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Chapter 1

XBot: A Cross-Robot Software
Framework for Real-Time Control
Luca Muratore, Arturo Laurenzi and Nikos G. Tsagarakis

Abstract

The widespread use of robotics in new application domains outside the indus-
trial workplace settings requires robotic systems which demonstrate functionalities
far beyond that of classical industrial robotic machines. The implementation of
these capabilities inevitably increases the complexity of the robotic hardware, con-
trol a and software components. This chapter introduces the XBot software archi-
tecture for robotics, which is capable of Real-Time (RT) performance with
minimum jitter at relatively high control frequency while demonstrating enhanced
flexibility and abstraction features making it suitable for the control of robotic
systems of diverse hardware embodiment and complexity. A key feature of the
XBot is its cross-robot compatibility, which makes possible the use of the frame-
work on different robots, without code modifications, based only on a set of con-
figuration files. The design of the framework ensures easy interoperability and
built-in integration with other existing software tools for robotics, such as ROS,
YARP or OROCOS, thanks to a robot agnostic API called XBotInterface. The
framework has been successfully used and validated as a software infrastructure for
collaborative robotic arms as KUKA lbr iiwa/lwr 4+ and Franka Emika Panda, other
than humanoid robots such as WALK-MAN and COMAN+, and quadruped
centaur-like robots as CENTAURO.

Keywords: software architecture for robotics, real-time control, cross-robot
framework, humanoid robotics, hardware abstraction layer, XBot, ROS

1. Introduction

Nowadays effective robotic solutions targeting new applications outside the
traditional industrial environment, are supposed to operate in partially known
spaces with unforeseen uncertainty and increased variability in the application
tasks. Hence, to be effective, they have to adapt rapidly and seemly their function-
alities in these demands, leading to an increase of the complexity in each layer of the
robotic system, from the hardware to the high level control.

To tackle this, several software frameworks for robotics have been developed in
the past twenty years, as stated in [1], aiming to provide flexible infrastructures,
which not only permit the seamless integration of new functionalities and interfaces
in the robotic system, but also ensure standardization, easy tracking and mainte-
nance of the software development, despite the increased complexity. Apart from
dealing with the software complexity, these frameworks have to provide hard Real-
Time (RT) performance, ensuring predictable response times [2] as required in
critical tasks when robots need to perform in autonomous mode, responding to
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disturbances and interacting with the physical environment during the execution of
a task. Thus, a vital feature of a software framework for robotics is the Real-Time
safeness and scheduling, essential for precise robot control, especially when dealing
with high frequency and low jittering control cycles.

Furthermore, a software middleware needs to abstract the complex hardware
(e.g. actuators and sensors) of the robot providing an easy-to-use, standardized
Application Programming Interface (API). As a matter of fact, a robot can be
considered a distributed system composed of a set of hardware devices communi-
cating through a fieldbus. The fast prototype and development of control and
application software which can be shared, ported and reused in various robotic
platforms with minimum effort, is another fundamental requirement for the soft-
ware architecture. An important component needed to achieve this goal is the
Hardware Abstraction Layer (HAL), which can be incorporated to mask the phys-
ical hardware differences and limitations (e.g. control frequency, kinematics/
dynamics model, actuators type and size, sensors, etc) varying from one robot to
another. The HAL can provide a relatively uniform abstraction layer that assures
portability and code reuse: it permits the development of control modules that can
be easily ported from one robot to another.

The existing robotics software frameworks address different needs and require-
ments, therefore one of the key aspects for a brand-new middleware is the interop-
erability with well-known and established robotic software platforms.
Interoperability should ideally allow users to execute existing software without the
necessity of (i) changing the current code and (ii) writing hand-coded “bridges” for
each use case [3].

In this chapter the XBot software framework is presented. The development of
the XBot was driven by the need to provide a software framework that abstracts the
diverse variability of the robotic hardware (effectively becoming a cross robot
platform framework), providing deterministic hard Real-Time (RT) performance,
incorporating interfaces that permits it to integrate state of art robot control frame-
works and achieve enhanced flexibility through a plug-in architecture.

2. Related works

In this section the state of the art of robotic software architectures will be
analyzed.

In [4] the low level control framework, called OROCOS (Open Robot Control
Software), is introduced, which provides a set of components for RT control of
robotic systems. OROCOS relies on the Common Object Request Broker (CORBA)
architecture, that allows inter-process and cross-platform interoperability for dis-
tributed robot control. Depending on any Inter-Process-Communication (IPC)
framework can critically increase the complexity of the software platform. Despite
OROCOS is used in a fair number of robotics projects, the framework maintenance
as well as the community looks not being very active anymore1.

Very similar to OROCOS is OpenRT-M [5], developed in Japan from 2002
under NEDO’s (New Energy and Industrial Technology Development Organiza-
tion) “Robot challenge program”. It is based on CORBA, so similar considerations as
for OROCOS can be made with respect to the software complexity; moreover part
of OpenRT-M documentation is in Japanese.

1 In particular we refer to the discontinuity in maintaining the framework under last versions (≥3.X) of
Ubuntu Xenomai, where the OROCOS porting is still experimental.
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YARP (Yet Another Robot Platform) [6] and ROS (Robot Operating System)
[7] are popular component-based frameworks for IPC that do not guarantee RT
execution among modules/nodes. It is essential for a robotic system to have a
component responsible for the RT control of the robot, making these frameworks
only viable as external (high-level) software frameworks. It is worth to mention
that a new ROS version, called ROS 22 has been released: it is still in an early stage
development phase, so it cannot be used in real-world scenario3.

PODO [8], is the framework used by KAIST in HUBO during the DRC (Darpa
Robotics Challenge) Finals. Its control system has RT control capabilities and its
inter-process communication facilities are based on POSIX IPC; moreover it uses a
shared memory system called MPC to exchange data between processes in the same
machine. This heterogeneous system has the potential to cause confusion as it is
unclear which architectural style must be used to communicate with a specific
component [9].

In [10] an RT architecture based on OpenJDK is introduced (used by IHMC
during the DRC Finals). Nevertheless, to their own admission [11], none of the
commercially available implementations of the Java Real Time Specification had the
performance required to run their controller. Existing Real-time Java Support is
insufficient.

Considering the above limitations, summarized in Table 1, the XBot [12–14] was
developed from scratch, in order to have a reliable RT control framework with HAL
support and without depending on complex IPC frameworks.

3. XBot framework

The development of XBot was driven by the need to provide a software infra-
structure that abstracts the diverse variability of the robotic hardware (effectively
becoming a cross-robot framework), provides deterministic hard Real-Time (RT)
performance, incorporates interfaces that permit its integration with state of art
robot control frameworks and achieves enhanced flexibility through a plug-in
architecture.

Framework RT HAL IPC
Complexity

Ready-to-Use Community

ROS No Yes Low Yes Big and active

YARP No Yes High Yes Medium and active

OROCOS Yes No Very High Yes Medium and inactive

OpenRT-M Yes Yes Very High Yes Part of docs in Japanese

ROS 2 Yes Yes High No Small and Active

PODO Yes Yes Very High No, not available KAIST group only

IHMC OpenJDK Yes, low
performance

No Medium Yes Small

XBot Yes Yes Low Yes Small

Table 1.
Summary of the features of the available software frameworks for robotics: The XBot was developed from
scratch given the limitations and the missing features of the presented existing framework.

2 https://index.ros.org/doc/ros2/
3 https://index.ros.org/doc/ros2/Features/
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In the next sections, the XBot design goals and the software architecture insights
are going to be described following a bottom-up approach going from the hardware
towards the high-level control of the robotic system.

3.1 Design goals

The considerations and limitations of the existing frameworks, described in
detail in the previous section, motivated the development of the XBot framework
bearing in mind that the design of a software platform, which lies at the foundations
of such complex and diverse robotic systems, is the most crucial phase in the
software development process. XBot was designed to be both an RT control system
and a user friendly, flexible and reusable middleware for RT and non-RT control
software modules. XBot was developed starting from the following design goals and
features:

• Hard RT control performance: it must perform computation inside specific
timing constraints with minimum timing jitter. There are several operating
systems or platforms which support RT operation, including Windows CE,
INtime, RTLinux, RTAI, Xenomai, QNX and VXWorks. Xenomai4 [15], a
Linux based Real-Time Operating System (RTOS) was selected to avoid a
licensed product that does not give the possibility to modify and adapt the
source code to fit it to the specifications of the system. Moreover Xenomai
satisfies the requirements for extensibility, portability and maintainability as
well as ensuring low latency as stated. in [16, 17].

• High control frequency: robotics applications may often require high
frequency control loops, e.g. RT pattern generator for bipedal walking,
impedance regulation controllers or force feedback modules.

• Cross-Robot compatibility: it should be possible to use it with any robot,
without code modification. It is crucial to be able to reuse the software
platform with different robots, or subsystems of the same robotic platform.

• External Framework integration: it should be possible to use XBot as a
middleware for any kind of external software framework (RT or non RT)
without tailored software or specific bridges for every different case.

• Plug-in Architecture: users and third parties should be able to develop and
integrate their own modules. In a robotic system platform a highly expandable
software structure is needed.

• Light-weight: small number of dependencies on other libraries, it should be
easy to install and set up. It is expected to run XBot on embedded PCs with low
performance requirements in terms of memory and CPU. Therefore, it should
demonstrate a small footprint to avoid high CPU usage.

• Simplicity: it must be simple. Complex systems may have unneeded and over-
engineered features. For robotics application full control over the software
platform is required. KISS (“Keep It Simple, Stupid”) principle is essential and
unnecessary complexity should be avoided.

4 https://xenomai.org/
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• Flexibility: XBot has to be easily modified or extended to be used in systems
and applications other than those for which it was specifically designed.

Finally, the XBot software framework was not developed to address the require-
ments of a specific robotic platform, instead its implementation is flexible, generic
and cross-robot. Furthermore it does not directly depend on any existing software
or control platform, but it provides to the user the functionality to easily integrate
any RT or non-RT framework. To obtain the above features, a user of the XBot with
a generic robotic platform to control, has to provide a set of configuration files,
mainly related to the kinematics and dynamics of the robot, the control plugins to
execute, the HAL implementation, the high level communication framework and
the kinematic/dynamic engine to use.

3.2 Software architecture

As presented in Figure 1, the XBot software architecture is composed of differ-
ent components, described in detail within the following sections. In particular the
design choices, from a software engineer point of view, are the results of the design
goals described in Section 3.1. To avoid scheduling issues and keep the complexity
of the software infrastructure as low as possible only two RT threads and one non-
RT thread are currently employed in the framework as presented in Figure 2. The
RT layer contains the R-HAL (Robotics Hardware Abstraction Layer) to assure
cross-robot compatibility and seamless porting of the higher level code from the
simulation to the real robot. The communication mechanism employed in this layer
is a shared memory one using basic synchronization methods (i.e. mutex and
condition variables). On top of the R-HAL, the Plugin Handler is designed using a

Figure 1.
XBot software architecture: components overview and interaction. From the bottom the R-HAL and the plugin
handler inside the RT Xenomai layer are presented, with the shared memory communication between them. The
non-RT layer and the external software integration component of the XBot is represented by the
Communication Handler which is able to communicate with the robot/simulation through a XDDP
mechanism which assures lock-free IPC. Thanks to the XBotInterface on the left, all the layers of the framework
have an uniform way (through an API) to send commands and receive state from the robot.
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is a shared memory one using basic synchronization methods (i.e. mutex and
condition variables). On top of the R-HAL, the Plugin Handler is designed using a

Figure 1.
XBot software architecture: components overview and interaction. From the bottom the R-HAL and the plugin
handler inside the RT Xenomai layer are presented, with the shared memory communication between them. The
non-RT layer and the external software integration component of the XBot is represented by the
Communication Handler which is able to communicate with the robot/simulation through a XDDP
mechanism which assures lock-free IPC. Thanks to the XBotInterface on the left, all the layers of the framework
have an uniform way (through an API) to send commands and receive state from the robot.
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component-based software design paradigm by featuring a clear component con-
cept (the plugin as a shared library) with well-defined structure and communica-
tion interfaces. In order to be able to assure external software integration, the
communication with the non-RT layer, represented by a standalone component
called Communication Handler, is implemented using a lock-free Inter Process
Communication (IPC) mechanism based on XDDP (described in details in the
following sections). The same concept is applied to communicate with other RT
frameworks (e.g. OROCOS), using a mechanism based on IDDP. The idea of the
NRT Deployer came from the need to have a behavior similar to the one of the Plugin
Handler but completely in the non-RT layer. Finally a standard way of communi-
cating with the robot regardless of its specific structure (humanoid, quadruped,
manipulator, etc), and also independently of the particular software layer that the
user wants to operate within, is provided by mean of the XBotInterface.

3.2.1 R-HAL

The Cross-Robot compatibility feature is achieved through the development of a
suitable hardware abstraction layer [18], which enables the user to efficiently port
and run the same control modules on different robots, both in simulation and on the
real hardware platforms. The main goal of this software component is to provide an
independent layer in between the robot hardware and the high-level control,
enabling the seamless integration of new actuators, sensors or other hardware
components.

Concerning the threads configuration, XBot employs a separate thread to exe-
cute the low-level robot control loop and permits to realize separate controllers with
different frequencies. The synchronization between the Plugin Handler thread and
the R-HAL thread is implemented using condition variables, assuring the safe access
of the shared data structures.

XBot currently supports EtherCAT (for robots like WALK-MAN, CENTAURO
and COMAN+), Ethernet (for COMAN), and KUKA LWR 4/KUKA LBR arm based
robots [19–21]. The possibility to simulate the robot and its controllers behaviors
prior to testing on the real hardware is essential, especially when dealing with
complex robotic systems. To achieve this we provide an R-HAL implementation for
the well known Gazebo5 simulator environment Figure 3. In particular we rely on
the Gazebo ModelPlugin class to be part of the Gazebo internal loop.

Figure 2.
XBot threads structure and communication mechanisms: To keep the complexity of the framework low and
assure full control over the software infrastructure, only two RT threads and one non-RT thread are currently
employed.

5 http://gazebosim.org/
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3.2.2 Plugin handler

The main component of the XBot architecture is called PluginHandler and it is
represented in Figure 1 with the dark pink color. The software design of this
component relies on two core requirements for a robotic system (described in 3.1):
the RT control and the highly expandable software structure. To achieve this the
PluginHandler is implemented using a single RT thread running at high frequency
(e.g. 1 kHz) and it is responsible for the following actions with the order they
appear below: load the set of plugins requested by the user from a configuration file,
initialize all the loaded plugins, and start them upon user request, execute the
plugins that have been started sequentially, reload and reinitialize a plugin upon
user request, close and unload all the loaded plugins. In Figure 4, the UML state
diagram representing the life-cycle of a plugin is presented.

The Plugin implementation is compiled as a shared object library (.so). In details
a Plugin is a simple class inherited from the abstract class XBotControlPlugin; this
means that writing a Plugin is straightforward for the user, as the only need is to
implement three basic functions:

• an init_control_plugin() function, which is called by the PluginHandler after the
plugin is loaded/reloaded and is useful to initialize the variables of the Plugin

• a control_loop() function, which is called in the run loop of the PluginHandler
after the plugin is started

• a close() function, which is called in the PluginHandler closing phase

After the design and the implementation of the latency-free, hard real-time layer
the next significant feature is accompanied by the implementation of flexible

Figure 3.
COMAN+ robot controlled inside the gazebo simulator (left) and CENTAURO robot in RViZ (right): Both
using two different implementations of the R-HAL provided in the XBot software architecture.
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interfaces, called XBotInterface, which permit our framework to integrate with
state-of-art, widely spread robot control frameworks.

