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Preface

Nanotechnologies and nanomaterials are increasingly used in modern life and 
largely determine the directions of science and technology development. Therefore, 
the development of nanomechanics, which is used to describe behavior and prop-
erties at different structural levels, is very necessary. Nanomechanics includes 
different physics and mathematics models, such as quantum mechanics, molecular 
dynamics, mesodynamics, and continuum mechanics. Because of the multilevel 
nature of nanotechnological processes, the problems of nanomechanics are very 
complex and require a detailed study by scientists and engineers.

This book is a collection of six scientific chapters on theoretical and practical 
advances in nanomechanics at different structural levels. Chapters cover a wide 
range of research in the field of nanomechanics.

Chapter 1, “Formation of Nanostructures on the Solid Surface”, presents informa-
tion on the problem of modifying the surface of a solid. It provides a comparative 
review of different methods of forming nanostructures on the surfaces of solids and 
mathematical modeling of these processes. It is shown that mathematical modeling 
makes it possible to predict the structure of the modified surface and determine the 
parameters of the technological processes of modification.

 Chapter 2, “Mode I and Mode II Crack Tip Fields in Implicit Gradient Elasticity 
based on Laplacians of Stress and Strain. Part I: Governing Equations”, provides the 
governing equations and the required boundary and symmetry conditions for the 
considered crack problems for the plane strain state. It presents an implicit gradient 
elasticity model including the Laplacian of stress and the Laplacian of strain. This 
chapter provides the governing equations and the required boundary and symmetry 
conditions for the considered crack problems. The development of models of the 
gradient theory of elasticity is currently important for descriptions of size effects 
and nonlocal behavior observed in nanostructured materials or composites contain-
ing nanoparticles, carbon nanotubes, and nanofibers.

In Chapter 3, “Mode I and Mode II Crack Tip Fields in Implicit Gradient Elasticity 
based on Laplacians of Stress and Strain. Part II: Asymptotic Solutions”, the authors 
develop asymptotic solutions for near-tip fields of Mode I and Mode II crack 
problems and for model responses reflected by implicit gradient elasticity. Mode I 
and Mode II crack problems are considered in the setting of plane strain problems. 
The chapter discusses analytical solutions for near fields using Williams-type 
asymptotic expansions. The main output of the work is the closed-form analytical 
solutions predicted by the 3-PG model for Mode I and Mode II fracture problems.

In Chapter 4, “Mode I and Mode II Crack Tip Fields in Implicit Gradient Elasticity 
based on Laplacians of Stress and Strain. Part III: Numerical Simulations”, verifica-
tion of a resulting finite element model for the square section with a circular hole 
subjected to displacement-controlled tension loading is considered and discussed. 
The chapter presents the numerical modeling by the finite element method near tip 
fields of Mode I and Mode II crack problems. A finite element model for plane strain 
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is developed in the framework of a weak formulation based on the principle of 
virtual work. The chapter has two main tasks. The first is to validate the analytical 
asymptotic solutions presented in the previous chapter. The second is to investigate 
the effect of non-classical material parameters on the stress intensity factors. The 
specimen for modeling is discretized by two meshes of the finite element method: 
a rectangular mesh for the main part of the specimen and a radial mesh around the 
crack tip including singular elements.

In Chapter 5, “Synthesis of WO3 Nanostructures and Their Nanocomposites with 
Graphene Derivatives via Novel Chemical Approach”, a novel chemical method for 
the preparation of WO3 nanostructures is developed. It presents an experimental 
method for obtaining samples of WC to WO3 nanostructures and the formation of 
their nanocomposites with carbon nanostructures. The authors carry out a study of 
structural, morphological, and vibrational properties of tungsten oxide nanostruc-
tures and their nanocomposite with GO nanosheets.

Chapter 6, “Ultrasonic and Spectroscopic Techniques for the Measurement of the 
Elastic Properties of Nanoscale Materials”, is devoted to a very topical problem 
of nanomechanics related to the determination of the mechanical properties of 
materials at the nanoscale. These properties, as a rule, differ from the properties of 
materials at the macroscale and depend on the technology for forming nanomateri-
als. A comparative overview of ultrasonic and spectroscopic techniques for the 
measurement of the elastic properties of nanoscale materials is given.

This book is useful for engineers, technologists, and researchers interested in 
methods of nanomechanics and the applications of advanced nanomaterials with 
complex behavior.

I would like to express my appreciation to all the contributors to this book. My 
special thanks to Publishing Process Manager, Ms. Sara Debeuc, and other staff 
at IntechOpen for their kind support and great efforts in bringing this book to 
completion.

Alexander V. Vakhrushev
Professor,
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Ural Branch of the Russian Academy of Science,

Izhevsk, Russia

Head of the Department of Nanotechnology and Microsystems, 
Kalashnikov Izhevsk State Technical University, 

Izhevsk, Russia

IVXIV



1

Chapter 1

Formation of Nanostructures on 
the Solid Surface
Alexander V. Vakhrushev

Abstract

Forming nanostructures on the solids surface is one of the promising 
nanotechnological processes. It has been established that changes in the atomic 
structure of the solid surface due to the nanostructures formation result both in a 
significant change in various physical properties of the surface, and in an increase 
in its durability, strength, hardness, wear resistance. There are many different 
methods for forming nanostructures on solid surfaces: surface modification with 
nano-elements (nanoparticles, fullerenes and fullerites, graphene and nanotubes), 
formation of a nanocomposite layer on the surface, forming quantum dots and 
whiskers on the surface, implanting ions into the solid surface, laser surface 
treatment and other processes. The above processes are very complex and for 
their optimization require detailed research both by experimental and theoretical 
methods of mathematical modeling. The aim of this chapter was to provide a 
comparative review of different methods of forming nanostructures on the solids 
surface and mathematical modeling of these processes various aspects.

Keywords: solid surface, nanostructures, formation, physical processes, modeling

1. Introduction

Solids surface modification with the aim of forming nanostructures is widely 
used now. This is due to the fact that the creation of a nanostructure on the surface 
of a solid significantly changes its physical properties, which makes it possible to 
form various functional nanostructures, and increases the durability and strength 
of both the surface and the solid as a whole. Let us list the various technological 
methods of nanomodification of a solid surface.

1. Formation of a nanocomposite layer

2. Formation of quantum dots on the surface of a solid.

3. Formation of whiskers on the surface of a solid.

4. Formation of nanostructures on a porous surface

5. Surface modification by fullerenes and fullerites

6. Implantation of ions or atoms into the surface
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7. Laser surface treatment

8. Formation of nanostructured coatings for spintronics

9. Healing of defects on the surface

10. Applying graphene to the surface

The list of technological processes for the modification of a solid body can be 
continued. The emergence of new processes at the moment is very intense.

The above technological processes can be divided into the following three main 
methods of nano-structural surface modification.

1. Application of a special coating having a nanostructure or including nano-
structured elements in its composition.

2. Formation of nanostructured elements on the surface.

3. Changes in the atomic structure of the surface of a solid.

There are also complex methods that combine the above methods for modifying 
the surface of a solid.

The above processes are very complex and for their optimization require 
detailed research both by experimental and theoretical methods of mathematical 
modeling.

Experimental data show that the parameters of nanomodification processes of 
solids surface depend largely on the chemical, physical, and structural properties 
of the elements in their composition. It should also be emphasized that nanotech-
nological processes are complex and diverse, and their implementation typical 
scale is small, less than 100 nanometers. This requires a deep understanding of 
physical and chemical processes at nanoscale, but the nanometer scale of processes 
makes it difficult to study them by experimental methods only and brings about 
the need to use mathematical modeling. Mathematical modeling is a powerful tool, 
especially in new, “pioneer” fields of science and technology, in which operational 
experience has not yet been accumulated. Therefore, developing nanotechnology of 
solid surface modifications has required significant improvement and creating new 
methods of mathematical modeling and mathematical physics and their extension 
to the study of multilevel systems.

To model the class of problems considered in this review, a wide range of 
methods used in the simulation of meso- and nanoscale systems are used: quantum 
chemistry, molecular dynamics, mesodynamics and continuum mechanics. Each of 
these methods has its own challenges, capabilities, and limitations.

In the review, it is difficult to give in detail all the mathematical equations 
describing these complex processes. Therefore, the interested reader can study the 
exact mathematical formulation of problems in specific works given in the review 
or in the author’s book summarizing methods for modeling nanosystems [1].

The aim of this chapter was to provide a comparative review of different meth-
ods of forming nanostructures on the solids surface and mathematical modeling of 
these processes various aspects.

The review presents works on three processes of solid surface modification: the 
electrocodeposition of nanoparticles in a metallic coating; magnetron deposition of 
nanofilms and the formation of nanolayers on a solid surface by epitaxy in which 
the author and his colleagues were directly involved.
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2. The electrocodeposition of nanoparticles in a metallic coating

2.1 Technology of electrocodeposition of nanoparticles in a metallic coating

The electrocodeposition of nanoparticles in a metallic coating (EPD) process 
is the advanced method for using in practice the nanotechnology [2–5]. The com-
posite coating with improved and unique operational characteristics, such as wear 
resistance, cracking resistance, antifriction properties, corrosion resistance, radia-
tion resistance, and high adhesion to the substrate can be produced by this tech-
nology. Metal matrix composite electrochemical coatings (MMEC) are prepared 
from the suspensions, representing electrolyte solutions with additives of certain 
quantity of a superfine powder (Figure 1). The particles are adsorbed onto cathode 
surface in combination with metal ions during electrocodeposition (ECD) process 
and the metal matrix composite coating is formed. MMEC consists of galvanic 
metal (dispersion phase) and particles (dispersed phase).

There are the following steps of the ECD process:

1. The particles in suspension obtain a surface charge.

2. The charged particles and metal ions are transported through the liquid by the 
application of an electric field (electrophoresis), convection, and diffusion.

3. The particles and metal ions are adsorbed onto the electrode surface.

4. The particles adhere to the electrode surface through van der Waals forces, 
chemical bonding, or other forces and, simultaneously, adsorbed metal ions 
are reduced to metal atoms. Metal matrix is encompassed the adsorbed par-
ticles and thus the MMEC is formed.

Depending on the parameters of the co-electrochemical deposition process, 
strength, wear resistance, corrosion resistance, microhardness can be significantly 
improved. The EPD process and, consequently, the structure, morphology and 
properties of the composite coating are influenced by such electrochemical param-
eters as electrolysis conditions (chemical composition and method of stirring the 
electrochemical bath, presence of inclusions, temperature, pH), parameters of the 
applied voltage (current density, constant, pulse current), properties of inclusions 
(chemical composition, size, shape, surface charge, surface functionalization, 
concentration and dispersion of particles in an electrochemical bath), interaction 
between particles and electrolyte ions, nature and speed of fluid movement.

Figure 1. 
The ECD process.
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The surface charge of the particles is a very important factor in the process. It 
should be noted that negatively charged particles are deposited more intensively, 
this is explained by the presence of an electric double layer around the nanopar-
ticles. The intensity of electrolyte stirring during SEA is an important factor that 
affects the uniformity of the nanoparticle’s distribution in the electrolyte volume 
due to convective flows and the delivery of particles to the cathode surface.

A large number of factors affecting the quality of the nanocomposite layer 
requires the use of mathematical modeling to determine the optimal parameters of 
the technological process of their formation.

2.2 Modeling results of nanoparticles electrocodeposition in a metallic coating

As an example, the results of mathematical modeling of copper and alumina 
particles ECD on RCE with consideration of electrolyte turbulent flow are depicted 
in Figure 2. A good correlation with the published experimental date [2] has been 
found. For the first time ever, it is found that near the RCE surface the unsteady 
diffusion layer is formed due electrolyte turbulent flow.

The process of nanoparticles electrocodeposition in a metallic coating can be 
studied in detail in [3–6].

3. Magnetron deposition of nanofilms on the surface of a solid

3.1 Technology of magnetron sputtering

In the 1970s, D. Chapin patented a planar magnetron system. This design 
increased the lifetime of the target and made it possible to spray on rather large 
areas, for example, architectural glass. Subsequently, the popularity of spray 
deposition grew rapidly because of the need to produce thin films with a uniform 
composition and good adhesion to the substrate surface, the demand is due to 
microelectronics [7–10].

The diagram of the magnetron chamber shown in Figure 3 illustrates the process 
of magnetron sputtering.

Figure 2. 
Dependencies of weight content on applied current density.
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In the above scheme, a planar target is used, colored yellow. An inert gas is 
required to create a plasma above the target. The black lines show the magnetic field 
holding the plasma; in this area, the atoms of the working gas are ionized. Then, 
under the influence of an electric field, the ions knock the atoms out of the target. 
The active gas serves to form oxide and nitride films. A bias potential is applied to 
the substrate, the value of which affects the structure of the formed coatings. When 
a negative bias potential is applied to the substrate with respect to the magnetron 
plasma, the ions are accelerated in the electric field of the substrate and carry out a 
low-energy bombardment of the substrate surface.

Magnetron sputtering is widely used for forming of new electronic devices 
based on new functional nanosystems, which requires a thorough study of their 
properties at the atomic and molecular level. Their functional characteristics 
depend on the structure and nanosystems morphology: optical absorption, elec-
tromagnetic parameters, etc. Recently, considerable attention has been paid to 
such nanosystems as superconductors, magnetics, heterostructures for spintronics. 
These systems are layered or nano-dispersed composites with local inhomogeneities 
zones. The local inhomogeneities presence results in forming stable vortex-like 
regions of reverse magnetization, called magnetic skyrmions and anti-skyrmions, 
which are very promising tools for use in the spintronics field.

3.2  Results of modeling magnetron sputtering of multilayer nanosystems  
for spintronics

A particularly important effect on the spintronic objects and other nanoscale 
elements properties is exerted by the structure of layers, domains, regions, films 
arising during their manufacture [11–13]. The structure generates at the atomic 
level. Therefore, the main mechanisms of regulation, activation, and interaction 
in spin nanosystems must be monitored at this scale. Atomistic modeling makes it 
possible to identify the modes and technological processes parameters when the 
functional nanostructure’s structure is the closest to the required characteristics. 
There is an acute problem of forming multilayer nanosystem with clear boundaries 
of various nanolayers sections.

Figure 3. 
Diagram of the chamber of the installation of magnetron sputtering [7].
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As an example illustrating the simulation of the real structure of a material, let 
us consider the structure of a multilayer nanosystem of an Nb-Co spin valve.

Figure 4 well characterize the qualitative picture of a spin valve forming 
from niobium and cobalt layers and the structure of the layers. The structure of 
the layers formed by niobium atoms is close to crystalline. In this case, groups 
of atoms are combined into nanocrystallites with vertical spatial orientation. 
In Figure 4, solid lines mark the boundaries of these nanocrystals. Cobalt 
nanofilms have an amorphous structure. The results obtained are in good 
agreement with experimental studies of the structure of various multilayer 
nanosystems [14].

4. Formation of nanolayers on a solid surface using epitaxy

4.1 Technology for the formation of nanolayers on a solid surface by epitaxy

At present, epitaxy is widely used to modify the surface of solids. Epitaxy is the 
process of building up layers on the surface of a solid [15]. Figure 5 shows a simpli-
fied diagram of the process.

The structure of the formed epitaxial layers, as a rule, reproduces the struc-
ture of the solid’s surface, and the chemical composition of the epitaxial layer 
and the substrate may differ. In the process of epitaxy, the chemical composi-
tion of the grown layers can be controlled both gradually and discretely. This 
technology makes it possible to grow multilayer nanosystems with a thickness 
up to atomic dimensions. The structures grown in this way are nanostructures: 
nanolayers, quantum dots, whiskers, etc. give the surface of a solid body unique 
physical properties that are absent in the base material. There are different 
types of epitaxies. If the materials of the resulting layer and the substrate are 
the same, then the process is called auto epitaxial or homoepitaxial. If the 
materials of the layer and the substrate are different, then the process is called 
heteroepitaxial.

Figure 4. 
Nb-Co multilayer quantum valve.
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4.2  Results of modeling the formation of nanostructures on a solid surface  
by epitaxy

4.2.1 Simulation of the formation of quantum dots

As examples of modeling process for the formation of quantum dots on the 
a solid surface, let us consider the formation of gold nanoparticles on the silicon 
surface and the formation of a complex system consisting of gallium and antimony 
atoms. The simulation results are presented in Figures 6 and 7, respectively.

For the simulation, a silicon substrate with orientation (100) was used, which is 
indicated in green in Figures 6 and 7. Gold atoms, indicated in yellow in the figure, 
were deposited on the substrate. Then, silicon atoms were deposited on the result-
ing system. The temperature of the simulated system was kept constant and equal 
to 800 K.

As can be seen from Figure 6, gold nanoparticles of various diameters are 
formed on the substrate. The physical process of forming the gold-silicon nanosys-
tem is interesting. First, gold atoms are deposited on a silicon substrate, and then 
they are collected in nanoparticles (quantum dots) of various sizes, spherical.

Figure 5. 
Epitaxy scheme.

Figure 6. 
Picture of a nanosystem on a solid surface obtained by simulating the deposition of gold atoms on a silicon 
substrate with the orientation (100).
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As a result of modeling the formation of a complex system consisting of 
gallium (dark green) and antimony (lilac) atoms, gallium, and antimony atoms 
form conglomerates of various shapes) (Figure 7). Diffusion of gallium and 
antimony atoms into the substrate is not observed. It can be seen from the 
presented figures that the atoms of the substances under consideration tend to 
form nanoparticles on the silicon surface of various shapes. Silicon atoms fill 
the entire space between the formed agglomerates of gallium and antimony 
nanoparticles.

4.2.2 Modeling the formation of nanoelements on a porous solid surface

Let us consider the results of modeling the processes of forming ZnS nanolay-
ers on the surface of porous aluminum oxide on matrices. Such nanostructures are 
actively used in optical systems in the infrared range [16].

The process of nanostructure formation in zinc sulfide nanofilms is illustrated in 
Figure 8.

Figure 7. 
Pictures of a nanosystem on a solid surface obtained by simulating the deposition of gallium and antimony 
atoms on a silicon substrate with the orientation (100).

Figure 8. 
Pictures of the sequential formation of a ZnS nanolayer on a porous alumina substrate for the deposition time: 
(a) 0.2 ns, (b) 0.4 ns, and (c) 0.6 ns.
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Analysis of the nanostructure shows that the overgrowth of pores on the surface 
of a solid with the indicated atoms occurs gradually. First, a ZnS nanolayer begins 
to form near the pore (Figure 8a), which subsequently gradually closes the entire 
pore. Zinc sulfide molecules partially enter the pore, but its complete dense filling 
does not occur (Figure 8b and c). Nevertheless, by the end of deposition, almost 
the entire inner surface of the pore is covered with ZnS molecules. The gradual 
filling of the pore leads to the appearance of round growths over the pore.

In general, the surface of the ZnS nanolayer forms even, with a slight decrease 
in the thickness of the nanolayer above the pore area. The formation of molecular 
agglomerates in the space above the substrate during epitaxy is not observed; there-
fore, the nanolayer is even and there are no significant differences in the surface 
relief. The growth rate of the nanofilm during the deposition process was uniform. 
The thickness of the formed nanolayer was 6.6–6.8 nm.

Analysis of the materials structure based on zinc sulfide indicates a predomi-
nantly amorphous structure of templates and formed nanofilms with insignificant 
crystallization areas with different spatial orientations.

5. Conclusions

The chapter provides methods for modifying the surface of a solid and gives 
examples of modeling three modification processes. It is shown that mathematical 
modeling makes it possible to predict the structure of the modified surface and 
determine the parameters of technological processes of modification. To obtain 
more complete information on modeling methods, the reader can obtain additional 
information from the literature on modification methods [17–19] and modeling 
methods [20–24].
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Chapter 2

Mode-I and Mode-II Crack Tip
Fields in Implicit Gradient
Elasticity Based on Laplacians of
Stress and Strain. Part I:
Governing Equations
Carsten Broese, Jan Frischmann and Charalampos Tsakmakis

Abstract

Models of implicit gradient elasticity based on Laplacians of stress and strain can
be established in analogy to the models of linear viscoelastic solids. The most simple
implicit gradient elasticity model including both, the Laplacian of stress and the
Laplacian of strain, is the counterpart of the three-parameter viscoelastic solid. The
main investigations in Parts I, II, and III concern the “three-parameter gradient
elasticity model” and focus on the near-tip fields of Mode-I and Mode-II crack
problems. It is proved that, for the boundary and symmetry conditions assumed in
the present work, the model does not avoid the well-known singularities of classical
elasticity. Nevertheless, there are significant differences in the form of the asymp-
totic solutions in comparison to the classical elasticity. These differences are
discussed in detail on the basis of closed-form analytical solutions. Part I provides
the governing equations and the required boundary and symmetry conditions for
the considered crack problems.

Keywords: implicit gradient elasticity, Laplacians of stress, Laplacians of strain,
micromorphic and micro-strain elasticity, plane strain state

1. Introduction

The most simple constitutive law in explicit gradient elasticity is the model with
equation:

Σij ¼ ijmn εmn � c2ijmn Δεð Þmn KG�Modelð Þ: (1)

Here, Σ ¼ ΣT is the Cauchy stress tensor, ε is the strain tensor,  is the isotropic
elasticity tensor, Δ is the Laplacian operator, and c2 is a material parameter, withffiffiffiffi
c2

p
denoting an internal material length. The components in Eq. (1) are referred to

a Cartesian coordinate system. It seems that the constitutive law (1) has been
introduced for the first time by Altan and Aifantis [1]. These authors (cf. also
Georgiadis [2]) showed that the constitutive Eq. (1) leads to regular strain solutions
at the crack tip of Mode-III crack problems. However, the stress field remains
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singular at the crack tip as in the case of classical elasticity. Moreover, Altan and
Aifantis [1], as well as Georgiadis [2], presented an appropriate isotropic energy
function for the mechanical model in Eq. (1) in the context of Mindlins gradient
elasticity theory (see Mindlin [3] as well as Mindlin and Eshel [4]). An alternative
approach to this model has been proposed in Broese et al. [5], where an analogy
between gradient elasticity models and linear viscoelastic solids is established.
According to this analogy, Eq. (1) is regarded as the gradient elasticity counterpart
of the Kelvin viscoelastic solid. The short hand notation “KG-Model” in Eq. (1)
stands for “Kelvin-Gradient-Elasticity-Model.”

Now, the question arises, if a gradient elasticity model including both, the
Laplacian of stress and the Laplacian of strain, could remove both, the singularities
of stress and the singularities of strain at the crack tip (cf. Gutkin and Aifantis [6]).
The most simple generalization of Eq. (1), including the Laplacians of stress and
strain, reads as follows:

Σij � c1 ΔΣð Þij ¼ ijmn εmn � c2ijmn Δεð Þmn 3� PG�Modelð Þ, (2)

where the same notation as in Eq. (1) applies and
ffiffiffiffi
c1

p
is a further internal

material length. To our knowledge, model (2) has been introduced for the first time
by Gutkin and Aifantis [6]. These authors proposed the gradient elasticity law (2)
ad hoc in an attempt to eliminate the singularities of stress and strain of defects.
Equations of the form (2) are known as models of implicit gradient elasticity (see
Askes and Gutiérrez [7]).

Broese et al. [5] proved that Eq. (2) can be derived as a particular case of
Mindlins micro-structured elasticity, which arises whenever the micro-deformation
of the micromorphic continuum is supposed to be a symmetric tensor. Because the
micro-structured elastic continuum of Mindlin and the micromorphic elastic
continuum of Eringen (see, e.g., Eringen and Suhubi [8] and Eringen [9]) are
essentially equivalent to each other, in the present work we will call both as
micromorphic continua. According to Forest and Sievert [10], the resulting
micromorphic theory is named micro-strain theory. It is shown in Broese et al. [5]
that, in the context of micro-strain elasticity, the 3-PG-Model (2) can be derived as
a combination of elasticity constitutive laws and the equilibrium equation for the
so-called double stress.

On the other hand, Broese et al. [5] showed that Eq. (2) can be established
alternatively by supposing the continuum to be classical, i.e., exhibiting only classi-
cal displacement degrees of freedom, but in the framework of the non-conventional
thermodynamics proposed in Alber et al. [11]. To be more specific, the micro-
deformation variable of the micro-strain approach has to be viewed as an internal
state variable analogous to the inelastic strain in linear viscoelasticity. Eq. (2) then
turns out to be a constitutive law, which is the counterpart in gradient elasticity of
the three-parameter viscoelastic solid. The short hand notation “3-PG-Model”
stands for “3-Parameter-Gradient-Elasticity-Model.” A general analogy to the con-
stitutive laws describing viscoelastic solids can be established by using a nonstan-
dard spring in gradient elasticity corresponding to the dashpot element in linear
viscoelasticity and the Laplacian operator Δ in place of the ordinary time derivative
in the evolution laws of dashpot elements. Using virtual power balance arguments,
Broese et al. [5] derived the same boundary conditions along the lines of the second
approach as in the micro-strain approach. But now the boundary conditions have to
be understood as constitutive boundary conditions, analogous to the constitutive
initial conditions in viscoelasticity.

Because all resulting governing equations and boundary conditions in the two
approaches are equal to each other, we shall proceed further by regarding the
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3-PG-Model as a particular case of the micro-strain elasticity. The present work
(Parts I, II, and III) is concerned with the near-tip fields predicted by the 3-PG-
Model for Mode-I and Mode-II types of crack problems. Unlike statements made
somewhere else (see Part II), we prove that, for the assumptions made here, the
3-PG-Model does not eliminate the well-known singularities of classical elasticity.
Nevertheless, compared with the form of asymptotic solutions in classical elasticity,
there are interesting new aspects, which are discussed in detail in Part II on the basis
of closed-form analytical solutions. Part I provides the governing equations and the
required boundary and symmetry conditions in order to establish the analytical
solutions.

2. Preliminaries: notation

Throughout the paper, we largely use the same notation as in Mindlin [3] and
Mindlin and Eshel [4], in order to facilitate the comparison with these works. The
deformations are assumed to be small, so we do not distinguish, as usually done,
between reference and actual configuration. All indices will have the range of
integers (1, 2, 3), while summation over repeated indices is implied. Explicit refer-
ence to space and time variables, upon which a function may depend, will be
dropped in most part of the paper. Also, we shall not distinguish between functions
and their values. However, if necessary, we shall give explicitly the set of variables
which the function depends on.

Let B be a material body which may be identified by the position vectors x ¼
xi ei, with respect to a Cartesian coordinate system xif g inducing the orthonormal
basis eif g. The body B occupies the space V in the three-dimensional Euclidean
space we deal with. We indicate by n the outward unit normal vector to the surface
∂V bounding the space V. Small Latin indices will be used in conjunction with
Cartesian coordinates and related components. If f is a function of the Cartesian
coordinates xi, then we shall use the notations for partial derivatives as follows:

∂i f ≔
∂f
∂xi

, ∂ij f ≔
∂
2f

∂xi ∂x j
: (3)

Let ∇ ¼ ∂i ei be the nabla operator and a be some vector or higher order tensor.
The gradient, the divergence, and the Laplacian of a are defined, respectively, by
grada � ∇a≔∇⊗a, diva≔∇ � a, and Δa ¼ divgrad a, where � and ⊗ are the
scalar and the tensorial products between two vectors. It is helpful to use notations
for components of the form að Þij… ¼ aij… . Thus, if Aij and Aijk are the Cartesian
components of a second-order tensor A and a third-order tensor A, then, with
respect to the Cartesian basis eif g, we have the following equations:

∇Að Þijk ¼ ∂iAjk, (4)

divAð Þi ¼ ∂ jAji, (5)

ΔAð Þij ¼ ∂kkAij, (6)

divAð Þij ¼ ∂kAkij: (7)

We denote by  the fourth-order isotropic elasticity tensor with Cartesian
components as follows:

ijmn ¼ λδij δmn þ μ δim δjn þ δin δjm
� �

, (8)
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where λ and μ are the Lamé constants and δij is the Kronecker delta. For some
calculations, it will be convenient to use the Young’s modulus E and the Poisson ratio ν,

ν ¼ λ

2 λþ μð Þ , E ¼ 2μ 1þ νð Þ: (9)

Since  satisfies the symmetry properties

ijmn ¼ jimn ¼ mnij ¼ ijnm, (10)

we have for every second-order tensor A, that

ijmnAmn ¼ Amnmnij: (11)

For any tensor a with components ai… jk… p, we write ai… jkð Þ… p for its symmetric

part with respect to the indices j and k. Thus, if A sð Þ is the symmetric part of a

second-order tensor A, then A ijð Þ ¼ A sð Þ
ij . Corresponding notations apply with regard

to components related to curvilinear coordinate systems. Of particular interest for
our work are cylindrical coordinates r,φ, zf g. We find it convenient to use Greek
indices α, β, … to indicate both, physical components with respect to cylindrical
coordinates and cylindrical coordinates itself. Thus, e.g., we write Aαβ for the
physical components of the second-order tensor A and denote by Aαβ

� �
the matrix

of components,

Aαβ

� � ¼
Arr Arφ Arz

Aφr Aφφ Aφz

Azr Azφ Azz

0
B@

1
CA: (12)

Similar notations hold for any tensor of arbitrary order. The summation con-
vention applies in analogous manner, e.g., we have Aαα ¼ Arr þ Aφφ þ Azz. Because
cylindrical coordinate systems are orthogonal, the algebraic operations between the
corresponding physical components of tensors are identical in form to those with
respect to Cartesian components. Moreover, the physical components of isotropic
tensors are identical to their Cartesian components, e.g., the physical components of
the isotropic elasticity tensor  in Eq. (8) are given as follows:

αβγζ ¼ λδαβ δγζ þ μ δαγ δβζ þ δαζ δβγ
� �

: (13)

The physical components with respect to cylindrical coordinates of ∇A,ΔA and
divA are calculated in A. For partial derivatives of a function f with respect to
cylindrical coordinates, we use notations, in analogy to Eq. (3), of the forms

∂r f ≔
∂f
∂r

, ∂φ f ≔
∂f
∂φ

, ∂z f ≔
∂f
∂z

, (14)

∂rr f ≔
∂
2f

∂r∂r
, … : (15)

3. Governing equations for the 3-PG-Model

This section provides a short overview about the 3-PG-Model in a form which is
adequate for developing analytical solutions.
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3.1 The 3-PG-Model as particular case of micro-strain elasticity

Assume the material body to be a micromorphic continuum. Besides the classical
kinematical degrees of freedom, micromorphic continua are characterized by addi-
tional degrees of freedom due to the deformations of the micro-continua, which are
assumed to be attached at every point of the macro-continuum (see Mindlin [3] and
Broese et al. [5]). Therefore, in the micromorphic continuum theory, a nonclassical
(double) stress and a nonclassical stress power are introduced in addition to the
classical ones, but otherwise the theory is formulated in the framework of classical
thermodynamics.

Let Ψ be the micro-deformation tensor of a micromorphic continuum, u be the
macro-displacement vector, and ε be the macro-strain tensor,

εij � ε ijð Þ ≔
1
2

∂iu j þ ∂ jui
� �

: (16)

All component representations in Section 3 are referred to the Cartesian
coordinate system xif g. Assume Ψ and the so-called relative deformation γ to be
symmetric,

Ψij � Ψ ijð Þ, γij � γ ijð Þ ≔ εij �Ψij: (17)

This means that Ψ and γ are strain tensors and that the components of the
so-called micro-deformation gradient k,

kijk ≔ ∇Ψð Þijk ¼ ∂iΨjk, (18)

exhibit the symmetry property

kijk � ki jkð Þ: (19)

Following Forest and Sievert [10], we denote a micromorphic elasticity theory
based on Eqs. (16)–(18) as micro-strain elasticity.

According to Broese et al. [5], the 3-PG-model can be established as a particular
case of the micro-strain elasticity by assuming the existence of a free energy (per
unit macro-volume) ψ of the form:

ψ ¼ ψ ε, γ, kð Þ ¼1
2
εijijmn εmn þ 1

2
c2 � c1
c1

γijijmn γmn

þ 1
2

c2 � c1ð Þkijkjkmn kimn:

(20)

The components ijmn are defined in Eq. (8) and c1 as well as c2 are scalar
parameters constrained to c2 > c1 >0 with

ffiffiffiffi
c1

p
and

ffiffiffiffi
c2

p
denoting internal material

lengths as noted in Section 1. The Cauchy stress tensor Σ is then given by (cf. Broese
et al. [5]):

Σij � Σ ijð Þ ¼ τij þ σij ¼ c2
c1

ijmn εmn � c2 � c1
c1

ijmnΨmn, (21)

where

τij � τ ijð Þ ¼ ∂ψ

∂εij
¼ ijmn εmn, (22)
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σij � σ ijð Þ ¼ ∂ψ

∂γij
¼ c2 � c1

c1
ijmn εmn � ijmnΨmn
� �

: (23)

Further, there exists a double stress μ which satisfies the potential relation

μijk � μi jkð Þ ¼
∂ψ

∂kijk
¼ c2 � c1ð Þ∂iΨmnmnjk: (24)

For static problems, the classical and nonclassical stresses have to satisfy
corresponding equilibrium equations. In the absence of body forces and body dou-
ble forces, these are (see Mindlin [3] or Broese et al. [5])

∂ jΣji ¼ 0, (25)

∂kμkij þ σij ¼ 0: (26)

The concomitant classical and nonclassical boundary conditions are as follows:

Either Pi ¼ n jΣji or ui  class:bound:cond:ð Þ, (27)

and either Tij ¼ nkμkij or Ψij  non� class:bound:cond:ð Þ, (28)

have to be prescribed on the boundary ∂V.
The 3-PG-Model can be obtained from the above equations by first inserting

Eq. (24) into Eq. (26), as follows:

σij ¼ �∂kμkij ¼ � c2 � c1ð Þ∂kkΨmnmnij

¼ � c2 � c1ð Þ ijmn ΔΨð Þmn:
(29)

Then take the Laplacian of Eq. (21), as follows:

ΔΣð Þij ¼
c2
c1

ijmn Δεð Þmn �
c2 � c1
c1

ijmn ΔΨð Þmn, (30)

and use Eq. (21) as well as Eq. (22) in Eq. (29), as follows:

� c2 � c1ð Þijmn ΔΨð Þmn ¼ σij ¼ Σij � ijmn εmn: (31)

The latter together with Eq. (30) yield the following equation:

Σij � c1 ΔΣð Þij ¼ ijmn εmn � c2ijmn Δεð Þmn, (32)

which is nothing but the 3-PG-Model (2).

