-output linearization;
(2) few experimental studies of these techniques have been presented; and (3)
many important problems remain unsolved [1].

1.1 Feedback model outlines

There are several types of finite-dimensional, nonlinear process models. The
continuous-time, state-space model has the form:

x=f(x) +g(x)u (1)
y =h(x).

x is the vector of state variables, x €R", u is the vector of input variables, y the
vector of controlled output variables, #,y € R”; f and h are vectors of nonlinear
functions, f € R",h € R™; finally g is a matrix of nonlinear functions.

The single-input, single-output (SISO) case where m = 1 is generally easiest and
good to facilitate understanding the basic concepts. Consider the Jacobian lineari-
zation of the nonlinear model

oh(x
A )

Using derivation variables, the Jacobian model can be written as a linear state-
space system

% =Ax + Bu (3)
y=0Cx

with obvious definitions for the matrices A, B and C. It is important to note that
the Jacobian model is an exact representation of the nonlinear model only at the
point (xg,y,). As result, a control strategy based on a linearized model may involve
unsatisfactory performance and robustness at other operating points.

Roughly speaking, feedback linearization is a collection of ways for transforming
the original system models into equivalent models of a simpler form. The central
idea of feedback linearization is to algebraically transform nonlinear systems
dynamics into (fully or partly) linear ones, in order to enable to apply linear control
techniques. This approach is essential different from the classic Jacobian lineariza-
tion, because feedback linearization is realized by an exact state transformation
and a feedback law, rather than by linear approximations of the dynamics of the
model. More important is the local feedback linearization, as it allows avoiding
complications associated with the global problem.

After feedback linearization, the input-output model is linear:

E=AE+ By (4)
w = Cé&.

Here £ is the vector of transformed variables, £eR"; v is the vector of input
variables; w is the vector of output variables, w,veR™, and A, B and C are matrices
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with simple canonical structure. The integer r is the fundamental characteristic of a
nonlinear system, named the relative degree; if r < n, we have to complete the
coordinate transformation by adding additional n-r state variables [1].

For a dynamical system, the controllability problem is to check the existence of a
forcing term or control function u(t) such that the corresponding solution of the
system will pass through a desired point, x(t . ) = x .. The initial form of the controlled
system motivates the form of the control. Thus, a controlled system will have a
complex dynamic and therefore, analyzing its stability implies analyzing the nonlinear
operators that describe the system’s components. In applied sciences and engineering
models, the control is aimed to compare the system against the desired behavior and
compute corrective actions based on a model of the system’s response to external
inputs. Therefore, the modern control techniques include the use of algorithms [1].

1.2 Stability outlines

Let us consider the solution of a differential equation representing a physical phe-
nomenon or the evolution of some system. There always is some uncertainty concerning
the initial conditions, because, when one attempts to repeat a given experiment, the
reproduction of the initial conditions is never entirely identical. It is thus fundamental to
be able to recognize the circumstances under which small variations in the initial
conditions will only introduce small variations in what follows of the phenomenon.

It is known that stability is a property of the solutions of differential equations in
R" of the form & = f(t, x) by which, given a “reference” solution x* (¢,2§ ,x¢ ), any
other solution x(t, to, x¢) starting close to x* (t, £y,%g ) remains close to x * (t, g, x5 )
for long times. Thus, generally speaking, we can state the question of stability as:
“small variations in the initial conditions will imply small variations in what follows
for the phenomenon”.

The stability concept has the beginnings back in the past, in the analysis of the
planets motion. Then Lagrange, Dirichlet had refined the definition, including the
boundedness of trajectories. But Lyapunov’s work was a corner stone in this area, by
analyzing the stability concept, with the help of a positive non-decreasing function
which is decreasing along the system trajectories. The Lyapunov functions are a
mainstay in the control theory and in the applied sciences modeling.