3.2.3 Communication handler

The above mentioned software components do not give the possibility to com-
municate with external modules/hosts outside the robot: for this purpose the soft-
ware framework of a robotic system should incorporate a set of non-RT threads that
permit the communication of the system with remote pilot stations or cloud ser-
vices. XBot provides this with the implementation of the Communication Handler
component (represented in Figure 1 with the yellow color) that is a non-RT thread
exploiting an XDDP (Cross Domain Datagram Protocol) handler with the ready-to
use XBot non-RT API for a set of components called CommunicationInterface(s).
The non-RT API uses XDDP Xenomai pipes to achieve asynchronous communica-
tion between RT and non-RT threads. A lock-free inter-process communication
(IPC) is employed to permit the RT control threads to exchange messages with the
non-RT communication threads without any context switch. The execution loop of
the Communication Handler thread is responsible for updating the internal robot
state using the XDDP pipe with the non-RT robot API, sending the robot state to all
the communication frameworks implemented as CommunicationInterface(s),
receiving the new reference from the “master” CommunicationInterface (to avoid
having multiple external frameworks commanding the robot) and finally for send-
ing the received reference to the robot using the XDDP non-RT robot API.

It is relatively straightforward to add a new CommunicationInterface in the
framework: XBot provides built-in support for YARP and ROS communication

Figure 4.
UML state diagram showing a XBot plugin life-cycle.
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frameworks, meaning that the end-users has YARP control board wrappers / analog
sensors and ROS joint state / command messages already available. Interoperability
for YARP/ROS framework and XBot is one of the key feature offered by the Com-
munication Handler.

In the specific ROS case, XBot provides two families of interfaces:

1.a joint space interface, consisting of standard ROS topics that are advertised/
subscribed by the Communication Handler itself in order to publish the robot
state (including sensors) and accept commands

2.a set of tools for using a subset of ROS inter-process communication
capabilities from the RT domain

ROS-powered robots expose to their users an interface that is mainly based on
topics. For instance, the robot joint state is usually published to a /joint_state topic
through sensor_msgs/JointState messages. The same kind of message can be
published by the user on a /command topic in order to control the robot.

Inside XBot a similar interface to the ROS middleware is offered, the only
difference lies in the message type being used. Broadly speaking, XBot uses an
extended joint state message that make it possible to perform more flexible control
of the robot than is allowed with standard ROS.

The XBot framework provides also the integration with any external RT software
framework (e.g. OROCOS) thanks to the use of the IDDP (Intra Domain Datagram
Protocol) pipes for the RT inter-process communication.

Inside the Communication Handler component, the XBot framework provides
the user with the possibility of running non-RT plugins that are useful for
performing Input/Output operation from the non-RT layer to the RT layer. The so
called IOPlugins are very similar to the Plugin used in the RT layer, in fact the
implementation is compiled as a shared object library (.so). In detail, an IOPlugin is
a simple class inheriting from the abstract class XBot::IOPlugin, which gives to the
user simple access to the shared memory component and the pipes to communicate
between the non-RT layer and the RT one. As for the standard Plugin, XBot
provides a ready-to-use skeleton (simple script to run) for the user.

4. Experimental validation

In this section the results of the validation of the overall framework is going to
be presented with particular focus on the flexibility in terms of integration with
different robots and external software frameworks, and also on the overhead intro-
duced by the XBot while assuring predictable response time at high frequency (i.e.
1 kHz) control loop.

4.1 Experimental setup

To evaluate the performance of the XBot software platform, two sets of experi-
ments were performed: in the experiment set 1 the WALK-MAN [22, 23] robot was
used, a humanoid with 33 Degree-Of-Freedom, 4 custom F/T sensors and 1 VN-100
imu. The WALK-MAN vision system is composed of a CMU Multisense-SL sensor
that includes a stereo camera, a 2D rotating laser scanner, and an IMU. The robot
control modules were based on GYM [24] (Generic Yarp Module), a component
model to easily develop software modules for robotics leveraging the YARP ecosys-
tem: YARP Based Plugins for Gazebo Simulator were used to validate the control
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modules in simulation. Whole-body control and inverse kinematics are solved
through the OpenSoT control framework [25]. Figure 5 reports a representation of
the software components in use for experiment set 1.

In the set 1 evaluation different high-level software frameworks were success-
fully integrated on top of XBot: ArmarX [26] perceptual pipeline for hierarchical
affordance extraction [27], OpenSoT previewer based on the MoveIt! ROS library

Figure 6.
XBot validation experiment. On the left set 1 setup: WALK-MAN needs to remove a set of objects in order to
perform the task of turning the valve. On the right CENTAURO bi-manual robot platform used in experiment
set 2.

Figure 5.
XBot validation experiment set 1 software components: How they are allocated in the two WALK-MAN
embedded PCs (i.e. N-RT WALKMAN EXP and RT WALKMAN EXP).
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for motion feasibility analysis and collision checking and a manipulation GYM
module, OpenSoT based, using the YARP communication framework.

The set 1 experiments were carried out in a DRC-inspired scenario targeting the
removal of debris in front of a valve. In Figure 6 the experimental setup is shown.

In [28], ArmarX was integrated with the robot software environment YARP
taking advantage of the built-in YARP CommunicationInterface for the external
software framework integration with XBot.

In the experiment set 2 an RT end-effector Cartesian Control on two different
robots was performed: the aforementioned WALK-MAN and CENTAURO (in
Figure 6). CENTAURO [20, 29, 30] upper body is a high performance human size
and weight compatible bi-manual manipulation platform with 15 DOFs. Each arm
has 7 DOF and the trunk has 1 DOF that permits the yaw motion of the entire upper
body and extends the manipulation workspace of the robot.

In the set 2 experiments two RT Plugins were used: the first one, called
IKCommunication to receive the end-effector pose from the Communication Han-
dler (with the built-in ROS CommunicationInterface) through the XDDP pipes
and OpenSoTRTIK to solve the inverse kinematics. The evaluation was focused on
the overhead introduced by the IKCommunication RT plugin that exploits two
communication mechanism offered by XBot: XDDP to receive the data from the
non-RT layer and XBotSharedMemory to communicate these data to the other RT
plugin (OpenSoTRTIK).

4.2 Results

In the set 1, XBot performance in terms of control period of the RT plugin
XBotCommunicationPlugin and CPU usage were analyzed: during the experi-
ments, each millisecond, all the data flowing from/to the R-HAL were recorded,
using the XBot RT low-level logging tools.

Figure 7.
Experiment set 1: WALK-MAN EtherCAT slaves RTT measured by EtherCAT master during manipulation
actions: XBot assures always a control period below 1000 μs while providing integration with external software
frameworks as described in Figure 5.

11

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066



for motion feasibility analysis and collision checking and a manipulation GYM
module, OpenSoT based, using the YARP communication framework.

The set 1 experiments were carried out in a DRC-inspired scenario targeting the
removal of debris in front of a valve. In Figure 6 the experimental setup is shown.

In [28], ArmarX was integrated with the robot software environment YARP
taking advantage of the built-in YARP CommunicationInterface for the external
software framework integration with XBot.

In the experiment set 2 an RT end-effector Cartesian Control on two different
robots was performed: the aforementioned WALK-MAN and CENTAURO (in
Figure 6). CENTAURO [20, 29, 30] upper body is a high performance human size
and weight compatible bi-manual manipulation platform with 15 DOFs. Each arm
has 7 DOF and the trunk has 1 DOF that permits the yaw motion of the entire upper
body and extends the manipulation workspace of the robot.

In the set 2 experiments two RT Plugins were used: the first one, called
IKCommunication to receive the end-effector pose from the Communication Han-
dler (with the built-in ROS CommunicationInterface) through the XDDP pipes
and OpenSoTRTIK to solve the inverse kinematics. The evaluation was focused on
the overhead introduced by the IKCommunication RT plugin that exploits two
communication mechanism offered by XBot: XDDP to receive the data from the
non-RT layer and XBotSharedMemory to communicate these data to the other RT
plugin (OpenSoTRTIK).

4.2 Results

In the set 1, XBot performance in terms of control period of the RT plugin
XBotCommunicationPlugin and CPU usage were analyzed: during the experi-
ments, each millisecond, all the data flowing from/to the R-HAL were recorded,
using the XBot RT low-level logging tools.

Figure 7.
Experiment set 1: WALK-MAN EtherCAT slaves RTT measured by EtherCAT master during manipulation
actions: XBot assures always a control period below 1000 μs while providing integration with external software
frameworks as described in Figure 5.

11

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066



In Figure 7 the RTT (Round Trip Time) measured by the EtherCAT master
implementation of the R-HAL during the set 1 experiments in the worst-case
scenario is shown, i.e. while the robot was performing the manipulation actions: it is

Figure 8.
Experiment set 1: XBot CPU core usage comparison: Robot idle vs. robot running the experiments. The
difference between the two bold lines represents the actual overhead introduced by the middleware when
executing the control modules described in the experimental setup for set 1.

Figure 9.
Experiment set 2: Communication overhead (RT - RT and N-RT - RT) introduced by XBot. Experiment
results on both WALK-MAN and CENTAURO are shown.
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clear that the mean control period is below the 1000 μs (i.e. 1 kHz control fre-
quency) even if the RT system is communicating with the high-level software
components through XBot the built-in YARP CommunicationInterface non-RT
threads. Only two of the RTT measurement (over 200000) were above the
requested control period because of missing PDO (Process Data Objects) round in
the beckhoff6 chip responsible for the EtherCAT communication.

In Figure 8 a comparison is presented between XBot CPU usage while the robot
is idle (i.e. not moving, nor communicating with external software frameworks)
and when the set 1 manipulation experiments are running: the CPU core usage
overhead introduced by XBotwhen the robot is performing the manipulation task as
described above, is only 1.2% (on average). Furthermore it is clear that the CPU
usage of XBot is very low (always ranging from 11.7% to 14.2%).

In the set 2 the focus was placed on the communication overhead introduced by
XBot: both the XDDP pipes (communication between RT and non-RT layers) and
the XBotSharedMemory (RT plugins communication) are taken into account. As
shown in Figure 9 the mean execution time of the IKCommunication RT plugin is
around 1.2 μs for both WALK-MAN and CENTAURO experiments. This means that
it is possible to send end-effector reference poses and receive back the robot state
from a non-RT framework, while controlling the robot (at 1 kHz in the experi-
ments) using a RT plugin implementing the IK (OpenSoTRTIK in the experiments),
with negligible overhead (Figure 10).

Figure 10.
XBot framework usage examples: WALK-MAN robot in Pisa (top left), CENTAURO robot untethered and
outdoor (bottom left), and the COMAN and its scaled-up version COMAN+ humanoid robots shaking hands
(right).

6 https://www.beckhoff.it/
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5. Conclusions

In this chapter the XBot7 RT software architecture was presented. It provides to
the users a software infrastructure which can be used with any robotic systems
enabling fast and seamless porting of the code from one robot to the other, requir-
ing no code changes, assuring flexibility and reusability. The implementation of the
framework ensures easy interoperability and built-in integration with other existing
software tools for robotics, such as ROS, YARP or OROCOS. The component-based
development of the XBot includes a Robotic Hardware Abstraction Layer (R-HAL)
interface and a set of ready-to-use tools to control robots either within a simulation
environment or the real hardware.

The framework has been successfully used an validated as a main software
infrastructure (Figure 5) for humanoid robots such as WALK-MAN (result of
WALK-MAN EU FP7 project8, notably XBot received the EU innovation radar
award in this context9.) and COMAN+ (result of COGIMON EU H2020 project10)
or for quadruped centaur-like robots as CENTAURO (result of the CENTAURO EU
H2020 project11). Moreover the cross-robot functionality has been exploited to
develop both RT and non-RT control modules not only for the above mentioned
robots, but also for commercial robotic systems such as KUKA LBR, KUKA 4+ or
Franka Emika Panda, or other humanoid robots like COMAN or iCub.

Regarding the simulation part, XBot enables the direct porting of the control mod-
ules tested in the simulator to the real hardware using the same interfaces and without
requiring any code modifications. The built-in simulator supported in the framework
is Gazebo, but there is the option to support other simulation environments (as it
happened inside the CENTAURO H2020 project with the VEROSIM simulator12).

XBot currently relies on a dual-kernel approach using Xenomai, which performs
better than PREEMPT_RT13, both in terms of system predictability and absolute
latencies. Nevertheless Xenomai in the long term can introduce disadvantages by
making the software development more complex, which means harder maintain-
ability and lower portability.

Further development of the framework will target to provide synchronized
distributed execution of multiple RT threads in multiple computational units. In
fact currently the Plugin Handler is only able to execute a set of plugins in sequence,
without any concurrency. This makes the maintenance of the framework easier, but
restricts the performance in terms of computation power. Moreover the current
architecture is characterized by a unique point of failure since both the R-HAL
thread and the Plugin Handler (which executes RT plugins) thread run in the same
process. In fact, there is the possibility that a misbehaving RT plugin might cause
memory corruption, or crash altogether, causing also the R-HAL to crash. Currently
only expert users are allowed to load their RT plugins in the Plugin Handler, but it is
desirable to eventually separate the R-HAL and Plugin Handler either in two
different processes or in two different machines to improve isolation.

7 https://github.com/ADVRHumanoids/XBotControl
8 https://www.walk-man.eu/
9 https://www.innoradar.eu/innovation/30632
10 https://cogimon.eu/
11 https://www.centauro-project.eu/
12 https://www.verosim-solutions.com/en/
13 PREEMPT_RT was introduced to have RT capabilities in the Linux kernel avoiding the adoption of a

dual-kernel.
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Chapter 2

Use Improved Differential
Evolution Algorithms to Handle
the Inverse Kinetics Problem for
Robots with Residual Degrees of
Freedom
Trung Nguyen and Tam Bui

Abstract

In this study, the Self-adaptive strategy algorithm for controlling parameters in
Differential Evolution algorithm (ISADE) improved from the Differential Evolution
(DE) algorithm, as well as the upgraded version of the algorithms has been applied
to solve the Inverse Kinetics (IK) problem for the redundant robot with 7 Degree of
Freedom (DoF). The results were compared with 4 other algorithms of DE and
Particle Swarm Optimization (PSO) as well as Pro-DE and Pro-PSO algorithms.
These algorithms are tested in three different Scenarios for the motion trajectory of
the end effector of in the workspace. In the first scenario, the IK results for a single
point were obtained. 100 points randomly generated in the robot’s workspace was
input parameters for Scenario 2, while Scenario 3 used 100 points located on a
spline in the robot workspace. The algorithms were compared with each other based
on the following criteria: execution time, endpoint distance error, number of gen-
erations required and especially quality of the joints’ variable found. The compari-
son results showed 2 main points: firstly, the ISADE algorithm gave much better
results than the other DE and PSO algorithms based on the criteria of execution
time, endpoint accuracy and generation number required. The second point is that
when applying Pro-ISADE, Pro-DE and Pro-PSO algorithms, in addition to the
ability to significantly improve the above parameters compared to the ISADE,
DE and PSO algorithms, it also ensures the quality of solved joints’ values.

Keywords: differential evolution (DE), particle swarm optimization (PSO),
inverse kinematic (IK), degree of freedom (DOF), optimization

1. Introduction

The robot Inverse Kinematics problem involves finding the joints’ variable
values that match input parameters of position and direction of the end effector [1].
These matched variable values will ensure that subsequent robot control will follow
the desired trajectory. This is one of the important issues in the robotic field because
it is related to other aspects such as motion planning, dynamic analysis and control
[2]. Traditionally, there are several methods to resolve inverse kinematics problem

19



Chapter 2

Use Improved Differential
Evolution Algorithms to Handle
the Inverse Kinetics Problem for
Robots with Residual Degrees of
Freedom
Trung Nguyen and Tam Bui

Abstract

In this study, the Self-adaptive strategy algorithm for controlling parameters in
Differential Evolution algorithm (ISADE) improved from the Differential Evolution
(DE) algorithm, as well as the upgraded version of the algorithms has been applied
to solve the Inverse Kinetics (IK) problem for the redundant robot with 7 Degree of
Freedom (DoF). The results were compared with 4 other algorithms of DE and
Particle Swarm Optimization (PSO) as well as Pro-DE and Pro-PSO algorithms.
These algorithms are tested in three different Scenarios for the motion trajectory of
the end effector of in the workspace. In the first scenario, the IK results for a single
point were obtained. 100 points randomly generated in the robot’s workspace was
input parameters for Scenario 2, while Scenario 3 used 100 points located on a
spline in the robot workspace. The algorithms were compared with each other based
on the following criteria: execution time, endpoint distance error, number of gen-
erations required and especially quality of the joints’ variable found. The compari-
son results showed 2 main points: firstly, the ISADE algorithm gave much better
results than the other DE and PSO algorithms based on the criteria of execution
time, endpoint accuracy and generation number required. The second point is that
when applying Pro-ISADE, Pro-DE and Pro-PSO algorithms, in addition to the
ability to significantly improve the above parameters compared to the ISADE,
DE and PSO algorithms, it also ensures the quality of solved joints’ values.