3.1.1 A useful equation for Ψ

For later reference, we derive a useful equation for the strain Ψ. When seeking
analytical solutions, there are two possibilities, either to find solutions in terms of Ψ
or in terms of μ. In the first case, μ is eliminated at the cost of a higher order partial
differential equation, but no compatibility conditions for Ψ are needed. To be more
specific, assuming �1 to exist, we infer from Eqs. (23) and (29) that

εij ¼ Ψij � c1 ΔΨð Þij: (33)
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Further, from Eq. (21), we get the following equation:

εij ¼ c1
c2

�1� �
ijmnΣmn þ c2 � c1

c2
Ψij: (34)

By combining the last two equations, we gain the useful relation as follows:

Ψij � c2 ΔΨð Þij � �1� �
ijmnΣmn ¼ 0: (35)

For given Σ, this is a (Helmholtz) partial differential equation for the
components of Ψ.

4. Mode-I and mode-II crack problems

In Part II, we consider Mode-I and Mode-II loading conditions for a sharp crack
in the context of plane strain problems and employ cylindrical coordinates r,φ, zf g
as indicated in Figure 1. The aim of this section is to set up all relevant equations
which are needed in Part II.

4.1 Kinematics

Plane strain state of micro-strain continua in equilibrium is characterized by the
assumptions that

uα½ � ¼
ur
uφ
0

0
B@

1
CA, εαβ½ � ¼

εrr εrφ 0

εrφ εφφ 0

0 0 0

0
B@

1
CA, (36)

Ψαβ½ � ¼
Ψrr Ψrφ 0

Ψrφ Ψφφ 0

0 0 0

0
B@

1
CA, (37)

and that u, ε, and Ψ are independent of z,

uα ¼ uα r,φð Þ, εαβ ¼ εαβ r,φð Þ, Ψαβ ¼ Ψαβ r,φð Þ: (38)

On the basis of these assumptions, we conclude (see Section A.2) that the
physical components ∇Ψð Þαβγ � ∇Ψð Þα βγð Þ have the explicit form as follows:

∇Ψð Þrrr ¼ ∂rΨrr, ∇Ψð Þrφφ ¼ ∂rΨφφ, ∇Ψð Þrrφ ¼ ∂rΨrφ, (39)

Figure 1.
Coordinate axes ahead of the crack tip.
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∇Ψð Þφrr ¼
1
r

∂φΨrr � 2Ψrφ
� �

, (40)

∇Ψð Þφφφ ¼ 1
r

∂φΨφφ þ 2Ψrφ
� �

, (41)

∇Ψð Þφrφ ¼ 1
r

∂φΨrφ þ Ψrr �Ψφφ

� �
, (42)

whereas all other components of ∇Ψ vanish,

∇Ψð Þαβz ¼ ∇Ψð Þzαβ ¼ 0: (43)

Similarly, we find (see Section 6.3) for the physical components ΔΨð Þαβ ¼
ΔΨð Þ αβð Þ, that

ΔΨð Þrr ¼ ∂rrΨrr þ 1
r2

∂φφΨrr þ 1
r
∂rΨrr � 4

r2
∂φΨrφ � 2

r2
Ψrr þ 2

r2
Ψφφ, (44)

ΔΨð Þφφ ¼ ∂rrΨφφ þ 1
r2

∂φφΨφφ þ 1
r
∂rΨφφ þ 4

r2
∂φΨrφ þ 2

r2
Ψrr � 2

r2
Ψφφ, (45)

ΔΨð Þrφ ¼ ∂rrΨrφ þ 1
r2

∂φφΨrφ þ 1
r
∂rΨrφ þ 2

r2
∂φΨrr � 2

r2
∂φΨφφ � 4

r2
Ψrφ, (46)

ΔΨð Þαz ¼ 0: (47)

It is well known (see, e.g., Anderson [12], p. 114) that the nonvanishing physical
components of ε are given by the following expressions:

εrr ¼ ∂rur, εφφ ¼ 1
r

ur þ ∂φuφ
� �

, εrφ ¼ 1
2

1
r
∂φur þ ∂ruφ � 1

r
uφ

� �
: (48)

4.2 Cauchy stress: classical equilibrium equations

In view of the assumptions of the last section, we may derive the following
results. We conclude from Eqs. (21)–(23), that

Σαβ ¼ Σαβ r,φð Þ, ταβ ¼ ταβ r,φð Þ, σαβ ¼ σαβ r,φð Þ, (49)

and that

Σαβ½ � ¼
Σrr Σrφ 0

Σrφ Σφφ 0

0 0 Σzz

0
B@

1
CA, ταβ½ � ¼

τrr τrφ 0

τrφ τφφ 0

0 0 τzz

0
B@

1
CA, (50)

σαβ½ � ¼
σrr σrφ 0

σrφ σφφ 0

0 0 σzz

0
B@

1
CA: (51)

Since εzz ¼ Ψzz ¼ 0, we deduce from the elasticity laws (21)–(23) that

Σzz ¼ ν Σrr þ Σφφ

� �
, τzz ¼ ν τrr þ τφφ

� �
, σzz ¼ ν σrr þ σφφ

� �
, (52)

where ν is given by Eq. (9). Thus, as in classical elasticity, once Σrr and Σφφ have
been determined, Σzz is calculated by the first equation of (52).
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Quite similar to the case of classical elasticity (see, e.g., Anderson [12], p. 114),
the matrix of the components of Σ in Eq. (50) and the classical equilibrium condi-
tion (24), expressed in physical components, lead to the following two equations:

∂rΣrr þ 1
r
∂φΣrφ þ 1

r
Σrr � Σφφ

� � ¼ 0, (53)

∂rΣrφ þ 1
r
∂φΣφφ þ 2

r
Σrφ ¼ 0: (54)

4.3 Classical compatibility condition

For the analytical solutions in Part II, we need the classical compatibility condi-
tion for the components of the strain tensor ε (see, e.g., Malvern [13], p. 669)

∂rrεφφ þ 1
r2

∂φφεrr � 2
r
∂rφεrφ � 1

r
∂rεrr þ 2

r
∂rεφφ � 2

r2
∂φεrφ ¼ 0: (55)

The aim is now to rewrite this equation in terms of the physical components of Σ
and Ψ by using Eq. (34). There are various equivalent representations for �1,
depending on the chosen set of elasticity constants. We find it convenient here to
express �1 in terms of the elasticity constants μ and ν. Thus, from Eq. (34),
expressed in physical components,

εrr ¼ c1
2μc2

Σrr � ν Σrr þ Σφφ

� �� �þ c2 � c1
c1

Ψrr, (56)

εφφ ¼ c1
2μc2

Σφφ � ν Σrr þ Σφφ

� �� �þ c2 � c1
c1

Ψφφ, (57)

εrφ ¼ c1
2μc2

Σrφ þ c2 � c1
c1

Ψrφ: (58)

By inserting these equations into Eq. (55), we get

∂rr
c1

2μc2
Σφφ � ν Σrr þ Σφφ

� �� �þ c2 � c1
c2

Ψφφ

� �

� 2
r
∂rφ

c1
2μc2

Σrφ þ c2 � c1
c2

Ψrφ

� �

þ 1
r2

∂φφ
c1

2μc2
Σrr � ν Σrr þ Σφφ

� �� �þ c2 � c1
c2

Ψrr

� �

� 1
r
∂r

c1
2μc2

Σrr � ν Σrr þ Σφφ

� �� �þ c2 � c1
c2

Ψrr

� �

þ 2
r
∂r

c1
2μc2

Σφφ � ν Σrr þ Σφφ

� �� �þ c2 � c1
c2

Ψφφ

� �

� 2
r2

∂φ
c1

2μc2
Σrφ þ c2 � c1

c2
Ψrφ

� �
¼ 0:

(59)

This is equivalent to a vanishing sum of two functions of Ψαβ and Σαβ,
respectively:

0 ¼ χ1 Ψαβ

� �þ χ2 Σαβ

� �
, (60)
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with

χ1 Ψαβ

� �
≔
c2 � c1
c2

∂rrΨφφ � 2
r
∂rφΨrφ þ 1

r2
∂φφΨrr

�

� 1
r
∂rΨrr þ 2

r
∂rΨφφ � 2

r2
∂φΨrφ

� (61)

and

χ2 Σαβ

� �
≔

c1
2μc2

∂rrΣφφ � ν∂rr Σrr þ Σφφ

� �� 2
r
∂rφΣrφ þ 1

r2
∂φφΣrr

�

� ν

r2
∂φφ Σrr þ Σφφ

� �� 1
r
∂rΣrr

� ν

r
∂r Σrr þ Σφφ

� �þ 2
r
∂rΣφφ � 2

r2
∂φΣrφ

�
,

(62)

The right hand side of Eq. (62) can be simplified by invoking the equilibrium
Eqs. (53) and (54). First recast Eq. (54) to solve for Σrφ,

Σrφ ¼ � r
2
∂rΣrφ � 1

2
∂φΣφφ, (63)

and then take the derivative with respect to φ,

∂φΣrφ ¼ � r
2
∂rφΣrφ � 1

2
∂φφΣφφ: (64)

On the other hand, from Eq. (53),

∂φΣrφ ¼ �r∂rΣrr � Σrr þ Σφφ, (65)

and, after differentiation with respect to r,

∂rφΣrφ ¼ �r∂rrΣrr � 2∂rΣrr þ ∂rΣφφ: (66)

By substituting the latter into Eq. (64),

∂φΣrφ ¼ r2

2
∂rrΣrr � 1

2
∂φφΣφφ þ r∂rΣrr � r

2
∂rΣφφ: (67)

Finally, by substituting Eqs. (66) and (67) into Eq. (62) and after some
rearrangement of terms, we find that

χ2 Σαβ

� � ¼  
1� νð Þc1
2μc2

½∂rr Σrr þ Σφφ

� �þ 1
r2

∂φφ Σrr þ Σφφ

� �

þ 1
r
∂r Σrr þ Σφφ

� ��:
(68)

4.4 Field equations for Ψ

By expressing �1 in terms of μ and ν and using Eqs. (50), (37) and (44)–(46),
we can readily obtain from Eq. (35), expressed in physical components, the follow-
ing three equations:
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∂rrΨrr þ 1
r2

∂φφΨrr þ 1
r
∂rΨrr � 4

r2
∂φΨrφ � 2

r2
þ 1
c2

� �
Ψrr þ 2

r2
Ψφφ

þ 1� ν

2μc2
Σrr � ν

2μc2
Σφφ ¼ 0,

(69)

∂rrΨφφ þ 1
r2

∂φφΨφφ þ 1
r
∂rΨφφ þ 4

r2
∂φΨrφ þ 2

r2
Ψrr � 2

r2
þ 1
c2

� �
Ψφφ

þ 1� ν

2μc2
Σφφ � ν

2μc2
Σrr ¼ 0,

(70)

∂rrΨrφ þ 1
r2

∂φφΨrφ þ 1
r
∂rΨrφ þ 2

r2
∂φΨrr � 2

r2
∂φΨφφ � 4

r2
þ 1
c2

� �
Ψrφ

þ 1
2μc2

Σrφ ¼ 0:

(71)

4.5 Double stress

4.5.1 Elasticity law for double stress

With respect to physical components, the elasticity law (24) becomes

μαβγ � μα βγð Þ ¼ c2 � c1ð Þ ∇Ψð Þαρζρζβγ

¼ c2 � c1ð Þ 2μ ∇Ψð Þαβγ þ λ ∇Ψð Þαζζ δβγ
n o

:
(72)

Keeping in mind that the physical components of ∇Ψ for a plane strain state are
given by Eqs. (39)–(41), it is not difficult to derive the following results:

μrrr ¼ c2 � c1ð Þ λþ 2μð Þ∂rΨrr þ λ∂rΨφφ

� �
, (73)

μrφφ ¼ c2 � c1ð Þ λþ 2μð Þ∂rΨφφ þ λ∂rΨrr
� �

, (74)

μrzz ¼ c2 � c1ð Þλ∂r Ψrr þΨφφ

� � ¼ ν μrrr þ μrφφ
� �

, (75)

μrrφ ¼ c2 � c1ð Þ2μ∂rΨrφ, (76)

μφrr ¼
c2 � c1

r
2μ ∂φΨrr � 2Ψrφ
� �þ λ∂φ Ψrr þΨφφ

� �� �
, (77)

μφφφ ¼ c2 � c1
r

2μ ∂φΨφφ þ 2Ψrφ
� �þ λ∂φ Ψrr þΨφφ

� �� �
, (78)

μφzz ¼
c2 � c1

r
λ∂φ Ψrr þΨφφ

� � ¼ ν μφrr þ μφφφ
� �

, (79)

μφrφ ¼ c2 � c1
r

2μ ∂φΨrφ þΨrr � Ψφφ

� �
, (80)

μrrz ¼ μrφz ¼ μφrz ¼ μφφz ¼ 0, (81)

μzαβ ¼ 0: (82)

4.5.2 Non-classical equilibrium conditions

The physical components of the non-classical equilibrium condition (26) are
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div μð Þαβ þ σαβ ¼ 0: (83)

With the aid of the physical components of μ given by Eqs. (73)–(81) and the
physical components of σ stated by Eq. (51), we can verify that the equilibrium
conditions (83) furnish only four nontrivial equations:

div μð Þrr þ σrr ¼ 0, (84)

div μð Þφφ þ σφφ ¼ 0, (85)

div μð Þrφ þ σrφ ¼ 0, (86)

div μð Þzz þ σzz ¼ 0, (87)

or equivalently (cf. Section A.4)

∂rμrrr þ
1
r
∂φμφrr þ

1
r

μrrr � 2μφrφ
� �þ σrr ¼ 0, (88)

∂rμrφφ þ
1
r
∂φμφφφ þ

1
r

μrφφ þ 2μφrφ
� �þ σφφ ¼ 0, (89)

∂rμrrφ þ
1
r
∂φμφrφ þ

1
r

μrrφ � μφφφ þ μφrr
� �þ σrφ ¼ 0, (90)

∂rμrzz þ
1
r
∂φμφzz þ

1
r
μrzz þ σzz ¼ 0: (91)

4.6 Nonclassical compatibility conditions

Besides the classical compatibility condition for the strain ε in Eq. (55), further
compatibility conditions for the micro-strain Ψ can be established by considering
the following identities:

∂rφΨrr � ∂φrΨrr ¼ 0, (92)

∂rφΨφφ � ∂φrΨφφ ¼ 0, (93)

∂rφΨrφ � ∂φrΨrφ ¼ 0: (94)

From these, we obtain useful relations by involving the physical components
μαβγ with the aid of the elasticity law (24). To illustrate, we recall from Eqs. (39)–
(43) that

∂rφΨrr ¼ ∂r ∂φΨrr
� � ¼ ∂r r ∇Ψð Þφrr þ 2Ψrφ

� �

¼ ∇Ψð Þφrr þ r∂r ∇Ψð Þφrr þ 2 ∇Ψð Þrrφ
(95)

and that

∂φrΨrr ¼ ∂φ ∂rΨrrð Þ ¼ ∂φ ∇Ψð Þrrr: (96)

By inserting these into Eq. (92), we obtain the following equation:

∂φ ∇Ψð Þrrr � ∇Ψð Þφrr � r∂r ∇Ψð Þφrr � 2 ∇Ψð Þrrφ ¼ 0: (97)
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In a similar way, we conclude from Eqs. (93) and (94) that

∂φ ∇Ψð Þrφφ � ∇Ψð Þφφφ � r∂r ∇Ψð Þφφφ þ 2 ∇Ψð Þrrφ ¼ 0, (98)

∂φ ∇Ψð Þrrφ � ∇Ψð Þφrφ � r∂r ∇Ψð Þφrφ þ ∇Ψð Þrrr � ∇Ψð Þrφφ ¼ 0: (99)

In order to involve the components of μ, we invert Eq. (24) to obtain

∇Ψð Þαβγ ¼
1

c2 � c1ð ÞE 1þ νð Þμαβγ � νμαζζ δβγ
� �

, (100)

where E is given by Eq. (9). Explicitly, we get

∇Ψð Þrrr ¼
1

c2 � c1ð ÞE 1� ν2
� �

μrrr � ν 1þ νð Þμrφφ
� �

, (101)

∇Ψð Þrφφ ¼ 1
c2 � c1ð ÞE 1� ν2

� �
μrφφ � ν 1þ νð Þμrrr

� �
, (102)

∇Ψð Þrrφ ¼ 1þ ν

c2 � c1ð ÞE μrrφ, (103)

∇Ψð Þφrr ¼
1

c2 � c1ð ÞE 1� ν2
� �

μφrr � ν 1þ νð Þμφφφ
� �

, (104)

∇Ψð Þφφφ ¼ 1
c2 � c1ð ÞE 1� ν2

� �
μφφφ � ν 1þ νð Þμφrr

� �
, (105)

∇Ψð Þφrφ ¼ 1þ ν

c2 � c1ð ÞE μφrφ, (106)

where in addition use has been made of Eqs. (75) and (80). By inserting these
components into Eqs. (97)–(99), we can verify that

� 1� ν2
� �

r∂rμφrr þ ν 1þ νð Þr∂rμφφφ þ 1� ν2
� �

∂φμrrr � ν 1þ νð Þ∂φμrφφ
� 1� ν2
� �

μφrr þ ν 1þ νð Þμφφφ � 2 1þ νð Þμrrφ ¼ 0,
(107)

� 1� ν2
� �

r∂rμφφφ þ ν 1þ νð Þr∂rμφrr þ 1� ν2
� �

∂φμrφφ � ν 1þ νð Þ∂φμrrr
� 1� ν2
� �

μφφφ þ ν 1þ νð Þμφrr þ 2 1þ νð Þμrrφ ¼ 0,
(108)

�r∂rμφrφ þ ∂φμrrφ � μφrφ þ μrrr � μrφφ ¼ 0: (109)

The last equation is independent of material parameters. In order to rewrite
Eqs. (107) and (108) also in a form independent of material parameters, we add and
subtract them from each other to obtain, respectively,

∂φμrφφ þ ∂φμrrr � μφφφ � μφrr � r∂rμφφφ � r∂rμφrr ¼ 0, (110)

∂φμrφφ � ∂φμrrr � μφφφ þ μφrr � r∂rμφφφ þ r∂rμφrr þ 4μrrφ ¼ 0: (111)

4.7 Boundary conditions

As usually, near-tip field solutions rely upon boundary conditions, which are
imposed only on the crack faces. Especially, we assume the classical traction P (see
Eq. (27)) and the double force T (see Eq. (28)) to vanish on the crack faces. With
regard to Figure 1 this implies that
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Pα½ �φ¼�π ¼ 0, Tαβ

� �
φ¼�π

¼ 0: (112)

Now, we have from Eq. (27), expressed in physical components, that Pα ¼ nβΣβα,
where on the crack faces n½ �φ¼�π ¼ ∓eφ. Therefore, and by virtue of Eq. (50), the
nontrivial classical boundary conditions implied by Eq. (112) are as follows:

Σrφ
� �

φ¼�π
¼ 0, (113)

Σφφ

� �
φ¼�π

¼ 0: (114)

Similarly, we get from Eq. (28), expressed in physical components, that Tαβ ¼
nγ μγαβ, so that the nonclassical part of Eq. (112) implies

μφαβ
� �

φ¼�π
¼ c2 � c1ð Þ ∇Ψð Þφγζ

h i
φ¼�π

γζαβ ¼ 0, (115)

where use has been made of the elasticity law (24). As the isotropic elasticity
tensor  has been assumed to be invertible, we infer from Eq. (115), that

0 ¼ ∇Ψð Þφαβ
h i

φ¼�π
: (116)

Keeping inmindEqs. (39)–(43), the onlynontrivial conditions implied are as follows:

∇Ψð Þφrr
h i

φ¼�π
¼ ∇Ψð Þφφφ
h i

φ¼�π
¼ ∇Ψð Þφrφ
h i

φ¼�π
¼ 0, (117)

or equivalently

∂φΨrr � 2Ψrφ
� �

φ¼�π
¼ 0, (118)

∂φΨφφ þ 2Ψrφ
� �

φ¼�π
¼ 0, (119)

∂φΨrφ þΨrr � Ψφφ

� �
φ¼�π

¼ 0: (120)

4.8 Symmetry conditions

Symmetry conditions are important to classify the near-tip field solutions into
types according to Mode-I and Mode-II crack problems. Each type of loading con-
dition is characterized by the following symmetry conditions.

4.8.1 Mode-I

As in classical elasticity (see, e.g., Hellan [14], p. 10), we suppose for the
macro-displacement the following symmetry conditions:

ur r,φð Þ ¼ ur r,�φð Þ, uφ r,φð Þ ¼ �uφ r,�φð Þ, (121)

i.e., ur is an even function of φ, whereas uφ is an odd function of φ. It follows
from Eq. (48) that the physical components of the macro-strain ε exhibit the
following properties:

εrr r,φð Þ ¼ εrr r,�φð Þ, εφφ r,φð Þ ¼ εφφ r,�φð Þ, (122)

εrφ r,φð Þ ¼ �εrφ r,�φð Þ, (123)
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implying that εrr and εφφ are even functions of φ, whereas εrφ is an odd function
of φ. Since Ψ is also a strain tensor, we assume for its components, in analogy to
Eqs. (122) and (123), that

Ψrr r,φð Þ ¼ Ψrr r,�φð Þ, Ψφφ r,φð Þ ¼ Ψφφ r,�φð Þ, (124)

Ψrφ r,φð Þ ¼ �Ψrφ r,�φð Þ: (125)

Then, it can be verified, with the help of the elasticity law (21), expressed in
physical components, that Eqs. (122)–(125) engender the following conditions for
the components of Σ:

Σrr r,φð Þ ¼ Σrr r,�φð Þ, Σφφ r,φð Þ ¼ Σφφ r,�φð Þ, (126)

Σrφ r,φð Þ ¼ �Σrφ r,�φð Þ: (127)

Further, it can be seen from Eqs. (124) and (125), that

∂rΨrr r,φð Þ ¼ ∂rΨrr r,�φð Þ, ∂φΨrr r,φð Þ ¼ �∂φΨrr r,�φð Þ, (128)

∂rΨφφ r,φð Þ ¼ ∂rΨφφ r,�φð Þ, ∂φΨφφ r,φð Þ ¼ �∂φΨφφ r,�φð Þ, (129)

∂rΨrφ r,φð Þ ¼ ∂rΨrφ r,�φð Þ, ∂φΨrφ r,φð Þ ¼ �∂φΨrφ r,�φð Þ, (130)

and from the elasticity laws (73)–(82), that

μrrr r,φð Þ ¼ μrrr r,�φð Þ, μφrr r,φð Þ ¼ �μφrr r,�φð Þ, (131)

μrφφ r,φð Þ ¼ μrφφ r,�φð Þ, μφφφ r,φð Þ ¼ �μφφφ r,�φð Þ, (132)

μrzz r,φð Þ ¼ μrzz r,�φð Þ, μφzz r,φð Þ ¼ �μφzz r,�φð Þ, (133)

μrrφ r,φð Þ ¼ μrrφ r,�φð Þ, μφrφ r,φð Þ ¼ �μφrφ r,�φð Þ: (134)

4.8.2 Mode-II

We know from classical elasticity (see, e.g., Hellan [14], p. 10), that the radial
component of the displacement vector is an odd function of φ, whereas the cir-
cumferential component is an even function of φ. We assume these symmetry
properties to also apply for the macro-displacement here, i.e.,

ur r,φð Þ ¼ �ur r,�φð Þ, uφ r,φð Þ ¼ uφ r,�φð Þ: (135)

It follows for the macro-strain ε, that

εrr r,φð Þ ¼ �εrr r,�φð Þ, εφφ r,φð Þ ¼ �εφφ r,�φð Þ, (136)

εrφ r,φð Þ ¼ εrφ r,�φð Þ, (137)

which suggest to assume the following symmetries for Ψ:

Ψrr r,φð Þ ¼ �Ψrr r,�φð Þ, Ψφφ r,φð Þ ¼ �Ψφφ r,�φð Þ, (138)

Ψrφ r,φð Þ ¼ Ψrφ r,�φð Þ: (139)

It can be proved, in a similar fashion to Mode-I, that

Σrr r,φð Þ ¼ �Σrr r,�φð Þ, Σφφ r,φð Þ ¼ �Σφφ r,�φð Þ, (140)
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Σrφ r,φð Þ ¼ Σrφ r,�φð Þ, (141)

and that

μrrr r,φð Þ ¼ �μrrr r,�φð Þ, μφrr r,φð Þ ¼ μφrr r,�φð Þ, (142)

μrφφ r,φð Þ ¼ �μrφφ r,�φð Þ, μφφφ r,φð Þ ¼ μφφφ r,�φð Þ, (143)

μrzz r,φð Þ ¼ �μrzz r,�φð Þ, μφzz r,φð Þ ¼ μφzz r,�φð Þ, (144)

μrrφ r,φð Þ ¼ �μrrφ r,�φð Þ, μφrφ r,φð Þ ¼ μφrφ r,�φð Þ: (145)

Before closing this section, we notice here, that the numerical simulations on the
basis of the finite element method in Part III confirm the assumed symmetry
conditions.

5. Concluding remarks

If the implicit gradient elasticity model in Eq. (2), named the 3-PG-Model, is
recognized as a particular case of micromorphic (micro-strain) elasticity, a free
energy and associated response functions and boundary conditions can be assigned.
Part I adopts this conceptual point of view for the 3-PG-Model and provides the
reduced form of the governing equations and boundary conditions for plane strain
problems. This includes, among others, elasticity laws for classical and nonclassical
stresses as well as classical and nonclassical equilibrium equations and compatibility
conditions. It also supplies the required symmetry conditions for asymptotic solu-
tions of Mode-I and Mode-II crack problems. A detailed discussion of such analyt-
ical solutions is given in Part II.
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A. Appendix

This section provides the component representations with respect to cylindrical
coordinates of some space derivatives of a second-order tensor A and a third-order
tensor A. It is easy to find component representations for ∇A and divA in
textbooks, whereas it may be harder to find such representations for ΔA and divA.
But one can calculate them with the help of the relations given below.

A.1 Cylindrical coordinates

We denote by θi
� �

the cylindrical coordinate system with θ1 ¼ r, θ2 ¼ φ and
θ3 ¼ z. The covariant basis induced by θi

� �
is denoted by gi

� �
where g1 ¼

cosφð Þe1 þ sinφð Þe2, g2 ¼ �r sinφð Þe1 þ r cosφð Þe2 and g3 ¼ e3. The contravariant
basis is denoted by gi

� �
, gi ¼ gij g j, where gij are the contravariant metric
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coefficients. The corresponding covariant metric coefficients are gij. All values of gij
and gij are vanishing except for the values g11 ¼ g33 ¼ g11 ¼ g33 ¼ 1, g22 ¼ r2 and
g22 ¼ 1

r2. Moreover, all values of the related Christoffel symbols Γk
ij also vanish except

for the values Γ1
22 ¼ �r and Γ2

12 ¼ Γ2
21 ¼ 1

r. Physical components are referred to the
orthonormal basis e< i>f g where e< 1> � er ¼ g1, e< 2> � eφ ¼ 1

r g2 and e< 3> �
ez ¼ g3. According to Section 2, the physical components of a second-order tensor A
are denoted by Aαβ and notations of the form A< 11> � Arr,A< 12> � Arφ, … apply.
Similar notations hold also for any tensor, especially for the third-order tensor A.
Finally, the nabla operator ∇ obeys the representation ∇ ¼ ∂

∂θi
gi.

A.2 The gradient of a symmetric second-order tensor

In the case of a second-order tensor A ¼ Aij gi ⊗ g j, we have (cf. Section 2)

gradA � ∇A≔∇⊗A ¼ gi ⊗ ∂θiA ¼ ∇Að Þ jk
i gi ⊗ g j ⊗ gk, (A1)

where ∇Að Þ jk
i is the covariant derivative of the components Ajk,

∇Að Þ jk
i ¼ Ajk

���
i
¼ ∂θi A

jk þ Γ j
imA

mk þ Γk
imA

jm: (A2)

When A is symmetric, A ¼ A sð Þ, we conclude from Eq. (A2), that

∇Að Þ jk
i ¼ ∇Að Þ jkð Þ

i : (A3)

This symmetry also applies with respect to physical components,

∇Að Þαβγ ¼ ∇Að Þα βγð Þ: (A4)

It can be seen that Eq. (A2) furnishes the following physical components of ∇A:

∇Að Þrrr ¼ ∂rArr, ∇Að Þrφφ ¼ ∂rAφφ, ∇Að Þrzz ¼ ∂rAzz, (A5)

∇Að Þrrφ ¼ ∂rArφ, ∇Að Þrrz ¼ ∂rArz, ∇Að Þrφz ¼ ∂rAφz, (A6)

∇Að Þφrr ¼
1
r

∂φArr � 2Aφr
� �

, (A7)

∇Að Þφφφ ¼ 1
r

∂φAφφ þ 2Aφr
� �

, (A8)

∇Að Þφzz ¼
1
r
∂φAzz, (A9)

∇Að Þφrφ ¼ 1
r

∂φArφ þ Arr � Aφφ

� �
, (A10)

∇Að Þφφz ¼
1
r

∂φAφz � Arz
� �

, (A11)

∇Að Þφrz ¼
1
r

∂φArz � Aφz
� �

, (A12)

∇Að Þzαβ ¼ 0: (A13)
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A.3 The Laplacian of a symmetric second-order tensor

The Laplacian of a second-order tensor A is given by (cf. Section 2)

ΔA≔divgradA ¼ ∇ � ∇Að Þ ¼ gm � ∂θm ∇Að Þ
¼ gm � ∂θm Ajk

��
i g

i ⊗ g j ⊗ gk
� �

:
(A14)

This may be written as

ΔA ¼ ΔAð Þijgi ⊗ g j, (A15)

where

ΔAð Þij ¼ Aij
���
km

gkm, (A16)

and Aij
��
km is the second covariant derivative of the components Aij,

Aij
km ¼ Aij

k
� ��� ��

m ¼ ∂θmAij
k þ Γi

mlA
lj

�� ��
k þ Γ j

mlA
il

k � Γl
kmAij

�� ��
l: (A17)

We can calculate the physical components ΔAð Þ< ij> from Eqs. (A16) and (A17).

For the case that A is symmetric, A ¼ A sð Þ, we can derive, after lengthy algebraic
manipulations, that

ΔAð Þrr ¼  ∂rrArr þ 1
r2

∂φφArr þ ∂zzArr þ 1
r
∂rArr � 4

r2
∂φArφ

� 2
r2

Arr þ 2
r2

Aφφ,
(A18)

ΔAð Þφφ ¼  ∂rrAφφ þ 1
r2

∂φφAφφ þ ∂zzAφφ þ 1
r
∂rAφφ þ 4

r2
∂φArφ

þ 2
r2

Arr � 2
r2

Aφφ,
(A19)

ΔAð Þzz ¼ ∂rrAzz þ 1
r2

∂φφAzz þ ∂zzAzz þ 1
r
∂rAzz, (A20)

ΔAð Þrφ ¼  ∂rrArφ þ 1
r2

∂φφArφ þ ∂zzArφ þ 1
r
∂rArφ þ 2

r2
∂φArr

� 2
r2

∂φAφφ � 4
r2

Arφ,
(A21)

ΔAð Þrz ¼ ∂rrArz þ 1
r2

∂φφArz þ ∂zzArz þ 1
r
∂rArz � 2

r2
∂φAφz � 1

r2
Arz, (A22)

ΔAð Þφz ¼ ∂rrAφz þ 1
r2

∂φφAφz þ ∂zzAφz þ 1
r
∂rAφz þ 2

r2
∂φArz � 1

r2
Aφz: (A23)

A.4. The divergence of a third-order tensor

Let A ¼ A ijk gi ⊗ g j ⊗ gk be a third-order tensor. Then (cf. Section 2)

divA≔∇ �A ¼ gi � ∂θiA ¼ divAð Þjk g j ⊗ gk, (A24)
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where

divAð Þjk ¼ Aijk
���
i
, (A25)

and Aijk
���
m
is the covariant derivative of the components Aijk. If the symmetry

condition Aijk � Ai jkð Þ holds, we can establish, after lengthy algebraic manipula-
tions, the following results for the physical components of divA:

divAð Þrr ¼ ∂rArrr þ 1
r
∂φAφrr þ ∂zAzrr þ 1

r
Arrr � 2Aφrφ
� �

, (A26)

divAð Þφφ ¼ ∂rArφφ þ 1
r
∂φAφφφ þ ∂zAzφφ þ 1

r
Arφφ þ 2Aφrφ
� �

, (A27)

divAð Þzz ¼ ∂rArzz þ 1
r
∂φAφzz þ ∂zAzzz þ 1

r
Arzz, (A28)

divAð Þrφ ¼ ∂rArrφ þ 1
r
∂φAφrφ þ ∂zAzrφ þ 1

r
Arrφ � Aφφφ þ Aφrr
� �

, (A29)

divAð Þrz ¼ ∂rArrz þ 1
r
∂φAφrz þ ∂zAzrz þ 1

r
Arrz � Aφφz
� �

, (A30)

divAð Þφz ¼ ∂rArφz þ 1
r
∂φAφφz þ ∂zAzφz þ 1

r
Arφz þ Aφrz
� �

: (A31)
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Chapter 3

Mode-I and Mode-II Crack Tip
Fields in Implicit Gradient
Elasticity Based on Laplacians of
Stress and Strain. Part II:
Asymptotic Solutions
Carsten Broese, Jan Frischmann and Charalampos Tsakmakis

Abstract

We develop asymptotic solutions for near-tip fields of Mode-I and Mode-II
crack problems and for model responses reflected by implicit gradient elasticity.
Especially, a model of gradient elasticity is considered, which is based on Laplacians
of stress and strain and turns out to be derivable as a particular case of
micromorphic (microstrain) elasticity. While the governing model equations of the
crack problems are developed in Part I, the present paper addresses analytical
solutions for near-tip fields by using asymptotic expansions of Williams’ type. It is
shown that for the assumptions made in Part I, the model does not eliminiate the
well-known singularities of classical elasticity. This is in contrast to conclusions
made elsewhere, which rely upon different assumptions. However, there are
significant differences in comparison to classical elasticity, which are discussed in
the paper. For instance, in the case of Mode-II loading conditions, the leading terms
of the asymptotic solution for the components of the double stress exhibit the
remarkable property that they include two stress intensity factors.