Within the mathematical context they are implied, the Lyapunov functions
provide sufficient conditions for the stability of equilibrium and for analyzing its
basin of attraction or more general invariant sets. They characterize the long-time
behavior of the solutions depending on their initial solutions. Therefore it appears
the natural question how to compute a Lyapunov function for a particular system?
Although the existence of Lyapunov functions has been studied in few theorems, it
is not provided yet a general method to compute them. The converse theorems
which appeared around 1950 were a great help in the issue. A converse theorem
generally establishes that, if a system has a certain kind of stability, then there exists
a Lyapunov function for the system that characterizes that kind of stability. Still,
the converse theorems are not very constructive in practice, since they use the
solution trajectory of the system to construct the Lyapunov function and the solu-
tion trajectories are usually not known. Krasovski himself noted that [2]:

“One could hope that a method for proving the existence of a Lyapunov function might
carry with it a constructive method for obtaining this function. This hope has not been
realized”.

Numerous computational construction methods have been developed in mathemat-
ical community, based on different methods such as linear matrix inequalities, linear
programming, series expansion, algebraic methods, theoretic methods and many others.
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Very important to notice is the Lyapunov theorem, which enable establishing stability or
asymptotic stability of equilibrium points without explicitly computing trajectories [2].
The Lyapunov theorem is of fundamental importance in system theory. It asserts
the possibility of establishing stability or asymptotic stability of equilibrium points
without explicitly computing trajectories [2].
Theorem 1 (Lyapunov). Let x, = 0 be an equilibrium point for the system (1).
Let V : R" — R be a positive definite continuously differentiable function.

1LIfV:R" > Ris negative semi-definite, then x, is stable;

2.If V is negative definite, then x, is asymptotically stable.

The theorem assesses the existence of a Lyapunov function but does not provide
a method to compute one. In the case of linear systems, this issue arises naturally,
but in general computing a Lyapunov function is an open problem giving rise to
different ways to construct it.

We recall in what follows the two basic Lyapunov criteria.

a. The first Lyapunov criterion is based on the eigenvalues analysis.

Let us consider the following continuous-time nonlinear system:
% = f(%(t), u(®)). )

In the vicinity of the equilibrium point (x¢uo), let us consider the corresponding
linearized system:

x(t) = Ax(t) + Ba(z). (6)
This criterion has three distinct cases for the eigenvalues A; of the matrix A [3]:
i. If Re 4; <0 for all 4, then (x,%¢) is asymptotically stable;
ii. If there exits at least one i such as Re 4; > 0 then (xg,u0) is unstable;
iii. If there exits at least one i such as Re 4; = 0 and for all other A;, j # i,

Re 4; <0, then we cannot conclude anything about the stability of (xo,%0).
In this case we say that the criterion is not effective

b. The second Lyapunov criterion
Theorem 2. Consider the dynamical system in R™
x(t) = f((2)) 7)

and let x = 0 be its unique equilibrium point. If there exists a continuously
differentiable function V : R* — R such that:

V(0) = 0; (8)
V(x)>0,Vx # 0 9)
[Jo]| = 00 = V(x) — oo; (10)
V(x) <0Vx # 0. (11)
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Then x = 0 is global asymptotically stable.
The condition (9) refers to the monotonicity of the Lyapunov function. We say
that V is decreasing along trajectories, using the orbital derivative given by:

v = (22 o)) (12)

ox

where (, ) is the inner product in R" and 9 is the gradient of V. Also, the
condition (10) refers to the requirement for V to be radially unbounded.

We could ask if Lyapunov functions always exist, and if so, how could we find such
a function? For the first part of the question the answer is generally positive but,
finding a Lyapunov function is not immediate, since the converse theorems assume
the knowledge of the solutions of the system (7) [2, 3]. Therefore refining the defini-
tion of Lyapunov function and establishing a more specific context was very necessary.

An important aim in qualitative analysis of the stability is to search if the solutions
remain close to the equilibrium and moreover, if they converge towards it. Therefore
the search for the Lyapunov function must be more accurate. The strict Lyapunov
functions can achieve this goal. Designed as generalization of the energy in a physical
dissipative system, they preserve the property of decreasing energy along trajectories
and thus, the solutions of the system converge to a (local) minimum of energy.