Keywords: differential evolution (DE), particle swarm optimization (PSO),
inverse kinematic (IK), degree of freedom (DOF), optimization

1. Introduction

The robot Inverse Kinematics problem involves finding the joints’ variable
values that match input parameters of position and direction of the end effector [1].
These matched variable values will ensure that subsequent robot control will follow
the desired trajectory. This is one of the important issues in the robotic field because
it is related to other aspects such as motion planning, dynamic analysis and control
[2]. Traditionally, there are several methods to resolve inverse kinematics problem

19



for robots such as: geometry method is the method using geometric and trigonomet-
ric relationships to solve; the iterative method is often required inversion of a Jaco-
bian matrix, etc. However, when applying these methods to solve the IK problem for
robots, especially with redundant robots, it is often much more complicated and
time-consuming. The reason is the nonlinearity of the formulas and the geometry
between the workspace and the joint space. In addition, the difficult point is in the
singularity, the multiple solutions of these formulas as well as the necessary variation
of the formulas corresponding to the changes of different robot structures [3–5].

In addition to those existing methods of solving the IK problems, in recent years,
the application of meta-heuristic optimization algorithms has become increasingly
common. 8 optimization algorithms applied in [5] in the cases of a single point or a
whole trajectory endpoint. The simulation results showed that the PSO algorithm
can effectively solve the IK problem. In [6] the authors used algorithms such as
ABC, PSO, and FA to solve the inverse kinematic requirement for Kawasaki RS06L
6-DoF robot in the task of picking and place objects. Ayyıldız et al. compared the
results of all IK tests for a 4-DOF serial robot using 4 different algorithms: PSO,
QPSO, GA and GSA [7]. Two versions of the PSO algorithm have been used to solve
the IK problem for robots with a number of degrees of freedom from 9 to 180 [8]. In
recent research [9], Malek et al. used PSO algorithm to handle inverse kinematics
for a 7-DoF robot arm manipulator. The study mentioned both the requirements for
the location and the direction of the endpoint, however, it only solved for 2 differ-
ent end effector positions. Laura et al., in [10] used DE algorithm for the IK problem
of 7-DoF robot. The problem was solved for specific points, but the quality evalua-
tion parameters such as endpoint position deviation, execution time as well as the
values of the joints’ variable did not reach impressive quality. Ahmed El-Sherbiny
et al. [11] proposed to use ABC variant algorithm for solving inverse kinematics
problem in 5 DoFs robot arm. Serkan Dereli et al. [12] used a quantum behave
partial algorithm (QPSO) for a 7-DoF serial manipulator and compare the results
with other techniques such as firefly algorithm (FA), PSO and ABC.

In this study, the self-adaptive control parameters in Differential Evolution
(ISADE) algorithm, that developed [13, 14] by authors, was applied to solve the
problem of inverse kinematic for a 7-DOF serial robot. To compare the results, this IK
problem was also handled by applying DE and PSO algorithms. In addition, the study
also compared the results in the application of the above algorithms with the search
space improvement of joints’ variables (Pro-ISADE, Pro-PSO and Pro-DE) [15].

The remainder of the paper is divided into the following sections: Section II
describes the experimental model. The theory of the PSO, DE and ISADE algo-
rithms as well as the algorithms with improved search area, Pro-PSO, Pro-DE and
Pro-ISADE, will then be presented in Section III. Section IV covers scenarios and
object functions that will be applied to calculate the IK. The results after applying
the algorithm are shown and compared in Section V. Finally, the conclusions are
outlined in Section VI.

2. Testing model

The residual driven robots have many advantages such as easy escape from
obstacles, flexible movement as well as a large operation space. However, their
disadvantage is the complexity of the robot structure [16]. In this study, a serial
redundant manipulator robot was used to evaluate the algorithm in resolving the
inverse kinematics requirements. The simplified robot model was shown in the
Figure 1. As in the figure, this serial robot manipulator is of type 7R (R: Revolute).
The parameters of the D-H table of the robot are given in Table 1.
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The homogeneous transformation matrix can be used to obtain the forward
kinematics of the robot manipulator, using the DH parameters in Eq. (1) [17].

Ti�1i ¼

Cθi �Sθi 0 ai

SθiCαi CθiCαi �Sαi �diSαi
SθiSαi SθiSαi �Cαi �diCαi
0 0 0 1

2
6666664

3
7777775

(1)

where S and C denote the sine and cosine functions.
The position and orientation of the end-effector can be determined by Eq. (2):

T07 ¼ T01 ∗T12 ∗T23 ∗T34 ∗T45 ∗T56 ∗T67 ¼

nx sx ax x5
ny sy ay y5
nz sz az z5
0 0 0 1

2
6664

3
7775 (2)

Figure 1.
The 7-DFO robot Scheme and coordinate systems used in the study.

Joint θ(rad) d(mm) a(mm) α(rad)

1 -π <q1 <π d1 = 500 0 - π/2

2 -π/2 <q2<π/6 0 l2 = 200 π/2

3 -π/2 <q3 <2π/3 0 l3 = 250 - π/2

4 -π/2<q4 <π/2 0 l4 = 300 π/2

5 -π/2<q5 <π/2 0 l5 = 200 - π/2

6 -π/2<q6 <π/2 0 l6 = 200 0

7 -π/2 <q7 <π/2 d7=5 l7 = 100 0

Table 1.
D-H parameters.
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redundant manipulator robot was used to evaluate the algorithm in resolving the
inverse kinematics requirements. The simplified robot model was shown in the
Figure 1. As in the figure, this serial robot manipulator is of type 7R (R: Revolute).
The parameters of the D-H table of the robot are given in Table 1.
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The homogeneous transformation matrix can be used to obtain the forward
kinematics of the robot manipulator, using the DH parameters in Eq. (1) [17].

Ti�1i ¼

Cθi �Sθi 0 ai

SθiCαi CθiCαi �Sαi �diSαi
SθiSαi SθiSαi �Cαi �diCαi
0 0 0 1

2
6666664

3
7777775

(1)

where S and C denote the sine and cosine functions.
The position and orientation of the end-effector can be determined by Eq. (2):

T07 ¼ T01 ∗T12 ∗T23 ∗T34 ∗T45 ∗T56 ∗T67 ¼

nx sx ax x5
ny sy ay y5
nz sz az z5
0 0 0 1

2
6664

3
7775 (2)

Figure 1.
The 7-DFO robot Scheme and coordinate systems used in the study.

Joint θ(rad) d(mm) a(mm) α(rad)

1 -π <q1 <π d1 = 500 0 - π/2

2 -π/2 <q2<π/6 0 l2 = 200 π/2

3 -π/2 <q3 <2π/3 0 l3 = 250 - π/2

4 -π/2<q4 <π/2 0 l4 = 300 π/2

5 -π/2<q5 <π/2 0 l5 = 200 - π/2

6 -π/2<q6 <π/2 0 l6 = 200 0

7 -π/2 <q7 <π/2 d7=5 l7 = 100 0

Table 1.
D-H parameters.

21

Use Improved Differential Evolution Algorithms to Handle the Inverse Kinetics Problem…

DOI: http://dx.doi.org/10.5772/intechopen.97138



With:

T01 ¼

cq1 0 �sq1 0

sq1 0 cq1 0

0 �1 0 l1

0 0 0 1

2
666664

3
777775

(3)

T12 ¼

cq2 0 sq2 l2cq2

sq2 0 �cq2 l2sq2

0 1 0 0

0 0 0 1

2
66664

3
77775

(4)

T23 ¼

cq3 0 �sq3 l3cq3

sq3 0 cq3 l3sq3

0 �1 0 0

0 0 0 1

2
6666664

3
7777775

(5)

T34 ¼

cq4 0 sq4 l4cq4

sq4 0 �cq4 l4sq4

0 1 0 0

0 0 0 1

2
666664

3
777775

(6)

T45 ¼

cq5 0 �sq5 l5cq5

sq5 0 cq5 l5sq5

0 �1 0 0

0 0 0 1

2
666664

3
777775

(7)

T56 ¼

cq6 �sq6 0 l6cq6

sq6 cq6 0 l6sq6

0 0 1 0

0 0 0 1

2
666664

3
777775

(8)

T67 ¼

cq7 �sq7 0 l7cq7

sq7 cq7 0 l7sq7

0 0 1 d7

0 0 0 1

2
666664

3
777775

(9)

Where, T07 is matrix to produce a Catesian coordinate for any seven joint values.
In the Eq. (10), xE, yE, zE

� �
denote the elements of position vector whereas,

nx, ny, nz, sx, sy, sz, ax, ay, az
� �

are the rotational elements of transformation matrix.
In this study, only position vectors were used to calculate the distance error.
After the computation, the end-effector coordinate in the manipulation space is
determined by:
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xE ¼ d7sq5cq4sq1sq3� cq1cq2cq3þ cq1sq2sq4� cq5cq3sq1þ cq1cq2sq3� l4cq4sq1sq3
� cq1cq2cq3� l5sq5cq3sq1þ cq1cq2sq3þ l2cq1cq2� l3sq1sq3� l5cq5cq4sq1sq3
� cq1cq2cq3þ cq1sq2sq4þ l7cq7sq6sq4sq1sq3� cq1cq2cq3� cq1cq4sq2
� cq6cq5cq4sq1sq3� cq1cq2cq3þ cq1sq2sq4þ sq5cq3sq1þ cq1cq2sq3
þ l6sq6sq4sq1sq3� cq1cq2cq3� cq1cq4sq2þ l7sq7cq6sq4sq1sq3� cq1cq2cq3
� cq1cq4sq2þ sq6cq5cq4sq1sq3� cq1cq2cq3þ cq1sq2sq4þ sq5cq3sq1
þ cq1cq2sq3� l6cq6cq5cq4sq1sq3� cq1cq2cq3þ cq1sq2sq4þ sq5cq3sq1
þ cq1cq2sq3þ l3cq1cq2cq3� l4cq1sq2sq4

yE ¼ l4cq4cq1sq3þ cq2cq3sq1� d7sq5cq4cq1sq3þ cq2cq3sq1� sq1sq2sq4� cq5cq1cq3
� cq2sq1sq3þ l5sq5cq1cq3� cq2sq1sq3þ l2cq2sq1þ l3cq1sq3þ l5cq5cq4cq1sq3
þ cq2cq3sq1� sq1sq2sq4� l6sq6sq4cq1sq3þ cq2cq3sq1þ cq4sq1sq2
� l7cq7sq6sq4cq1sq3þ cq2cq3sq1þ cq4sq1sq2� cq6cq5cq4cq1sq3þ cq2cq3sq1
� sq1sq2sq4þ sq5cq1cq3� cq2sq1sq3� l7sq7cq6sq4cq1sq3þ cq2cq3sq1
þ cq4sq1sq2þ sq6cq5cq4cq1sq3þ cq2cq3sq1� sq1sq2sq4þ sq5cq1cq3� cq2sq1sq3
þ l6cq6cq5cq4cq1sq3þ cq2cq3sq1� sq1sq2sq4þ sq5cq1cq3� cq2sq1sq3
þ l3cq2cq3sq1� l4sq1sq2sq4

zE ¼ l1� l2sq2þ d7sq5cq2sq4þ cq3cq4sq2þ cq5sq2sq3� l5cq5cq2sq4þ cq3cq4sq2
� l6sq6cq2cq4� cq3sq2sq4� l3cq3sq2� l4cq2sq4� l6cq6cq5cq2sq4þ cq3cq4sq2
� sq2sq3sq5� l7cq7cq6cq5cq2sq4þ cq3cq4sq2� sq2sq3sq5þ sq6cq2cq4
� cq3sq2sq4þ l7sq7sq6cq5cq2sq4þ cq3cq4sq2� sq2sq3sq5� cq6cq2cq4
� cq3sq2sq4� l4cq3cq4sq2þ l5sq2sq3sq5

(10)

When solving the problem of inverse kinematics, with the endpoint coordinates
as on the left side of Eq. (10), we need to find the values of the matching variable q.
However, according to the Equation, the number of equations is much less than the
number of variables. This makes it very difficult to find a unique and exact
matching solution. In this study, ISADE algorithm and ISADE with searching space
improvement algorithm (Pro-ISADE) were used to solve the IK problem for the
robot. To compare the results, the study also used some other optimization algo-
rithms such as PSO, DE as well as Pro-PSO and Pro-DE to solve the same IK
problem for the robot above.

3. Applied algorithms and object functions

3.1 PSO

Particle swarm optimization was developed flying Kenney and Eberhart [18, 19]
based on observing the moving characteristics of bird flock and fish school. In this
algorithm the individual of the population is called particle. The particle of the
population (Called swarm) can move in its space and offer a potential solution.
Particles can memorize best condition and find and exchange information to other
members. Each particle in the population has two characteristics: position and
velocity. Starting with the particle population, each particle monitors its coordinates
and updates position and speed according to the best solution for each iteration. The
velocity and position values are shown in the following equation:

vid tþ 1ð Þ ¼ wvid tð Þ þ c1rand pid tð Þ � xid tð Þ� �þ c2rand gid tð Þ ‐ xi tð Þ
� �

xid tþ 1ð Þ ¼ xid tð Þ þ vit tð Þ
(11)
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With:

T01 ¼

cq1 0 �sq1 0

sq1 0 cq1 0

0 �1 0 l1

0 0 0 1

2
666664

3
777775

(3)

T12 ¼

cq2 0 sq2 l2cq2

sq2 0 �cq2 l2sq2

0 1 0 0

0 0 0 1

2
66664

3
77775

(4)

T23 ¼

cq3 0 �sq3 l3cq3

sq3 0 cq3 l3sq3

0 �1 0 0

0 0 0 1

2
6666664

3
7777775

(5)

T34 ¼

cq4 0 sq4 l4cq4

sq4 0 �cq4 l4sq4

0 1 0 0

0 0 0 1

2
666664

3
777775

(6)

T45 ¼

cq5 0 �sq5 l5cq5

sq5 0 cq5 l5sq5

0 �1 0 0

0 0 0 1

2
666664

3
777775

(7)

T56 ¼

cq6 �sq6 0 l6cq6

sq6 cq6 0 l6sq6

0 0 1 0

0 0 0 1

2
666664

3
777775

(8)

T67 ¼

cq7 �sq7 0 l7cq7

sq7 cq7 0 l7sq7

0 0 1 d7

0 0 0 1

2
666664

3
777775

(9)

Where, T07 is matrix to produce a Catesian coordinate for any seven joint values.
In the Eq. (10), xE, yE, zE