Keywords: implicit gradient elasticity, mode-I and mode-II crack problems,
analytical solutions, asymptotic expansions of Williams’ type, near-tip fields,
order of singularity, stress intensity factors

1. Introduction

The 3-PG-Model, discussed in Part I, is a simple model of implicit gradient
elasticity based on Laplacians of stress and strain and has been introduced by
Gutkin and Aifantis [1]. It can be derived as a particular case of micromorphic
(microstrain) elasticity (see, e. g., Forest and Sievert [2]), so that a free energy
function and required boundary conditions are formulated rigorously. In the
present paper, we are looking for near-tip asymptotic field solutions for Mode-I and
Mode-II crack problems, in the context of plane strain states. The asymptotic
solutions are obtained by using expansions of Williams’ type (see Williams [3]).

For the assumptions made in Part I, it is found that both, conventional stress and
conventional strain, are singular. This holds also for the nonconventional stress, the
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so-called double stress. All singular fields have an order of singularity r�
1
2. In

particular, the leading terms of the asymptotic solutions of the conventional stress
are exactly the same as in classical elasticity. Nevertheless, the results are quite
interesting, since the two leading terms of the asymptotic solution of the
macrostrain are different from the corresponding terms of classical elasticity, and
since the form of the asymptotic solution of the double stress exhibits a remarkable
feature. To be more specific, the leading term of the asymptotic solution of the
double stress includes two stress intensity factors, which are independent of each
other. This reflects, from a theoretical point of view, differences in the structure of
the asymptotic solutions in comparison to classical elasticity as well as micropolar
elasticity, where only one stress intensity factor is present in the solutions of Mode-
II crack problems.

There are various works addressing singularities in the field variables. Among
others, we mention for couple-stress elasticity the works of Muki and Sternberg [4],
Sternberg and Muki [5], Bogy and Sternberg [6, 7], Xia and Hutchinson [8], Huang
et al. [9–11] and Zhang et al. [12]. For micropolar elasticity the works of Paul and
Sridharan [13], Chen et al. [14], Diegele et al. [15] and for gradient elasticity the
works of Altan and Aifantis [16, 17], Ru and Aifantis [18], Unger and Aifantis
[19–21], Chen et al. [22], Mousavi and Lazar [23], Shi et al. [24, 25], Vardoulakis
et al. [26], Karlis et al. [27, 28], Georgiadis [29], Askes and Aifantis [30] and Gutkin
and Aifantis [1] are to be mentioned. The latter is an interesting work and proves
that use of the 3-PG-Model eliminates singularities from the”elastic stresses of
defects” (see also Askes and Aifantis [30] as well as Aifantis [31]). This finding is in
contrast to the conclusions of the present paper, but it should be emphasized that
the form of the assumed boundary conditions in Gutkin and Aifantis [1] is different
from the form assumed here.

The scope of the paper is organized as follows: Mode-I and Mode-II crack
problems are considered in the setting of plane strain problems. For the 3-PG-
Model, the reduced governing equations for plane strain states have been derived in
Part I and are summarized in Section 2. Section 3 provides asymptotic solutions for
the near-tip fields by starting from asymptotic expansions of the macrodis-
placement and the microdeformation. An alternative and equivalent aproach,
starting from asymptotic expansions of the stresses, is sketched in Section 4. The
developed asymptotic solutions are summarized and discussed in Section 5. Finally,
the paper closes with some conclusions in Section 6.

Throughout the paper, use is made of the notation introduced in Part I.

2. Summary of the governing equations for plane strain problems

Following equations of Part I will be employed to establish asymptotic solutions
of the crack tip fields.

Free energy function (see section “The 3-PG-Model as particular case of
micro-strain elasticity” in Part I)

ψ ¼ 1
2
εαβαβρζ ερζ þ 1

2
c2 � c1
c1

γαβαβρζ γρζ þ
1
2

c2 � c1ð Þkαβγβγρζ kαρζ: (1)

Elasticity law for Σ (see section 3:1 “The 3-PG-Model as particular case of
micro-strain elasticity” in Part I)

Σαβ ¼ c2
c1

αβγρ εγρ � c2 � c1
c1

αβγρΨγρ (2)
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or inversely

εrr ¼ c1
2μc2

Σrr � ν Σrr þ Σφφ

� �� �þ c2 � c1
c1

Ψrr, (3)

εφφ ¼ c1
2μc2

Σφφ � ν Σrr þ Σφφ

� �� �þ c2 � c1
c1

Ψφφ, (4)

εrφ ¼ c1
2μc2

Σrφ þ c2 � c1
c1

Ψrφ: (5)

Elasticity law for σ (see section 3:1 “The 3-PG-Model as particular case of
micro-strain elasticity” in Part I)

σαβ ¼ c2 � c1
c1

αβρζ ερζ � Ψρζ

� �
: (6)

Elasticity law for μ (see section 4:5:1 “Elasticity law for double stress” in Part I)

μrrr ¼ c2 � c1ð Þ λþ 2μð Þ∂rΨrr þ λ∂rΨφφ

� �
, (7)

μrφφ ¼ c2 � c1ð Þ λþ 2μð Þ∂rΨφφ þ λ∂rΨrr
� �

, (8)

μrzz ¼ c2 � c1ð Þλ∂r Ψrr þΨφφ

� � ¼ ν μrrr þ μrφφ
� �

, (9)

μrrφ ¼ c2 � c1ð Þ2μ∂rΨrφ, (10)

μφrr ¼
c2 � c1

r
2μ ∂φΨrr � 2Ψrφ
� �þ λ∂φ Ψrr þΨφφ

� �� �
, (11)

μφφφ ¼ c2 � c1
r

2μ ∂φΨφφ þ 2Ψrφ
� �þ λ∂φ Ψrr þΨφφ

� �� �
, (12)

μφzz ¼
c2 � c1

r
λ∂φ Ψrr þΨφφ

� � ¼ ν μφrr þ μφφφ
� �

, (13)

μφrφ ¼ c2 � c1
r

2μ ∂φΨrφ þΨrr � Ψφφ

� �
, (14)

μrrz ¼ μrφz ¼ μφrz ¼ μφφz ¼ 0, (15)

μzαβ ¼ 0, (16)

or inversely

∇Ψð Þrrr ¼
1

c2 � c1ð ÞE 1� ν2
� �

μrrr � ν 1þ νð Þμrφφ
� �

, (17)

∇Ψð Þrφφ ¼ 1
c2 � c1ð ÞE 1� ν2

� �
μrφφ � ν 1þ νð Þμrrr

� �
, (18)

∇Ψð Þrrφ ¼ 1þ ν

c2 � c1ð ÞE μrrφ, (19)

∇Ψð Þφrr ¼
1

c2 � c1ð ÞE 1� ν2
� �

μφrr � ν 1þ νð Þμφφφ
� �

, (20)

∇Ψð Þφφφ ¼ 1
c2 � c1ð ÞE 1� ν2

� �
μφφφ � ν 1þ νð Þμφrr

� �
, (21)

∇Ψð Þφrφ ¼ 1þ ν

c2 � c1ð ÞE μφrφ: (22)
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Material parameters (see section 2 “Preliminaries—Notation” in Part I)

ν ¼ λ

2 λþ μð Þ , E ¼ 2μ 1þ νð Þ: (23)

Strain components (see section 4:1 “Kinematics” in Part I)

εrr ¼ ∂rur, εφφ ¼ 1
r

ur þ ∂φuφ
� �

, εrφ ¼ 1
2

1
r
∂φur þ ∂ruφ � 1

r
uφ

� �
: (24)

Microdeformation components (see section 4:1 “Kinematics” of Part I)

∇Ψð Þrrr ¼ ∂rΨrr, ∇Ψð Þrφφ ¼ ∂rΨφφ, ∇Ψð Þrrφ ¼ ∂rΨrφ, (25)

∇Ψð Þφrr ¼
1
r

∂φΨrr � 2Ψrφ
� �

, (26)

∇Ψð Þφφφ ¼ 1
r

∂φΨφφ þ 2Ψrφ
� �

, (27)

∇Ψð Þφrφ ¼ 1
r

∂φΨrφ þ Ψrr �Ψφφ

� �
, (28)

∇Ψð Þαβz ¼ ∇Ψð Þzαβ ¼ 0: (29)

Classical equilibrium equations (see section 4:2 “Cauchy stress—Classical
equilibrium equations” in Part I)

∂rΣrr þ 1
r
∂φΣrφ þ 1

r
Σrr � Σφφ

� � ¼ 0, (30)

∂rΣrφ þ 1
r
∂φΣφφ þ 2

r
Σrφ ¼ 0: (31)

Nonclassical equilibrium equations (see section 4:5:2 “Nonclassical equilibrium
conditions” in Part I)

∂rμrrr þ
1
r
∂φμφrr þ

1
r

μrrr � 2μφrφ
� �þ σrr ¼ 0, (32)

∂rμrφφ þ
1
r
∂φμφφφ þ

1
r

μrφφ þ 2μφrφ
� �þ σφφ ¼ 0, (33)

∂rμrzz þ
1
r
∂φμφzz þ

1
r
μrzz þ σzz ¼ 0, (34)

∂rμrrφ þ
1
r
∂φμφrφ þ

1
r

μrrφ � μφφφ þ μφrr
� �þ σrφ ¼ 0: (35)

Field equations for Ψ (see section 4:4 “Field equations for Ψ” in Part I)

∂rrΨrrþ 1
r2

∂φφΨrr þ 1
r
∂rΨrr � 4

r2
∂φΨrφ � 2

r2
þ 1
c2

� �
Ψrr þ 2

r2
Ψφφ

þ 1� ν

2μc2
Σrr � ν

2μc2
Σφφ ¼ 0,

(36)

∂rrΨφφþ 1
r2

∂φφΨφφ þ 1
r
∂rΨφφ þ 4

r2
∂φΨrφ þ 2

r2
Ψrr � 2

r2
þ 1
c2

� �
Ψφφ

þ 1� ν

2μc2
Σφφ � ν

2μc2
Σrr ¼ 0,

(37)
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∂rrΨrφþ 1
r2

∂φφΨrφ þ 1
r
∂rΨrφ þ 2

r2
∂φΨrr � 2

r2
∂φΨφφ � 4

r2
þ 1
c2

� �
Ψrφ

þ 1
2μc2

Σrφ ¼ 0:

(38)

Classical compatibility condition (see section 4:3 “Classical compatibility
condition” in Part I)

χ1 Ψαβ

� �þ χ2 Σαβ

� � ¼ 0, (39)

χ1 Ψαβ

� �
≔  

c2 � c1
c2

∂rrΨφφ � 2
r
∂rφΨrφ þ 1

r2
∂φφΨrr

�

� 1
r
∂rΨrr þ 2

r
∂rΨφφ � 2

r2
∂φΨrφ

�
,

(40)

χ2 Σαβ

� �
≔  

1� νð Þ c1
2μc2

∂rr Σrr þ Σφφ

� �þ 1
r2

∂φφ Σrr þ Σφφ

� ��

þ 1
r
∂r Σrr þ Σφφ

� ��
:

(41)

Nonclassical compatibility conditions (see section 4:6 “Nonclassical
compatibility conditions” in Part I)

∂φμrrφ � μφrφ � r∂rμφrφ þ μrrr � μrφφ ¼ 0, (42)

∂φμrφφ þ ∂φμrrr � μφφφ � μφrr � r∂rμφφφ � r∂rμφrr ¼ 0, (43)

∂φμrφφ � ∂φμrrr � μφφφ þ μφrr � r∂rμφφφ þ r∂rμφrr þ 4μrrφ ¼ 0: (44)

Classical boundary conditions (see section 4:7 “Boundary conditions” in Part I)

Σrφ
� �

φ¼�π
¼ 0, (45)

Σφφ

� �
φ¼�π

¼ 0: (46)

Nonclassical boundary conditions (see section 4:7 “Boundary conditions” in
Part I)

μφrr
� �

φ¼�π
¼ μφφφ
� �

φ¼�π
¼ μφrφ
� �

φ¼�π
¼ 0, (47)

or equivalently

∂φΨrr � 2Ψrφ
� �

φ¼�π
¼ 0, (48)

∂φΨφφ þ 2Ψrφ
� �

φ¼�π
¼ 0, (49)

∂φΨrφ þΨrr � Ψφφ

� �
φ¼�π

¼ 0: (50)

Symmetry conditions—Mode-I (see section 4:8 “Symmetry conditions” in
Part I)

Σrr r,φð Þ ¼ Σrr r,�φð Þ, Σφφ r,φð Þ ¼ Σφφ r,�φð Þ, (51)

Σrφ r,φð Þ ¼ �Σrφ r,�φð Þ, (52)
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Ψrr r,φð Þ ¼ Ψrr r,�φð Þ, Ψφφ r,φð Þ ¼ Ψφφ r,�φð Þ, (53)

Ψrφ r,φð Þ ¼ �Ψrφ r,�φð Þ, (54)

μrrr r,φð Þ ¼ μrrr r,�φð Þ, μφrr r,φð Þ ¼ �μφrr r,�φð Þ, (55)

μrφφ r,φð Þ ¼ μrφφ r,�φð Þ, μφφφ r,φð Þ ¼ �μφφφ r,�φð Þ, (56)

μrzz r,φð Þ ¼ μrzz r,�φð Þ, μφzz r,φð Þ ¼ �μφzz r,�φð Þ, (57)

μrrφ r,φð Þ ¼ μrrφ r,�φð Þ, μφrφ r,φð Þ ¼ �μφrφ r,�φð Þ: (58)

Symmetry conditions—Mode-II (see section 4:8 “Symmetry conditions” in
Part I)

Σrr r,φð Þ ¼ �Σrr r,�φð Þ, Σφφ r,φð Þ ¼ �Σφφ r,�φð Þ, (59)

Σrφ r,φð Þ ¼ Σrφ r,�φð Þ, (60)

Ψrr r,φð Þ ¼ �Ψrr r,�φð Þ, Ψφφ r,φð Þ ¼ �Ψφφ r,�φð Þ, (61)

Ψrφ r,φð Þ ¼ Ψrφ r,�φð Þ, (62)

μrrr r,φð Þ ¼ �μrrr r,�φð Þ, μφrr r,φð Þ ¼ μφrr r,�φð Þ, (63)

μrφφ r,φð Þ ¼ �μrφφ r,�φð Þ, μφφφ r,φð Þ ¼ μφφφ r,�φð Þ, (64)

μrzz r,φð Þ ¼ �μrzz r,�φð Þ, μφzz r,φð Þ ¼ μφzz r,�φð Þ, (65)

μrrφ r,φð Þ ¼ �μrrφ r,�φð Þ, μφrφ r,φð Þ ¼ μφrφ r,�φð Þ: (66)

3. Near-tip asymptotic solutions for Mode-I and Mode-II loading
conditions

We shall solve the given problems by employing asymptotic expansions of
Williams’ type (see Williams [3]).

3.1 Expansions of Williams’ type

As the components of the macrodisplacement and the microdeformation reflect
the independent kinematical degrees of freedom, we assume for uα and Ψαβ

asymptotic expansions of the same form. We fix the crack tip at the origin O of the
coordinate system (see Figure 1 in Part I) and set

uα ¼ rp u 0ð Þ
α þ rpþ

1
2u 1ð Þ

α þ … ¼
X∞

k¼0

rpþ
k
2u kð Þ

α , (67)

Ψαβ ¼ Ψαβ þ rpΨ 0ð Þ
αβ þ rpþ

1
2Ψ 1ð Þ

αβ þ … ¼ Ψαβ þ
X∞

k¼0

rpþ
k
2Ψ kð Þ

αβ , (68)

with

u kð Þ
α ¼ u kð Þ

α φð Þ, Ψ kð Þ
αβ ¼ Ψ kð Þ

αβ φð Þ, Ψαβ ¼ Ψαβ φð Þ, (69)

and p being a real number. Since the crack tip is fixed at O, no constant term is
present in the expansion of u in Eq. (67). However, we allow a constant term Ψ ¼
const:, with physical components Ψαβ in conjunction with cylindrical coordinates,
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to be present in the expansion of Ψ. While the Cartesian components Ψij are
constant, the physical components Ψαβ are functions of φ. There are the following
well known transformation rules between Ψαβ and Ψij (see any textbook)

Ψrr ¼ 1
2

Ψ11 þ Ψ22
� �þ 1

2
Ψ11 � Ψ22
� �

cos 2φþ Ψ12 sin 2φ, (70)

Ψφφ ¼ 1
2

Ψ11 þ Ψ22
� �� 1

2
Ψ11 � Ψ22
� �

cos 2φ�Ψ12 sin 2φ, (71)

Ψrφ ¼ � 1
2

Ψ11 �Ψ22
� �

sin 2φþ Ψ12 cos 2φ: (72)

For later reference, we note the relations

∂φΨrr � 2Ψrφ ¼ 0, ∂φΨφφ þ 2Ψrφ ¼ 0, (73)

∂φΨrφ þΨrr � Ψφφ ¼ 0, (74)

which imply that the physical components Ψαβ trivially obey the nonclassical
boundary conditions (32)–(35). Anticipating the results in Section 5, we decompose

Ψ into parts ΨI
and ΨII

, reflecting symmetries according to Mode-I and Mode-II:

Ψαβ ¼ ΨI
αβ þ ΨII

αβ, (75)

with

ΨI
rr ≔LI,1 þ LI,2 cos 2φ, ΨII

rr ≔LII sin 2φ, (76)

ΨI
φφ ≔LI,1 � LI,2 cos 2φ, ΨII

φφ ≔ � LII sin 2φ, (77)

ΨI
rφ ≔ � LI,2 sin 2φ, ΨII

rφ ≔LII cos 2φ (78)

and

LI,1 ≔
1
2

Ψ11 þ Ψ22
� �

, LI,2 ≔
1
2

Ψ11 �Ψ22
� �

, LII ≔Ψ12: (79)

The main idea in Williams’ approach is to expand each field variable f r,φð Þ in a
sum of products as in Eqs. (67) and (68). We say that f is of the order rm, and
write f � rm, whenever rm is the power function of r in the leading term of the
expansion of f . It can be deduced, from Eq. (67), that εαβ � rp�1. From this, in
turn, together with Eq. (68) and the elasticity laws (3)–(5), we can deduce, that
Σαβ � rp�1. Thus,

Σαβ ¼ rp�1Σ 0ð Þ
αβ þ rp�

1
2Σ 1ð Þ

αβ þ … ¼
X∞

k¼0

rp�1þk
2Σ kð Þ

αβ , (80)

with

Σ kð Þ
αβ ¼ Σ kð Þ

αβ φð Þ: (81)

Expansion (67) suggests that the necessary and sufficient condition for uα to
vanish at the crack tip is
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p>0: (82)

This restriction is in agreement with energetic considerations. To verify, we
remark that ∇Ψ ¼ 0, as Ψ is constant. Therefore, from Eq. (68) together with
Eqs. (25)–(29), we may infer that ∇Ψð Þαβγ � rp�1. For the free energy per unit
macrovolume ψ it follows that ψ � r2p�2 [cf. Eq. (1)]. Now, consider a small
circular area r≤R, enclosing the crack tip. The total free energy (per unit length in
z–direction) of this area is

ð2π
0

ðR
0
ψ rdrdφ: (83)

Since ψ r � r2p�1, restriction (82) is the necessary and sufficient condition for
the energy in Eq. (83) to be bounded.

3.2 Consequences of the classical equilibrium equations

Substitute the expansion (80) into Eqs. (30) and (31) and collect coefficients of
like powers of r, to obtain

rp�2 pΣ 0ð Þ
rr þ ∂φΣ 0ð Þ

rφ � Σ 0ð Þ
φφ

n o

þrp�
3
2 pþ 1

2

� �
Σ 1ð Þ
rr þ ∂φΣ 1ð Þ

rφ � Σ 1ð Þ
φφ

� �

þrp�1 pþ 1ð ÞΣ 2ð Þ
rr þ ∂φΣ 2ð Þ

rφ � Σ 0ð Þ
φφ

n o

þ… ¼ 0: (84)

Similarly, we find from Eq. (31) that

rp�2 pþ 1ð ÞΣ 0ð Þ
rφ þ ∂φΣ 0ð Þ

φφ

n o

þrp�
3
2 pþ 3

2

� �
Σ 1ð Þ
rφ þ ∂φΣ 1ð Þ

φφ

� �

þrp�1 pþ 2ð ÞΣ 2ð Þ
rφ þ ∂φΣ 2ð Þ

φφ

n o

þ… ¼ 0:

(85)

3.3 Consequences of the classical compatibility condition

A look at χ1 �ð Þ in Eq. (40) reveals that χ1 is a linear differential operator, i. e.,

χ1 Ψαβ �Ψαβ

� � ¼ χ1 Ψαβ

� �� χ1 Ψαβ

� �
: (86)

Since Ψαβ is independent of r, we infer from Eq. (40) that

χ1 Ψαβ

� � ¼ c2 � c1
c2

1
r2

∂φ ∂φΨrr � 2Ψrφ
� �

, (87)

and by virtue of Eq. (73),

χ1 Ψαβ

� � ¼ 0: (88)
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Therefore, from Eq. (86),

χ1 Ψαβ

� � ¼ χ1 Ψαβ � Ψαβ

� �
, (89)

and by appealing to expansion (68), we infer from Eq. (40) that

χ1 Ψαβ

� � ¼  
c2 � c1
c2

X∞

k¼0

rp�2þk
2 pþ k

2

� �
pþ k

2
� 1

� �
Ψ kð Þ

φφ þ ∂φφΨ kð Þ
rr

�

�2 pþ k
2

� �
∂φΨ kð Þ

rφ � pþ k
2

� �
Ψ kð Þ

rr

þ2 pþ k
2

� �
Ψ kð Þ

φφ � 2∂φΨ kð Þ
rφ

�
:

(90)

Similarly, by appealing to expansion (80), we infer from Eq. (41) that

χ2 Σαβ

� � ¼  
1� νð Þc1
2μc2

X∞

k¼0

rp�2þk
2 p� 1þ k

2

� �
p� 2þ k

2

� �
Σ kð Þ
rr þ Σ kð Þ

φφ

� ��

þ∂φφ Σ kð Þ
rr þ Σ kð Þ

φφ

� �

þ p� 1þ k
2

� �
Σ kð Þ
rr þ Σ kð Þ

φφ

� ��
:

(91)

Inserting Eqs. (90) and (91) into Eq. (39) and collecting coefficients of like
powers of r gives, after some lengthy but straightforward manipulations,

rp�3 1� νð Þc1
2μc2

p� 1ð Þ2 Σ 0ð Þ
rr þ Σ 0ð Þ

φφ

� �
þ ∂φφ Σ 0ð Þ

rr þ Σ 0ð Þ
φφ

� �n o

þrp�
5
2
1� νð Þc1
2μc2

p� 1
2

� �2

Σ 1ð Þ
rr þ Σ 1ð Þ

φφ

� �
þ ∂φφ Σ 1ð Þ

rr þ Σ 1ð Þ
φφ

� �( )

þrp�2 1� νð Þc1
2μc2

p2 Σ 2ð Þ
rr þ Σ 2ð Þ

φφ

� �
þ ∂φφ Σ 2ð Þ

rr þ Σ 2ð Þ
φφ

� �h i�

þ c2 � c1
c2

p pþ 1ð ÞΨ 0ð Þ
φφ þ ∂φφΨ 0ð Þ

rr � 2 pþ 1ð ÞΨ 0ð Þ
rφ

h io

þrp�
3
2

1� νð Þc1
2μc2

pþ 1
2

� �2

Σ 3ð Þ
rr þ Σ 3ð Þ

φφ

� �
þ ∂φφ Σ 3ð Þ

rr þ Σ 3ð Þ
φφ

� �" #(

þc2 � c1
c2

pþ 1
2

� �
pþ 3

2

� �
Ψ 1ð Þ

φφ þ ∂φφΨ 1ð Þ
rr � 2 pþ 3

2

� �
Ψ 1ð Þ

rφ

� ��

þ… ¼ 0:

(92)

3.4 Consequences of the classical boundary conditions

By invoking the asymptotic expansion (80) in the classical boundary conditions
(45) and (46), we conclude that

rp�1 Σ 0ð Þ
rφ

h i
φ¼�π

þ rp�
1
2 Σ 1ð Þ

rφ

h i
φ¼�π

þ … ¼ 0, (93)

rp�1 Σ 0ð Þ
φφ

h i
φ¼�π

þ rp�
1
2 Σ 1ð Þ

φφ

h i
φ¼�π

þ … ¼ 0: (94)
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3.5 Cauchy stress

Before going any further, it is convenient to evaluate the results so far. The
necessary and sufficient conditions for the equilibrium Eqs. (84) and (85), the
compatibility condition (92) and the boundary conditions (93) and (94) to hold for
arbitrary r in the vicinity of the crack tip are vanishing coefficients of all powers of r.
For Σ kð Þ

αβ , k ¼ 0, 1, 2, this leads to the following systems of differential equations and
associated boundary conditions.

Terms Σ 0ð Þ
αβ

∂φΣ 0ð Þ
rφ þ pΣ 0ð Þ

rr � Σ 0ð Þ
φφ ¼ 0, (95)

∂φΣ 0ð Þ
φφ þ pþ 1ð ÞΣ 0ð Þ

rφ ¼ 0, (96)

∂φφ Σ 0ð Þ
rr þ Σ 0ð Þ

φφ

� �
þ p� 1ð Þ2 Σ 0ð Þ

rr þ Σ 0ð Þ
φφ

� �
¼ 0, (97)

with boundary conditions

Σ 0ð Þ
rφ

h i
φ¼�π

¼ 0, Σ 0ð Þ
φφ

h i
φ¼�π

¼ 0: (98)

Terms Σ 1ð Þ
αβ

∂φΣ 1ð Þ
rφ þ pþ 1

2

� �
Σ 1ð Þ
rr � Σ 1ð Þ

φφ ¼ 0, (99)

∂φΣ 1ð Þ
φφ þ pþ 3

2

� �
Σ 1ð Þ
rφ ¼ 0, (100)

∂φφ Σ 1ð Þ
rr þ Σ 1ð Þ

φφ

� �
þ p� 1

2

� �2

Σ 1ð Þ
rr þ Σ 1ð Þ

φφ

� �
¼ 0, (101)

with boundary conditions

Σ 1ð Þ
rφ

h i
φ¼�π

¼ 0, Σ 1ð Þ
φφ

h i
φ¼�π

¼ 0: (102)

Terms Σ 2ð Þ
αβ

∂φΣ 2ð Þ
rφ þ pþ 1ð ÞΣ 2ð Þ

rr � Σ 2ð Þ
φφ ¼ 0, (103)

∂φΣ 2ð Þ
φφ þ pþ 2ð ÞΣ 2ð Þ

rφ ¼ 0, (104)

1� ν

2μc2
∂φφ Σ 2ð Þ

rr þ Σ 2ð Þ
φφ

� �
þ p2 Σ 2ð Þ

rr þ Σ 2ð Þ
φφ

� �n o

þ c2 � c1
c2

∂φφΨ 0ð Þ
φφ � 2 pþ 1ð Þ∂φΨ 0ð Þ

rφ þ p pþ 1ð ÞΨ 0ð Þ
φφ � pΨ 0ð Þ

rr

n o
¼ 0,

(105)

with boundary conditions

Σ 2ð Þ
rφ

h i
φ¼�π

¼ 0, Σ 2ð Þ
φφ

h i
φ¼�π

¼ 0: (106)
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It can be recognized that coupling between components of Σ and components of
Ψ arises for the first time in the equations for Σ 2ð Þ

αβ . Therefore, we shall focus

attention only on the terms Σ 0ð Þ
αβ and Σ 1ð Þ

αβ .

The solution of the systems of differential equations for Σ 0ð Þ
αβ and Σ 1ð Þ

αβ , subjected
to the restriction (82), can be established by well known methods (see, e. g., A) and
turns out to be identical to the solution of the corresponding problems in classical
elasticity. That means that the stress components Σαβ are singular, with order of
singularity r�

1
2, or equivalently,

p ¼ 1
2
: (107)

The coefficients of the singular terms, Σ 0ð Þ
αβ , are given by

Σ 0ð Þ
αβ ¼

~KIffiffiffiffiffiffi
2π

p f Iαβ φð Þ þ
~KIIffiffiffiffiffiffi
2π

p f IIαβ φð Þ, (108)

where the constants ~KI and ~KII are the stress intensity factors. Here and in the
following, the indices I and II stand for Mode-I and Mode-II, respectively. More-
over, we use the notations ~KI and ~KII, in order to distinguish the stress intensity
factors of the microstrain continuum from the stress intensity factors KI and KII of
classical continua.

The so-called angular functions f Iαβ and f IIαβ are defined through

f Irr
f Iφφ
f Irφ

0
BB@

1
CCA ¼ 1

4

5 cos
φ

2
� cos

3φ
2

3 cos
φ

2
þ cos

3φ
2

sin
φ

2
þ sin

3φ
2

0
BBBBB@

1
CCCCCA
,

f IIrr
f IIφφ
f IIrφ

0
BB@

1
CCA ¼ 1

4

�5 sin
φ

2
þ 3 sin

3φ
2

�3 sin
φ

2
� 3 sin

3φ
2

cos
φ

2
þ 3 cos

3φ
2

0
BBBBB@

1
CCCCCA
, (109)

and are normalized by the conditions

f Iφφ
h i

φ¼0
¼ 1, f IIrφ

h i
φ¼0

¼ 1: (110)

The constant terms Σ 1ð Þ
αβ are given by

Σ 1ð Þ
rr

Σ 1ð Þ
φφ

Σ 1ð Þ
rφ

0
BB@

1
CCA ¼ ~kI

cos 2φ

sin 2φ

� 1
2
sin 2φ

0
BB@

1
CCA (111)

with ~kI being constant. Constant terms for Mode-II are not present. The first two
terms of the asymptotic expansion of Σαβ are summarized in Section 5.

3.6 Strain

Although the first two terms in the expansion of Σαβ are identical to the ones of
classical elasticity, the corresponding terms of εαβ differ from those of classical
elasticity. This follows from the fact that the elasticity laws (3)–(5) are not classical.
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Evidently, the components εαβ obey the asymptotic expansion

εαβ ¼ r�
1
2 ε 0ð Þ

αβ þ ε 1ð Þ
αβ þ … : (112)

We use this and the asymptotic expansions of Section 3.1, with p ¼ 1
2, in the

elasticity laws (3)–(5), and collect coefficients of like powers of r. Thus, we derive

the following solutions for ε 0ð Þ
αβ and ε 1ð Þ

αβ .

Terms ε 0ð Þ
αβ

ε 0ð Þ
rr ¼ c1

2μc2
Σ 0ð Þ
rr � ν Σ 0ð Þ

rr þ Σ 0ð Þ
φφ

� �h i
, (113)

ε 0ð Þ
φφ ¼ c1

2μc2
Σ 0ð Þ
φφ � ν Σ 0ð Þ

rr þ Σ 0ð Þ
φφ

� �h i
, (114)

ε 0ð Þ
rφ ¼ c1

2μc2
Σ 0ð Þ
rφ : (115)

By taking into account the solutions for Σ 0ð Þ
αβ of the last section, we find that

ε 0ð Þ
rr ¼ c1 ~KI

8μc2
ffiffiffiffiffiffi
2π

p 5� 8νð Þ cos φ
2
� cos

3φ
2

� �

þ c1 ~KII

8μc2
ffiffiffiffiffiffi
2π

p � 5� 8νð Þ sin φ

2
þ 3 sin

3φ
2

� �
,

(116)

ε 0ð Þ
φφ ¼ c1 ~KI

8μc2
ffiffiffiffiffiffi
2π

p 3� 8νð Þ cos φ
2
þ cos

3φ
2

� �

þ c1 ~KII

8μc2
ffiffiffiffiffiffi
2π

p � 3� 8νð Þ sin φ

2
� 3 sin

3φ
2

� �
,

(117)

ε 0ð Þ
rφ ¼ c1 ~KI

8μc2
ffiffiffiffiffiffi
2π

p sin
φ

2
þ sin

3φ
2

� �
þ c1 ~KII

8μc2
ffiffiffiffiffiffi
2π

p cos
φ

2
þ 3 cos

3φ
2

� �
: (118)

Terms ε 1ð Þ
αβ

ε 1ð Þ
rr ¼ c1

2μc2
Σ 1ð Þ
rr � ν Σ 1ð Þ

rr þ Σ 1ð Þ
φφ

� �h i
þ c2 � c1

c2
Ψrr, (119)

ε 1ð Þ
φφ ¼ c1

2μc2
Σ 1ð Þ
φφ � ν Σ 1ð Þ

rr þ Σ 1ð Þ
φφ

� �h i
þ c2 � c1

c2
Ψφφ, (120)

ε 1ð Þ
rφ ¼ c1

2μc2
Σ 1ð Þ
rφ þ c2 � c1

c2
Ψrφ: (121)

Now, we take into account the solutions for Σ 1ð Þ
αβ , established in the last section,

as well as the representations for Ψαβ, given by Eqs. (75)–(79), to obtain

ε 1ð Þ
rr ¼ ~k

ε

I,1 þ ~k
ε

I,2 cos 2φþ ~k
ε

II sin 2φ, (122)

ε 1ð Þ
φφ ¼ ~k

ε

I,1 � ~k
ε

I,2 cos 2φ� ~k
ε

II sin 2φ, (123)

ε 1ð Þ
rφ ¼ �~k

ε

I,2 sin 2φþ ~k
ε

II cos 2φ: (124)
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The constants ~k
ε

I,1, ~k
ε

I,2 and ~k
ε

II are defined as follows:

~k
ε

I,1 ≔
c1 ~kI 1� 2νð Þ

4μc2
þ c2 � c1ð ÞLI,1

c2
, (125)

~k
ε

I,2 ≔
c1 ~kI
4μc2

þ c2 � c1ð ÞLI,2

c2
, (126)

~k
ε
!

