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Preface

This book is a select collection of works on the homology modeling technique, 
also called comparative modeling.

Molecular modeling by homology is a technique that has been growing and 
becoming popular in several fields of science such as structural bioinformatics, 
theoretical and biochemical chemistry, and computational biophysics.

Through this tool, it is possible to predict the three-dimensional structure of 
a protein from its primary sequence of amino acids, as long as there is a three-
dimensional structure already known of a homologous protein to be used as a 
template.

The theoretical models obtained by the homology modeling technique have 
numerous uses. One is that knowledge of the 3D structure of a protein is crucial 
for understanding its function and behavior. Thus, theoretical models of proteins 
are formidable for a good understanding of biological systems and intra- and 
extracellular processes of living organisms.

Other applications are in the field of biotechnology and drug discovery. Theoretical 
models of target proteins for drugs or with applicability in genetic engineering can 
accelerate several discoveries of importance for biotechnological and therapeutic 
advances. Simulation studies of docking and molecule dynamics using theoretical 
models have grown enormously.

This book is aimed at researchers and academic students in areas related to 
molecular modeling, biotechnology, and molecular biology. It consists of seven 
chapters carefully selected and reviewed.

Section 1 contains the introductory chapter (Chapter 1), in which the editor and 
co-editors of the book make a synthetic and objective approach to the technique of 
comparative modeling, presenting this tool to the reader.

Section 2 presents two excellent review chapters that address fascinating topics 
in molecular modeling. Chapter 2 presents the Normal Mode Analysis technique, 
with examples and excellent didactic-scientific description. Chapter 3 takes a great 
approach to using force fields to validate three-dimensional models.

In Section 3, readers will be able to find scientific works with in silico experiments 
that used the modeling technique. This section consists of two chapters, where 
readers can find practical use in real academic work using molecular protein 
modeling techniques.

Section 4 contains two chapters that address applications associated with modeling.
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Chapter 1

Introductory Chapter: Homology 
Modeling
Rafael Trindade Maia, Magnólia de Araújo Campos  
and Rômulo Maciel de Moraes Filho

1. Introduction

Proteins are macromolecules present in all living beings and perform a huge variety 
of complex and diverse functions and structures. They are polymers of amino acids 
synthesized in the cell of living organisms, also called polypeptides. Determining the 
three-dimensional structure of a protein is crucial for understanding its function. 
However, experimental techniques for structural elucidation such as X-ray critalog-
raphy and nuclear magnetic resonance (NMR) are complicated and expensive [1]. In 
this context, computational techniques for building structural models are a very useful 
and viable alternative for different situations. Among computational techniques, 
homology modeling, also known as comparative modeling, is the most used in silico 
tool for obtaining structural protein models, achieving excellent results [2].

Proteins are organized at different levels of structural complexity: 1) primary 
structure; 2) secondary structure; 3) tertiary structure; 4) quarternary structure 
(Figure 1). The primary structure of a protein comprises the linear sequence of the 
amino acids that compose it, with one end containing the carboxyl group of the first 
amino acid in the chain (C-terminal) and with one end containing the amino group 
of the last amino acid in the chain (N -terminal). The primary structure of a protein 
can be represented by a pattern of letters that represents its peptide constitution 
(amino acids). The secondary structure of a protein is determined by the primary 
sequence, which is decisive in the arrangement of the monomers (aminoacids) with 
each other and with the solvent, forming standard structures in three groups: the 
turns, the helix and the β-leaves. The way in which these secondary structures are 
organized three-dimensionally in space is what is called a tertiary structure, which 
is associated with the biological function of the molecule in question. In multimeric 
protein complexes (dimers, trimers, tetramers, etc.) there is also the formation of 
the quarternary structure, which is the oligomeric state formed by the aggregation 
of these macromolecular compounds of tertiary structure.

There are three types of computational modeling for predicting protein struc-
tures: by ab initio/De novo, by Threading and by homology modeling. Homology 
modeling is based on the premise that the three-dimensional structure of a protein 
tends to be much more conserved than its primary structure. Therefore, changes in 
the sequence do not always change the structural domains of a protein, thus main-
taining its original function. It is assumed that proteins from the same functional 
family maintain their structural domains, which allows the so-called comparative 
modeling (by homology). If two proteins are homologous, it means that they 
belong to the same genetic and functional family, and hypothetically, they have 
the same structural motifs. In the case of a specific protein that does not have an 
elucidated three-dimensional structure, but it is homologous to a protein with a 
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solved structure, a three-dimensional model for the sequence can be built using the 
known structure as a template. As a rule, a minimum identity of 25% between the 
amino acids of two proteins is sufficient for the construction of models by homol-
ogy. Sequence identities above generally 40% provides good models, while those 
above 50% tend to provide excellent theoretical structures [3].

However, in addition to the identity and similarity between the amino acids, 
other parameters must be observed when choosing a good template, such as the 
resolution in angstroms of the crystallographic structure and the percentage of 
alignment coverage (Figure 2). The lower the resolution of a structure, the better its 
quality. The average resolution of the structures available in the PDB (Protein Data 
Bank) is around 3.5 Ä, while structures below 2.0 Ä are considered to have excellent 
resolution and represent less than 10% of the entries in the PDB. The higher the per-
centage of coverage of the alignment between a target protein (protein to be mod-
eled) and the template (mold), the better [4]. Coverage alignments above 90% of 
the residues tends to have high scores and are considered to be excellent (Figure 2).

Something important to note in alignments is the presence of sequence gaps. 
A gap between sequences means the absence of residues, that is, amino acids that 

Figure 1. 
Illustrative scheme for the structural complexity levels of proteins. Source: Google images.
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have been deleted from some part of the sequence (Figure 3). The amount and size 
of gaps in an alignment is crucial to the final quality of the models. The greater the 
quantity and size of the gaps, the less reliable the models are and the greater is the 
chance of generating structural artifacts. Therefore, when choosing a template, it is 
essential that the researcher be aware about gaps presence in the sequences.

Once the template has been defined, we proceed to the stage of building the 
three-dimensional model. From specific programs and servers, the necessary files 
for modeling are submitted, which consists of the superimposition of the structural 
carbons of the target protein on the template protein, based on the alignment infor-
mation to superimpose the equivalent amino acids. There are currently numerous 
free tools for building three-dimensional models (Table 1).

Figure 2. 
Example of BLASTp alignment between a Leishmania infantum ATP-synthase sequence against the PDB 
database. Values   of the coverage percentage (red) and identity (black) of each alignment are highlighted. 
Source: Authors data.

Figure 3. 
Alignment between two proteins (query/Sbjct) showing the presence of 8 gaps (red) in three different sections 
(green). Source: Authors data.

Nome Tipo Site

Modeler Software https://salilab.org/modeler/

Swiss-Model Server https://swissmodel.expasy.org/

Phyre2 Server http://www.sbg.bio.ic.ac.uk/phyre2

Galaxy Server http://galaxy.seoklab.org/

RaptorX Software/Server http://raptorx.uchicago.edu/

CONFOLD Software https://github.com/multicom-toolbox/CONFOLD

ROBBETTA Server http://robetta.bakerlab.org/

Source: Google search.

Table 1. 
Examples of free tools for building homology models.



Homology Molecular Modeling - Perspectives and Applications

4

solved structure, a three-dimensional model for the sequence can be built using the 
known structure as a template. As a rule, a minimum identity of 25% between the 
amino acids of two proteins is sufficient for the construction of models by homol-
ogy. Sequence identities above generally 40% provides good models, while those 
above 50% tend to provide excellent theoretical structures [3].

However, in addition to the identity and similarity between the amino acids, 
other parameters must be observed when choosing a good template, such as the 
resolution in angstroms of the crystallographic structure and the percentage of 
alignment coverage (Figure 2). The lower the resolution of a structure, the better its 
quality. The average resolution of the structures available in the PDB (Protein Data 
Bank) is around 3.5 Ä, while structures below 2.0 Ä are considered to have excellent 
resolution and represent less than 10% of the entries in the PDB. The higher the per-
centage of coverage of the alignment between a target protein (protein to be mod-
eled) and the template (mold), the better [4]. Coverage alignments above 90% of 
the residues tends to have high scores and are considered to be excellent (Figure 2).

Something important to note in alignments is the presence of sequence gaps. 
A gap between sequences means the absence of residues, that is, amino acids that 

Figure 1. 
Illustrative scheme for the structural complexity levels of proteins. Source: Google images.

5

Introductory Chapter: Homology Modeling
DOI: http://dx.doi.org/10.5772/intechopen.95446

have been deleted from some part of the sequence (Figure 3). The amount and size 
of gaps in an alignment is crucial to the final quality of the models. The greater the 
quantity and size of the gaps, the less reliable the models are and the greater is the 
chance of generating structural artifacts. Therefore, when choosing a template, it is 
essential that the researcher be aware about gaps presence in the sequences.

Once the template has been defined, we proceed to the stage of building the 
three-dimensional model. From specific programs and servers, the necessary files 
for modeling are submitted, which consists of the superimposition of the structural 
carbons of the target protein on the template protein, based on the alignment infor-
mation to superimpose the equivalent amino acids. There are currently numerous 
free tools for building three-dimensional models (Table 1).

Figure 2. 
Example of BLASTp alignment between a Leishmania infantum ATP-synthase sequence against the PDB 
database. Values   of the coverage percentage (red) and identity (black) of each alignment are highlighted. 
Source: Authors data.

Figure 3. 
Alignment between two proteins (query/Sbjct) showing the presence of 8 gaps (red) in three different sections 
(green). Source: Authors data.

Nome Tipo Site

Modeler Software https://salilab.org/modeler/

Swiss-Model Server https://swissmodel.expasy.org/

Phyre2 Server http://www.sbg.bio.ic.ac.uk/phyre2

Galaxy Server http://galaxy.seoklab.org/

RaptorX Software/Server http://raptorx.uchicago.edu/

CONFOLD Software https://github.com/multicom-toolbox/CONFOLD

ROBBETTA Server http://robetta.bakerlab.org/

Source: Google search.

Table 1. 
Examples of free tools for building homology models.



Homology Molecular Modeling - Perspectives and Applications

6

2. Validation and refinement

Homology models are theoretical-computational approximations of the real 
protein structures, and therefore require validation and sometimes refinement and 
optimization. A very popular validation tool is the Ramachandran plot (Figure 4), 
which analyzes the stereochemical quality of protein structures.

The Ramachandran graph analyzes the conformations of the phi and psi angles 
of the peptide bonds, placing them in regions. Residues outside the permitted 
regions (outliers) are those that are in unfavorable configurations due to the colli-
sion between the atoms (steric shock). It preconizes that a good model should have 
at least 90% of its waste in favorable and permitted regions [5].

Other validation tools are energy assessments, both local and global ones. A tool 
for global assessment of the quality of a model is the server PROSA-web - Protein 
Structure Analysis (https://prosa.services.came.sbg.ac.at/prosa.php) [6, 7], which 
compares the energy of a structure with a database of proteins of equivalent size, 
solved experimentally, through the Z-score (Figure 5).

For local quality analysis, the application of the VERIFY3D server (https://ser-
vicesn.mbi.ucla.edu/Verify3D) is very useful. In this type of analysis it is possible to 
check the local quality, that is, for each residue of the model (Figure 6). With this, it 
is possible to identify specific regions of low quality for further adjustments.

For the models refinement, two techniques are particularly interesting: energy 
minimization and classical (atomistic) molecular dynamics. Energy minimization, 
also called optimization of geometry, aims to find a set of atomic coordinates of the 
structure that avoid bad contacts and reduce the potential energy of the system. 
There are some free servers available for energy minimization application in theo-
retical models, like YASARA [8] (http://www.yasara.org/minimizationserver.htm) 
and CHIRON [9] (https://dokhlab.med.psu.edu/chiron/). Molecular dynamics are 
extremely efficient for validating and refining theoretical models. This technique is 
based on the principles of Classical Mechanics and describes the atomic movements 

Figure 4. 
Ramachandran graph for SARS-CoV-2 NSP9 replicase (PDB ID: 6w4b). In red, more favorable regions. 
In yellow and beige, regions allowed. In white, forbidden regions. Source: Authors data.
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of a system through the integration of Newtonian equations of motion. Thus, a 
molecular dynamics simulation of 5–10 nanoseconds is one of the most effective 
techniques for optimization and validation of models by homology. For performing 
molecular dynamics calculations, software such as GROMACS [10] and NAMD [11] 
are useful. Once optimized and validated, the theoretical model can be used for 
several purposes, and can also be made available in public repositories, such as the 
PMDB - Protein Model DataBase (http://srv00.recas.ba.infn.it/PMDB/) and the 
SWISS-MODEL repository (https://swissmodel.expasy.org/repository).

Figure 5. 
Comparative graph of the Z-score energy. The black dot represents the position of the analyzed protein 
compared to equivalent size structures obtained by x-ray crystallography (light blue) and nuclear magnetic 
resonance (dark blue). Source: Authors data.

Figure 6. 
Local ERRAT quality graph of a stretch from the NS5 enzyme from Zika virus. In blue, the average scores, in 
green, the raw scores. 93.93% of the residues have averaged 3D-1D score > = 0.2 (80% indicates good structures). 
Source: Authors data.



Homology Molecular Modeling - Perspectives and Applications

6

2. Validation and refinement

Homology models are theoretical-computational approximations of the real 
protein structures, and therefore require validation and sometimes refinement and 
optimization. A very popular validation tool is the Ramachandran plot (Figure 4), 
which analyzes the stereochemical quality of protein structures.

The Ramachandran graph analyzes the conformations of the phi and psi angles 
of the peptide bonds, placing them in regions. Residues outside the permitted 
regions (outliers) are those that are in unfavorable configurations due to the colli-
sion between the atoms (steric shock). It preconizes that a good model should have 
at least 90% of its waste in favorable and permitted regions [5].

Other validation tools are energy assessments, both local and global ones. A tool 
for global assessment of the quality of a model is the server PROSA-web - Protein 
Structure Analysis (https://prosa.services.came.sbg.ac.at/prosa.php) [6, 7], which 
compares the energy of a structure with a database of proteins of equivalent size, 
solved experimentally, through the Z-score (Figure 5).

For local quality analysis, the application of the VERIFY3D server (https://ser-
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Figure 4. 
Ramachandran graph for SARS-CoV-2 NSP9 replicase (PDB ID: 6w4b). In red, more favorable regions. 
In yellow and beige, regions allowed. In white, forbidden regions. Source: Authors data.
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of a system through the integration of Newtonian equations of motion. Thus, a 
molecular dynamics simulation of 5–10 nanoseconds is one of the most effective 
techniques for optimization and validation of models by homology. For performing 
molecular dynamics calculations, software such as GROMACS [10] and NAMD [11] 
are useful. Once optimized and validated, the theoretical model can be used for 
several purposes, and can also be made available in public repositories, such as the 
PMDB - Protein Model DataBase (http://srv00.recas.ba.infn.it/PMDB/) and the 
SWISS-MODEL repository (https://swissmodel.expasy.org/repository).

Figure 5. 
Comparative graph of the Z-score energy. The black dot represents the position of the analyzed protein 
compared to equivalent size structures obtained by x-ray crystallography (light blue) and nuclear magnetic 
resonance (dark blue). Source: Authors data.

Figure 6. 
Local ERRAT quality graph of a stretch from the NS5 enzyme from Zika virus. In blue, the average scores, in 
green, the raw scores. 93.93% of the residues have averaged 3D-1D score > = 0.2 (80% indicates good structures). 
Source: Authors data.



Homology Molecular Modeling - Perspectives and Applications

8

Author details

Rafael Trindade Maia1*, Magnólia de Araújo Campos2  
and Rômulo Maciel de Moraes Filho3

1 Federal University of Campina Grande, Centro de Desenvolvimento Sustentável 
do Semiárido, Sumé, Paraíba State, Brazil

2 Federal University of Campina Grande, Centro de Educação e Saúde, 
Cuité, Paraíba State, Brazil

3 Federal Rural University of Pernambuco, Departamento de Agronomia, 
Recife, Pernambuco State, Brazil

*Address all correspondence to: rafael.rafatrin@gmail.com

3. Conclusions

Theoretical-computational models are fast, inexpensive and extremely versatile. 
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dynamics simulations, quantum studies, biomolecule engineering etc.
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advancement of computational tools, theoretical models tend to be increasingly 
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Chapter 2

Normal Mode Analysis: A Tool for
Better Understanding Protein
Flexibility and Dynamics with
Application to Homology Models
Jacob A. Bauer and Vladena Bauerová-Hlinková

Abstract

Molecular dynamics (MD) and normal mode analysis (NMA) are very useful
methods for characterizing various dynamic aspects of biological macromolecules.
In comparison to MD, NMA is computationally less expensive which facilitates the
quick and systematic investigation of protein flexibility and dynamics even for large
proteins and protein complexes, whose structure was obtained experimentally or in
silico. In particular, NMA can be used to describe the flexible states adopted by a
protein around an equilibrium position. These states have been repeatedly shown to
have biological relevance and functional significance. This chapter briefly charac-
terizes NMA and describes the elastic network model, a schematic model of protein
shape used to decrease the computational cost of this method. Finally, we will
describe the applications of this technique to several large proteins and their
complexes as well as its use in enhancing protein homology modeling.

Keywords: normal mode analysis, elastic network model, crystal structure,
protein dynamics, homology modeling

1. Introduction

Often there is a high demand for the structures of biologically important pro-
teins, especially those which are large or part of complex systems. However, it is not
always possible, for many reasons, to get a high-resolution structure experimentally
using X-ray crystallography, NMR, or cryo-electron microscopy. Among the many
problems, we can mention low protein expression, low protein stability, high
aggregation or poorly diffracting crystals [1]. In this situation, in silico models
provide a good starting point for experimental research. One of the common tech-
niques for obtaining a reasonable structural model of a protein is homology model-
ing (HM). Homology modeling techniques are predominantly used to construct a
hypothetical structure of a protein of interest (the target) where only the amino-
acid sequence is available using the known structural features or 3D structure of one
or several homologous proteins (the templates) [2–4]. However, building a static
model often does not answer all questions regarding the function of the protein and
its role in the cell and organism, nor does it clarify its relationship with other cellular
components nucleic acids, proteins, ions and other molecules. It is important to
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understand protein dynamics and flexibility, as proteins during the fulfillment of
their role in the cell often change their shape, oligomeric state or even fold. As it is
often very challenging to observe protein dynamics in vivo or in vitro, to understand
better all these changes, a useful computational method normal mode analysis
(NMA) can be used [5–9].

2. Normal mode analysis

Normal mode analysis is a technique, based on the physics of small oscillations,
that can be used to describe the flexible states accessible to a protein around an
equilibrium position. The idea is that when an oscillating system at equilibrium, for
example a protein in an energy minimum conformation, is slightly perturbed, a
restoring force acts to bring the perturbed system back to its equilibrium confor-
mation. A system is defined to be in equilibrium or at the bottom of a potential
minimum when the generalized forces acting on it are equal to zero. At the mini-
mum energy conformation, represented by the generalized coordinates q0, the
potential energy equation can be written as a power series in q:

V qð Þ ¼ V q0
� �þ ∂V

∂qi

� �0

ηi þ
1
2

∂
2V

∂qi∂q j

 !0

ηiη j þ … (1)

where qi and q j are the instantaneous configuration of components i and j and

the deviation of component i from its equilibrium configuration is given by ηi ¼
qi � q0i . V qð Þ is the potential energy equation of the system and, for proteins,
usually takes the form of one of the commonly used molecular dynamics force fields
[10]. The first term in the series represents the minimum value of the potential and
may be set to zero and the second term will be zero at any local minimum, so the
potential can be written as

V qð Þ ¼ 1
2

∂
2V

∂qi∂q j

 !0

ηiη j ¼
1
2
ηiVijη j (2)

where Vij is the Hessian matrix which contains the second derivatives of the
potential with respect to the components of the system.

It is also necessary to consider the kinetic energy (T) of the system since we are
interested in dynamics. For component i, this can be given by

T qð Þ ¼ 1
2
M

d2ηi
dt2

(3)

where M is a diagonal matrix containing the mass of each particle. The entire
equation of motion can be written as

1
2
M

d2ηi
dt2
þ 1
2
ηiVijη j ¼ 0 (4)

One solution of this equation is the oscillatory equation

ηi ¼ aik cos ωktþ δkð Þ (5)
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where aik is the amplitude of oscillation, ωk is the frequency, and δk is a phase
factor. By substituting this into Eq. (4), the equation of motion can be rewritten as

VA ¼ λA (6)

where the matrix A contains the Ak eigenvectors of the Hessian matrix V and λ is
a diagonal matrix containing the λk eigenvalues. The Ak eigenvectors are the normal
mode vectors and describe in which direction and how far each particle in the
system moves with respect to each other particle; the λk eigenvalues give the
squares of the frequencies with which all the particles involved with a particular
mode vibrate. While the eigenvectors can tell in which direction and how far each
particle moves with respect to the others, it does not give absolute displacements.
NMA alone therefore cannot normally be used to get the displacement amplitudes
of a given normal mode [11].

The vibrational energy of the system is generally equally divided so that every
vibrational mode has the same energy and the average oscillation amplitude of a
given mode scales as the inverse of its frequency. Thus, modes with higher fre-
quencies, which will have energetically greater displacements, typically describe
rapid but small amplitude local motions involving relatively few atoms, while those
with lower frequencies will describe slower displacements involving larger numbers
of atoms and describe large-scale conformational changes. As the name of the
method indicates, these vibrational modes are normal to one another, meaning that
they move independently: the excitation of one mode does not trigger the motion of
a second one and the general motion of the system can be described by a superpo-
sition of all the modes. These normal modes yield analytical solutions to the equa-
tions of motion: for a given set of initial positions and velocities, NMA allows us to
calculate where each atom of the system in question will be at any subsequent time
subject to the small oscillation approximation. (A more complete treatment of the
theory behind NMA and its advantages and limitations may be found in [12]).

NMA was first applied to peptides in 1979 [13] and was subsequently used to
study the whole proteins bovine pancreatic trypsin inhibitor (BPTI) [14, 15],
hexokinase [16], crambin [17], human lysozyme [17, 18], ribonuclease [17], and
myoglobin [19, 20]. Application of the method to larger systems was hampered by
its computational expense. With advances in computer technology and the
development of more efficient algorithms, it has become possible to examine larger
structures, including the skeletal ryanodine receptor [21], Ca-ATPase [22], GroEL
[23–25], the ribosome [26–28], the yeast nuclear pore complex [29], and virus
capsids [30–32]. All these will be examined in more detail in Section 3 below.

2.1 The elastic network model

NMA is less computationally expensive than molecular dynamics simulation,
but it is still not trivial for proteins containing many thousands of atoms. The first
problem is that the structure to be studied must be energy minimized to ensure that
the starting conformation is in a true minimum relative to the chosen force field.
The minimization must then proceed until machine precision is reached, typically
below 0.001 kJ/mol-nm, which is much more computationally demanding than the
minimizations normally employed for other tasks. Frequently, the results of this
process distort the structure, leading to NMA being carried out on a structure
different from the experimentally determined one. The second problem, and the
computationally limiting factor, is the diagonalization of the Hessian matrix. For
classical, all-atom NMA, all N atoms in a structure, including the hydrogen atoms,
must be used, making the total Hessian 3N � 3N in size. For large proteins with
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thousands of atoms this can become computationally difficult very quickly. Conse-
quently, a number of coarse-grained approximate methods have been developed to
overcome both of these limitations [6, 11]. The most common and widely used of
these is the elastic network model (ENM).

The general idea of ENMs, first put forward by Tirion in 1996 [33], is to replace
the complicated semi-empirical force fields used in standard NMA with a simple
harmonic potential:

V qð Þ ¼
X
dij <Rc

C dij � d0ij
� �2

(7)

where dij is the distance between atoms or nodes i and j, d0ij is the distance in the
initial structure, and C is a spring constant assumed to be the same for each i–j pair. It
should be noted that by design the input configuration is assumed to be a minimum
energy one, and energy minimization against a potential is therefore unnecessary. Rc
in this equation refers to a cut-off radius and the sum is only over all pairs less than
this value. Rc is somewhat arbitrary, but in practice, values of between 7.0–8.0 Å are
used based on the observed distances between non-bonded atoms in experimental
structures [34, 35]. Most frequently, only the Cα atoms are used for these calculations
because they are sufficient for studying the backbone motions of the protein and are
all that is necessary for characterizing the lowest-frequency normal modes.

A number of different ENM formulations have been developed. The simplest
one is the Gaussian network model (GNM) developed by Bahar and co-workers
[36]. The GNM replaces the 3N � 3N Hessian matrix with an N �N Kirchoff
matrix (Γ). Γ is defined in terms of spring constants γij, which are created based on
the assumption that the separation distance ∣Ri � R j∣ ¼ Rij between the ith and jth
Cα atoms in the protein follows a Gaussian distribution. The potential is given by

VGNM ¼ 1
2

X
ij

γij Δ Rij
 �� �2

(8)

where Δ Rij
 �

is a vector expressing the fluctuations in distance between the ith
and jth Cα atoms. The model assumes that these fluctuations are isotropic; conse-
quently, no information about the three-dimensional directions of motion can be
obtained. Eigenvalue decomposition of Γ does allow the contribution of individual
modes to the equilibrium dynamics to be calculated, as well as the relative displace-
ment of residues along each mode axis, the cross-correlation between the residues
in the individual modes, and square displacement profiles.

Some form of the anisotropic network model (ANM) is perhaps the most com-
monly encountered ENM. This is the form originally suggested by Tirion [33] and
incorporated into the Molecular Modeling Toolkit (MMTK) by Hinsen [37], and
widely used in a number of other tools. The ANM gives the same information as the
GNM, but also provides information on the directionality of the fluctuations. On the
other hand, the mean-square fluctuations (B-factors) and cross-correlations it pro-
duces do not agree quite as well with experiment as GNM [38, 39]. In compensa-
tion, ANMs can be used to generate alternative conformations in the close
neighborhood of the starting structure by deforming the structure along the lowest
frequency modes [9]. Two groups led by Zheng [35] and Lin and Song [40] devel-
oped models which combined the best features of GNM and ANM into a single
method.

While coarse-graining does allow ENMs to be scaled to very large models, it does
so by losing detailed information on local structural movements. The rotating-
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translating blocks (RTB) model of Sanejouand [41] was constructed to alleviate this.
In this approach, the protein or other macromolecule is divided into nβ blocks made
up of one or a few residues connected by elastic springs. Next, it is assumed that a
good approximation to the low-frequency normal modes can be made by forming
linear combinations of the local rotations and translations of these individual blocks.
Consequently, a 3N � 6nβ projection matrix P is constructed and used to build a
projected Hessian matrix Hβ, which is diagonalized with AT

βHβAβ ¼ Λβ, where Aβ is
the eigenvector matrix diagonalizing Hβ and Λβ is the corresponding eigenvalue
matrix. The resulting eigenvectors can be projected back into the full 3N-dimen-
sional space using AP ¼ PAβ, where AP is a 3N � 6nβ matrix containing the 6nβ
lowest-frequency approximate normal modes.

3. Applications

In a survey of the recent structural biology literature, Bauer et al. [12] found that
NMA, as a component of a structural study, most often was used for descrying the
overall flexible motions of a molecule or for determining how those motions might
be correlated with ligand binding or catalytic activation. Another use for NMA is to
study the motions of macromolecules or macromolecular assemblies that are too
large for treatment using conventional MD simulation. It has been shown that the
low-frequency normal modes and the first few principal components calculated
from a MD simulation overlap considerably, meaning that NMA can plausibly
substitute for MD for large systems when only the overall collective motions of the
system are needed [42–44]. Below, we will examine the application of NMA to
experimentally obtained protein structures as well as to protein HM studies.

3.1 Application to experimental structures

3.1.1 Ryanodine receptor

The ryanodine receptors (RyRs) are the largest presently known ion channels,
with molecular weights of 2.2 MDa. They are homotetramers embedded in the
membrane of the sarcoplasmic reticulum of myocytes, where they play a key role in
excitation-contraction coupling. They regulate Ca2þ release from the sarcoplasmic
reticulum by undergoing a closed-to-open gating transition in response to an action
potential or calcium binding. RyRs are found in all animals. Three isoforms have
been identified in mammals: RyR1 (predominantly expressed in skeletal muscle),
RyR2 (cardiac muscle) and RyR3 (present in several tissues including the brain,
diaphragm, and testes) [45–47]. RyR malfunction leads to severe muscular disor-
ders, including malignant hyperthermia, central core disease, tachycardia, dyspla-
sia, and others [45]. The first high-resolution cryo-EM structures of the complete
rabbit skeletal RyR were reported in 2015 [48–50], and were followed by a number
of other high-resolution structures of the skeletal and cardiac isoforms in both their
open and closed conformations, either alone or bound to regulators (For review see
Bauerová-Hlinková et al. [51]).

A number of MD simulation studies have been reported for both the skeletal and
cardiac RyR isoforms, but only covering small parts of the whole channel; in par-
ticular, the N-terminal domain (roughly the first 600 amino acids) [52–55] and
parts of the channel domain [56–58] were studied in this way. Generally, these
studies focused on identifying how known disease-causing mutations affected the
dynamics of these fragments.
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Shortly after the appearance of the first high-resolution cryo-EM structures,
Wenjun Zheng published a normal-mode analysis on the 3.8-Å RyR1 structure [21].
He found that the largest collective motions of the closed form involved large
outward and downward movements of the peripheral domains, in in good agree-
ment with the conformational variations observed in multiple cryo-EM structures
of the closed form later reported by des Georges et al. [59]. By using normal mode
analysis to flexibly fit the closed form into a 10 Å cryo-EM map of the open form,
he was also able to create a model of the open form of the receptor. A similar open-
form conformation was created by Mowrey et al. [56] using an ion-pulling
molecular dynamics simulation on only the transmembrane portion of the struc-
ture. Both models recreated the major features of the RyR1 and RyR2 open-channel
structures reported subsequently, including the rotation of an important pore-lining
transmembrane α-helix away from the channel axis.

3.1.2 Ca2þ-ATPase

The Ca2þ-ATPase may be thought of as the partner of the RyR. While RyR
releases Ca2þ from the sarcoplasmic reticulum into the cytosol, the Ca2þ-ATPase
pumps it back in, against a large concentration gradient, at the rate of two Ca2þ ions
per hydrolyzed ATP. Conventionally, the Ca2þ-ATPase is thought to take two
different states: E1, which has high affinity for Ca2þ, and E2, which has much lower
affinity [60, 61]. In addition to the binding and dissociation of Ca2þ, ATP hydrolysis
and dephosphorylation of the resulting phosphorylated Asp351 result in the pres-
ence of 4–7 different physiological states [62]. At least 54 crystal structures have
been determined since the first one in 2000 [63] and they cover nearly all the
conformations of the different physiological states. They show large conformational
rearrangements during the reaction cycle and have been investigated by a number
of computational methods [62]. Most of the NMA studies occurred soon after the
initial structures by Toyoshima et al. [63, 64] had been reported, but before the final
ones had become available [65, 66], making this a good situation for illustrating
both the abilities and limitations of NMA.

The initial structure [63] showed that the ATPase consisted of three cytoplasmic
domains, labeled A (activation), N (nucleotide binding), and P (phosphorylation),
and 10 transmembrane helices (M1–M10). As the names suggest, the cytoplasmic
domain N holds most of the ATP binding site and P holds the phosphorylation site.
Subsequent structures [65, 66] showed that the A domain also participates in ATP
binding and has a crucial role in dephosphorylation. In the first structure, taken to
be in the E1 conformation, the N and A domains were widely separated. Subsequent
E2 structures showed that ATP binding induces a large movement in the N domain
and a smaller, though still considerable, motion in the A domain. NMA on only the
initial E1 structure [67] found that the N domain seemed to be the most mobile and
that rotational hinges were present between the N and P, and A and M domains. It
was also suggested that the transmembrane α-helices M2, M4, and M8 likely played
an important role in Ca2þ release into the sarcoplasmic reticulum lumen. After the
second structure in the E2 conformation became available [64], two studies exam-
ined the normal modes that participate in the E1! E2 conformational change
[22, 68]. They found that only a few of the lower-frequency modes were needed to
describe the E1! E2 transition, which predominantly involved the movement of
the A and N domains to close the cytoplasmic headpiece. They also both predicted
that the transmembrane domain was likely to undergo a twisting motion which
would eliminate the Ca2þ binding sites and open up the channel. The results of these
studies were partially confirmed by the subsequent structures [65, 66]. The first
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NMA study [67] did correctly predict that the largest conformational changes
would be observed in the positions of the N and A domains, and the movement of
helices M2, M4, and M8 was important for Ca2þ release, but they all missed that
transmembrane helix M5 underwent a sharp bend following ADP release. They also
failed to note that a conserved loop from domain A which interacts with the
phosphate binding site shifts conformation and plays an important role in hydro-
lyzing the phosphate free from Asp351. Thus, these coarse-grained NMA studies
managed to successfully predict many of the large-scale movements, but missed an
important local conformational change and a large distortion of an element of
secondary structure.

3.1.3 GroEL

Escherichia coli GroEL is one of the best studied chaperones and it is essential for
cell viability [69, 70]. It is composed of two identical rings of seven subunits each.
Each 548-residue subunit can be further subdivided into apical, intermediate, and
equatorial domains, and the two rings stack back-to-back to form an isolated
chamber where a non-native substrate can be refolded. The three domains are
separated by upper and lower hinges, making each subunit highly flexible. GroEL
works together with the co-chaperone GroES, which also has seven subunits and
can bind to the apical part of either GroEL ring to form a cap [71]. During its
activity cycle, GroEL goes through a number of conformational changes which are
triggered by ATP binding and hydrolysis, interactions with GroES, and the sub-
strate protein. When bound to no ligands, GroEL is in what is termed the “tense” or
T state; this state is the most attractive to a (partially) unfolded substrate. Binding
of ATP shifts GroEL to the “relaxed” or R state, and GroES binding and subsequent
ATP hydrolysis shift it to the R00 state.