� �
denote the elements of position vector whereas,

nx, ny, nz, sx, sy, sz, ax, ay, az
� �

are the rotational elements of transformation matrix.
In this study, only position vectors were used to calculate the distance error.
After the computation, the end-effector coordinate in the manipulation space is
determined by:
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xE ¼ d7sq5cq4sq1sq3� cq1cq2cq3þ cq1sq2sq4� cq5cq3sq1þ cq1cq2sq3� l4cq4sq1sq3
� cq1cq2cq3� l5sq5cq3sq1þ cq1cq2sq3þ l2cq1cq2� l3sq1sq3� l5cq5cq4sq1sq3
� cq1cq2cq3þ cq1sq2sq4þ l7cq7sq6sq4sq1sq3� cq1cq2cq3� cq1cq4sq2
� cq6cq5cq4sq1sq3� cq1cq2cq3þ cq1sq2sq4þ sq5cq3sq1þ cq1cq2sq3
þ l6sq6sq4sq1sq3� cq1cq2cq3� cq1cq4sq2þ l7sq7cq6sq4sq1sq3� cq1cq2cq3
� cq1cq4sq2þ sq6cq5cq4sq1sq3� cq1cq2cq3þ cq1sq2sq4þ sq5cq3sq1
þ cq1cq2sq3� l6cq6cq5cq4sq1sq3� cq1cq2cq3þ cq1sq2sq4þ sq5cq3sq1
þ cq1cq2sq3þ l3cq1cq2cq3� l4cq1sq2sq4

yE ¼ l4cq4cq1sq3þ cq2cq3sq1� d7sq5cq4cq1sq3þ cq2cq3sq1� sq1sq2sq4� cq5cq1cq3
� cq2sq1sq3þ l5sq5cq1cq3� cq2sq1sq3þ l2cq2sq1þ l3cq1sq3þ l5cq5cq4cq1sq3
þ cq2cq3sq1� sq1sq2sq4� l6sq6sq4cq1sq3þ cq2cq3sq1þ cq4sq1sq2
� l7cq7sq6sq4cq1sq3þ cq2cq3sq1þ cq4sq1sq2� cq6cq5cq4cq1sq3þ cq2cq3sq1
� sq1sq2sq4þ sq5cq1cq3� cq2sq1sq3� l7sq7cq6sq4cq1sq3þ cq2cq3sq1
þ cq4sq1sq2þ sq6cq5cq4cq1sq3þ cq2cq3sq1� sq1sq2sq4þ sq5cq1cq3� cq2sq1sq3
þ l6cq6cq5cq4cq1sq3þ cq2cq3sq1� sq1sq2sq4þ sq5cq1cq3� cq2sq1sq3
þ l3cq2cq3sq1� l4sq1sq2sq4

zE ¼ l1� l2sq2þ d7sq5cq2sq4þ cq3cq4sq2þ cq5sq2sq3� l5cq5cq2sq4þ cq3cq4sq2
� l6sq6cq2cq4� cq3sq2sq4� l3cq3sq2� l4cq2sq4� l6cq6cq5cq2sq4þ cq3cq4sq2
� sq2sq3sq5� l7cq7cq6cq5cq2sq4þ cq3cq4sq2� sq2sq3sq5þ sq6cq2cq4
� cq3sq2sq4þ l7sq7sq6cq5cq2sq4þ cq3cq4sq2� sq2sq3sq5� cq6cq2cq4
� cq3sq2sq4� l4cq3cq4sq2þ l5sq2sq3sq5

(10)

When solving the problem of inverse kinematics, with the endpoint coordinates
as on the left side of Eq. (10), we need to find the values of the matching variable q.
However, according to the Equation, the number of equations is much less than the
number of variables. This makes it very difficult to find a unique and exact
matching solution. In this study, ISADE algorithm and ISADE with searching space
improvement algorithm (Pro-ISADE) were used to solve the IK problem for the
robot. To compare the results, the study also used some other optimization algo-
rithms such as PSO, DE as well as Pro-PSO and Pro-DE to solve the same IK
problem for the robot above.

3. Applied algorithms and object functions

3.1 PSO

Particle swarm optimization was developed flying Kenney and Eberhart [18, 19]
based on observing the moving characteristics of bird flock and fish school. In this
algorithm the individual of the population is called particle. The particle of the
population (Called swarm) can move in its space and offer a potential solution.
Particles can memorize best condition and find and exchange information to other
members. Each particle in the population has two characteristics: position and
velocity. Starting with the particle population, each particle monitors its coordinates
and updates position and speed according to the best solution for each iteration. The
velocity and position values are shown in the following equation:

vid tþ 1ð Þ ¼ wvid tð Þ þ c1rand pid tð Þ � xid tð Þ� �þ c2rand gid tð Þ ‐ xi tð Þ
� �

xid tþ 1ð Þ ¼ xid tð Þ þ vit tð Þ
(11)
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In particular, xxi, vi are the position and velocity of the particle i-th, respectively;
d is number of dimension; w is the inertia weight factor, c1and c2are cognitive
learning rate and social learning rate, respectively; pi is the pbest value of i_th
particle; What is gbest value of the population.

3.2 DE

Differential Evolution (DE) algorithm is a population-based stochastic optimi-
zation algorithm recently introduced. DE works with two populations; old genera-
tion and new generation of the same population. The population is randomly
initialized within the initial parameter bounds individuals in the population has two
characteristics: position and velocity. Starting with the individual population, each
individual monitors its coordinates and updates position and speed according to the
best solution for each iteration. Velocity values (V) is randomly created in one of
eight ways:

V ¼ Xr1 þ Fw Xr2 ‐Xr3ð Þ
V ¼ Xbest þ Fw Xr1 ‐Xr2ð Þ
V ¼ Xr1 þ Fw Xr2 ‐Xr3ð Þ þ Fw Xr4 ‐Xr5ð Þ
V ¼ Xbest þ Fw Xr1 ‐Xr2ð Þ þ Fw Xr3 ‐Xr4ð Þ
V ¼ Xþ Fw Xr1 ‐Xr2ð Þ þ Fw Xbest ‐Xð Þ
V ¼ Xþ Fw Xr1 ‐Xr2ð Þ þ Fw Xr3 ‐Xr4ð Þ þ Fw Xbest ‐Xð Þ
V ¼ Xr1 þ Fw Xr2 ‐Xr3ð Þ þ Fw Xbest ‐Xr1ð Þ
V ¼ Xþ Fw Xr2 ‐Xr3ð Þ þ Fw Xr1 ‐Xð Þ

(12)

In particular, F is Scaling factor, r1, r2, r3, r4, r5 is random solution,
r1, r2, r3, r4, r5 ∈ 1, 2, 3, … ,Np

� �
and r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5 6¼ i, Xbest is population

filled with the best member.
Position values new (U) shown in the following Equation:

U ¼ X: ∗FMmpo þ V: ∗FMmui (13)

FMmui are all random numbers <0.9, FMmpo is inverse mask to FMmui:

3.3 ISADE

In the [13, 14], we suggested to develop a new version of DE algorithm that can
automatically adapt the learning strategies and the parameters settings during evo-
lution. The main ideas of the ISADE algorithm are summarized below.

3.3.1 Mutation operator

ISADE probabilistically selects one out of several available learning strategies in
the mutation operator for each individual in the current population. In this
research, we select three learning strategies in the mutation operator as candidates:
“DE/best/1/bin”, “DE/best/2/bin” and “DE/rand to best/1/bin” that are respectively
expressed as:

DE=best=1 : VG
i,j ¼ XG

best,j þ F ∗ XG
r1,j � XG

r2,j

� �
(14)
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DE=best=2 : VG
i,j ¼ XG

best,j þ F ∗ XG
r1,j � XG

r2,j

� �
þ F ∗ XG

r3,j � XG
r4,j

� �
(15)

DE=rand to best=1 : VG
i,j ¼ XG

r1,j þ F ∗ XG
best,j � XG

r1,j

� �
þ F ∗ XG

r2,j � XG
r3,j

� �
(16)

Where: i ¼ 1, 2, … ,NPf g; j ¼ 1, … ,Df g are current population and design vari-
able, respectively.

}DE=Randtobest=1=bin} strategy usually demonstrates good diversity while the
}DE=best=1=bin} and }DE=best=2=bin}strategy show good convergence property,
which we also observe in our trial experiments.

3.3.2 Adaptive scaling factor F and crossover control parameter CR

In the ISADE algorithm, the author suggested to use the sigmoid function to
control neighborhood parameter. we sort the particles by estimating their fitness. A
ranked particle is labeled with ranked number and assigned F that corresponds with
its number. The formula for F by sigmoid function as following:

Fi ¼ 1

1þ exp α ∗ i�NP
2

NP

� � (17)

Where: α, idenote the gain of the sigmoid function, particle of the ithin NP,
respectively.

For better performance of ISADE, the scale factor F should be high in the
beginning to have much exploration and after curtain generation F needs to be
small for proper exploitation. Thus, we proposed to calculate the F as follow:

Fmean
iter ¼ Fmin þ Fmax � Fminð Þ itermax � iter

itermax

� �niter
(18)

Where: Fmax, Fmin, iter, itermax and niter are the lower boundary condition of F,
upper boundary condition of F, current generation, maximum generation and
nonlinear modulation index, respectively.

The author introduced a novel approach of scale factorFi of each particle with
their fitness in Eq. (15). Thus, in one generation the value of Fiter

i i ¼ 1, … ,NPð Þ are
not the same for all particles in the population rather they are changed in each
generation. The final value of scale factor for each generation is calculated as follow:

Fi
iter ¼

Fi � Fmean
iter

2
(19)

Where iter ¼ 1, … , itermax and i ¼ 1, … ,NP
The control parameter CR is adapted as following:

CRGþ1
i ¼ rand2 if rand1 ≤ τ

CRG
i othewise

�
(20)

The ISADE algorithm was summarized as in the Figure 2.

3.4 Cost functions and Algorithms with searching space improvement

As mention in the introduction part, the disadvantage of many studies using
optimization algorithms to solve the IK problem of redundant robots is to focus on
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In particular, xxi, vi are the position and velocity of the particle i-th, respectively;
d is number of dimension; w is the inertia weight factor, c1and c2are cognitive
learning rate and social learning rate, respectively; pi is the pbest value of i_th
particle; What is gbest value of the population.

3.2 DE

Differential Evolution (DE) algorithm is a population-based stochastic optimi-
zation algorithm recently introduced. DE works with two populations; old genera-
tion and new generation of the same population. The population is randomly
initialized within the initial parameter bounds individuals in the population has two
characteristics: position and velocity. Starting with the individual population, each
individual monitors its coordinates and updates position and speed according to the
best solution for each iteration. Velocity values (V) is randomly created in one of
eight ways:

V ¼ Xr1 þ Fw Xr2 ‐Xr3ð Þ
V ¼ Xbest þ Fw Xr1 ‐Xr2ð Þ
V ¼ Xr1 þ Fw Xr2 ‐Xr3ð Þ þ Fw Xr4 ‐Xr5ð Þ
V ¼ Xbest þ Fw Xr1 ‐Xr2ð Þ þ Fw Xr3 ‐Xr4ð Þ
V ¼ Xþ Fw Xr1 ‐Xr2ð Þ þ Fw Xbest ‐Xð Þ
V ¼ Xþ Fw Xr1 ‐Xr2ð Þ þ Fw Xr3 ‐Xr4ð Þ þ Fw Xbest ‐Xð Þ
V ¼ Xr1 þ Fw Xr2 ‐Xr3ð Þ þ Fw Xbest ‐Xr1ð Þ
V ¼ Xþ Fw Xr2 ‐Xr3ð Þ þ Fw Xr1 ‐Xð Þ

(12)

In particular, F is Scaling factor, r1, r2, r3, r4, r5 is random solution,
r1, r2, r3, r4, r5 ∈ 1, 2, 3, … ,Np

� �
and r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5 6¼ i, Xbest is population

filled with the best member.
Position values new (U) shown in the following Equation:

U ¼ X: ∗FMmpo þ V: ∗FMmui (13)

FMmui are all random numbers <0.9, FMmpo is inverse mask to FMmui:

3.3 ISADE

In the [13, 14], we suggested to develop a new version of DE algorithm that can
automatically adapt the learning strategies and the parameters settings during evo-
lution. The main ideas of the ISADE algorithm are summarized below.

3.3.1 Mutation operator

ISADE probabilistically selects one out of several available learning strategies in
the mutation operator for each individual in the current population. In this
research, we select three learning strategies in the mutation operator as candidates:
“DE/best/1/bin”, “DE/best/2/bin” and “DE/rand to best/1/bin” that are respectively
expressed as:

DE=best=1 : VG
i,j ¼ XG

best,j þ F ∗ XG
r1,j � XG

r2,j

� �
(14)
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DE=best=2 : VG
i,j ¼ XG

best,j þ F ∗ XG
r1,j � XG

r2,j

� �
þ F ∗ XG

r3,j � XG
r4,j

� �
(15)

DE=rand to best=1 : VG
i,j ¼ XG

r1,j þ F ∗ XG
best,j � XG

r1,j

� �
þ F ∗ XG

r2,j � XG
r3,j

� �
(16)

Where: i ¼ 1, 2, … ,NPf g; j ¼ 1, … ,Df g are current population and design vari-
able, respectively.

}DE=Randtobest=1=bin} strategy usually demonstrates good diversity while the
}DE=best=1=bin} and }DE=best=2=bin}strategy show good convergence property,
which we also observe in our trial experiments.

3.3.2 Adaptive scaling factor F and crossover control parameter CR

In the ISADE algorithm, the author suggested to use the sigmoid function to
control neighborhood parameter. we sort the particles by estimating their fitness. A
ranked particle is labeled with ranked number and assigned F that corresponds with
its number. The formula for F by sigmoid function as following:

Fi ¼ 1

1þ exp α ∗ i�NP
2

NP

� � (17)

Where: α, idenote the gain of the sigmoid function, particle of the ithin NP,
respectively.

For better performance of ISADE, the scale factor F should be high in the
beginning to have much exploration and after curtain generation F needs to be
small for proper exploitation. Thus, we proposed to calculate the F as follow:

Fmean
iter ¼ Fmin þ Fmax � Fminð Þ itermax � iter

itermax

� �niter
(18)

Where: Fmax, Fmin, iter, itermax and niter are the lower boundary condition of F,
upper boundary condition of F, current generation, maximum generation and
nonlinear modulation index, respectively.

The author introduced a novel approach of scale factorFi of each particle with
their fitness in Eq. (15). Thus, in one generation the value of Fiter

i i ¼ 1, … ,NPð Þ are
not the same for all particles in the population rather they are changed in each
generation. The final value of scale factor for each generation is calculated as follow:

Fi
iter ¼

Fi � Fmean
iter

2
(19)

Where iter ¼ 1, … , itermax and i ¼ 1, … ,NP
The control parameter CR is adapted as following:

CRGþ1
i ¼ rand2 if rand1 ≤ τ

CRG
i othewise

�
(20)

The ISADE algorithm was summarized as in the Figure 2.

3.4 Cost functions and Algorithms with searching space improvement

As mention in the introduction part, the disadvantage of many studies using
optimization algorithms to solve the IK problem of redundant robots is to focus on
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the results related to the optimal running process such as execution time, number of
generation … but have not yet considered the feasibility of the joints’ variable
values. In order to overcome these drawbacks, the author of this research [15]
proposed this algorithm that is explained as following: The solution to improve the
continuity of joints’ values constrains the initialization domain of X. This help the
program to achieve the dual goal of increasing calculation speed, accuracy and
ensuring continuity for the value of joints’ variables. In this algorithm, firstly the
robot from any position moves to the first point of the trajectory. With this first
point, the initialization values for the particles are randomly selected in the full
Range of Motion (RoM) of joints. In addition, the target function in this case has
the form:

Func:1 ¼ a ∗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5

k¼1 qki � qk0
� �r

þ b ∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xeið Þ2 þ yi � yei

� �2 þ zi � zeið Þ2 þ Rxi � Rxeð Þ2þ
Rx� Rxeð Þ2 þ Ryi � Rye

� �2 þ Rzi � Rzeð Þ2

vuut (21)

where the values qki and qki (i = 1) are the joints’ variable values at the original
position and 1st point on the trajectory, respectively; (xi, yi, zi) and (xei, yei, zei) are
the End-effector coordinates for the i-point (i = 1) found by the algorithm and the
desired End-effector coordinates; (Rxi, Ryi, Rzi) and (Rxei, Ryei, Rzei) are
corresponding rotation cosine angles performing orientation of the end-effector
which are found by Algorithm and orientation of the desired end-effector; a, b are
penalty coefficients. Cost function as Eq. (21) ensures the energy spent in the joints
to reach the 1st desired position is minimized. Besides, it also minimizes the dis-
tance error between the actual and desired end-effector position. The condition to
stop for points of trajectory is that the Cost Func.1 value is less than value of e or the
number of iterations reaches 600 and the number of times algorithm running <10.