II ≔
c2 � c1ð ÞLII

c2
: (127)

The first two terms of the asymptotic expansion of εαβ are summarized in
Section 5.

3.7 Macrodisplacements

The macrodisplacement components ur and uφ will be determined by integrating
Eqs. (24). For plane strain elasticity, it is well known that the constants of integra-
tion represent rigid body motions. Omitting such motions, we conclude for the
radial component ur that

ur ¼
ð
εrrdr ¼

ð
r�

1
2 ε 0ð Þ

rr þ ε 1ð Þ
rr þ …

� �
dr, (128)

or

r
1
2u 0ð Þ

r þ ru 1ð Þ
r þ … ¼ 2r

1
2 ε 0ð Þ

rr þ rε 1ð Þ
rr þ … : (129)

For the circumferential component uφ, we conclude that

uφ ¼
ð
rεφφ � ur
� �

dφ, (130)

or

r
1
2u 0ð Þ

φ þ ru 1ð Þ
φ þ … ¼ r

1
2

ð
ε 0ð Þ
φφ � u 0ð Þ

r

� �
dφþ r

ð
ε 1ð Þ
φφ � u 1ð Þ

r

� �
dφþ … : (131)

By employing steps similar to those in the last section, we get the following

solutions for u 0ð Þ
α and u 1ð Þ

α .
Terms u 0ð Þ

α

u 0ð Þ
r ¼ 2ε 0ð Þ

rr , (132)

u 0ð Þ
φ ¼

ð
ε 0ð Þ
φφ � u 0ð Þ

r

� �
dφ ¼

ð
ε 0ð Þ
φφ � 2ε 0ð Þ

rr

� �
dφ: (133)

Invoking Eqs. (116) and (117), we get, after some straightforward
manipulations,

u 0ð Þ
r ¼ c1 ~KI

4μc2
ffiffiffiffiffiffi
2π

p 5� 8νð Þ cos φ
2
� cos

3φ
2

� �
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þ c1 ~KII

4μc2
ffiffiffiffiffiffi
2π

p � 5� 8νð Þ sin φ

2
þ 3 sin

3φ
2

� �
, (134)

u 0ð Þ
φ ¼ c1 ~KI

4μc2
ffiffiffiffiffiffi
2π

p � 7 � 8νð Þ sin φ

2
þ sin

3φ
2

� �

þ c1 ~KII

4μc2
ffiffiffiffiffiffi
2π

p � 7 � 8νð Þ cos φ
2
þ 3 cos

3φ
2

� �
: (135)

Terms u 1ð Þ
α

u 1ð Þ
r ¼ ε 1ð Þ

rr , (136)

u 1ð Þ
φ ¼

ð
ε 1ð Þ
φφ � u 1ð Þ

r

� �
dφ ¼

ð
ε 1ð Þ
φφ � ε 1ð Þ

rr

� �
dφ, (137)

from which, by virtue of Eqs. (119) and (120),

u 1ð Þ
r ¼ ~k

ε
!

I,1 þ ~k
ε
!

I,2 cos 2φþ ~k
ε
!

II sin 2φ, (138)

u 1ð Þ
φ ¼ �~k

ε
!

I,2 sin 2φþ ~k
ε
!

II cos 2φ: (139)

The first two terms of the asymptotic expansion of uα are also summarized in
Section 5.

3.8 Microdeformation

We shall derive differential equations for Ψ 0ð Þ
αβ and Ψ 1ð Þ

αβ by inserting the
asymptotic expansions of Ψαβ and Σαβ (see Eqs. (68) and (80), with p ¼ 1

2) into
Eqs. (36)–(38). Note that, by virtue of Eqs. (73) and (74) and since Ψαβ is
independent of r, the identity

∂rrΨrr þ 1
r2

∂φφΨrr þ 1
r
∂rΨrr � 4

r2
∂φΨrφ � 2

r2
Ψrr þ 2

r2
Ψφφ ¼ 0 (140)

applies. Keeping this in mind and collecting terms of like powers of r, after some
lengthy but otherwise straightforward manipulations, Eq. (36) yields

r�
3
2 ∂φφΨ 0ð Þ

rr � 4∂φΨ 0ð Þ
rφ � 7

4
Ψ 0ð Þ

rr þ 2Ψ 0ð Þ
φφ

� �

þr�1
∂φφΨ 1ð Þ

rr � 4∂φΨ 1ð Þ
rφ � Ψ 1ð Þ

rr þ 2Ψ 1ð Þ
φφ

n o
þ … ¼ 0:

(141)

Similarly, from Eqs. (37) and (38), we get

r�
3
2 ∂φφΨ 0ð Þ

φφ þ 4∂φΨ 0ð Þ
rφ � 7

4
Ψ 0ð Þ

φφ þ 2Ψ 0ð Þ
rr

� �

þr�1
∂φφΨ 1ð Þ

φφ þ 4∂φΨ 1ð Þ
rφ �Ψ 1ð Þ

φφ þ 2Ψ 1ð Þ
rr

n o
þ … ¼ 0,

(142)

r�
3
2 ∂φφΨ 0ð Þ

rφ þ 2∂φ Ψ 0ð Þ
rr �Ψ 0ð Þ

φφ

h i
� 15

4
Ψ 0ð Þ

rφ

� �

þr�1
∂φφΨ 1ð Þ

rφ þ 2∂φ Ψ 0ð Þ
rr � Ψ 0ð Þ

φφ

h i
� 15

4
Ψ 0ð Þ

rφ

� �
þ … ¼ 0:

(143)
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It is worth remarking that if only terms up to order r�1 are retained in
Eqs. (141)–(143), then the terms Ψ 0ð Þ

αβ and Ψ 1ð Þ
αβ are uncoupled from the terms Ψαβ

and Σ kð Þ
αβ .

In an analogous manner, by substituting the asymptotic expansion (68) into the
nonclassical boundary conditions (48)–(50), we show that

r
1
2 ∂φΨ 0ð Þ

rr � 2Ψ 0ð Þ
rφ

h i
φ¼�π

þ r ∂φΨ 1ð Þ
rr � 2Ψ 1ð Þ

rφ

h i
φ¼�π

þ … ¼ 0, (144)

r
1
2 ∂φΨ 0ð Þ

φφ þ 2Ψ 0ð Þ
rφ

h i
φ¼�π

þ r ∂φΨ 1ð Þ
φφ þ 2Ψ 1ð Þ

rφ

h i
φ¼�π

þ … ¼ 0, (145)

r
1
2 ∂φΨ 0ð Þ

rφ þ Ψ 0ð Þ
rr � Ψ 0ð Þ

φφ

h i
φ¼�π

þ r ∂φΨ 1ð Þ
rφ þ Ψ 1ð Þ

rr �Ψ 1ð Þ
φφ

h i
φ¼�π

þ … ¼ 0: (146)

3.8.1 Differential equations for Ψ 0ð Þ
αβ

Equating to zero the coefficients of power r�
3
2 in Eqs. (141)–(143) leads to the

system of ordinary differential equations

∂φφΨ 0ð Þ
rr � 4∂φΨ 0ð Þ

rφ � 7
4
Ψ 0ð Þ

rr þ 2Ψ 0ð Þ
φφ ¼ 0, (147)

∂φφΨ 0ð Þ
φφ þ 4∂φΨ 0ð Þ

rφ � 7
4
Ψ 0ð Þ

φφ þ 2Ψ 0ð Þ
rr ¼ 0, (148)

∂φφΨ 0ð Þ
rφ þ 2∂φ Ψ 0ð Þ

rr � Ψ 0ð Þ
φφ

h i
� 15

4
Ψ 0ð Þ

rφ ¼ 0: (149)

Similarly, equating to zero the coefficients of power r
1
2 in the boundary

conditions (144)–(146) leads to

∂φΨ 0ð Þ
rr � 2Ψ 0ð Þ

rφ

h i
φ¼�π

¼ 0, (150)

∂φΨ 0ð Þ
φφ þ 2Ψ 0ð Þ

rφ

h i
φ¼�π

¼ 0, (151)

∂φΨ 0ð Þ
rφ þΨ 0ð Þ

rr � Ψ 0ð Þ
φφ

h i
φ¼�π

¼ 0: (152)

Proceeding to solve the system (147)–(149), we note that Eqs. (147) and (148)
imply the ordinary differential equation

∂φφ Ψ 0ð Þ
rr þ Ψ 0ð Þ

φφ

h i
þ 1
4

Ψ 0ð Þ
rr þ Ψ 0ð Þ

φφ

h i
¼ 0 (153)

for the sum Ψ 0ð Þ
rr þΨ 0ð Þ

φφ , which has the solution

Ψ 0ð Þ
rr þΨ 0ð Þ

φφ ¼ A 0ð Þ cos
φ

2
þ B 0ð Þ sin

φ

2
: (154)

For determining the constants of integration A 0ð Þ and B 0ð Þ, we utilize the
boundary conditions. From Eqs. (150) and (151), we derive the equation

∂φ Ψ 0ð Þ
rr þΨ 0ð Þ

φφ

� �h i
φ¼�π

¼ 0: (155)
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By substituting the solution (154), we see that

A 0ð Þ ¼ 0: (156)

To go further, we notice that Eqs. (147) and (148) imply

∂φΨ 0ð Þ
rφ ¼ 1

8
∂φφ Ψ 0ð Þ

rr �Ψ 0ð Þ
φφ

� �
� 15

4
Ψ 0ð Þ

rr �Ψ 0ð Þ
φφ

� �� �
: (157)

Next, we differentiate Eq. (149) with respect to φ and use Eq. (157).
Rearrangement of terms leads to the ordinary differential equation

1
2
∂φφφφ Ψ 0ð Þ

rr þΨ 0ð Þ
φφ

� �
þ 17

4
∂φφ Ψ 0ð Þ

rr þΨ 0ð Þ
φφ

� �
þ 225

32
Ψ 0ð Þ

rr þ Ψ 0ð Þ
φφ

� �

�∂φφφφΨ 0ð Þ
φφ � 17

2
∂φφΨ 0ð Þ

φφ � 225
16

Ψ 0ð Þ
φφ ¼ 0:

(158)

By substituting the solutions (154) and (156), we gain an ordinary differential
equation for Ψ 0ð Þ

φφ ,

∂φφφφΨ 0ð Þ
φφ þ 17

2
∂φφΨ 0ð Þ

φφ þ 225
16

Ψ 0ð Þ
φφ ¼ 6B 0ð Þ sin

φ

2
, (159)

which obeyes the solution

Ψ 0ð Þ
φφ ¼  

1
2
B 0ð Þ sin

φ

2
þ E 0ð Þ sin

3φ
2

þ F 0ð Þ sin
5φ
2

þ C 0ð Þ cos
3φ
2

þD 0ð Þ cos
5φ
2
,

(160)

with C 0ð Þ,D 0ð Þ,E 0ð Þ and F 0ð Þ being new constants of integration. Further, from
Eqs. (154), (156) and (160),

Ψ 0ð Þ
rr ¼  

1
2
B 0ð Þ sin

φ

2
� E 0ð Þ sin

3φ
2

� F 0ð Þ sin
5φ
2

� C 0ð Þ cos
3φ
2

�D 0ð Þ cos
5φ
2
:

(161)

Finally, using the solutions (161) and (160) in Eq. (157), we obtain the solution
Ψ 0ð Þ

rφ in the form

Ψ 0ð Þ
rφ ¼ C 0ð Þ sin

3φ
2

þD 0ð Þ sin
5φ
2

� E 0ð Þ cos
3φ
2

� F 0ð Þ cos
5φ
2

þG 0ð Þ, (162)

where G 0ð Þ is a further constant of integration. For the constants of integration in
the solutions (160)–(162) we can verify, by evaluating the boundary conditions
(150)–(152) that

G 0ð Þ ¼ 0, �D 0ð Þ ¼ C 0ð Þ, � F 0ð Þ ¼ E 0ð Þ: (163)

In accordance with the symmetry conditions (53) and (54) for Mode-I as well as
(61) and (62) for Mode-II, we set
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C 0ð Þ � C 0ð Þ
I , B 0ð Þ � B 0ð Þ

II , E 0ð Þ � E 0ð Þ
II : (164)

Then, the solutions (160)–(162) become

Ψ 0ð Þ
rr ¼ �C 0ð Þ

I cos
3φ
2

� cos
5φ
2

� �
þ 1
2
B 0ð Þ
II sin

φ

2
� E 0ð Þ

II sin
3φ
2

� sin
5φ
2

� �
,

(165)

Ψ 0ð Þ
φφ ¼ C 0ð Þ

I cos
3φ
2

� cos
5φ
2

� �
þ 1
2
B 0ð Þ
II sin

φ

2
þ E 0ð Þ

II sin
3φ
2

� sin
5φ
2

� �
,

(166)

Ψ 0ð Þ
rφ ¼ C 0ð Þ

I sin
3φ
2

� sin
5φ
2

� �
� E 0ð Þ

II cos
3φ
2

� cos
5φ
2

� �
: (167)

It is of interest to comment the following issue. Obviously not all constants of
integration may be determined, because boundary conditions are prescribed only
on the crack faces. Nevertheless, it is remarkable that the solutions of Mode-I
include only one unknown constant, whereas the solutions of Mode-II depend on
two unknown constants. We shall come back to this specific feature in the next
section as well as in Section 5, while discussing the asymptotic solutions of the
double stresses.

3.8.2 Differential equations for Ψ 1ð Þ
αβ

Equating to zero the coefficients of power r�1 in Eqs. (141)–(143) and the
coefficients of power r in the boundary conditions (144)–(146) furnish the system
of ordinary differential equations

∂φφΨ 1ð Þ
rr � 4∂φΨ 1ð Þ

rφ � Ψ 1ð Þ
rr þ 2Ψ 1ð Þ

φφ ¼ 0, (168)

∂φφΨ 1ð Þ
φφ þ 4∂φΨ 1ð Þ

rφ � Ψ 1ð Þ
φφ þ 2Ψ 1ð Þ

rr ¼ 0, (169)

∂φφΨ 1ð Þ
rφ þ 2∂φ Ψ 1ð Þ

rr � Ψ 1ð Þ
φφ

� �
� 3Ψ 1ð Þ

rφ ¼ 0, (170)

and corresponding boundary conditions

∂φΨ 1ð Þ
rr � 2Ψ 1ð Þ

rφ

h i
φ¼�π

¼ 0, (171)

∂φΨ 1ð Þ
φφ þ 2Ψ 1ð Þ

rφ

h i
φ¼�π

¼ 0, (172)

∂φΨ 1ð Þ
rφ þ Ψ 1ð Þ

rr �Ψ 1ð Þ
φφ

h i
φ¼�π

¼ 0: (173)

Since the steps for solving the above system of differential equations are quite
similar to those in the last section, we omit the details and present only the final
solutions

Ψ 1ð Þ
rr ¼ 1

2
A 1ð Þ cosφ�D 1ð Þ

I cosφþ cos 3φð Þ � E 1ð Þ
II sinφ� F 1ð Þ

II sin 3φ, (174)

Ψ 1ð Þ
φφ ¼ 1

2
A 1ð Þ cosφþD 1ð Þ

I cosφþ cos 3φð Þ þ E 1ð Þ
II sinφþ F 1ð Þ

II sin 3φ, (175)
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Ψ 1ð Þ
rφ ¼ D 1ð Þ

I sinφþ sin 3φð Þ � E 1ð Þ
II

1
2
þ cosφ

� �
� F 1ð Þ

II
1
2
� cos 3φ

� �
: (176)

With regard to the symmetry conditions (53), (54), (61) and (62), the constants
A 1ð Þ

I ,D 1ð Þ
I ,E 1ð Þ

II and F 1ð Þ
II are attributed to loading conditions of Mode-I and Mode-II,

respectively. The solutions Ψ 0ð Þ
αβ and Ψ 1ð Þ

αβ are summarized and discussed in Section 5.

3.9 Double stress

The considerations of Section 3.1, together with p ¼ 1
2 (see Eq. (107)), and the

elasticity laws for μ [see Eqs. (7)–(16)] suggest the asymptotic expansion

μαβγ ¼ r�
1
2μ 0ð Þ

αβγ þ μ 1ð Þ
αβγ þ … ¼

X∞

k¼0

r�
1
2þk

2 μ kð Þ
αβγ, (177)

with

μ kð Þ
αβγ ¼ μ kð Þ

αβγ φð Þ: (178)

The goal is to determine μ 0ð Þ
αβγ and μ 1ð Þ

αβγ by substituting the asymptotic expansion
for Ψαβ into the elasticity laws (7)–(16). It is readily verified that in view of the
conditions (73) and (74), the terms Ψαβ of the expansion (68) will disappear in the
subsequent equations. Thus, we conclude from Eqs. (7)–(16), by equating the
coefficients of power r�

1
2 that

μ 0ð Þ
rrr ¼ c2 � c1ð Þ λþ 2μ

2
Ψ 0ð Þ

rr þ λ

2
Ψ 0ð Þ

φφ

� �
, (179)

μ 0ð Þ
rφφ ¼ c2 � c1ð Þ λþ 2μ

2
Ψ 0ð Þ

φφ þ λ

2
Ψ 0ð Þ

rr

� �
, (180)

μ 0ð Þ
rzz ¼ c2 � c1ð Þ λ

2
Ψ 0ð Þ

rr þ Ψ 0ð Þ
φφ

� �
, (181)

μ 0ð Þ
rrφ ¼ c2 � c1ð ÞμΨ 0ð Þ

rφ , (182)

μ 0ð Þ
φrr ¼ c2 � c1ð Þ 2μ ∂φΨ 0ð Þ

rr � 2Ψ 0ð Þ
rφ

� �
þ λ∂φ Ψ 0ð Þ

rr þΨ 0ð Þ
φφ

� �h i
, (183)

μ 0ð Þ
φφφ ¼ c2 � c1ð Þ 2μ ∂φΨ 0ð Þ

φφ þ 2Ψ 0ð Þ
rφ

� �
þ λ∂φ Ψ 0ð Þ

rr þ Ψ 0ð Þ
φφ

� �h i
, (184)

μ 0ð Þ
φzz ¼ c2 � c1ð Þλ∂φ Ψ 0ð Þ

rr þΨ 0ð Þ
φφ

� �
, (185)

μ 0ð Þ
φrφ ¼ c2 � c1ð Þ2μ ∂φΨ 0ð Þ

rφ þΨ 0ð Þ
rr � Ψ 0ð Þ

φφ

� �
, (186)

and by equating the coefficients of power r0 that

μ 1ð Þ
rrr ¼ c2 � c1ð Þ λþ 2μð ÞΨ 1ð Þ

rr þ λΨ 1ð Þ
φφ

� �
, (187)

μ 1ð Þ
rφφ ¼ c2 � c1ð Þ λþ 2μð ÞΨ 1ð Þ

φφ þ λΨ 1ð Þ
rr

� �
, (188)

μ 1ð Þ
rzz ¼ c2 � c1ð Þλ Ψ 1ð Þ

rr þΨ 1ð Þ
φφ

� �
, (189)
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μ 1ð Þ
rφφ ¼ c2 � c1ð Þ2μΨ 1ð Þ

rφ , (190)

μ 1ð Þ
φrr ¼ c2 � c1ð Þ 2μ ∂φΨ 1ð Þ

rr � 2Ψ 1ð Þ
rφ

� �
þ λ∂φ Ψ 1ð Þ

rr þΨ 1ð Þ
φφ

� �h i
, (191)

μ 1ð Þ
φφφ ¼ c2 � c1ð Þ 2μ ∂φΨ 1ð Þ

φφ þ 2Ψ 1ð Þ
rφ

� �
þ λ∂φ Ψ 1ð Þ

rr þΨ 1ð Þ
φφ

� �h i
, (192)

μ 1ð Þ
φzz ¼ c2 � c1ð Þλ∂φ Ψ 1ð Þ

rr þΨ 1ð Þ
φφ

� �
, (193)

μ 1ð Þ
rφφ ¼ c2 � c1ð Þ2μ ∂φΨ 1ð Þ

rφ þΨ 1ð Þ
rr � Ψ 1ð Þ

φφ

� �
: (194)

If we introduce the solutions (160)–(162) into Eqs. (179)–(186) and rearrange

terms, then, for μ 0ð Þ
αβγ, we obtain the representations

μ 0ð Þ
rrr ¼ c2 � c1ð Þ �μC 0ð Þ

I cos
3φ
2

� cos
5φ
2

� �
þ λþ μ

2
B 0ð Þ
II sin

φ

2

�

�μE 0ð Þ
II sin

3φ
2

� sin
5φ
2

� ��
,

(195)

μ 0ð Þ
rφφ ¼ c2 � c1ð Þ μC 0ð Þ

I cos
3φ
2

� cos
5φ
2

� �
þ λþ μ

2
B 0ð Þ
II sin

φ

2

�

þμE 0ð Þ
II sin

3φ
2

� sin
5φ
2

� ��
,

(196)

μ 0ð Þ
rzz ¼ c2 � c1ð Þ λ

2
B 0ð Þ
II sin

φ

2
, (197)

μ 0ð Þ
rrφ ¼   c2 � c1ð Þ μC 0ð Þ

I sin
3φ
2

� sin
5φ
2

� ��

�μE 0ð Þ
II cos

3φ
2

� cos
5φ
2

� ��
,

(198)

μ 0ð Þ
φrr ¼   c2 � c1ð Þ �μC 0ð Þ

I sin
3φ
2

þ sin
5φ
2

� �
þ λþ μ

2
B 0ð Þ
II cos

φ

2

�

þμE 0ð Þ
II cos

3φ
2

þ cos
5φ
2

� ��
,

(199)

μ 0ð Þ
φφφ ¼ c2 � c1ð Þ μC 0ð Þ

I sin
3φ
2

þ sin
5φ
2

� �
þ λþ μ

2
B 0ð Þ
II cos

φ

2

�

�μE 0ð Þ
II cos

3φ
2

þ cos
5φ
2

� ��
,

(200)

μ 0ð Þ
φzz ¼ c2 � c1ð Þ λ

2
B 0ð Þ
II cos

φ

2
, (201)

μ 0ð Þ
φrφ ¼ c2 � c1ð Þ �μC 0ð Þ

I cos
3φ
2

þ cos
5φ
2

� ��
� μE 0ð Þ

II sin
3φ
2

þ sin
5φ
2

� ��
:

(202)

The fact that the solutions μ 0ð Þ
αβγ depend on two unknown constants in case of

Mode-II is a characteristic property. As we shall see in Section 5, this feature leads
to the existence of two stress intensity factors for the double stresses in case of
Mode-II.
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Using steps similar to those above we obtain for μ 1ð Þ
αβγ the representations

μ 1ð Þ
rrr ¼   c2 � c1ð Þ λþ μð ÞA 1ð Þ

I cosφ� 2μD 1ð Þ
I cosφþ cos 3φð Þ

h

�2μE 1ð Þ
II sinφ� 2μF 1ð Þ

II sin 3φ
i
,

(203)

μ 1ð Þ
rφφ ¼   c2 � c1ð Þ λþ μð ÞA 1ð Þ

I cosφþ 2μD 1ð Þ
I cosφþ cos 3φð Þ

h

þ2μE 1ð Þ
II sinφþ 2μF 1ð Þ

II sin 3φ
i
,

(204)

μ 1ð Þ
φzz ¼ c2 � c1ð ÞA 1ð Þ

I cosφ, (205)

μ 1ð Þ
rrφ ¼   c2 � c1ð Þ 2μD 1ð Þ

I sinφþ sin 3φð Þ
h

� 2μE 1ð Þ
II

1
2
þ cosφ

� �
� 2μF 1ð Þ

II
1
2
� cos 3φ

� ��
,

(206)

μ 1ð Þ
φrr ¼ c2 � c1ð Þ � λþ μð ÞA 1ð Þ

I sinφ� 2μD 1ð Þ
I sinφ� sin 3φð Þ

h

þ2μE 1ð Þ
II 1þ cosφð Þ � 2μF 1ð Þ

II 1þ cos 3φð Þ
i
,

(207)

μ 1ð Þ
φφφ ¼ c2 � c1ð Þ � λþ μð ÞA 1ð Þ

I sinφþ 2μD 1ð Þ
I sinφ� sin 3φð Þ

h

�2μE 1ð Þ
II 1þ cosφð Þ þ 2μF 1ð Þ

II 1þ cos 3φð Þ
i
,

(208)

μ 1ð Þ
φzz ¼ c2 � c1ð ÞλA 1ð Þ

I sinφ, (209)

μ 1ð Þ
φrφ ¼   c2 � c1ð Þ �2μD 1ð Þ

I cosφ� cos 3φð Þ
h

�2μE 1ð Þ
II sinφþ 2μF 1ð Þ

II sin 3φ
i
:

(210)

Before going to discuss the obtained solutions, it is perhaps of interest to
rederive the analytical solutions by an alternative approach, starting from asymp-
totic expansions of Σ and μ rather than the asymtptotic expansions of u and Ψ used
in this section.

4. Alternative approach for the determination of the near-tip fields

In Section 3 we determined the near-tip fields by starting from asymptotic
expansions of the same form for the kinematical variables u and Ψ [see Eqs. (67)
and (68)]. Alternatively, it is instructive to start from asymptotic expansions of the
same type for the stresses Σ and μ, i. e.,

Σαβ ¼ rp�1Σ 0ð Þ
αβ þ rp�

1
2Σ 1ð Þ

αβ þ … , (211)

μαβγ ¼ rp�1μ 0ð Þ
αβγ þ rp�

1
2μ 1ð Þ

αβγ þ … , (212)

where Σ kð Þ
αβ ¼ Σ kð Þ

αβ φð Þ and μ kð Þ
αβγ ¼ μ kð Þ

αβγ φð Þ, k ¼ 0, 1, 2, … . Then, from the elasticity
laws (17)–(22), we recognize that ∇Ψð Þαβγ � rp�1 and hence the components Ψαβ are
of form (67). It follows that all outcomes of sections 3.2–3.6 apply as well and, in
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particular, that p ¼ 1
2. Then, it remains to show, how to determine the terms μ 0ð Þ

αβγ

and μ 1ð Þ
αβγ . The corresponding terms of Ψ will then be established by integrating the

elasticity laws (17)–(22). For the purposes of the present section, however, it suf-

fices to demonstrate only how to determine the terms μ 0ð Þ
αβγ. To this end, we shall

involve the nonclassical equilibrium Eqs. (32)–(35), in conjunction with the elastic-
ity law (6) for σ, as well as the nonclassical compatibility conditions (42)–(44). It is
necessary to involve the latter for we are directly seeking for solutions of μαβγ .

4.1 Nonclassical equilibrium equations

Since εαβ � r�
1
2 and Ψαβ � r0, we recognize from the elasticity law (6) that

σαβ � r�
1
2. On the other hand, by virtue of the expansion (212), ∂rμαβγ � r�

3
2 and

1
r μαβγ � r�

3
2. Therefore, up to terms of order r�1 there will be no contributions of σ

present in the nonclassical equilibrium Eqs. (32)–(35) and we conclude that

r�
3
2 � 1

2
μ 0ð Þ
rrr þ ∂φμ

0ð Þ
φrr þ μ 0ð Þ

rrr � 2μ 0ð Þ
φrφ

� �
þ … ¼ 0, (213)

r�
3
2 � 1

2
μ 0ð Þ
rφφ þ ∂φμ

0ð Þ
φφφ þ μ 0ð Þ

rφφ þ 2μ 0ð Þ
φrφ

� �
þ … ¼ 0, (214)

r�
3
2 � 1

2
μ 0ð Þ
rzz þ ∂φμ

0ð Þ
φzz þ μ 0ð Þ

rzz

� �
þ … ¼ 0, (215)

r�
3
2 � 1

2
μ 0ð Þ
rrφ þ ∂φμ

0ð Þ
φrφ þ μ 0ð Þ

rrφ � μ 0ð Þ
φφφ þ μ 0ð Þ

φrr

� �
þ … ¼ 0: (216)

Equating to zero the coefficients of power r�
3
2 leads to

2∂φμ 0ð Þ
φrr þ μ 0ð Þ

rrr � 4μ 0ð Þ
φrφ ¼ 0, (217)

2∂φμ 0ð Þ
φφφ þ μ 0ð Þ

rφφ þ 4μ 0ð Þ
φrφ ¼ 0, (218)

2∂φμ 0ð Þ
φrφ þ μ 0ð Þ

rrφ � 2μ 0ð Þ
φφφ þ 2μ 0ð Þ

φrr ¼ 0, (219)

and

2∂φμ 0ð Þ
φzz þ μ 0ð Þ

rzz ¼ 0: (220)

The last equation will not be considered further, for it can be established from
Eqs. (217) and (218). To see this, we recall Eqs. (9) and (13) to recast Eq. (220)
equivalently in the form

2∂φμ 0ð Þ
φrr þ 2∂φμ 0ð Þ

φφφ þ μ 0ð Þ
rrr þ μ 0ð Þ

rφφ ¼ 0: (221)

But this equations can also be obtained by adding up Eqs. (217) and (218).

4.2 Nonclassical compatibility conditions

We insert the asymptotic expansion (212) into the nonclassical compatibility
conditions (42)–(44) and collect terms of like powers of r, to get
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r�
1
2 ∂φμ

0ð Þ
rrφ � μ 0ð Þ

φrφ þ
1
2
μ 0ð Þ
φrφ þ μ 0ð Þ

rrr � μ 0ð Þ
rφφ

� �
þ … ¼ 0, (222)

r�
1
2 ∂φμ

0ð Þ
rφφ þ ∂φμ

0ð Þ
rrr � μ 0ð Þ

φφφ � μ 0ð Þ
φrr þ

1
2
μ 0ð Þ
φφφ þ

1
2
μ 0ð Þ
φrr

� �
þ … ¼ 0, (223)

r�
1
2 ∂φμ

0ð Þ
rφφ � ∂φμ

0ð Þ
rrr � μ 0ð Þ

φφφ þ μ 0ð Þ
φrr þ

1
2
μ 0ð Þ
φφφ �

1
2
μ 0ð Þ
φrr þ 4μ 0ð Þ

rrφ

� �

þ… ¼ 0:
(224)

Again, equating to zero the coefficients of power r�
1
2 leads to

∂φμ
0ð Þ
rrφ �

1
2
μ 0ð Þ
φrφ þ μ 0ð Þ

rrr � μ 0ð Þ
rφφ ¼ 0, (225)

∂φμ
0ð Þ
rφφ þ ∂φμ

0ð Þ
rrr �

1
2
μ 0ð Þ
φφφ �

1
2
μ 0ð Þ
φrr ¼ 0, (226)

∂φμ
0ð Þ
rφφ � ∂φμ

0ð Þ
rrr �

1
2
μ 0ð Þ
φφφ þ

1
2
μ 0ð Þ
φrr þ 4μ 0ð Þ

rrφ ¼ 0: (227)

4.3 Determination of μ 0ð Þ
αβγ

Eqs. (217)–(219) and (225)–(227) are 6 differential equations for the 6

unknowns μ 0ð Þ
rrr , μ

0ð Þ
rφφ, μ

0ð Þ
rrφ, μ

0ð Þ
φrr, μ

0ð Þ
φφφ and μ 0ð Þ

φrφ. The required boundary conditions can
be verified to be [cf. Eq. (47)].