The structural transitions between these forms have been well described
[70–75], and NMA has been applied to study the dynamics of both the individual
subunits as well as the entire GroEL–GroES complex [5, 23–25, 76–78]. The earliest
studies [23, 24] examined individual GroEL subunits and found that there is a very
close relationship between their flexibility and the conformational changes
observed for the entire complex. When ATP binds to a given subunit, the subunit
changes conformation closely following a few low-frequency normal modes [23].

NMA was also calculated on an ENM of the whole GroEL–GroES complex [25].
These authors found that the slowest normal modes revealed a wide variety of
motions which depended on the central cavity of the structure. These included the
opposite twisting of the two GroEL rings combined with a flattening and expansion
of the GroES cap; bending, shear, opposed radial breathing of the two rings, and
stretching and contraction along the complex’s long axis were also observed. They
concluded that the mechanical motions driven by the different modes provide
changing binding surfaces and differently sized cavities in the interior which might
enable differently shaped substrates to be accommodated; possibly, these shifts
might also be used during the refolding process.

3.1.4 The Ribosome

The ribosome is a molecular machine for translating the nucleotide sequence
encoded in an mRNA transcript into a polypeptide sequence that folds into a
functional protein. In prokaryotes, it is composed of a 50S subunit (containing a 23S
rRNA, a 5S rRNA, and 34 proteins) and a 30S subunit (comprised of a 16S rRNA
and 21 proteins) which together combine to form a 70S ribosome. The 30S subunit
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binds the mRNA and the anticodon end of the bound tRNA and is responsible for
mRNA decoding. The 50S subunit interacts with the ends of the tRNA bound to the
transferred amino acid and catalyzes peptide bond formation. The complete assem-
bly features three sites for tRNA placement: an A (aminoacyl) site, a P (peptidyl)
site, and an E (exit) site.

Several different crystal structures of ribosomes from different organisms and in
different states have been determined by both X-ray crystallography and cryo-EM.
The earliest were the 30S subunit from Thermus thermophilus at 3.0 Å [79, 80] and
3.3 Å resolution [81], the 50S subunit from Haloarcula marismortui at 2.4 Å [82, 83],
and the complete T. thermophilus 70S ribosome at 5.5 Å [84]. These structures were
the ones most commonly used for NMA studies. Many of these studies were carried
out in the laboratory of Robert Jernigan [27, 85–89]. Overall, they found that the
dominant motion was a ratchet motion between the large and small subunits, which
was very similar to that observed experimentally by cryo-EM [26, 88]. This motion is
observed regardless of whether the tRNAs and mRNA are present [87]. Curiously
enough, this motion also remains even if all the proteins are stripped out, provided
the general shape is maintained [27, 87]. This suggests that the motion arises from the
ribosome structure itself and is not dependent upon the presence of its substrates.

Many other complex motions have been observed, especially at the mRNA
decoding center in the 30S subunit [87]. In particular, the mRNA A site was found to
be more flexible than the P site, which was consistent with the experimentally
observed B-factors. It also agrees with the observation that the A site is able to
accommodate a diverse set of substrates and that the P site needs to be more rigid to
ensure the fidelity of the codon–anticodon matching. The collective dynamics of the
exit tunnel for the growing polypeptide was also examined [28]. Here, it was found
that the tunnel could be generally divided into three regions, entrance, neck, and exit,
based on the low-frequencymotions of the tunnel lining. Generally, themiddle parts of
the tunnel move in a complex way toward the tunnel exit, while the parts near the exit
itself rotate around the tunnel axis. NMA of ENMs of the tRNAs were also examined
and shown to be similar to the range of conformations observed frommultiple exper-
imental tRNA structures [89]. By comparing the normal modes of tRNAs alone and
bound to the ribosome, they also noted that the ribosome acts to suppress all internal
tRNAmotions, only allowing it to move by rigid-body translation [90].

3.1.5 Yeast nuclear pore complex

The nuclear pore complex (NPC) is an enormous macroassembly that regulates
the import and export of a large variety of substances (including proteins, nucleic
acids, and small molecules) from the nucleus [91]. It is an octagonal complex com-
posed of some 30 different proteins called nucleoporins. The yeast NPC has a mass of
around 60 MDa while the vertebrate one is around 125 MDa. The yeast NPC is a ring
that is around 100 nm across with a central pore of about 30 nm. The eight different
subunits are termed “spokes” and each spoke exhibits pseudo 2-fold symmetry,
giving the complex as a whole pseudo 16-fold symmetry. With 16 copies each, the 30
different nucleoporins make a total complex of 450–480 proteins. The central chan-
nel is coated with several “FG nucleoporins,” which contain many structurally disor-
dered phenylalanine (F) and glycine (G) repeats. These FG nucleoporins form a
selective barrier: small particles (<30 kDa) can diffuse freely through the pore, while
larger proteins require the assistance of karyopherin transport factors. The vertebrate
NPC possesses, in addition to a central core, additional structural elements, including
a cytoplasmic ring, a nuclear ring, and a luminal ring [91].

By following an integrative approach that combined data from many different
sources, a coarse-grained structural model of the yeast NPC was developed [92, 93].
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This model was then used for a coarse-grained NMA using an ENM [29]. This study
found that two types of collective modes were predicted to be favored: a global
bending mode and an extension and contraction mode that oscillated between a
circle and an ellipse. Several different coarse-grained representations were tried and
it was found that a simple model of a torid with an axial varying mass density was
sufficient to capture the main dynamic features. It was also found that the number
of spokes significantly affected the number of symmetric low-frequency modes:
torids composed of eight spokes had access to symmetric modes that torids com-
posed of seven or nine modes did not. A similar NMA study created using a
different coarse-grained toridal model came to similar conclusions [94].

3.1.6 Virus Capsids

Aside from the ryanodine receptor and the nuclear pore complex, all of the
forgoing examples are molecular machines of some sort that transform the chemical
energy of ATP hydrolysis into mechanical motion. Viral capsids are different in that
they are more of an architectural than a mechanical structure. Viral capsids encap-
sulate and protect the viral genome during its spread from cell to cell during
infection. They can display a number of different surface features, including pores,
canyons, spikes, and pillars. They typically consist of more than 100 protein sub-
units and have diameters of 100 nm or more. Capsids with more than 60 subunits
that maintain their icosahedral symmetry are typically made up of collections of
pentamers and hexamers [95]. The most commonly studied viral capsids form a
spherical or icosahedral shape. NMA has been used to study the mechanical prop-
erties and conformational changes of these capsids for nearly 20 years (reviewed by
May [96]). Even using coarse-grained NMA methods, the computational loads
required to study whole capsids are still non-trivial, so a variety of symmetry-based
approaches have been created to reduce them [32, 97–103].

One of the most thoroughly studied viral capsids is that of bacteriophage HK97
[31, 99, 104]. Tama and Brooks [31, 105] used NMA to study the swelling of a
number of viral capsids, including cowpea chlorotic mottle virus (CCMV),
Nudaurelia capensis virus (NωV), and HK97. They found that for CCMV and NωV,
only the single lowest-frequency mode was needed to describe the swelling, while
HK97 required the two lowest-frequency modes. The reason for this appeared to be
that the CCMV and NωV, being spherical, required only a single mode, while HK97
not only expands, but also changes conformation from spherical to icosahedral.
Generally, these studies, together with two others [106, 107], showed that the
functional dynamics of the capsids are dictated by their structure, which is why
only the lowest-frequency modes are needed. The HK97 expansion and conforma-
tional transition occurs during its maturation, and NMA has also been applied to
study the HK97 maturation pathway [99, 104]. During maturation, a spherical
procapsid undergoes substantial expansion together with a conformational change
from spherical to icosahedral to form a mature capsid. These studies found that only
a few low-frequency icosahedral modes were needed to account for most of the
maturation expansion and that maturation appears to occur through the puckering
of the pentamers followed by the flattening and cross-linking of the hexamers.

3.2 NMA in homology modeling studies

3.2.1 Membrane proteins

One of the protein groups in which homology modeling has been used together
with NMA is multidomain transmembrane proteins, in particular the human
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binds the mRNA and the anticodon end of the bound tRNA and is responsible for
mRNA decoding. The 50S subunit interacts with the ends of the tRNA bound to the
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3.1.5 Yeast nuclear pore complex

The nuclear pore complex (NPC) is an enormous macroassembly that regulates
the import and export of a large variety of substances (including proteins, nucleic
acids, and small molecules) from the nucleus [91]. It is an octagonal complex com-
posed of some 30 different proteins called nucleoporins. The yeast NPC has a mass of
around 60 MDa while the vertebrate one is around 125 MDa. The yeast NPC is a ring
that is around 100 nm across with a central pore of about 30 nm. The eight different
subunits are termed “spokes” and each spoke exhibits pseudo 2-fold symmetry,
giving the complex as a whole pseudo 16-fold symmetry. With 16 copies each, the 30
different nucleoporins make a total complex of 450–480 proteins. The central chan-
nel is coated with several “FG nucleoporins,” which contain many structurally disor-
dered phenylalanine (F) and glycine (G) repeats. These FG nucleoporins form a
selective barrier: small particles (<30 kDa) can diffuse freely through the pore, while
larger proteins require the assistance of karyopherin transport factors. The vertebrate
NPC possesses, in addition to a central core, additional structural elements, including
a cytoplasmic ring, a nuclear ring, and a luminal ring [91].

By following an integrative approach that combined data from many different
sources, a coarse-grained structural model of the yeast NPC was developed [92, 93].
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nicotine acetylcholine receptor (hnAChR) [108] and E. coli mechanosensitive
channel (MscL) [109]. hnAChRs are located mainly in the central nervous system
and mediate fast neurotransmission. They possess a homopentameric quarternary
structure where each monomer consists of an extracellular domain involving a
conserved Cys loop and a ligand-binding channel, four transmembrane domains,
and an intracellular segment. MscL is an integral membrane protein that gates in
response to membrane tension in order to diminish the turgor pressure when
bacteria are moved from a high to a low osmolarity environment. Like nAChR,
MscL is a homopentamer where each subunit is composed of a cytoplasmic and a
transmembrane domain.

Similar approaches were use in both studies. First a homology model of the target
protein was constructed based on the known structures of similar proteins, followed
by the application of NMA. The aim of both studies was to better understand channel
gating and the particular structural changes associated with it [108, 109]. The
hnAChR study also involved predicting the ligand binding site [108].

3.2.2 Enzymes

Enzymes have also been studied using a combination of HM and NMA. One
example is the Arabidopsis thaliana Dicer-like 4 protein (AtDCL4) [110]. Dicer-like
4 is a large multidomain protein belonging to the Ribonuclease III family and is
involved in the regulation of gene expression and antiviral defense through RNA-
interference pathways. In particular, AtDCL4 produces short-stranded RNAs (ta-
siRNA) which are incorporated into the RNA-induced silencing complex to direct
the silencing of cognate RNA [111, 112]. The main aim of the study [110] was to
better understand the mechanism of AtDCL4-mediated dsRNA recognition and
binding by which small RNAs of a specific size are produced. First, the authors built
the core of the AtDCL4 protein, which consists of a Platform, a PAZ domain, a
Connector helix and RNAseA/B domains. A model of an AtDCL4–dsRNA complex
was then constructed, which suggested that the spatial orientation of the AtDCL4
domains with respect to one another are responsible for the length of the bound
dsRNA. Two regions, one on the surface of the Platform domain and second in the
PAZ loop, were also identified, which are likely to be responsible for RNA binding.

3.2.3 Cell division and transport proteins

One of the longest-studied cellular processes is cell division [113] and cellular
transport [114]. Regarding cell division, a combination of HM and NMA was used to
study a yeast cohesin, an essential ring-shaped chromosomemaintenance protein that
mediates sister chromatid cohesion, homologous recombination, and DNA looping.
This protein is a member of the structural maintenance of chromosomes (Smc)
family, which exists in all eukaryotes [115]. In yeast, cohesin mainly consists of two
Smc proteins, Smc1 and Smc3, both of which adopt long, anti-parallel coiled-coil
regions that are separated by two globular regions: an ATP-binding head domain and
a hinge region. The aim of the HM and NMA study [113] was to reveal the missing
molecular details of how the two halves of the hinge region open to create an entry
gate for DNA. In agreement with experimental data, the constructed yeast cohesin
HMmodel showed that the bending motion of the cohesin ring is able to adopt a
head-to-tail conformation. At the interface of the cohesin heterodimer, low-
frequency conformational changes were observed to deform the highly conserved
glycine residues present there. Normal mode analysis further revealed that the
docking of large globular structures, such as the nucleosome and accessory proteins,
to cohesin notably affected the mobility of the coiled-coil regions. Moreover, fully
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solvated molecular dynamics calculations, performed specifically on the hinge region,
indicated that hinge opening starts from one side of the dimerization interface and is
coordinated by the highly conserved glycine residues [113].

4. Conclusions

Normal mode analysis is a very useful technique for determining which confor-
mational states are accessible to a given macromolecule. It can provide much of the
same information given by more computationally expensive methods, such as
molecular dynamics simulation, at only a fraction of the cost. It can be used by itself
or in tandem with HM to characterize the general flexibility and domain move-
ments of a molecule, to produce possible alternative conformations and confirm
observed ones, and to describe the conformational changes that occur or might
occur during substrate binding, product release, or catalytic activation. We have
illustrated its utility using several examples of its application to a number of large
biologically important proteins and protein complexes from bacteria, eukaryotes,
and viruses. The biological relevance of the in silico models constructed by HM and
NMA can be verified and expanded by different experimental approaches involving
molecular and structural biology and biochemistry.
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Abstract

The world today, although, has developed an elaborate health system to fortify 
against known and unknown diseases, it continues to be challenged by new as well 
as emerging, and re-emerging infectious disease threats with severity and probable 
fluctuations. These threats also have varying costs for morbidity and mortality, as well 
as for a complex set of socio-economic outcomes. Some of these diseases are often 
caused by pathogens which use humans as host. In such cases, it becomes paramount 
responsibility to dig out the source of pathogen survival to stop their population 
growth. Sequencing genomes has been finessed so much in the 21st century that com-
plete genomes of any pathogen can be sequenced in a matter of days following which; 
different potential drug targets are needed to be identified. Structure modeling of the 
selected sequences is an initial step in structure-based drug design (SBDD). Dynamical 
study of predicted models provides a stable target structure. Results of these in-silico 
techniques greatly depend on force field (FF) parameters used. Thus, in this chapter, 
we intend to discuss the role of FF parameters used in protein structure prediction and 
molecular dynamics simulation to provide a brief overview on this area.

Keywords: homology modeling, force field (FF), molecular dynamics (MD) 
simulations, molecular docking

1. Introduction

What is a “disease”? A disease is any condition that harms the normal function 
of a body organ and/or system, of the psyche, or of the organism as a whole, which 
is associated with specific signs and symptoms. Factors that often lead to the dam-
age of the function of organs and/or systems may be of two types, i.e., intrinsic and 
extrinsic. Those factors, that arise from within the host body interfering with the 
normal functioning processes of a body organ and/or system, as a result of genetic 
features of an organism or any disorder within the host are known as intrinsic fac-
tors [1]. Huntington’s disease is an example of genetic disease which causes uncon-
trolled movements, emotional problems and loss of thinking ability (cognition) 
owing to a progressive brain disorder, due to mutations in the HTT gene, involving 
a DNA segment known as CAG trinucleotide repeats [2]. When a host comes in con-
tact with a pathogen from outside, the host’s system is accessed by extrinsic factors 
[3]. Microorganisms are the main causative agents which are responsible for causing 
infectious diseases. Their importance is determined from the type and extent of 
damage their causative agents inflict on organs and/or systems when they enter 
into a host. Entry into the host is mostly by routes such as the mouth, eyes, genital 
openings, nose and the skin. Damage to tissues mainly results from the growth and 
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metabolic processes of infectious agents intracellular or within body fluids, with the 
production and release of toxins or enzymes that interfere with the normal func-
tioning of organs and/or systems [4]. An example of extrinsic factor is the infection 
caused by novel pathogen, such as SARS-CoV-2, which represents an extremely 
challenging and complex endeavor. Currently, several promising therapeutics are 
underway and also many vaccine candidates with promises to mitigate the cata-
strophic effects of COVID-19 pandemic are under clinical trials. Still, an effective 
and successful countermeasure to control this catastrophe is not available [5].

In December 2019, a kind of pneumonia having an unknown etiology was reported 
from the Wuhan city of China in the Hubei province [6]. Isolation and genomic char-
acterization of the complete sequence of the virus using next-generation sequencing 
(NGS), identified it as a novel coronavirus (CoV) and named it as 2019-nCoV, now as 
SARS-CoV-2 [7]. Although the characterization of the complete sequence was com-
pleted in January 2020, yet till date, there is no definitive cure or vaccine available for 
this virus. With the availability of the sequence, the three-dimensional (3D) structures 
of many proteins belonging to SARS-CoV-2 are now available. These 3D-structures can 
be obtained using various experimental and computational techniques. X-ray crystal-
lography and NMR spectroscopy are currently the two major experimental techniques 
for protein structure determination [8] which are deposited in both UniProt and 
Protein Data Bank (PDB) [9]. For computational modeling of the 3D structure of pro-
teins, homology modeling technique is used. Homology modeling is a computational 
technique which uses the amino acid sequence to predict the 3D structure. It is one of 
the widely used computational structure prediction method.

Proteins are one of the most extensively studied and complex macromolecules 
within living organisms with a unique 3D structure. Usually this leads to a diversity in 
their spatial shape, structure and thus, leading to different biological functionalities 
in a living system [8]. Yet, very little is known about the process of protein folding 
leading to its specific tertiary structure from its primary structure. Till date, approxi-
mately 175,000 experimentally determined 3D structures of biological macromol-
ecules are available in the PDB [9]. However, reference sequence (refseq) release 
of National Center for Biotechnology Information (NCBI) contains as many as 
178,304,046 protein sequences. This signifies a huge difference between the number 
of sequences in the NCBI and the number of protein 3D structures in the PDB. The 
difference in the number is even higher due to the fact that the reference sequences 
in the NCBI are non-redundant, whereas, structures available in PDB contain 
redundancy. This has resulted in an alarming situation owing to the increasing gap 
between the available 3D structures and the protein sequences. Therefore, computa-
tional structural prediction methods such as homology modeling are much needed 
in covering this widening gap. Thus, this chapter discusses homology modeling in a 
holistic manner covering the principles and different types of structure prediction 
methods along with giving a flavor of the different force field (FF) parameters that 
are used in protein structure prediction. The chapter also includes a brief overview of 
the molecular dynamics (MD) simulations that are used in computational modeling 
of proteins along with discussion of some application examples in this field.

2. Protein structure prediction

Protein sequences are much easier to obtain as compare to their structures. This 
is due to advancements in the field of protein sequencing technology. As a result, an 
exponential growth in the accumulation of protein sequences can be observed. An 
amino acid sequence is a very important source of insight into proteins, its function, 
structure and history. This is mostly because, first, comparison of an unknown 
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sequence with a known sequence helps in deciding whether significant similarities 
exist between them, which in turn helps in establishing the class of protein and can 
give valuable information regarding its structure and function. Secondly, genea-
logical relationships can be studied by comparing the sequences of the same protein 
from different species. Thirdly, the presence of internal repeats in protein sequences 
reveals the history of the proteins. Also, sequencing of amino acids is very impor-
tant for making DNA probes which can be used for encoding of its protein, as 
knowledge of the primary structure also allows the use of reverse genetics [10].

2.1 Amino acid sequence determination techniques

Determination of the amino acid sequence of all or part of a protein or peptide 
is known as prediction of protein sequence. It is used to categorize the protein 
and may help in characterizing its post-translational modifications. In a protein, 
determination of the amino acid sequence involves the following steps [10]:

i. Hydrolysis: This procedure is required in order to hydrolyze the protein into 
its amino acid and includes the protein being heated in 6 M hydrochloric acid 
(HCl) at 100–110° C for 24 hours or longer.

ii. Separation: Separation of amino acid from a peptide can be achieved by 
ion-exchange chromatography. The amino acids are eluted by mixing 
them with an acidic solution and passing a buffer steadily while increasing 
the pH through the chromatography column on sulfonated polystyrene. 
Accordingly, when an amino acid reaches its isoelectric point, it is separated. 
The buffer used is correlated to a specific amino acid type. Thus, the amino 
acid having the most acidic side chain will emerge first, while the amino acid 
having the most basic side chain will emerge last. The absorbance is used to 
determine the amount of similar type amino acid residues.

iii. Quantitation: Once the separation of the amino acids is achieved, their respec-
tive quantities are determined by adding a reagent called ninhydrin which 
gives an intense blue color to the amino acids, except proline which, due to 
the presence of secondary amino group in its structure, gives it a yellow color. 
For very small quantities (nanogram), reagents like fluorescamine or ortho-
phthaldehyde (OPA) are used to obtain fluorescent products. Therefore, the 
concentration of amino acids is directly proportional to either the absorbance 
of the resulting solution or the fluorescence emitted by the sample.

For determining the composition and the sequence of the protein, two direct 
methods can be used:

a. Edward Degradation Method: This method uses phenyl iso-thio-cyanate to 
cleave the amino acids one by one starting from the amino terminal. The amino 
acids when treated with phenyl iso-thio-cyanate forms a phenyl-thio-hydantoin 
(PTH)-amino acid (e.g. PTH-lysine, etc.) terminal residue, which gets released 
under mild acidic conditions. The released terminal compound is then identified 
using chromatographic procedures.

b. Mass Spectrometry: Another technique to determine protein sequence is the 
mass spectrometry which uses the time of flight of ionized proteins to calculate 
the mass of the ionized proteins. In this process, the protein is cleaved using 
specific enzymes. The ionized amino acids are triggered by a laser beam which 
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travels to the detector through a flight tube. The ions with lighter mass will 
reach the detector faster due to Newton’s second law (F = ma) and hence, will 
be detected first. After the spectrum is recorded, it is further analyzed and 
compared against a database of sequenced proteins. A detailed sequence of 
protein fragments can be determined by repeating the process with different 
enzymes for cleavage. As a result, the fragments become much smaller with the 
fragments overlapping each other establishing the order of the protein.

2.2 Experimental determination of protein structure

The basic prerequisite for understanding the function of a protein is the knowl-
edge of the protein 3D structure. The experimental methods used in the study of 
tertiary structure include:

i. Protein X-ray crystallography: X-ray crystallography is presently the most 
sought-after technique for determination of biological macromolecule struc-
tures. In this method, the determination of protein structure is achieved by 
crystallization of the purified protein at high concentration and exposing the 
crystals to an X-ray beam. The resultant diffraction patterns, obtained from 
the diffraction spots, are then processed to get knowledge about the symme-
try of the packaging of the crystal and the size of the repeating units forming 
the crystal. A map of the electron density is then calculated using the “struc-
ture features”, which are determined from the intensities of the diffraction 
spots. The quality of the electron density map can be improved using various 
methods. This is done to get a definitive idea to build the molecular structure 
using the amino acid sequence. Finally, the structure that is obtained is 
further refined to fit the map more accurately and to assume a conforma-
tion which is thermodynamically more favorable. Protein crystallography 
is known to provide highly accurate protein structures by giving atomic 
resolution. However, this method is not always straightforward and may take 
a lot of time to complete, which is around 3–5 years [11].

ii. Nuclear magnetic resonance (NMR spectroscopy): Another useful technique 
to determine the protein structure is the NMR spectroscopy. It is a primary 
quantitative method which allows concentration determination of proteins 
in an aqueous environment that may resemble its actual physiological state 
more closely. In principle, the NMR spectroscopy is dependent on the electro-
magnetic radiation and the sample protein interaction. It is used to observe 
the local magnetic fields prevailing around the protein atomic nuclei. The 
NMR signal is obtained when sensitive radio receivers detect the excitation 
of the material nuclei with radio waves into the nuclear magnetic resonance. 
Thus, it provides access to the electronic structure of the sample protein. The 
major advantage of NMR over X-ray crystallography is that the protein in 
NMR spectroscopy can be examined in their native-like physiological state. 
However, NMR is not suitable for proteins with more than 150 amino acid 
and needs the protein under study to be stable in room temperature for a long 
time of data acquisition, which is a drawback of this technique [12].

iii. Electron microscopy (especially Cryo-electron microscopy): Electron microscopy 
(EM) and cryo-electron microscopy (cryo-EM) are used to study objects that 
are comparatively larger in size such as cellular organelles or large macro-
molecular complexes with higher resolution. EM and cryo-EM use a method 
known as single-particle reconstruction. In principle, the data set in EM and 
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cryo-EM is split randomly into half and the two averages (or 3D reconstruc-
tions) over rings (or shells, respectively) are compared, with increasing 
radius in Fourier space using an appropriate amount of reproducibility [13]. 
The protein sample in EM and cryo-EM does not require crystallization, 
saving a lot of time and effort, which is a major advantage over protein x-ray 
crystallography. Nevertheless, for membrane proteins, electron crystal-
lography is used which require two dimensional (2D) crystals of the sample 
protein. Another advantage of cryo-EM is that it requires very less amount 
of sample materials. However, one of the limitations of cryo-EM is that it has 
to compromise with the resolution comparative to resolution obtained from 
x-ray crystallography and NMR spectroscopy [14].

2.3 Protein structure prediction

The field of structural biology is mostly dominated by experimental methods 
which are expensive and laborious in nature. However, since the last few decades, 
the application of computational techniques in structural biology has been widely 
used, with significant improvements in these techniques since last 10–20 years. 
This has helped to achieve substantial developments in protein structure prediction 
methods. In-silico protein structure prediction enables the prediction of 3D struc-
tures for proteins with known sequences and unknown structures. Prediction of the 
tertiary structure also helps in understanding the folding and unfolding of proteins. 
Also, protein engineering may help in incorporation of new functions in proteins 
thus facilitating drug design and discovery [15]. Protein structure prediction can be 
achieved by three different ways:

i. Computer simulation-based on empirical energy minimization

ii. Knowledge based-approaches using information derived from known 
sequences of experimentally determined protein 3-D structures

iii. Hierarchical methods.

2.3.1 Approaches based on energy minimization

The energy minimization method is also known as the ab-initio (de novo) method 
for protein structure prediction and is based on the theory that the native structure of 
protein is always at thermodynamic equilibrium with minimum energy, which is cal-
culated using basic laws of physics and chemistry (Figure 1). Energy minimization-
based methods always attempt to detect the global minima in free energy surface of 
the protein molecule as it is thought that global minima correspond to the native con-
formation. This method is not very helpful to design protein sequence length of more 
than 150 amino acid residues. However, it can be used to design small stable peptides 
that can bind to any specific therapeutic targets [16]. Two types of energy minimiza-
tion methods are broadly used in de novo structure prediction approach, namely 
static and dynamical minimization methods. Some of the major FF used for energy 
minimizations are GROMOS, AMBER, CHARMM and ECEPP [17, 18]. One of the 
ab-initio protein structure prediction software packages is ROSETTA. This software 
package is based on the postulation that local interactions lead the conformation of 
short segments while global interactions establish the 3D protein structure [19]. The 
advantage of ab-initio approach is that it is based on physicochemical principles, 
however, these principles are hampered by the vast number of degrees of freedom 
which are needed to be looked after and also the performance of energy functions are 
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NMR signal is obtained when sensitive radio receivers detect the excitation 
of the material nuclei with radio waves into the nuclear magnetic resonance. 
Thus, it provides access to the electronic structure of the sample protein. The 
major advantage of NMR over X-ray crystallography is that the protein in 
NMR spectroscopy can be examined in their native-like physiological state. 
However, NMR is not suitable for proteins with more than 150 amino acid 
and needs the protein under study to be stable in room temperature for a long 
time of data acquisition, which is a drawback of this technique [12].

iii. Electron microscopy (especially Cryo-electron microscopy): Electron microscopy 
(EM) and cryo-electron microscopy (cryo-EM) are used to study objects that 
are comparatively larger in size such as cellular organelles or large macro-
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tures for proteins with known sequences and unknown structures. Prediction of the 
tertiary structure also helps in understanding the folding and unfolding of proteins. 
Also, protein engineering may help in incorporation of new functions in proteins 
thus facilitating drug design and discovery [15]. Protein structure prediction can be 
achieved by three different ways:

i. Computer simulation-based on empirical energy minimization

ii. Knowledge based-approaches using information derived from known 
sequences of experimentally determined protein 3-D structures
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The energy minimization method is also known as the ab-initio (de novo) method 
for protein structure prediction and is based on the theory that the native structure of 
protein is always at thermodynamic equilibrium with minimum energy, which is cal-
culated using basic laws of physics and chemistry (Figure 1). Energy minimization-
based methods always attempt to detect the global minima in free energy surface of 
the protein molecule as it is thought that global minima correspond to the native con-
formation. This method is not very helpful to design protein sequence length of more 
than 150 amino acid residues. However, it can be used to design small stable peptides 
that can bind to any specific therapeutic targets [16]. Two types of energy minimiza-
tion methods are broadly used in de novo structure prediction approach, namely 
static and dynamical minimization methods. Some of the major FF used for energy 
minimizations are GROMOS, AMBER, CHARMM and ECEPP [17, 18]. One of the 
ab-initio protein structure prediction software packages is ROSETTA. This software 
package is based on the postulation that local interactions lead the conformation of 
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advantage of ab-initio approach is that it is based on physicochemical principles, 
however, these principles are hampered by the vast number of degrees of freedom 
which are needed to be looked after and also the performance of energy functions are 
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limited. The disadvantage of this method is that it requires high computations and for 
such studies there are no “good enough” interaction potentials which can model the 
native structure of a protein with atomic detail [20].

2.3.2 Approaches based on knowledge

The available protein structures are used to derive the knowledge based poten-
tials [21, 22]. Further, these potentials are used to obtain the secondary structural 
information from amino acid sequence. The methods, based on the knowledge 
procured from known protein structures are of two types.

2.3.2.1 Homology modeling

One of the most powerful methods used to predict the 3D structure of proteins 
is the homology modeling. This method, also known as comparative modeling, 
uses a query protein having sequence similar with the target protein, having known 
tertiary structure [23–25]. The basis of this method lies on the observation that 
structures are more conserved than their sequences. Thus, if a target sequence has 
some degree of similarity with a protein sequence having known 3D structure, 
then that structure can be used to precisely model the target protein. A plethora 
of review articles are available on the strategies and challenges of computational 
protein structure prediction [8, 26].

For an accurate model building of a protein using homology modeling approach, 
the first step is template selection. The most crucial step involves the generation of 
a structure-based alignment between the query and the template protein sequence 
[27]. Models cannot be constructed for alignments having less than 20% identity. 
Additionally, the environment of the template such as the type of solvent, pH, 
presence of ligands, etc. and the quality of the experimentally-derived template 
structure must be taken into account. Once a desired template structure has been 
selected, a target-template alignment must be performed using standard sequence 
alignment techniques. After the creation of the template-target alignment, the 3D 
model of the target protein is created using several algorithms. Distance geometry 
is one of the commonly used methods to satisfy the spatial restraints obtained 
from the target-template alignment. MODELLER is one of the reliable homology 

Figure 1. 
An example of ab-initio structure prediction.
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modeling program and it imposes spatial restraints that are derived from the bond 
distances and angles in the target structure that are based on its alignment with the 
template structure, and stereo-chemical restraints on bond distance and dihedral 
angle preferences that are obtained from a representative set of all known protein 
structures. Then the constructed model is getting minimized using molecular 
dynamics to follow the spatial restraints [28].

After the creation of 3D model, the next step is to perform the quality assessment 
of the predicted model. From last few decades, many methods have been developed 
to assess the quality and correctness of modeled protein structures which analyze 
their stereochemistry. Some of the programs for such analysis are PROCHECK [29] 
and WhatCheck [30]. Another method to analyze the modeled protein is to calcu-
late a residue-by-residue energy profile, where a peak in the profile corresponds to 
an error in the model. But this method has a drawback considering that a section 
of residues may appear to be inaccurate, while in reality they will be interacting 
with an incorrectly modeled region. Thus, for the assessment of modeled proteins, 
energy profile should not be the only means of identifying a good model.

Homology modeling for the prediction of protein 3D structures consists of mul-
tiple steps (Figure 2). Although a number of tools and web-servers are available, 
but no single server or tool can be considered as best in every aspect as compared to 
others. The function of a protein is dependent on the 3D structure; therefore, it is 
very important to enhance the quality of the predicted model. Homology modeling 
has a wide variety of applications in structural biology and plays a vital role in drug 
discovery process, as because for the study of drug-receptor (protein) interaction, 
the structure of the receptor (protein) is of utmost importance. However, this 
approach does not work if homologous structures are not available.

2.3.2.2 Threading

Threading, also known as fold recognition is a method that searches the protein 
structure template in a library of folds with the lowest possible energy for a given 
query sequence [15]. Fold recognition of a sequence requires a precise alignment 
of the query sequence corresponding to the positions of the amino acid residues 
of a folding motif. A set of possible positions of the amino acids in 3D space is 

Figure 2. 
A scheme of homology modeling.
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and WhatCheck [30]. Another method to analyze the modeled protein is to calcu-
late a residue-by-residue energy profile, where a peak in the profile corresponds to 
an error in the model. But this method has a drawback considering that a section 
of residues may appear to be inaccurate, while in reality they will be interacting 
with an incorrectly modeled region. Thus, for the assessment of modeled proteins, 
energy profile should not be the only means of identifying a good model.