Figure 2.
ISADE Flowchart.
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After calculating for 1st point of the trajectory, the remaining points are calcu-
lated with a search limitation around the previous optimal joints’ values. By using
this suggested range, the program’s search space will be limited while ensuring the
continuity of the joint variables. In this case, the target function is still the same as
the function of 1st point, but it has coefficient a = 0.

4. Scenarios

4.1 Scenario 1

In Scenario 1, an endpoint in the workspace were randomly selected; the
PSO; DE and ISADE algorithms were then applied to solve the required
problem. The purpose of this Scenario is to compare the convergence speed
of the three algorithms. In this case, since the initial and the desired endpoints
can be far apart, the Pro-PSO; Pro-DE and Pro-ISADE algorithms cannot
be applied.

4.2 Scenario 2

In this case, the robot was required to move the endpoint through 100 points in
the robot’s working space one after another. These points were selected at random
for the purpose of testing the effectiveness of each algorithm with many distinct
points. Similar to the previous case, in this Scenario we also only applied the
algorithms PSO, DE and ISADE with the solution space of the matching variable
which limits the motion of these joints.

4.3 Scenario 3

The manipulator robot was required to move the end effector following a certain
trajectory. The selected trajectory is spiral, and it is described by the following
function:

xE ¼ 200 ∗ cos 2 ∗ zE=100ð Þ
yE ¼ 200 ∗ sin 2 ∗ zE=100ð Þ
zE ¼ n ∗ pi

8>><
>>:

(22)

Where: xE, yE, zE
� �

is the desired endpoint coordinate on the trajectory. With 6
algorithms of PSO, Pro ISO, DE, Pro-DE and ISADE, Pro-ISADE, the comparison of
the results on the same graph is not favorable. Therefore, the study divided this case
into two smaller Scenarios:

• Scenario 3.1: Results when using ISADE algorithm comparing with results from
PSO and DE algorithms.

• Scenario 3.2: Compare the results using Pro-ISADE algorithm with the results
getting from Pro-PSO and Pro-DE algorithms

And then results from Scenario 3.1 were be compared with the results from
Scenario 3.2.
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After calculating for 1st point of the trajectory, the remaining points are calcu-
lated with a search limitation around the previous optimal joints’ values. By using
this suggested range, the program’s search space will be limited while ensuring the
continuity of the joint variables. In this case, the target function is still the same as
the function of 1st point, but it has coefficient a = 0.

4. Scenarios
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In Scenario 1, an endpoint in the workspace were randomly selected; the
PSO; DE and ISADE algorithms were then applied to solve the required
problem. The purpose of this Scenario is to compare the convergence speed
of the three algorithms. In this case, since the initial and the desired endpoints
can be far apart, the Pro-PSO; Pro-DE and Pro-ISADE algorithms cannot
be applied.

4.2 Scenario 2

In this case, the robot was required to move the endpoint through 100 points in
the robot’s working space one after another. These points were selected at random
for the purpose of testing the effectiveness of each algorithm with many distinct
points. Similar to the previous case, in this Scenario we also only applied the
algorithms PSO, DE and ISADE with the solution space of the matching variable
which limits the motion of these joints.

4.3 Scenario 3

The manipulator robot was required to move the end effector following a certain
trajectory. The selected trajectory is spiral, and it is described by the following
function:

xE ¼ 200 ∗ cos 2 ∗ zE=100ð Þ
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is the desired endpoint coordinate on the trajectory. With 6
algorithms of PSO, Pro ISO, DE, Pro-DE and ISADE, Pro-ISADE, the comparison of
the results on the same graph is not favorable. Therefore, the study divided this case
into two smaller Scenarios:

• Scenario 3.1: Results when using ISADE algorithm comparing with results from
PSO and DE algorithms.

• Scenario 3.2: Compare the results using Pro-ISADE algorithm with the results
getting from Pro-PSO and Pro-DE algorithms

And then results from Scenario 3.1 were be compared with the results from
Scenario 3.2.
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5. Simulation and results

5.1 Experimental setup

The main task of this study is to find the optimal value of the joints’ variable to
ensure the end effector of robots can reach the desired points. The desired point
positions of the Scenario 2 and 3 are shown as the Figure 3. Research using the
ISADE and Pro-ISADE algorithm, which were developed by the authors [13–15], to
get simulation results of inverse kinematics problem and then compared it with the
results when using PSO, DE and Pro-PSO, Pro-DE algorithms. When solving the IK
problem for the 7-DoF serial robot manipulator, the study focused on three main
aspects. The first of these is the sensitivity of the solution - in the other word, the
amount distance error of end effector is minimum. The second criterion was the
execution time. In order to avoid the endless loop, the maximum numbers of
generation itermaxð Þwere set as 600, 600 and 130 for PSO (Pro-PSO), DE (Pro-DE)
and ISADE (Pro-ISADE), respectively. And the final aspect is the searching space of
joints’ variables. Normally, Normally, almost all studies have been using the Range
of Motion (RoM) of joints for its boundary space. Our algorithm [15] proposed to
use the searching space of current generation is around previous optimal joints’
values. In the Table 2, the ubsiþ1 and lbsiþ1 are the joints’ upper and lower boundary
of the current generation.C1 and C2 are weights of personal best and global best,
respectively. w is the inertia weight. ρ is the number of run for each algorithm to
choose the best result. Besides, after some trial runs for the algorithms, we noticed
that our ISDE algorithm gave much better results than DE and the least was the PSO
algorithm. Thus, when setting up the maximum distance error by the fitness value
setting for the end effector position, the study set the value of 1e� 14 mð Þ; 1e�
15 mð Þ and 1e� 17 mð Þ for PSO (Pro-PSO); DE (Pro-DE) and ISADE (Pro-ISADE),
respectively or that can be seen in the Table 2. In this research, the proposed and
other methods were tested in the two different Scenarios. Both the first and second
Scenario was coded by Matlab version 2019a and run on the computer equipped
with an Intel Core i5-4258U @2.4GHz processor and 8 GB Ram memory.

5.2 Scenario 1 results

After applying the inverse kinematic problem processing algorithms for a single
endpoint, the results are shown in Figures 4 and 5. All algorithms are able to handle

Figure 3.
Testing scenarios. (a) Scenario 2: 100 random points in workspace; (b) Scenario 3: 100 points on a spiral
trajectory.
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ensure the end effector of robots can reach the desired points. The desired point
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aspects. The first of these is the sensitivity of the solution - in the other word, the
amount distance error of end effector is minimum. The second criterion was the
execution time. In order to avoid the endless loop, the maximum numbers of
generation itermaxð Þwere set as 600, 600 and 130 for PSO (Pro-PSO), DE (Pro-DE)
and ISADE (Pro-ISADE), respectively. And the final aspect is the searching space of
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values. In the Table 2, the ubsiþ1 and lbsiþ1 are the joints’ upper and lower boundary
of the current generation.C1 and C2 are weights of personal best and global best,
respectively. w is the inertia weight. ρ is the number of run for each algorithm to
choose the best result. Besides, after some trial runs for the algorithms, we noticed
that our ISDE algorithm gave much better results than DE and the least was the PSO
algorithm. Thus, when setting up the maximum distance error by the fitness value
setting for the end effector position, the study set the value of 1e� 14 mð Þ; 1e�
15 mð Þ and 1e� 17 mð Þ for PSO (Pro-PSO); DE (Pro-DE) and ISADE (Pro-ISADE),
respectively or that can be seen in the Table 2. In this research, the proposed and
other methods were tested in the two different Scenarios. Both the first and second
Scenario was coded by Matlab version 2019a and run on the computer equipped
with an Intel Core i5-4258U @2.4GHz processor and 8 GB Ram memory.

5.2 Scenario 1 results

After applying the inverse kinematic problem processing algorithms for a single
endpoint, the results are shown in Figures 4 and 5. All algorithms are able to handle
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Testing scenarios. (a) Scenario 2: 100 random points in workspace; (b) Scenario 3: 100 points on a spiral
trajectory.
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the inverse kinetics problem, but the best results have been obtained with the
ISADE algorithm as shown in Table 3.

Figures 4 and 5 show convergence speed of algorithms corresponding to the
number of iterations and processing time, respectively. The results show that the

Figure 4.
End effector distance error vs. generations in Scenario 1.

Figure 5.
End effector distance error vs. time in Scenario 1.

Max. Iteration Position error (m) Calculation time (s)

PSO 85 2.6815e-04 0.0941

DE 85 5.7514e-10 0.0715

ISADE 85 2.8422e-13 0.0490

Table 3.
Comparison of ISADE with other algorithms.
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processing speed of the ISADE algorithm is the best, followed by the DE algorithm
and finally with the PSO algorithm. In Table 3 the study of selecting stop conditions
for algorithms is the maximum number of iterations of 85 rounds. After 10 runs, the
best results are shown in the table. The ISADE algorithm gives the best processing
results in terms of both quality and speed. The endpoint deviation can reach
2.8422e-13 (m) in 0.049 (s) time. For the PSO algorithm, it can handle the reverse
kinematic problem for the end point with an accuracy of 2.6815e-4 in a period of
0.0941 (s). and, 5.7514e-10 (m) and 0.0715 (s) are the accuracy of end effector and
execution time for DE algorithm.

5.3 Scenario 2 results

As mentioned above, in this Scenario 2, algorithms was used to resolve inverse
kinematics problem for 100 randomly chosen points within the workspace of the
robot. When processed at each point, the end effector started at the same initial
position of [0 0 0 0 0 0 0] for 7 serial joints values. Because the end effector points
all come from the same starting point to go to each of the 100 points, the study only
used the ISADE algorithm and compares with the results from PSO and DE algo-
rithms without using the Pro-ISADE algorithm as well as Pro-DE and Pro-PSO.

The 100 randomly selected points were shown in the Figure 3a. Results when
applying ISADE and the other algorithm were presented in the Figure 6. As shown in
the Figure, all algorithms have solved problem well. In particular, with the ISADE
algorithm, although the fitness value in experimental setup required 1000 and 100
times higher than the required by applying the PSO and DE algorithms, respectively,
it was not only guaranteed required precision but also showed faster processing speed
and fewer iterations compared to the 2 other algorithms. Specifically, as shown in
Figure 6b and c and especially Table 4, the average execution time when using
ISADE to solve IK of each points was around 0.0685 second, while this value of the
PSO and DE algorithm were on average 0.2307 (s) and 0.0978 (s) respectively. The
main reason for this, as seen in Figure 6b and Table 4, was the number of genera-
tions to reach the optimal values much higher in PSO algorithm and slightly higher in
DE algorithm, compared to in ISADE algorithm. Specifically, the PSO algorithm
needed an average of 413.24 and the DE algorithm needed average of 124.45 loops to
find a solution, while the ISADE algorithm used an average of 85.63 loops. Another
remarkable thing is although there was not much difference in the number of itera-
tions to solve the problem between the two algorithms DE and ISADE, but the ISADE
algorithm still gave a processing speed of 1.42 times higher than DE algorithm though
required 100 times more accuracy for the ISADE algorithm. This demonstrated the
very high efficiency of the ISADE algorithm when it was applied to handle inverse
kinematics problem for this robot. In short, in the optimization study for randomly
chosen points in working space, the ISADE algorithm presented the best algorithm to
resolve the IK requirement in term of accuracy, iteration and execution time.

5.4 Scenario 3 results

In Scenario 2, the end effector moved through the 100 points located on a
specific trajectory that was defined in Eq. (22) and shown in Figure 3b. The main
difference between Scenario 2 and Scenario 3 is that, instead of after solving each IK
problem for each point, the end effector goes back to the original point to continue
processing for the next points like in Scenario 2, in Scenario 3 the end effector starts
from previous point in order to calculate for the next point. Stemming from this
feature, the searching space of joints’ variable also starts previous optimal joints’
values. However, depending on the searching space we have 2 smaller cases such as:
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processing speed of the ISADE algorithm is the best, followed by the DE algorithm
and finally with the PSO algorithm. In Table 3 the study of selecting stop conditions
for algorithms is the maximum number of iterations of 85 rounds. After 10 runs, the
best results are shown in the table. The ISADE algorithm gives the best processing
results in terms of both quality and speed. The endpoint deviation can reach
2.8422e-13 (m) in 0.049 (s) time. For the PSO algorithm, it can handle the reverse
kinematic problem for the end point with an accuracy of 2.6815e-4 in a period of
0.0941 (s). and, 5.7514e-10 (m) and 0.0715 (s) are the accuracy of end effector and
execution time for DE algorithm.

5.3 Scenario 2 results

As mentioned above, in this Scenario 2, algorithms was used to resolve inverse
kinematics problem for 100 randomly chosen points within the workspace of the
robot. When processed at each point, the end effector started at the same initial
position of [0 0 0 0 0 0 0] for 7 serial joints values. Because the end effector points
all come from the same starting point to go to each of the 100 points, the study only
used the ISADE algorithm and compares with the results from PSO and DE algo-
rithms without using the Pro-ISADE algorithm as well as Pro-DE and Pro-PSO.

The 100 randomly selected points were shown in the Figure 3a. Results when
applying ISADE and the other algorithm were presented in the Figure 6. As shown in
the Figure, all algorithms have solved problem well. In particular, with the ISADE
algorithm, although the fitness value in experimental setup required 1000 and 100
times higher than the required by applying the PSO and DE algorithms, respectively,
it was not only guaranteed required precision but also showed faster processing speed
and fewer iterations compared to the 2 other algorithms. Specifically, as shown in
Figure 6b and c and especially Table 4, the average execution time when using
ISADE to solve IK of each points was around 0.0685 second, while this value of the
PSO and DE algorithm were on average 0.2307 (s) and 0.0978 (s) respectively. The
main reason for this, as seen in Figure 6b and Table 4, was the number of genera-
tions to reach the optimal values much higher in PSO algorithm and slightly higher in
DE algorithm, compared to in ISADE algorithm. Specifically, the PSO algorithm
needed an average of 413.24 and the DE algorithm needed average of 124.45 loops to
find a solution, while the ISADE algorithm used an average of 85.63 loops. Another
remarkable thing is although there was not much difference in the number of itera-
tions to solve the problem between the two algorithms DE and ISADE, but the ISADE
algorithm still gave a processing speed of 1.42 times higher than DE algorithm though
required 100 times more accuracy for the ISADE algorithm. This demonstrated the
very high efficiency of the ISADE algorithm when it was applied to handle inverse
kinematics problem for this robot. In short, in the optimization study for randomly
chosen points in working space, the ISADE algorithm presented the best algorithm to
resolve the IK requirement in term of accuracy, iteration and execution time.

5.4 Scenario 3 results

In Scenario 2, the end effector moved through the 100 points located on a
specific trajectory that was defined in Eq. (22) and shown in Figure 3b. The main
difference between Scenario 2 and Scenario 3 is that, instead of after solving each IK
problem for each point, the end effector goes back to the original point to continue
processing for the next points like in Scenario 2, in Scenario 3 the end effector starts
from previous point in order to calculate for the next point. Stemming from this
feature, the searching space of joints’ variable also starts previous optimal joints’
values. However, depending on the searching space we have 2 smaller cases such as:
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• Scenario 3.1: Searching spaces for joints’ variables are RoMs. Then, like the
Scenario 2, the study compared the results when using the ISADE algorithm
with the results when using the PSO and DE algorithms.

Figure 6.
Results for Scenario 2. (a) Distance error. (b) Execution time. (c) Number of generations.
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• Scenario 3.2: Searching spaces for joints’ variables are around the previous
optimal joints’ values. The study compared the results when using Pro-ISADE
algorithm with when using Pro-PSO and Pro-DE algorithms.