Definition 1. A strict Lyapunov function for the equilibrium x, of (7) is a real-
valued, continuously differentiable function V : U CR” — R defined on a neighbor-
hood U of x, which satisfies:

a. Minimum. V has a minimum at Xo, i.e. V(x) >0 forallxeUand V(x) =0

iff x =x0

b. Decrease. V is strictly decreasing along solution trajectories of (7) in U except
for the equilibrium. A sufficient condition is V < 0 for all x € Ux,.

Thus, two important properties are deduced for a strict Lyapunov function [4]:
* If we have a strict Lyapunov function, then the equilibrium is asymptotically stable;

» Compact sublevel sets of a strict Lyapunov function are subsets of the basin of
attraction of the equilibrium.

This chapter is organized as follows. The section 2 is dedicated to Lyapunov func-
tions computational analysis. There are exposed the basic outlines of CLF concept and
also the related outlines: LMI approach and SOS Lyapunov functions. In the section 3, a
computational Lyapunov function is searched for the mixing flow dynamical system in
a slightly perturbed form. After presenting the mathematical context of the 2d mixing
flow dynamical system, together with recent results in the field, the results of
searching a CLF for the mixing flow are presented. The section 4 is dedicated for
conclusions and further aims in the topic. The chapter ends with references.

2. Computational Lyapunov stability analysis
2.1 Control Lyapunov functions

The concept of control Lyapunov function (CLF) is a very useful appliance in
solving stability tasks. We search to stabilize a nonlinear system by selecting a
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Lyapunov function V(x) and then try to find a feedback control #(x) that gives
V(x, u(x)) negative definite. If with an arbitrary choice of V this attempt may fail,
when V(x) is a CLF, to find a stabilizing control law u(x) is easier.

Similar with the system (5), we can define a control system like follows:
x=f(x,u) (13)

where u € U CR™ is the control. We speak about an open-loop control if u is function

of time, # = u(t) and closed-loop if u = k(x). The closed-loop control is in fact the
feedback control. We speak also about feedback stabilized system if the feedback has been
fixed, u = k(x) and the equilibrium in the origin has a desired stability property.

The system (13) is called locally, asymptotically null-controllable, [4] if for every p
in a neighborhood of the origin there is an open-loop control u such that the solution
of the system with initial value p tends asymptotically towards the origin, i.e. if it is
possible to steer the system state asymptotically to the origin. A control Lyapunov
function (CLF) for such a system, introduced by Sontag 1983 [5], is a positive
definite function V such that

inf ey VV (%) of (0, u) < — y(|lx])) (14)

where v is a comparison function [4]. Asymptotic null-controllability cannot be
characterized by smooth control Lyapunov functions and one must resort to more
general definitions of differentiability like the Dini- or the proximal sub-differential [6].

For asymptotically null-controllable systems the equilibrium at the origin is
sometimes referred to as weakly asymptotically stable, in contrast to strongly
asymptotically stable equilibrium, where every choice of u leads to states being
attracted asymptotically to the equilibrium.

As mentioned in the previous section, the stability concept has a lot of
approaches: we have the classic Lagrange, Dirichlet and Lyapunov stability but,
depending on the context, we also have input—output stability, hyperstability,
input-to-state stability [3]. The last one, input to state stability (ISS) was introduced
by Sontag [7] and it is interesting by the idea of characterizing a certain kind of
stability at the origin imposing for the Lyapunov function V the condition:

VV(x)ef(x,u) < —y(llll) + a(ul]) (15)

where o and y are comparison functions [4]. The origin is thus an asymptotically
stable equilibrium of the system x = f(x, 0) and a practically stable equilibrium of
the system % = f(x, u) for ||u|| < #max, With #,,,, >0 a (not too large) constant.
Moreover, the smaller U,y is, usually interpreted as a bound on the perturbation u,
the closer solutions of the system will be to zero in the long run.