Homology modeling for the prediction of protein 3D structures consists of mul-
tiple steps (Figure 2). Although a number of tools and web-servers are available, 
but no single server or tool can be considered as best in every aspect as compared to 
others. The function of a protein is dependent on the 3D structure; therefore, it is 
very important to enhance the quality of the predicted model. Homology modeling 
has a wide variety of applications in structural biology and plays a vital role in drug 
discovery process, as because for the study of drug-receptor (protein) interaction, 
the structure of the receptor (protein) is of utmost importance. However, this 
approach does not work if homologous structures are not available.

2.3.2.2 Threading

Threading, also known as fold recognition is a method that searches the protein 
structure template in a library of folds with the lowest possible energy for a given 
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of the query sequence corresponding to the positions of the amino acid residues 
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established by the known structure. This step is followed by making a similar struc-
ture by placing the amino acids of the query sequence into their aligned positions. 
The main goal of this method is either to choose the most probable fold for any 
given sequence or to find out the appropriate sequences that have the possibility to 
fold into a given structure. This method is heavily dependent on the knowledge of 
experimental atomic details of the recognized protein folds and is generally appli-
cable for only those proteins whose amino acid sequences adopt one of the protein 
folds that have already been experimentally established.

2.3.3 Approaches based on hierarchy

The Hierarchical approach is another strategy for protein structure prediction 
from their sequences. In principle, this method uses the hierarchy of protein struc-
ture, i.e., from the primary to secondary structure and secondary to tertiary structure. 
Thus, in order to understand the relationship of the primary amino acid sequence 
and the tertiary 3D structure, the intermediate secondary structure is predicted. This 
intermediate structure is used to build the tertiary 3D structure. A number of algo-
rithms are developed for the modeling of secondary structure, but, unfortunately, the 
precision for prediction of secondary structures from their sequences is only about 
80%. Currently the methods that are available for the secondary structure modeling 
can be divided into methods based on statistics, physicochemical properties, evolu-
tionary information, combinatorial analysis and artificial intelligence [31–33].

2.4 Structure prediction methods and benchmarking

The performance assessment of existing methods is one of the major setbacks 
in the field of protein structure prediction as methods have been and are still in the 
process of development using different proteins with various evaluation criterions. 
Thus, in 1994, an open experiment was conducted all over the world with the 
intention of helping the developers and users of these methods. The experiment 
was called the Critical Assessment of Protein Structure Prediction (CASP) (https://
predictioncenter.org/) [34]. The CASP is a community-wide, worldwide experi-
ment which is conducted every two years since 1994. CASP allows research groups 
to test their structure prediction algorithms and establish the current state of the art 
in protein structure prediction. They help to identify the current progress as well as 
highlight the efforts that are needed to be addressed in the future.

3. Proteins: structure and function

Proteins are simple polymers of amino acids. The short stretches of polymers 
join together and get folded to form secondary structures which in turn give rise to 
the 3D structure of proteins. The secondary structures can be recognized either by 
hydrogen-bonding (H-bond) patterns among the carbonyl and amide groups in a 
peptide backbone or from the dihedral angles viz. phi and psi. Mainly two known 
secondary structures in a protein are α-helices and β-sheets which tend to build up 
into small repeating arrangements in protein structures; termed as ‘supersecondary 
structures’ or ‘motifs’. These secondary structures assemble into larger subunits of 
structures termed as ‘domains’. Domains can be further understood as the smallest 
structural unit of proteins which can be folded autonomously such as serine prote-
ase which is made up of two β barrel domains. Proteins comprises either of a single 
domain or multiple domains. Protein structures were for the first time categorized 
into folds in 1976 [35]. Murzein et al. later incorporated the idea and developed the 
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publicly accessible database named SCOP (Structural Classification of Proteins) 
[36]. Folds in the SCOP were categorized by the class of secondary structure: all 
α, all β, α/β (wherein helices and sheets are mixed) and α + β (separate helices and 
sheets). Proteins are the most ubiquitous biomolecules and they accomplish the 
vast majority of functions in all the biological domains. The sequence-structure-
function paradigm attracted the interests of scientists all over the world. As the 
proper functioning of all the biological processes depends on proteins and their 
non-functioning leads to grave diseases and disorder, biologists started working on 
them ever since. Way back in 1970s, Anfinsen have proposed that the 3D structure 
of native proteins comes from its sequence in a specified environment [37].

As proteins are dynamic in nature, experimental techniques fail to capture their 
different dynamical conformations and specially the transition between these con-
formations. One of the most widely utilized computational techniques, Molecular 
Dynamics (MD) Simulation tackles this challenge efficiently.

3.1 Molecular dynamics: the computational microscope

MD simulations assist us to comprehend and witness the time dependent behavior 
of proteins. As MD simulations have the ability to show the dynamic behavior of 
proteins at the level of atoms, it is also considered as computational microscope [38]. 
In this technique one requires an initial protein model which is obtained by either 
experimental methods or predictive modeling. As life sustains itself in water therefore 
one mimics simulation in explicit solvent. When the forces acting on all the atoms 
were acquired, Newton’s laws of motion were utilized to compute the velocities and 
accelerations; besides updating the atom’s positions. A time step of 2 fs (femtosecond) 
is usually applied for atomistic simulations while integrating the movement numeri-
cally. Finally, a trajectory of the system is generated by MD engine which can be 
further analyzed based on set objectives. The technique was first utilized in early 70’s 
to study the most relevant biological challenge of the time; protein folding [39, 40]. 
The subsequent decades saw the application of MD simulations for investigating fold-
ing and unfolding mechanism of proteins [41]. Duan and Kollman were successful 
in 1998 to perform 1 μs MD simulation for the first time on parallel supercomputer. 
They investigated the protein folding mechanism of villin with explicit solvation [42]. 
Apart from proteins, the technique has been extended to study other relevant biomol-
ecules [43, 44] and protein-nanoparticle interactions [45–49].

Simulation of any system revolves around lot of factors. Earlier the system size 
comprises of few thousand of atoms. With the advancement of both experimental and 
computational techniques, availability of 3D data in regard to proteins, proteins com-
plexes, membrane proteins etc. has been possible which made the system size ampli-
fied to several lakhs of atoms with explicit solvent in consideration [50]. Meanwhile the 
advent of high-performance computing (HPC) and algorithm parallelization made it 
possible to run long timescale simulations for the above-mentioned systems. Further 
advancements in the algorithms of MD engines and/or the implementation of GPUs 
(graphical processing units) along with CPUs have significantly improved the perfor-
mance of MD simulations. Some of the most popular simulation engines are: AMBER, 
CHARMM, DESMOND, GROMACS and NAMD. They have been integrated with mes-
saging passing interface (MPI), which made it possible to utilize all the available cores 
of the computer simultaneously during a MD run to reduce the computation time.

3.2 Workhorse of simulation: the force fields

Force fields (FF) lie at heart of the MD simulation. In order to perform 
 simulation, one needs the parameters to deduce the potential energy function [51]. 
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proper functioning of all the biological processes depends on proteins and their 
non-functioning leads to grave diseases and disorder, biologists started working on 
them ever since. Way back in 1970s, Anfinsen have proposed that the 3D structure 
of native proteins comes from its sequence in a specified environment [37].

As proteins are dynamic in nature, experimental techniques fail to capture their 
different dynamical conformations and specially the transition between these con-
formations. One of the most widely utilized computational techniques, Molecular 
Dynamics (MD) Simulation tackles this challenge efficiently.

3.1 Molecular dynamics: the computational microscope

MD simulations assist us to comprehend and witness the time dependent behavior 
of proteins. As MD simulations have the ability to show the dynamic behavior of 
proteins at the level of atoms, it is also considered as computational microscope [38]. 
In this technique one requires an initial protein model which is obtained by either 
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of the computer simultaneously during a MD run to reduce the computation time.

3.2 Workhorse of simulation: the force fields

Force fields (FF) lie at heart of the MD simulation. In order to perform 
 simulation, one needs the parameters to deduce the potential energy function [51]. 
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The FF is a group of equations and associated parameters designed to imitate 
molecular geometry and selected properties of some tested molecules. FF comprises 
primarily of two components; bonded and non-bonded terms. Any molecular 
feature can be basically represented with them. The bonded terms can be rep-
resented by springs for bond length and angles along with torsional angles; the 
non-bonded terms comprise of Lennard-Jones potentials for van der Waals (vdW) 
interactions and Coulomb’s law for electrostatic interactions. They were primarily 
developed to reproduce structural properties and applied to predict other proper-
ties such as thermodynamic parameters. Further the energy functions utilized 
in molecular mechanics commonly comprise topological parameters which are 
obtained from experiments or quantum mechanical calculations. An important 
feature of FF is transferability of the parameters and the functional form. It means 
to model a series of related molecules; the same set of parameters can be utilized 
rather than defining a new set of parameters for each individual molecule. Even 
though most of the FF are additive, a number of them having higher order terms 
are called class II FF. Some of widely utilized FF for bio-molecular simulations are 
AMBER, CHARMM, GROMOS and OPLS [52]. Additionally it is noteworthy to 
mention the application of FF in predicting structures of proteins/RNA. FFs were 
developed and benchmarked against experimentally solved structures and these FF 
were later incorporated to predict the structure for the ones lacking experimental 
information. Another important aspect of the FF is to discriminate the near-native 
protein conformation among the generated 3D models [53]. FFs are subject to 
rigorous scrutinizing and they were refined to improve their accuracy over time. 
One such example is the improvement of the residue side-chain torsion potentials 
of the Amber ff99SB FF which is also validated with available NMR experimental 
datasets [54]. A number of benchmark studies were conducted time to time, to 
compare different FFs. One difference arises among the available variety of FF is 
the bias/overestimate towards particular secondary structure of proteins. Man et al. 
recently concluded from their comparative simulation study that FFs (AMBER94, 
AMBER99 & AMBER12SB) were not able to predict β-sheet formation whereas 
FFs (AMBER96, GROMOS45a3, GROMOS53a5, GROMOS53a6, GROMOS43a1, 
GROMOS43a2, and GROMOS54a7) were able to form β-sheets swiftly. Further they 
have showed that the best FFs for investigating amyloid peptide assembly based on 
their structure and kinetics were AMBER99-ILDN, AMBER14SB, CHARMM22*, 
CHARMM36, and CHARMM36m [55].

3.3 Application examples of MD simulations

MD simulations have immensely contributed to solve and hypothesize many 
biological research problems. The significance of the computational microscope can 
be well understood by observing the increase in the vast repertoire of literature in 
the recent decade. The technique of simulation along with other computational tools 
plays a significant role in the field of protein structure prediction. Using a set of seven 
small proteins Kato et al. have validated the application of MD simulations to predict 
the 3D structure of proteins. The set of small proteins were in the range of 10 to 46 
residues. They have considered two properties; root mean squared deviation (RMSD) 
and occurrence of secondary structure to validate the predicted structures from 
simulation with that of the available experimental ones. AMBER12 simulation pack-
age with AMBER ff12SB have been utilized to carry out their simulations. With the 
help of MD simulations, they have shown the possibility of reproducing the second-
ary structures of small proteins [56]. Our group has also utilized the indispensable 
technique of simulation recently to investigate the dynamics and stability of ab-initio 
predicted structure of bacterial effector protein, HopS2. The importance of the 
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effector proteins lies with them conferring pathogenicity to bacteria. As the sequence 
similarity of the effector proteins lies in the twilight zone along with the few partially 
solved structures of effector proteins at disposal, it is a perplexing task to study the 
sequence-structure-function relationship of these proteins. With the assistance of 
MD simulations, our group was able to show the stability of local secondary struc-
tural elements of HopS2 which are vital to its overall structure and interaction. These 
investigation have been performed using Gromacs along with OPLS FF [57].

Another interesting aspect of human proteome is the intrinsically disordered pro-
teins (IDP). There are many examples of proteins with folded domains but they fea-
ture disordered regions while some are entirely unstructured. Some IDPs fold upon 
interacting with their binding partners while other persists in unfolded state even 
in a bound complex. The IDPs plays a critical role in cell signaling and regulation. 
Pietrek et al. have carried out a recent work in this direction. They have considered 
a hierarchical algorithm to generate large ensembles of full length IDP structures 
and these structures can be further used as starting points for atomistic simulations. 
The IDP structures generated by their hierarchical approach implemented with all 
atom MD simulations were able to capture both local conformations compared with 
NMR experiments and also the gross dimension described by small angle X-ray 
experiments. Gromacs simulation package along with Amber03ws and Amber99SB*-
ILDN-q FF were utilized by them to carry out the investigation [58]. The powerful 
computational microscope was also applied to investigate structure and dynamics of 
plasma membrane proteins. Mattedi et al. recently utilized MD simulations to study 
glucagon receptor, a class B GPCR. The glucagon-induced release of glucose from 
the liver into the bloodstream is facilitated by the glucagon receptor. There is scarce 
information about the mechanism of this receptor. They utilized extensive MD simu-
lations and free energy landscape computation to elucidate the activation mechanism 
of the receptor. Through their simulation work, they identified an intermediate state 
of the glucagon receptor and decipher the mechanism of allosteric antagonists of the 
glucagon which locks transmemebrane helix 6. They have employed AMBER14SB FF 
and LipidBook parameters for lipids with Gromacs package in their work [59].

4. Molecular docking

The plethora of diseases discovered ever since and being investigated tirelessly 
by scientists all over the world ultimately culminates to the sole objective of find-
ing effective solutions. The therapeutic targets in most of the cases are proteins. 
After knowing their mechanism of actions, how the proteins works and what goes 
wrong during the diseased state, the next notion is to challenge their functionality 
with designing some inhibitors. It comes under the domain of drug discovery. And 
one of the most challenging fields of study is the drug design and development. 
The complete clinical trials take about 10–15 years of time with billions of dollars 
expenses for a single drug to reach market. With the completion of human genome 
project which leads to identification of ever-increasing number of new drug targets 
(mainly proteins); the efforts were strengthened to find solution to the diseases. 
Additionally, the availability of 3D structures of protein and protein-ligand com-
plexes made it feasible to carry out research in this area. However, to experimentally 
screen millions of compounds and their conformers for a single therapeutic target 
requires enormous amount of time and resources which makes it quite challenging. 
With the application of computational techniques, the pre-clinical period can be 
reduced to save valuable assets. The in-silico approaches will significantly curtail the 
time needed for hit identification and also improve the chances of finding the antic-
ipated drug molecules. To facilitate drug design and discovery, several modeling 
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The FF is a group of equations and associated parameters designed to imitate 
molecular geometry and selected properties of some tested molecules. FF comprises 
primarily of two components; bonded and non-bonded terms. Any molecular 
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non-bonded terms comprise of Lennard-Jones potentials for van der Waals (vdW) 
interactions and Coulomb’s law for electrostatic interactions. They were primarily 
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feature of FF is transferability of the parameters and the functional form. It means 
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of the Amber ff99SB FF which is also validated with available NMR experimental 
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the bias/overestimate towards particular secondary structure of proteins. Man et al. 
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AMBER99 & AMBER12SB) were not able to predict β-sheet formation whereas 
FFs (AMBER96, GROMOS45a3, GROMOS53a5, GROMOS53a6, GROMOS43a1, 
GROMOS43a2, and GROMOS54a7) were able to form β-sheets swiftly. Further they 
have showed that the best FFs for investigating amyloid peptide assembly based on 
their structure and kinetics were AMBER99-ILDN, AMBER14SB, CHARMM22*, 
CHARMM36, and CHARMM36m [55].

3.3 Application examples of MD simulations

MD simulations have immensely contributed to solve and hypothesize many 
biological research problems. The significance of the computational microscope can 
be well understood by observing the increase in the vast repertoire of literature in 
the recent decade. The technique of simulation along with other computational tools 
plays a significant role in the field of protein structure prediction. Using a set of seven 
small proteins Kato et al. have validated the application of MD simulations to predict 
the 3D structure of proteins. The set of small proteins were in the range of 10 to 46 
residues. They have considered two properties; root mean squared deviation (RMSD) 
and occurrence of secondary structure to validate the predicted structures from 
simulation with that of the available experimental ones. AMBER12 simulation pack-
age with AMBER ff12SB have been utilized to carry out their simulations. With the 
help of MD simulations, they have shown the possibility of reproducing the second-
ary structures of small proteins [56]. Our group has also utilized the indispensable 
technique of simulation recently to investigate the dynamics and stability of ab-initio 
predicted structure of bacterial effector protein, HopS2. The importance of the 
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effector proteins lies with them conferring pathogenicity to bacteria. As the sequence 
similarity of the effector proteins lies in the twilight zone along with the few partially 
solved structures of effector proteins at disposal, it is a perplexing task to study the 
sequence-structure-function relationship of these proteins. With the assistance of 
MD simulations, our group was able to show the stability of local secondary struc-
tural elements of HopS2 which are vital to its overall structure and interaction. These 
investigation have been performed using Gromacs along with OPLS FF [57].

Another interesting aspect of human proteome is the intrinsically disordered pro-
teins (IDP). There are many examples of proteins with folded domains but they fea-
ture disordered regions while some are entirely unstructured. Some IDPs fold upon 
interacting with their binding partners while other persists in unfolded state even 
in a bound complex. The IDPs plays a critical role in cell signaling and regulation. 
Pietrek et al. have carried out a recent work in this direction. They have considered 
a hierarchical algorithm to generate large ensembles of full length IDP structures 
and these structures can be further used as starting points for atomistic simulations. 
The IDP structures generated by their hierarchical approach implemented with all 
atom MD simulations were able to capture both local conformations compared with 
NMR experiments and also the gross dimension described by small angle X-ray 
experiments. Gromacs simulation package along with Amber03ws and Amber99SB*-
ILDN-q FF were utilized by them to carry out the investigation [58]. The powerful 
computational microscope was also applied to investigate structure and dynamics of 
plasma membrane proteins. Mattedi et al. recently utilized MD simulations to study 
glucagon receptor, a class B GPCR. The glucagon-induced release of glucose from 
the liver into the bloodstream is facilitated by the glucagon receptor. There is scarce 
information about the mechanism of this receptor. They utilized extensive MD simu-
lations and free energy landscape computation to elucidate the activation mechanism 
of the receptor. Through their simulation work, they identified an intermediate state 
of the glucagon receptor and decipher the mechanism of allosteric antagonists of the 
glucagon which locks transmemebrane helix 6. They have employed AMBER14SB FF 
and LipidBook parameters for lipids with Gromacs package in their work [59].

4. Molecular docking

The plethora of diseases discovered ever since and being investigated tirelessly 
by scientists all over the world ultimately culminates to the sole objective of find-
ing effective solutions. The therapeutic targets in most of the cases are proteins. 
After knowing their mechanism of actions, how the proteins works and what goes 
wrong during the diseased state, the next notion is to challenge their functionality 
with designing some inhibitors. It comes under the domain of drug discovery. And 
one of the most challenging fields of study is the drug design and development. 
The complete clinical trials take about 10–15 years of time with billions of dollars 
expenses for a single drug to reach market. With the completion of human genome 
project which leads to identification of ever-increasing number of new drug targets 
(mainly proteins); the efforts were strengthened to find solution to the diseases. 
Additionally, the availability of 3D structures of protein and protein-ligand com-
plexes made it feasible to carry out research in this area. However, to experimentally 
screen millions of compounds and their conformers for a single therapeutic target 
requires enormous amount of time and resources which makes it quite challenging. 
With the application of computational techniques, the pre-clinical period can be 
reduced to save valuable assets. The in-silico approaches will significantly curtail the 
time needed for hit identification and also improve the chances of finding the antic-
ipated drug molecules. To facilitate drug design and discovery, several modeling 
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techniques were available and mostly they are categorized into two main approaches 
viz. structure-based and ligand-based drug design approaches. The structure-based 
approach mainly relies on the 3D data of target and the ligand. The ligand-based 
approach is chiefly adopted in the absence of known experimental structure of the 
target. In ligand-based approach, the known ligands which were bound to the tar-
gets were investigated to decipher the physiochemical and structural properties of 
the ligands and these were correlated with the anticipated pharmacological activity 
of the ligands in hand [60].

One of the most extensively utilized computational techniques in the structure-
based drug design is molecular docking. Molecular docking is usually achieved by 
first predicting the molecular orientation or pose of a ligand within the active site of 
a target and followed by assessing their binding affinity with the usage of a scoring 
function. The technique is exploited to decipher the interactions between a target 
and ligand at the atomic level allowing us to describe the behavior of ligands within 
the active sites of targets as well as to reveal fundamental biochemical processes. 
Since the first developments of docking algorithms in the 1980s, molecular docking 
became an indispensable tool in the field of drug discovery [61].

4.1 Types of molecular docking

Molecular docking can be basically categorized into three types: rigid docking, 
semi-flexible docking and flexible docking. In the rigid docking approach, both 
the structure of target and ligand does not change. The computation method is 
relatively modest and chiefly spans the degree of conformational matching, thus it 
is more apt for investigating macromolecular systems such as protein-nucleic acid 
and protein-protein systems. The semi/quasi flexible docking approach take flex-
ibility into consideration while docking of the ligand and thus it is more appropri-
ate to deal with the intermolecular interactions of small molecules and proteins. 
Usually the structure of the ligands can move freely while the target remains 
rigid or retain few rotatable residues ensuring computational efficiency during 
the docking process. In the flexible docking method, it is based on the idea that a 
protein is not always a rigid entity during the course of ligand binding and thus it 
considers both the protein and ligand as flexible entities. Over the years various 
methods have been introduced, based on induced fit model and/or conformational 
sampling.

4.1.1 Scoring function

One crucial element of any docking algorithm is the scoring function. The scor-
ing function aids in the pose selection and it is involved in distinguishing putative 
precise binding modes and to filter out the non-binders from the N number of 
generated poses during a docking run. The speed and accuracy of docking programs 
is also dependent on scoring functions. Further computational efficiency and 
reliability are points kept in mind while developing any scoring function. There are 
three categories of scoring functions:

i. Force-field based scoring function

This scoring function is based on the concept of molecular mechanics which 
estimates the potential energy of a system with a mixture of intramolecular and 
intermolecular elements. In molecular docking, the intermolecular elements are 
usually considered, with the probable ligand-bonded terms, especially the torsional 
constituents. The non-bonded constituents include the van der Waals term which 
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is defined by Lennard-Jones potential, and the electrostatic term, specified by the 
Coulomb function. GoldScore [62], AutoDock [63] and GBVI/WSA [60] are few 
examples of the mentioned scoring function.

ii. Empirical scoring function

Empirical function is the sum of different empirical terms such as van der 
Waals, H-bond, electrostatic, entropy, desolvation, hydrophobicity, etc. Utilizing 
least square fitting method, they are optimized on a training set of target-ligand 
complexes to reproduce the binding affinity data. Empirical scoring functions com-
pared to force-field ones are computationally much more efficient owing to their 
simple energy terms. The first example of empirical scoring function is the LUDI 
scoring function [64]. GlideScore [65] and ChemScore [66] are other examples of 
empirical scoring functions.

iii. Knowledge-based scoring function

Knowledge-based functions are directly obtained from the structural infor-
mation of experimentally solved protein-ligand complexes. The frequencies 
of interatomic contact and/or distances between the target and the ligand are 
obtained. The premise for this criterion relies on the assumption that frequency of 
occurrences will be greater for the ones with more favorable interactions. Pairwise 
atom-type potentials were generated with the obtained frequency distributions. 
Further the score is computed by preferred interactions and imposing penalty for 
repulsive contacts between each pair of atoms in the target and ligand within a 
set cutoff. Examples of this scoring function are DrugScore [67] and GOLD/ASP 
 functions [68].

With the advancement in the field of high-performance computing, scientists 
have also applied artificial intelligence based and machine learning based scoring 
functions in virtual screening which holds promising outcomes [69].

4.1.2 Sampling algorithms

Sampling plays the next crucial role in any molecular docking program. With 
a set therapeutic target, the sampling algorithm will generate a number of con-
formations (poses) of the small molecule within the docked site of the target. 
The knowledge of the docked site is considered either from experimental data or 
predicted with the aid of active site prediction software. As the speed and accuracy 
of molecular docking plays a role in large virtual screening research works, the area 
of developing and/or improving existing sampling algorithms have provided ample 
opportunities for computational scientists. The sampling algorithms can be catego-
rized as: shape matching, systematic search algorithm and stochastic algorithm.

i. Shape matching

One of the earliest methods designed was the shape matching algorithm for 
sampling. The criterion implemented in this algorithm is that the molecular surface 
of the small molecule needs to complement the molecular surface of the binding 
region of the target. The three translational and three rotational (six degree of 
freedom) of the small molecule led to spans many probable orientations. Thus, the 
goal of this algorithm is to place as smoothly and quickly the small molecule into 
the binding site based on shape complementarity. In this method, the conforma-
tion of the small molecule is usually fixed and therefore, this method along with 
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techniques were available and mostly they are categorized into two main approaches 
viz. structure-based and ligand-based drug design approaches. The structure-based 
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function. The technique is exploited to decipher the interactions between a target 
and ligand at the atomic level allowing us to describe the behavior of ligands within 
the active sites of targets as well as to reveal fundamental biochemical processes. 
Since the first developments of docking algorithms in the 1980s, molecular docking 
became an indispensable tool in the field of drug discovery [61].
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Molecular docking can be basically categorized into three types: rigid docking, 
semi-flexible docking and flexible docking. In the rigid docking approach, both 
the structure of target and ligand does not change. The computation method is 
relatively modest and chiefly spans the degree of conformational matching, thus it 
is more apt for investigating macromolecular systems such as protein-nucleic acid 
and protein-protein systems. The semi/quasi flexible docking approach take flex-
ibility into consideration while docking of the ligand and thus it is more appropri-
ate to deal with the intermolecular interactions of small molecules and proteins. 
Usually the structure of the ligands can move freely while the target remains 
rigid or retain few rotatable residues ensuring computational efficiency during 
the docking process. In the flexible docking method, it is based on the idea that a 
protein is not always a rigid entity during the course of ligand binding and thus it 
considers both the protein and ligand as flexible entities. Over the years various 
methods have been introduced, based on induced fit model and/or conformational 
sampling.

4.1.1 Scoring function

One crucial element of any docking algorithm is the scoring function. The scor-
ing function aids in the pose selection and it is involved in distinguishing putative 
precise binding modes and to filter out the non-binders from the N number of 
generated poses during a docking run. The speed and accuracy of docking programs 
is also dependent on scoring functions. Further computational efficiency and 
reliability are points kept in mind while developing any scoring function. There are 
three categories of scoring functions:

i. Force-field based scoring function

This scoring function is based on the concept of molecular mechanics which 
estimates the potential energy of a system with a mixture of intramolecular and 
intermolecular elements. In molecular docking, the intermolecular elements are 
usually considered, with the probable ligand-bonded terms, especially the torsional 
constituents. The non-bonded constituents include the van der Waals term which 
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is defined by Lennard-Jones potential, and the electrostatic term, specified by the 
Coulomb function. GoldScore [62], AutoDock [63] and GBVI/WSA [60] are few 
examples of the mentioned scoring function.

ii. Empirical scoring function

Empirical function is the sum of different empirical terms such as van der 
Waals, H-bond, electrostatic, entropy, desolvation, hydrophobicity, etc. Utilizing 
least square fitting method, they are optimized on a training set of target-ligand 
complexes to reproduce the binding affinity data. Empirical scoring functions com-
pared to force-field ones are computationally much more efficient owing to their 
simple energy terms. The first example of empirical scoring function is the LUDI 
scoring function [64]. GlideScore [65] and ChemScore [66] are other examples of 
empirical scoring functions.

iii. Knowledge-based scoring function

Knowledge-based functions are directly obtained from the structural infor-
mation of experimentally solved protein-ligand complexes. The frequencies 
of interatomic contact and/or distances between the target and the ligand are 
obtained. The premise for this criterion relies on the assumption that frequency of 
occurrences will be greater for the ones with more favorable interactions. Pairwise 
atom-type potentials were generated with the obtained frequency distributions. 
Further the score is computed by preferred interactions and imposing penalty for 
repulsive contacts between each pair of atoms in the target and ligand within a 
set cutoff. Examples of this scoring function are DrugScore [67] and GOLD/ASP 
 functions [68].

With the advancement in the field of high-performance computing, scientists 
have also applied artificial intelligence based and machine learning based scoring 
functions in virtual screening which holds promising outcomes [69].

4.1.2 Sampling algorithms

Sampling plays the next crucial role in any molecular docking program. With 
a set therapeutic target, the sampling algorithm will generate a number of con-
formations (poses) of the small molecule within the docked site of the target. 
The knowledge of the docked site is considered either from experimental data or 
predicted with the aid of active site prediction software. As the speed and accuracy 
of molecular docking plays a role in large virtual screening research works, the area 
of developing and/or improving existing sampling algorithms have provided ample 
opportunities for computational scientists. The sampling algorithms can be catego-
rized as: shape matching, systematic search algorithm and stochastic algorithm.

i. Shape matching

One of the earliest methods designed was the shape matching algorithm for 
sampling. The criterion implemented in this algorithm is that the molecular surface 
of the small molecule needs to complement the molecular surface of the binding 
region of the target. The three translational and three rotational (six degree of 
freedom) of the small molecule led to spans many probable orientations. Thus, the 
goal of this algorithm is to place as smoothly and quickly the small molecule into 
the binding site based on shape complementarity. In this method, the conforma-
tion of the small molecule is usually fixed and therefore, this method along with 



Homology Molecular Modeling - Perspectives and Applications

44

flexible-docking is usually preferred rather than only shape matching. DOCK [61], 
LigandFit [70] and Surflex [70] are few examples of docking programs where shape 
matching algorithm is used.

ii. Systematic Search

With the help of systematic search algorithm, the ligand can explore all the 
degrees of freedom and it can generate all probable conformations. Unlike in shape 
matching algorithm, the conformations of ligands are not fixed here. Systematic 
search technique can be categorized into three types: exhaustive search, fragmenta-
tion and conformational ensemble.

In exhaustive search method, all the rotatable bonds of the small molecules are 
scanned in a systematic manner. However, to avoid a huge combinatorial explosion 
& to make the docking procedure practical, the search space is limited by geometric 
constraints criterion. Glide docking program implements this method.

The fragmentation method as the name suggests implements the idea of frag-
menting the ligands into smaller rigid fragments. The incremental construction is 
one such mode wherein one fragment is placed first in the binding site and other 
fragments were attached incrementally. FlexX [70] utilizes this algorithm.

In the conformational ensemble algorithm, small molecule flexibility is signified 
by rigidly docking an ensemble of pre-generated conformers of the small molecule. 
Next the binding modes were collected from different docking runs then binding 
energy values are used to rank them. FLOG [71] and MS-DOCK [70] implements 
this algorithm.

iii. Stochastic Search

In the stochastic search, the sampling of the small molecule conformations 
is carried out by making random changes at every step in both the rotational/
translation space and conformational space of the small molecule respectively. A 
probabilistic criterion is placed to either accept or reject the random change. Within 
stochastic search, there are four subtypes viz., Monte Carlo method, evolutionary 
algorithms (EA), Tabu search methods and swarm optimization (SO) methods. 
Genetic algorithm, one type of EA is implemented in AutoDock [63] and GOLD 
docking programs.

It is imperative to mention here that different docking programs/servers apply 
variety of algorithms in multi-phase wise in their docking pipeline.

4.2 Application examples of molecular docking

The molecular docking can be seen applied regularly in academic labs and 
pharmaceutical companies to find effective solutions and thwart deadly diseases 
[72]. The identification of hit molecules in the preliminary stage of drug discovery 
is today heavily relied upon high throughput screening. Moreover, the availability 
of small molecule databases such as PubChem, ZINC, MayBridge etc. along with 
the growth of experimental structures of targets (proteins, membrane proteins, 
protein-ligand complexes) have made the use of molecular docking to screen mil-
lions of compounds and made it possible to test only lead molecules.

G protein-coupled receptors (GPCR) are the attractive targets of drug design 
regimes because of their importance in cell signaling and functions. Kolb et al. 
have considered β2-adrenergic receptor, a GPCR found in the smooth muscle tissue 
to investigate the structure-based approach for ligand discovery. In their study, 
they have utilized DOCK molecular docking program to screen approx. 1 million 
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compounds from ZINC database. They were able to test experimentally the resul-
tant 25 high ranked molecules from docking; of which 6 molecules showed binding 
affinity <4 μM. And the best compound showed 9 nM of inhibition constant against 
the receptor [73].

Rajkhowa et al. have utilized the structure-based drug design (SBDD) method 
along with MD simulations to design inhibitors against malaria, one of the most 
devastating infectious diseases. They have considered 178 compounds similar to 
known anti-malarial imidazopyrazine from the PubChem database to carry out the 
work. The target of the inhibitor is the phosphatidylinositol-4-OH kinase which is a 
lipid kinase involved in the membrane ingestion process of the erythrocytic stage of 
the life cycle of the plasmodium and recognized as a drug target. AutoDock 4.2 has 
been utilized in their work. They have reported three potential inhibitors based on 
molecular docking, MD simulations and ADMET studies [74].

Our group had worked in the direction of SBDD to tackle insulin resistance 
and type-2 diabetes (T2D). We have considered 142 anti-diabetic compounds 
spanning various categories of phytochemicals such as flavonoids, alkanoids, 
sulfonylurea and terpenes. The target of the study is A2A adenosine receptor which 
had been shown in reports that it can be utilized to counteract insulin resistance 
and adipocyte inflammation. Numerous computational tools were utilized to carry 
out the work such as druglikeness filtering, QSAR modeling, ADMET profiling to 
molecular docking. The different level of screenings led to 6 molecules which were 
docked with the help of two different molecular docking approaches viz. AutoDock 
and AutoDockFR to get optimal receptor-ligand conformations. From the 142 
compounds finally we got one molecule “indirubin-3′-monoxime” which is then 
followed by experimental validations [75].