The results were presented in the Figure 7 and Table 5. Similar to the Scenario 2,
although the experimental installation required the ISADE (and Pro-ISADE) algo-
rithm to be 100 and 1000 times more accurate than the algorithm DE (Pro-DE) and
PSO (Pro PSSO), respectively, all of 6 algorithms gave appropriated solutions for all
the points in the trajectory. It can be seen that, in both cases 3.1 and 3.2 the ISADE
and Pro-ISADE algorithms showed the best ability to resolve the inverse kinematics
problems in all 3 aspects: accuracy, execution time and number of generations.
More specifically, in Scenario 3.1, when searching space for joints’ variables were
RoMs, the average achieved accuracies for ISADE was around 2.0748e-14 (m) that is
much better than the values of 7.5404e-13 (m) and 2.2260e-13 (m) corresponding
for PSO and DE algorithms. Although the ISADE algorithm was set to a fitness value
to achieve such higher accuracy, the execution time of the algorithm was still below
the time of PSO and DE algorithm. These average execution time values were
0.0679 (s); 0.0845 (s) and 0.3478 (s) second for ISADE, DE and Pro algorithm,
respectively. The above results can be partly explained based on the number of
necessary iterations that each algorithm was needed to find the optimal values of
joints variables. From Figure 6c, it showed that, when solving the IK problem for
almost points in the spiral trajectory, the ISADE method used the least number of
iterations. The Table 5 presented more clearly, on the average each point in the
trajectory the ISADE needed 85.19 generations to find the optimal values, these
means number for DE and PSO algorithm are 125.44 and 391.1

In Scenario 3.2, the searching space for joints’ variables were around previous
optimal values that were set up as in the Table 2. Similar to the Scenario 3.1, all of
the comparison parameters gotten from using Pro-ISADE algorithm were better
than that values from Pro-DE and Pro-PSO algorithms. These parameters are
described in the as well as Table 5. In order to comparison between Scenario 3.1
with Scenario 3.2, all average parameters was shown in the Table 5. From all
comparison, the proposed ISADE or Pro-ISADE were always proved the best
solution to solve the inverse kinematics requirements for the manipulator robot.
Moreover, Table 5 also showed that, the Pro-ISADE had better performance
compared to ISADE. By using Pro-ISADE algorithm, it reduced all of parameters
including distance error, execution time and number of generations.

Another very important result gotten from Scenario 3.2 is the quality of joints’
values. Figure 8 show the joints’ value in two cases of using ISADE in Scenario 3.1
and using Pro-ISADE in Scenario 3.2. It is clear that the joints’ value in the Scenario
3.1 were change dramatically. On the contrary, the values of joints in Scenario 3.2
changed continuously and slowly. The quality of joints variable values as Figure 9b,

PSO DE ISADE

Fitness value 1e-14 1e-15 1e-17

Avg. error 7.3016e-13 2.2938e-13 2.1644e-14

STD 2.0415e-13 5.991e-14 6.2125e-15

Avg. iteration 413.24 124.45 85.63

Avg. execution time 0.2307 0.0978 0.0685

Table 4.
Comparative results in case 2.
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that received by using Pro-ISADE, will ensure feasibility in the next stages of
calculation and design for the robot. These values, along with the values of speed,
acceleration, as well as the weight parameters of the stages, will be used in the
dynamic problem as well as in future control.

Figure 7.
Results for Scenario 3.1. (a) Distance error. (b) Execution time. (c) Number of generations.
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PSO Pro-PSO DE Pro-DE ISADE Pro-ISADE

Scenario 1

Fitness value 1e-9 Not applied 1e-10 Not applied 1e-12 Not applied

Avg. error (m) 2.4151e-09 Not applied 6.9655e-10 Not applied 6.8362e-11 Not applied

STD (m) 5.8117e-10 Not applied 2.0075e-10 Not applied 2.3796e-11 Not applied

Avg. iteration 357.91 Not applied 76.54 Not applied 64.34 Not applied

Avg. execution time (s) 0.2931 Not applied 0.1115 Not applied 0.0455 Not applied

Scenario 3.1 (Italic values) and Scenario 3.2

Fitness value 1e-14 1e-14 1e-15 1e-17 1e-12

Avg. error (m) 7.4140e-13 7.4650e-13 2.2260e-13 2.2950e-13 2.0748e-14 2.0103e-14

STD (m) 1.9574e-13 1.9736e-13 6.5615e-14 6.1330e-14 1.0414e-14 9.8913e-15

Avg. iteration 429.950 407.8800 125.4400 114.2700 85.1900 75.2300

Avg. execution time (s) 0.3604 0.2576 0.1015 0.0845 0.0679 0.0554

Italics were used to differentiate the results of Scenario 3.1 and 3.2.

Table 5.
Comparative results between all cases.

Figure 8.
Joint variables’ results. (a) Joint variables’ values in Scenario 3.1 using ISADE algorithm. (b) Joint variables’
values in Scenario 3.2 using Pro-ISADE algorithm.
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In short, after comparing the results of Scenario 3.1 and 3.2, it is possible to
conclude that the ISADE algorithm and Pro-ISADE are the best solutions to solve
the IK problem for the robot in all aspects: endpoint accuracy, execution time and
number of generation. The Pro-ISADE algorithm not only guarantees the above
parameters, it also ensures the quality of the joints’ variables to serve the next
computational and design stages.

Table 5 summarizes results of the average error, the standard deviation of error
(STD), the average iteration and the average execution time of all Scenarios. As in
the table, the algorithms of ISADE and Pro-ISADE got the better results than the
other algorithms.

As mentioned at the beginning of this article, intelligent optimization techniques
have been using more and more popular in difficult and complex tasks including the
IK problem for redundant manipulator robots. Table 6 shows some studies used
meta-heuristic optimization algorithms to resolve the inverse kinematics task for

Figure 9.
Results for Scenario 3.2. (a) Distance error. (b) Execution time. (c) Number of generations.
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different robot models. The Table presents: the used algorithm for the IK calcula-
tion, selected manipulators for the test, the algorithms that are used to comparison.
For example, El-Sherbiny et al. [11] used the Adaptive Neuro Fuzzy Inference
System (ANFIS) algorithm to calculate the IK problem of a 5 DOF robot, and then
compared results with GA algorithm. Both algorithms could get the appropriate
solutions, but ANFIS algorithm proved to be the best one. The comparison also
shows that a number of studies [12, 22, 23], using optimal algorithms such as PSO,
ABC, Q-PSO … handle the inverse kinetic requirements for the model of 7 degrees
of freedom. All the used algorithms have proven the ability to handle the problem,
but it is not difficult to see that most of these studies have the lower accuracy and
processing speed than the ISADE as well as the Pro-ISADE algorithm proposed in
this study.

Research Robot
arm

Results of Used
algorithm

Results of Compared
algorithm

Average of

Rokbani et al. [20] 3-DOF 10 Firefly 60 Firefly

1.27e�17 1.78e�18 Position error (m)

1.21e�03 7.15e�3 Execution time (s)

Ayyıldız and
Çetinkaya [7]

4-DOF PSO GA

7.70e�06 3.96e�04 Position error (m)

0.0196 0.1753 Execution time (s)

El-Sherbiny et al.
[11]

5-DOF Adaptive Neuro
Fuzzy Inference
System (ANFIS)

GA

5.426e�03 7.64e�04 Position error (m)

0.0308 83.1239 Execution time (s)

Shi and Xie [21] 6-DOF Adaboost NN —

0.00267 —

0.3 —

Dereli and Köker
[22]

7-DOF Random IW-PSO Global–Local Best
IW-PSO

6.20e�03 3.64e�03 Position error (m)

1.6 1.2 Execution time (s)

Serkan Dereli [12] 7-DOF Q-PSO PSO; ABC; Firefly

6.69347e-11 1.4547e-3 Position error (m)

0.2195 0.4806 Execution time (s)

Serkan Dereli [23] 7-DOF firefly PSO, ABC

6.53e�05 5.45e�04 Position error (m)

0,9204 0,4441 Execution time (s)

Our study 7-DOF ISADE, Pro-ISADE PSO, DE, Pro-PSO, Pro-DE

2.0103e-14 7.4140e-13 Position error (m)

0.0554 0.3604 Execution time (s)

Italics were used to differentiate the results of Scenario 3.1 and 3.2.

Table 6.
Comparison with some other studies.
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6. Conclusions

In this research, inverse kinematics problem for a 7 degree of freedom serial
robot manipulator was implemented to prove the accuracy and efficiency of the
self-adaptive control parameters in Differential Evolution (ISADE) and the ISADE
algorithm with searching space improvement (Pro-ISADE) algorithm. To evaluate
the effectiveness of the two algorithms above, the results obtained from the ISADE
algorithm as well as Pro-ISADE were compared with the results from the PSO (Pro-
PSO) and DE (Pro-DE) algorithm. Experiments were performed with three Sce-
narios. In the first Scenario, an endpoint in the workspace is randomly selected. The
purpose of this Scenario is to compare the convergence speed of the three algo-
rithms. In the second Scenario, algorithm was used to calculate inverse kinematics
of the robot for 100 points randomly selected in the working space. The aim of this
Scenario 2 is to test the accuracy and efficiency of the algorithm when the end
effector started at the same position, it went to any point in working space. Mean-
while, in the third Scenario, the algorithms solved the inverse kinematics problem
when the end effector of the robot moved point to point that are located on a spiral
trajectory in the workspace. The implementation experiments have shown, the
ISADE algorithm gave much better results than other algorithms in term of: accu-
racy, execution time and number of generation. Besides, by improving the
searching boundary for joints’ variable, the Pro-ISADE, Pro-DE and Pro-PSO also
improve the accuracy as well as processing speed and especially the quality of the
value of the joints variable compared to the ISADE, DE and PSO, respectively.
These optimal joints’ values ensure the feasibility of the dynamic and control prob-
lem in the future. In short, with ISADE algorithm as well as Pro-ISADE, they have
handled the inverse kinematic requirement very effectively both in term of accu-
racy and computation time. The Pro-ISADE algorithm not only improves the above
two factors, but also improves the quality of the joints’ variables.
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6. Conclusions

In this research, inverse kinematics problem for a 7 degree of freedom serial
robot manipulator was implemented to prove the accuracy and efficiency of the
self-adaptive control parameters in Differential Evolution (ISADE) and the ISADE
algorithm with searching space improvement (Pro-ISADE) algorithm. To evaluate
the effectiveness of the two algorithms above, the results obtained from the ISADE
algorithm as well as Pro-ISADE were compared with the results from the PSO (Pro-
PSO) and DE (Pro-DE) algorithm. Experiments were performed with three Sce-
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rithms. In the second Scenario, algorithm was used to calculate inverse kinematics
of the robot for 100 points randomly selected in the working space. The aim of this
Scenario 2 is to test the accuracy and efficiency of the algorithm when the end
effector started at the same position, it went to any point in working space. Mean-
while, in the third Scenario, the algorithms solved the inverse kinematics problem
when the end effector of the robot moved point to point that are located on a spiral
trajectory in the workspace. The implementation experiments have shown, the
ISADE algorithm gave much better results than other algorithms in term of: accu-
racy, execution time and number of generation. Besides, by improving the
searching boundary for joints’ variable, the Pro-ISADE, Pro-DE and Pro-PSO also
improve the accuracy as well as processing speed and especially the quality of the
value of the joints variable compared to the ISADE, DE and PSO, respectively.
These optimal joints’ values ensure the feasibility of the dynamic and control prob-
lem in the future. In short, with ISADE algorithm as well as Pro-ISADE, they have
handled the inverse kinematic requirement very effectively both in term of accu-
racy and computation time. The Pro-ISADE algorithm not only improves the above
two factors, but also improves the quality of the joints’ variables.
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Chapter 3

Applying Improve Differential
Evolution Algorithm for Solving
Gait Generation Problem of
Humanoid Robots
Van-Tinh Nguyen and Ngoc-Tam Bui

Abstract

This chapter addresses an approach to generate 3D gait for humanoid robots.
The proposed method considers gait generation matter as optimization problem
with constraints. Firstly, trigonometric function is used to produce trial gait data for
conducting simulation. By collecting the result, we build an approximation model to
predict final status of the robot in locomotion, and construct optimization problem
with constraints. In next step, we apply an improve differential evolution algorithm
with Gauss distribution for solving optimization problem and achieve better gait
data for the robot. This approach is validated using Kondo robot in a simulated
dynamic environment. The 3D gait of the robot is compared to human in walk.

Keywords: Humanoid robot, control data, differential algorithm, gait, optimization

1. Introduction

Humanoid robot is a complex machine with a series of joint and links. Biped
motion asserts surpass advantage than the others due to flexibility and good adap-
tion when moving on unpredictable surface. Difference from human beings, the
humanoid robots have a limitation of structure and number of degree of freedom.
Moreover, legged walking behavior requires an action of many active joints and is
much more challenge in synthetic gait to keep balance. To solve this matter, the
traditional approaches consider that ensuring Zero Moment Point within support
polygon is important key. For example, Firstly, states of art is the works of Kajita
[1–3] with the Linear Inverted Pendulum Model. Recently, Monje et al. [4] inte-
grated the dynamic steadiness while moving in real time. Samadi and Moghadam-
Fard [5] applied Gravity Compensated Inverted Pendulum Mode (GCIPM) with
proposing that trajectory of ZMP is created by a first-order function. Kai Hu et al.
[6] designed Compensative Zero-Moment Point Trajectory from the reference ZMP
to decrease the effect of disturbances. Likewise, Yang et al. [7] presented bivariate-
stability-margin-based control model to compensate zero moment point and
modeling error, opposition-based learning algorithm is applied to generated gait
pattern.

In the other direction, a number of researchers concentrate on central pattern
generator (CPG)-based walking. Alongside the very common studies in [8–10], we
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can mention some up-to-date prominent instances such that JimmyOr [11] pro-
posed an approach based on combination of CPG and ZMP to control spine motion,
it is promising way to enable natural walk of the robot. Wei Li et al. [12] developed
a mechanism to generate muscle forces for biped motion, this method designed a
feedback controller which is formed by a dynamic neural network with CPGs.

A optimization-based approach considering stability and walking speed was
introduced by Goswami Dip et al. [13]. Likewise, In-sik Lim et al. [14] addressed a
gait generation technique for legged walking up and down stairs, in which, genetic
algorithm and the human motion data were used to produce the optimal trajectory.
Newly, Ho Pham Huy Anh and Tran Thien Huan [15] optimized walking gait by
modified Jaya optimization algorithm.

Other scholars are interested in model-predictive methods. For example,
Zamparelli [16] et al. designed a stable model predictive control to generate CoM
trajectory for the robot on uneven surface. Scianca [17] presented a prediction model
with stability constraints. Hildebrandt et al. [18] proposed a model-predictive
approach for generating walking gait of the robots with redundant kinematic design.

In this chapter, we proposed a novel gait generation method, in which, trigono-
metric function with randomized coefficients is used to produce trial gait data for
conducting simulation. The result is collected to build approximation function of
output: rotation angle value, lateral and walking distance. Then, we designed an
optimization problem with constraints and applied an improve differential algo-
rithm for solving it. Optimal coefficients is returned to trigonometric function and
define it exactly. By setting up cycle time, walking gait data will be generated by
explicit trigonometric function and can be used for reference data in control.

Next part of this chapter is organized into five divisions: The first section intro-
duces the subject of this research named Kondo KHR-3. The second section assigns
gait functions to actuator joints. Thirdly, optimization problem with constraint is
built to optimize gait trajectory. The novel differential evolution algorithm with
Gauss distribution is developed in Section 4 to solve optimization problem. Section
5 includes results and discussions. The final section summarizes achievements of
this research.

2. Biped model of Kondo

2.1 Physical configuration

The subject is presented in this chapter which is based on a humanoid robot
named Kondo KHR-3 as depicted in Figure 1a. This robot consists of 22 degrees of
freedom (DoF) However, we concentrated on lower body with 10 DoFs, in which 5
is the number of DoFs for each leg. The linkage configuration is shown in Figure 1b,
where θ, d,m are rotation angle, length and weight of each link, respectively.
Specially, the weigh of upper body is represented by mo. The structure parameters
of the robot are described in Table 1.