μ 0ð Þ
φrr

h i
φ¼�π

¼ μ 0ð Þ
φφφ

h i
φ¼�π

¼ μ 0ð Þ
φrφ

h i
φ¼�π

¼ 0: (228)

It can be shown (cf. A) that the solutions are given by

μ 0ð Þ
rrr ¼ B

2
sin

φ

2
þ C sin

3φ
2

� sin
5φ
2

� �
� A cos

3φ
2

� cos
5φ
2

� �
, (229)

μ 0ð Þ
rφφ ¼ B

2
sin

φ

2
� C sin

3φ
2

� sin
5φ
2

� �
þ A cos

3φ
2

� cos
5φ
2

� �
, (230)

μ 0ð Þ
rrφ ¼ C cos

3φ
2

� cos
5φ
2

� �
þ A sin

3φ
2

� sin
5φ
2

� �
, (231)

μ 0ð Þ
φrr ¼

B
2
cos

φ

2
� C cos

3φ
2

þ cos
5φ
2

� �
� A sin

3φ
2

þ sin
5φ
2

� �
, (232)

μ 0ð Þ
φφφ ¼ B

2
cos

φ

2
þ C cos

3φ
2

þ cos
5φ
2

� �
þ A sin

3φ
2

þ sin
5φ
2

� �
, (233)

μ 0ð Þ
φrφ ¼ C sin

3φ
2

þ sin
5φ
2

� �
� A cos

3φ
2

þ cos
5φ
2

� �
: (234)

If we define

A≔ c2 � c1ð ÞμC 0ð Þ
I , B≔ c2 � c1ð Þ λþ μð ÞB 0ð Þ

II , (235)

C≔ � c2 � c1ð ÞμE 0ð Þ
II (236)

then these are nothing more but the solutions for μ 0ð Þ
αβγ of Section 3.9.
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5. Discussion of the asymptotic solutions

As suggested in Section 3.5, it is common to represent the leading terms of the
asymptotic expansion of stresses by introducing stress intensity factors and angular
functions. For the Cauchy stress, this is indicated in Eq. (108). Eqs. (108)–(110)
also reveal that

~KIffiffiffiffiffiffi
2π

p ¼ Σ 0ð Þ
φφ

h i
φ¼0

,
~KIIffiffiffiffiffiffi
2π

p ¼ Σ 0ð Þ
rφ

h i
φ¼0

: (237)

To accomplish a representation for μ 0ð Þ
αβγ similar to the one for Σ 0ð Þ

αβ in Eq. (108),

we remark that there is only one unknown constant for Mode-I, namely C 0ð Þ
I , but

there are two unknown constants for Mode-II, B 0ð Þ
II and E 0ð Þ

II [cf. Eqs. (195)–(202)].
Therefore, in analogy to Eq. (108), we set

μ 0ð Þ
αβγ ¼

~LIffiffiffiffiffiffi
2π

p gIαβγ φð Þ þ
~LII,1ffiffiffiffiffiffi
2π

p gII,1αβγ φð Þ þ
~LII,2ffiffiffiffiffiffi
2π

p gII,2αβγ φð Þ, (238)

and define for Mode–I (cf. Eq. (202))

~LIffiffiffiffiffiffi
2π

p ≔ μ 0ð Þ
φrφ

h i
φ¼0

¼ � c2 � c1ð Þ2μC 0ð Þ
I , (239)

rendering gIφrφ
h i

φ¼0
to be normalized,

gIφrφ
h i

φ¼0
¼ 1: (240)

To define ~LII,1 and ~LII,2 unambiguously, we note that B 0ð Þ
II can be determined by

adding Eqs. (199) and (200) while taking φ ¼ 0. Similarly, E 0ð Þ
II can be determined

by substracting Eqs. (199) and (200) from each other while taking φ ¼ 0. We
intend to normalize the angular functions gII,1αβγ and gII,2αβγ by

gII,1φrr

h i
φ¼0

¼ gII,2φrr

h i
φ¼0

¼ 1, (241)

and therefore define the stress intensity factors ~LII,1 and ~LII,2 by (cf. Eqs. (199)
and (200))

~LII,1ffiffiffiffiffiffi
2π

p ≔
1
2

μ 0ð Þ
φrr þ μ 0ð Þ

φφφ

h i
φ¼0

¼ 1
2

c2 � c1ð Þ λþ μð ÞB 0ð Þ
II , (242)

~LII,2ffiffiffiffiffiffi
2π

p ≔
1
2

μ 0ð Þ
φrr � μ 0ð Þ

φφφ

h i
φ¼0

¼ c2 � c1ð Þ2μE 0ð Þ
II : (243)

The angular functions will be determined by comparison of Eqs. (238)–(243)
with Eqs. (195), (196), (198)–(200) ,and (202). Explicitely, we find that
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gIrrr
gIrφφ

gIrrφ

gIφrr

gIφφφ

gIφrφ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼ 1
2

cos
3φ
2

� cos
5φ
2

� cos
3φ
2

þ cos
5φ
2

� sin
3φ
2

þ sin
5φ
2

sin
3φ
2

þ sin
5φ
2

� sin
3φ
2

� sin
5φ
2

cos
3φ
2

þ cos
5φ
2

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

, (244)

gII,1rrr

gII,1rφφ

gII,1rrφ

gII,1φrr

gII,1φφφ

gII,1φrφ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

sin
φ

2

sin
φ

2
0

cos
φ

2

cos
φ

2
0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

,

gII,2rrr

gII,2rφφ

gII,2rrφ

gII,2φrr

gII,2φφφ

gII,2φrφ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ 1
2

� sin
3φ
2

þ sin
5φ
2

sin
3φ
2

� sin
5φ
2

� cos
3φ
2

þ cos
5φ
2

cos
3φ
2

þ cos
5φ
2

� cos
3φ
2

� cos
5φ
2

� sin
3φ
2

� sin
5φ
2

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

: (245)

Some comments addressing Mode-I and Mode-II crack problems are in order at
this stage. In classical elasticity, there are two intensity factors in the expansion of
the Cauchy stress, one for each mode. In micropolar elasticity (see, e. g., Diegele
et al. [15]), there are also two stress intensity factors in the expansion of the Cauchy
stress and in addition two nonclassical intensity factors in the expansion of the
couple stress, one for each mode. In the present case of microstrain elasticity, there
are also two stress intensity factors in the expansion of the Cauchy stress, one for
each mode. However, in the expansions of the double stress there is one intensity
factor for Mode-I, but there are two intensity factors for Mode-II. Actually, there
are no further conditions to relate ~LII,1 and ~LII,1 and the numerical simulations in
Part III confirm this fact.

It is also convenient to replace the constants A 1ð Þ
I ,D 1ð Þ

I ,E 1ð Þ
II and F 1ð Þ

II by the
definitions

~lI,1 ≔ c2 � c1ð Þ λþ μð ÞA 1ð Þ
I , (246)

~lI,2 ≔ � c2 � c1ð Þ2μD 1ð Þ
I , (247)

~lII,1 ≔ � c2 � c1ð Þ2μE 1ð Þ
II , (248)

~lII,2 ≔ � c2 � c1ð Þ2μF 1ð Þ
II : (249)

Evidently, the new constants for Mode-I and Mode-II in the expansions of μ 0ð Þ
αβγ

and μ 1ð Þ
αβγ can be employed to rewrite Ψ 0ð Þ

αβ and Ψ 1ð Þ
αβ . In particular, we can conclude

from Eqs. (160)–(162) and (239)–(243) that
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Ψ 0ð Þ
αβ ¼  

~LI

c2 � c1ð Þ2μ ffiffiffiffiffiffi
2π

p hIαβ þ
~LII,1

c2 � c1ð Þ λþ μð Þ ffiffiffiffiffiffi
2π

p hII,1αβ

þ
~LII,2

c2 � c1ð Þ2μ ffiffiffiffiffiffi
2π

p hII,2αβ ,

(250)

with

hIrr
hIφφ
hIrφ

0
BB@

1
CCA ¼

cos
3φ
2

� cos
5φ
2

� cos
3φ
2

þ cos
5φ
2

� sin
3φ
2

þ sin
5φ
2

0
BBBBB@

1
CCCCCA
: (251)

Table 1 summarizes the first two terms of the asymptotic solutions of the near-
tip fields. All stresses are singular with order of singularity r�

1
2. Especially, the terms

Σαβ ¼
~KIffiffiffiffiffiffiffiffi
2π r

p f Iαβ þ
~KIIffiffiffiffiffiffiffiffi
2π r

p f IIαβ þ Σ 1ð Þ
αβ þ … , (252)

Σrr

Σφφ

Σrφ

0
BB@

1
CCA ¼

~KI

4
ffiffiffiffiffiffiffiffi
2π r

p

5 cos
φ

2
� cos

3
2
φ

� �

3 cos
φ

2
þ cos

3
2
φ

� �

sin
φ

2
þ sin

3
2
φ

� �

0
BBBBBBBB@

1
CCCCCCCCA

þ
~KII

4
ffiffiffiffiffiffiffiffi
2π r

p

�5 sin
φ

2
þ 3 sin

3
2
φ

� �

�3 sin
φ

2
� 3 sin

3
2
φ

� �

cos
φ

2
þ 3 cos

3
2
φ

� �

0
BBBBBBBB@

1
CCCCCCCCA

þ~kI

cos 2φ

sin 2φ

� 1
2
sin 2φð Þ

0
BBB@

1
CCCAþ … :

(253)

Ψαβ ¼ Ψαβ þ
ffiffiffiffiffiffi
r
2π

r
~LI

c2 � c1ð Þ2μ hIαβ þ
ffiffiffiffiffiffi
r
2π

r
~LII,1

c2 � c1ð Þ λþ μð Þ h
II,1
αβ

þ
ffiffiffiffiffiffi
r
2π

r
~LII,2

c2 � c1ð Þ2μ hII,2αβ þ rΨ 1ð Þ
αβ þ … ,

(254)

Ψrr � Ψrr

Ψφφ � Ψφφ

Ψrφ � Ψrφ

0
B@

1
CA ¼

ffiffiffiffiffiffi
r
2π

r
~LI

c2 � c1ð Þ2μ

cos
3φ
2

� cos
5φ
2

� cos
3φ
2

þ cos
5φ
2

� sin
3φ
2

þ sin
5φ
2

0
BBBBB@

1
CCCCCA
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þ
ffiffiffiffiffiffi
r
2π

r
~LII,1

c2 � c1ð Þ λþ μð Þ

sin
φ

2

sin
φ

2
0

0
BBB@

1
CCCA

þ
ffiffiffiffiffiffi
r
2π

r
~LII,2

c2 � c1ð Þ2μ

� sin
3φ
2

þ sin
5φ
2

sin
3φ
2

� sin
5φ
2

� cos
3φ
2

þ cos
5φ
2

0
BBBBB@

1
CCCCCA

þr
~lI,1

2 c2 � c1ð Þ λþ μð Þ

cosφ

cosφ

0

0
B@

1
CA (255)

þr
~lI,2

c2 � c1ð Þ2μ

cosφþ cos 3φ

� cosφ� cos 3φ

� sinφ� sin 3φ

0
B@

1
CA

þr
~lII,1

c2 � c1ð Þ2μ

sinφ

� sinφ
1
2
þ cosφ

0
BB@

1
CCA

þr
~lII,2

c2 � c1ð Þ2μ

sin 3φ

� sin 3φ
1
2
� cos 3φ

0
BB@

1
CCAþ … :

μαβγ ¼
~LIffiffiffiffiffiffiffiffi
2π r

p gIαβγ þ
~LII,1ffiffiffiffiffiffiffiffi
2π r

p gII,1αβγ þ
~LII,2ffiffiffiffiffiffiffiffi
2π r

p gII,2αβγ þ μ 1ð Þ
αβγ þ … , (256)

μrrr

μrφφ

μrrφ

μφrr

μφφφ

μφrφ

0
BBBBBBBBB@

1
CCCCCCCCCA

¼
~LIffiffiffiffiffiffiffiffi
2π r

p 1
2

cos
3φ
2

� cos
5φ
2

� cos
3φ
2

þ cos
5φ
2

� sin
3φ
2

þ sin
5φ
2

sin
3φ
2

þ sin
5φ
2

� sin
3φ
2

� sin
5φ
2

cos
3φ
2

þ cos
5φ
2

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA
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þ
~LII,1ffiffiffiffiffiffiffiffi
2π r

p

sin
φ

2

sin
φ

2
0

cos
φ

2

cos
φ

2
0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

þ
~LII,2ffiffiffiffiffiffiffiffi
2π r

p 1
2

� sin
3φ
2

þ sin
5φ
2

sin
3φ
2

� sin
5φ
2

� cos
3φ
2

þ cos
5φ
2

cos
3φ
2

þ cos
5φ
2

� cos
3φ
2

� cos
5φ
2

� sin
3φ
2

� sin
5φ
2

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

þ~lI,1

cosφ

cosφ

0

� sinφ

� sinφ

0

0
BBBBBBBBB@

1
CCCCCCCCCA

þ~lI,2

cosφþ cos 3φ

� cosφ� cos 3φ

� sinφ� sin 3φ

sinφ� sin 3φ

� sinφþ sin 3φ

cosφ� cos 3φ

0
BBBBBBBBB@

1
CCCCCCCCCA

þ~lII,1

sinφ

� sinφ
1
2
þ cosφ

�1� cosφ

1þ cosφ

sinφ

0
BBBBBBBBB@

1
CCCCCCCCCA

þ~lII,2

sin 3φ

� sin 3φ
1
2
� cos 3φ

1þ cos 3φ

�1� cos 3φ

� sin 3φ

0
BBBBBBBBB@

1
CCCCCCCCCA

þ … , (257)

εrr

εφφ

εrφ

0
B@

1
CA ¼

~KIffiffiffiffiffiffiffiffi
2π r

p c1
8μc2

5� 8νð Þ cos φ
2
� cos

3φ
2

3� 8νð Þ cos φ
2
þ cos

3φ
2

sin
φ

2
þ sin

3φ
2

0
BBBBB@

1
CCCCCA

þ
~KIIffiffiffiffiffiffiffiffi
2π r

p c1
8μc2

� 5� 8νð Þ sin φ

2
þ 3 sin

3φ
2

� 3� 8νð Þ sin φ

2
� 3 sin

3φ
2

cos
φ

2
þ 3 cos

3φ
2

0
BBBBB@

1
CCCCCA

þ~k
ε
!

I,1

1

1

0

0
BB@

1
CCAþ ~k

ε
!

I,2

cos 2φ

� cos 2φ

� sin 2φ

0
BB@

1
CCAþ ~k

ε
!

II

sin 2φ

� sin 2φ

cos 2φ

0
BB@

1
CCA

þ… ,

(258)
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Σ 0ð Þ
αβ and Σ 1ð Þ

αβ are identical to those of classical elasticity. However, the terms ε 0ð Þ
αβ and

ε 1ð Þ
αβ are different from the corresponding terms of classical elasticity. In particular,

ε 1ð Þ
αβ includes terms arising from Ψαβ. There are also qualititative differences to

micropolar elasticity. For instance, terms of couple stresses corresponding to μ 0ð Þ
αβγ in

Mode-II and to μ 1ð Þ
αβγ in Mode-I do not exist.

6. Concluding remarks

Closed form analytical solutions, predicted by the 3-PG-Model for Mode-I and
Mode-II crack problems, have been developed in the present paper. The solutions
are based on asymptotic expansions of Williams’ type of the near-tip fields. The
main conclusions, which can be drawn on the basis of the preceding developements,
can be briefly stated as follows.

1.The first two terms in the asymptotic expansion of the components of the
Cauchy stress are identical to the ones of classical elasticity. In particular, the
Cauchy stress is singular with order of singularity r�

1
2.

2.This is in contrast to statements in other works, which rely upon boundary
conditions different from the ones adopted here.

3.There are, however, significant differences in comparison to classical
elasticity, in what concerns the components of macrostrain and
macrodisplacement.

4.There are also significant qualitative differences in comparison to micropolar
elasticity concerning the nonclassical stresses.

5.For instance, the leading terms of the double stress of Mode-II problems
include two different stress intensity factors. This is a remarkable feature of
the 3-PG-Model.

ur
uφ

� �
¼

ffiffiffiffiffiffi
r
2π

r
c1 ~KI

4μc2

5� 8νð Þ cos φ
2
� cos

3φ
2

� 7 � 8νð Þ sin φ

2
þ sin

3φ
2

0
B@

1
CA

þ
ffiffiffiffiffiffi
r
2π

r
c1 ~KII

4c2μ

� 5� 8νð Þ sin φ

2
þ 3 sin

3φ
2

� 7 � 8νð Þ cos φ
2
þ 3 cos

3φ
2

0
B@

1
CA

þr ~k
ε
!

I,1

1

0

 !
þ ~k

ε
!

I,2

cos 2φ

� sin 2φ

 !
þ ~k

ε
!

II

sin 2φ

cos 2φ

 !" #

þ… :

(259)

Table 1.
Analytical solutions of the fields.
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Appendix

In order to make the present work self-contained, we sketch briefly how to
ascertain the solutions (107)–(111) from Eqs. (95)–(102). We start with the system
of differential Eqs. (95)–(97), which can be proved to posses the solutions
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Σ 0ð Þ
rr ¼ �C cos pþ 1½ �φð Þ �D sin pþ 1½ �φð Þ

þ 3� p
4

A cos p� 1½ �φð Þ þ 3� p
4

B sin p� 1½ �φð Þ ,
(A1)

Σ 0ð Þ
φφ ¼ C cos pþ 1½ �φð Þ þD sin pþ 1½ �φð Þ

þ pþ 1
4

A cos p� 1½ �φð Þ þ pþ 1
4

B sin p� 1½ �φð Þ ,
(A2)

Σ 0ð Þ
rφ ¼ C sin pþ 1½ �φð Þ �D cos pþ 1½ �φð Þ

þ p� 1
4

A sin p� 1½ �φð Þ þ p� 1
4

B cos p� 1½ �φð Þ :
(A3)

Here, A,B,C and D are constants of integration. In order to determine these
constants, we incorporate the solutions in the boundary conditions (98). After
some manipulations, we gain the following two homogeneous systems for the
constants A, B, C, and D:

2 cos pþ 1½ �πð Þ p� 1
2

cos p� 1½ �πð Þ

2 sin pþ 1½ �πð Þ pþ 1
2

sin p� 1½ �πð Þ

0
BB@

1
CCA

D
B

� �
¼ 0

0

� �
, (A4)

2 sin pþ 1½ �πð Þ p� 1
2

sin p� 1½ �πð Þ

2 cos pþ 1½ �πð Þ pþ 1
2

cos p� 1½ �πð Þ

0
BB@

1
CCA

C
A

� �
¼ 0

0

� �
: (A5)

The conditions for the existence of nontrivial solutions are vanishing determi-
nants of the coefficient matrices of Eqs. (A4) and (A5). It turns out that both
conditions lead to the same equation

2 cos pπð Þ sin pπð Þ ¼ sin 2pπð Þ ¼ 0, (A6)

which has the solutions

p ¼ 0, � 1
2
, � 1, � 3

2
, … : (A7)

The smallest value of p compatible with the restriction (82) is p ¼ 1
2, as stated in

Eq. (107). For this case, the systems (A4) and (A5) imply

D ¼ � 3
8
B, C ¼ 1

8
A, (A8)

and the solutions (A1)–(A3) become

Σ 0ð Þ
rr ¼ 1

8
A 5 cos

φ

2
� cos

3φ
2

� �
þ 1
8
B �5 sin

φ

2
þ 3 sin

3φ
2

� �
, (A9)

Σ 0ð Þ
φφ ¼ 1

8
A 3 cos

φ

2
þ cos

3φ
2

� �
þ 1
8
B �3 sin

φ

2
� 3 sin

3φ
2

� �
, (A10)

Σ 0ð Þ
rφ ¼ 1

8
A sin

φ

2
þ sin

3φ
2

� �
þ 1
8
B cos

φ

2
þ 3 cos

3φ
2

� �
: (A11)
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These solutions, in turn, are equivalent to those of Eqs. (108)–(109). Moreover,
it can be shown that for p ¼ 1

2, the solutions of Eqs. (99)–(102) might be expressed
in the form (111).
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Chapter 4

Mode-I and Mode-II Crack Tip
Fields in Implicit Gradient
Elasticity Based on Laplacians of
Stress and Strain. Part III:
Numerical Simulations
Carsten Broese, Jan Frischmann and Charalampos Tsakmakis

Abstract

A two-dimensional formulation of the 3-PG Model of implicit gradient elasticity
has been developed in Part I. The predicted near-tip fields for Mode-I and Mode-II
crack problems have been derived in Part II. It has been found that both the classical
Cauchy stress and the nonclassical double stress are singular with the order of
singularity r�

1
2. In the present chapter, the two-dimensional model formulation is

implemented in a finite element code. For verification of the resulting finite ele-
ment model, a square section with a circular hole subjected to displacement-
controlled tension loading is considered and discussed. The main concerns of the
chapter are, on the one hand, to validate the analytical solutions of Part II. On the
other hand, the chapter aims to investigate the effect of nonclassical material
parameters on the stress intensity factors.

Keywords: implicit gradient elasticity, finite elements, square section with a hole,
mode-I and mode-II crack problems, stress intensity factors, angular functions

1. Introduction

Mode-I and Mode-II crack problems have been discussed analytically in Part II
for the 3-PG Model of implicit gradient elasticity. Solutions for the near-tip fields
have been obtained by employing the method of asymptotic expansion of Williams’
type (see Williams [1]). It has been proved that both the classical Cauchy stress and
the nonclassical double stress are singular with the order of singularity r�

1
2. Even

more, the first two terms in the asymptotic expansion of the Cauchy stress are
identical to those in the context of classical elasticity. The leading terms of the
asymptotic expansions of the classical and the nonclassical stresses are represented
by the so-called stress intensity factors.

The present chapter deals with numerical simulations that employ the 3-PG
Model to solve crack problems of Mode-I and Mode-II types. A finite element model
for plane strain is developed in the framework of a weak formulation based on the
principle of virtual work. To verify the finite element formulation and implemen-
tation, a representative example is considered: a square section with a circular hole
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subjected to tension loading. The predicted stress concentration factors are com-
pared with the corresponding stress concentration factors predicted by classical
elasticity. The main objectives are to confirm the assumptions and the analytical
results of Part II as well as to assess the effect of the nonclassical material parame-
ters of the 3-PG Model on the stress intensity factors for Mode-I and Mode-II crack
problems. It is perhaps of interest to remark that similar investigations for the case
of micropolar elastic continua are provided in Diegele et al. [2].

The scope of the chapter is organized as follows: Section 2 gives some details about
the implementation of the 3-PGModel in a finite element code. A square section with
a circular hole subjected to tension loading is discussed in Section 3. The numerical
simulations verify the finite element model and its ability to predict length scale
effects. Further, they provide a first comparison to classical elasticity by calculating
the corresponding stress intensity factors. Section 4 is devoted to an analysis of edge-
cracked specimens. The analysis comprises, among others, the effect of material
parameters on the stress intensity factors. Moreover, it indicates a very good agree-
ment between the numerical and the analytical solutions of the angular functions.
This confirms, a posteriori, the assumed symmetry conditions of the micro-
deformation. The chapter closes with some concluding remarks in Section 5.

Throughout the chapter, the same notation as introduced in Part I applies.

2. Finite element formulation

The following formulations refer to three dimensions and apply especially to
two-dimensional cases when conditions for plane strain are imposed. Let us con-
sider once more the equilibrium equations (see Section 3:1 “The 3-PG Model as
particular case of micro-strain elasticity” in Part I) to be solved,

∂iΣij ¼ 0, (1)

∂iμijk þ σjk ¼ 0, (2)

and specify the corresponding boundary conditions (see Section 4:7 “Boundary
conditions” of Part I) as follows:

ui ¼ u0i on ∂Vui , n jΣji ¼ P0
i on ∂VPi , (3)

Ψij ¼ Ψ0
ij on ∂VΨij , nkμkij ¼ T0

ij on ∂VTij , (4)

with

∂Vui ∪ ∂VPi ¼ ∂V, ∂Vui ∩ ∂VPi ¼ Ø, (5)

∂VΨij ∪ ∂VTij ¼ ∂V, ∂VΨij ∩ ∂VTij ¼ Ø: (6)

These equations reflect Dirichlet boundary conditions for the macro-
displacement and the micro-deformation and Neumann boundary conditions for
the Cauchy stress and the couple stress.

The first step toward a finite element formulation is to elaborate a weak form of
the above boundary value problem.

2.1 Weak form of the boundary value problem

Let the fields ui xð Þ and Ψij xð Þ as well as the so-called virtual fields δu j xð Þ and
δΨjk xð Þ belong to the following function spaces:
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ui ∈S≔ ui jui ∈H1 V
� �

, ui ¼ u0i on ∂Vui
� �

, (7)

Ψij ∈ T ≔ Ψij jΨij ∈H1 V
� �

, Ψij ¼ Ψ0
ij on ∂VΨij

n o
, (8)

δu j ∈V≔ δu j jδu j ∈H1 V
� �

, δu j ¼ 0 on ∂Vui
� �

, (9)

δΨjk ∈W≔ δΨjk jδΨjk ∈H1 V
� �

, δΨjk ¼ 0 on ∂VΨij
� �

: (10)

Now, multiply Eq. (1) by δu j and Eq. (2) by δΨjk and take the integrals over V,

ð

V
δu j ∂iΣijdv ¼ 0, (11)

ð

V
δΨjk ∂iμijk þ σjk

� �
dv ¼ 0: (12)

Next, add up these two equations, use partial integration, the divergence
theorem, and the boundary conditions (3) and (4) to receive

ð

V
∂iδu j
� �

Σijdv�
ð

V
δΨjk
� �

σjkdvþ
ð

V
∂iδΨjk
� �

μijkdv

�
ð

∂VP
δu j
� �

P0
j da�

ð

∂VT
δΨjk
� �

T0
jkda ¼ 0:

(13)

As usually, in favor of a short notation, we use the integral over ∂VP to indicate
the summation of single integrals over ∂VPi , which generally do not coincide. The
meaning of the integration over ∂VT is analogous. Eq. (13) is the weak form of the
boundary value problem and is the starting point of the finite element formulation.

2.2 Discretization

According to the finite element method (see, e.g., Hughes [3]), the domain V is
approximated by nel finite elements Ve, so that

V ≈Vh ≔ ⋃
nel

e¼1
Ve: (14)

The elements are connected to each other at selected points called nodal points,
or simply nodes, and the following notation holds.

Ku: Set of global node numbers with macro-displacement degree of freedom.
KΨ: Set of global node numbers with micro-deformation degree of freedom.
The exact solutions ui and Ψij are approximated by

ui xð Þ≈ uhi xð Þ≔
X
A∈Ku

Nu
A xð ÞuAi , (15)

Ψij xð Þ≈Ψh
ij xð Þ≔

X
A∈KΨ

NY
A xð ÞΨA

ij , (16)

where uAi and ΨA
ij are the unknown values of ui and Ψij at node A. The so-called

shape functions Nu
A and NΨ

A belong to finite-dimensional function spaces Sh and T h,
which approximate the function spaces S and T , respectively. Similarly, δu j and
δΨjk are approximated by
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δu j xð Þ≈ δuhj xð Þ≔
X
B∈Ku

Nu
B xð ÞδuBj , (17)

δΨjk xð Þ≈ δΨh
jk xð Þ≔

X
B∈KΨ

Nu
B xð ÞδΨB

jk, (18)

with δuBj and δΨB
jk being constants. The functions δuhj and δΨh

jk are elements of

finite-dimensional function spaces Vh and Wh, which approximate the function
spaces V and W, respectively.

Wemay use the above approximations (17) and (18) to rewrite Eq. (13) in the form

Xnel
e¼1

ð

Ve

∂iNu
B

� �
δuBj Σijdv�

ð

Ve

NΨ
B δΨ

B
jk σjkdvþ

ð

Ve

∂iNΨ
B

� �
δΨB

jkμijkdv
�

�
ð

∂VP
e

Nu
B δu

B
j P

0
j da�

ð

∂VT
e

NΨ
B δΨ

B
jk T

0
jkdag ¼ 0,

(19)

with the meaning of ∂VP
e and ∂VT

e being obvious.
We next employ the elasticity laws (see Section 3:1 “The 3-PG Model as

particular case of micro-strain elasticity” of Part I)

Σij ¼ c2
c1

ijmn εmn � c2 � c1
c1

ijmnΨmn, (20)

σjk ¼ c2 � c1
c1

jkmn εmn � jkmnΨmn
� �

, (21)

μijk ¼ c2 � c1ð Þ∂iΨmnmnjk, (22)

in order to replace the stressesΣij and σjk as well as the double stresses μijk in Eq. (19):

Xnel
e¼1

ð

Ve

∂iNu
B

� �
δuBj

c2
c1

ijmn ∂mun � c2 � c1
c1

ijmnΨmn

� �
dv

�

� c2 � c1
c1

ð

Ve

NΨ
B δΨ

B
jk jkmn ∂mun � jkmnΨmn
� �

dv

þ c2 � c1ð Þ
ð

Ve

∂iNΨ
B

� �
δΨB

jk ∂iΨmnmnjkdv

�
ð

∂VP
e

Nu
B δu

B
j P

0
j da�

ð

∂VT
e

NΨ
B δΨ

B
jk T

0
jkdag ¼ 0:

(23)

Finally, we use the approximations (15) and (16), to find

Xnel
e¼1

ð

Ve

∂iNu
B

� �
δuBj

c2
c1

ijmn ∂mNu
A

� �
uAn � c2 � c1

c1
ijmnNY

AΨ
A
mn

� �
dv

�

þ c2 � c1
c1

ð

Ve

NΨ
B δΨ

B
jk jkmn ∂mNu

A

� �
uAn � jkmnNΨ

AΨ
A
mn

� �
dv

þ c2 � c1ð Þ
ð

Ve

∂iNΨ
B

� �
δΨB

jk ∂iNΨ
A

� �
ΨA

mnmnjkdv

�
ð

∂VP
e

Nu
B δu

B
j P

0
j da�

ð

∂VT
e

NΨ
B δΨ

B
jk T

0
jkda

)
¼ 0,

(24)
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or equivalently,

Xnel
e¼1

δuBj
c2
c1

ð

Ve

∂iNu
B

� �
ijmn ∂mNu

A

� �
dv

� �
uAn

�

�δuBj
c2 � c1
c1

ð

Ve

∂iNu
B

� �
ijmnNΨ

A dv
� �

ΨA
mn

�δΨB
jk

c2 � c1
c1

ð

Ve

NΨ
B jkmn ∂mNu

A

� �
dv

� �
uAn

þδΨB
jk

c2 � c1
c1

ð

Ve

NΨ
B jkmnNΨ

A dv
� �

ΨA
mn

þδΨB
jk c2 � c1ð Þ

ð

Ve

∂iNΨ
B

� �
∂iNΨ

A

� �
jkmndv

� �
ΨA

mn

�δuBj

ð

∂VP
e

Nu
B P

0
j da

" #
� δΨB

jk

ð

∂VT
e

NΨ
B T

0
jkda

" #)
¼ 0:

(25)

The form of this equation suggests to define the element stiffness matrices:

Kuu, eð Þ
jBnA ≔

c2
c1

ð

Ve

∂iNu
B

� �
ijmn ∂mNu

A

� �
dv, (26)

KuΨ, eð Þ
jBmnA ≔ � c2 � c1

c1

ð

Ve

∂iNu
B

� �
ijmnNΨ

A dv, (27)

KΨu, eð Þ
jkBnA ≔ � c2 � c1

c1

ð

Ve

NΨ
B jkmn ∂mNu

A

� �
dv, (28)

KΨΨ, eð Þ
jkBmnA ≔

c2 � c1
c1

ð

Ve

NΨ
B jkmnNΨ

A þ c1 ∂iNΨ
B

� �
∂iNΨ

A

� �
jkmn

� �
dv, (29)

and the element force vectors:

Fu, eð Þ
jB ≔

ð

VP
e

Nu
BP

0
j da, (30)

FΨ, eð Þ
jkB ≔

ð

VT
e

NΨ
B T

0
jkda, (31)

and to recast Eq. (25) as

Xnel
e¼1

δuBj Kuu, eð Þ
jBnA uAn þ KuΨ, eð Þ

jBmnAΨ
A
mn � Fu, eð Þ

jB

h in

þδΨB
jk KΨu, eð Þ

jkBnA uAn þ KΨΨ, eð Þ
jkBmnAΨ

A
mn � FΨ, eð Þ

jkB

h io
¼ 0:

(32)

As δuBj and δΨB
jk may be chosen arbitrary, we obtain the system of equations:

Xnel
e¼1

Kuu, eð Þ
jBnA uAn þ KuΨ, eð Þ

jBmnAΨ
A
mn � Fu, eð Þ

jb

h i
¼ 0, (33)

Xnel
e¼1

KΨu, eð Þ
jkBnA uAn þ KΨΨ, eð Þ

jkBmnAΨ
A
mn � FΨ, eð Þ

jkb

h i
¼ 0: (34)
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This means, that the solution of the boundary value problems (1)–(6) is reduced
to the solution of the systems (33) and (34).

The proceeding approximation of the weak form, constrained to plane strain
states, has been implemented in the finite element code FEAP. Isoparametric
elements are employed, that is, the space coordinates are represented by using the
shape functions, Nu

A,

xi ≈ xhi ≔
X
A∈Ku

Nu
Ax

A
i , (35)

where xAi are constants.

3. Square section with a circular hole

The main objective of this section is to validate the implemented finite element
code. To this end, we consider the plane strain problem shown in Figure 1a, where
the square section with a circular hole, located at the center of the section, is
stretched in the y-direction. The length of the section is b ¼ 5mm, while the radius
of the hole is r ¼ 0:25mm. With respect to the Cartesian coordinate system x, yf g,
the boundaries x ¼ � b

2 are assumed to be free of classical and nonclassical tractions.
At the boundary y ¼ � b

2, the macro-displacement component uy, the component Px

of the classical traction, and the nonclassical traction components Tij are assumed to
vanish. At the boundary y ¼ b

2, the macro-displacement in the y-direction is given by
uy ¼ 0:1 mm, while Px ¼ 0 and Tij ¼ 0 are imposed. The whole circular hole is
assumed to be free of classical and nonclassical tractions. For a small circular hole, a
nearly uniform stress component

Σ0 ≔ Σyy
� �

y¼b
2

(36)

will be required to realize the given boundary conditions.
The most simple case in classical elasticity, analogous to the boundary value

problem above, is to consider the square section in the context of a plane stress
problem subjected to the traction boundary condition Σyy

� �
y¼b

2
¼ Σ0. Attention is

focused on the distribution of Σyy along the section A-A (see Figure 1a), as a
function of the local coordinate

a≔ x� r, (37)

with x≥ r. A so-called stress concentration factor k is defined by

k≔
Σ ∗
yy

Σ0
, Σ ∗

yy ≔Σyy a ¼ 0, y ¼ 0ð Þ, (38)

and turns out to be k ¼ 3 (see, e.g., Gould [4], p. 124).
Now consider the square section in Figure 1a in the context of a plane strain

problem with the boundary conditions stated in the first paragraph within classical
elasticity. The stress distribution along the sectionA-A has been determined by
employing the standard elastic element of FEAP using the classical material parameters

E ¼ 100 GPa, ν ¼ 0, 3: (39)
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As depicted schematically in Figure 1b, a radial mesh of 16 stripes of quadratic
elements with reduced integration, that is, elements with 8 nodes, is used. Every
stripe consists of 180 elements and the elements are chosen to decrease in size the
closer to the circular hole the elements are placed. In the context of classical elas-
ticity, a mesh consisting of 720 such stripes is used, whereas the mesh for the
simulations of the 3-PG Model only needs 72 such stripes of elements.