5. Conclusion

In this era of high-performance computing technology, there is hardly any field 
of science which is not touched upon by some amount of significant computa-
tional works. The potential of computing power is much reliant on advancement 
in hardware and algorithms. Substantial number of computational tools and 
techniques were developed and applied in the fascinating area of proteomics also. 
Mathematical models were devised in the form of FF parameters and implemented 
in various algorithms. Here, we have discussed the inevitable role of FF in protein 
structure prediction/modeling, conformational dynamics and their functional 
aspects along with the applications in virtual screening programs. As discussed 
in the chapter, a lot of programs with variety of FFs are available for structure 
prediction, MD simulations etc., but there is still a scope of further developments. 
For example, till now it is a challenge for accurately predicting protein structures 
of larger sizes or the protein sequences having low amount of similarity with 
sequences of known structures. Also, the existing software are in use for trans-
membrane protein structure prediction but it is an hour need to develop different 
program to model the trans-membrane segments. Although MD simulations were 
utilized for validating predicted structures of membrane proteins and/or for getting 
insights of their mechanism, challenge remains in the forms of FF as at times it is 
difficult to get the parameters for membrane proteins, lipids in which they were 
embedded, any bound coordinated metal ions in a single FF. The accuracy of models 
depends upon pH and dynamic charge environment instead of static electrostatic 
charges, and polarizable water models, requires further development and testing 
of polarizable force fields. The existing FF were designed with aid of experimen-
tal data for globular proteins and applied for studying IDPs whereas disordered 
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flexible-docking is usually preferred rather than only shape matching. DOCK [61], 
LigandFit [70] and Surflex [70] are few examples of docking programs where shape 
matching algorithm is used.

ii. Systematic Search

With the help of systematic search algorithm, the ligand can explore all the 
degrees of freedom and it can generate all probable conformations. Unlike in shape 
matching algorithm, the conformations of ligands are not fixed here. Systematic 
search technique can be categorized into three types: exhaustive search, fragmenta-
tion and conformational ensemble.
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The fragmentation method as the name suggests implements the idea of frag-
menting the ligands into smaller rigid fragments. The incremental construction is 
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In the conformational ensemble algorithm, small molecule flexibility is signified 
by rigidly docking an ensemble of pre-generated conformers of the small molecule. 
Next the binding modes were collected from different docking runs then binding 
energy values are used to rank them. FLOG [71] and MS-DOCK [70] implements 
this algorithm.

iii. Stochastic Search

In the stochastic search, the sampling of the small molecule conformations 
is carried out by making random changes at every step in both the rotational/
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probabilistic criterion is placed to either accept or reject the random change. Within 
stochastic search, there are four subtypes viz., Monte Carlo method, evolutionary 
algorithms (EA), Tabu search methods and swarm optimization (SO) methods. 
Genetic algorithm, one type of EA is implemented in AutoDock [63] and GOLD 
docking programs.

It is imperative to mention here that different docking programs/servers apply 
variety of algorithms in multi-phase wise in their docking pipeline.

4.2 Application examples of molecular docking

The molecular docking can be seen applied regularly in academic labs and 
pharmaceutical companies to find effective solutions and thwart deadly diseases 
[72]. The identification of hit molecules in the preliminary stage of drug discovery 
is today heavily relied upon high throughput screening. Moreover, the availability 
of small molecule databases such as PubChem, ZINC, MayBridge etc. along with 
the growth of experimental structures of targets (proteins, membrane proteins, 
protein-ligand complexes) have made the use of molecular docking to screen mil-
lions of compounds and made it possible to test only lead molecules.

G protein-coupled receptors (GPCR) are the attractive targets of drug design 
regimes because of their importance in cell signaling and functions. Kolb et al. 
have considered β2-adrenergic receptor, a GPCR found in the smooth muscle tissue 
to investigate the structure-based approach for ligand discovery. In their study, 
they have utilized DOCK molecular docking program to screen approx. 1 million 
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compounds from ZINC database. They were able to test experimentally the resul-
tant 25 high ranked molecules from docking; of which 6 molecules showed binding 
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and type-2 diabetes (T2D). We have considered 142 anti-diabetic compounds 
spanning various categories of phytochemicals such as flavonoids, alkanoids, 
sulfonylurea and terpenes. The target of the study is A2A adenosine receptor which 
had been shown in reports that it can be utilized to counteract insulin resistance 
and adipocyte inflammation. Numerous computational tools were utilized to carry 
out the work such as druglikeness filtering, QSAR modeling, ADMET profiling to 
molecular docking. The different level of screenings led to 6 molecules which were 
docked with the help of two different molecular docking approaches viz. AutoDock 
and AutoDockFR to get optimal receptor-ligand conformations. From the 142 
compounds finally we got one molecule “indirubin-3′-monoxime” which is then 
followed by experimental validations [75].

5. Conclusion

In this era of high-performance computing technology, there is hardly any field 
of science which is not touched upon by some amount of significant computa-
tional works. The potential of computing power is much reliant on advancement 
in hardware and algorithms. Substantial number of computational tools and 
techniques were developed and applied in the fascinating area of proteomics also. 
Mathematical models were devised in the form of FF parameters and implemented 
in various algorithms. Here, we have discussed the inevitable role of FF in protein 
structure prediction/modeling, conformational dynamics and their functional 
aspects along with the applications in virtual screening programs. As discussed 
in the chapter, a lot of programs with variety of FFs are available for structure 
prediction, MD simulations etc., but there is still a scope of further developments. 
For example, till now it is a challenge for accurately predicting protein structures 
of larger sizes or the protein sequences having low amount of similarity with 
sequences of known structures. Also, the existing software are in use for trans-
membrane protein structure prediction but it is an hour need to develop different 
program to model the trans-membrane segments. Although MD simulations were 
utilized for validating predicted structures of membrane proteins and/or for getting 
insights of their mechanism, challenge remains in the forms of FF as at times it is 
difficult to get the parameters for membrane proteins, lipids in which they were 
embedded, any bound coordinated metal ions in a single FF. The accuracy of models 
depends upon pH and dynamic charge environment instead of static electrostatic 
charges, and polarizable water models, requires further development and testing 
of polarizable force fields. The existing FF were designed with aid of experimen-
tal data for globular proteins and applied for studying IDPs whereas disordered 
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Structures of GPCRs
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Abstract

Homology modeling is one of the key discoveries that led to a rapid paradigm 
shift in the field of computational biology. Homology modeling obtains the three 
dimensional structure of a target protein based on the similarity between template 
and target sequences and this technique proves to be efficient when it comes to 
studying membrane proteins that are hard to crystallize like GPCR as it provides 
a higher degree of understanding of receptor-ligand interaction. We get profound 
insights on structurally unsolved, yet clinically important drug targeting proteins 
through single or multiple template modeling. The advantages of homology model-
ing studies are often used to overcome various problems in crystallizing GPCR pro-
teins that are involved in major disease-related pathways, thus paving way to more 
structural insights via in silico models when there is a lack of experimentally solved 
structures. Owing to their pharmaceutical significance, structural analysis of various 
GPCR proteins using techniques like homology modeling is of utmost importance.

Keywords: membrane protein, bovine rhodopsin, template-based modeling,  
GPCR-EXP, GPCRdb

1. Introduction

The comparative modeling of proteins, more popularly known as homology mod-
eling among the research community, is a computational procedure that constructs 
three dimensional atomic resolution structure of a ‘target’ protein, the structure of it 
is unknown. A new structure for the target protein is modeled using its own amino 
acid sequence and a known experimental structure of a homologous protein as a 
template based upon which the model is constructed. This template-based modeling 
technique became a plausible computational technique because of the fact that evolu-
tionary related proteins share a similar structure [1]. This undeniable truth led to the 
famous outbreak of using homology modeling to determine the three dimensional 
structure of proteins whose structures were otherwise difficult to solve.

One such family of protein that poses a great challenge to study is membrane 
proteins due to their partially flexibility and lack of stability. The surface of 
membrane proteins is also comparatively hydrophobic and can only be extracted 
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from the cell membrane with detergents which cause challenges at many levels, 
including expression, solubilization, purification, crystallization, data collection 
and structure solution. Figure 1 shows the total number of membrane protein 
structures deposited in PDB as of August 2020 and this data was derived from 
the mpstruc database [2]. There are 2037 published reports of membrane pro-
tein structures in this database. It is also very clear that the number of available 
membrane protein structures is very less compared to the expected exponential 
growth in the number of available structures [3]. Though approximately 25% of 
all proteins are membrane proteins, there are less solved structures available due 
to the difficulty in crystallizing membrane proteins.

Many advances are being made in developing novel methods that can help in 
solving and studying the structure of membrane proteins in a high-throughput 
manner. The key to overcome the membrane protein structural biology is the 
underlying fact that they are structurally homologous to proteins which are evolu-
tionarily related to them. This kindled the structural biologists to try a large number 
of targets and homologs of each target so that at least a few proteins will show 
progress through all the steps associated with their structural studies. This is where 
computational techniques like homology modeling came to the aid of structural 
biologists in helping solve the structures of membrane proteins by obtaining the 
three dimensional structure of a target protein based on the similarity between 
template and target sequences. One arena of such membrane protein structural 
biology research that has proved to be promising is the G-protein-coupled receptors 
(GPCRs) which are the largest family of membrane proteins.

The GPCRs constitute a diverse family of proteins in mammalian genomes [4]. 
The first GPCR for which structure was determined was Rhodopsin, a prototypical 
class A GPCR. The GPCRs are categorized into five major classes based on their 

Figure 1. 
The number of membrane protein structures deposited each year since the first structure was solved as given by 
the mpstruc database. The number of structures available is considerably low compared to the expected number 
of membrane protein structures (red line).

57

Importance of Homology Modeling for Predicting the Structures of GPCRs
DOI: http://dx.doi.org/10.5772/intechopen.94402

sequences as well as on their known or suspected functions in vertebrate: rhodopsin 
(family A), secretin (family B), glutamate (family C), adhesion and Frizzled/Taste2 
[5]. The actual estimate of GPCRs in human genome is still being analyzed. The 
presence of seven transmembrane (7-TM) spanning α-helical segments separated 
by alternating intracellular and extracellular loop regions is one of the characteristic 
features in the structure of GPCRs. They also possess an extracellular N-terminus 
and an intracellular C-terminus which paved way for GPCRs to be also known as the 
7-TM receptors or the heptahelical receptors. The tertiary structure of the GPCR 
resembles a barrel, with the seven transmembrane helices forming a cavity within 
the plasma membrane that serves as a ligand-binding domain. With its unique 
structure, the GPCRs serve many important roles in the human body. Hence the 
structure function correlation of GPCRs is a vital area of research even today.

The crystal structure of protein plays a pivot role in determining the functional 
importance of a protein. However membrane proteins are difficult to crystallize. 
Being a membrane protein, the GPCR structural studies have complexity because 
of low protein expression level in native tissues and heterologous systems. The 
poor protein stability and multiple conformational states of the receptors also are 
major hurdles in the GPCR structural studies. GPCRs have also been notoriously 
difficult to crystallize owing to their intrinsic flexibility and the above mentioned 
reasons [6]. For such special cases, homology modeling aids in developing three 
dimensional models of such proteins. This has been possible through the under-
standing about the structure of GPCRs facilitated by homology modeling. Since 
many of these receptors lack experimentally solved structures, in silico methods 
like homology modeling were applied to gain insights. Template structure with 
high homology was used for modeling the structures to gain more advance insights 
on their function. Approximately one-fifth of the total GPCRs structure are solved 
whereas the remaining GPCR structures can be predicted by homology modeling. 
Three dimensional model building with the help of template helps us to predict 
protein structural and functional domains which further aids in drug discovery.

.This chapter deals with the contribution of homology modeling to the structural 
studies of GPCRs.

2. The importance and multifaceted functionality of GPCRs

The importance of G-protein coupled receptors (GPCRs) in the fields of biology, 
medicine and pharmaceutical studies have been extensively studied, well estab-
lished and properly documented [7]. Due to its significance in playing a crucial role 
in various normal and pathological processes, GPCRs have become a major field of 
advanced research and a promising focus for drug discovery processes. The GPCRs 
have an extensive medical significance owing to their position and function within 
the human cell spanning the whole cell’s plasma membrane. By this way it bridges 
the extra- and an intracellular environment which enables the GPCRs to act as signal 
transducers wherein it acclaims a direct mechanism for the transduction of extra-
cellular messages into intracellular responses. In this way and together with their 
transmitters and effectors, GPCR systems function to modulate a broad spectrum of 
cellular phenomena dictated by the needs of the tissues and organs they serve. The 
gradient of GPCR distribution across vast majority of the body’s organs and tissues 
and its primary role as signal transducers like converting transduce extracellular 
stimuli into intracellular signals at cellular levels makes it fascinating molecules 
from the perspective of advanced structural research.

Other fascinating roles of GPCRs include modulation of neuronal firing, 
regulation of ion transport across the plasma membrane and within intracellular 
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(GPCRs) which are the largest family of membrane proteins.
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Figure 1. 
The number of membrane protein structures deposited each year since the first structure was solved as given by 
the mpstruc database. The number of structures available is considerably low compared to the expected number 
of membrane protein structures (red line).
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sequences as well as on their known or suspected functions in vertebrate: rhodopsin 
(family A), secretin (family B), glutamate (family C), adhesion and Frizzled/Taste2 
[5]. The actual estimate of GPCRs in human genome is still being analyzed. The 
presence of seven transmembrane (7-TM) spanning α-helical segments separated 
by alternating intracellular and extracellular loop regions is one of the characteristic 
features in the structure of GPCRs. They also possess an extracellular N-terminus 
and an intracellular C-terminus which paved way for GPCRs to be also known as the 
7-TM receptors or the heptahelical receptors. The tertiary structure of the GPCR 
resembles a barrel, with the seven transmembrane helices forming a cavity within 
the plasma membrane that serves as a ligand-binding domain. With its unique 
structure, the GPCRs serve many important roles in the human body. Hence the 
structure function correlation of GPCRs is a vital area of research even today.

The crystal structure of protein plays a pivot role in determining the functional 
importance of a protein. However membrane proteins are difficult to crystallize. 
Being a membrane protein, the GPCR structural studies have complexity because 
of low protein expression level in native tissues and heterologous systems. The 
poor protein stability and multiple conformational states of the receptors also are 
major hurdles in the GPCR structural studies. GPCRs have also been notoriously 
difficult to crystallize owing to their intrinsic flexibility and the above mentioned 
reasons [6]. For such special cases, homology modeling aids in developing three 
dimensional models of such proteins. This has been possible through the under-
standing about the structure of GPCRs facilitated by homology modeling. Since 
many of these receptors lack experimentally solved structures, in silico methods 
like homology modeling were applied to gain insights. Template structure with 
high homology was used for modeling the structures to gain more advance insights 
on their function. Approximately one-fifth of the total GPCRs structure are solved 
whereas the remaining GPCR structures can be predicted by homology modeling. 
Three dimensional model building with the help of template helps us to predict 
protein structural and functional domains which further aids in drug discovery.

.This chapter deals with the contribution of homology modeling to the structural 
studies of GPCRs.

2. The importance and multifaceted functionality of GPCRs

The importance of G-protein coupled receptors (GPCRs) in the fields of biology, 
medicine and pharmaceutical studies have been extensively studied, well estab-
lished and properly documented [7]. Due to its significance in playing a crucial role 
in various normal and pathological processes, GPCRs have become a major field of 
advanced research and a promising focus for drug discovery processes. The GPCRs 
have an extensive medical significance owing to their position and function within 
the human cell spanning the whole cell’s plasma membrane. By this way it bridges 
the extra- and an intracellular environment which enables the GPCRs to act as signal 
transducers wherein it acclaims a direct mechanism for the transduction of extra-
cellular messages into intracellular responses. In this way and together with their 
transmitters and effectors, GPCR systems function to modulate a broad spectrum of 
cellular phenomena dictated by the needs of the tissues and organs they serve. The 
gradient of GPCR distribution across vast majority of the body’s organs and tissues 
and its primary role as signal transducers like converting transduce extracellular 
stimuli into intracellular signals at cellular levels makes it fascinating molecules 
from the perspective of advanced structural research.

Other fascinating roles of GPCRs include modulation of neuronal firing, 
regulation of ion transport across the plasma membrane and within intracellular 
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organelles, modulation of homeostasis, control of cell division/proliferation, and 
modification of cell morphology. GPCRs are also an important target for cardiac 
drug therapy as decades of research revealed that GPCRs are the epicenters of many 
of the multiple causative factors of cardiovascular diseases like diabetes, obesity, 
environmental stressors and genetic factors [8]. Thus understanding the GPCR 
signaling mechanism in a healthy and an ailing heart may give better insights into 
treating cardiovascular problems.

There are over 200 cardio GPCRs and understanding their structural and func-
tional properties is a key element in understanding the occurrence of heart diseases 
[9]. G-proteins consist of α, β, and γ subunits and a lot of global research has been 
carried out to check the various GPCR signaling pathways in a healthy and an ailing 
heart. Clinically targeted cardiac GPCRs like adrenergic receptors are responsible 
for translating chemical messages from the sympathetic nervous system into 
cardiovascular responses. Other such potentially targeted clinical GPCRs include 
angiotensin, endothelin, and adenosine receptors. Thus to study deeper about such 
cardio GPCRs one has to have structural studies carried out prior to analyzing its 
functionality.

Chemokine receptors belonging to the class A of GPCRs are involved in variety 
of physiologic functions, mostly related to the homeostasis of the immune system. 
They are also involved in multiple pathologic processes, including immune and 
autoimmune diseases, as well as cancer.

Other ailments caused when fundamental pathways governed by GPCRs go awry 
are asthma and strokes and cerebral hypoperfusion [10]. GPCRs control airway 
smooth muscle (ASM) contraction and increased airway resistance when coupled to 
Gq receptors. Airway epithelium and hematopoietic cells that are involved in control 
of lung inflammation that causes most asthma, have various pathways that are 
mediated by GPCRs. Arrestins regulate GPCR signaling and once again structural 
insights into the GPCRs is essential in understanding vital role of arrestins in those 
GPCR-mediated airway cell functions that are dysregulated in asthma.

3. A brief history on the structural study of GPCRs

GPCRs have been considered as one of the most desirable drug targets for the 
past few decades and have been investigated extensively. But the three dimensional 
structures of GPCRs have only recently become available. The first step in the 
structural study of GPCRs happened in the year 2000 with the initial crystal struc-
ture determination of Bovine rhodopsin (PDB: 1F88) through X-ray diffraction 
method [11]. The GPCR rhodopsin was purified from bovine rod outer segment 
(ROS) membranes. Multiwavelength anomalous diffraction (MAD) methods were 
employed to get the phasing information and the diffraction data from the crystal-
lized Bovine rhodopsin were collected to 2.8 Å after mercury soaking. This experi-
mental model of rhodopsin became a structural template for other GPCRs owing to 
the molecular size of Bovine rhodopsin, 348 amino acids, which was intermediate 
among the members of the GPCR family and thus can feature most of the essential 
parts of functional importance in G-protein activation.

An year later in 2001 the solution NMR method was used to solve the structure 
of Bovine rhodopsin (PDB ID: 1JFP [12]). It then took 7 long years to crystallize 
the next GPCR ADRB2 (PDB ID: 2RH1, 2R4R/2R4S [13, 14])[15]. It was solved 
using the LCP method that provides a more native, lipid environment for crys-
tallization to a resolution of 2.4 Å. This delay was due to the need of numerous 
technological advancements required to crystallize membrane proteins like GPCRs. 
Developments in protein engineering, computational methods like homology 
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modeling and heterologous protein expressions have accelerated structural deter-
mination of GPCRs [16]. In this structure solved via the LCP technique, the proteins 
are placed in a membrane-like environment where they can diffuse and interact with 
each other to form crystal lattice contacts on both complementary hydrophobic and 
hydrophilic regions. These structures served as the template for the other crystal 
structures that were solved afterwards. Other receptors like H1R, D3R and 5-HT1B 
belonging to the Rhodopsin family of GPCRs were solved in the following years 
and served as templates for all the other GPCR structures that were predicted by 
homology modeling in the following years of research.

Another important subfamily of class A GPCRs with a number of key physiologic 
roles are the Chemokine receptors [17]. So far (till 2020) only 5 different chemokine 
receptor complexes have had their crystal structure solved by researchers and they are 
CXCR4 [18] (PDB IDs: 3ODU, 3OE0, 3OE6, 3OE8, 3OE9, and 4RWS [18, 19]), CCR5 
[20] (PDB IDs: 4MBS, 5UIW, 6AKX, and 6AKY [21–23]), US28 [24] (PDB IDs: 4XT1, 
4XT3, 5WB1, and 5WB2 [24, 25]), CCR2 [26] (PDB IDs: 5T1A, 6GPS, and 6GPX  
[26, 27]) and CCR9 [28] (PDB ID: 5LWE [28]). Structure based drug design was the key 
in solving crystal structures of Chemokine receptors and its potential is reflected by the 
large amount of ligands found for various chemokine receptors. SBDD methods prove to 
be more effective when a crystal structure is available as homology models.

In 2011, Kobilka achieved another break-through when he and his team captured 
an image of the β-adrenergic receptor at the exact moment that it is activated by 
a hormone and sends a signal into the cell. This image is a molecular masterpiece 
[29]. This was the first step in the path that earned Brian Kobilka the Nobel Prize in 
Chemistry in the year 2012 for his groundbreaking discoveries about GPCRs along 
with Robert Lefkowitz. In the year 2011 and 2013, the first secretin family GPCR 
structure was solved (PDB ID: 4L6R, 4K5Y [30, 31]) and in the following year the 
first glutamate family GPCR structure was deposited in PDB (PDB ID: 4OR2, 4OO9 
[32, 33]).

There are various databases available exclusively for GPCR structures like GPCR-
EXP [https://zhanglab.ccmb. med.umich.edu/GPCR-EXP/] (database for experi-
mentally solved GPCR structures) and GPCRdb [34] (web tools and diagrams that 
aid GPCR research) that profusely help the researchers. According to GPCR-EXP 
statistics there are 389 structures for 67 GPCRs belonging to different species depos-
ited in the PDB. Figure 2 gives us details about the total number of new experimental 

Figure 2. 
The total number of new GPCR experimental structures available each year given by GPCR EXP database.
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They are also involved in multiple pathologic processes, including immune and 
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Gq receptors. Airway epithelium and hematopoietic cells that are involved in control 
of lung inflammation that causes most asthma, have various pathways that are 
mediated by GPCRs. Arrestins regulate GPCR signaling and once again structural 
insights into the GPCRs is essential in understanding vital role of arrestins in those 
GPCR-mediated airway cell functions that are dysregulated in asthma.

3. A brief history on the structural study of GPCRs

GPCRs have been considered as one of the most desirable drug targets for the 
past few decades and have been investigated extensively. But the three dimensional 
structures of GPCRs have only recently become available. The first step in the 
structural study of GPCRs happened in the year 2000 with the initial crystal struc-
ture determination of Bovine rhodopsin (PDB: 1F88) through X-ray diffraction 
method [11]. The GPCR rhodopsin was purified from bovine rod outer segment 
(ROS) membranes. Multiwavelength anomalous diffraction (MAD) methods were 
employed to get the phasing information and the diffraction data from the crystal-
lized Bovine rhodopsin were collected to 2.8 Å after mercury soaking. This experi-
mental model of rhodopsin became a structural template for other GPCRs owing to 
the molecular size of Bovine rhodopsin, 348 amino acids, which was intermediate 
among the members of the GPCR family and thus can feature most of the essential 
parts of functional importance in G-protein activation.

An year later in 2001 the solution NMR method was used to solve the structure 
of Bovine rhodopsin (PDB ID: 1JFP [12]). It then took 7 long years to crystallize 
the next GPCR ADRB2 (PDB ID: 2RH1, 2R4R/2R4S [13, 14])[15]. It was solved 
using the LCP method that provides a more native, lipid environment for crys-
tallization to a resolution of 2.4 Å. This delay was due to the need of numerous 
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[26, 27]) and CCR9 [28] (PDB ID: 5LWE [28]). Structure based drug design was the key 
in solving crystal structures of Chemokine receptors and its potential is reflected by the 
large amount of ligands found for various chemokine receptors. SBDD methods prove to 
be more effective when a crystal structure is available as homology models.

In 2011, Kobilka achieved another break-through when he and his team captured 
an image of the β-adrenergic receptor at the exact moment that it is activated by 
a hormone and sends a signal into the cell. This image is a molecular masterpiece 
[29]. This was the first step in the path that earned Brian Kobilka the Nobel Prize in 
Chemistry in the year 2012 for his groundbreaking discoveries about GPCRs along 
with Robert Lefkowitz. In the year 2011 and 2013, the first secretin family GPCR 
structure was solved (PDB ID: 4L6R, 4K5Y [30, 31]) and in the following year the 
first glutamate family GPCR structure was deposited in PDB (PDB ID: 4OR2, 4OO9 
[32, 33]).

There are various databases available exclusively for GPCR structures like GPCR-
EXP [https://zhanglab.ccmb. med.umich.edu/GPCR-EXP/] (database for experi-
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aid GPCR research) that profusely help the researchers. According to GPCR-EXP 
statistics there are 389 structures for 67 GPCRs belonging to different species depos-
ited in the PDB. Figure 2 gives us details about the total number of new experimental 

Figure 2. 
The total number of new GPCR experimental structures available each year given by GPCR EXP database.



Homology Molecular Modeling - Perspectives and Applications

60

structures of GPCRs solved every year as recorded by GPCR-EXP database. There 
are still many more GPCR structures that are yet to be solved and these remain as an 
unturned page in the global research of GPCRs.

4.  Role of homology modeling in unraveling the structures of GPCRs:  
a success story

Protein based virtual screening requires knowledge of three dimensional struc-
ture of targets. Researchers will have to face an overwhelming number of potential 
targets like GPCRs for which no or very few experimental 3-D information is avail-
able. Therefore, it is crucial in the near future to be able to use not only X-ray or NMR 
structures, but also GPCR models for protein-based virtual screening of chemical 
libraries. There are a lot of difficulties in obtaining significant amounts of pure and 
active recombinant GPCRs and this has been a huge problem in generating a lot 
of high resolution three dimensional structures of GPCRs. Low resolution GPCR 
structures of either bacteriorhodopsin or Bovine rhodopsin have paved way for many 
GPCR models. These models proved to be ineffective as they were not reliable enough 
for structure-based ligand design. The solving of crystal structure of the inactive 
dark-state rhodopsin back in the year 2001 was a huge mile stone in the structural 
study of GPCRs as a number of homology models of other class A GPCRs have been 
reported since then based on this structure.

Generally the importance of crystal structures is that they are useful to map 
sequence differences and to help analyze if the ortholog variant may affect the 
ligand binding and signaling of that particular GPCR. The first prerequisite for 
experimentally solving a protein structure is obtaining large amounts of stable, 
purified, homogeneous protein which can be used as templates to build a homology 
model. By means of in silico methods like homology modeling, crystal structures 
can be used to predict the effect of such ortholog variants. First step in developing 
homology models is the alignment of fingerprint motifs that are common among 
the family which are then are extrapolated to assign coordinates for the entire 
helical bundle. On the basis of databases of loop conformations and based on the 
specific application loop regions are either ignored or modeled accordingly [35]. As 
the template and query sequences used in homology modeling both belong to the 
GPCR family, the seven transmembrane (TM) helixes were properly transformed 
in the models according to that of the template structure. The RMSD between the 
model and the template structure must always preferably be less than range of 3 Å. 
Further the models were validated with the help of ERRAT plot [36], PROCHECK 
[37] and VERIFY3D [38].

One of the test case wherein homology modeling proved to be effective with the 
structural studies of GPCRs is the work done by Bissantz et al. where 3-D models 
of the D3, β2, and δ-opioid receptors were generated for future agonist screening 
as already several full agonists were known for each of these GPCRs [39]. Many 
GPCR models were set up to speculate if the “activated state” of GPCRs was con-
formationally more flexible than the antagonist-bound ground state. Apomorphine 
and pergolide (D3 receptor), epinephrine, and nylidrine (2 receptor), SNC-80, 
and TAN67 (−opioid receptor) were the agonists used for the refinement and two 
agonist-bound models were built for each receptor. An alternative activated-state 
model was also generated by substituting the single ligand-biased receptor to do 
comparative studies. When the amino acid sequences of the target receptors were 
aligned to the sequence of the Bovine rhodopsin template, the alignment coincided 
with the known structural features of GPCRs. It was observed that despite the low 
sequence identity when taking the whole TM sequence in account, the structurally 
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and functionally important amino acids were highly conserved or compensated 
by amino acids of high similarity. These GPCR models are static though proteins 
are in reality more or less flexible which gave rise to more problems associated 
with docking. GPCR models based on a template with an identity of 20–30% can 
be expected to be of higher accuracy than when modeling other type of proteins 
based on a template with low-sequence identity and this was proven to be rue in 
this test case where in the antagonist-bound state models of three human GPCRs 
were proven to be suitable for virtual screening of GPCR antagonists. Although 
single template based models were seen to be less reliable. This was because all 
GPCR models that were used as templates have been derived from the inactive 
state of Bovine rhodospin, which was closer to an “antagonist-bound state” than 
to an “agonist-bound state” of the target GPCR and though their active site can be 
expanded the following conformational changes occurring in the receptor activa-
tion process could not be stimulated. A similar unreliability with the single template 
model was observed with all the GPCR homology models developed based on 
β2AR. Many models exist for β2AR, some of which have been improved upon with 
supporting biochemical data. All of these models were more similar to rhodopsin 
than β2AR. This was mainly because they were all homology models generated 
from single structural templates. The addition of multiple structural templates 
and conformational states to the pool of information on GPCRs later paved way to 
a new generation of more potent therapeutics targeting GPCR family. It is also not 
conclusive to come to a judgment where this unreliability of single template modeling 
stands strong as these modeling were conducted at a time when there were only few 
templates available. Judith Varady et al. used Bovine rhodopsin template to build the 
model of dopamine 3 (D3) subtype receptor which is a promising lead in treating 
drug addictions. The transmembrane helical region of the D3 receptor was modeled 
using Bovine rhodopsin template includes the ligand-binding site and showed 
sequence identity in the twilight region during homology modeling (sequence 
identity of 28%) [40].

Three-dimensional model of the human CCR5 receptor was developed by Fano 
A. et al. using a homology-based approach starting from the X-ray structure of the 
bovine rhodopsin receptor [41]. The reliability of these models was accessed using 
molecular docking and molecular dynamics studies. During this work there was no 
experimentally solved three dimensional chemokine receptor structures available 
and hence became a major hurdle in the deeper researches on the structural proper-
ties of these receptors. Therefore main ways to investigate the properties of CCR5 
were homology modeling studies along with site-directed mutagenesis (SDM). 
Therefore a new model of CCR5 was built after consolidating all the informa-
tion from the previously built models and also incorporating extensive molecular 
dynamics simulations (MD). Furthermore, flexible docking of a synthetic antago-
nist TAK779 and a novel docking protocol for natural agonists RANTES and MIP-1β 
was employed to develop the CCR5 models. The first crystal structure of bovine 
rhodopsin by Palczewski et al. served as the perfect template to build this model 
as the sequence identity increased to ∼30% from previously being less than 20% 
when considering only the transmembrane helices (TMHs), and several of the 
amino acid residues essential for maintaining CCR5’s architecture and receptor 
function were highly conserved. Pair wise alignment between the template and 
human CCR5 was carried out in CLUSTAL W and it was found that the anti-parallel 
β sheet loop of the second extracellular loop (ECL2) had higher sequence homology 
to the template. Out of the four cysteines which form two disulfide links in CCR5, 
Cys101-Cys178 had the anti-parallel β sheet loop of ECL2 and thus this loop was 
constructed by homology from the template structure using MODELER 6.2 [42]. 
The Cα Cartesian coordinates of the seven transmembrane helices and ECL2 were 
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structures of GPCRs solved every year as recorded by GPCR-EXP database. There 
are still many more GPCR structures that are yet to be solved and these remain as an 
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able. Therefore, it is crucial in the near future to be able to use not only X-ray or NMR 
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Generally the importance of crystal structures is that they are useful to map 
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in the models according to that of the template structure. The RMSD between the 
model and the template structure must always preferably be less than range of 3 Å. 
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One of the test case wherein homology modeling proved to be effective with the 
structural studies of GPCRs is the work done by Bissantz et al. where 3-D models 
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as already several full agonists were known for each of these GPCRs [39]. Many 
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and TAN67 (−opioid receptor) were the agonists used for the refinement and two 
agonist-bound models were built for each receptor. An alternative activated-state 
model was also generated by substituting the single ligand-biased receptor to do 
comparative studies. When the amino acid sequences of the target receptors were 
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and functionally important amino acids were highly conserved or compensated 
by amino acids of high similarity. These GPCR models are static though proteins 
are in reality more or less flexible which gave rise to more problems associated 
with docking. GPCR models based on a template with an identity of 20–30% can 
be expected to be of higher accuracy than when modeling other type of proteins 
based on a template with low-sequence identity and this was proven to be rue in 
this test case where in the antagonist-bound state models of three human GPCRs 
were proven to be suitable for virtual screening of GPCR antagonists. Although 
single template based models were seen to be less reliable. This was because all 
GPCR models that were used as templates have been derived from the inactive 
state of Bovine rhodospin, which was closer to an “antagonist-bound state” than 
to an “agonist-bound state” of the target GPCR and though their active site can be 
expanded the following conformational changes occurring in the receptor activa-
tion process could not be stimulated. A similar unreliability with the single template 
model was observed with all the GPCR homology models developed based on 
β2AR. Many models exist for β2AR, some of which have been improved upon with 
supporting biochemical data. All of these models were more similar to rhodopsin 
than β2AR. This was mainly because they were all homology models generated 
from single structural templates. The addition of multiple structural templates 
and conformational states to the pool of information on GPCRs later paved way to 
a new generation of more potent therapeutics targeting GPCR family. It is also not 
conclusive to come to a judgment where this unreliability of single template modeling 
stands strong as these modeling were conducted at a time when there were only few 
templates available. Judith Varady et al. used Bovine rhodopsin template to build the 
model of dopamine 3 (D3) subtype receptor which is a promising lead in treating 
drug addictions. The transmembrane helical region of the D3 receptor was modeled 
using Bovine rhodopsin template includes the ligand-binding site and showed 
sequence identity in the twilight region during homology modeling (sequence 
identity of 28%) [40].