2.2 Foot structure with toe mechanism

Review on the works of foot structure for humanoid robots, we can list very old
papers such as [19–21]. Recently, Sadedel et al. proposed a passive toe design. This
mechanism improves energy efficiency of ankle and knee joints [22]. Likewise,
Nerakae and Hasegawa simulated human-like foot structure which consist of big
and tip toe to enhance biped walking gait in toe-off period [23]. In the other
direction, Magistris et al. studied soft sole to minimize effect of the ground reaction
force on stability during heel-strike period [24]. In [25], Daichi developed topology-
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based foot design to reduce weight and energy consumption, this research is spe-
cially meaningful for biped robot with limited physical parameters [26]. Our
research presents a foot structure as shown in Figure 2, which is a combination of
proposals mentioned in two papers [23, 26]. This sketch is built based on the
following considerations: Firstly, all external forces acting on foot is at three areas
consisting of heel, tip and big toe. Secondly, a passive toe joint mechanism with
spring is applied to reduce impact of ground reaction force on foot. The material of
foot is ABS plastic and design parameters are described in Table 2a.

2.3 Arm swing mechanism

Review on previous papers, we witness an arm swing mechanism which has been
introduced and modeled using Adams in [27] as shown in Figure 3, the shoulder joint
is linked to the hip joint by two linear springs. This mechanism is expected to
generate the reaction moment from the arms to the trunk which eliminates ground
reaction torque [28]. It makes the robot stable in motion. Our research applies this
structure for the robot and characteristic parameters of the linear spring are stiffness
of 0.8 newton=mmð Þ and damping of 0.008 newton: sec =mmð Þ.

Figure 1.
Biped of Kondo: a) real robot; b) linkage model.

Parameters Value

do 90.6 (mm)

d1 38.5 (mm)

d2 66.5 (mm)

d3 62 (mm)

d4 66 (mm)

d5 168 (mm)

mo 999.4 (g)

m11,12 14 (g)

m21,22 100 (g)

m31,32 65 (g)

m41,42 71.3 (g)

Table 1.
Structure parameters of humanoid robot.
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3. Assignment of motion

The biped walking is a repeated physical action, thus, joint angle of the robot will
follow up some circular principle. In this chapter, we adopt the trigonometric
functions, which are the sine and the cosine, is widely applied for studying periodic
problem. The general trigonometric function is proposed by Eq. (1). In motion,
each leg of the robot performs walking behavior similarly to the other one, thus, we
will use same gait function for each corresponding joint. In addition, the trajectory
in sagittal plane of left leg is slower than right leg by 0:6s since a cycle is set to 1:2s
while the hip and ankle joint gait data in frontal plane is identical for both of leg. We
assign trajectories to all joints of the robot as described in Eq. (2)–(8). As can be
seen that posture of the robot is defined at 0:3s in the beginning and stops motion at
3:3s. 0� 0:3sð Þ period is used for preparation and 3:3� 4:8sð Þ period is used for
checking stability.

θi tð Þ ¼ ai þ bi cos ωtð Þ þ ci sin ωtð Þ þ di cos 2ωtð Þ (1)

Figure 3.
Principle of arm swing: a) mechanism with linear spring; b) integration in simulation model.

Figure 2.
Novel foot design.
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Where θi is the angle assigned to joint i, ai, bi, ci, di are coefficients; t, i are time
and index of joint, respectively; ω is an angular velocity, ω = 5.236 (rad=s)

θ1 ¼
0; t ¼ 0 or t≥ 3:6

�1:5; t ¼ 0:3&t ¼ 3:3

θ1 tð Þ; 0:3< t< 3:3

8><
>:

(2)

θ2 ¼
0; t≤0:3 or t≥ 3:6

θ2 tþ 0:6ð Þ; 0:3< t< 3:3

15; t ¼ 3:3

8><
>:

(3)

θ3 ¼
0; t≤0:3 or t≥ 3:6

θ3 tþ 0:6ð Þ; 0:3< t< 3:3

30; t ¼ 3:3

8><
>:

(4)

θ4 ¼
0; t≤0:3 or t≥ 3:6

θ4 tþ 0:6ð Þ; 0:3< t< 3:3

15; t ¼ 3:3

8><
>:

(5)

θ5 ¼
0; t ¼ 0 or t≥ 3:3

15; t ¼ 0:3

θ2 tð Þ; 0:3< t< 3:3

8><
>:

(6)

θ6 ¼
0; t ¼ 0 or t≥ 3:3

30; t ¼ 0:3

θ3 tð Þ; 0:3< t< 3:3

8><
>:

(7)

θ7 ¼
0; t ¼ 0 or t≥ 3:3

15; t ¼ 0:3

θ4 tð Þ; 0:3< t< 3:3

8><
>:

(8)

4. Optimization problem with predictive function

4.1 Response surface methodology

Response surface model (RSM) is a mathematical model which is used for an
approximation of stochastic process and is firstly introduced by Box and Wilson
[27]. Our research adopts 3rd-order RSM to predict output value of simulation such
as lateral and walking distance, rotation angle. The expression of 3rd-order RSM is
displayed by Eq. (9).

~P xð Þ ¼ apo þ
Xn
i¼1

bpixi þ
Xn
i¼1

cpiix2ii þ
Xn

ij i< jð Þ
cpijxix j þ

Xn
i¼1

dpiix3ii: (9)

Where n is a design variable number, n = 16, xi is a design variable, and ap, bp, cp,
dp are the coefficients of terms. Number of sampling for initialization is calculated by
Eq. 10.
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Ns ¼ nþ 1ð Þ nþ 2ð Þ
2

þ n: (10)

With n = 16, we determine Ns = 169 samples.

4.2 Optimization of gait trajectory

The goal of biped robot is to gain maximum walking distance with stable gait.
This first problem is solved by a set of objective function, to apply optimization
algorithm, we convert a maximum problem to minimum one as Eq. (11). The
second issue is controlled by constraint functions as Eqs. (12) and (13).

Minimize f xð Þ ¼ �Z f (11)

Subject to:

g1 xð Þ ¼ 20� ∣X f ∣ ≥0 (12)

g2 xð Þ ¼ 5� ∣R f ∣ ≥0 (13)

Where Z f ,X f ,R f is walking, lateral distance and rotation angle, respectively.
Their values are approximated by mentioned 3rd-order RSM.

5. Self-adaptive differential evolution with gauss distribution

This section introduce anmodified self-adaptive differential evolution named
G-SADEwhich is an improve version of Tambui’s algorithm (ISADE) proposed in [28].

5.1 Improve self-adaptive differential evolution

Reviewing on ISADE, it adopts an adaptive scaling factor of mutation process
and adaptive mechanism for crossover control parameter. Scaling factor is gener-
ated by a sigmoid function with ranking individual in population. ISADE mainly
consists of three operations.

5.1.1 Mutation operation

In [28], Tam Bui et al. randomly selected three mutation operation, which are
DE/best/1, DE/best/2, and DE/rand to best/1. Among DE’s operations, DE/best/1 and
DE/best/2 are perceived for good convergence possession and DE/rand to best/1 is
realized for good diversity property. Eqs. (14)–(16) shows the formula of chosen
schemes.
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Where V, mutation vector; X, current vector; Xbest, best vector in current
population; iter, number of iterations; i, index of individual in population, NP; j,
index of dimensions, D; r1, r2, r3, and r4 are different particles selected randomly
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from [1;NP]; and NP,D, number of individuals and problem dimensions, respec-
tively. Scaling factor F is set to be high in the beginning iterations and after certain
iteration, it automatically becomes smaller for proper exploitation. The value F is
generated by a Sigmoid function as in Eq. (17).

Fi ¼ 1

1þ exp α ∗ i�NP
2

NP

� � (17)

Where α is the parameter that controls the value of scaling factor Fi as shown in
Figure 4.

ISADE gives an addition scaling Fmean
i as in Eq. (18).

Fmean
iter ¼ Fmin þ Fmax � Fminð Þ itermax � iter

itermax

� �niter

(18)

Where Fmax and Fmin are the lower and upper limitation of F, respectively.
Recommended values for Fmax, and Fmin are 0.8 and 0.15, respectively. itermax, and
niter denote the maximum iteration, and the nonlinear modulation index. Niter is
defined in Eq. (19).

niter ¼ nmin þ nmax � nminð Þ iter
itermax

� �
(19)

Where nmax and nmin are selected in the [0, 15] range. nmax and nmin are 0.2 and
6.0, respectively. Finally, scaling factor Fiteri is calculated for each particle in each
iteration as Eq. (20). The particle in population will receive different scaling factor.
This mechanism maintains the balance of exploration and exploitation process in
mutation operation.

Fi
iter ¼

Fi þ Fmean
iter

2
(20)

5.1.2 Crossover operation

After mutation operation, ISADE adopts a crossover operation as Eq. (21).

Figure 4.
Value of scale factor F depends on rank number i and α.
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2
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Uiter
i,j ¼

Viter
i,j if rand 0, 1½ �≤CR or j ¼ jrand

Xiter
i,j otherwise:

8<
: (21)

Where U,V, and X are a trial vector, mutation vector, and current vector,
respectively. CR is a crossover parameter within the interval (0,1). jrand is an integer
random number selected from set {1, 2, … , D}.

5.1.3 Selection operation

This stage will choose the better fitness between trial vector U and target vector
X for the next generation as Eq. (22).

Xiterþ1
i ¼

Uiter
i if f Uiter

i

� �
≤ f Xiter

i

� �

Xiter
i otherwise:

8<
: (22)

5.2 Self-adaptive differential evolution with gauss distribution

Gauss distributions play an important role in statistics and are often used to
generate real-valued random variables. Gaussian distribution gives a fantastic pos-
sibility to control the exploiting zone in optimization based on complexity of each
considered problem. Our proposed strategy generates a new trial vectors in
mutation operation by multiply Gauss random variable to a vector difference
(Xiter

r1,j � Xiter
r2,j) in Eq. (14) and (Xiter

r3,j � Xiter
r4,j) in Eq. (15).

The formula of schemes in mutation operation is modified as the following
Eq. (23) and (24).

DE=best=1 : Viter
i,j ¼ Xiter

best,j þN 0, σ2
� �

∗ F ∗ Xiter
r1,j � Xiter

r2,j

� �
(23)

DE=best=2 : Viter
i,j ¼ Xiter

best,j þN 0, σ2
� �

∗ F ∗ Xiter
r1,j � Xiter

r2,j

� �
þ F ∗ Xiter

r3,j � Xiter
r4,j

� �h i

(24)

Where N(0,σ2) is a Gauss random variable with mean zero and standard devia-
tion σ. Recommended value for σ is 0.1. The new proposed DE is implemented as in
Pseudocode 1 and The optimization process is described in Pseudocode 2.

Pseudocode 1: Implement of proposed DE

1. Initialization: Generating randomly NP initial populations inside the bounds.
2.Evaluation and ranking population: Evaluating and ordering all individuals based on their fitness
value. Next, the first best NP individuals are selected to survive and kept for the next generation.

3.Adaptive scaling factor: Computing scale factors F by Eqs. (17) to (20).
4.Mutation operation: Mutation vectors V are created by applying adaptive selection learning
strategy through Eq. (23) to (24).

5.Crossover operation: Calculating trial vector U using Eq. (21).
6.Selection Operation: Comparing trial vector Uiter

i to target vector Xiter
i is implemented based on

evaluating their fitness value.
The better candidate will be chosen for propagating new offspring in the next generation by
Eq. (22).

7. Steps 2 to 6 is repeated while termination condition is checked
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Pseudocode 2: Implement of optimization

1.Achieving the first simulation in Adams by Trial and Error method.
2.Design of experiment.
3.While termination condition is not reached;
Making 3rd order response surface model;
Applying ISADE with objective function 11 and constraint function 12, 13
Analyzing the result through dynamic simulation in Adams.

4.The optimal value of design variable is achieved

6. Results and discussions

Surfaces shown in Figure 5 is employed to present the walking process of biped
robot. This is a absolutely flat terrain.

To observe the effect of arm swing mechanism on walking behavior, we build the
3D robot model in dynamic simulated environment of Adams software. Two config-
urations of the robot with different arm mechanism are considered as the following:
firstly, we lock shoulder joint of the arm or in other respects the upper body is a static
block with no movement. Second configuration is designed with a 1-32DoF shoulder
joint which is set in sagittal plane. The biped motion is studied and evaluated on an
above-mentioned environment. After applying G-SADE algorithm to solve optimiza-
tion problem, we gain the optimal design variable is presented in Table 2. By
replacing the term coefficients of i, ai, bi, ci, di in Eq. (1) with these optimal value, we
will define four gait functions for all joints of the legs and trajectory is ruled by the
principle shown by Eqs. (2)–(8). To be clear, we can see these gait patterns in
Figure 6. After all, results of simulation are presented in Figure 7.

Figure 5.
Considered surface for simulation.

i Optimal design variables.

ai bi ci di

1 0.0034 0.0446 0.0011 �0.0070

2 0.0410 0.2104 0.0007 0.0134

3 0.4138 0.0388 �0.1894 �0.1108

4 �0.2453 0.1460 0.1031 0.0493

Table 2.
Design variable value.
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Applying ISADE with objective function 11 and constraint function 12, 13
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6. Results and discussions

Surfaces shown in Figure 5 is employed to present the walking process of biped
robot. This is a absolutely flat terrain.

To observe the effect of arm swing mechanism on walking behavior, we build the
3D robot model in dynamic simulated environment of Adams software. Two config-
urations of the robot with different arm mechanism are considered as the following:
firstly, we lock shoulder joint of the arm or in other respects the upper body is a static
block with no movement. Second configuration is designed with a 1-32DoF shoulder
joint which is set in sagittal plane. The biped motion is studied and evaluated on an
above-mentioned environment. After applying G-SADE algorithm to solve optimiza-
tion problem, we gain the optimal design variable is presented in Table 2. By
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After implementing the simulation with achieved control data, we attain the final
position of the robot as the following: For configuration 1 with no shoulder joint,
lateral distance of X f , walking distance of Z f and rotation angle of R f are 6.17 mmð Þ,
172.11 mmð Þ, and 9.19o, respectively; meanwhile these value are 9.21 mmð Þ,
184.66 mmð Þ, and 3.98o, respectively for configuration 2 with 1-DoF shoulder joint.

To be particular, Figure 7a depicts the CoM trajectory of the robot, which has a
approximately periodic waveform. Comparing to the humans described in [29], this
performance is similar. Moreover, model with arm swing mechanism witnesses an
improvement of about 9% in walking distance from 172.11 mmð Þ to 184.66 mmð Þ.

Figure 7b presents the rotation angle of the robot depending on time axis of the
motion process. As can be seen that this line chart undergoes a fluctuation about
from �25o to 25o around center line. It means that the robot’s feet rotate signifi-
cantly in the locomotion. This phenomenon is due to an impact of friction force
between foot and ground. Furthermore, the angle rotation of configuration 2 fluc-
tuates with smaller amplitude of 5%, at the final position, this angle decreases by
about 55%. (3.0s - 3.3s) period is prepared for landing and checking stability then,
the rotation angle of the robot rapidly declines. In (3.3s - 4.8s) period, this angle is

Figure 6.
Gait pattern: (a) hip joint angle in frontal plane; (b) hip joint angle in sagittal plane; (c) knee joint angle; (d)
ankle joint angle.

Figure 7.
Simulation result: (a) CoM trajectory in horizontal plane; (b) rotation angle of robot.
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constant which expresses the success of the simulation and the robot stands steadily
on the ground. Totally, above discussions address that the model with 1-DoF shoul-
der joint performs a better exhibition and should be applied in real robot.

Next discussion is to compare 3D gait on flat ground of both configurations with
the humans in a cycle. The walking behavior is shown in Figure 8. As can be seen
that posture of the simulation model at 1:2s, 1:5s, 1:8s, 2:1s is comparable to the
human walking behavior in }initial� contact}, }mid� stance}, }terminalstance},
and }toe� off} periods. Highlight points on the robot posture are }toe� off} periods
at 1:5s and 2:1s. This behavior is very clear and has pros on the contact between foot
and ground in phase transferring stage.