Figure 2 illustrates the distribution of the dimensionless stress Σyy

Σ0
along the

section A-A. The value of Σyy

Σ0
at a ¼ 0 represents the stress concentration factor k

and turns out to be k ¼ 3, 14 for classical elasticity.
We consider next corresponding distributions predicted by the 3-PG Model. To

this end, we employ the finite element model developed in the last section. The
classical material parameters are given by Eq. (39). For the purposes of the present
chapter, we find it convenient to use the nonclassical parameters c1 and

c3 ≔
c2 � c1
c1

: (40)

Note that since c2 > c1 >0 (see Section 3:1 “The 3-PG Model as particular case of
micro-strain elasticity” of Part I), the constrain c3 >0 applies. It becomes apparent,
from the elasticity laws (20)–(22), that for c3 ! 0, the 3-PG Model will approach to
classical elasticity. Hence, we expect the distributions of the dimensionless stress Σyy

Σ0

along the section A-A to be close to the classical one whenever c3 is sufficiently
small. Indeed, Figure 2 confirms this expectation: It can be seen, that for suffi-
ciently large values of a, the two graphs almost coincide. Another way to illustrate
this issue is to consider the effect of the nonclassical material parameter c3 on the
values of the stress concentration factor k. We expect that for c1 ¼ const: and c3 !
0, the values of k will approach to the classical value k ¼ 3, 14. This is exactly what
we can observe in Figure 3. Alternatively, we can consider the effect of the material
parameter c1 on the values of the stress concentration factor k. For the assumed
geometry of the specimen, the imposed boundary conditions and for a fixed value
c3 ¼ 1, the effect of c1 on k is illustrated in Figure 4 by the graph referred to as

Figure 1.
Plane strain problem of a square section with a circular hole subjected to displacement-controlled tension
loading. (a) Geometry and loading conditions. (b) Mesh (schematically).
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specimen 1. A convenient way to illustrate the effect of c1 is to consider further
boundary value problems. Thus, we consider in addition three further problems,
denoted as specimen 4, 20, and 200, which arise by multiplying the given geometry
of the specimen and the imposed boundary conditions with the factors n ¼ 4, 20
and 200, respectively. The corresponding graphs of k as a function of c1 are
displayed in Figure 4 and are referred to as specimens 4, 20, and 200, respectively.
Keeping in mind, that

ffiffiffiffi
c1

p
is an internal material length, we rescale the abscissa c1

by considering the graphs of k as a function of c1
n2. We expect, that all distributions

should coincide, and in fact this is shown in Figure 5.

Figure 2.
Distribution of the dimensionless stress Σyy=Σ0 along the section A-A with E ¼ 100GPa, ν ¼ 0, 3,
c1 ¼ 0, 2 mm2, and c3 ¼ 10.

Figure 3.
Distribution of the stress concentration factor k predicted by the 3-PG model.
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Altogether, the calculated responses reflect the expected results, which in turn
provides a validation of the developed and implemented finite element approxima-
tion of the 3-PG Model.

4. Finite element analysis of crack problems

4.1 Edge-cracked specimen

The remaining analysis is referred to the edge-cracked specimen shown in
Figure 6a. The assumed width and length of the specimen are, respectively,

Figure 4.
Effect of the material parameter c1 on the stress concentration factor k (c3 ¼ 1).

Figure 5.
Distribution of the stress concentration factor k as a function of c1=n2 (c3 ¼ 1).
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b ¼ 11 mm and 2h ¼ 20 mm, while the crack length is chosen to be a ¼ 1 mm. The
origin of the Cartesian and the cylindrical coordinate systems, to which we refer, is
located at the crack tip.

The specimen is discretized by two meshes (see Figure 6b), a rectangular mesh
for the main part of the specimen, consisting of 320 quadratic eight-node elements
(with reduced integration) and a radial mesh around the crack tip. The radial mesh,
schematically shown in Figure 6c, consists of 16 stripes of quadratic elements with
reduced integration, that is, elements with eight nodes, are used. Every strip con-
sists of 45 elements, which decrease in size the closer to the crack tip they are
placed. The elements, which contain the crack tip itself, are singular and are the so-
called quarter point elements. That means, that one edge of each quadratic element
degenerates into a point and two intermediate nodes of two adjacent edges are
repositioned. To be more specific, they are moved to a position only a quarter of the
edge length away from the crack tip, as indicated in Figure 6d. Due to this
repositioning, the corresponding shape functions differ from those of regular

Figure 6.
Edge-cracked specimen with finite width b, length 2h and crack length a. (a) Geometry. (b) Mesh. (c) Radial
mesh around crack tip. (d) Singular elements around crack tip.
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8–node elements. Specifically, the shape functions of quarter point elements consist
of linear shape functions extended by a term proportional to the square root of the
corresponding component of the position vector (see Henshell and Shaw [5] or
Barsoum [6]).

For all calculations in the remainder of the chapter, the values of the classical
material parameters E and ν are given by Eq. (39) and the following Dirichlet
boundary conditions are imposed:

ur½ �r¼0 ¼ uφ
� �

r¼0 ¼ 0, uφ
� �

r¼10 mm,φ¼0 ¼ 0, (41)

which excludes the possibility of rigid body motions.
The crack faces are subjected to the following boundary conditions for the

classical stress: Mode-I near-tip fields are produced by imposing an internal pres-
sure p ¼ 100 MPa to act, while Mode-II near-tip fields are enforced by subjecting
the crack faces to a shear stress loading of 100 MPa. All nonclassical traction
components are supposed to vanish for both Mode-I and Mode-II crack types.

4.2 Stress intensity factors

Finite element simulations of Mode-I and Mode-II crack problems allow to
verify, numerically, the order of singularity and the angular functions as well as to
determinate the stress intensity factors. First, we verify the order of singularity and
show how to determine stress intensity factors numerically. Motivated by the ana-
lytical solutions in Section 5 “Discussion of the asymptotic solutions” of Part II,
assume that the stress Σ and the double stress μ in the vicinity of the crack tip are
given by

Σαβ ¼ 2π rð Þp�1 ~KI f
I
αβ φð Þ þ ~KII f

II
αβ φð Þ

h i
, (42)

μαβγ ¼ 2π rð Þp�1 ~LI gIαβγ φð Þ þ ~LII,1 gII,1αβγ φð Þ þ ~LII,2 gII,2αβγ φð Þ
h i

: (43)

Then,

Σφφ

� �
φ¼0 ¼ 2π rð Þp�1 ~KI, (44)

Σrφ
� �

φ¼0 ¼ 2π rð Þp�1 ~KII, (45)

μφrφ
� �

φ¼0 ¼ 2π rð Þp�1 ~LI, (46)

1
2

μφrr þ μφφφ
� �

φ¼0 ¼ 2π rð Þp�1 ~LII,1, (47)

1
2

μφrr � μφφφ
� �

φ¼0 ¼ 2π rð Þp�1 ~LII,2, (48)

and hence

log Σφφ

� �
φ¼0 ¼ p� 1ð Þ log 2π rð Þ þ log ~KI, (49)

log Σrφ
� �

φ¼0 ¼ p� 1ð Þ log 2π rð Þ þ log ~KII, (50)

log μφrφ
� �

φ¼0 ¼ p� 1ð Þ log 2π rð Þ þ log ~LI, (51)
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log
1
2

μφrr þ μφφφ
� �

φ¼0

� �
¼ p� 1ð Þ log 2π rð Þ þ log ~LII,1, (52)

log
1
2

μφrr � μφφφ
� �

φ¼0

� �
¼ p� 1ð Þ log 2π rð Þ þ log ~LII,2: (53)

These equations indicate, respectively, a linear respone with slope p� 1ð Þ. This
means that, as in the case of classical elastic fracture mechanics, one can fit the
exponent p on the basis of values of stress components calculated by the finite
element method at the nodes ahead of the crack tip (see, e.g., Figure 7). Computed
responses with the finite element model have confirmed the value p ¼ 1

2 with great
accuracy. Therefore, the value p ¼ 1

2 will be fixed, to avoid errors owing to inaccu-
rate numerical determination of p when discussing predicted responses. All stress
intensity factors are determined from Eqs. (49)–(53) for the fixed value p ¼ 1

2 by
applying the least square method. It can be recognized from Figure 7, that the linear
response of the stress applies for a radius r∈ 10�7, 10�1� �

. The numerical determi-
nation of the angular functions below is referred to a fixed radius r ¼ 5 � 10�6mm.
The verification of the angular functions and the effect of material parameters on
the stress intensity factor is discussed seperately for Mode-I and Mode-II crack
problems.

4.3 Results for mode-I

Figures 8–11 display plots of the angular functions f Iαβ, h
I
αβ and gIαβγ for both the

analytical and the finite element solutions. The plots of the latter are constructed by

dividing the values of Σαβ, Ψαβ � Ψαβ, and μαβγ at a radius r ¼ 5 � 10�6mm by ~KIffiffiffiffiffiffi
2π r

p ,
r
2π

~LI
c2�c1ð Þ2μ � r

2π
~LI

c1 c3 2μ
and ~LIffiffiffiffiffiffi

2π r
p , respectively. The stress intensity factors ~KI and ~LI

have been determined by least square fitting as described in the last section. In the
finite element computations, the values c1 ¼ 10�4mm2 and c3 ¼ 1 for the
nonclassical material parameters are chosen. The values of Ψij are determined to be

Figure 7.
Least square fitting of the distribution of Σφφ

� �
φ¼0 computed by the finite element model in the vicinity of the

crack tip.
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Ψ11 ¼ 0, 001374, Ψ22 ¼ 0, 00359, and Ψ12 ¼ 0. The general observation is that there
is good agreement between the analytical and the finite element predictions. The

nonvanishing values of Ψij � ΨI
ij verify the existence of this constant terms. The fact

that the analytical and the numerical results of the angular functions hIαβ agree very
well verifies the assumed symmetry conditions for Ψαβ (see Section 4:8 “Symmetry
conditions” in Part I).

It is worth remarking that even though the asymptotic solutions of Σαβ have the
same form as the ones of classical elasticity, the corresponding values the stress

Figure 8.
Graphs of the angular functions f Iαβ φð Þ of mode-I for φ∈ �180∘, 180∘½ �.

Figure 9.
Graphs of the angular functions hIαβ φð Þ of mode-I for φ∈ �180∘, 180∘½ �.
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intensity factors ~KI and ~KII of the 3-PG Model will be, in general, different from the
stress intensity factors KI and KII of classical elasticity. This difference results from
the fact that the 3-PG Model and the classical elasticity imply, in general, different
distributions of the components Σαβ for identical classical boundary conditions.

Recall also, that the 3-PG Model includes two material parameters more than the
classical elasticity, namely, c1 and c3. The effect of these nonclassical material
parameters is illustrated in Figures 12 and 13. These figures reveal that for c3 ¼
const: and very large values of c1 or for c1 ¼ const: and very small values of c3, the
values of ~KI converge to the values of KI. In other words, the responses of the 3-PG
Model approach the ones according to classical elasticity.

The effect of c1 and c3 on the nonclassical stress intensity factor ~LI is illustrated
in Figures 14 and 15. The principal observation is that for smaller values of c3, the
value of ~LI gets smaller as well. On the other hand, if c3 ¼ const:, then the values of
~LI increase with increasing values of c1.

Figure 10.
Graphs of the angular functions gIrαβ φð Þ of mode-I for φ∈ �180∘, 180∘½ �.

Figure 11.
Graphs of the angular functions gIφαβ φð Þ of mode-I for φ∈ �180∘, 180∘½ �.
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Figure 12.
Effect of the material parameter c3 on the stress intensity factor ~KI of mode-I.

Figure 13.
Effect of the material parameter c1 on the stress intensity factor ~KI of mode-I.

Figure 14.
Effect of the material parameter c3 on the stress intensity factor ~LI of mode-I.

81

Mode-I and Mode-II Crack Tip Fields in Implicit Gradient Elasticity Based on Laplacians…
DOI: http://dx.doi.org/10.5772/intechopen.93619



4.4 Results for mode-II

The graphs of the angular functions f IIαβ for both the analytical and the finite
element solutions are shown in Figure 16. It can be seen that the graphs fit very
well.

Since there are two stress intensity factors of Mode-II, ~LII,1, and ~LII,2, we find it
convenient, in the vicinity of the crack tip, to consider the angular distributions of
Ψαβ � Ψαβ and μαβγ themselves instead of the corresponding distributions of the

angular functions hII,1αβ , h
II,2
αβ , g

II,1
αβγ, and gII,2αβγ . For r ¼ const:, Figures 17–19 illustrate

angular distributions of Ψαβ and μαβγ for both the analytical and the numerical
solutions. Once more, we can recognize, that the analytical and the numerical
results agree with great accuracy, which also verifies the assumed symmetry

Figure 15.
Effect of the material parameter c1 on the stress intensity factor ~LI of mode-I.

Figure 16.
Graphs of the angular functions f IIαβ φð Þ of mode-II for φ∈ �180∘, 180∘½ �.
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conditions of Mode-II for Ψαβ (see Section 4:8 “Symmetry conditions” in Part I).
Further, the values of Ψij have been determined to be Ψ11 ¼ 0, Ψ22 ¼ 0, and Ψ12 ¼
0, 00391 and this, in turn, verifies the existence of the constant terms Ψij � ΨII

ij .

The effect of c1 and c3 on ~KII is illustrated in Figures 20 and 21 and is similar to
the effect of c1 and c3 on ~KI (cf. Figures 12 and 13).

The effect of c1 and c3 on the nonclassical stress intensity factors ~LII,1 and ~LII,2 is
illustrated in Figures 22–25. Again, this effect is quite similar to the effect of c1 and
c3 on ~LI, but the stress intensity factors ~LII,1 and ~LII,2 both are negative in contrast to
the positive stress intensity factor ~LI.

Figure 17.
Graphs of the angular distributions of Ψαβ of mode-II for a sufficiently small radius r ¼ const: (in vicinity of
the crack tip).

Figure 18.
Graphs of the angular distributions of μrαβ of mode-II for a sufficiently small radius r ¼ const: (in vicinity of
the crack tip).
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With regard to Mode-II crack problems, it is of interest to recall that the general
solutions of Ψ 0ð Þ

αβ depend on three constants of integration, that is, B 0ð Þ, E 0ð Þ, and F 0ð Þ.
By virtue of the boundary conditions on the crack faces, we obtained the relation
�F 0ð Þ ¼ E 0ð Þ, which is independent of the crack geometry, that is, the crack length.
We do not know further conditions to relate B 0ð Þ and E 0ð Þ with each other. However,

Figure 19.
Graphs of the angular distributions of μφαβ of mode-II for a sufficiently small radius r ¼ const: (in vicinity of
the crack tip).

Figure 20.
Effect of the material parameter c3 on the stress intensity factor ~KII of mode-II.
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keeping in mind that, in general, stress intensity factors depend on the crack geom-
etry and the applied loading conditions, one may ask if there exists a relation
between B 0ð Þ and E 0ð Þ, or equivalently between ~LII,1 and ~LII,2, which is independent
of the crack length. To clarify this question, we consider the effect of the crack

length a and the applied shear stress Σ ∗
rφ on the ratio

~LII,1
~LII,2

. Evidently, this ratio will

depend on the material parameters c1 and c3. The effect of a and Σ ∗
rφ is illustrated in

Figure 26a–d. In all figures, the width b and the length 2h of the specimen are the

Figure 21.
Effect of the material parameter c1 on the stress intensity factor ~KII of mode-II.

Figure 22.
Effect of the material parameter c3 on the stress intensity factor ~LII,1 of mode-II.
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Figure 23.
Effect of the material parameter c1 on the stress intensity factor ~LII,1 of mode-II.

Figure 24.
Effect of the material parameter c3 on the stress intensity factor ~LII,2 of mode-II.

Figure 25.
Effect of the material parameter c1 on the stress intensity factor ~LII,2 of mode-II.
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same and equal to the values given in Section 4.1. However, a and Σ ∗
rφ are different

for each figure. It can be recognized from Figure 26a and b that the ratio
~LII,1
~LII,2

does

not depend on the applied loading, Σ ∗
rφ, which might be expected, for the problem is

linear. But the ratio
~LII,1
~LII,2

depends on the crack length, a, as can be seen by comparing

Figure 26a and c or Figure 26b and d. This result may be seen as a justification of
considering ~LII,1 and ~LII,2 as different stress intensity factors.

Figure 26.
Effect of the crack length a and the applied shear stress Σ ∗

rφ on the ratio
~LII,2
~LII,1

for mode-II crack problems.
(a) a ¼ 1 mm, Σ ∗

rφ ¼ 100 GPa. (b) a ¼ 1 mm, Σ ∗
rφ ¼ 200 GPa. (c) a ¼ 2 mm, Σ ∗

rφ ¼ 100 GPa. (d) a ¼
2 mm, Σ ∗

rφ ¼ 200 GPa.
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5. Concluding remarks

A finite element model for the 3-PGModel has been developed and verified with
reference to the expected responses of a square section with a hole subjected to
displacement-controlled tension loading. Then, the finite element model has been
employed to discuss Mode-I and Mode-II crack problems. From these investiga-
tions, one can draw the following conclusions.

1.The finite element and the analytical solutions fit with good accuracy.

2. In particular, the finite element simulations confirm the order of singularity,
r�

1
2, and the assumed symmetry conditions for the micro-deformation very

well. Further, they confirm the existence of a constant term in the asymptotic
expansion of the micro-deformation.

3.By using numerical simulations with the developed finite element model, the
effect of the nonclassical material parameters on the classical and the
nonclassical stress intensity factors has been investigated. Especially, limiting
cases of material parameters leading to responses of classical elasticity have
been analyzed.

4.For Mode-II loading conditions, two independent stress intensity factors have
been assumed to be present in the near-tip fields of the double stress. The
numerical investigation seem to verify this remarkable feature.
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Chapter 5

Synthesis of WO3 Nanostructures 
and Their Nanocomposites with 
Graphene Derivatives via Novel 
Chemical Approach
Rhizlane Hatel and Mimouna Baitoul

Abstract

Trioxide Tungsten (WO3), an n-type semiconductor that exhibits a wide band 
gap of 2.5 to 3.6 eV, has attracted special attention from the scientific community. 
This attraction is due to its manifold properties, which not only follow the develop-
ment of technologies, but accelerate it. There are several methods to synthesize 
WO3 nanostructures with various morphologies. In the present study, for the 
first time, a novel chemical method was developed for the preparation of WO3 
nanostructures by using tungsten carbide (WC) as precursor. This novel approach 
has many advantages such as high yields, simple methodology and easy work up. 
Moreover, graphene oxide coated with WO3 nanostructured is prepared via in-situ 
and ex-situ chemical approaches followed by subsequent thermal treatment at 
500°C. The obtained samples were characterized by different techniques to con-
firm the transformation of WC to WO3 nanostructures and the formation of their 
nanocomposites with graphene derivatives.

Keywords: trioxide tungsten, tungsten carbide, nanocomposites, graphene oxide

1. Introduction

Nanocomposites based on nanocarbons and nanostructured metal oxides 
(NMO) offer the possibility of improving the performance of several devices and 
developing multifunctional systems by combining the properties of each individual 
phase. The importance of choosing an appropriate route for the preparation of 
these nanocomposites has led scientists to take an interest in the development of 
synthetic methods that are versatile, generalized and easily adaptable to prepare 
various nanocomposites [1].

Among various NMO, nano-sized (WO3) structures are of great interest due to 
their stability in aqueous solution, good crystal quality, remarkable charge trans-
port and unique optical properties [2]. With these manifold properties, they have 
already been widely used in photocatalysts, photonics and electronics devices [3]. 
For most of these applications, many physical and chemical approaches have been 
developed to synthesize WO3 nanostructures using common precursors such as 
Na2WO4 and WCl6 [4]. JAMALI et al. recently have reported sol-gel method and its 
effect on the structural and morphological properties of WO3 nanostructures [5]. 
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As well as, Tehrani et al. have prepared 1D and 2 D WO3 by hydrothermal treatment 
[6]. However, to the best of our knowledge this is the first study about the synthesis 
of WO3 nanostructures using tungsten carbide WC as precursor through chemical 
oxidation approach.

The combination of these nanostructures with nanocarbons in general and gra-
phene derivatives in particular have attracted considerable interest in the scientific 
community. Graphene oxide (GO) is a single or few layers of oxidized graphite, 
just like graphene considered as a single layer of graphite [7]. It has been defined 
as an important precursor of graphene and the basic material for the development 
of graphene-based nanocomposites [8]. Furthermore, the synthesis of these kinds 
of nanocomposites having a well-defined structure represents a problem with 
the methods requiring particular conditions. The key challenge, to improve their 
performance and broaden their field of application, is to develop simpler synthetic 
methods in order to increase the control during the formation and the anchoring 
of nanostructures on the surface of nanocarbons, while maintaining the structural 
integrity of the composite at the nanoscale.

To date, nanocomposites with different morphologies can be prepared by 
various methods that can be classified into two categories: ex situ hybridization 
and in situ crystallization [9]. Ex-situ hybridization involves mixing the pre-
synthesized nanocarbons and NMO [10]. Prior to mixing, surface modification of 
nanostructures and/or nanocarbons is often required, so that they can bind either 
through covalent or non-covalent interactions including Van der Waals interactions, 
hydrogen bonds or electrostatic interactions. In addition, the type of functionaliza-
tion and the strength of the interaction determine the distribution of metal oxide 
nanoparticles on the surface of the nanocarbons. Although ex-situ hybridization is 
able to pre-select nanostructures with desired functionality, it sometimes suffers 
from the low density and non-uniform distribution of nanostructures on nano-
carbon surfaces. However, in-situ crystallization can give rise to uniform surface 
distribution of nanoparticles by controlling nucleation sites on nanocarbons via 
surface functionalization. As a result, a continuous film of nanoparticles on sur-
faces can be achieved [11].

In this work, we developed for the first time, a new and simple method to syn-
thesize the nanostructures of WO3 and their nanocomposites by in situ and ex situ 
chemical approaches. The synthesis process is based on simple chemical oxidation 
and subsequent thermal annealing. Moreover, in order to validate the feasibility of 
our approaches, we examine our samples obtained by different techniques such as 
X-ray diffraction (XRD) to analyze structural properties, scanning electron micros-
copy (SEM) to determine morphology, shape and size of nanostructures, as well 
as Fourier transform infrared (FTIR) to elucidate the vibrational behavior and the 
type of interaction between the different constituents.

2. WO3 nano-sized structures

2.1 Synthesis method

The synthesis of WO3 nanostructures involved two steps. In the first step, 1 g 
of WC and 10 ml of H2SO4 were mixed and stirred in an ice bath. This mixture 
was continuously stirred while 3 g of KMnO4 was added slowly over 1 h, the 
temperature was kept below 20°C. After adding KMnO4, the mixture was stirred 
for a further 2 h, 15 ml H2O2 (30 wt% aqueous solution) was slowly added and then 
the resulting solution turned into homogenous yellow color and was left to stir 
for another 2 h. The product was centrifuged and dried in the oven at 60°C. In the 
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second step, the obtained yellow powder corresponding to tungsten oxide hydrate 
WO3.H2O was dispersed in a mixture of water and ethanol (1, 5), dropped onto a 
glass substrate and heated in a furnace up to 500°C at the heating rate of 10°cm-1. 
The sample was kept inside the furnace at the mentioned temperature for 5 h [12].

2.2 Characterization

Structural information of different tungsten-based materials are shown in 
Figure 1. The WC diffraction spectrum shows three major intense peaks located at 
2θ = 31.57°, 35.72° and 48.40° which correspond well to the crystallographic planes 
(001, 100, 101) of WC, respectively. The positions of the peaks are in good agree-
ment with the JCPDS reference (N: 65–4539), which confirm the hexagonal struc-
ture of WC, of space group P6m2, with the parameters a = 2.906 Å and c = 2.838 Å. 
According to a study carried out on the oxidation of WC to WO3 via a dry synthetic 
route in air and at high temperature [13], the authors found that tungsten carbide 
oxidizes more quickly than tungsten metal. However, the oxidation WC chemical 
with precise size control has never been reported to our knowledge.

After oxidation, we can identify the crystalline nature of the prepared sample 
by analyzing its X-ray diffraction (XRD) spectrum. All the diffraction peaks are 
well indexed to tungsten oxide monohydrate WO3.H2O with an orthorhombic phase 
(JCPDS N: 43–0679, of space group: Pmnb (62) having the lattice parameters: 
a = 5.238 Å, b = 10.704 Å and c = 5.12 Å). The peaks are intense and narrow, indicat-
ing better crystallinity. Additionally, no peak of impurities and/or other hydrated 
phase such as WO3.2H2O and WO3.0.33H2O was observed in the spectrum [14, 15]. 
Indeed, this material has been widely used as a precursor for the synthesis of the 
monoclinic and hexagonal phases of WO3, which are different in their geometry and 
their stability [16]. The hexagonal phase is metastable, while the monoclinic phase 
is the most stable than all other structures of WO3 due to its pseudo-cubic structure 
made up of a three-dimensional array of WO6 octahedra [17].

Figure 1. 
X-ray diffraction patterns of WC, WO3.H2O, WO3 nanostructures.
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During the heat treatment at 500°C, WO3.H2O as synthesized gradually dehy-
drates until it turns completely into WO3. Figure 1 blue spectrum shows a series of 
diffraction peaks at 2θ = 19.26°, 23.07°, 23.45°, 24.17°, 28.22°, 29.13°, 32.86°, 44.3° 
and 49.6° which correspond to the crystallographic planes (011, 002, 020, 200, 112, 
102, 022, 320, 232). The positions of these peaks are consistent with those expected 
for the WO3 monoclinic phase reported in the JCPDS N: 43–1035 file, of space 
group: P21/n (14) and lattice parameters: a = 7.297 Å, b = 7.539 Å and c = 7.688 Å.

The crystallite size was calculated, using the Scherrer equation, for all tungsten-
based components, as shown in Table 1. The results obtained demonstrate the 
growth in the size of the crystallites of WO3 as a function of the annealing tempera-
ture. Gui et al. synthesized WO3 with monoclinic phase using the hydrothermal 
route and WCl6 as a precursor, they estimated a particle size of the order of 22 nm 
[18]. Fu et al. reported a value, similar to our result, of around 42 nm hydrother-
mally treated at 180°C for 24 h, using Na2WO4.2H2O as a precursor [19].

Material Plan 2θ Intensity Size (nm) Average size (nm)

WC (001) 31.4° 0.56 39.32 36

(100) 35.4° 0.98 39.28

(101) 48.2° 0.57 28.4

WO3.H2O (020) 16.4° 0.66 17.28 21

(111) 25.4° 0.98 31.78

(040) 33.2° 0.11 18.07

(200) 34.1° 0.14 36.18

(002) 34.9° 0.19 17.65

WO3

(500°C)
(011) 13.31° 0.27 50.2 57

(002) 23° 0.042 62

(020) 23.4° 0.038 67

(200) 24.1° 0.98 56.18

(112) 28.19° 0.12 50.65

Table 1. 
Crystallites size of tungsten-based nanomaterials.

Figure 2. 
SEM images of WO3 nanostructures.
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The morphology observation is performed to investigate the surface and the 
shape of the nanostructured WO3. As seen from the SEM image (Figure 2A). The 
morphology obtained after a heat treatment at 500°C is effectively homogeneous 
and composed of what are called nanorods, with the presence of a few hollow 
nanospheres. In Figure 2B, WO3 nanorods are clearly observed. Choi et al. demon-
strated different morphologies of WO3 such as nanowires, nanorods and nanosheets 
by varying the volume of water (%) and ethanol [20]. Marques et al. have prepared 
different morphologies including nanoplates and nanoflowers by varying the initial 
precursor and the pH of the medium [21].

Figure 3. 
FT-IR spectra of WO3.H2O, WO3 nanostuctures.

Material Frequency (cm-1) Attribuation

WO3.H2O 602 γ (W-O-W)

650 δ (O-W-O)

883 ν (W-O-W)

985 ν (W=O)

1139 ν (W-OH)

3440 ν (-OH)

WO3

(500 °C)
620 γ (W-O-W)

728 δ (O-W-O)

805 ν (O-W-O)

882 ν (W-O-W)

932 ν (W=O)

Table 2. 
Tungsten oxide infrared bands and their attributions.
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In order to determine the exact composition of the sample, and to gain more 
information on its crystal structure, FTIR measurement was implemented.

In the range between 500 and 1000 cm−1 (Figure 3), multi-bands are observed, 
attributed to tungsten-oxygen elongation vibrations including elongation vibra-
tions (ν), in-plane bending vibrations (δ) and out of plane (γ), as shown in Table 2. 
These characteristic bands prove the successful synthesis of WO3 monoclinic phase.

3. GO/WO3 nanocomposites

3.1 GO/WO3 prepared in-situ

3.1.1 Synthesis method

For the in situ method, the nanocomposite was prepared using the same process 
as that used for WO3; but with the presence of graphite powder. As shown in  
Figure 4, after the interaction of WC with KMnO4 and H2SO4 solution for 1 h in an 
ice bath, a small amount of graphite powder was added and the mixture kept under 
mechanic agitation for 2 h. Then, H2O2 was added and the resulting solution turned 
into green-brown color. The homogeneous solutions obtained were slowly dropped 
onto glass substrate, and heated at 500°C for 5 h.

3.1.2 Characterization

The obtained XRD patterns are shown in Figure 5. In the case of the nano-
composite prepared in situ from graphite and WC, we note that the position and 
intensity of the peaks obtained have been greatly modified. The main peaks of the 
monoclinic phase are reduced in intensity and several peaks have appeared cor-
responding to other polymorphs of WO3, including the hexagonal, orthorhombic 
phases and substoichiometric chemical compositions [22, 23].

The appearance of a similar multi-phase structure is consistent with the fact that 
the in situ insertion of graphite leads to the modification of the crystal structure 
formed of tungsten oxide. Some of the more well-known non-stoichiometric com-
positions of WOx are W17O48, W20O58, W18O49 and W24O68. Such oxides are formed 
by the sharing of vertices of WO6 octahedra, which alternate with those which are 
partially established by sharing the edges [24].

Oxygen removal occurs through the crystal shear mechanism and as the x value 
in WOx decreases, the WO6 octahedra groups form closer shear planes. However, 
for x values close to 3, these planes are considered as extended defects. On the 
other hand, with a further decrease in x, the shear planes tend to interact with each 
other and align in parallel, filling the space between them with sharing vertices of 
WO6 octahedra. For x less than or equal to 2.87, the structure becomes unstable 

Figure 4. 
Preparation method of in-situ nanocomposite.
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and further restructuring occurs involving the formation of pentagonal columns 
parallel to the monoclinic axis that are either single or paired by partitioning of the 
edges. Moreover, recent studies [25] have shown that non-stoichiometric tungsten 
oxide nanostructures have better performance in advanced applications. They have 
shown that the oxygen deficiencies presented in these nanomaterials can be major 
assets for storing energy. In addition, the X-ray diffraction pattern of the nanocom-
posite shows an intense peak characteristic of graphene oxide located at 2θ = 12.73° 
and assigned to the (002) plane with an interlayer “d” spacing of 6.95 Å, which is 
quite high compared to graphite (3.36 Å) and slightly lower than that of GO (7.93 Å) 
obtained by the Hummer method and in the absence of WC. The appearance of 
a small and wide band around 23–26° confirms the formation of a few partially 
oxidized graphite nanosheets.

Indeed, the modification of the spacing between the layers of graphite is directly 
correlated to their exfoliation through the introduction of the metal oxide nano-
structures formed which also causes the modification of the Van der Walls interac-
tion. In addition, it should be noted that the appearance of a multiphase structure 
could be due to the fact that the in-situ insertion of graphite has a strong influence 
on the orientation and length of the tungsten-oxygen bond, resulting in  
non-stoichiometric WOx nanostructures.

SEM image is used to investigate the microscopic structure of the obtained 
sample. Figure 6 shows the morphological aspect of in situ GO/WO3 nanocom-
posite. The presence of graphene layers functionalized by spherical-shaped WO3 
nanostructures distributed randomly can be detected. This nanocomposite has 
a stable structure reducing the agglomeration of graphitic planes and indicating 
the interfacial interaction between the two components. These results are in good 
agreement with those obtained by X-ray diffraction.

The infrared spectrum of nanocomposite prepared in situ (Figure 7) exhibits a 
broad absorption band at 640 cm–1 attributed to the W-O-W vibration, and another 
band at 982 cm–1 characteristic of the short elongation bond W = O [26]. This is 
explained by the fact that the in situ preparation of tungsten oxide nanostructures 

Figure 5. 
X-ray diffraction of GO/WO3 in-situ prepared nanocomposite.
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in the presence of graphite leads to the formation of non-stoichiometric WOx 
nanostructures. In fact, during the interaction, the vibration modes linked to the 
single WO bonds gradually weakened, while the W = O double bonds are formed by 

Figure 6. 
SEM image of GO/WO3 in-situ prepared nanocomposite.