2.2 Stability analysis using sum of squares Lyapunov functions

The stability of dynamical systems is basically carried out by Lyapunov theory. For
linear systems, the construction of an “energy-like function” — the Lyapunov function,
tulfilling certain positivity conditions, is not difficult. For a system % = Ax this implies
finding a matrix P such that ATP+PAis negative definite [8]. Then the associated
Lyapunov function is given by V(x) = x” Px. But although obviously, it was seen only
recently that, in this context, both V(x), V (x) are sum of squares functions

Sum of squares (SOS) optimization is a quite new technique at the interface
between convex optimization and computational algebra. Recently it had signifi-
cant impact not only in optimization, but over several disciplines as well, especially
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in control theory. Besides the stability analysis of nonlinear systems, SOS has
opened a new direction in approaching different types of systems and answering
different analysis questions. The SOS technique generalizes a well-known compu-
tational appliance in linear robust control theory, “Linear Matrix Inequalities” —
LMI. Parrilo and Ahmadi had important contributions in this field. [9] Using LMI in
different analysis problems is advantageous, since there are efficient algorithms
developed in the framework of semi-definite programming (SDP) [8, 9]. The SOS
uses these types of algorithms, but all questions are formulated at polynomial level,
or in polynomial-matrix terms.

Related to the Lyapunov functions, to construct them “by test” requires analytic
skills of the researchers and moreover, depend on the small-state dimensions. When
the vector field f and the Lyapunov function candidate V are both polynomial, the
Lyapunov conditions are polynomial non-negativity conditions, which are quite
hard to test. This could be one of the reasons for lack of efficiency in the algorithmic
construction of a Lyapunnov function. But, if the non-negativity conditions are
replaced by SOS conditions, then constructing the Lyapunov function can be done
efficiently using semi-definite programming.

There are a lot of the control problems which follow the same two steps: i) recasting
the primal problem as a Lyapunov-type problem and then, ii) constructing a sum-of-
squares relaxation to the problem. We present in what follows a theoretical tool which is
basic in the sum of squares computational approach [8].

Given x € R” we denote the ring of multivariable polynomials with real coeffi-
cients by R[x] and the subset of sum-of-squares polynomials in the variable x by
> [x]. Sometimes it may be necessary to indicate the maximum degree of a poly-
nomial or sum-of-squares polynomial in which case we use the subscript notation
Ry[x] or >, [x] where d is a positive integer.

Theorem 3. Let x* = 0 €D CR” an equilibrium point of (7). If there exists a
function V : D — R continuously differentiable such that the following hold:

V(0) = 0; (16)
V(x)>0,VvxeD~{0} (17)
V(x)<0VxeD. (18)

Then x” is stable. Moreover, x is asymptotically stable if (11) holds.

Theorem 4. Let x* = 0 be equilibrium for (7) and assume that D C R” is a given
domain which includes x . Assume there exists a continuously differentiable func-
tion V : D — R and positive constants ky, ks, ks such that

kil |[F <V (x) <keallx|[” (19)
V(x)< —ks|x|f,peZ (20)

forall£>0,x€D. Then x " is exponentially stable. Furthermore, if the assump-
tions hold when D = R”, then x” is globally exponentially stable.

The following theorem illustrates how sum-of-squares programming can be used
to construct a polynomial stability certificate, in this case a Lyapunov function, for
an equilibrium point of (7). The domain D must be defined. In particular D must be
representable as a semi-algebraic set. If we consider that the domain of interest D is
represented by all points that satisfy (x) <0, f € R[x|, then we have the following
result [8].

Theorem 5. If there exists a polynomial function V, sum-of-squares polynomials
r1, I and positive definite polynomial functions ¢4, ¢, all of bounded degree, such
that
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V(x) +r1(x)p(x) — ¢1(x) €Xlx] (21)

—V(x) + na(x)p(x) — ¢y(x) eX[x] (22)

then the equilibrium point x~ of (7) is asymptotically stable.

A few questions immediately come to mind: Do stable polynomial systems
always admit a sum-of-squares Lyapunov function? How conservative are we being
by limiting ourselves to positive polynomials that admit a sum-of-squares decom-
position? Can we determine a priori the degree of the Lyapunov function required?
The answer to the first question is simply, no.