Three-dimensional model of the human CCR5 receptor was developed by Fano 
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molecular docking and molecular dynamics studies. During this work there was no 
experimentally solved three dimensional chemokine receptor structures available 
and hence became a major hurdle in the deeper researches on the structural proper-
ties of these receptors. Therefore main ways to investigate the properties of CCR5 
were homology modeling studies along with site-directed mutagenesis (SDM). 
Therefore a new model of CCR5 was built after consolidating all the informa-
tion from the previously built models and also incorporating extensive molecular 
dynamics simulations (MD). Furthermore, flexible docking of a synthetic antago-
nist TAK779 and a novel docking protocol for natural agonists RANTES and MIP-1β 
was employed to develop the CCR5 models. The first crystal structure of bovine 
rhodopsin by Palczewski et al. served as the perfect template to build this model 
as the sequence identity increased to ∼30% from previously being less than 20% 
when considering only the transmembrane helices (TMHs), and several of the 
amino acid residues essential for maintaining CCR5’s architecture and receptor 
function were highly conserved. Pair wise alignment between the template and 
human CCR5 was carried out in CLUSTAL W and it was found that the anti-parallel 
β sheet loop of the second extracellular loop (ECL2) had higher sequence homology 
to the template. Out of the four cysteines which form two disulfide links in CCR5, 
Cys101-Cys178 had the anti-parallel β sheet loop of ECL2 and thus this loop was 
constructed by homology from the template structure using MODELER 6.2 [42]. 
The Cα Cartesian coordinates of the seven transmembrane helices and ECL2 were 
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copied from the corresponding template (PDB: 1F88) and the N-terminal domain 
and the remaining loops were built de novo using MODELER 6.2. Confirmations of 
the models were done using PROCHECK and were selected as the input structure 
for MD Loop Refinement. The resulting model consisting of the TMHs and all ECLs 
and ICLs, was validated by MD conformational analysis, which showed it to be 
consistent with the then currently available SDM data and was used to gain insights 
into the molecular basis of the initiation and development of HIV-1 infection. This 
information could be useful in the rational design of HIV-1 entry blockers.

Chronologically, the time when the structural information about chemokine 
receptors was unavailable Gugan et al. in 2012 carried out the investigations on the 
binding site of CCR2 [43].  A comparative model was generated using the template 
structure of CXCR4 (PDB ID: 3ODU [44]). The structure of CXCR4 (PDB ID: 
3ODU) was elucidated in 2010. One of the key findings along with the binding site 
residues is that the disulfide bridge was produced between Cys113-Cys190 of the 
selected CCR2 model and was also later observed in the crystal structure which was 
elucidated in 2016 (PDB ID: 5T1A [45]).

In the similar manner, Changdev et al. in 2013 developed the 3-D model for 
CCR5 using the template CXCR4 (PDB ID: 3ODU; resolution 2.5 Å) modeled by 
MODELER 9.2 [46] to explore the biding site of the receptor [47]. Significantly, the 
modeled structure coincides with the crystal structure of the CCR5 (PDB ID:4MBS 
[20]) whose structural information was determined by Tan et al. in 2013 [48].

The research by Anand et al. in 2011 on the accuracy of homology modeling 
revealed the comparison study between the reported models along with the crystal 
structure of CCR5 (PDB ID:4MBS)[49]. The findings have identified the impor-
tance of multi-template model in determining the insights of structural information 
of the receptor possessing its own merits and demerits. The inhibitor Maraviroc 
was docked to the single template and multi-template models of bovine rhodopsin 
(PDB ID: 1F88), β2 adrenergic receptor (PDB ID: 2RH1 [50]) and CXCR4 (PDB ID: 
3ODU). The critical salt-bridge interaction established by Maraviroc with Glu283 of 
the receptor was genuinely observed in modeled structure and crystal structure.

In the process of building model of a particular GPCR usually many models are 
constructed with varying side chains and almost identical backbone. This is done 
to check which model among all the constructed models shows maximum affinity 
towards various ligands. So the model showing consisting binding mode is selected 
for further analysis. An example of this is the study done by Mateusz N et al. where 
400 homology models of serotonin 5-HT1A receptor, one of the most documented 
monoamine GPCR, was modeled using Modeler 7v7 [51] with the crystal structure 
of bovine rhodopsin (PDB:1F88) as template [52]. These models varied consider-
ably in their side chain but the polypeptide backbone varied only marginally from 
the template. Arylpiperazines test ligands were docked to all the 400 models with 
default parameters without any constraints. A detailed analysis of the docking poses 
revealed intrinsic information about crucial ionic bonds that were formed d almost 
exclusively in the case of receptors with the gauche(−) conformation of the Asp3.32 
ø1 angle. Such insights led to the development of 200 new homology models with 
all the changes incorporated. Molecular docking was once again done on all the 
200 new models and the complexes were scored using various scoring functions to 
choose the best models.

The past few years have seen remarkable advances in the structural biology of 
G-protein coupled receptors (GPCRs) and separate databases exist to study GPCRs. 
The applications of structural studies of GPCRs have various goals and these goals 
trigger myriad scientific investigations. For the GPCRs whose structures have now 
been solved, the homology models developed earlier based on rhodopsin, have been 
the first step in discovering the versatility of their structural studies. Due to the 
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increase in the available GPCR structures, the templates used to build the structure 
for homology modeled GPCRs show a drastic increase in similarity and query 
coverage in the recent years. This enhances the structure of the models which are 
being constructed with the upcoming elucidated structures of GPCRs.

5. Conclusion

The research in GPCRs is a global phenomenon and this is possible only if we 
have structural insights based on structural studies of GPCRs. Owing to the dif-
ficulty in crystallizing the GPCRs, it was once construed that structural studies of 
GPCRs were impossible. But with the technological advancements in the computa-
tional techniques, building a model structure based on the homology of a particular 
receptor with a template structure became possible. Thus homology modeling and 
models generated via tools like MODELER unraveled the unexplored arenas in the 
research of GPCRs. These models served a greater purpose to the pharmaceutical 
industries wherein GPCRs became famous drug discovery targets. The many experi-
mental structures constructed using previously solved structures as templates were 
further scrutinized based on their efficiency in showing a consisting binding mode 
with various ligands. Recent times have seen use of Cryo EM techniques in solv-
ing structures of GPCRs. But still contribution made by techniques like homology 
modeling in the structural studies of GPCRs will always remain as a mile stone.
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Chapter 5

Homology Modeling of Tubulin 
Isotypes to Investigate MT-Tau 
Interactions
Vishwambhar Vishnu Bhandare

Abstract

The Homology modeling techniques uses the template structure(s) to model 
the full-length structure of unknown sequence. It is being used for determining the 
structure of biological macromolecules, especially proteins. The wide applications 
of homology modeling approach have helped us to address various challenging 
problems in the field of biological sciences and drug discovery despite the limita-
tions in using analytical techniques like X-ray, NMR and CryoEM techniques. 
Here, this chapter emphasize on application of homology modeling in determining 
MT-Tau interactions which are important in the Alzheimer disease. In Alzheimer 
diseases, tau detaches from MTs in misfolded shape and forms insoluble aggregates 
in neurons due to post-translational modifications. MT-tau interactions are largely 
unknown due to differential expression of neuronal specific tubulin isotypes and 
intrinsically disordered nature of tau. MTs play crucial roles in important cellular 
functions including cell division, transport of vesicles, cell signaling, cell motil-
ity etc. MTs are composed of different tubulin isotypes which differs mainly at 
C-terminal tail. In humans, nine β-tubulin isotypes have been reported which are 
expressed differently in different tissues. Structures for different tubulin isotypes 
are still lacking due to their complex differential expression pattern and purifica-
tion. Hence, homology modeling approach allowed us to generate homology models 
for different neuronal specific tubulin isotypes and study their interactions with 
tau repeats. It is believed that this study would gain more structural and functional 
insights to the linked Alzheimer diseases.

Keywords: homology modeling, microtubule, tubulin isotypes, Alzheimer disease, 
molecular modeling

1. Introduction

Bioinformatics is an interdisciplinary science that uses both computational and 
informational approaches to retrieve, analyze, organize, visualize, store and develop 
biological data [1]. It is widely applied in the field of life sciences, especially in 
functional genomics, sequence analysis, proteomics, drug discovery, etc. Prediction 
of the structure and functions of the genes and proteins have become a fundamental 
task in the life science researches. The present book chapter involves molecular 
modeling study to investigate intermolecular interactions between Microtubule 
(MT) and Tau. Though these interactions are important in Alzheimer’s disease, the 
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detailed knowledge on MT-Tau interactions are still lacking mainly because of two 
reasons (i) Lack of full-length structure of tau due to its intrinsically disordered 
nature and (ii) Differential expression of tubulin isotypes in different type of cells 
in particular brain and neuronal cells. Earlier experimental efforts have been made 
to elucidate these interactions using solution structure (PDB ID: 2MZ7.pdb) how-
ever correct binding mode and atomistic interactions at structural level are poorly 
understood. Therefore, this chapter focuses on application of molecular modeling 
techniques in understanding important MT-Tau interactions in the Alzheimers 
disease. Bioinformatics approaches like sequence analysis, homology modeling. MD 
simulations and binding energy calculations are employed systematically to address 
this challenging problem in the field of Alzheimer’s disease.

Tau is intrinsically disordered protein encoded by ‘mapt’ gene located on chro-
mosome 17 [2]. The primary function of the tau protein is to bind and stabilize the 
microtubule. It is abundantly expressed in the brain and neuronal tissues hence 
its misregulation is associated with the Alzheimers and other neurodegenera-
tive disorders [3, 4]. Till date about six isoforms of tau are reported in the human 
central nervous system. The length of these six isoforms varies between 352 to 441 
 residues [5].

Primary structure of tau contains the projectile domain at N-terminal (residue 
1–244) which is composed of the acidic and proline-rich region, and the C-terminal 
repeat domain which consists of 4 repeats i.e., R1, R2, R3 and R4 (residues 245–441) 
(Figure 1). The six isoforms of tau mainly differs by the existence of either R3 or 
R4 repeats at the C-terminal domain [6]. The one of the tau isoforms is referred as 
longest isoform mostly observed in humans which comprises 4 repeats i.e., R1, R2, 
R3 and R4. while the shortest isoform of tau has only 3 repeats (R1, R2 and R3). 
This shortest isoform of tau is reported in the fetus brain and less common in adults 
[5, 7]. Figure 1A represents the structure of tau repeat region R2 which is bound 
to the MT composed of β/α/β tubulin subunits [8]. Hereafter, tau repeat R2 will be 
mentioned as ‘TauR2’ for the simplicity. The tau repeats R1, R2, R3 and R4 prefers to 
bind at the outer surface of microtubule (MT) to stabilize it (Figure 1A) and regu-
lates MT polymerization [6]. Figure 1B represents domain organization in the tau 
primary structure and Figure 1C shows the sequence of TauR2 which is reported 
in the CryoEM model. It is well established that tau primarily helps in the assembly 
and stabilization of axonal MTs, which contributes to the proper functioning of 
neuronal cells [9]. However, recent studies have reported new functional role of 
the tau in addition to the axonal, i.e. labile domain of the MT to promote its assem-
bly [10]. Tau detaches from the MTs and forms abnormal, fibrillar structures of 
insoluble aggregates due to post-translational modifications in Alzheimer diseases 
and other neurodegenerative diseases associated with tau [11, 12].

Full-length structure of tau protein is not yet determined using X-ray crystallo-
graphic techniques due to its intrinsically disordered nature. Also, the efforts to find 
its solution structure using NMR spectroscopy have failed [13]. Thus, the MT-Tau 
interactions have been studied so far using various biochemical and biophysical 
techniques [14–17]. The CryoEM have showed marginal success in determining 
the structure of tau repeat R2 bound to MT however it shows discontinues density 
of tau repeats along with each protofilament upon MT binding [8]. Hence, they 
synthetically developed R1 and R2 repeat of tau and their interactions with MT 
were examined. These two tau repeats adopts the extended conformation along the 
crest of protofilament which stabilizes the MT structure by binding to the interface 
of tubulin dimers [8].

MTs are made from αβ-tubulin heterodimer subunits [18]. In human, seven 
α-tubulin and nine β-tubulin isotypes are reported showing their tissue-specific 
expressions. For instance, βI tubulin isotype is ubiquitously expressed in all cells, 
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βII and βIII tubulin isotype are mainly expressed in brain and neuronal cells, and 
βVI tubulin isotype is expressed in erythroid cells and platelets [19]. The βI tubulin 
isotype reported to play crucial role in cell viability, βII tubulin isotype is important 
for neurite growth and βIII tubulin isotype protects nerve cell against free radicals 
and reactive oxygen species [20]. It has been well known that all β-tubulin isotypes 
share a significant residue conservation except the C-terminal tail region of MT 
[21–24] which is flexible in nature and structurally disordered. The C- tail region of 
all these isotypes overhang outwards of the MTs. The C-tail shows interactions with 
various MAPs including tau and regulate MT dynamics [25, 26].

It is well documented that the composition of β-tubulin isotypes (i) affects MT 
dynamic instability [27, 28], (ii) their interaction with motor proteins [29], (iii) 
their binding to the anti-drugs [21, 22, 30] and (iv) different MAPs including tau 
[31, 32]. These tubulin isotypes show tissue specific expression as their relative pro-
portion varies greatly in different type of cells [20, 33, 34]. It is also well established 
that binding of tau to the MT promote or demote microtubule polymerization [35]. 
However, the differential binding affinity of tau to the various β-tubulin isotypes 

Figure 1. 
CryoEM Structure of tubulin subunits bound to TauR2. (A) tubulin subunits bound to TauR2 in CryoEM 
structure 6CVN.pdb. TauR2 domain binds at the outer surface of the MT. (B) Domain organization in tau, 
(C) sequence of TauR2. [Source: Bhandare et al, 2019; doi: 10.1038/s41598-019-47249-7].
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detailed knowledge on MT-Tau interactions are still lacking mainly because of two 
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ever correct binding mode and atomistic interactions at structural level are poorly 
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disease. Bioinformatics approaches like sequence analysis, homology modeling. MD 
simulations and binding energy calculations are employed systematically to address 
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 residues [5].
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Full-length structure of tau protein is not yet determined using X-ray crystallo-
graphic techniques due to its intrinsically disordered nature. Also, the efforts to find 
its solution structure using NMR spectroscopy have failed [13]. Thus, the MT-Tau 
interactions have been studied so far using various biochemical and biophysical 
techniques [14–17]. The CryoEM have showed marginal success in determining 
the structure of tau repeat R2 bound to MT however it shows discontinues density 
of tau repeats along with each protofilament upon MT binding [8]. Hence, they 
synthetically developed R1 and R2 repeat of tau and their interactions with MT 
were examined. These two tau repeats adopts the extended conformation along the 
crest of protofilament which stabilizes the MT structure by binding to the interface 
of tubulin dimers [8].

MTs are made from αβ-tubulin heterodimer subunits [18]. In human, seven 
α-tubulin and nine β-tubulin isotypes are reported showing their tissue-specific 
expressions. For instance, βI tubulin isotype is ubiquitously expressed in all cells, 
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and reactive oxygen species [20]. It has been well known that all β-tubulin isotypes 
share a significant residue conservation except the C-terminal tail region of MT 
[21–24] which is flexible in nature and structurally disordered. The C- tail region of 
all these isotypes overhang outwards of the MTs. The C-tail shows interactions with 
various MAPs including tau and regulate MT dynamics [25, 26].

It is well documented that the composition of β-tubulin isotypes (i) affects MT 
dynamic instability [27, 28], (ii) their interaction with motor proteins [29], (iii) 
their binding to the anti-drugs [21, 22, 30] and (iv) different MAPs including tau 
[31, 32]. These tubulin isotypes show tissue specific expression as their relative pro-
portion varies greatly in different type of cells [20, 33, 34]. It is also well established 
that binding of tau to the MT promote or demote microtubule polymerization [35]. 
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expressed in different types of cells is completely unknown. Therefore, we studied 
relative binding affinity of Tau repeat region R2 with neuronal specific β-tubulin 
isotypes namely βI, βIIb, and βIII using molecular modeling [36].

2. Methodology

2.1 Sequence analysis and homology modeling of tubulin isotypes

In biological research, sequence analysis plays a major role as it has wide range of 
applications such as, (i) whole genome sequencing and annotation, (ii) identifica-
tion of functional elements in the sequence, (iii) gene prediction, (iv) comparative 
genomics, (v) protein classification, (vi) protein and RNA structure prediction, 
(vii) evolutionary studies, etc. Protein sequences reveal the evolutionary history 
and hence, the events occurred during evolutions can be traced from the protein 
sequences.

The structure 6CVN.pdb is used as template structure for homology modeling of 
neuronal specific human tubulin isotypes namely βI, βIIb and βIII tubulin (uniprot 
IDs Q9H4B7, Q9BVA1 and Q136509). The multiple sequence alignment of these 
sequence was performed using ‘clustal omega’ tool [37]. The multiple sequence 
alignment reveals that residue variations is mainly at the C-terminal tail when com-
pared to the other regions of the protein. The high-resolution cryo-EM structure 
of β/α/β-tubulin bound with TauR2 was recently deposited in the RCSB structural 
databases [8] was used as a template to build βI/α/βI-TauR2, βIIb/α/βIIb-TauR2 and 
βIII/α/βIII-TauR2 complexes. The structure for C-terminal tail was absent in the 
template structure (6CVN.pdb), therefore the tail region was modeled using the 
Modeler 9v20. Hereafter, template structure with modeled C-terminal tail region 
would be referred as 6CVN* in the further discussion.

Template based homology models for neuronal specific tubulin isotypes βI, βIIb, 
βIII was build using Modeler 9v20 [38]. The least discrete optimized potential energy 
(DOPE) score model was selected for further use. The stereo-chemical properties of 
these modeled subunits were evaluated and validated using the GMQE score [39], 
verify3D [40], ERRAT score [41] and Ramachandran plot through PROCHECK 
[42]. The selected subunit models were further used to 6CVN*-TauR2, build βI/α/
βI-TauR2, βIIb/α/βIIb-TauR2 and βIII/α/βIII-TauR2. These complexes namely 6CVN-
TauR2, 6CVN*-TauR2, βI/α/βI-TauR2, βIIb/α/βIIb-TauR2 and βIII/α/βIII-TauR2 were 
further subjected for energy minimization to get their least energy state. Here we 
used Steepest Descent and Conjugate Gradient methods in Gromacs 2018.1 software 
for minimization [43]. The process of energy minimization is a numerical procedure 
aimed to find a minimum on the potential energy surface (PES) of the newly mod-
eled conformation which mostly exists at a higher energy level. These minimized 
models were used as a starting input structures for molecular dynamics simulations 
to understand the binding mode and binding affinity of TauR2 towards neuronal 
specific tubulin isotypes βI, βII and βIII.

2.2 Molecular dynamics simulations of tubulin-TauR2 complexes

Molecular dynamics (MD) simulation plays a key role in exploring the structure 
and function of biological macromolecules [44]. In MD simulations, the dynamic 
behavior of the molecule is studied as a function of time. Molecular dynamics is 
being routinely used to address various biological problems such as biomolecular 
interactions (Protein–protein, protein-DNA/RNA), molecular pathways, Drug-
receptor interactions, dynamics of protein folding, protein aggregations, protein 
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structure prediction, etc. Tremendous development in high performance comput-
ing and simplicity of the basic MD algorithm has shortened the time required to 
perform molecular dynamics simulation and hence, studying larger systems became 
an easier task [45].

All atom molecular dynamics (MD) simulation was performed in explicit solvent 
on the modeled tubulin-TauR2 complexes (i.e. 6CVN-TauR2, 6CVN*-tau, βI/α/
βI-TauR2, βIIb/α/βIIb-TauR2 and βIII/α/βIII-TauR2) using GROMACS 2018.1 [43, 46]. 
The ‘Amber99SB-ILDN’ force field [47] was chosen for the MD simulation because 
it is well customized to handle the parameters for GTP,GDP and MG atoms which 
are the functional players of all the modeled tubulin-TauR2 complexes. The force 
field parameters for the GDP and GTP molecules were retrieved from the amber 
parameter database [48, 49]. The ‘xleap’ module of AmberTools was used to gener-
ate topology files and initial starting coordinates for all the complexes [50]. All the 
modeled tau-tubulin complexes were placed at the centre of a cubic shaped solva-
tion box having dimension of 15 Å from the extent of the molecule and TIP3P water 
model was used for solvation. All the systems were neutralized by adding appropriate 
number of required counterions. The topology files generated using xleap module of 
AmberTools were converted to Gromacs compatible topologies with ParmEd tool [51]. 
Energy minimization was carried out in two steps, In the first step, steepest descent 
algorithm was used for 50,000 followed by the conjugate gradient [46]. The energy 
minimized models were equilibrated using canonical ensemble (NVT) followed by 
isothermal-isobaric ensemble (NPT) for 1 ns. In the NVT equilibration systems were 
heated to 300 K using V-rescale, a modified Berendsen thermostat [46]. These heated 
systems were further equilibrated using the Parrinello-Rahman barostat to maintain 
constant pressure of 1 bar. The production MD simulations were performed for 100 ns 
without restraining any atoms over all the tubulin-TauR2 complexes using parameters 
discussed in earlier study [52]. The PME method was used to treat long range electro-
static interactions [53, 54] and covalent bonds involving H-atoms were constrained by 
using ‘LINCS’ algorithm [55]. The 2 fs time step was set for integrating the newtonian 
equation during the MD simulation. Similar protocol was adopted to perform MD 
simulation on three additional systems (i) 6CVN* (without tau), (ii) free tau and 
(iii) 6CVN*-polyA (as negative control) having 27 amino acids residues. All the MD 
simulation trajectories were further analyzed by using the GROMACS 2018.1 inbuilt 
tools [43, 46]. The general parameters explaining the conformational stability such as 
Root Mean Square Deviation (RMSD), Root Mean Square Fluctuations (RMSF) and 
Radius of Gyration (Rg) were measured, and the equations used for calculation of 
these parameters are tabulated in the Table 1.

The primary sequence of a protein is a linear chain of amino acids linked by pep-
tide bonds. There is a direct link between the protein sequence, structure and func-
tion. The secondary structure of a protein is comprised of coils, α-helices, β-sheets, 
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expressed in different types of cells is completely unknown. Therefore, we studied 
relative binding affinity of Tau repeat region R2 with neuronal specific β-tubulin 
isotypes namely βI, βIIb, and βIII using molecular modeling [36].
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genomics, (v) protein classification, (vi) protein and RNA structure prediction, 
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and hence, the events occurred during evolutions can be traced from the protein 
sequences.

The structure 6CVN.pdb is used as template structure for homology modeling of 
neuronal specific human tubulin isotypes namely βI, βIIb and βIII tubulin (uniprot 
IDs Q9H4B7, Q9BVA1 and Q136509). The multiple sequence alignment of these 
sequence was performed using ‘clustal omega’ tool [37]. The multiple sequence 
alignment reveals that residue variations is mainly at the C-terminal tail when com-
pared to the other regions of the protein. The high-resolution cryo-EM structure 
of β/α/β-tubulin bound with TauR2 was recently deposited in the RCSB structural 
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template structure (6CVN.pdb), therefore the tail region was modeled using the 
Modeler 9v20. Hereafter, template structure with modeled C-terminal tail region 
would be referred as 6CVN* in the further discussion.

Template based homology models for neuronal specific tubulin isotypes βI, βIIb, 
βIII was build using Modeler 9v20 [38]. The least discrete optimized potential energy 
(DOPE) score model was selected for further use. The stereo-chemical properties of 
these modeled subunits were evaluated and validated using the GMQE score [39], 
verify3D [40], ERRAT score [41] and Ramachandran plot through PROCHECK 
[42]. The selected subunit models were further used to 6CVN*-TauR2, build βI/α/
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further subjected for energy minimization to get their least energy state. Here we 
used Steepest Descent and Conjugate Gradient methods in Gromacs 2018.1 software 
for minimization [43]. The process of energy minimization is a numerical procedure 
aimed to find a minimum on the potential energy surface (PES) of the newly mod-
eled conformation which mostly exists at a higher energy level. These minimized 
models were used as a starting input structures for molecular dynamics simulations 
to understand the binding mode and binding affinity of TauR2 towards neuronal 
specific tubulin isotypes βI, βII and βIII.

2.2 Molecular dynamics simulations of tubulin-TauR2 complexes

Molecular dynamics (MD) simulation plays a key role in exploring the structure 
and function of biological macromolecules [44]. In MD simulations, the dynamic 
behavior of the molecule is studied as a function of time. Molecular dynamics is 
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structure prediction, etc. Tremendous development in high performance comput-
ing and simplicity of the basic MD algorithm has shortened the time required to 
perform molecular dynamics simulation and hence, studying larger systems became 
an easier task [45].

All atom molecular dynamics (MD) simulation was performed in explicit solvent 
on the modeled tubulin-TauR2 complexes (i.e. 6CVN-TauR2, 6CVN*-tau, βI/α/
βI-TauR2, βIIb/α/βIIb-TauR2 and βIII/α/βIII-TauR2) using GROMACS 2018.1 [43, 46]. 
The ‘Amber99SB-ILDN’ force field [47] was chosen for the MD simulation because 
it is well customized to handle the parameters for GTP,GDP and MG atoms which 
are the functional players of all the modeled tubulin-TauR2 complexes. The force 
field parameters for the GDP and GTP molecules were retrieved from the amber 
parameter database [48, 49]. The ‘xleap’ module of AmberTools was used to gener-
ate topology files and initial starting coordinates for all the complexes [50]. All the 
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tion box having dimension of 15 Å from the extent of the molecule and TIP3P water 
model was used for solvation. All the systems were neutralized by adding appropriate 
number of required counterions. The topology files generated using xleap module of 
AmberTools were converted to Gromacs compatible topologies with ParmEd tool [51]. 
Energy minimization was carried out in two steps, In the first step, steepest descent 
algorithm was used for 50,000 followed by the conjugate gradient [46]. The energy 
minimized models were equilibrated using canonical ensemble (NVT) followed by 
isothermal-isobaric ensemble (NPT) for 1 ns. In the NVT equilibration systems were 
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systems were further equilibrated using the Parrinello-Rahman barostat to maintain 
constant pressure of 1 bar. The production MD simulations were performed for 100 ns 
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discussed in earlier study [52]. The PME method was used to treat long range electro-
static interactions [53, 54] and covalent bonds involving H-atoms were constrained by 
using ‘LINCS’ algorithm [55]. The 2 fs time step was set for integrating the newtonian 
equation during the MD simulation. Similar protocol was adopted to perform MD 
simulation on three additional systems (i) 6CVN* (without tau), (ii) free tau and 
(iii) 6CVN*-polyA (as negative control) having 27 amino acids residues. All the MD 
simulation trajectories were further analyzed by using the GROMACS 2018.1 inbuilt 
tools [43, 46]. The general parameters explaining the conformational stability such as 
Root Mean Square Deviation (RMSD), Root Mean Square Fluctuations (RMSF) and 
Radius of Gyration (Rg) were measured, and the equations used for calculation of 
these parameters are tabulated in the Table 1.
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tide bonds. There is a direct link between the protein sequence, structure and func-
tion. The secondary structure of a protein is comprised of coils, α-helices, β-sheets, 

S. 
no.

Parameter Equation Component

1 RMSD 2
1

N
ii
d

RMSD
N
== ∑ 𝑑𝑑𝑖𝑖 is the distance, ‘N’ is number of 

atoms

2 RMSF ( )( )21

t
i j ij
x t x

RMSF
t

=
−

=
∑

𝑥𝑥𝑖𝑖 is atom position at time 𝑡𝑡, reference 
position is ix

3 Rg ( )21

N
i comi

g

x x
R

N
=

−
= ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 centre of mass, 𝑥𝑥𝑖𝑖 is the distance 

at time 𝑡𝑡 from their centre of mass

Table 1. 
Equations used to calculate RMSD, RMSF and Rg.



Homology Molecular Modeling - Perspectives and Applications

74

β-bridge, bend, turn, coils, π-helix and 310-helices. DSSP is an algorithm developed 
by Kabsch and Sander to extract the secondary structural features based on atomic 
coordinates [56]. The overall stability of the structure is highly determined by 
the stable dynamics of these secondary structures and any significant changes in 
secondary structure attributes to the structural flexibility/fold as well as functional 
diversity of the protein. Hence, conformational changes in the secondary structure 
during MD simulation were analyzed using the DSSP programme [56]. The simula-
tion movies over the entire trajectories were generated using the VMD software [57] 
and publication quality images were generated using the Biovia Discovery studio 
visualizer [58] and Chimera software [59].

2.3 Calculations of contact surface area (CSA) for tubulin-TauR2 complexes

Solvent Accessible Surface Area (SASA) is used to represent the degree of hydra-
tion of a biomolecule. SASA also be especially useful to quantify the stability of the 
biomolecular complexes in the aqueous medium. The C-terminal tail of the tubulin 
subunits is highly dynamic in nature and has no definite secondary structure, hence 
it affects the overall hydrophobic SASA. Therefore, interface of the MT (in this case 
tubulin trimer made up of β/α/β subunits) where TauR2 binds at the exterior sur-
face has been selected for the calculating the precise CSA. The in-built gromacs tool 
“gmx sasa” [60] was used to calculate the SASA. In addition, SASA is also calculated 
for the tubulin subunits and the TauR2.

2.4  Binding affinity of tauR2 towards different neuronal specific tubulin 
isotypes

The biomolecular recognition pattern mainly depends on the binding ability of 
the interacting biomolecules. The binding affinity as well as the energy between the 
two interacting molecules can be calculated using various theoretical approaches 
like (i) Pathway methods such as Thermodynamic integration (TI) as well as 
Free energy perturbation (FEP) and (ii) End point methods such as Molecular 
Mechanics Poission-Boltzman Surface Area (MM/PBSA) and Molecular Mechanics 
Generalized Born Surface Area (MM/GBSA) [61]. In the present study, MM/PBSA 
approach was used to calculate relative binding energies of the simulated molecules. 
This MMPBSA approach is very popular, computationally less expensive, and has 
better accuracy even for the larger systems [62].

Here, the binding affinity between different neuronal specific tubulin isotypes 
and TauR2 was estimated by performing relative binding energy calculation similar 
to earlier studies [63–65]. The stable trajectory observed in between 70 ns to 100 ns 
was chosen to perform the binding energy calculations for all the tubulin-TauR2 
complexes. The ‘g_mmpbsa’ tool v1.6 was used to perform binding energy calcula-
tion using MM/PBSA approach [66]. The parameters for the binding energy calcula-
tions were chosen from the earlier similar studies [52, 65, 67–69]. In the MMPBSA 
methods binding energy (ΔGbind) of tubulin and TauR2 was calculated by using the 
following Eq. (1),

 ( )2 2bind tubulin TauR tubulin TauRG G G G−∆ = ∆ − ∆ + ∆   (1)

Where, the 2tubulin TauRG −∆ , tubulinG∆  and 2TauRG∆  represents the average free 
energies of the complex (tubulin-TauR2), receptor (tubulin) and ligand (TauR2), 
respectively. The calculation of the entropic contribution in binding energy is 
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computationally expensive for a larger biomolecular complexes and hence it is 
omitted as similar to previous studies [21, 22, 70–72].

3. Results and discussion

In this chapter we employ sequence analysis, homology modeling, MD simulations, 
and binding energy calculation to (i) gain structural insights to the detailed binding 
mode, (ii) study atomic level tubulin isotypes-tauR2 interactions and (iii) study rela-
tive binding affinity between neuronal specific tubulin isotypes and TauR2.

3.1  Sequence analysis and homology modeling of neuronal specific tubulin 
isotypes

The residue composition of different β-tubulin isotypes mostly varies at the 
carboxy-terminal tail region as revealed by the multiple sequence alignment  
(Figure 2). The βI and βIII tubulin isotypes have longer C-terminal tail regions 
when compared with the βIIb tubulin isotype. The β-tubulin sequence in the tem-
plate structure i.e., 6CVN (chain A) and human βIIb tubulin isotypes show 98.65% 
sequence identity. These sequence variations in the tubulin isotypes are reported to 
regulate number of protofilaments in the MT and their stability [73]. These β-tubulin 
isotypes sequences were used to generate three-dimensional homology models using 
6CVN as the template. The structures of βI, βIIb, βIII tubulin isotypes were mod-
eled using Modeler 9v20 [38]. The best homology model generated is selected using 
DOPE score. The DOPE score value for A and C chain of (i) βI subunits are −54299.89 
and − 54291.24 (ii) βIIb subunits are −53487.13 and − 53054.42 and (iii) βIII subunits 
are −53725.86 and − 53054.42. The quality of these models is accessed using GMQE 
score [74], Verify3D [40], Errat score [41], Z-score [75] and Ramachandran plot  
[76, 77]. The parameters describing the overall quality of the modeled neuronal spe-
cific β-tubulin subunits are shorn in Table 2. The GMQE score provides an estimate of 
the accuracy of the modeled tertiary structure of neuronal specific β-tubulins. Here, 
GMQE score for all the modeled β-subunits is 0.98, which represents the accuracy of 
the generated model. Further, verify3D and ERRAT score also validates the quality of 
the generated models (Table 1). Ramachandran plots for all the modeled β-tubulin 
isotypes represents more than 98% of the residues occupy a favored region. The 
occupancy of amino acid residues in the Ramachandran plot is given in Table 3. These 
modeled structures of neuronal specific β-tubulin isotypes were used further to 
build the tubulin and TauR2 complexes such as βI/α/βI-TauR2, βIIb/α/βIIb-TauR2 and 
βIII/α/βIII-TauR2 using 6CVN.pdb as a template structure. These modeled complexes 
were used as starting structures to perform MD simulations.