Figure 7. 
FT-IR spectrum of GO/WO3 in-situ prepared nanocomposite.
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increasing the areas of the boundaries and creating more deficit in atoms of oxygen, 
which contributes to the modification of the crystallographic structure. These 
results are in good agreement with those obtained by XRD.

3.2 GO/WO3 prepared ex-situ

3.2.1 Synthesis method

GO/WO3 nanocomposite was synthesized by mixing solutions of hydrated 
tungsten oxide and graphene oxide. In a typical procedure, the solution of WO3.
H2O was mixed with that of GO, then the resulting mixture is placed in an ultra-
sonic bath for 30 min at room temperature. After deposition on the glass substrate 
and calcination at 500°C., the GO/WO3 nanocomposite was obtained with a mass 
ratio of 1: 1 (Figure 8).

3.2.2 Characterization

The XRD spectrum in Figure 9 reveals the crystal structure of the GO/WO3 
nanocomposites prepared ex situ and treated at 500°C. The diffractogram of the 
nanocomposite is dominated by the peaks characteristic of the monoclinic phase 
of WO3 [JCPDS N: 26–0575]. The three main peaks at 2θ = 23.07°, 23.45°, 24.17° 
characteristic of this phase are overlapped with the broad band corresponding to 
reduced GO.

The same behavior was obtained for the RGO/WO3 nanocomposite prepared 
by the hydrothermal method, as well as GO/ZnO and GO/TiO2 nanocomposites 
prepared ex situ [22–24]. It is well known that the formation of reduced GO 
is confirmed by the disappearance of the intense peak in GO at 10.9° and the 
appearance of a larger one around 26°. Due to the oxygenated functional groups 
on the surface of the carbon planes, aromatic regions with sp3 networks provide 
active sites for interacting with other chemical species through interactions 
at interfaces. Thus, GO is a very important precursor for the preparation of 
graphene-based composite materials with metals, metal oxides, polymers and 
CNTs for various applications. Consequently, this result obtained confirms the 
reduction of GO after the functionalization with WO3 and the formation of the 
nanocomposite. Furthermore, no secondary phase was detected, suggesting that 
the nanostructured WO3 retained its monoclinic phase after its interaction with 
the GO nanosheets.

For the morphology of the GO/WO3 nanocomposite prepared ex situ (Figure 10), 
we observe the presence of the one-dimensional shape with a homogeneous and uni-
form distribution. The nanorods formed in the presence of GO have lengths lower than 
those of the WO3 nanorods alone. In addition, the trace of the GO sheets is not clearly 
observed, confirming that the GO sheets are covered by the nanostructures of WO3.

Figure 8. 
Preparation method of ex-situ nanocomposite.
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In order to determine the exact composition of the samples as well as the types 
of interactions between the constituents, the Fourier Transform IR Spectroscopy 
(FTIR) analysis was performed. In the low-frequency region (Figure 11), the 
nanocomposite prepared ex-situ exhibits the characteristic bands of the W-O bond. 
In addition, a new band appears at around 1120 cm−1 attributed to the W-O-C 
link [26]. This result demonstrates that WO3 nanorods uniformly attach to the GO 
surface through covalent functionalization.

Figure 9. 
X-ray diffraction of GO/WO3 ex-situ prepared nanocomposite.

Figure 10. 
SEM image of GO/WO3 ex-situ prepared nanocomposite.
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4. Conclusion

In summary, we carried out a study of structural, morphological and vibrational 
properties of tungsten oxide nanostructures and their nanocomposite with GO 
nanosheets. First of all, we succeeded in synthesizing WO3 through a new method-
ology based on the oxidation of WC, using strong acids and oxidizing agents, which 
allowed us to obtain the hydrated tungsten oxide WO3.H2O as an intermediate prod-
uct, before being completely transformed by heat treatment at high temperature in 
air into WO3. By using XRD, we were able to identify the different structures, as well 
as the variation in size of tungsten-based crystallites. In the case of the prepared 
nanocomposites, we found that graphite and GO have a significant effect on the 
crystallographic structure, morphology and stoichiometry of the nanostructured 
tungsten oxide. As result, the in situ prepared WO3 nanostructures have shown 
a drastic change in the morphology and the stoichiometry when their growth is 
initiated in the presence of graphite powder. However, the ex situ preparation of the 
composite leads to the formation of well-dispersed WO3 nanorods, with monoclinic 
phase, covalently bonded to the RGO nanosheets. This study provides a possibility 
for preparing tungsten oxide nanostructures based nanocomposites with low-cost 
and no special equipment.

Figure 11. 
FT-IR spectra of GO/WO3 ex-situ prepared nanocomposite.
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Chapter 6

Ultrasonic and Spectroscopic
Techniques for the Measurement
of the Elastic Properties of
Nanoscale Materials
Marco G. Beghi

Abstract

Materials at the nanoscale often have properties which differ from those they
have in the bulk form. These properties significantly depend on the production
process, and their measurement is not trivial. The elastic properties characterize the
ability of materials to deform in a reversible way; they are of interest by themselves,
and as indicators of the type of nanostructure. As for larger scale samples, the
measurement of the elastic properties is more straightforward, and generally more
precise, when it is performed by a deformation process which involves exclusively
reversible strains. Vibrational and ultrasonic processes fulfill this requirement. Sev-
eral measurement techniques have been developed, based on these processes. Some
of them are suitable for an extension towards nanometric scales. Until truly supra-
molecular scales are reached, the elastic continuum paradigm remains appropriate
for the description and the analysis of ultrasonic regimes. Some techniques are
based on the oscillations of purpose-built testing structures, mechanically actuated.
Other techniques are based on optical excitation and/or detection of ultrasonic
waves, and operate either in the time domain or in the frequency domain. A
comparative overview is given of these various techniques.

Keywords: elasticity, vibrations, ultrasonics, surface waves, resonators, thin layers,
nanorods

1. Introduction

Solid materials exist when the atoms find a configuration in which their poten-
tial energy has at least a local minimum, around which a stability region exists.
Irrespective of the high number of degrees of freedom, and with rare exceptions, in
the neighborhood of any minimum a more or less narrow interval exists, in which
the potential energy is well represented by quadratic terms, higher order terms
becoming negligible. A quadratic potential energy means an elastic restoring force,
meaning that, when considering free motion around a stable equilibrium configu-
ration, vibrational excitations are expected, which have a time periodicity. Period-
icity can be represented by a frequency, or an angular frequency ω, which is
obviously determined by the properties of the physical system, namely in terms of
stiffness and inertia. This general consideration applies from the atomic scale up to
the full macroscopic scale, at which continuum models are appropriate.
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When looking at the atomic motions, stiffness and inertia are given by the
interatomic forces and the atomic masses. A distinction can be proposed among
vibrational excitations, based on the phase difference between the motions of dif-
ferent atoms. Excitations exist in which when considering atoms at progressively
decreasing distances, down to first neighbors, the phase difference between their
displacements does not tend to zero. Examples are the vibrations of molecules, or
the optical phonons in a crystalline structure. In this case the average displacement
evaluated over a group of neighboring atoms does not have a relevant meaning,
since the displacement of single atoms can be significantly different from the
average one, and since the average can be null (as in the case of isolated molecules)
or close to zero even in presence of atomic motions of significant amplitude. Exci-
tations instead exist in which the phase difference between displacements of atoms
located at smaller and smaller distances, down to nearest neighbors spacing, are
smaller and smaller. Examples are the acoustic phonons in a crystalline structure. In
this case the average displacement evaluated over a group of neighboring atoms
becomes fully representative of the displacement of single atoms, and is the natural
bridge towards a description of the continuum type, with a displacement vector
field u r, tð Þ ¼ u x1, x2,ð x3, tÞ which is a continuous function of the position vector
r ¼ x1, x2,ð x3Þ and of time t. Excitations of this type are called acoustic excitations.

The description by the continuous vector field of displacement, and consequently
by the tensor fields of strain and stress, is appropriate at scales which go from the
supramolecular one, of the order of the nanometer or slightly more, at which the
above-mentioned average begins to be meaningful, up to the fully macroscopic one.
In the elastic continuum model [1–3] the potential energy is a quadratic function of
strains, the coefficients of the expansion being the elements of the tensor of the elastic
constants Cijmn

� �
, conveniently represented in compact Voigt notation as Ckl½ �. The

stiffness being represented by these tensor elements, or by some functions of them
which are specific elasticity moduli, and the inertia being represented by the mass
density ρ, the equations of motion of the continuous medium are the elastodynamic
equations. In the limit of an infinite homogeneous medium, which is symmetric to
any translation in position and in time, the fundamental excitations are conveniently
taken as waves, which, besides being periodic in time, are periodic in space, as
described by a wavelength λ or a wave vector k, with kj j ¼ 2π=λ. These fundamental
solutions are characterized by dispersion relations ω kð Þ, which are determined by the
stiffness and the inertia properties [1–3].

It has been recognized, since long ago, that the measurement of the vibrational
excitations gives access to these properties [4]. In particular, if the inertial proper-
ties (atomic masses or mass densities) are known, the stiffness properties can be
measured. In both the atomic and the continuum case, they represent the curvature
of the potential energy in the neighborhood of its minimum, and therefore they
contain information, respectively, about the interatomic bonding and about the
stiffness of solids, in its usual meaning. A whole wealth of experimental techniques
has therefore been developed, which exploit vibrational excitations to measure
material properties [4]. A general advantage of all the measurement techniques
based on vibrational excitations is that they can exploit displacements of small
amplitude, confined in the neighborhood of the equilibrium position, in which the
representation of the potential energy by only the quadratic terms is an excellent
approximation. In other words, higher order terms of the potential do not interfere,
and, in the case of continua, non-elastic deformation mechanisms, other than the
simple, reversible, stretching of interatomic bonds, are not activated.

Vibrational excitations of non-acoustic type, which cannot be described by a
continuous field of displacements, are not treated by mechanics, but rather by solid
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state physics, which measures them by techniques like Raman spectroscopy, to
obtain various information at atomic level, including that concerning the
interatomic forces. They are not considered here.

Vibrational excitations of the acoustic type, instead, have the same properties
from the supramolecular, or nanometric, scale, up to the kilometric scale and above.
Accordingly, techniques based on acoustic excitations are exploited to measure the
stiffness properties of objects of various sizes, up to dams, and are exploited for
geological investigations. These methods measure the dynamic, or adiabatic, elastic
moduli; these moduli do not coincide with the isothermal moduli which are mea-
sured in monotonic tests (if strain rate is not too high), but in elastic solids the
difference between adiabatic and isothermal moduli seldom exceeds 1% [2].

At the other extreme of the size scale, some techniques can be pushed to mea-
sure microscopic objects, down to carbon nanotubes. Nanomechanics precisely
addresses the behavior of microscopic objects; in this chapter we consider mea-
surement techniques based on vibrational excitations of the acoustic type, which are
pushed to measure small objects, towards the size at which the same concept of
‘acoustic excitations’ begins to lose significance, as well as that of the strain field.
Techniques based on vibrational excitations, and in particular optical techniques,
which avoid mechanical contact, are particularly prone to be applied to small
objects, for which the contact with actuators or sensors becomes critical. In many
cases, the mechanical properties of materials at this scale are of interest for the
design and production of microsystems which operate dynamically; in these cases,
the dynamic, adiabatic, moduli, are precisely those of interest.

The next section summarizes some basic concepts about free acoustic excitations
in finite objects. The following two sections give an overview of several measure-
ment techniques, which are grouped in two categories. First, those that exploit the
oscillations of purpose-built testing structures, which are mechanically actuated,
often by piezoelectric means. Secondly, the techniques which measure the proper-
ties of ultrasonic waves, that are typically excited and/or detected by optical means.
These techniques can be further subdivided among those which operate in the time
domain and those which operate in the frequency domain.

2. Acoustic excitations in confined media

Displacements and strains in the elastic continuum model in the absence of body
forces, obey the elastodynamic equations; for homogeneous media they are [1–3]

ρ
∂
2ui
∂t2

¼
X
j,m, n

Cijmn
∂
2um

∂x j∂xn
, i ¼ 1, 2, 3:: (1)

The invariance to any translation in time is the root of the harmonic time
dependence of the fundamental solutions, characterized by the circular frequency
ω, which allows to transform the equations into the Helmholtz equations. The
invariance to any translation in position, in practically infinite media, is the root of
the harmonic space dependence of the fundamental solutions, which are traveling
monochromatic harmonic waves, characterized by the wave vector k. The disper-
sion relations ω kð Þ are determined by the properties of the medium. The displace-
ment vector u having three independent components, the dispersion relation has
three branches, which can be classified according to the relative orientations of the
vectors u and k, i.e. according to their polarization: in an isotropic medium, one
longitudinal and two transversal modes [1–3].
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The elastic continuum model has no intrinsic length scales; as mentioned above it
loses significance at the nanometric scale, while in an infinite medium, which also
from the geometrical point of view has no intrinsic length scale, it does not have an
upper limit of size. The wavelengths span in a continuous way this whole infinite
interval, and the corresponding angular frequencies go, in continuity, from null
frequencies for λ ! ∞, i.e. k ! 0, up a not sharply defined upper limit,
corresponding to the shortest meaningful wavelengths. The absence of intrinsic
length scales implies that all these wavelengths behave in exactly the same way, and
the dispersion relations are simply linear: ω ¼ v kj j, the velocities being independent
from kj j, i.e. these modes are non dispersive. In the general anisotropic medium the
velocities depend on the direction of k, while in the isotropic case they do not, and the
velocities vl and vt of the longitudinal and transversal modes are respectively [1–3]

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=ρ

p
and vl ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C11=ρ

p
, (2)

thermodynamic stability requiring that vt < vl.
Rupture of the unconditional translational symmetry by some kind of boundary

condition, which introduces some kind of confinement, induces the appearance of
further acoustic modes, namely standing waves. The consequences of confinement
can be appreciated also without abandoning the relative simplicity of the isotropic
model. They are already present, in a paradigmatic way, in the case which is probably
the simplest rupture of the infinite translational symmetry: the plane external surface
of a semi-infinite medium. The invariance to any translation in time is not altered,
and correspondingly the acoustic modes remain periodic in time, associated to a
circular frequency ω. In the same way, the invariance of the medium to any transla-
tion in the plane of the surface is not modified, and correspondingly the acoustic
modes remain periodic, and traveling, in this plane. This periodicity is conveniently
represented by a wave vector k∥ parallel to the surface, which identifies a direction
and a repetition period. Considering media which possess in-plane isotropy, the
direction of k∥ becomes irrelevant and, in order to simplify the notation, we introduce
here the symbol λ∥ � 2π= k∥

�� ��, which seems inappropriate because wavelength is not a
vectorial quantity, but must be understood as a compact form of: “the period along
the direction of k∥ of an acoustic excitation whose wave vector component is k∥”.

In the direction perpendicular to the planar external surface (the direction of
depth), two types of space dependence are instead found. A set of modes takes
advantage of the (semi) infiniteness of the medium, and maintains a space period-
icity, conveniently represented by a wave vector k⊥ perpendicular to the surface.
These modes are thus characterized by a full three dimensional wave vector k ¼
k∥ þ k⊥, and are completely analogous to those of an infinite medium: they are the
bulk waves, which are reflected at the surface. There is no upper limit to their
wavelengths, and no lower limit to their frequencies. The only novelties are intro-
duced upon reflection: firstly, in the direction perpendicular to the surface the
interference between the incident and the reflected waves generates a standing
wave pattern. Secondly, the mere superposition of an incident longitudinal wave
and its reflected counterpart would not satisfy the stress free boundary conditions.
Therefore, upon reflection, an incident longitudinal wave is partially reflected into a
longitudinal wave, having the same k∥ and a reversed component k⊥, and partially
converted into a transversal wave, having the same frequency and the same k∥, but
a different value of k⊥, because it has a different velocity [1, 3]. The dual conversion
occurs for an incident transversal wave.

However, in the presence of this boundary, the elastodynamic equations admit
another set of solutions, which are not periodic in the direction perpendicular to the
external surface. They are the surface acoustic waves (SAWs), of which the
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Rayleigh wave, the only one existing at the free surface of a semi-infinite homoge-
neous medium, is the prototype. The Rayleigh wave has a displacement field which
decays exponentially with depth, with a decay length which is uniquely determined
by the elastodynamic equations, and turns out to be very close to λ∥; it is thus
confined in the neighborhood of the external surface [1, 3, 5]. The Rayleigh wave
also has another character typical of the modes induced by confinement: they do not
have a specific polarization. The displacement vector u of the Rayleigh wave has a
direction which changes with depth; it always is in the plane identified by k∥ and by
the normal to the surface, which is called the sagittal plane, but the two components
vary with depth in different ways. The Rayleigh wave has its own velocity vR, lower
than that of any bulk wave: vR < vt < vl [1, 3, 5]. Acoustic modes having similar
properties can also appear at the surface separating two media in perfect adhesion.

In the semi-infinite case the medium still has no intrinsic length scale. Both
periods, λ∥ and 2π= k⊥j j, can go in continuity from infinity to the smallest meaning-
ful values, and correspondingly the frequencies go from zero to a very high upper
limit. Accordingly, the bulk waves and the Rayleigh wave are non-dispersive, also
the velocity vR being independent from k∥

�� ��; the dispersion relation ω ¼ vR k∥
�� �� is

linear. However, for any value of k∥, the value of λ∥, which determines the decay
length, somehow sets a length scale. It can approximately be said that the value of vR
is mainly determined by the properties of the medium up to a depth λ∥=2; in other
words, the Rayleigh wave is a probe which senses the properties of the medium up
to that depth [6]. The component k⊥ exploring the whole interval from zero to the
maximum meaningful value, we have kj j ¼ k∥ þ k⊥

�� ��≥ k∥
�� ��, and λ cannot be below

λ∥. For that value of k∥ we have bulk modes, whose frequencies go with continuity
from vt k∥

�� �� till very high values, and, below this lower limit, the Rayleigh wave at an
isolated frequency vR k∥

�� �� .
Instead, in media that are finite in at least one dimension, with a size D, the size

of the object which supports the excitations sets a reference length scale. The
relevance of confinement is determined by the ratio of the wavelength λ to the size
D. On the high side, acoustic excitations having a ratio λ=D significantly larger than
one are not supported: the size D sets an upper limit for wavelength. On the lower
side, the excitations having a ratio λ=D≪ 1, down to the lower limit at which the
continuum model loses significance, are affected in a negligible way by the finite-
ness of the medium. For these excitations, the medium is still almost invariant for
translations of several wavelengths, and the modes are indistinguishable from trav-
eling periodic waves. However, strictly speaking, they become standing waves, and
the difference becomes evident for the excitations whose ratio λ=D is not far from
unity. For these excitations, the medium is definitely not invariant for translations
of few wavelengths: the modes cannot have a well-developed periodicity, and are
strongly affected by confinement.

Objects having a high aspect ratio, like thin layers or beams, or nanorods, are often
of interest: in one or two dimensions their size is D, in the remaining direction(s) it is
D0, with D≪D0. The consequences of confinement within D are evident for excita-
tions having λ � D, well before the finiteness of D0 becomes perceptible. These
excitations can be analyzed as if in the other direction(s) the mediumwas still infinite:
the excitations are still periodic in this (these) direction(s), characterized by a wave
vector k∥. The effects of the finiteness of D0 become evident only when λ∥ � D0.

Again, the Rayleigh waves paradigmatically indicate the consequences of a finite
size.We can consider a slab, whose thickness is the characteristic size D, and which
can be considered infinite in the other directions. Bulk waves with λ=D≪ 1 are
affected in a negligible way by the finiteness of the medium, as well as the SAWs
having λ∥ ≪D. At such wavelengths, the Rayleigh waves are confined in the
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neighborhood of the two surfaces, and do not interact with each other, while the
bulk waves have a component k⊥ which is now discretized (the period 2π= k⊥j jmust
be an integer sub-multiple of D) but with a narrow spacing. Instead, when λ
increases and approaches D, on one side this discretization becomes relevant, and,
on the other side, the tails of the displacement fields of the Rayleigh waves at the
two surfaces superpose. The two SAWs then merge into modes which are typical of
the slab, with displacement fields which extend throughout the thickness, their
depth dependence being not periodic. Among them, the bending modes of the slab
[7, 8], reminiscent of the bending modes of a membrane, which are different from
the transversal bulk modes, which are shear modes, not bending modes. The dis-
persion relation ω ¼ ω k∥

�� ��� �
has discrete branches which correspond to these

modes. They are nonlinear, i.e. dispersive, meaning that their velocities depend on
the period λ∥, more precisely on the ratio λ∥=D, i.e. on the product D k∥

�� ��; they
asymptotically tend to the linear dispersion relations of the infinite medium when
the product D k∥

�� �� becomes large.
In the case of a film supported by a substrate, which can be generalized to

stratified media, the layer thickness sets the characteristic size D. Bulk waves in any
layer, with λ=D≪ 1, and the Rayleigh wave at the surface of the outermost layer with
λ∥ ≪D, are indistinguishable from those in a semi-infinite medium of the same
material. Instead, waves with λ, or λ∥, comparable to, or larger thanD (if the substrate
is semi-infinite λ can go to infinity) have a displacement field which extends over
various layers, and have properties which depend on the properties of the various
layers. In particular, the Rayleigh wave becomes a generalized Rayleigh wave, whose
depth dependence is affected by the transition from the film to the substrate. When
λ∥ ≫D the decay length is also much larger than the film thickness, and the displace-
ment field of the generalized Rayleigh wave is mostly in the substrate. In this limiting
case the generalized Rayleigh wave approaches the Rayleigh wave of the bare sub-
strate, only slightly modified by the presence of the supported layer. Depending on
the properties of the layers, namely on their acoustic velocities, other SAWs can be
supported. For instance, an acoustically slow layer can act as a waveguide, confining
some other modes, like the Sezawa modes. These modes are reminiscent of the modes
of a slab, but instead of having stress free boundary conditions they have, on the
substrate side, continuity boundary conditions, and tails of the displacement field
which extend into the adjacent layers. Obviously also these modes are dispersive,
their velocities depending on the product D k∥

�� ��, or, in the case of several layers, on
the products with the various thicknesses. The dispersion relations for the various
branches can be numerically computed, as functions of these products and of the
elastic constants and mass densities of all the layers [9, 10].

A wide slab, of thickness D, can be cut into a stripe of width comparable to D:
confinement thus occurs in two directions. More generally, it is the case of a slender
cylinder, of circular or non-circular cross section, of lateral size D, which can still be
treated as infinite in the third direction. The parallel wave vector k∥ remains fully
meaningful, although, having exclusively the axial direction, its vectorial character
becomes redundant. New modes appear, namely the torsional ones, beside the
bending or flexural ones, and the dilatational ones. In the case of circular cylinders
they obey the Pochammer-Cree Equations [11, 12], in which, as it often happens in
cylindrically symmetric cases, Bessel functions play a crucial role. More general
cases can be analyzed by the so-called xyz algorithm [13, 14], which has been
applied to rectangular [15], circular [16] and hexagonal [17] cases, and also to more
complex cases like superlattices [18].

The dispersion relation ω ¼ ω k∥
�� ��� �

has a significant number of branches, which
asymptotically tend to the linear dispersion relations of the infinite medium when
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the product D k∥
�� �� becomes large. For smaller values of D k∥

�� ��, instead, these
branches remain separate, and nonlinear. In particular, several branches have a
non-null frequency for k∥

�� �� ¼ 0; they correspond to modes, like e.g. the radial
breathing modes, which can have a non-traveling character [12]. Furthermore, for
small values of D k∥

�� ��, the dispersion relations of most of these modes have a slope
much smaller than the velocities vt or vl, meaning a low group velocity, and in some
cases even a negative slope [19].

Finally, for objects whose aspect ratio is not far from unity, and therefore in
which confinement is along all the three directions to a size of the same order D, the
general considerations apply. Namely, all the excitations have the character of
discrete standing waves. For ratios λ=D≪ 1 the discretization has a narrow spacing,
the modes are almost indistinguishable from those of an infinite medium, and can
still be characterized by a wavevector k, or k∥. Instead, for ratios λ=D not far from
unity the modes, in general, do not have a regular periodicity, and any wavevector
loses its meaning. The modes have clearly separate frequencies, are strongly
affected by confinement, and strongly depend on the shape of the object. Note
that for objects which become nanometric the regime in which λ=D≪ 1 does
not exist, because it would mean wavelengths at which the continuum model
breaks down.

Two main geometries are of interest, both for fundamental studies and for
technological applications. Firstly, the planar geometry of thin films, in which
confinement is in only one direction, the critical size D is the thickness, the wider
size D0 being the lateral extension of the layer. The typical examples are the
supported films and the resonators, either in the form of a clamped membrane or of
a cantilever, or a bridge. Secondly, the linear geometry of beams and of nanorods, in
which confinement is in two directions, the critical size D is the diameter, the wider
size D0 being the length. The two characteristic lengths, D and D0, identify two
length ranges; acoustic excitations can be probed at the two length scales, which
obviously correspond to two frequency ranges.

Ultrasonic waves of wavelength comparable to D are not affected by the finite-
ness of D0, or by the precise shape of the object supporting them: they see the other
dimensions as infinite. The properties of the waves depend on the material proper-
ties, and the value of D determines the existence of the discrete modes, which can
be observed. In some cases the properties of the waves are also affected by the value
of D, as it happens for supported films when the ratio λ=D is close to unity: in this
case the displacement field of the wave appreciably penetrates into the substrate,
and is affected by its properties.

Instead, for acoustic excitations at the scale of D0, the effective stiffness for the
vibrational modes depends on the material properties, but also, crucially, on the
value of D. The properties of the waves thus depend on the material properties and
on the value of D, while the value of D0 determines the existence of the discrete
modes, which can be observed. In fact the fundamental, and higher order,
oscillations of a cantilever can be seen as standing flexural waves, of wavelength
comparable to of D0, and of effective stiffness dependent on D.

The two ranges of wavelength identify two classes of measurements. A first class
exploits purpose-built testing structures, which determine the value of D0; they are
probed at effective wavelengths of this order. Typically, their oscillations are
mechanically actuated by piezoelectric means. The next section is devoted to them.
A second class exploits ultrasonic waves at wavelengths comparable to D. Their
excitation is achieved by short laser pulses, or simply by thermal motion. Their
detection typically requires optical means, and can be performed either in the time
domain or in the frequency domain.
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3. Measurement techniques based on testing structures

As repeatedly underlined, the elastic continuum model is meaningful down to
almost the molecular scale. Techniques based on acoustic excitations are therefore,
in principle, applicable to objects down to the nanometric scale. Their effective
application depends on the availability of appropriate transducers to excite and to
detect the relevant acoustic excitations. In the case of macroscopic objects, the
typical techniques are based on piezoelectric transducers, which can be exploited
for both excitation and detection. Specific devices are available, and specific instru-
ments, like acoustic microscopes. An alternative, for what concerns detection, is
offered by laser Doppler vibrometry. It has the advantages of the optical techniques:
light is a massless probe, contactless, which does not load the measured object, is
free from own resonances, has a bandwidth that is essentially determined by elec-
tronics (the light sensor and the amplification). Furthermore, it can measure small
objects, and can measure surfaces which are difficultly accessible, or on which the
application of a detector is not possible, e.g. because of their temperature.

In the case of small objects, down to micrometric or sub-micrometric scale, the
exploitation of a separate measurement device in mechanical contact becomes
impossible. Mechanical actuation by piezoelectric means is still possible either in the
case of resonators, by an external actuator which shakes the whole assembly
containing the resonant structure, or by inclusion, by nanofabrication techniques,
of a piezoelectric (nano)layer as an integral part of the structure being tested.
MEMS/NEMS of this type can also be actuated by electrostatic means. In some
cases, the test system can have a structure analogous to that of a complete device,
and comprehend, beside the possibility of excitation by piezoelectric or electrostatic
means, the ability of measurement, e.g. by capacitive detection or by an interdigi-
tated transducer (IDT). Except for these cases, optical detection is mandatory. Laser
Doppler vibrometry is the measurement technique of choice, if the measured sys-
tem has a flat surface of sufficient size. Otherwise, interferometric techniques have
been exploited.

A specific case is that of resonators: a significant effort is under way to produce
high quality resonators, mainly because of their great potential for applications in
sensing, signal processing, and quantum physics. The properties of a resonator can
be measured in a static way, by measuring the deflection of a cantilever, or a
membrane, or by measuring its resonant frequency. When a resonator is reduced to
a small size, typically in the shape of a cantilever, a bridge, or a clamped membrane,
its surface to volume ratio increases. Therefore phenomena, which otherwise are
minor or negligible, and are not accounted for by q. (1), become non negligible;
namely anelastic effects, possibly connected to internal friction phenomena, and
surface phenomena, like surface tension or environmental effects [20, 21]. In par-
ticular, interaction with the environment, typically by adsorption of molecules,
including water, made available by relative humidity, is the physico-chemical basis
for the development of sensors. The development of high performance sensors
based on nanoresonators [22, 23] is not considered here. We merely note that
research in this direction has led to doubly clamped resonators of thickness down to
22 nm and aspect ratio up to 5000; the measurement of their deflection requires an
interferometric technique, and their motion due to Brownian thermomechanical
techniques becomes detectable [24].

However, resonant structures can built specifically to the purpose of a precise
measurement of the properties of the materials which constitute them. In order to
measure the properties of tetrahedral amorphous carbon (also known as diamond-
like carbon), Czaplewski et al. built, by standard techniques for the production of
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MEMS, several resonators, with critical dimension down to 75 nm [25]. Excitation
was in some cases electrostatic, and in other cases by shaking by an external
piezoelectric actuator. Detection was, depending on the in-plane or out-of-plane
deflection, by a laser deflection technique similar to that used by AFMs, or by an
interferometric technique. Their results allowed them to analyze dissipation and to
discuss various possible mechanisms. Exploiting flexural and torsional oscillators,
and the same interferometric measurement technique, they also determined the
elastic moduli as function of temperature [26]. In order to measure the properties of
an assembly of only carbon nanotubes (called ‘forest of nanotubes’), self-sustained
only by their entwining and internal interactions, Hassan et al. built by this material
cantilevers, of 1 mm length, which were electrostatically excited, and whose motion
was detected by laser Doppler vibrometry [27].

The advantages of miniaturization led to explore also the sizes at which the
elastic continuum approach is no longer adequate, and a Molecular Dynamics
approach is more appropriate [28]. Interestingly, for membranes which become
nanometric but have significantly larger lateral extension, the continuum approach
remains useful, both for the theoretical analysis and the measurement technique.
Membranes of nanocrystalline diamond and of piezoelectric aluminum nitride, and
bilayer membranes, with thicknesses down to 220 nm and diameters up to 1 mm,
have been investigated by Knoebber et al. [29] by both a static and a vibrational
technique. The static technique, of more macroscopic character, was the bulge test,
in which the deflection of the circular clamped membrane under gas pressure is
measured; the implementation was optical, the deflection being optically measured
by white light interferometry. The vibrational technique involved excitation by an
external piezoelectric stack, and detection by laser Doppler vibrometry. The analy-
sis shows that the results from the dynamical technique are less sensitive to the
geometrical inaccuracies of the tested membrane. Similarly, the properties of bila-
yers obtained by growing nanocrystalline diamond on aluminum nitride thin films,
of about 200 + 200 nm thickness, were measured producing microresonators, either
cantilevers or bridges, of length up to 50 μm, piezoelectrically actuated and mea-
sured by laser Doppler vibrometry [30]. Similar nanocrystalline diamond/alumi-
num nitride membranes, of thicknesses of the order of hundreds of nanometers,
were still characterized by the bulge test on circular clamped membranes, of radii
up to 1 mm [31].

Also in the analysis of a typical 2-D material, MoS2, resonators have been built in
the form of clamped membranes, of radii of 2 and 3 μm, ranging from a single layer,
i.e. a truly atomic thickness, up to over 90 layers. The membranes were obtained
over pre-patterned circular holes in a Si substrate, and acted as ‘drums’. Their
motion was measured exploiting the vibrating drum membrane and the bottom of
circular hole as the two mirrors of an interferometer. The continuum mechanics
approach turned out to be useful in the interpretation of the experimental results,
which showed the transition from the membrane regime, in which the restoring
force in the oscillation is supplied by the membrane tension, to the plate regime, in
which the restoring force is supplied by the bending stiffness of the plate [32].

A whole class of devices exploits the intergiditated transducers (IDTs) to launch
and resonantly detect surface acoustic waves. A piezoelectric layer is a crucial
component of these devices. When the lithographic techniques to produce IDTs is
available, devices have been produced specifically for the aim of measuring the
properties of the material which constitute them. Measurements have been
performed on various forms of artificial diamond (nanocrystalline diamond,
nitrogenated diamond-like carbon), of particular interest for devices exploiting
surface waves and IDTs because of their high acoustic velocity [33–35].
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4. Measurement techniques based on ultrasonic waves

Various measurement techniques based on vibrations and acoustic waves rely on
impulsive mechanical excitation of vibrational modes or of waves. Mechanical
excitation by an impact has been analyzed in detail [36, 37], and standards have
been issued concerning it [38]. When extending these techniques towards
nanomechanics, and in particular to thin films, wave excitation by laser pulses is
their natural evolution. Absorption of a laser pulse, of duration τ, induces, by
thermal expansion, a sudden expansion: a strain pulse, which propagates away at
the speed vl of longitudinal sound. The mechanism of phonon generation has been
analyzed in detail [39]. The geometry of this pulse depends on the absorption length
ζ of the optical pulse, on the distance vlτ traveled by the strain pulse during the laser
pulse, and on the lateral size of the region on which the laser beam is focused.
Metals have the shortest absorption lengths, of some nanometers, and have longi-
tudinal sound velocities of few km/s, i.e. few μm/ns. With optical pulses of the
order of the ns, heating and thermal expansion occur until the pulse has traveled a
distance of few μm.