There is a vast literature on the SOS method to compute Lyapunov functions in
various settings and for different kinds of systems [4]. Between them, Parillo given
important result on SOS and SDP (Semi Definite Problems) programming in find-
ing Lyapunov functions [9]. As specified above, he introduced an efficient LMI
program for finding Lyapunov functions as sum of squares for polynomial systems.
The above setting is simplified for finding global Lyapunov functions, but if we are
interested to find SOS Lyapunov functions on a compact domain, is important to
mention the “Positivstellensazt” as useful appliance [9].

In the case of a dynamical system of a simple polynomial form, the stability
study and Lyapunov function search can begin with a function test which facilitates
the further analysis, as we see in the section 3.

3. Existence of control Lyapunov function for dynamical systems from
excitable media

3.1 Recent results

The concerning for the dynamical models arising from excitable media is not
new. The dynamical systems modeling the mixing flow have an important place,
because of the complexity of the model. It is in fact about far from equilibrium class
of models, with a very sensitive behavior to initial conditions.

Let us recall the statistical idea of a flow, generally represented by the application

x = 0,(X),X = O_o(X). (23)

That means, X is mapped in x after a time t. In continuum mechanics, the
relation (23) is named flow, it is a diffeomorphism of class C* and must satisfy the
relation

0x;
0<J <oo,J = det <axxj> ,J = det(D®, (x)) 4)

where D denotes the derivation operation with respect to the reference configu-
ration, in this case with X. If the Jacobean ] is unitary, it is said we have an isochoric
flow. The relation (24) implies two particles, X; and X, which occupy the same
position x at a given moment, or a particle which splits in two parts. That means,
non-topological motions like break up or disintegration are not allowed.

The mixing flow is a special type of flow, implying a basic fluid (water) in which
a biological material is moving (mixing) in different conditions and with different
velocities. Therefore, the stretching and folding are strongly related phenomena.
With respect to X there is defined the basic measure of deformation, the deforma-
tion gradient F [10]:
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F = (Vyd,(X))T,Fy = (;%) (25)
]

For a material filament and correspondingly for a material surface, in a mixing
flow, there are defined another two basic deformation measures, the length defor-
mation A and surface deformation 5. In this context, a specific analysis for deforma-
tions of infinitesimal elements is the so-called “good mixing concept”, related to the
boundaries of the quantities A and n. The class of flows with a special form of F is of
very large interest in the literature, as it contains the so-called “constant stretch
history motion” (CSHM flows). Details can be found in [10].

When studying the mixing flow phenomena, one starts from the widespread
kinematic 2d mixing flow

=G
{xl *2 _1<K<1,GeR. (26)

x'z = I(G.Xj,
Although thisis a linear model, when associating the corresponding initial condition.
x1(0) =X1(t: 0) =X1;X2(0) Z.X‘z(tz O) =X (27)

it is obtained a complex solution for the Cauchy problem (26)-(27) [11].
From geometric standpoint, the streamlines of the above model satisfy the relation
x5 — K ex? = const. and this is corresponding to some ellipses with the axes rate

1/2 1/2
(ﬁ) if K is negative, and to some hyperbolas with the angle = arctan (|1_1<|)

between the extension axis and x,, if K is positive [10].
To this broad isochoric flow, we can associate easily the corresponding 3d
dynamical system [11]:

.9.61 = G'Xz
Xy =KeGexy, —1<K<1,c = const. (28)
.9'63 =cC

with the third component for the moving velocity of the system.

In the 3d case, the non-periodic model exhibits a complicate behavior. A lot of
comparative computational analysis proved the great influence of the parameters
on the model behavior, leading to far from equilibrium models [11]. The perturbed
model was also taken into account, and it was found out that its sensitivity with
respect to the parameters is significant, both in 2d and 3d case [11, 12].