3.2 Structural stability of the tubulin-TauR2 complexes

The all atom MD simulations were performed on tubulin-TauR2 complexes 
namely 6CVN-TauR2, 6CVN*-TauR2, βI/α/βI-TauR2, βIIb/α/βIIb-TauR2, βIII/α/βIII- 
TauR2 using Gromacs 2018.1 [78]. The stability of these tubulin-TauR2 complexes 
is accessed by plotting the potential energy during the simulation period, which 
highlight that all the complexes are well minimized, and simulation trajectories are 
well converged during the simulation period of 100 ns (Figure 3).

The parameters describing the stability of tau-tubulin complex such as RMSD 
(root mean square deviation), RMSF (root mean square fluctuation), and Rg 
(radius of gyration) was studied. The RMSD values for simulated tubulin-TauR2 
complexes, tauR2 and backbone atoms of tubulin trimer without considering 
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 ( )2 2bind tubulin TauR tubulin TauRG G G G−∆ = ∆ − ∆ + ∆   (1)

Where, the 2tubulin TauRG −∆ , tubulinG∆  and 2TauRG∆  represents the average free 
energies of the complex (tubulin-TauR2), receptor (tubulin) and ligand (TauR2), 
respectively. The calculation of the entropic contribution in binding energy is 
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computationally expensive for a larger biomolecular complexes and hence it is 
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disordered C-tail were plotted over the trajectory. This analysis reveals the  
stability of all the studied complexes throughout the simulation time i. e. 100 ns. 
Figure 4A and B shows the RMSD plot for studied tubulin-TauR2 complexes and 
TauR2, respectively. The RMSD for the complex βIII/α/βIII-TauR2 is observed to 
be relatively more stable than other tubulin-TauR2 complexes. Similarly, structure 

Figure 2. 
Multiple sequence analysis of different β-tubulin isotypes. The βI, βIIb, βIII tubulin isotypes and template 
6CVN show maximum residue variations mainly at C-terminal tail region. The TauR2 binding regions H12 
helix and C-terminal tail region of β-tubulin subunits are shown in hot pink and brown, respectively.

S. No. Chains GMQE Verify3D Errat z-score

1 β1 (A) -subunit 0.98 93.13% 81.3212 −8.93

2 β1 (C) -subunit 0.98 92.02% 83.2569 −8.78

3 β2b (A) -subunit 0.98 98.43% 87.471 −8.65

4 β2b (C) -subunit 0.98 98.43% 83.2947 −8.37

5 β3 (A) -subunit 0.98 98.44% 86.3636 −8.54

6 β3 (C) -subunit 0.98 92.67% 83.33 −8.39

Table 2. 
Validation of three-dimensional models generated for βI, βIIb and βIII isotypes chain A and chain C using 
Swiss model GMQE score, Verify-3D, Errat score.
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of TauR2 bound to βIII/α/βIII tubulin trimer expresses stable dynamics during 
the simulation. The complex 6CVN-TauR2 is stabilized at higher RMSD values, 
the primary reason for this elevated RMSD value is absence of C-tail region which 
highlights the importance of C-terminal tail in the stabilizing tubulin-TauR2 com-
plex. Average backbone RMSD value is converged at ~3.5 Å hence represents the 
equilibration of all above simulated systems (Figure 5). The molecular dynamics 
simulation movies reveals the stable dynamics of all the simulated systems 6CVN-
TauR2, 6CVN*-TauR2, βI/α/βI-TauR2, βIIb/α/βIIb-TauR2 and βIII/α/βIII-TauR2 
(https://youtu.be/mU2Jrm5jusY, https://youtu.be/Sr2JiQWha9A, https://youtu.be/
U5S6X-o8kO8, https://youtu.be/xYbm9eCsE4Q, https://youtu.be/0H0CsmveT24) 
respectively. Further, specificity of TauR2 towards tubulin subunits was accessed 
by replacing the TauR2 with negative control ‘polyA’ peptide of same length. 
Interestingly, This system having negative control poly A bound to 6CVN* shows 
the weak binding during the simulation. These weaker interactions of polyA pep-
tide with tubulin subunits (https://youtu.be/ZEFQblQTHqk) represents that tauR2 
has specificity towards tubulin subunits. s.

Region β1 tubulin β2 tubulin β3 tubulin

Chain A Chain C Chain A Chain C Chain A Chain C

% of most favored 
regions

98.4 
(442)

98.9 
(444)

98.9 
(443)

98.9 
(438)

98.9 
(443)

98.9 
(443)

% of additional 
allowed regions

1.3 (6) 0.9 (4) 0.7 (3) 1.1 (5) 1.1 (5) 0.7 (3)

% of outlier 0.2 (1) 0.2 (1) 0.4 (2) 0 (0) 0 (0) 0.4 (2)

Table 3. 
Ramachandran plot showing the percentage of residues in the different regions for tubulin isotypes obtained 
from the Ramachandran plot using PROCHECK.

Figure 3. 
Energy Minimization Plot Potential energy over the simulation time plotted for 6CVN-TauR2 (black), 6CVN*-
TauR2 (orange), βI/α/βI-TauR2 (green), βIIb/α/βIIb-TauR2 (cyan), βIII/α/βIII-TauR2 (violet) are shown.
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3.3 Residue fluctuations of tubulin subunits and TauR2

The flexibility of tubulin trimers systems and TauR2 has been studied using 
RMSF analysis. For this analysis Cα-atom from the backbone was selected to get 
fluctuations in the overall protein. Figure 6 represents the RMSF for tubulin 

Figure 4. 
Stability of the tubulin-TauR2 complex and TauR2. (A) The Root mean square deviation values (RMSD) for 
tubulin-tauR2 complexes. RMSD values for 6CVN, 6CVN*, βI/α/βI, βIIb/α/βIIb and βIII/α/βIII have been 
plotted in black, orange, green, cyan and violet, respectively. (B) The Root mean square deviation values for 
TauR2 shown using same color Scheme as in (A).

Figure 5. 
Backbone Root mean square deviation for different tubulin subunits. Color scheme is same as Figure 3.
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subunits and TauR2. The residues from the H12 helix of β-tubulin and the 
C-terminal tail region (residue 400–451) show significant decrease in the RMSF 
values, as their free dynamics is arrested by tau binding (Figure 6A and B). RMSF 

Figure 6. 
Root mean square fluctuations (RMSF) of different β/α/β tubulin subunits and TauR2 (A) RMSF of different 
β/α/β tubulin subunits (B) Magnified view of their C-terminal H12 helix and tail regions (C) RMSF of 
TauR2 bound with different β/α/β tubulin subunits observed during the simulations5. Color scheme is same as 
Figure 3.
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values for the tubulin β-subunits in the systems 6CVN*, βIIb/α/βIIb and βIII/α/
βIII are lesser than those of 6CVN and βI/α/βI tubulin subunits (Figure 6B). 
This observation also highlights the binding of TauR2 at the interdimer interface 
where residual fluctuations are less. However, the part of C-tail region which has 
no direct contact with TauR2 is highly flexible (Figure 6B). The H12 helix and 
C-terminal tail region of the tubulin subunits significantly contribute to the non-
covalent interactions resulting towards stronger binding of TauR2. Therefore, 
these intermolecular interactions were analyzed in detail and are discussed in 
the section ‘Intermolecular interactions between tubulin and tau’. Further, atomic 
Cα-fluctuations of TauR2 (Figure 6C) was also studied for better understanding 
its conformational behavior during the MD simulations. It is surprising to observe 
highest fluctuations at the N- and C-terminal region in TauR2 bound to 6CVN, 
where the C-terminal tail region is absent (Figure 6C). Interestingly, residual 
fluctuations expressed by TauR2 bound to βIII/α/βIII-tau complex are much lesser 
as compared to 6CVN*-TauR2, βI/α/βI-TauR2 and βIIb/α/βIIb-TauR2 complexes 
(Figure 6C). This also proves that the C-terminal tail region of tubulin subunits 
plays an important role in the binding of TauR2.

Overall, RMSF analysis suggests the significance of H12-helix and C-terminal 
tail region in stabilization of the microtubule by binding of tau repeats (TauR2) and 
it also reveals the greater affinity of TauR2 towards βIII tubulin isotypes which are 
overexpressed in neuronal cells and brain. Further compactness of all the tubulin-
TauR2 complexes was explored by calculating the radius of gyration (Rg) and this 
analysis is discussed in the next section.

3.4 Compactness of tubulin-TauR2 complexes

The radius of gyration (Rg) indicates the level of compactness of the protein 
system which is helpful in getting an insight into the stability of the protein–
protein complex. It also helps to understand folding or unfolding of protein 
structure during the simulation. The Rg values for all the studied tubulin-TauR2 
complex ranges from 38.8–40.5 Å (Figure 7A). The complex βIII/α/βIII-TauR2 
shows stable Rg value for the entire simulation period however other complexes 
6CVN-TauR2 6CVN*-TauR2, βI/α/βI-TauR2, βIIb/α/βIIb-TauR2 show varia-
tions in their Rg values. The absence of C-terminal tail region in the complex 
6CVN-TauR2 leads to the less Rg values when compared to other tubulin-TauR2 
(Figure 7A). Figure 7B represents the Rg values of only TauR2 in different 
tubulin-TauR2 complexes. The Rg values for TauR2 shows fluctuations between 
17.5 to 20 Å in case of 6CVN*, βIIb/α/βIIb, and βIII/α/βIII complexes except for 
βI/α/βI complex (Figure 7B). The βIII tubulin subunits show Rg value of ~18 Å 
and βI tubulin subunits have largest Rg value of 22.5 Å as shown in Figure 7B. 
On the other hand, TauR2 bound to 6CVN shows uninterrupted decline in Rg 
values from 21.5 Å to 16.5 Å. This analysis also highlights the importance of 
C-terminal tail region in the stable binding of tau (Figure 7B). It is important to 
note that βIII tubulin subunits (Figure 8) have Rg values like that of βIII/α/βIII-
TauR2 complex (Figure 7A). This highlights that the tubulin subunits composed 
of βIII tubulin isotype are structurally stable after binding to the TauR2. Thus, 
calculation of Rg values for tubulin-TauR2 complexes, tubulin subunits and 
TauR2 reveals (i) structural stability of the βIII/α/βIII-tau complex over other 
complexes and (ii) importance of the C-terminal tail region in the binding of 
TauR2. Contact surface area (CSA) and solvent accessible surface area (SASA) 
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was calculated using ‘gmx sasa’ tool of gromacs to understand the exposure of 
the interface residues of tubulin subunits bound to the TauR2 [46].

3.5  Contact surface area (CSA) and solvent accessible surface area for tubulin-
TauR2 complexes

The CSA and SASA describes the accessibility of a binding interface and pro-
tein surface to the solvent, respectively. It is well documented that, TauR2 binds 
to the MT exterior surface via C-terminal tail region [8, 79–82]. Therefore, 

Figure 7. 
Radius of Gyration (Rg) of different tubulin-TauR2 complexes and TauR2. (A) Rg of 6CVN-TauR2 (black), 
6CVN*-TauR2 (orange), βI/α/βI-TauR2 (green), βIIb/α/βIIb-TauR2 (cyan), βIII/α/βIII-TauR2 (violet) (B) Rg 
for TauR2 in different tubulin-TauR2 complexes. Color scheme same as Figure 3.
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note that βIII tubulin subunits (Figure 8) have Rg values like that of βIII/α/βIII-
TauR2 complex (Figure 7A). This highlights that the tubulin subunits composed 
of βIII tubulin isotype are structurally stable after binding to the TauR2. Thus, 
calculation of Rg values for tubulin-TauR2 complexes, tubulin subunits and 
TauR2 reveals (i) structural stability of the βIII/α/βIII-tau complex over other 
complexes and (ii) importance of the C-terminal tail region in the binding of 
TauR2. Contact surface area (CSA) and solvent accessible surface area (SASA) 
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was calculated using ‘gmx sasa’ tool of gromacs to understand the exposure of 
the interface residues of tubulin subunits bound to the TauR2 [46].

3.5  Contact surface area (CSA) and solvent accessible surface area for tubulin-
TauR2 complexes

The CSA and SASA describes the accessibility of a binding interface and pro-
tein surface to the solvent, respectively. It is well documented that, TauR2 binds 
to the MT exterior surface via C-terminal tail region [8, 79–82]. Therefore, 

Figure 7. 
Radius of Gyration (Rg) of different tubulin-TauR2 complexes and TauR2. (A) Rg of 6CVN-TauR2 (black), 
6CVN*-TauR2 (orange), βI/α/βI-TauR2 (green), βIIb/α/βIIb-TauR2 (cyan), βIII/α/βIII-TauR2 (violet) (B) Rg 
for TauR2 in different tubulin-TauR2 complexes. Color scheme same as Figure 3.
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initially contact surface area (CSA) of the interface between the TauR2 and 
tubulin trimer, was calculated, without considering flexible C-terminal tail 
region. The CSA of βIII/α/βIII is very less when compared to other tubulin 
isotypes (Figure 9A) this represents the tight binding of TauR2 to the βIII/α/βIII 
tubulin subunits. The higher CSA for βI/α/βI-TauR2 complex indicates weaker 
binding of the TauR2 to the βI/α/βI tubulin subunits. Furthermore, least SASA 
in complex βIII/α/βIII-TauR2 represents tight binding of TauR2 to the βIII/α/βIII 
(Figure 9B). On the other hand, higher hydrophobic SASA of the complex βI/α/
βI-TauR2 indicate the exposure of hydrophobic residues which are responsible 
for loss of native contacts between tubulin and TauR2. The SASA for 6CVN*, 
βI/α/βI, βIIb/α/βIIb, βIII/α/βIII shows higher SASA values between 4900 and 
5400 Å when compared to 6CVN-TauR2 (~4500 Å) due to the presence of 
C-terminal tail region (Figure 10). To get detailed understanding of the atomic-
level interaction between tubulin isotypes and TauR2, further hydrogen bond-
ing interactions were estimated during simulation and in the MD simulated 
end-structures obtained from trajectory.

3.6  Intermolecular interactions between tubulin and TauR2 in  
tubulin-TauR2 complexes

The total number of hydrogen bonds formed between tubulin isotypes and 
TauR2 during the MD simulations are calculated using in-built ‘gmx hbond’ 
command [46]. The cut-off value for the measurement of H-bond was set to 
3.4 Å. Consistent H-bond formation was observed throughout the MD simula-
tion in all tubulin-TauR2 complexes. The average number of H-bonds roughly 
varies between 10 to 20 as shown in Figure 11. The details of atom participat-
ing in the hydrogen bonding interactions present between tubulin isotypes 
and TauR2 in the MD simulation end-structures are listed in Table 4. All the 
hydrophobic interactions participating in the formation of stable tubulin-
TauR2  complexes are listed in Table 5. The βIII/α/βIII-TauR2 complex shows 
the maximum number of electrostatic interactions when compared to other 
tubulin-TauR2 complexes (Table 6). Further, to understand the role of TauR2 

Figure 8. 
Radius of Gyration for different tubulin isotypes. Color scheme is same as Figure 3.
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in stabilizing tubulin subunits, secondary structure analysis on TauR2 was done 
using DSSP.

3.7 Conformational changes in TauR2 upon tubulin binding

Tau belongs to the class of intrinsically disordered proteins for which no defini-
tive secondary structure exists. Hence their structure determination is difficult by 
using existing biophysical techniques like X-ray crystallography and NMR. Previous 
experimental observations propose that tau repeat undergoes a conformational 
changes from the disordered to ordered state when it binds to the MT [2, 83–86]. 
Hence, the secondary structural changes during the MD simulations in the TauR2 

Figure 9. 
Contact surface area (CSA) and solvent accessible surface area (SASA) of different β/α/β-tubulin subunits 
andTauR2. (A) CSA for different 6CVN-TauR2 (black), 6CVN*-TauR2 (orange), βI/α/βI-TauR2 (green), 
βIIb/α/βIIb-TauR2 (cyan), βIII/α/βIII-TauR2 (violet) complexes. (B) hydrophobic SASA for tubulin isotype 
bound TauR2. Color scheme same as Figure 3.
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were studied using DSSP [56]. Figure 12 represents conformational changes in the 
secondary structure of TauR2 upon binding to the tubulin. TauR2 in 6CVN- TauR2 
(Figure 12A) and 6CVN*- TauR2 complexes (Figure 12B) show formation of short 
and transient 310-helix during the simulation. The TauR2 in βI/α/βI- TauR2 complex 
does not form either α-helix or transient 310-helix as shown in Figure 12C. The 
TauR2 in βIIb/α/βIIb-TauR2 complex shows the formation of short-lived α-helix and 

Figure 10. 
Solvent accessible surface area for different tubulin subunits. SASA plotted for 6CVN (black), 6CVN* 
(orange), βI/α/βI (green), βIIb/α/βIIb (cyan), βIII/α/βIII (violet) are shown.

Figure 11. 
The number of hydrogen bonds formed in between tubulin subunits and TauR2 during MD simulation. Color 
scheme is same as Figure 3.
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System Atoms involved in H-bonding Distance (Å) Angle (°)

6CVN-TauR2 D: SER16: HG - B: GLU434:OE2 1.55968 170.912

C: LYS392:HZ2 - D: ASP22:OD1 1.79981 155.003

D: SER20:H - B: GLU434:OE1 1.80025 149.621

D: CYS18:H - B: ASP431:OD1 1.8071 147.422

D: GLY19:H - B: ASP431:OD1 1.81516 170.051

D: ASN23:HD21 - C: PHE389:O 1.83614 168.422

D: ILE5:H - B: GLU415:OE1 1.87843 148.138

B: ARG402:HH22 - D: LYS7:O 1.95256 131.998

D: LYS21:HZ3 - B:ASP438:O 1.96835 128.744

C: ARG391: HE - D: SER20:O 1.97398 162.451

D: ASN6:H - B: GLU415:OE2 1.97803 165.667

D: LYS17:HZ2 - B: ASP424:OD1 2.01656 167.691

6CVN*-TauR2 A: SER16: HG - E: ASP431:OD2 1.56368 161.89

A: ASN6:HD21 - G: GLN433:OE1 1.68122 165.335

A: LYS1:HZ1 - G: ASP417:OD1 1.73491 152.719

A: LYS7:HN - E: ALA400:O 1.75148 168.412

A: SER12: HG - A: ASP10:OD2 1.77457 163.204

E: LYS401:HZ1 - A: ASN6:OD1 1.77792 156.289

A: SER20:HN - E: GLU434:O 1.8254 168.05

A: ILE4:HN - G: GLN424:OE1 1.85744 159.004

F: ARG391:HH21 - A: SER20: OG 1.88141 150.648

A: LYS17:HN - E: ASP431:OD2 1.88237 156.579

A: LYS1:HT2 - G: ASP417:OD2 1.93321 163.221

A: LYS25:HZ2 - A: VAL27: OXT 1.95566 155.991

F: ARG391: HE - A: SER20:O 1.95954 137.171

A: SER12:HN - A: ASP10:OD2 1.97395 166.966

A: VAL2:HN - G: GLU421:OE2 1.97952 167.491

A: SER20: HG - E: TYR262: OH 2.01579 158.876

A: CYS18:HN - E: ASP431:OD2 2.04985 143.832

A:ASP22:HN - A: ASP22:OD1 2.06458 123.428

βI/α/βI-TauR2 D: SER20: HG - B: GLU434:OE2 1.71015 154.981

D: LYS17:H - B: ASP431:OD2 1.73879 154.124

D: SER16: HG - B: ASP431:OD2 1.75545 159.778

D: VAL2:H - A: GLU421:OE1 1.79605 175.632

D: SER20:H - B: GLU434:OE2 1.79906 165.806

D: LYS21:HZ1 - B: GLU434:O 1.82861 143.493

B: LYS430:HZ2 - D: VAL14:O 1.84508 147.656

D: ASN23:HD22 - C: PHE389:O 1.87483 147.025

D: LYS1:H3 - A: ASP417:OD1 1.96013 159.665

D: LYS7:H - B: ALA400:O 2.03926 154.297

D: ILE4:H - A: GLN424:OE1 2.05966 141.181
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System Hydrophobic Interactions Distance (Å)

6CVN-TauR2 B: ALA427 - D: LYS17 4.23972

B: ARG264 - D: CYS18 4.32305

B: ALA426 - D: VAL14 4.34456

B: ARG402 - D: ILE4 5.12692

B: VAL409 - D: ILE4 5.16258

B: ARG422 - D: LEU11 5.2126

B: ALA427 - D: VAL14 5.2724

6CVN*-TauR2 E: ALA426 - A: VAL14 3.78619

E: ALA426 - A: LEU11 4.1983

E: ALA400 - A: LYS8 4.29681

G: PHE260 - A: ILE4 4.3943

A: VAL2 - G:PRO261 4.85577

A: LEU9 - A: LEU11 5.10635

A: LYS21 - E: VAL437 5.11425

E: ALA427 - A: VAL14 5.28218

A: VAL14 - A: LEU11 5.3507

E: ARG422 - A: LEU9 5.37331

A: VAL2 - A: ILE4 5.42169

System Atoms involved in H-bonding Distance (Å) Angle (°)

βIIb/α/βIIb-TauR2 A: SER16: HG - E: ASP431:OD1 1.71023 174.429

A: LYS17:HZ2 - E: ASP424:OD2 1.72125 162.879

A: LYS1:HT2 - F: GLU421:OE2 1.73767 160.093

A: LYS25:HZ2 - E: GLU445:OE1 1.7524 156.386

A: LYS7:HN - E: ALA400:O 1.7726 158.577

A: ASN6:HD22 - F: ASP431:OD1 1.88399 166.501

A: LYS17:HN - E: ASP431:OD1 1.90489 145.148

E: ARG402:HH12 - A: LYS7:O 1.90591 147.259

A: VAL27:HN - E: GLU445:OE1 1.92907 160.86

A: CYS18:HN - E: ASP431:OD1 2.03765 145.506

A: LYS25:HZ3 - E: GLU446:O 2.04646 165.654

F: GLN424:HE21 - A: LYS1:O 2.06218 173.384

βIII/α/βIII-TauR2 A: SER16: HG - E: ASP431:OD1 1.57372 172.137

A: LYS21:HZ1 - E: GLU443:OE2 1.74362 173.969

F: GLN424:HE21 - A: VAL2:O 1.79549 177.625

A: GLN15:HE21 - E: GLU443:OE2 1.81621 154.684

A: LYS8:HZ3 - F: GLU433:OE1 1.84962 164.797

A: LYS8:HZ1 - E: ASP396:OD1 1.85984 168.252

G: ARG391:HH11 - A: ASN23:OD1 1.89423 162.494

E: GLY442:HN - A: ILE24:O 1.93324 171.538

A: LYS17:HN - E: ASP431:OD1 1.99492 142.974

A: CYS18: HG - E: ASP431:OD1 2.0734 155.708

Table 4. 
Hydrogen bonding interaction between tubulin subunits and TauR2 after molecular dynamics simulations.
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310-helix (Figure 12D). The terminal residues of TauR2 from Ser293 to Val300 in 
βIII/α/βIII-TauR2 complex () undergoes turn to α-helix conformational transition 
(Figure 12E). Therefore, it is proposed that this conformational transition of TauR2 
from disordered to ordered state promotes the stable binding of TauR2 with the 
βIII/α/βIII tubulin subunits.

3.8  Relative binding affinity of TauR2 towards neuronal specific tubulin 
isotypes

The relative binding affinity of TauR2 towards neuronal specific tubulin iso-
types (β/α/β) was analyzed by performing MMPBSA calculations for complexes 

System Hydrophobic Interactions Distance (Å)

βI/α/βI-TauR2 B: ALA426 - D: LEU11 4.086

B: ALA426 - D: VAL14 4.25902

A: PHE425 - D: ILE4 4.29071

B: ALA427 - D: VAL14 4.57533

A: PHE260 - D: VAL2 4.62894

B: TYR262 - D: CYS18 4.75533

B:PRO263 - D: LYS17 4.89022

B: ARG402 - D: LYS7 4.99921

D: CYS18 - B: VAL435 5.09522

B: ARG422 - D: LEU9 5.15149

B: LYS430 - D: VAL14 5.38523

A: ALA428 - D: ILE4 5.40848

B: VAL440 - D: LYS21 5.41789

C: ILE405 - D: ILE24 5.46457

βIIb/α/βIIb-TauR2 E: ALA427 - A: LYS17 3.91294

E: ALA426 - A: VAL14 3.93471

E: ALA426 - A: LEU11 4.19609

A: CYS18 - E: ARG264 4.36259

E: ALA400 - A: LYS8 4.4046

A: CYS18 - E:PRO263 5.04073

A: CYS18 - E: ILE265 5.21553

G: LYS392 - A: ILE24 5.27213

E: TYR399 - A: LEU9 5.32769

βIII/α/βIII-TauR2 E: ALA426 - A: LEU11 3.83867

E: ALA426 - A: VAL14 4.14469

E: ALA427 - A: LYS17 4.22472

E: ALA427 - A: VAL14 4.83218

E: ARG422 - A: LEU11 4.84097

A: LYS25 - E: VAL437 5.06163

A: CYS18 - E: ARG264 5.14951

E: ARG422 - A: LEU9 5.48905

Table 5. 
Hydrophobic interactions between different β/α/β-tubulin isotypes and TauR2 after molecular dynamics 
simulations.
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Hydrogen bonding interaction between tubulin subunits and TauR2 after molecular dynamics simulations.
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310-helix (Figure 12D). The terminal residues of TauR2 from Ser293 to Val300 in 
βIII/α/βIII-TauR2 complex () undergoes turn to α-helix conformational transition 
(Figure 12E). Therefore, it is proposed that this conformational transition of TauR2 
from disordered to ordered state promotes the stable binding of TauR2 with the 
βIII/α/βIII tubulin subunits.

3.8  Relative binding affinity of TauR2 towards neuronal specific tubulin 
isotypes

The relative binding affinity of TauR2 towards neuronal specific tubulin iso-
types (β/α/β) was analyzed by performing MMPBSA calculations for complexes 

System Hydrophobic Interactions Distance (Å)

βI/α/βI-TauR2 B: ALA426 - D: LEU11 4.086

B: ALA426 - D: VAL14 4.25902

A: PHE425 - D: ILE4 4.29071

B: ALA427 - D: VAL14 4.57533

A: PHE260 - D: VAL2 4.62894

B: TYR262 - D: CYS18 4.75533

B:PRO263 - D: LYS17 4.89022

B: ARG402 - D: LYS7 4.99921

D: CYS18 - B: VAL435 5.09522

B: ARG422 - D: LEU9 5.15149

B: LYS430 - D: VAL14 5.38523

A: ALA428 - D: ILE4 5.40848

B: VAL440 - D: LYS21 5.41789

C: ILE405 - D: ILE24 5.46457

βIIb/α/βIIb-TauR2 E: ALA427 - A: LYS17 3.91294

E: ALA426 - A: VAL14 3.93471

E: ALA426 - A: LEU11 4.19609

A: CYS18 - E: ARG264 4.36259

E: ALA400 - A: LYS8 4.4046

A: CYS18 - E:PRO263 5.04073

A: CYS18 - E: ILE265 5.21553

G: LYS392 - A: ILE24 5.27213

E: TYR399 - A: LEU9 5.32769

βIII/α/βIII-TauR2 E: ALA426 - A: LEU11 3.83867

E: ALA426 - A: VAL14 4.14469

E: ALA427 - A: LYS17 4.22472

E: ALA427 - A: VAL14 4.83218

E: ARG422 - A: LEU11 4.84097

A: LYS25 - E: VAL437 5.06163

A: CYS18 - E: ARG264 5.14951

E: ARG422 - A: LEU9 5.48905

Table 5. 
Hydrophobic interactions between different β/α/β-tubulin isotypes and TauR2 after molecular dynamics 
simulations.
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6CVN-tau, 6CVN*-tau, βI/α/βI-tau, βIIb/α/βIIb-tau and βIII/α/βIII-tau etc. The 
energy components that govern the binding energy are recorded in Table 7. This 
analysis reveals that, βIII/α/βIII-tau complex shows most favorable interactions 
while 6CVN-tau complex is least favorable as supported by the binding energy 
values listed in Table 7. Thus, it is interesting to note the significance of C-terminal 
tail of the tubulin subunits in the stable binding of the tau repeat R2 to stabilize this 
complex. The order of calculated binding energy in between TauR2 with neuronal 
specific tubulin-TauR2 complexes is βIII/α/βIII > βIIb/α/βIIb >6CVN* > βI/α/
βI > 6CVN. The electrostatic interactions in these complexes contribute signifi-
cantly to the binding energy particularly in βIII/α/βIII-TauR2 and βIIb/α/βIIb-TauR2 
complexes when compared to the 6CVN and βI/α/βI tubulin subunits (Table 7). The 
complex βI/α/βI-TauR2 exhibits higher binding energy leading to its weaker affinity 
towards TauR2. In addition to βIII/α/βIII-TauR2 the complex βIIb/α/βIIb-TauR2 also 
exhibits relatively higher affinity towards TauR2 compared to rest other complexes. 
Further, contribution of the individual residues in the binding energy has been 
investigated by calculating the decomposition energy for each residue. This analysis 
reveals that, residues from the H12 helix and C-terminal tail of tubulin subunits 
shows maximum contribution in the binding energy (Figure 13). The per-residue 

Systems Electrostatic interactions Distance (Å)

6CVN-TauR2 D: LYS8:NZ - A: ALA430:O 4.04432

D: LYS21:NZ - B: SER439:O 4.66847

D: LYS25:NZ - B: GLU434:OE2 4.90999

D: LYS21:NZ - B: GLU434:OE1 5.38615

6CVN*-TauR2 A: LYS1: N - G: GLU421:OE2 4.85022

A: LYS7:NZ - E: GLU415:OE1 4.9846

A: LYS25:NZ - E: GLU441:OE1 5.12197

A: LYS17:NZ - E: ASP424:OD2 5.27557

βI/α/βI-TauR2 D: LYS1: N - A: GLU421:OE1 2.86182

D: LYS25:NZ - C: GLU412:OE1 4.31321

D: LYS7:NZ - B: GLU415:OE1 4.45715

D: LYS21:NZ - B: GLU434:OE2 4.75044

βIIb/α/βIIb-TauR2 A: LYS21:NZ - E: GLU434:OE2 4.3529

A: LYS8:NZ - E: ASP396:OD2 5.021

βIII/α/βIII-TauR2 A: LYS25:NZ - E: GLU434:OE2 2.68494

A: LYS25:NZ - E: GLU450:OE2 2.85019

A: LYS1: N - F: ASP417:OD2 2.91844

A: LYS1: N - F: GLU421:OE2 4.28381

A: LYS7:NZ - E: GLU415:OE1 4.31182

A: LYS21:NZ - E: GLU434:OE1 4.48844

A: LYS17:NZ - E: ASP424:OD2 4.70401

G: LYS392:NZ - A: ASP22:OD2 4.95323

A: LYS21:NZ - E: GLU450:OE2 5.37409

Table 6. 
Electrostatic interactions between different β/α/β-tubulin isotypes and TauR2 after molecular dynamics 
simulations.
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interactions energy (residue decomposition energy) calculated for various pairs of 
interacting residues highlights the importance of the interacting residues. The resi-
dues from the H12-helices and C-terminal tail region of complex βIII/α/βIII shows 
maximum contribution (most negative energy) in the non-bonded contacts leading 
to the stable and tight binding of the tauR2 to the βIII/α/βIII tubulin subunits.

System 6CVN 6CVN* βI/α/βI βII/α/βII βIII/α/βIII

Vdw −97.25 ± 0.55 −131.17 ± 0.62 −133.38 ± 0.69 −124.36 ± 0.60 −125.24 ± 0.59

Elec −1232.33 ± 3.43 −1534.36 ± 3.12 −1423.07 ± 2.77 −1659.30 ± 4.68 −1768.65 ± 2.77

Polar 413.98 ± 4.73 349.43 ± 4.18 439.27 ± 2.95 433.79 ± 4.13 505.14 ± 2.92

SASA −12.35 ± 0.06 −15.12 ± 0.07 −17.05 ± 0.05 −15.66 ± 0.06 −16.04 ± 0.05

Binding 
Energy

−927.87 ± 3.15 −1331.15 ± 3.19 −1134.13 ± 1.13 −1365.2.26 ± 2.26 −1404.7 ± 1.84

Table 7. 
The relative binding energy of the tubulin-TauR2 complexes calculated using MMPBSA. All energies are given 
in kcal/Mol.

Figure 12. 
The secondary structure changes during MD simulation using DSSP for TauR2. Secondary structure changes 
observed in (A) 6CVN-TauR2 (B) 6CVN*-TauR2 (C) βI/α/βI-TauR2, (D) βIIb/α/βIIb-TauR2 and  
(E) βIII/α/βIII-TauR2.
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maximum contribution (most negative energy) in the non-bonded contacts leading 
to the stable and tight binding of the tauR2 to the βIII/α/βIII tubulin subunits.
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Figure 12. 
The secondary structure changes during MD simulation using DSSP for TauR2. Secondary structure changes 
observed in (A) 6CVN-TauR2 (B) 6CVN*-TauR2 (C) βI/α/βI-TauR2, (D) βIIb/α/βIIb-TauR2 and  
(E) βIII/α/βIII-TauR2.
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Hence, relative binding energy calculations further support all other MD 
simulation results highlighting the tight binding of TauR2 to the βIII/α/βIII tubu-
lin isotype which is predominantly expressed in the neuronal cells and brain.