In the case of a thin supported film, of thickness D of some micrometers, or even
less, a ns laser pulse launches a strain pulse which is originated in the whole
thickness of the film. Such a strain pulse travels parallel to the surface, and, if the
film has a sufficient lateral extension, can be detected at a distance of millimeters,
measuring the transit time. This is the regime of the so-called laser ultrasonics, in
which the laser is focused by a cylindrical lens. A line source is therefore present in
the film, which launches two SAWs traveling in opposite directions, on a surface
whose lateral size D0 is large. The ratio λ∥=D can be smaller than one, implying that
the displacement field is essentially confined within the film, or larger, meaning
that the displacement fields of the SAWs penetrate significantly into the substrate.
In the latter case a typical objective of the measurement is the detection of the
(small) modification of the Rayleigh wave of the bare substrate.

With optical pulses of less than the picosecond, instead, heating and thermal
expansion occur only until the strain pulse has traveled a distance of the order of the
nm, i.e. less than the absorption length. The pulse displacement during excitation is
thus negligible, and heating, and thermal expansion, occur only in a thin surface
skin, of depth ζ, i.e.few nm. This is the regime of the so-called picosecond ultra-
sonics, in which the laser is focused by a spherical lens to a spot whose width is of
several micrometers, i.e. orders of magnitude wider that the depth within which
thermal expansion occurs. In the case of a film of thickness D, a plane wave is
therefore launched: a strain pulse, of lateral extension of several μm, which extends
over a depth of ζ, has leading wavelength of this same order, and travels in the
direction perpendicular to the surface. Except for truly nanometric films, in this
case λ=D≪ 1, and the finiteness of D becomes relevant thanks to the reflection of
the pulse when it reaches the opposite surface. If the film is supported the reflection
is only partial, part of the pulse being transmitted; the echo however returns to the
surface, where it can be detected, and where it is again reflected back. The transit
time, of the order of the ns, or less, is measured by a pump-and-probe technique, in
which a short, weaker, ‘probe’ pulse follows the ‘pump’ pulse with a variable delay,
and detects the time evolution of the transient induced by the pump pulse, scanning
the delay until the exhaustion of the transient itself.

The technique has also been exploited for nanostructures which do not have a
planar surface extending over the several micrometers of the focused spot;
nanorods are an example. In this case the geometry of the strain pulse is not the
simple planar one outlined above, and is rather dictated by the specific geometry of
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the illuminated object(s). The detected signal contains however relevant informa-
tion, whose interpretation typically requires the modeling of the specific dynamic
structure of the investigated objects.

In both the above techniques a transient is induced by a pulse which is short, i.e.
strongly localized in time, and also strongly localized in space, resulting in a broad-
band and localized pulse, whose transit is easily detected. In a different technique a
similar short pulse is exploited, which produces a transient, but illuminates a wider
segment of the surface with a periodic pattern, and has therefore a narrow band.
Periodicity is obtained splitting the pump laser pulse in two beams, and
recombining them at the surface of the sample, forming an interference pattern.
The same impulsive thermal expansion thus occurs with a periodic space modula-
tion. The periodicity, which here is called λ∥ and which in the literature dealing with
this technique is more often called Λ, is selected by the interference geometry, as
well as its direction: the wavevector k∥ is selected by the illumination geometry. The
technique is applicable to samples having a planar surface whose lateral size D0 is
much larger than the periodicity λ∥.

The time evolution of the reflectivity (or, possibly, of the transmittance) is
measured in one point, either by a continuous measurement by a fast detector, or,
more frequently, by the pump-and-probe technique. The measured signal typically
has a slowly declining component, corresponding to the total energy deposited by
the pulse, which eventually diffuses towards the adjacent parts of the sample, and a
periodic component. The periodic component is due to the SAWs which are
launched in the directions of k∥ and �k∥, and which form a standing wave,
eventually damped, both because the two SAWs travel away, and because of
intrinsic damping mechanisms, like the thermoelastic one. By the spectral analysis
of the observed signal one point of the dispersion relation ω ¼ ω k∥

� �
is obtained,

hence the name of ‘transient grating spectroscopy’. The full dispersion relation is
obtained scanning the wavevector k∥, by adjusting the geometry of the interfering
beams; at least in principle, a wide interval of k∥

�� �� is accessible. In the case of a film
of thickness D, the interval from λ∥=D≪ 1 to λ∥=D≫ 1 can sometimes be scanned. It
must however be noted that this is a case in which the characteristic length D is
dictated, more than by the geometry of the sample, by the geometry of the excita-
tion, i.e. by the periodicity λ∥ determined by the experimental set-up. In fact, as
noted above, SAWs of wavevector k∥ are sensitive to the properties of the medium
only up to depth of approximately λ∥=2.

In all the above techniques a ‘pump’ laser pulse induces a transient, whose time
evolution is measured, with a time resolution down to the picosecond scale. The
transient grating technique deserves the ‘spectroscopy’ name because it relies on the
successive spectral analysis of the measured time signal. Instead, the vibrational
spectroscopies investigate the steady state excitation of vibrational modes, due to
thermal motion. They exploit continuous, not pulsed, lasers, and detect the compo-
nent of the scattered light which has undergone a frequency shift, because it was
inelastically scattered by the excitations present in the sample. Obviously, inelastic
scattering involves some energy exchange between the optical and the acoustic fields,
but, due to the smallness of the scattering cross section, this is minor, in comparison
to the thermal energy. Only in special cases, namely highly confined nanostructures,
the exchange can become significant. The most widespread vibrational spectros-
copies, namely Raman spectroscopy and infrared spectroscopy, are not considered
here because they measure vibrational excitations of non acoustic type.

Instead, Brillouin scattering is precisely the inelastic light scattering by the
vibrational excitations of the acoustic type, and Brillouin spectroscopy measures it.

115

Ultrasonic and Spectroscopic Techniques for the Measurement of the Elastic Properties…
DOI: http://dx.doi.org/10.5772/intechopen.95483



In a manner analogous to that of Raman spectroscopy, the sample is illuminated by
a laser beam, and the scattered light is collected; the spectral analysis singles out the
minor fraction which has undergone inelastic scattering by the excitations in the
sample. The scattering geometry selects an exchanged wavevector k, or k∥ in the
case of SAWs. Therefore, also in this technique, in the case of SAWs the experi-
mental technique selects a periodicity λ∥ which essentially dictates the length scale
D, and the depth over which the properties of the medium are interrogated. A
Brillouin spectrum supplies a point of the dispersion relation ω ¼ ω kð Þ for each of
the branches which give a measurable peak. With visible light, and typical proper-
ties of solid materials, the observed frequencies, i.e. the frequency shifts of light,
range from few GHz to tens of GHz, i.e. a wavenumber in the range of the cm�1, to
be compared with the typical frequency shifts observed in Raman spectroscopy, in
the range of hundreds of cm�1. Accordingly, the diffraction gratings, which are the
common spectrum analysers in Raman spectroscopy, do not have a sufficient reso-
lution, and other techniques must be employed. The tandem multipass Fabry-Perot
interferometer has become the standard apparatus in Brillouin spectroscopy [40].
The small observed frequencies (1 cm�1 means 30 GHz or 1.4°K) make the Stokes
and anti-Stokes parts of the spectra symmetric, to a difference from what happens
in Raman spectroscopy.

The dispersion relations ω ¼ ω kð Þ of the traveling waves, whenever a
wavevector k can meaningfully be identified, and the frequencies of the standing
waves, can be theoretically predicted, from the simplest ones of Eqs.(2) to the more
complex ones which can only be numerically computed. They are all functions of
the properties of the medium (or the media involved). Therefore, whenever and
however they are measured, they provide access to the properties, which can be
found fitting the computed dispersion relations, or the frequencies, to the measured
ones. Obviously the amount of obtainable information depends on the amount, and
the quality, of the experimental evidence, and on the simpler or more sophisticated
way of treating it. The obtainable information ranges from a semi-quantitative
comparison for a single parameter, to a complete elastic characterization of a layer.

4.1 Laser ultrasonics

The laser ultrasonics technique exploits SAWs, mainly the Rayleigh wave, pos-
sibly modified by the presence of a supported film, to measure the properties of
samples having a planar surface of sufficient lateral extension. The focus often is the
measurement of the properties of the supported film. Waves are launched by a laser
pulse, typically of nanosecond duration; visible or near UV light is typically used,
often from a N2 laser at 337 nm. As mentioned above, the laser is focused by a
cylindrical lens on the surface of the sample, resulting in a sudden expansion of a
line-shaped region, which launches a broadband surface wave, which propagates
perpendicularly to the focusing line, with a limited divergence. The surface wave is
detected by the displacement it induces perpendicularly to the surface, after a
propagation path, typically of millimeters.

Detection can be done by optical interferometry [41, 42], or, in a simpler way,
by piezoelectric sensing: either a piezoelectric polymer foil pressed on the sample by
a blade [43–47], or a piezoceramic stripe [48]. A ready-to-use commercial
apparatus is also available.

Yang et al. implemented both the optical and the piezoelectric detection. They
performed a systematic comparison exploiting a 320 nm SiO2 thermal oxide layer
over the pristine Si substrate. The optical detection obtains lower intensity signal
but also a lower background noise, and wider bandwidth: in their implementation
the bandwidth of the piezoelectric detection is limited to about 120 MHz, mainly by
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the piezoelectric foil exploited for transduction, while the optical detection shows
substantial signal components up to almost 300 MHz [49]. The same authors then
integrated the two techniques in a single apparatus.

The recorded displacement can be frequency analyzed, yielding the dispersion
relation vR ωð Þ for a frequency interval that can extend over a full frequency decade
(e.g. 20 to 200 MHz). As mentioned above, fitting the computed dispersion relation
to the measured one allows to derive the film properties. In the case of supported
films the width of the measured frequency interval can allow to appreciate the non
linearity of the velocity dependence of the frequency. If this is the case, the fit of the
computed dispersion relation to the measured one allows to derive both the Young
modulus and the film thickness [44, 45]. If the measurement extends over a more
limited frequency interval, or if the material properties and the thickness are such
that the non linearity is mainly in a frequency interval external to the measured one,
an independent measurement of thickness is needed. Since the waves are detected
after a propagation of the order of millimeters, the obtained properties are repre-
sentative of an average of the properties over this distance.

The technique has been extensively adopted to characterize diamond-like car-
bon films. It has been pushed to the measurement of films having thickness down to
5 nm, deposited on a Si substrate [41]. The stretch of the observed propagation path
to 20 mm allowed to measure variation of the Rayleigh wave velocity below 0.25 m/
s, over a velocity of about 5000 m/s for the bare Si substrate. The small variation
due to the nanometric film is thus detected. Ultra nanocrystalline diamond films of
micrometric thickness were more easily characterized [47]. Also the commercially
available apparatus proved to be able to measure the properties of alumina films
produced by the atomic layer deposition (ALD) technique, of thickness down to
about ten nanometers [50].

4.2 Picosecond ultrasonics

Since femtosecond laser pulses became available, the so-called ‘picosecond
ultrasonics technique’ exploits them; nevertheless, it is still called ‘picosecond
ultrasonics’ from the picosecond, or sub-picoseconds, pulses which were available
at the time in which it was first demonstrated, by the seminal work of Thomsen
et al. [51, 52] and by Wright [53, 54]. It is a technique which belongs to the wide
family of the optical pump-and-probe scheme, whose performances, namely reso-
lution, crucially depend on the short duration of pulses.. As previously outlined, two
length scales contribute to determine the shape of the ultrasonic field generated by
the pump pulse: the absorption length ζ of the optical pulse, i.e. the depth within
which the pulse energy is deposited, and the displacement vlτ of the strain field in
the time interval within which the energy is deposited.

Lasers in the near infrared are typically adopted, to avoid possible spurious
effects, which were attributed to electronic interband transitions [55], which might
be induced at shorter wavelengths. Typical metals properties correspond to absorp-
tion lengths of nanometers; aluminum is among the metals which have the shortest
absorption lengths, and well absorbs at 810 nm wavelength [56]. With the typical
acoustic velocities and the typical thermal diffusivities of metals, with pulse lengths
below the picosecond the fraction of the pulse energy which is not reflected is
deposited before both the strain pulse and the temperature rise leave the absorption
length. Therefore, the (over)simplified picture can be given, according to which at
the end of the pump pulse no significant motion has occurred yet, and a significant
temperature rise and dilatational strain are present within an outer skin whose
thickness is of the order of the absorption length ζ. The laser being focused on a spot
whose width is of several, up to few tens, micrometers, if the outer surface of the
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sample is planar the strain and the temperature fields are essentially uniform across
the spot, and a plane wave is launched in direction perpendicular to the surface. The
pulse is localized within a depth interval of the order of 2ζ; it crosses the layer, is
reflected (only partially if the film is not free standing), and returns to the surface,
where it is detected. Further round trips can also be detectable.

Detection is performed by the probe pulse, much weaker than the pump pulse,
which follows it with a variable delay, controlled by a delay line. As it is typical for
pump-and-probe techniques, several details of the experimental procedure are
tuned to single out the reflection of the probe beam, like different polarizations of
the pump and probe beams, or frequency doubling of the probe beam, and to detect
small variations of the reflectivity, like differential or interferometric detection
[56]. The reflectivity is modified by the strain pulse, via the elasto-optic effect: the
strain modulates the optical properties of the film, both the real part and the
imaginary part of the refractive index. The measured reflectivity has a slowly
varying background, due to the diffusion of the heat deposited by the laser pulse
towards the depth of the sample. Superposed to this background, short modulations
of the reflectivity denote the arrival of the echoes at the outer surface.

The arrival of the echo(es) at the surface is thus detected, the delay providing a
measure of the velocity of the longitudinal acoustic wave, for propagation in the
direction normal to the surface. Some details of the detected pulse can, at least in
principle, supply further information about the film and the mismatch of properties
between the film and the substrate [56]. Among them, the so-called Brillouin
oscillations, which are due to the interference between the fraction of the probe
pulse reflected at the outer surface, and the fraction which is reflected by the
traveling strain pulse. In fact, the strain pulse, which extends over a depth interval
of the order of 2ζ, is a localized modulation of the refractive index, which can reflect
a fraction of the probe beam [57]. The measurement of the velocity obviously
depends on the knowledge of the film thickness, often obtained by X-ray reflectiv-
ity; the uncertainty about thickness is one of the leading terms in the uncertainty to
be associated to the final results.

Another factor affecting the precision of results is the resolution by which the
arrival times of the pulses are detected. The modulation of the reflectivity has a
finite width, which is determined by the space width of the strain pulse. In turn, this
space width is determined by the absorption length ζ. Aluminum has one of the
shortest absorption lengths, at least for the 800 nm wavelength, other metals, like
copper, have longer absorption lengths. In order to limit the absorption length, and
thus increase the resolution of the measurement, the deposition of a thin aluminum
layer (tens of nanometers) on the sample is a common practice [58]. If this interac-
tion layer is adopted, its presence cannot be neglected in the analysis of results: the
additional layer contributes to the vibrational behavior of the structure being
investigated. However, operation also in semiconductors, in which the absorption
length is significantly longer, has been demonstrated [59].

In several cases, for film thicknesses below �100 nm, resolution of single echos
turns out to be difficult, or impossible [60–62]. However, by a detailed analysis of
the reflectivity signal, and taking into account features like the Brillouin oscillations,
it has been possible to measure Pt and Fe films of thickness down to 5 nm, deposited
on Si or on borosilicate glass substrates [60], and a buried TaN layer of thickness of
20 nm [58]. Layers down to very few nanometers, stacked in a periodic Mo/Si
superlattice, were also investigated, exploring different periodicities within a same
total thickness. The superposition of two different signals was found. One signal
corresponds at the multilayer which act as a single homogeneous effective layer. The
other signal corresponds to the multilayer which acts as a Bragg reflector, and
confines, in the neighborhood of the outer surface, a mode, which has been called
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‘localized surface mode’. This mode is sensitive to fine details of the superlattice
structure, namely on the outermost layer being the one with the higher or the lower
acoustic impedance (in this case Si), and on the presence of the native, nanometric,
oxide layer on the Si surface. These details are consistent with the X-ray reflectivity
measurements, and allowed to correctly predict the acoustic behavior [63].

The picoseconds ultrasonics technique applied to laterally homogeneous speci-
mens measures the elastic constants involved in the propagation of plane waves
traveling perpendicular to the surface: only the out-of-plane elastic characterization
of the film is achieved. To overcome this limitation, non homogeneous interaction
layers interaction layers have been exploited, namely cut by lithographic techniques
to obtain periodic structures [64–66]. It was thus possible to excite vibrational
modes of different types [64]: modes of single specific structures, either nanopillars
[64, 65] or nanowires [66], collective modes of these nanostructures, coupled via
their substrate, and modes of the substrate layer, traveling not only in the direction
perpendicular to the surface. The deposition of a metallic grating on a transparent
sample allowed to diffract the pump pulse in different orders, obtaining what has
been called time-domain Brillouin scattering, and measuring a whole range of
acoustic frequencies in a single optical configuration [67].

The acousto-optic (or photoelastic) couplingmechanismwas elucidated long ago for
bulk samples and for supported films. In the case of free standing films, ormembranes, it
is increasingly understood that the geometricmodulation of the external surfaces by the
acousticmodes has a significant role. The denomination of ‘moving interface effect’ has
been proposed [68], which can be seen as a generalization of the ripple effect, which
active at the surface of a semi-infinitemedium, either homogeneous or layered.

Detailed analyses have been performed for free standing membranes [8], exper-
imentally confirmed with non-constrained, single crystal, Si nanomembranes
(thickness 260 nm), for nanoscale structures like cavities and waveguides [68], and
for integrated photonic waveguides in on-chip systems [69].

With a sub-wavelength confinement, surface effects play a significant role, and
the confinement induced modifications must be taken into account for both the
electromagnetic and the acoustic fields. The interaction between these fields turns
out to be orders of magnitude more intense than in bulky samples. In volumetric
samples the laser beam is only a probe that senses the thermally excited vibrational
states, while in strongly confined media the ‘stimulated Brillouin scattering’ is
achievable, in which the electromagnetic beam excites some acoustic mode, and
then interacts with it. The strong energy exchange between the trapped light and
the acoustic modes, for which the name ‘Brillouin optomechanics’ has been pro-
posed [70], is exploited in a whole new breed of chip based devices, which include
lasers, amplifiers, filters, delay lines and isolators [70, 71]. Here, we do not address
this rapidly growing ‘optomechanics’ field, since we are here focused on the
measurement techniques, rather than the device development.

The picosecond ultrasonics technique has proven to be useful also in the mea-
surements of nanorods. In the case of nanorods, the effects of confinement manifest
themselves to a high degree. The dispersion relations of both photons and phonons
are modified in the nanowires, enhancing interactions and generating peculiar
phenomena like stimulated Brillouin scattering, induced transparency, ‘slow light’
and ‘fast light’ [72]. The concept of parallel wavevector k∥ remains meaningful, but
can only have the fixed direction of the nanorod, meaning that scattering can only
be forward, with of k∥ ¼ 0, i.e. probing resonant phononic modes, or backward,
with of k∥ ¼ 2q∥ (q∥ being the component of the optical wavevector), probing
traveling phonons. Since, furthermore, the focusing spot is wider than the nanorod,
illumination is homogeneous across the nanorod.
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Some experiments have been on single suspended nanowires. Copper nanorods
(diameter 200 nm, length up 5 μm) suspended across a lithographically obtained
trench have been teste by standard techniques for picosecond ultrasonics (100 fs
pulses, at the wavelength of 800 nm) [73]. The breathing modes at k∥ ¼ 0 have
been detected.

However, most experiments have been performed on ‘forests’ of nanowires,
either grown on particle seeds, regularly or irregularly positioned, or obtained by
etching techniques. In the case of regular positions they form a photonic crystal, in
which electromagnetic modes specific of single nanowires, and therefore sensitive
to the nanowire diameter, can be detected, but also, depending on the period, also
collective electromagnetic modes, sensitive to the photonic crystal period, can be
observed. Nanorods with a diameter of the order of 100 nm, heights of several
hundred nanometers, and periods ranging from few hundred nanometers to few
micrometers have been produced and investigated.

One of the first observation of the vibrational modes of nanorods was obtained
by the standard set up for cw Brillouin spectroscopy. Scattering was observed from
monocrystalline GaN nanowires, of wurtzite structure, several micrometers long,
spontaneously nucleated at the irregular surface of a GaN matrix layer over a Si
substrate. Measurements were compared to a finite elements simulation; the analy-
sis had to take into account the dispersion of the diameters, with an average value of
190 nm and a variance of 40 nm. Several branches of the dispersion relation could
however be identified [74].

Successive investigations were performed by the picosecond ultrasonics tech-
nique, with focused beam spots of tens of micrometers, illuminating a high number
of nanorods. GaAs nanorods were fabricated by a standard etching process from a
pristine GaAs substrate, covered by a thin gold layer, such that each nanorod had at
its tip a gold disk, which acted as transducer, absorbing the pump pulse and
launching the acoustic pulse along the nanorod [75].

A square lattice was produced, with nanorods 720 nm long, exploring intervals
of diameter (130–270 nm) and of period (300–350 nm). Square lattices of InP
nanowires, grown over gold seed particles in regular pattern, with 180 nm diameter
and period of 400 nm, were measured by a pump and probe technique. Measure-
ments were compared to a detailed computation of the complicated dispersion
relation [76]. This measurement allowed to validate the whole technique, which was
then applied to GaAs nanorods, grown over gold seeds in an irregular pattern.
Nanorods with the normal zincblende structure, as well as with the wurtzite struc-
ture, which in the bulk form is metastable, and was not previously measured, have
been investigated; Diameters respectively of 100 nm and 70 nm, with lengths above
1.5 μm. The elastic constants were derived with a resolution sufficient to appreciate
the difference between the two structures [77]. Hexagonal lattices of hexagonal
GaAs pillars were also produced, of diameters between 103 and 135 nm, exploring
lengths up to several micrometers, and pitches from 700 nm to 3 μm [78]. Also this
measurement was accompanied by a detailed modeling, allowing to detect up to 10
branches.

The picosecond ultrasonics technique can also investigate nanoobjects, whose
aspect ratio is not too far from unity, and in which confinement occurs at its
maximum degree. The same concept of parallel wavevector k∥ loses its significance,
only standing waves exist, whose configuration strongly dependes on the geometry
of the object. An extensive and detailed review of work in this area was given [79],
and a more recent one focused on the measurement techniques [80]. Recent works
include the analysis of compound nanoparticles [81], analyses concerning the
exploitation of nanoplates as antennas in the conversion from the laser pulse to the
acoustic pulse [82], and work in the direction of the imaging of acoustic modes [83].
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4.3 Transient grating spectroscopy

The Transient grating spectroscopy (TGS) technique, which is also called Impulse
Stimulated Thermal Scattering (ISTS) or Impulsive Stimulated Scattering (ISS) is an
evolution of the Laser ultrasonics technique. As its ‘parent’ technique, it is appropri-
ate for samples having an external planar surface of sufficient width, and is perfectly
suited for the measurement of films. In the conventional laser ultrasonics technique
the excitation is impulsive in time, and localized in space (the laser pulse is typically
focused into a line by a cylindrical lens), resulting in a broadband pulse which is
launched, and detected at some distance. The transit time is thus measured. The
possibility of excitation over a more extended region, with a periodic pattern,
resulting in a narrowband pulse, was considered in order to increase the efficiency in
the generation of the strain pulse. A periodic pattern, of periodicity λ∥, can be
obtained either by two beams which interfere at the surface of the sample [84] or by a
hyperbolic diffraction grating [85]. The strain field generated by the pulse is the
superposition of a broad, non-oscillating feature, due to the overall heating, whose
decay is governed by heat diffusion, and an oscillating feature [74, 86, 87]. The
oscillating signal is due to the SAWs which are launched in opposite directions, and
which form a standing wave, of periodicity λ∥, which is eventually damped.

The ‘pump’ pulse can range from the ns to the ps; wavelengths around 500 nm
are typically adopted, but both longer (1064 nm) or shorter wavelengths have been
adopted. The strain transient is measured by a probe laser, either a cw laser, or a
pulsed laser, in a pump-and-probe scheme. The temperature relaxation is observed
by the modulation of the reflectivity of the surface. The surface corrugation due to
SAWs can be detected by either the deflection of the strongly focused probe laser
[87], or superposing the reflected probe beam with a reference beam, in a
heterodyne amplification scheme.

A boxcar configuration has become the standard one for this technique: a volu-
metric diffraction grating, a ‘phase mask’ splits the pump pulse into diffraction
orders, the +1 and � 1 orders are isolated and overlapped at the sample surface,
using a 4f imaging system. In this configuration the heterodyne detection is
adopted, with the pump and the probe beams which share the same optics, achiev-
ing a good phase stability [88–92]. While in principle the explored periodicities λ∥
can vary over a very interval, practical limitations limit this interval. Firstly, the
focusing spots of the lasers, which cannot be too small to avoid power densities that
would damage the sample, also cannot be too wide, to avoid low power densities
which would lead to too weak signals. Since the focusing spot must contain at least a
certain number of interference fringes, to well define the periodicity, this set an
upper limit to the accessible periodicities λ∥. Lower limits are set by the velocity of
the detection electronics, typically avalanche photodiodes: (shorter wavelengths
mean higher frequencies) and by an intrinsic limitation: the amplitude of the sur-
face displacement, therefore its detectability, scales as the periodicity λ∥. The prac-
tical lower limit of λ∥ is 2–3 μm for metals, and 5–8 μm for ceramics [6].

The experimental techniques are undergoing further developments. Among
them, further refinements of the heterodyne detection [93, 94] and a technique
which allows a continuous tuning of the periodicity λ∥ [95]. Among recent devel-
opments, the coherent space and time control of the relative phases of the interfer-
ence patterns generated by successive laser pulses, which enables the control the
periodic surface deformation induced by the pump pulses, which is also monitored
by time-resolved X-ray reflectivity [96], and the exploitation of femtosecond pulses
of extreme ultraviolet light (12.7 nm) to obtain surface periodicities λ∥ of 280 nm
[97]. Furthermore, the possibility of performing large area 2D maps, also dealing
with surface roughness [98].
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Among recent applications of the technique, the characterization of nanocrys-
talline diamond coatings [99], and the exploitation of the optical character of the
technique to perform measurements at different temperatures [100], and in situ
measurements [101]. As previously mentioned, the possibility of tuning the peri-
odicity λ∥ allows to choose the depth which is probed. This is particularly useful in
ion irradiation experiments: the ion implantation depth is of the order of microme-
ters, meaning that the irradiation modified skin is of that order; the periodicity λ∥
can be tuned in order to investigate precisely the depth affected by irradiation
[6, 102–104].

4.4 Brillouin spectroscopy

Brillouin spectroscopy investigates the inelastic scattering of light by vibrational
excitations of the acoustic type [105, 106]. It is therefore in principle able to
investigate both traveling waves and standing waves, from bulky samples to films
and to nanorods, and the name ‘Brillouin optomechanics’ has been proposed for the
interaction between the electromagnetic field and the acoustic field in nanoobjects.
The ability of Brillouin spectroscopy to single out a wavevector, k or k∥ makes it
attractive whenever a wavevector can meaningfully be considered. As a tool for the
measurement of material properties, surface Brillouin scattering (Brillouin scatter-
ing by SAWs) has been extensively used to characterize supported films [107–109].

Brillouin spectroscopy is performed illuminating the sample by a focused laser
beam, of wavevector qi and circular frequency Ωi, and collecting the light scattered
along a direction qs. The spectral content of the scattered light is dominated by the
light elastically scattered, at Ωi, but can also contain the Stokes/anti-Stokes doublets
due to inelastic scattering by thermally excited vibrations of circular frequency ω, at
frequencies Ωs ¼ Ωi � ω. Since the scattering geometry selects the probed
wavevectors k ¼ � qs � qi

� �
, or, in the case of SAWs, k∥ ¼ � qs � qi

� �
∥, from each

spectrum one point of the dispersion relation ω ¼ ω kð Þ, or ω ¼ ω k∥
� �

, is obtained
for each of the branches for which a spectral peak is measured [40, 105–108].

Scattering by bulk waves occurs by the elasto-optic effect, the modulation of the
refractive index by the strain: a periodic modulation, of periodicity represented by k,
is a weak diffraction grating, in motion at the speed of sound. Obviously scattering by
bulk waves only occurs in sufficiently transparent media, in which refraction must be
taken into account: the wavevectors qi and qs are refracted into q0i and q0s, and the
probed wavevector is more precisely k ¼ q0s � q0i. The refractive index n has therefore
a role. Scattering by surface waves, whose strain field penetrates in an outermost
layer, occurs by the same mechanism, if the medium is sufficiently transparent, and
by the ripple effect: the periodic corrugation of the surface induced by the wave,
which also is a weak diffraction grating. In this case the probed wavevector k∥ does not
depend on the refractive index, since Snell’s refraction law states that, for any optical
wavevector q, the component q∥ parallel to the surface remains unchanged upon
refraction. In metals scattering occurs only by surface waves, by the ripple effect.

The scattering process can also be described as follows. The spontaneous,
chaotic, thermal motion can be thought as being three-dimensionally Fourier
transformed into an incoherent superposition of harmonic waves, whose
wavevectors have all the possible values. The scattering process probes the compo-
nent of this decomposition which has precisely the wavevector k, or k∥, selected by
the scattering geometry. The exploitation of the thermal motion means that the
excitation has the broadest band, but has small amplitude, implying, in many cases,
time consuming measurements.
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Brillouin spectroscopy has been used to characterize bulk materials, and surface
Brillouin spectroscopy is particularly suited for the characterization of thin films,
which are of our concern here. Although Brillouin spectroscopy can, in principle, be
performed in various geometries [105, 108, 109], possibly scanning a wide interval of
kj j, or of k∥

�� ��, the backscattering configuration (qs ¼ �qi) is, by far, the most
frequently adopted. This occurs because the backscattering geometry maximizes kj j,
and its implementation is more practical. In backscattering the probed wavevector is
k ¼ �2q0i, with q0i

�� �� ¼ n qi
�� �� ¼ n2π=λopt, where λopt is the optical wavelength of the

incident beam (remember that n is simply a scalar only when symmetry is at least

cubic), or k∥ ¼ �2 qi
� �

∥, with qi
� �

∥

���
��� ¼ qi

�� �� sin θ, where θ is the incidence angle (the

angle between the incident beam and the normal to the surface). The wavevector k∥
does not depend on n, and depends on the incidence angle. Since incidence cannot be
close to the normal (to avoid the specular reflections) nor too close to grazing one
(because of the decline of the scattering cross section) the practically accessible range
sin θð Þmax= sin θð Þmin seldom exceeds the value of 2.
For SAWs, the above relations give λ ¼ λopt= 2nð Þ and λ∥ ¼ λopt= 2 sin θð Þ. This

means that, with the often adopted λopt =532 nm, for supported films of thickness D
of a couple of micrometers, or more, the condition λ∥ ≪D is easily accessible. We
remember that in this case the Rayleigh wave at the surface of the film is insensitive
to the substrate properties and to the precise value of thickness, and gives a direct
access to the film properties. When films of this thickness are sufficiently transpar-
ent, also scattering by bulk waves is observable, the bulk waves being fully devel-
oped. Typical properties of metals, semiconductors and ceramics give, for these
wavelengths, frequencies ranging from few GHz to several tens of GHz.

Brillouin spectroscopy was extensively exploited to characterize tetrahedral
amorphous carbon films of thicknesses of hundreds of nanometers [110], tens of
nanometers [111], down to a few nanometers [112]. In the case of thicker tetrahe-
dral amorphous carbon films [3 micrometers] a detailed characterization was
achieved by combining Brillouin spectroscopy and laser ultrasonics. The combina-
tion of the techniques gave access to a wide range of frequencies, allowing detailed
determination of the elastic properties of the film [113]. Brillouin spectroscopy
turned out to be a useful characterization tool also for other types of films of interest
in materials science, like boron films [114] and amorphous and nanocrystalline
tungsten films [115].

Since picosecond ultrasonics characterizes the out-of-plane properties by waves
traveling normal to the surface, while Brillouin spectroscopy characterizes the in-
plane properties by waves traveling along the surface, the two techniques have also
been exploited in a combined way, achieving a more complete characterization
[62, 116–118].

Brillouin spectroscopy also lends itself to the characterization of structures other
than films or layers. In particular, single-walled carbon nanotubes were character-
ized, measuring Brillouin scattering by a free-standing film of pure, partially
aligned, single-walled nanotubes, and analyzing the results in terms of continuum
models [119]. The dependence of the measured spectra on the angle between the
exchanged wavevector and the preferential direction of the tubes shows that the
tube-tube interactions are weak: the tubes are vibrationally almost independent.
The tubes are modeled as continuous membranes; taking into account that AFM
images suggest that the tube segments contributing to scattering are not in the
infinite tube length approximation, it was possible to derive the 2D Young modulus
for the tube wall, achieving the first dynamic estimation of the stiffness of the tube
wall. Scattering from carbon nanotubes was observed also in a different geometry,
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with an ordered array of tubes, clamped at one end [120]. Brillouin spectroscopy
also allowed one of the first observations of the vibrational modes of nanorods [74].

5. Conclusions

Nanotechnology, and nanodevices, identify a rapidly growing technological
field. For the development of nanodevices a precise knowledge of the elastic prop-
erties of materials is of utmost importance, also because materials obtained at the
nanoscale have properties which do not coincide with those of their bulk counter-
part. Accordingly, a variety of techniques have been developed, which have proven
able to investigate the material properties at the nanoscale. Most of these techniques
rely on the interaction between optical electromagnetic fields, and mechanical
acoustic fields. An overview has been given of these various techniques, offering
elements for the evaluation of their appropriateness for different characterization
needs.
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