3.2 Existence of a CLF for the mixing flow dynamical system in a slightly
perturbed form

The central aim in the study of the mixing flow dynamical system was associated
rather with the fluid mechanics standpoint, namely analyzing the efficiency of mixing
[10, 11].This is a concept which implies the analysis of deformation efficiencies in
length and surface for the material mixed in the basic fluid. The physical phenom-
ena associated are the multiphase flow phenomena, and the analysis and numeric
simulation for these complex flows is in study. Briefly, in order to obtain a good
behavior for the deformation efficiencies, the mathematical context must take into
account the following three stages:

113



Advances in Dynamical Systems Theory, Models, Algorithms and Applications

* modeling the global swirling streamlines;
* local modeling of the concentrated vorticity structure;
* introducing the elements of chaotic turbulence.

Because of its complexity, any perturbation on the mixing flow model changes
the behavior of the model in a significant way. Therefore its stability is an important
and challenging task. If in [13] it was found a SOS Lyapunov function working both
for the initial and the feedback linearized form of the mixing flow dynamical
system, this chapter brings the novelty of approaching the mixing flow dynamical
system as a polynomial differential system, in order to get an optimal search for a
Lyapunov function.

When taking into account the feedback control, the transformed model has a
significant different repartition of the parameters in the model [12]. The stability
analysis was started with the 2d case, with slight perturbations. In what follows, we
consider the same slightly perturbed form of the 2d dynamical system as in [13],
namely

%1 = Gxy +x1
—1<K<1,GeR. (29)
.96:2 = I(le — X2
For this model, it was found a strong result. A Lyapunov function V was found
both for the initial model (29) and for its feedback linearized form. Namely, it was
constructed the sum-of-squares function

1
V:R? >R, V(x) = x% + Wx%,Vx = (x1,%2) €R%. (30)

The conditions (8)—(11) are fulfilled for suitable conditions on the parameters,
for both models, so V is a Lyapunov function, and the origin is an asymptotically
stable equilibrium point.

In what follows we consider the problem of finding a control Lyapunov function
(CLF) for the model (29). We use a simplified form of the control system (5),
namely we consider a control system of the form

x = f(x) + g(x)u (31)

where f and g are smooth vector fields, x(t) €R",u(t) €R,f(0) = 0.

Definition 2. A function V is a control Lyapunov function (CLF) for this
system if V : R” — R is a smooth, radially bounded, and positive definite function
such that

f e S 3) + gl <0, £ 0. @)

Existence of such a V implies that (29) is globally asymptotically stabilizable at
origin.

We have to notice that the condition (32) for the CLF is in fact equivalent with
that in (14) introduced by Sontag [6]. If such a CLF is given, it is shown [6] that a
feedback low u = k(x) with k(0) = 0, can be constructed from the CLF producing a
closed loop globally asymptotically stable. Hence, the problem of globally asymp-
totically stabilizing (31) is reduced to finding a CLF for the system.
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Finding a CLF is a not trivial problem. It has been approached by multiple
techniques, and Linear Programming, Positivstellensatz (P-sat) [14] and Linear
Matrix Inequalities are only few examples. For the present aim the LMI approach
[15, 16] helped to get better track of the model behavior.

A CLF must satisfy the inequality (32) which can be further evaluated as:

ov
oV oV —o0 when—g(x) # 0
f e G o) + S} = B ®

For a fixed x such that 4Y¢g(x) # 0, we can make the inequality (32) hold by
choosing a large value of u of the correct sign. Therefore, is essential to establish the

set of x such that 2g(x) = 0 . Thus, we want

%f(x) < OVx €R" such that %g(x) =0,x #0. (34)

Let us consider the 2d mixing flow dynamical model in its perturbed form (29).
We have a polynomial system of differential equations, with monomials in the
right hand sides of the system. In order to put it in a controlled form like (31), we
take into account a simple control u at each of the equations of the model (29),
namely

- -
{xl MM w ) K<1.GeRr. (35)

.952 = I(le —X)+u

G -1
The vector fields f and g are f = <KC3;2 A >,g = ( 1 >
X1 — X2 .

Py P
We are looking for a positive definite symmetric matrix P, P = (Pn P12 ) and
1 Pxn

define a CLF function like

1
V= ExTPx, (36)

that means

1
V= 5 (X%Pn + 2X1X2P12 + X%Pzz)

such that (34) holds.