4. Conclusion

MTs are distributed across all types of cells and play an important role in the 
cellular functions. Structurally MTs are made up of α/β heterodimeric subunits. 
Large diversity of α and β-tubulin isotypes exists which are differently expressed in 
different types of cells, this makes MTs unique from one another in relative propor-
tion of isotypes. The much elevated expression levels of βII and βIII tubulin isotypes 
about 58% and 25% respectively have been reported to in neuronal cells and brain 
[35]. The present study extensively uses molecular modeling approaches including 
homology modeling, MD simulation, binding energy to investigate the binding 
mode and interaction of neuronal specific tubulin isotypes with TauR2.

Extensive analysis on MD simulation trajectory shows a stable complex formation 
in between different tubulin isotype and TauR2. The stability of these complexes is 
mainly mediated by the interactions of H12 helix and C-terminal tail of the α/β tubulin 
isotypes with TauR2. TauR2 shows differential binding affinity towards various 
neuronal specific β-tubulin isotypes (βI, βII and βIII) the order of binding affinity is 
‘βIII> βIIb>βI’. Thus, it is found that TauR2 expresses greater binding affinity with βIII 
and βIIb tubulin isotypes which are abundantly expressed in neuronal cells and brain. 
The molecular modeling strategy adopted in this chapter could be potentially used to 
understand differential binding affinity of other tau repeats such as R1, R3, R4 towards 
β tubulin isotypes present in other cell lines. The structures for other repeats could 
be generated using homology modeling and their interactions with neuronal specific 
tubulin isotypes could also be studied using similar molecular modeling approach.  

Figure 13. 
The H12 and C-terminal tail regions show highest energy contribution for the binding of TauR2 in 6CVN*, 
βI/α/βI, βIIb/α/βIIb and βIII/α/βIII tubulin subunits except in case of 6CVN which does not have C-terminal 
tail region.
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Abstract

The design of bioelectrochemical interfaces (BEI) is an interesting topic that 
recently demands attention. The synergy between biomolecules and chemical 
components is necessary to achieve high molecular selectivity and sensitivity for 
the development of biosensors, synthesis of different compounds, or catalytic 
processes. For most BEI, the charge transfer process occurs in environments with 
particular chemical conditions; modeling these environments is a challenging task 
and requires multidisciplinary efforts. These interfaces can be composed of bio-
molecules, such as proteins, DNA, or more complex systems like microorganisms. 
Oxidoreductases enzymes are good candidates, among others, due to their catalytic 
activities and structural characteristics. In BEI, enzymes are immobilized on 
conductive surfaces to improve charge transfer processes. Covalent immobilization 
is the most common method to prolong lifetime or modulate the detection process. 
However, it is necessary to implement new methodologies that allow the selection of 
the best candidates for a more efficient design. Homology modeling of oxidoreduc-
tases combined with Molecular Dynamics (MD) simulation methods are alternative 
and already routinely used tools to investigate the structure, dynamics, and thermo-
dynamics of biological molecules. Our motivation is to show different techniques 
of molecular modeling (Homology Modeling, Gaussian accelerated molecular 
dynamics, directed adaptive molecular dynamics and electrostatic surface calcula-
tions), and using horseradish peroxidase as a model to understand the interactions 
between biomolecules and gold nanoclusters (as current collector). Additionally, 
we present our previous studies considering molecular simulations and we discuss 
recent advances in biomolecular simulations aimed at biosensor design.

Keywords: bioelectrochemical interfaces, homology modeling,  
covalent immobilization, gold nanoclusters, molecular dynamics

1. Introduction

For some years now, the design and construction of bioelectrochemical 
interfaces (BEI), ranging from electrochemical biosensors (EC) for analytical 
applications, biofuel cells (BFC) to the development of biocomputing systems 
for information processing, have been topics where the scientific community has 
considerable participation. The implementation and integration of biomolecules 
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with electronic elements or conductive surfaces to produce bioelectronic devices is 
a current topic and gathers great importance for developing biosensors that have 
an essential role in clinical applications, food quality control analysis and forensic 
medicine [1–3]. These applications always involve high sensitivity, low-sample 
volume, and low-cost production. In most BEI, charge transfer processes are carried 
out in environments with high ionic concentration, necessary for their function. 
These interfaces can be composed of macromolecules such as proteins, peptides, or 
more complex systems such as bacteria. Since the activity and lifetime depend on 
the correct interaction between the conductive surfaces (current collector) and the 
biomaterials, to achieve good bioelectrochemical responses, the enzymes need to 
improve the orientation towards the surface of the current collector [4, 5].

1.1 Covalent immobilization through alkanethiol linkers

The immobilization of various biomaterials is an important issue for BEI design, 
the covalent immobilization of enzymes stands out among the different enzymatic 
coupling strategies since the bonds formed through the linkers anchored to the cur-
rent collector promotes direct charge transfer responses [6, 7]. Alcakanothiols are 
organic molecules widely used to establish self-assembled monolayers (SAMs) on 
the surface of gold electrodes [8–11]. The thiol groups chemisorb on gold electrodes 
forming strong thiolate-gold bonds (Au-S). The resulting monolayer may be used 
to design molecular scaffolds to couple enzymes [8, 12]. The main drawback of 
covalent immobilization systems is the risk of having a low surface concentration of 
enzymes that are either active or correctly oriented for direct charge transfer; which 
may lead to a low-efficiency bioelectrochemical response [13]. Therefore, having 
active enzymes and a good bioelectrochemical response becomes an important 
task. Aromatic molecules like 4-aminothiophenol, structurally mimics enzymatic 
substrates and can promote stable and direct contacts, necessary for efficient 
bioelectrochemical reactions.

Researches have proposed nanomaterials as support matrices for the design of 
BEI to increase the surface concentration of active enzymes on the current collector. 
During the last decade, nanomaterials, coupled with enzymes, have had significant 
relevance in the design of biosensors [5, 14–16]. Current advances in synthesis meth-
odologies of these materials allow having a wide variety of nanomaterials with differ-
ent sizes, shapes, surface charges, and physicochemical characteristics [4, 14, 17].

Some of these nanomaterials can be modified in different ways to improve 
biocompatibility. Biocompatibility refers to the biological nature events that do 
not interfere with those of electronic signal transduction and vice versa. Metallic 
nanoparticles are promising materials that increase the electroactive area and 
improve the sensitivity and stability of the attached enzymes on the electrodes, 
bringing the enzymatic active site close to the electrode (the redox cofactor should 
not exceed a 20 Å distance) to achieve direct charge transfer reactions [14, 18–23].

In our group, we have established the conditions to improve the electrochemical 
response of horseradish peroxidase (HRP) coupled to gold nanoparticles modi-
fied with the aromatic alkanothiol 4-aminotiophenol, using glassy carbon (GC) as 
current collector [24]. We proposed that a critical factor in HRP bioelectrochemical 
response is to promote conformational changes and proper enzyme orientation when 
coupled to the electrode. The protein conformation around the prosthetic group 
will determine the redox potential of the Fe3+/Fe2+ couple. The activity towards 
H2O2 also depends on the protein structural arrangements [25, 26]. We found that a 
proper environment for the enzyme activity was achieved by increasing the distance 
between gold nanoparticles. The voltammetric studies of the prosthetic heme group 
showed significant differences between the enzyme immobilized on randomly 
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deposited gold nanoparticles and the enzyme immobilized on a well-dispersed gold 
nanoparticles deposit (Figure 1). The dispersed electrode improved the electrochem-
ical response of the enzyme; this fact showed that the distance between enzymes 
is important, probably because longer distances decreased the steric impediments 
between the enzymes, and it appears to be a better immobilization strategy. With 
these results, we proposed that an essential part of BEI design is related to the 
structure of the biological systems. The electrochemical sensing is dependent on the 
recognition or transformation of the substrate, as previously observed [27].

The advent of high-resolution and robust techniques as X-ray crystallography 
[28, 29] and cryo-EM [30–32] has enormously contributed to the baggage of struc-
tural information available for bioelectrochemical applications. These techniques 
describe the atomic positions of enzymes, as well as the conformational dynamics 
resulted from recognition and binding processes, allowing the prediction of the 
possible electrochemical behavior of enzymes immobilized on electrodes.

1.2 Molecular modeling methodologies

The use of computational tools such as molecular mechanics and quantum 
mechanics for the study of chemical and biological reactions, involves a math-
ematical treatment of a large number of particles (hundreds of thousands of 
atoms that build up molecules like proteins, nucleic acids, lipids, and sugars) 
[33, 34]. In general terms, these methods are ideal for obtaining chemical and 
physical properties from three-dimensional molecular models [35–37]. It is 
necessary to correlate the structural models with their corresponding chemi-
cal, catalytic or biological properties; towards the rationalization and design of 
molecules for specific applications. Mainly, molecular Dynamics (MD) methods 
are based on the solution of Newton’s second law for all the atoms in the system, 
and help to predict the behavior of a biomolecule during a specific time. The 
integration of motion equations allows to analyze the trajectories correspond-
ing to position, velocity, and acceleration of each particle of the system in any 

Figure 1. 
Cyclic voltammogram of HRP response at different scan rates, immobilized on GC electrode modified with gold 
nanoparticles functionalized with the alkanethiol molecule 4-aminothiophenol. Phosphate buffer pH 6.8.
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will determine the redox potential of the Fe3+/Fe2+ couple. The activity towards 
H2O2 also depends on the protein structural arrangements [25, 26]. We found that a 
proper environment for the enzyme activity was achieved by increasing the distance 
between gold nanoparticles. The voltammetric studies of the prosthetic heme group 
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fraction of time [38]. Unfortunately, the simplification of considering atoms as 
spheres, and bonds as springs or tensors (with different parameters depending 
on the type of bond), makes difficult to study bond-breaking and formation, or 
reaction mechanisms. Quantum mechanics (QM) mathematically describes the 
fundamental behavior of matter on an electronic scale by solving the Schrödinger 
equation for each atom in the system. QM also describes the behavior of atoms 
and molecules, in terms of their chemical reactivity, geometry, and their optical, 
electrical, magnetic, and mechanical properties [39, 40]. The coupled implemen-
tation of these techniques could describe the biomolecules involved in charge 
transfer processes, and design strategies for efficient BEI.

1.3  Molecular dynamics as a tool to predict the electrochemical activity  
in proteins

A challenging task in BEI design is the selection of robust biomolecules 
capable of tolerate non-physiological conditions, without loosing efficiency and 
conformation [2]. The protein folding is governed by a series of molecular interac-
tions between the amino acids and the surrounding chemical environment [34]. 
Therefore, predicting their behavior with molecular models contributes to the 
optimization of resources before the development of BEI.

In our previous work the VP6 rotavirus capsid protein was encapsulated with 
the ionic polymer Nafion on GC. We demonstrated that this electrode could 
transfer electric charge applying an external potential, when using the redox 
probe potassium ferricyanide (K3[Fe(CN)6]). In parallel, we modeled by MD the 
electrostatic and conformational states of VP6 (Figure 2). This model suggested 
a route for ionic conductivity, where the electrostatic protein surface displayed a 
negative charge which interacted with the ferricyanide redox probe, promoting 
the charge transfer reaction. In order to show if this electrochemical activity was 
particular to proteins in general, under the same conditions as the experiments 
with VP6, bovine serum albumin (BSA), whose primary biological function is 

Figure 2. 
Comparison of the cyclic Voltammogram of VP6 (pink) and BSA (blue) coupled to GC, at 20 mV/s in 
0.01 M K3[Fe(CN)6], 1 M KCl.
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to transport different molecules through the bloodstream, was tested. However, 
we did not observe the charge transfer reaction of potassium ferricyanide when 
this protein was encapsulated (Figure 2). These results demonstrated that VP6 
protein could be used as conductive scaffold for the development of different BEI 
applications [41].

Calculations of polarized electrostatic surface potentials from homology 
models of viral proteins, surprisingly showed that several capsids could display 
field effects as the recorded on VP6. In contrast, this effect cannot be displayed 
on non-charged proteins as BSA (Figure 3). Therefore, our previous data on viral 
capsids can serve as a workflow to identify candidate proteins or enzymes for 
construction of BEI devices. Altogether, theoretical and experimental reports on 
BEI [41–43] are examples of how structural information could help to elucidate the 
behavior of biological systems during electrochemical reactions. Nonetheless, the 
aforementioned studies depend on structural information from biomolecules, and 
certain biomolecules are very complex and highly labile, which difficult elucida-
tion of atomic positions. However, since new protein sequences are continuously 
available, predictive methodologies as homology modeling becomes a valuable tool 
to asset structural information.

The aim of this multidisciplinary research is to perform molecular simula-
tions on horseradish peroxidase as a model system, to generate data that can be 
used as selection criteria for design and further experimental validation in BEI 
development.

Figure 3. 
Polarized electrostatic Isosurface potentials of different viral capsids. (A) Bovine serum albumin protein, (B) 
rotavirus VP6 trimer capsid protein, (C) influenza virus capsid protein, (D) hepatitis B virus capsid protein, 
(E) HIV-1 virus capsid protein, (F) HPV virus capsid protein. All polarized electrostatic Isosurfaces were 
calculated with PME approximation on capsid arrangements and displayed as positive (blue) or negative 
(red) mesh isosurfaces with VMD v.1.9.3 [44].
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2. General techniques: Horseradish modeling and system building

The X-ray crystal structure from horseradish peroxidase (HRP) was collected 
from Protein Data Bank (www.rcsb.org/, PDB code 1H5A) [45], and reconstructed 
using i-tasser metaserver [46]. The best model was selected based on lowest RMSD 
and higher C-value, to achieve the best initial coordinates. To improve the model 
system, all missing atoms and sidechain positions were modeled against available 
plant peroxidases on the PDB. A penta-coordinated resting state heme group was 
crystallized as Fe3+, and axial coordination with a histidine groups was retained.

The Protein Preparation Wizard routine (Schrödinger Maestro v2019-4, New 
York, 2019), was applied as a preparation step to correctly assign missing hydrogen 
atoms and protonation states of ionizable residues. Finally, PROPKA2.0 sub-routine 
was applied to whole model system [47] and pH 7 was fixed accordingly to our 
previous studies.

Enzyme structural parameters were described using the ff14SB force field [48]. 
The full systems comprised ~60,000 atoms in a cubic box of 15 Å length including 
TIP3P explicit water and Na + ions to ensure overall charge neutrality. Non-bonded 
interactions were calculated within a 12 Å cutoff, and long-range electrostatics were 
treated using the Particle-Mesh Ewald method [49]. SHAKE algorithm was enabled 
to constrain all bonds involving hydrogen during simulations. Conventional MD 
protocol for each system replica comprised: 1) 5000 steepest descent minimization 
steps followed by 10,000 conjugate gradient minimization steps; 2) 500 ps of pro-
gressive NVT heating from 0 to 300 K; 3) 5 ns of NVT equilibration, and 4) 10 ns of 
NPT dynamics at 300 K and 1 bar.

2.1 Gaussian accelerated molecular dynamics (GaMD)

Conventional MD simulations were carried out to initially relax full system 
coordinates, using AMBER18 software package [50]. Then, the GaMD module 
implemented in AMBER v. 18 was applied to perform extra 50 ns of short classic MD 
simulation to collect the statistics for calculating GaMD acceleration parameters. 
Extra 50 ns of short equilibration was applied after adding the boost potential, and 
finally three independent 500 ns GaMD production simulations with randomized 
initial atomic velocities. This method applies Gaussian functions (boost potentials) 
on the total potential energy term, which disturb the potential energy surface allow-
ing the exploration of different energy states. In addition, functions that directly 
disturb the dihedral angles of the amide bonds were applied, promoting conforma-
tional changes. All GaMD simulations were performed with a dual-boost level by 
setting the reference energy to the lower bound. One boost potential is applied to 
the dihedral energetic term and the other to the potential energy term. The average 
and SD of the system potential energies were calculated every 500,000 steps (1 ns) 
for all simulation systems. The upper limit of the boost potential SD, σ0, was set to 
6.0 kcal·mol−1 for both the dihedral and the total potential energetic terms [51–53]. 
The system temperature was ~298 K and 1 atm pressure, with integration steps of 
2 fs. Three different system coordinates were extracted from GaMD trajectories, 
each one representing a different energy and conformational state.

2.2 Building of nanomaterial structures

The selected nanomaterials were Au nanoclusters (AuNCs) modified with two 
types of linkers: 4-aminothiophenol (ATP) and mercaptobenzoic acid (MBA); 
each cluster had 2.1 nm diameter and a nucleus composed of 96 Au atoms (Au314 
(SR) 96). The nanostructures were modeled as reported elsewhere [54]. Six gold 
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nanoclusters (6 AuNCs) were placed as a thin layer, emulating our previous experi-
mental system (~ 20 nm gold nanoparticles) [24].

2.3 Molecular coupling

Adaptive Steered Molecular Dynamics (ASMD) simulations [55, 56] started 
from the earlier selected conformational states, derived from the GaMD analysis. 
Due to the chemical complexity of the enzyme surface, the simulations were 
driven by the electrostatic surface (PME) [49] for each conformational state and 
the 6 AuNCs layer. Hence, the scans were performed at speeds of 10 Å / ns, which 
comprised a 10-step profile of 1 Å between the Fe(III) of the active site and the ATP 
amino group or MBA group carboxylic of the 6 AuNCs. Three independent replicas 
were performed through gradual scans, involving measurements of the free energy 
of coupling between HRP and 6 AuNCs. The free energy was measured by shorten-
ing the distance between the central Fe(III) atom and the amino groups of the link-
ers, i.e., ATP amino groups and central Fe(III) atom of HRP heme (NH3

+➔ Fe3+).

3. Results and discussion

3.1 HRP model system

The direct applications for protein structures produced by molecular model-
ing techniques such as homology modeling, include identification of structural 
and functional regions within a protein, and can be exploted as a lead for further 
experimental studies such as mutation analysis, catalytic and electrochemical 
characterization [27]. Furthermore, if homology modeling is combined with other 
computational methods such as molecular dynamics or quantum mechanics, the 
produced model can be used to screen different applications.

In our case, the available information comes from the genetic sequence of HRP 
enzyme and incomplete structures deposited on PDB, hence, it is necessary to 
reconstruct and evaluate our final model system based on homology models.

Our initial model was reconstructed with i-tasser metaserver, using as template 
the resting state horseradish peroxidase (1H5A), and building a waterbox for 
further molecular dynamics analysis (Figure 4).

Figure 4. 
Horseradish peroxidase homology model reconstruction and MD system. (A) Modeling pipeline applied to 
reconstruction of HRP, (B) final solvated HRP model for MD simulations.
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nanoclusters (6 AuNCs) were placed as a thin layer, emulating our previous experi-
mental system (~ 20 nm gold nanoparticles) [24].

2.3 Molecular coupling

Adaptive Steered Molecular Dynamics (ASMD) simulations [55, 56] started 
from the earlier selected conformational states, derived from the GaMD analysis. 
Due to the chemical complexity of the enzyme surface, the simulations were 
driven by the electrostatic surface (PME) [49] for each conformational state and 
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comprised a 10-step profile of 1 Å between the Fe(III) of the active site and the ATP 
amino group or MBA group carboxylic of the 6 AuNCs. Three independent replicas 
were performed through gradual scans, involving measurements of the free energy 
of coupling between HRP and 6 AuNCs. The free energy was measured by shorten-
ing the distance between the central Fe(III) atom and the amino groups of the link-
ers, i.e., ATP amino groups and central Fe(III) atom of HRP heme (NH3

+➔ Fe3+).

3. Results and discussion

3.1 HRP model system

The direct applications for protein structures produced by molecular model-
ing techniques such as homology modeling, include identification of structural 
and functional regions within a protein, and can be exploted as a lead for further 
experimental studies such as mutation analysis, catalytic and electrochemical 
characterization [27]. Furthermore, if homology modeling is combined with other 
computational methods such as molecular dynamics or quantum mechanics, the 
produced model can be used to screen different applications.

In our case, the available information comes from the genetic sequence of HRP 
enzyme and incomplete structures deposited on PDB, hence, it is necessary to 
reconstruct and evaluate our final model system based on homology models.

Our initial model was reconstructed with i-tasser metaserver, using as template 
the resting state horseradish peroxidase (1H5A), and building a waterbox for 
further molecular dynamics analysis (Figure 4).

Figure 4. 
Horseradish peroxidase homology model reconstruction and MD system. (A) Modeling pipeline applied to 
reconstruction of HRP, (B) final solvated HRP model for MD simulations.
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3.2 Conformational sampling

The homology model system of HRP was subjected to an initial conformational 
search with GaMD method for 500 ns of simulation which is comparable to 
conventional MD simulations on the order of microseconds. This data allow us to 
reconstruct an energy hypersurface from three structural and energetic variables: 
total energy of protein, RMSD of backbone and superficial hydrogen bonds count. 
The total energy of the proteins indicates how close is our model system to a 
minimum energy state; RMSD of the alpha carbons is related to changes in relative 
positions of the atoms, regarding to the X-ray crystal model (Figure 5); and the 
hydrogen bonds count between aspartic acid (D), glutamic acid (E), lysine (K) 
and arginine (R) residues, indicate how prone the enzyme is to bond to AuNCs 
linkers functional groups (NH3

+ or COOH). With this approach, energetically 
more favorable conformations were selected under two criteria: (1) Low RMSD 
values, i.e., preserved HRP structure necessary for catalysis; (2) High solvent 
exposure of groups necessary for the esterification reaction, i.e., selecting those 
conformations where the probability of having the previous residues exposed to 
the solvent is higher. At the end of this sampling, three HRP conformations with 
the necessary intermolecular interactions were selected; with this approach we try 
to theoretically predict the formation of the amide bond in the solvent exposed 
residues, while the over-all enzyme structure remains correctly folded (Figure 5).

Using the GaMD approach, we were able to explore the conformational 
diversity along different reaction coordinates of the HRP enzyme, and to predict 
more efficient couplings to AuNCs. This approximation over the boost potentials 
allows a reconstruction with less noise on the potential energy, which results in 
a more robust method to deal with artifacts during variations in the potential 
energy [57, 58]. Hence, our data suggest that during simulation, there are differ-
ent enzyme conformations which preferentially bind to AuNCs and increase the 
interactions with the linker functional groups.

Figure 5. 
Conformational sampling of HRP. The hypersurface was reconstructed using the second order McLauren 
cumulative expansion method. The free energy values were extracted from each conformation, depending on its 
structural variation and the solvent-accessible hydrogen bonds of amino acids D, E, K, and R.
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3.3 Interaction between modified 6 AuNCs and HRP

The main objective of this work is to give insights using molecular modeling 
methodologies, for the design of more efficient BEI, based on HRP enzyme and 
AuNCs. The structural description of HRP with molecular dynamics methodologies 
can help to design experimental strategies to increase the success of the immobiliza-
tion and simultaneously preserve structure and reactivity of the enzyme.

In order to estimate the immobilization efficiency between GaMD selected struc-
tures of HRP and AuCNs functionalized with linkers, free energy calculations were 
performed with adaptive steered molecular dynamics. The prediction model system 
is intended to recreate the interface previously described in Section 1.2 (Figure 1). 
GC was used as current collector and HRP was coupled to functionalized-gold nano 
particles modified with 4-aminothiophenol (Figure 6A) [24].

For all the calculations, the average electrostatic surface potential was directly 
extracted from GaMD, since electrostatic term is computed for each integration 
step. HRP showed two well characterized electrostatic isosurfaces, with a prominent 

Figure 6. 
Gold nanoparticles experimental and theoretical model systems. (A) SEM image of gold nanoparticle 
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3.2 Conformational sampling
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search with GaMD method for 500 ns of simulation which is comparable to 
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minimum energy state; RMSD of the alpha carbons is related to changes in relative 
positions of the atoms, regarding to the X-ray crystal model (Figure 5); and the 
hydrogen bonds count between aspartic acid (D), glutamic acid (E), lysine (K) 
and arginine (R) residues, indicate how prone the enzyme is to bond to AuNCs 
linkers functional groups (NH3

+ or COOH). With this approach, energetically 
more favorable conformations were selected under two criteria: (1) Low RMSD 
values, i.e., preserved HRP structure necessary for catalysis; (2) High solvent 
exposure of groups necessary for the esterification reaction, i.e., selecting those 
conformations where the probability of having the previous residues exposed to 
the solvent is higher. At the end of this sampling, three HRP conformations with 
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to theoretically predict the formation of the amide bond in the solvent exposed 
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a more robust method to deal with artifacts during variations in the potential 
energy [57, 58]. Hence, our data suggest that during simulation, there are differ-
ent enzyme conformations which preferentially bind to AuNCs and increase the 
interactions with the linker functional groups.

Figure 5. 
Conformational sampling of HRP. The hypersurface was reconstructed using the second order McLauren 
cumulative expansion method. The free energy values were extracted from each conformation, depending on its 
structural variation and the solvent-accessible hydrogen bonds of amino acids D, E, K, and R.
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GC was used as current collector and HRP was coupled to functionalized-gold nano 
particles modified with 4-aminothiophenol (Figure 6A) [24].
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Figure 7. 
Coupling free energy profiles of HRP isosurfaces and AuNCs. (A) Free energy profile of HRP coupled to 6 
AuNCs-ATP, (B) molecular interaction model of negative isosurface of HRP and 6 AuNCs-ATP, (C) free 
energy profile of HRP coupled to 6 AuNCs-MBA, (D) positive isosurface of HRP and 6 AuNCs-MBA.

negatively charged surface derived from the presence of 12 exposed acidic residues. 
Each electrostatic potential was plotted as isosurface over each HRP conformation.

The free energy calculations between negatively charged isosurface of HRP and 
AuNCs modified with ATP linker (positively charged NH3

+) showed coupling values 
of 60 Kcal · mol−1, with a minimum distance of 22 Å from the Fe(III) of the heme 
group (~ 2 Å to the AuNCs NH3

+ functional group) (Figure 7A). On the other hand, 
the positively charged isosurface of HRP showed higher coupling energies of ~120 
Kcal · mol−1 at a minimum distance of ~21.5 Å to the same AuNCs functional group. 
For the AuNCs modified with MBA, the coupling energy of the negatively charged 
isosurface of HRP was 130 Kcal · mol−1 at 33 Å distance, (~3 Å from surface func-
tional groups), while the positive HRP surface showed free coupling energies of ~75 
Kcal · mol−1 and minimum distances of 32.5 Å from Fe(III) heme group (3.5 Å from 
surface functional group) (Figure 7B).

The difference between both HRP isosurfaces with the positively charged 
surface imposed by ATP was ~70 Kcal · mol−1 which means that the enzyme elec-
trostatic potential imposed a clear effect for the coupling to AuNCs. However, an 
overall difference of 15 Kcal · mol−1 between both linkers showed that the coupling 
assays were energetically more stable for the negative isosurfaces of the HRP 
enzyme than the positively charged.
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The free energy calculations suggested that HRP showed an energy minimum 
around the bond distance between the carboxyl groups and the amino groups [59, 
60]. Our data suggest that the intermolecular interactions guided by negative elec-
trostatic surfaces of HRP, are of lower free energy for the positive charged AuNCs-
ATP, than the negative charged AuNCs-MBA (Figure 8). The high electrostatic 
attraction between HRP and AuNCs-ATP would promote an efficient electrochemi-
cal response. On the other hand, the aforementioned interactions between HRP and 
negative charged linkers, like MBA, are less stable and result in higher free energy 
coupling profiles and lower electrostatic attraction for this interfaces.

4. Conclusions

The findings of this study on HRP coupled to gold nanoclusters, indicate that the 
polarized electrostatic isosurface potentials are key factors to select the most efficient 
linker for coupling. The resulted interaction energy and distance between HRP and 
AuNCs-ATP are adequate to promote the formation of covalent bonds between acidic 
residues and amino functional groups. The evidence from this study points towards 
the idea that molecular simulation methods, such as homology modeling and molecu-
lar dynamics are valuable tools to take into account for design of BEI. Our previous 
multidisciplinary work of VP6 capsids has led us to conclude that molecular dynamics 
simulations elucidate structural determinants to understand the behavior of biomole-
cules on BEI. An implication for using homology models coupled to molecular dynam-
ics, is the possibility of widely sample the conformational space of biomolecules probes 
before electrochemical experimentation. Further theoretical and experimental studies 
are necessary to describe the interaction with other functional group linkers and 
validate by electrochemical techniques the real effect of the charge difference between 
AuNCs-ATP and AuNCs-MBA on the redox response of this enzyme, respectively.
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Chapter 7

Energy Minimization
Budhayash Gautam

Abstract

The energetic state of a protein is one of the most important representative 
parameters of its stability. The energy of a protein can be defined as a function 
of its atomic coordinates. This energy function consists of several components: 
1. Bond energy and angle energy, representative of the covalent bonds, bond 
angles. 2. Dihedral energy, due to the dihedral angles. 3. A van der Waals term 
(also called Leonard-Jones potential) to ensure that atoms do not have steric clashes. 
4. Electrostatic energy accounting for the Coulomb’s Law m protein structure, 
i.e. the long-range forces between charged and partially charged atoms. All these 
quantitative terms have been parameterized and are collectively referred to as the 
‘force-field’, for e.g. CHARMM, AMBER, AMBERJOPLS and GROMOS. The goal 
of energy Minimization is to find a set of coordinates representing the minimum 
energy conformation for the given structure. Various algorithms have been for-
mulated by varying the use of derivatives. Three common algorithms used for 
this optimization are steepest descent, conjugate gradient and Newton–Raphson. 
Although energy Minimization is a tool to achieve the nearest local minima, it is also 
an indispensable tool in correcting structural anomalies, viz. bad stereo-chemistry 
and short contacts. An efficient optimization protocol could be devised from these 
methods in conjunction with a larger space exploration algorithm, e.g. molecular 
dynamics.

Keywords: energy minimization, minimum energy conformation, force fields,  
global minimum energy, molecular dynamics simulations, molecular modeling

1. Introduction

Molecular modeling relies on the event of theoretical and computational 
methodologies, to model and study the behavior of molecules, from little chemical 
systems to big biological molecules and material assemblies. The applying fields 
of molecular modeling regard computational chemistry, drug design, computa-
tional biology and materials science. The fundamental computational technique 
to perform molecular modeling is simulation. Molecular simulation techniques 
need specific extra computational and code software system [1]. Most molecular 
modeling studies involve three stages. Within the initial stage a model is chosen to 
explain the intra- and inter-molecular interaction within the system. The two most 
typical models that are utilized in molecular modeling are quantum mechanics and 
molecular mechanics. These models enable the energy of any arrangement of the 
atoms and molecules within the system to be calculated and permit the modeler to 
work out how the energy of the system varies because the positions of the atoms 
and molecules change. The second stage of a molecular modeling study is that the 
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calculation itself, such as an energy Minimization, a molecular dynamics or Monte 
Carlo simulation, or a Conformations search. Finally, the calculation should be 
analyzed, not solely to calculate properties however additionally to see that it’s been 
performed properly [2].

In molecular modeling we tend to are particularly curious about minimum 
points on the energy surface. Minimum energy arrangements of the atoms cor-
respond to stable states of the system; any movement off from a minimum provides 
a configuration with a better energy. There is also a really sizable amount of minima 
on the energy surface. The minimum with the very lowest energy is known as the 
global energy minimum. To spot those geometries of the system that correspond to 
minimum points on the energy surface we tend to use a Minimization algorithm. 
The highest point on the pathway between two minima is of particular interest and 
is understood as the saddle point, with the arrangement of the atoms being the tran-
sition structure. Both minima and saddle points are stationary points on the energy 
surface, wherever the primary derivative of the energy function is zero with regard 
to all the coordinates [3].

A geographical analogy is useful thanks to illustrate several of the ideas as dur-
ing this analogy minimum points correspond to the lowest of valleys. A minimum 
is also represented as being in an exceedingly ‘long and slender valley’ or ‘a flat and 
featureless plain’. Saddle points correspond to mountain passes. Confer with consult 
with algorithms creating steps as ‘uphill’ and downhill’.

1.1 Energy minimization: a brief description about the problem

The Minimization problem can be formally stated as follows: given a function f 
which depends on one or more independent variables x1, x2,….., xi, find the values 
of those variables where f has a minimum value. At a minimum point the first 
derivative of the function with respect to each of variables is zero and the second 
derivative are all positive:

 / 0;if x∂ ∂ =  2 2/ 0if x∂ ∂ >  (1)

With respect to present discussion, the most important functions are the 
quantum mechanics or molecular mechanics energy with the variables xi being 
the Cartesian or the internal co-ordinates of the atoms. It is a common practice to 
always perform Molecular mechanics Minimizations in Cartesian co-ordinates, in 
which the energy is a function of 3 N variables; on the other hand, for quantum 
mechanics internal co-ordinates are often used. The least value of any function can 
be identified using standard calculus methods for analytical functions. But, due 
to the complexities of pattern of energy change with change in the coordinates, it 
is almost impossible for any molecular system. Therefore, the energy minima are 
often identified with the help of numerical methods. These methods gradually 
make changes to the coordinates to generate configurations having lower and lower 
energies until the minimum is reached [2].

Minimization algorithms can be classified into two categories: one in which we 
use derivatives of the energy with respect to the coordinates and second in which 
we do not use any derivative. Derivatives are extremely important because they 
have details about the shape of the energy surface and due to this efficiency to locate 
the minimum energy is increases drastically. For any problem, before choosing 
best algorithm (or algorithms), several points should be considered for e.g. the best 
Minimization algorithm should use least memory to generate the answer as quickly 
as possible. For different problems of molecular modeling, different Minimization 
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method is used because we do not have any Minimization method developed which 
could be applied to all. Any method which is developed for efficient performance 
with quantum mechanics may or may not be compatible for molecular mechanics 
because quantum mechanics deals with models having very less atoms as compare 
to molecular mechanics. Another point is that procedures like inversion of matrix in 
some Minimization methods works fine for small systems but problem arises when 
number of atoms increases to thousands. To calculate the number of derivatives 
of different Conformations and their energies, different level of performance is 
required for quantum mechanics than molecular mechanics. Molecular mechanics 
requires an algorithm that is having more number of steps; quantum mechanics 
has the opposite scenario. Therefore we have various methods in various popular 
software packages [4].