So, we search P by setting the condition 4¥¢(x) = 0 and studying when the
condition % f (x) < 0 is fulfilled.

We have scalar inners in the condition (34). So,3 ¢ (x) = 0 implies

(P12 — P11)x1 + (Pxa — P12)x, = 0.

From here we take x, function of x; and replace in 2“f(x) . Thus, we obtain a

0x
quadratic form like follows:

ov
Eﬂx) = (P11 + KGP1p)x* + (PoGP1; + PoKGPy)x + (P — Py)P3, (37)
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with the notation

_ Pp—Py

Pg=—"——.
Py, — Py

The sign of the form (37) is of course dominated by the coefficient of x*. Thus,
we have

ov

~fx)<0

when
P11 + KGPy; < 0. (38)

Taking into account that K,G are also real parameters, the inequality (38)
implies few tests. Therefore for the moment we choose the matrix P like

(1
p= (1) )

With this choice we find the condition
KG< —2, (40)

which is a feasible condition since from the model we have —1<K <1, GER.

Now we can verify if the test value (39) of P can produce a feasible CLF function
V. LMI approach has very reliable numeric tools [14, 15]. We choose for the present
aim the basic matrix inequality, namely the Lyapunov inequality:

ATP+PA<0 (41)

where A is the system matrix and P is the matrix in the definition (36) of CLF.
In our model (35), the matrix A is given by:

1 KG
a=(g ) (42)

and thus we obtain

(43)

2P11 + 2P12[<G P11G + I(GPZZ
ATP +PA =

P11 + PpKG  2P;pG — 2Py

Replacing with the test values from (39) for P, the condition “ATP + PA
negative semidefinite” implies the following conditions for the parameters

KG< —2, (44)
11

G< —Ze .

< T2'1yK

These conditions are feasible, for a negative G.
Thus we can conclude that, in feasible conditions for the parameters, the model
(35) can admit a CLF V and thus the model can be globally stabilizable at the origin.
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4, Conclusions

In the present chapter, the aim of stabilizing the two-dimensional dynamical
systems arising from excitable media is taken into account.

Stabilizing a dynamical system from excitable media is not an easy task, espe-
cially because of the sensitive dependence of these models on initial conditions. The
mixing flow models are not an exception, since the repartition of their parameters
has a great influence on the model trajectory behavior.

The Lyapunov function is a strong appliance in studying stability. Still,
constructing it is not easy. This is why approaching this for controllable systems
make easier the task of searching the stability.

Searching for a Lyapunov function becomes easier if we take into account the
iterative algorithm in the “sum of squares” programming. For the mixing flow
example of this chapter, the test values (39) for the matrix P shown that in feasible
conditions for the parameters, we can construct a CLF for the model (35) and thus
the model is globally stabilizable in the origin.

Constructing the CLF functions for controllable systems provide interesting
results, and this is shown by the above 2d mixing flow model. The 2d mixing flow
model is controllable in some slightly perturbed forms [12, 13]. Therefore, in this
chapter the standpoint is that we started with the simple control u taken on both
equations of the dynamical system. The control is not implied in the further calculus
on finding the CLF V, which made easier the above analysis. A next aim is to find
CLF functions for other perturbations cases of the mixing flow model, on one hand,
and also to approach iterative LMI algorithms for finding the matrix P. The test
values (39) for the matrix P give rise to an easier further statement of a SDP
problem for the mixing flow dynamical system.

Thus, this chapter adds a new standpoint in the mathematical context of the
mixing flow dynamical system, by considering it as a polynomial system of differ-
ential equations. For a model whose mathematical apparatus is rather associated
with mechanics and fluid mechanics issues, approaching the stability by searching
Lyapunov functions with computational algebraic appliances is new. This approach
could open a new way in the study of stabilizing of the mixing flow dynamical
model - which is a far from equilibrium model, and also in the qualitative analysis of
the differential systems associated to transport phenomena.
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