As, most of the Minimization algorithms can only identify the minimum energy 
point which is closest to the starting point, thus it can be stated that they only move 
downwards or more appropriately downhill on the energy surface. Suppose, this 
schematic energy surface is shown in Figure 1, having three starting points A, B 
and C to obtained the minima. The locations at which any hypothetical ball stops 
rolling on energy surface under gravitational force will have corresponding energy 
minima. But more important thing is to identify global energy minimum which 
can only be generated by using different starting points, which will be minimized 
later. Using this criterion, some of the Minimization methods can move uphill to 
find out energy minimum than the closest one. But not a single algorithm till date is 
reported for efficiently identification of the global minimum energy from a random 
starting point. To identify the number of different minimum energy Conformations 
the shape of energy surface is very useful. For example, population or number of 
minimum in a deep and narrow valley will be very less than population at broad 
minimum because it is having higher energy as the vibrational energy is more 
widely spaced in the minimum and so less accessible. Therefore, the global energy 
minimum may not be the most highly populated minimum. Thus, there may be 
the case that the ‘functional’ structure (e.g. the biologically active conformation 
of a drug molecule) may not belong to the global minimum, or to the most highly 
populated conformation, or even to a minimum energy structure at all [3].

Every Minimization algorithm has a set of initial coordinates as input. These 
coordinates can be generated from different sources. These can be generated using 
traditional experimental method like X-ray crystallography or NMR. Alternatively, 
these can be generated by employing a theoretical method like conformational 
search procedure. But for practical efficiency, both types of methods can be used 
combinatorially. For example, the behavior of a protein in water can be studied 

Figure 1. 
A one-dimensional energy surface showing minimization methods movement downwards or downhill towards 
the closest energy minimum.
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using its x-ray generated structure. Then place this in a solvent completely. Monte 
Carlo or molecular dynamics simulation can generate the atomics or Cartesian 
coordinates of the solvent molecules.

1.2 Derivatives

For derivatives based Minimization methods, calculation of the derivatives of 
the energy is performed with respect to the different variables i.e. Cartesian or 
internal coordinates, as the case may be. These derivatives can be generated using 
either analytical or numerical procedures but derivatives obtained through analyti-
cal procedure are more preferred because these can be generated more readily and 
these are more exact. Although, if derivatives generated by only numerical proce-
dure is available then one should use a non-derivative Minimization procedure as it 
is more efficient [3].

Although, in some situations it is always preferable to use derivatives generated 
though numerical procedure. By following way these can be generated: suppose 
there is a small alteration (δxi) in one of the coordinates xi and the energy calcula-
tion is performed for this new alteration the by dividing the alteration in energy 
(δE) by the alteration in coordinate (δE / δxj), the derivative ∂E/∂xi is obtained. 
This rigorously yields the derivative at the mid-point between the two points xi and 
xi + δxi. A more correct value of the derivative at the point xi; could also be acquired 
(at the price of a further energy calculation) by assessing the energy at two points, 
xi + δxi and xi – δxi. The derivative is then obtained by dividing the variation with in 
the energies by 2δxi.

2. Non-derivative minimization methods

2.1 The simplex method

A geometrical figure having M + 1 interconnected vertices is called as simplex, 
where dimensionality of the energy function is M. Thus, a simplex with function of 
two variables will have a triangular shape. Further, for a function of three variables 
simplex will have tetrahedral shape. Therefore, for an energy function of 3 N 
Cartesian coordinates the simplex will have 3 N + 1 vertices; but simplex will have 
3 N – 5 vertices, if internal coordinates are used. The energy could be calculated 
for a specific set of coordinates correspond to each every vertex. For the function 
f(x,y) = x2 + 2y2 the simplex method would use a triangular simplex [5].

The simplex algorithm identifies an energy minimum by traveling around on the 
potential energy surface in a manner that is similar to the movement of an amoeba. 
There are three possible primary moves. The most common move is a reflection 
of the vertex having maximum value on the opposite sides of the simplex. The 
reflection is used as an effort to produce a new point having a lower value. If this is 
the lowest energy point than any other points in the simplex then next move may 
be applied which is a “reflection and expansion.” Reflection move will be failed to 
generate a better point, when a “floor of the valley” is reached. In this situation, 
simplex will make simple contraction all along the highest point dimension. If 
this fails to further decrease the energy then another kind of move is possible. In 
this move, contractions occur in all the directions towards the lowest point. The 
Figure 2 illustrates above discussed three moves.

The vertices of the initial simplex have to be first generated before applying the 
simplex algorithm. The first conformation of the method fit to just one of these 
vertices. Rest of the points can be generated using various methodologies, e.g. 
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simplest method is to increase a fix value to each coordinate successively. To calcu-
late the functional value of the applicable vertex, the energy of the whole system is 
measured for each new point.

When the starting configuration of the system is having high energy, it is best to 
use simplex method. The simplex method is more helpful in this because it seldom 
go wrong in the identification of a fitter answer. Nonetheless, it requires large 
computational time for the analysis of the high number of energy instances. For e.g. 
to create the starting simplex needs 3 N + 1 energy analysis. Due to this, the simplex 
method is frequently used along with other Minimization algorithms. In practice, 
starting configuration is fine tuned with few steps of the simplex method and then 
a more suitable and efficient method can be used for further calculations [6].

An important question is that what is the reason behind containing one extra 
vertex in the simplex than the degree of freedom? The answer to this is that of sim-
plex is having lesser vertices than M + 1 then the simplex algorithm cannot search 
the entire surface of the energy. For e.g. if the simplex having just two vertex (a 
simplex with only two vertices is simply a straight line) is being used to search the 
quadratic surface of the energy, the only available move in this scenario would be 

Figure 2. 
The three basic moves permitted to the simplex algorithm (reflection, and its close relation reflect-and-expand; 
contract in one dimension and contract around the lowest point).
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to find out other points that lie on this straight line. In this case, the energy surface 
which is away from the straight line would not be searched. Likewise, if we have 
function of three variable and simplex is just a triangle then only the area of search 
space that lies in the same plane as to the triangle will only be searched, whereas the 
energy minimum may not be present at this plane [7].

2.2 The sequential univariate search method

It is seldom appropriate to use the simplex method for the calculations involve in 
quantum mechanics because in that case very high number of energy assessments 
has to be done. In this case a much befitting non-derivative procedure like the 
sequential univariate search method is well-advised [8]. This procedure consistently 
repeats through the coordinates successively. For every coordinate, two new config-
urations are created by making changes in the present coordinates (i.e. xj + δxi, and 
xi + 2δxi). Then the energy calculation for these two configurations is performed. 
Three points related to the two twisted configurations and the original one are 
then fitted with a parabola. The identification of the minimum point in the current 
quadratic function is performed. Then in the next step, the coordinate is twisted to 
the point of the minimum. The procedure is illustrated in Figure 3.

The minimum is bound to reach when the changes in all the coordinates are 
adequately very small. Alternatively, a new iteration is performed. In comparison to 
the simplex method, the sequential univariate method normally needs less function 
assessment. But if two or more coordinates have a strong connection or bonding 
then the sequential univariate search method may converge slowly. It also converges 
slowly when the energy surface is similar to a long narrow valley.

3. Derivative minimization methods

Most of the favorite Minimization procedures utilize derivatives because the 
information which is helpful in minimization is furnished by derivatives. The direc-
tion of the first derivative of the energy (the gradient) points where the minimum 

Figure 3. 
The sequential univariate search procedure. From the starting point 1, two steps are created along one of the 
coordinates to give points 2 and 3. A parabola is fitted to these three points and the minimum located (point 4). 
The same steps is then repeated along the next coordinate (points 5, 6 and 7) (Figure adapted from Schlegel 
H B 1987. Optimization of equilibrium geometries and transition structures In Lawley K P (editor) ab initio 
methods in quantum chemistry - I New York, John Wiley, pp. 249–286).
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lies and the magnitude of the gradient tells about the steepness of the local slope. 
The energy of the system can be decreased by moving each atom with respect to the 
force acting on it. The force is equal to minus the gradient. Second derivatives point 
towards the curvature of the function. This information can be utilized to find out 
where the function will change its direction (i.e. pass through a minimum or any 
different non-moving point).

The energy functions which are often utilized in molecular modeling are 
seldom quadratic and thus the Taylor series expansion can only be a well-advised 
approximation. There are two crucial consequences of this. First is, for a pure 
quadratic function a given minimization procedure executes very well rather than 
for a molecular mechanics or quantum mechanics energy surface. For example, the 
Newton–Raphson algorithm can identify the minimum in a one step for a purely 
quadratic function. But, for a typical molecular modeling energy function, it needs 
to run several iterations. The second consequence is that, even though they may 
function very well close to a minimum, where the harmonic approximation is more 
logical, the harmonic approximation is very bad and far from minimum. Due to 
this some of the less robust methods will not be successful. Because of this reason 
Minimization protocol must be picked very carefully. A robust or may be inefficient 
method could be exploited earlier then a comparatively least robust but more 
efficient procedure.

On the basis of highest order derivatives used, the derivative methods can be 
classified. The first derivatives or the gradients based methods are called as first-
order methods. Methods in which both first and second order derivatives are used 
are known as second-order methods. Because the simplex method does not use any 
derivatives can thus be called as a zeroth-order method.

3.1 First-order minimization methods

The steepest descents and the conjugate gradient method are two such first order 
Minimization algorithms which are very often used in molecular modeling. In these 
methods coordinates of the atoms are altered step by step with respect to their 
movement towards the minimum point. For each iteration (k), the initial point 
is the molecular conformation generated from last step. It is represented by the 
multidimensional vector xk - 1. For the first iteration, the starting point is the initial 
configuration of the system provided by the user, the vector x1.

3.1.1 The steepest descents method

The steepest descents method moves in the direction parallel to the net force, 
which in our geographical analogy corresponds to walking straight downhill. For 
3 N Cartesian coordinates this direction is most conveniently represented by a 
3 N-dimensional unit vector, sk. Thus:

 /k k ks g g= −  (2)

Once the direction of movement is clearly characterized then it should be 
decided that how much distance to be covered along the gradient. Consider the 
two-dimensional energy surface of Figure 4. The gradient direction from the initial 
point is along the line shown. Suppose we have a cross-section through the surface 
along the line, the function will pass through a minimum and then increase, as 
shown in the figure [9]. We can identify the minimum point by performing a line 
search or we can take a step of arbitrary size along the direction of the force.



Homology Molecular Modeling - Perspectives and Applications

124

to find out other points that lie on this straight line. In this case, the energy surface 
which is away from the straight line would not be searched. Likewise, if we have 
function of three variable and simplex is just a triangle then only the area of search 
space that lies in the same plane as to the triangle will only be searched, whereas the 
energy minimum may not be present at this plane [7].

2.2 The sequential univariate search method

It is seldom appropriate to use the simplex method for the calculations involve in 
quantum mechanics because in that case very high number of energy assessments 
has to be done. In this case a much befitting non-derivative procedure like the 
sequential univariate search method is well-advised [8]. This procedure consistently 
repeats through the coordinates successively. For every coordinate, two new config-
urations are created by making changes in the present coordinates (i.e. xj + δxi, and 
xi + 2δxi). Then the energy calculation for these two configurations is performed. 
Three points related to the two twisted configurations and the original one are 
then fitted with a parabola. The identification of the minimum point in the current 
quadratic function is performed. Then in the next step, the coordinate is twisted to 
the point of the minimum. The procedure is illustrated in Figure 3.

The minimum is bound to reach when the changes in all the coordinates are 
adequately very small. Alternatively, a new iteration is performed. In comparison to 
the simplex method, the sequential univariate method normally needs less function 
assessment. But if two or more coordinates have a strong connection or bonding 
then the sequential univariate search method may converge slowly. It also converges 
slowly when the energy surface is similar to a long narrow valley.

3. Derivative minimization methods

Most of the favorite Minimization procedures utilize derivatives because the 
information which is helpful in minimization is furnished by derivatives. The direc-
tion of the first derivative of the energy (the gradient) points where the minimum 

Figure 3. 
The sequential univariate search procedure. From the starting point 1, two steps are created along one of the 
coordinates to give points 2 and 3. A parabola is fitted to these three points and the minimum located (point 4). 
The same steps is then repeated along the next coordinate (points 5, 6 and 7) (Figure adapted from Schlegel 
H B 1987. Optimization of equilibrium geometries and transition structures In Lawley K P (editor) ab initio 
methods in quantum chemistry - I New York, John Wiley, pp. 249–286).

125

Energy Minimization
DOI: http://dx.doi.org/10.5772/intechopen.94809

lies and the magnitude of the gradient tells about the steepness of the local slope. 
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towards the curvature of the function. This information can be utilized to find out 
where the function will change its direction (i.e. pass through a minimum or any 
different non-moving point).

The energy functions which are often utilized in molecular modeling are 
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for a molecular mechanics or quantum mechanics energy surface. For example, the 
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this some of the less robust methods will not be successful. Because of this reason 
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are known as second-order methods. Because the simplex method does not use any 
derivatives can thus be called as a zeroth-order method.
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The steepest descents and the conjugate gradient method are two such first order 
Minimization algorithms which are very often used in molecular modeling. In these 
methods coordinates of the atoms are altered step by step with respect to their 
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is the molecular conformation generated from last step. It is represented by the 
multidimensional vector xk - 1. For the first iteration, the starting point is the initial 
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 /k k ks g g= −  (2)
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decided that how much distance to be covered along the gradient. Consider the 
two-dimensional energy surface of Figure 4. The gradient direction from the initial 
point is along the line shown. Suppose we have a cross-section through the surface 
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3.1.2 Line search in one dimension

The goal of a line search is to find out the minimum along a specific direction 
(i.e. along a line through the multidimensional space) [10]. In the very first step of 
the line search is to bracket the minimum. This implies determining three points 
along the line in a way that the energy of the intermediate point is less than the 
energy of the two extrinsic points. If it is possible to identify these kinds of three 
points, then it should be make sure that two extrinsic points must have at least one 
minimum in between. Then to reduce the distance in between the three points, an 
iterative algorithm could be applied which in a step by step manner, limits the mini-
mum to a very smaller space. Theoretically, it looks easy but it may involve a large 
number of functional analysis. Thus it is computationally very expensive methods.

Alternatively, we can set a suitable quadratic function to the three points. Then 
apply differentiation to this suited function to modify an approximation to the 
minimum along the line which should be identified analytically. To get a better 
approximate, a new function can be set then, as shown in Figure 5. Higher-order 
polynomials may yield an improved fit to the bracketing points but when these 

Figure 5. 
A line search is used to locate the minimum in the function in the direction of the gradient.

Figure 4. 
Steepest descents method.
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are utilized with functions that altered aggressively in the bracketed region, these 
higher-order polynomials can yield wrong interpolations. The gradient at the 
minimum point obtained from the line search will be perpendicular to the previ-
ous direction. Thus, when the line search method is used to locate the minimum 
along the gradient then the next direction in the steepest descents algorithm will be 
orthogonal to the previous direction (i.e. gk. gk − 1 = 0) [11].

3.1.3 Arbitrary step approach

As, we know that the line search may be computationally very expensive, New 
coordinates can be identified by walking a step of arbitrary size along the gradient 
unit vector sk. The new set of coordinates after step k would then be given by the 
equation:

 xk + 1 = xk + λk sk (3)

where, λk is the step size. In most of the applications within molecular modeling, 
the steepest descents algorithm, the step size at the start has a predetermined default 
value. If energy decreases after the first iteration, then for second iteration the step 
size is increases by an increasing component. The process repeats till the point at which 
each iteration decreases the energy. When a step produces an addition in energy, it is 
assumed that the algorithm has leapt across the valley which comprise the minimum 
and up the slope on the opposite face. The step size is then reduced by a multiplicative 
factor (e.g. 0.5). Often, the size of the step is decided according to the nature of the 
energy surface. It would be more suitable to have bigger step size for a plane or flat sur-
face rather than a slender or narrow altered valley, where more smaller step are much 
appropriate. Computational time is less in the case of the arbitrary step method than 
much stringent line search method, because the arbitrary or random step approach 
needs higher number of steps to find out the minimum than line search method but 
arbitrary step method may frequently needs lesser functional analysis [12].

The largest inter-atomic forces indicate the direction of the gradient. Therefore, 
the steepest descent is more suitable for alleviating attributes of the highest-energy 
in the initial conformation. If the harmonic calculations corresponding to the 
energy is hypothesized badly and the initial point is distant from a minimum, even 
then the method performs strongly. But, in the case of downward movements in 
a long slender valley, the method uses short steps in high number and this causes 
trouble to the method. Although, it is not suitable manner to find out the minimum, 
the steepest descents process is bound to move in the right-angled direction at 
every point. The route constantly over compensates itself and vibrates. However, 
Subsequent steps reintroduce errors which were already rectified by prior steps [13].

3.1.4 Conjugate gradients minimization

The vibrating activity of the steepest descents procedure in slender depression 
is absent in the set of directions generated by the conjugate gradients methods. 
Rather, both the directions of consecutive steps and the gradients are orthogonal 
in the steepest descents method [14]. More specifically, in the conjugate gradients 
method, the gradients are orthogonal in nature at every point and the directions 
of consecutive steps are conjugate that is why it is more correctly known as the 
conjugate direction method. Because of the feature of a set of conjugate directions, 
for a quadratic function of M variables, in M steps the minimum can be identified. 
The conjugate gradients method moves in a direction vk from point xk where vk is 
computed from the gradient at the point and the previous direction vector vk – 1.
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3.1.2 Line search in one dimension
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Alternatively, we can set a suitable quadratic function to the three points. Then 
apply differentiation to this suited function to modify an approximation to the 
minimum along the line which should be identified analytically. To get a better 
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polynomials may yield an improved fit to the bracketing points but when these 

Figure 5. 
A line search is used to locate the minimum in the function in the direction of the gradient.

Figure 4. 
Steepest descents method.
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are utilized with functions that altered aggressively in the bracketed region, these 
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The largest inter-atomic forces indicate the direction of the gradient. Therefore, 
the steepest descent is more suitable for alleviating attributes of the highest-energy 
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then the method performs strongly. But, in the case of downward movements in 
a long slender valley, the method uses short steps in high number and this causes 
trouble to the method. Although, it is not suitable manner to find out the minimum, 
the steepest descents process is bound to move in the right-angled direction at 
every point. The route constantly over compensates itself and vibrates. However, 
Subsequent steps reintroduce errors which were already rectified by prior steps [13].

3.1.4 Conjugate gradients minimization

The vibrating activity of the steepest descents procedure in slender depression 
is absent in the set of directions generated by the conjugate gradients methods. 
Rather, both the directions of consecutive steps and the gradients are orthogonal 
in the steepest descents method [14]. More specifically, in the conjugate gradients 
method, the gradients are orthogonal in nature at every point and the directions 
of consecutive steps are conjugate that is why it is more correctly known as the 
conjugate direction method. Because of the feature of a set of conjugate directions, 
for a quadratic function of M variables, in M steps the minimum can be identified. 
The conjugate gradients method moves in a direction vk from point xk where vk is 
computed from the gradient at the point and the previous direction vector vk – 1.
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Both the conjugate gradients method and the steepest descents method move in 
the direction of the gradient in the first step. The line search method should ideally 
be used to find out the one-dimensional minimum in all direction to assure that each 
gradient is orthogonal to all preceding gradients and that each direction is conjugate 
to all preceding directions. However, at this stage random step procedure is also 
achievable [15]. To identify the second point a line search should be applied along 
the line with gradient but it must pass through the point. Therefore, the conjugate 
gradient procedure identifies the perfect minimum of the function in just two moves.

3.2 Second order derivative methods

3.2.1 The Newton-Raphson method

Second-order methods utilize the information from both the first derivatives 
and the second derivatives to find out a minimum. First derivatives provide gradi-
ent information while second derivative furnish details about the curvature of the 
function. Having these properties, the Newton–Raphson method is the simplest 
second order method [16]. For a strictly quadratic function of the first derivative 
the second derivative will be same everywhere. If we talk about a multidimensional 
function the Hessian matrix of second derivatives essentially be inverted. Thus, 
for larger molecules it is more computationally expensive because there are a 
large number of atoms present and this necessitates bigger storage. The Newton- 
Raphson method is thus more appropriate to small molecules (usually less than 
100 atoms or so) [17].

As stated earlier, for a strictly quadratic function, the Newton–Raphson method 
requires just one step to locate the minimum from any point on the surface. 
Practically, the surface is exclusively quadratic to a first approximation and this 
necessitates a large number of steps to move. The Hessian matrix of second deriva-
tives should be calculated first and then inverted at each step. This must be ‘positive 
definite’ in a Newton–Raphson Minimization method. A positive definite matrix is 
one for which all the eigen-values are positive. When the Hessian matrix is not posi-
tive definite then the Newton–Raphson method moves to saddle points where the 
energy increases, rather than a narrow point where energy decreases. Additionally, 
the harmonic approximation is not suitable at positions which are very far from the 
minimum because this leads to instability of the Minimization. This can be solved 
by employing a more efficient and robust method (prior to the application of the 
Newton–Raphson method) to find out minimum or to reach close to minimum (in 
case of the positive definite Hessian matrix) [18].

3.2.2 Quasi-Newton method

Computation of the inverse Hessian matrix can be a possibly long procedure that 
represents an important disadvantage to the ‘pure’ second derivative methods such 
as Newton–Raphson. Furthermore, analytical second derivatives could not be gen-
erated preferably. Variable metric methods which are also an alternative name to the 
Quasi-Newton methods gradually develop the inverse Hessian matrix in consecutive 
iterations. That means, a sequence of matrices Hk is developed.

At each iteration k, the new positions xk + 1 are obtained from the current posi-
tions xk, the gradient gk and the current approximation to the inverse Hessian matrix 
Hk. For quadratic function it is same, but for ‘real’ job a line search may be desired. 
Hence, a line search is performed along the vector (xk + 1 — xk). It may not be 
essential to find out the minimum in the direction of the line search very accurately, 
at the cost of a few more steps of the quasi-Newton algorithm [19]. For quantum 
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mechanics calculations the additional energy evaluations required by the line search 
may prove more expensive than using the more approximate approach. An effective 
compromise is to fit a function to the energy and gradient at the current point xk and 
at the point xk + 1 and find out the minimum in the fitted function [20].

4. Which minimization method should 1 use?

The choice of Minimization algorithm is determined by a number of compo-
nents, including the storage and computational requirements, the relative speeds 
with which the various parts of the calculation can be performed, the availability 
of analytical derivatives and the robustness of the method. Thus, any method 
that requires the Hessian matrix to be stored (let alone its inverse calculated) may 
present memory problems when applied to systems containing thousands of atoms. 
Calculations on systems of this size are invariably performed using molecular 
mechanics, and so the steepest descents and the conjugate gradients methods are 
very popular here. For molecular mechanics calculations on small molecules, the 
Newton–Raphson method may be used, although this algorithm can have problems 
with structures that are far from a minimum. For this reason it is usual to perform 
a few steps of Minimization using a more robust method such as the simplex or 
steepest descents before applying the Newton–Raphson algorithm Analytical 
expressions for both first and second derivatives are available for most of the terms 
found in common force fields. The steepest descent method can actually be superior 
to conjugate gradients when the starting structure is some way from the minimum. 
However, conjugate gradients are much better once the initial strain has been 
removed. Quantum mechanical calculations are restricted to systems with relatively 
small numbers of atoms, and so storing the Hessian matrix is not a problem. As 
the energy calculation is often the most time-consuming part of the calculation, it 
is desirable that the Minimization method chosen takes as few steps as possible to 
reach the minimum. For many levels of quantum mechanics theory analytical first 
derivatives are available. However, analytical second derivatives are only available 
for a few levels of theory and can be expensive to compute. The quasi-Newton 
methods are thus particularly popular for quantum mechanical calculations.

When using internal coordinates in a quantum mechanical Minimization it 
can be important to use an appropriate Z-matrix as input. For many systems the 
Z-matrix can often be written in many different ways as there are many combina-
tions of internal coordinates. There should be no strong coupling between the 
coordinates. Dummy atoms can often help in the construction of an appropriate 
Z-matrix. A dummy atom is used solely to define the geometry and has no nuclear 
charge and no basis functions. Strong coupling between coordinates can give long 
‘valleys’ in the energy surface, which may also present problems. Care must be 
taken when defining the Z-matrix for cyclic systems in particular. The natural way 
to define a cyclic compound would be to number the atoms sequentially around 
the ring. However, this would then mean that the ring closure bond will be very 
strongly coupled to all of the other bonds, angles and torsion angles. Some quantum 
mechanics programs are able to convert the input coordinates (be they Cartesian 
or internal) into the most efficient set for Minimization so removing from the user 
the problems of trying to decide what is an appropriate set of internal coordinates. 
For energy Minimizations redundant internal coordinates have been shown to give 
significant improvements in efficiency compared with Cartesian coordinates or 
non-redundant internal coordinates, especially for flexible and polycyclic systems 
[21]. The redundant internal coordinates employed generally com- comprise the 
bond lengths, angles and torsion angles in the system. These methods obviously also 
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one for which all the eigen-values are positive. When the Hessian matrix is not posi-
tive definite then the Newton–Raphson method moves to saddle points where the 
energy increases, rather than a narrow point where energy decreases. Additionally, 
the harmonic approximation is not suitable at positions which are very far from the 
minimum because this leads to instability of the Minimization. This can be solved 
by employing a more efficient and robust method (prior to the application of the 
Newton–Raphson method) to find out minimum or to reach close to minimum (in 
case of the positive definite Hessian matrix) [18].
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Computation of the inverse Hessian matrix can be a possibly long procedure that 
represents an important disadvantage to the ‘pure’ second derivative methods such 
as Newton–Raphson. Furthermore, analytical second derivatives could not be gen-
erated preferably. Variable metric methods which are also an alternative name to the 
Quasi-Newton methods gradually develop the inverse Hessian matrix in consecutive 
iterations. That means, a sequence of matrices Hk is developed.

At each iteration k, the new positions xk + 1 are obtained from the current posi-
tions xk, the gradient gk and the current approximation to the inverse Hessian matrix 
Hk. For quadratic function it is same, but for ‘real’ job a line search may be desired. 
Hence, a line search is performed along the vector (xk + 1 — xk). It may not be 
essential to find out the minimum in the direction of the line search very accurately, 
at the cost of a few more steps of the quasi-Newton algorithm [19]. For quantum 
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mechanics calculations the additional energy evaluations required by the line search 
may prove more expensive than using the more approximate approach. An effective 
compromise is to fit a function to the energy and gradient at the current point xk and 
at the point xk + 1 and find out the minimum in the fitted function [20].

4. Which minimization method should 1 use?

The choice of Minimization algorithm is determined by a number of compo-
nents, including the storage and computational requirements, the relative speeds 
with which the various parts of the calculation can be performed, the availability 
of analytical derivatives and the robustness of the method. Thus, any method 
that requires the Hessian matrix to be stored (let alone its inverse calculated) may 
present memory problems when applied to systems containing thousands of atoms. 
Calculations on systems of this size are invariably performed using molecular 
mechanics, and so the steepest descents and the conjugate gradients methods are 
very popular here. For molecular mechanics calculations on small molecules, the 
Newton–Raphson method may be used, although this algorithm can have problems 
with structures that are far from a minimum. For this reason it is usual to perform 
a few steps of Minimization using a more robust method such as the simplex or 
steepest descents before applying the Newton–Raphson algorithm Analytical 
expressions for both first and second derivatives are available for most of the terms 
found in common force fields. The steepest descent method can actually be superior 
to conjugate gradients when the starting structure is some way from the minimum. 
However, conjugate gradients are much better once the initial strain has been 
removed. Quantum mechanical calculations are restricted to systems with relatively 
small numbers of atoms, and so storing the Hessian matrix is not a problem. As 
the energy calculation is often the most time-consuming part of the calculation, it 
is desirable that the Minimization method chosen takes as few steps as possible to 
reach the minimum. For many levels of quantum mechanics theory analytical first 
derivatives are available. However, analytical second derivatives are only available 
for a few levels of theory and can be expensive to compute. The quasi-Newton 
methods are thus particularly popular for quantum mechanical calculations.

When using internal coordinates in a quantum mechanical Minimization it 
can be important to use an appropriate Z-matrix as input. For many systems the 
Z-matrix can often be written in many different ways as there are many combina-
tions of internal coordinates. There should be no strong coupling between the 
coordinates. Dummy atoms can often help in the construction of an appropriate 
Z-matrix. A dummy atom is used solely to define the geometry and has no nuclear 
charge and no basis functions. Strong coupling between coordinates can give long 
‘valleys’ in the energy surface, which may also present problems. Care must be 
taken when defining the Z-matrix for cyclic systems in particular. The natural way 
to define a cyclic compound would be to number the atoms sequentially around 
the ring. However, this would then mean that the ring closure bond will be very 
strongly coupled to all of the other bonds, angles and torsion angles. Some quantum 
mechanics programs are able to convert the input coordinates (be they Cartesian 
or internal) into the most efficient set for Minimization so removing from the user 
the problems of trying to decide what is an appropriate set of internal coordinates. 
For energy Minimizations redundant internal coordinates have been shown to give 
significant improvements in efficiency compared with Cartesian coordinates or 
non-redundant internal coordinates, especially for flexible and polycyclic systems 
[21]. The redundant internal coordinates employed generally com- comprise the 
bond lengths, angles and torsion angles in the system. These methods obviously also 
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require the means to inter-convert between the internal coordinate representation 
and the Cartesian coordinates that are often used as input and desired as output. Of 
particular importance is the need to transform energy derivatives and the Hessian 
matrices (if appropriate) [22].

5. Differentiating between minima, maxima and saddle points

A configuration at which all the first derivatives are zero need not necessarily 
be a minimum point; this condition holds at both maxima and saddle points as 
well. From simple calculus we know that the second derivative of a function of one 
variable, f ’(x) is positive at a mini- minimum and negative at a maximum. It is 
necessary to calculate the eigenvalues of the Hessian matrix to distinguish between 
minima, maxima and saddle points. At a minimum point there will be six zero and 
3 N — 6 positive eigenvalues if 3 N Cartesian coordinates are used. The six zero 
eigenvalues correspond to the translational and rotational degrees of free- freedom 
of the molecule (thus these six zero eigenvalues are not obtained when internal 
coordinates are used). At a maximum point all eigenvalues are negative and at a 
saddle point one or more eigenvalues are negative.

6. What should be the convergence criteria?

In contrast to the simple analytical functions that we have used to illustrate 
the operation of the various Minimization methods, in ‘real’ molecular modeling 
applications it is rarely possible to identify the ‘exact’ location of minima and saddle 
points. We can only ever hope to find an approximation to the true minimum or 
saddle point. Unless instructed otherwise, most Minimization methods would keep 
going forever, moving ever closer to the minimum. It is therefore necessary to have 
some means to decide when the Minimization calculation is sufficiently close to 
the minimum and so can be terminated. Any calculation is of course limited by the 
precision with which numbers can be stored on the computer, but in most instances 
it is usual to stop well before this limit is reached. A simple strategy is to monitor 
the energy from one iteration to the next and to stop when the difference in energy 
between successive steps falls below a specified threshold. An alternative is to moni-
tor the change in coordinates and to stop when the difference between successive 
configurations is sufficiently small. A third method is to calculate the root-mean- 
square gradient. This is obtained by adding the squares of the gradients of the 
energy with respect to the coordinates, dividing by the number of coordinates and 
taking the square root. It is also useful to monitor the maximum value of the gradi-
ent to ensure that the Minimization has properly relaxed all the degrees of freedom 
and has not left a large amount of strain in one or two coordinates [23].

7. Applications of energy minimization

Energy Minimization is very widely used in molecular modeling and is an 
integral part of techniques such as conformational search procedures. Energy 
Minimization is also used to prepare a system for other types of calculation. For 
example, energy mini- Minimization may be used prior to a molecular dynamics or 
Monte Carlo simulation in order to relieve any unfavorable interactions in the initial 
configuration of the system [24]. This is especially recommended for simulations of 
complex systems such as macromolecules or large molecular assemblies.
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8. Conclusion

The energetic state of a protein is one of the most important representative 
parameter of its stability. The energy of a protein (E) can be defined as a  function 
of its atomic coordinates, thus providing a quantitative criterion for model selec-
tion and refinement. This energy function consists of several components e.g. 
(1) Bond energy and angle energy, representative of the covalent bonds, bond 
angles. (2) Dihedral energy, due to the dihedral angles. (3) A van der Waals term 
(also called Leonard-Jones potential) to ensure that atoms do not have steric clashes. 
(4) Electrostatic energy accounting for the Coulomb’s Law m protein structure, 
i.e. the long-range forces between charged and partially charged atoms. All these 
quantitative terms have been parameterized and are collectively referred to as the 
‘forcefield’. The goal of energy Minimization is to find a set of coordinates represent-
ing the minimum energy conformation for the given structure. Various algorithms 
have been formulated by varying the use of derivatives. The common algorithm used 
for this optimization is steepest descent, conjugate gradient and Newton–Raphson 
etc. These methods complement each other in search of the local minima. Therefore, 
a reasonable energy Minimization protocol involves few initial steps of steepest 
descent, followed by a larger number of conjugate gradient iterations. Although 
energy Minimization is a tool to achieve the nearest local minima, it is also an indis-
pensable tool in correcting structural anomalies, viz. bad stereo-chemistry and short 
contacts. An efficient optimization protocol could be devised from these methods in 
conjunction with a larger space exploration algorithm, e.g. molecular dynamics.
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