Figure 8.
3D gait in a cycle.
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7. Conclusions

Trajectory generation matter for biped walking is always one of the most chal-
lenges. Thus, researches on this field is very attractive and is implemented cease-
lessly until now. In the same direction, our chapter one again relates to an 3D gait
generation method for the biped robot. This approach constructs an optimization
problem with constraint to create gait data of the robot. In addition, the modified
differential evolution algorithm is introduced to solve an optimization problem. In
the next stage, this chapter confirms that the arm swing mechanism enhances the
biped walking performance by improving walking distance and reducing rotation
angle when the robot moves on the flat ground. The effectiveness of this method is
validated by dynamic simulation in Adams environment (MSC software).
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Chapter 4

QoS Control in Remote Robot 
Operation with Force Feedback
Pingguo Huang and Yutaka Ishibashi

Abstract

Recently, many researchers focus on studies of remote robot operation with force 
feedback. By using force feedback, since users can touch remote objects and feel the 
shape, weight, and softness of each object, the efficiency and accuracy of operation 
can be largely improved. However, when the haptic information such as force and/or 
position information is transmitted over a QoS (Quality of Service) non-guaranteed 
network like the Internet, QoE (Quality of Experience) and stability may seriously 
deteriorate. Therefore, it is important to carry out QoS control and stabilization control 
together to solve the problems. In this chapter, we mainly focus on QoS control. We 
also introduce our remote robot system with force feedback which we constructed 
to study QoS control and stabilization control by experiment. In the system, a user 
operates a remote industrial robot with a force sensor by using a local haptic interface 
device while monitoring the robot operation by a video camera. We handle two types 
of operation; operation with a single remote robot system and that between two remote 
robot systems. We explain several types of QoS control which we have proposed so far 
for remote robot operation with force feedback. Finally, we discuss the challenges and 
future directions of QoS control in remote robot operation with force feedback.

Keywords: remote robot operation, force feedback, haptic interface device,  
QoS control

1. Introduction

Recently, many researchers focus on studies of remote robot operation with 
force feedback in which a user operates a remote robot having force sensors by 
using a haptic interface device while monitoring the remote operations by a video 
camera [1–3]. By using force feedback, since users can touch remote objects and 
feel the shape, weight, and softness of each object, the efficiency and accuracy of 
operation can be largely improved [4]. Therefore, the remote robot operation with 
force feedback is expected to be used in many areas such as remote surgery, disaster 
rescue, and outer space. However, when the information about force and/or position 
is transmitted over a QoS (Quality of Service) [5] non-guaranteed network like the 
Internet, QoE (Quality of Experience) [6] may seriously deteriorate [3, 4] owing to 
the network delay, delay jitter, and packet loss. Furthermore, as the network delay 
increases, the reaction force becomes larger, and unstable phenomena such vibra-
tions of the robot and device may occur more often [7–9]. To solve the problems, we 
need to carry out QoS control and stabilization control together [4]. In this chapter, 
we mainly focus on QoS control at the application layer. The QoS control alleviates 
the influences of network delay, delay jitter, and packet loss on QoE.
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We also introduce our remote robot system with force feedback which we 
constructed to study the QoS control and stabilization control by experiment. In 
the system, a user operates a remote industrial robot with a force sensor by using a 
local haptic interface device while monitoring the robot operation. We handle two 
types of operation; operation with a single remote robot system and that between 
two remote robot systems. We explain several types of QoS control which we have 
proposed so far for remote robot operation with force feedback.

In this chapter, first, we explain the remote robot system with force feedback 
in Section 2. Next, we introduce expected applications of the remote robot system 
with force feedback in Section 3. Then, we outline the problems to be solved for the 
applications in Section 4 and describe the QoS control which is used to solve the 
deterioration problems owing to the network delay, delay jitter, and packet loss in 
Section 5. Finally, we discuss the challenges and future directions of QoS control in 
Section 6 and conclude the chapter in Section 7.

2. Remote robot system with force feedback

2.1 System configuration

The configuration of the remote robot system with force feedback is shown in 
Figure 1. The system consists of two terminals called the master terminal and slave 
terminal. Each terminal consists of two PCs, and the PCs are connected to each 
other via a switching hub.

At the master terminal, a 3 DoF (Degree of Freedom) haptic interface device 
(3D Systems Touch [10]) is connected to PC for haptic interface device, and another 
PC is used for video. At the slave terminal, one of the two PCs is used for a web cam-
era (produced by Microsoft Corp., and video resolution is 1920 × 1080 pixels), and 
the other PC is used for industrial robot. The industrial robot consists of a 6 DoF 
robot arm (RV-2F-D by Mitsubishi Electric Corp. [11]), a robot controller (CR750-Q 
[11]), and a force sensor (1F-FS001-W200 [12]). The force sensor is attached to the 
surface of the flange of the robot arm. The force sensor is connected to the robot 
controller via the force interface unit.

2.2 Remote operation

A user at the master terminal can operate the industrial robot at the slave 
terminal by using the haptic interface device while watching video (coding scheme: 

Figure 1. 
Configuration of remote robot system with force feedback.
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Motion JPEG, average bit rate: 4.5 Mbps). The default position of the haptic inter-
face device is set to the origin, and the position corresponds to the default position 
of the industrial robot [13].

The master terminal updates the position information, calculates the reaction 
force, and outputs the reaction force every millisecond. The master terminal also 
transmits the position information to the slave terminal by User Datagram Protocol 
(UDP). At the slave terminal, the command information which is based on the posi-
tion information received from the master terminal is sent to the industrial robot 
every 3.5 milliseconds by the real-time control function [14]. The force information 
is also acquired by the real-time control function, and the information is transmit-
ted to the master terminal by UDP.

The reaction force ( )m
tF  applied to the haptic interface device at time t (t ³  1) is 

calculated as follows:

 ( ) ( )m s
scale 1t tK -=F F  (1)

where ( )s
1t-F  denotes the force received from the slave terminal (note that we use only 

3 DoF of force here), and scaleK  is a force scale which is set to 1 in this paper. 
Furthermore, since the maximum force applied to the haptic interface device is 
3.3 N [10], the reaction force is set to 3.3 N when the calculated force is larger 
than 3.3 N.

The position vector tS  of the industrial robot outputted at the time t (t ³  2) is 
calculated as follows:

 1 1t t t- -= +S M V  (2)

where tM  is the position vector of haptic interface device received from the master 
terminal at time t, ( )1t t t--V =M M  is the velocity vector and maxt V£V , and maxV  is 
the maximum movement velocity. That is, in order to operate the robot arm safely, 
the maximum movement velocity is limited to maxV  ( maxV  = 5 mm/s [13] in this 
chapter).

In this chapter, we handle two types of operation, operation with single remote 
robot system and that between two remote robot systems. In the latter operation, we 
deal with two types of work (carry together and hand delivery). In carry together, 
two industrial robots carry an object together. In hand delivery, an object was hand-
delivered between the two industrial robots.

3. Expected applications

As shown in Figure 2, the remote robot system with force feedback is expected 
to be used in various areas.

3.1 Remote surgery/rehabilitation

In order to solve the problems of imbalance of medical resources, remote sur-
gery/rehabilitation using the remote robot system with force feedback is an effec-
tive method. Also, the system can be used for remote surgery training for medical 
interns.
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interns.
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3.2 Work in dangerous areas

It is difficult for human to work in danger areas such as deep sea and outer space. 
Therefore, we can employ robots to work in the danger areas instead of humans. By 
using the remote robot system with force feedback, we can control the robot which 
works in danger areas from a remote safe area. We can improve the efficiency and 
accuracy of work by force feedback.

3.3 Disaster rescue and relief

The remote robot system with force feedback can also be used for rescue and 
relief from disasters such as earthquake and concentrated downpour. In this case, 
the remote robot can be rescue robot or drone, and the system can be used to help 
people, to distribute goods for disaster victims. Also, it can be used to confirm 
disaster situation.

In these applications, it is difficult for only robots to work because the situations 
are unknown in advance. Thus, human’s support is needed. This means that we 
need robots to help humans and robots also need human’s supports. Therefore, the 
cooperation among humans and robots is needed.

4. Problems to be solved

In this section, we explain the problems to be solved for widespread applications 
of the remote robot system with force feedback.

4.1 Problem of cooperation

There exist several types of cooperation using the remote robot system with 
force feedback, for example, cooperation between human and human, robot and 
human, robot and robot. In the cooperation between human and human, the will 
transmission between humans is important, and efficient transmission methods 

Figure 2. 
Expected applications.
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should be established for the cooperation. In the cooperation between human and 
robot, it is necessary to consider whether humans support robots or robots sup-
port humans, and how to support each other more efficiently. In the cooperation 
between robot and robot, we have two cases; in one case, the robots can cooperate 
by communications between the slave terminals; in the other case, they can do with 
force sensors because they are connected to each other through an object when they 
carry or hand-deliver the object. The cooperation is important when speedy control 
is needed.

4.2 Problem of will transition

In the cooperation between human and human, it is important to transmit users’ 
will (for example, movement directions and speeds) to each other, and will trans-
mission using haptic may reduce the transmission time, and it is possible to trans-
mit wills in delicate manipulation work in which it is difficult to transmit wills only 
by traditional methods (i.e., wills transmitted by audio and video) [15]. Therefore, 
it is necessary to establish an efficient method to transmit/determine wills by haptic 
for the cooperation.

4.3 Network delay, delay jitter, and packet loss

As described in Section 1, when the information about force and/or position 
transmitted over a QoS non-guaranteed network like the Internet, the reaction 
force may become large and QoE may be seriously deteriorate owing to the network 
delay, delay jitter, and packet loss. It is necessary to carry out QoS control to solve 
the problems.

4.4 Unstable phenomena

In the remote robot system with force feedback, the system may be unstable 
since there exists a control loop between a haptic interface device and a remote 
robot (see Figure 3). As the network delay increases, the movement of the remote 
robot is largely later than that of the haptic interface device, the reaction force 
becomes larger, and unstable phenomena such vibrations of the robot and device 
may occur more often. Also, in remote cooperation, there exists more loops in 
the cooperation systems and the unstable phenomena become more complex and 
difficult problems [16]. It is important to carry out stabilization control to solve the 
problems.

4.5 Cooperation in case of emergency

In the remote cooperation, there exist emergency cases in which network 
interruption occurs and users may be not able to control remote robots to do 

Figure 3. 
Control loop between haptic interface device and robot.
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3.2 Work in dangerous areas
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There exist several types of cooperation using the remote robot system with 
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human, robot and robot. In the cooperation between human and human, the will 
transmission between humans is important, and efficient transmission methods 
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collaborative work. In this case, remote robots need to intercommunicate with each 
other and finish cooperation based on force sensors. That is, we need to handle the 
case of emergency and establish effective methods in the case.

From the above, there are many problems to be solved. Here, we mainly focus 
on QoS control which alleviates the influences of network delay, delay jitter, and 
packet loss.

5. QoS control

QoS control is effective for solving the problems occurred by network delay, 
delay jitter, and packet loss. As described in the previous section, in the remote 
robot operation, there exists a control loop between a haptic interface device and 
a robot. We need to carry out QoS control in the loop to improve the QoE. This 
means that we need to carry out QoS control at a haptic interface device terminal 
and/or at a robot terminal. There are many types of QoS control such as traffic 
management and control, error control, spatiotemporal synchronization control 
(we can carry out media synchronization control or causality control to achieve 
spatiotemporal synchronization), consistency control, adaptive reaction force 
control [4], and position control using force information [17]. We also introduce 
serval types of QoS control which we previously proposed for the remote robot 
operation.

5.1 Media synchronization control

Media synchronization control is used to solve the problems occurred by net-
work delays and delay jitter. The control can be grouped into intra-stream synchro-
nization control, inter-stream synchronization control, and inter-destination  
(or group) synchronization control [18].

Intra-stream synchronization control is used to preserve the timing relation 
between media units (MUs, which are information units for media synchroniza-
tion) [19] in a single media stream. There are several types of intra-stream synchro-
nization control, for example, Skipping [19], Virtual-Time Rendering (VTR) [19], 
and so on. Skipping outputs MUs on receiving the MUs, and when the sequence 
number of a received MU is smaller than that of the last-output MU, the control 
discards the received MU. VTR has a virtual-time axis which can be contracted or 
expanded dynamically according to the network delay, and MUs are output along 
the virtual-time axis.

In multimedia applications, if we only carry out intra-stream synchronization 
control for each media stream separately, the temporal relationship among media 
streams may be disturbed and QoE may be deteriorated. In order to solve the prob-
lem, we need to carry out inter-stream synchronization control. The VTR can be 
used for intra-stream and inter-stream synchronization control. Under the control, 
one media stream is handled as the master stream and the others are dealt with as 
slave streams. VTR carries out only the intra-stream synchronization control for the 
master stream, and it exerts the inter-stream synchronization control after carrying 
out the inter-stream synchronization control for the slave streams.

In remote cooperation, in order to improve the efficiency of cooperative work, 
it is important to output MUs simultaneously at different terminals. Group (or 
inter-destination) synchronization control outputs each MU simultaneously at 
different terminals. We proposed three schemes for inter-destination synchroniza-
tion control (i.e., the master–slave destination scheme, synchronization maestro 
scheme, and distributed control scheme) [4].
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5.2 Causality control

Causality control keeps the causal (i.e., temporal order) relationships among 
events. Here we introduce two typical examples of causality control; one is the 
Δ-causality control [20], and the other is the adaptive Δ-causality control [21].

In the Δ-causality control, each MU has a time limit which is equal to the genera-
tion time of the MU plus Δ seconds for preservation of the real-time property. The 
control output the MU at the time limit, and if the MU is received after the time 
limit, it is discarded because it is considered useless. The adaptive Δ-causality con-
trol dynamically changes the value of Δ according to the network load. The control 
does not discard an MU received after the time limit and uses the MU for prediction.

5.3 Adaptive reaction force control

As the network delay increases, the reaction force applied to a haptic interface 
device becomes larger and the output quality of haptic media becomes deteriorated. 
The adaptive reaction force control [4] can be used to solve the problem. We calculate 
the reaction force based on the spring-damper model [22] or depending on the force 
sensed by the force sensor. In the spring-damper model, the reaction force consists of 
the elasticity and viscosity. The elasticity is force exerted by deformation of a spring or 
rubber, for example. When a spring is pushed or pulled. The elasticity is proportional 
to the depth of a spring when the spring is pushed, and it is calculated by multiplying 
the depth by the elastic coefficient. The viscosity is force or resistance exerted by flu-
ids, for example, when we move an object through the fluids (e.g., water and oil). The 
viscosity is proportional to the relative velocity (i.e., the velocity of the object relative 
to the fluids), and it can be calculated by multiplying the relative velocity by the 
viscosity coefficient. The adaptive reaction force control includes the adaptive viscos-
ity control [23], adaptive elastic control [24], and adaptive viscoelasticity control [25]. 
The adaptive elastic control dynamically changes the elastic coefficient according to 
network delay, the adaptive viscosity control dynamic changes the viscosity coef-
ficient according to the network delay and the velocity of the haptic interface device, 
and the adaptive viscoelasticity control combines the two types of control.

5.4 Position control using force information

In order to reduce the force applied to an object operated in cooperative work 
between the remote robot systems with force feedback, the robot position control 
with using force information is proposed [17]. The proposed control moves the 
robot by taking advantage of human perception of force direction by experiment. 
The control finely adjusts the robot position dynamically in the direction where the 
force is reduced.

Since the remote robot system with force feedback is delay sensitive [26], we 
apply Skipping to the system at both master and salve terminals. This means that 
Skipping is applied to the operation with a single remote robot system and that 
between the two remote robot systems. For the operation between the two remote 
robot systems, we apply the adaptive reaction force control, adaptive Δ-causality 
control, and position control using force information for the remote cooperation 
between two remote robot systems with force feedback. That is, we apply the 
control for the cooperation between users (i.e., each user operates a haptic interface 
device to control a remote robot to do collaborative work), and for the cooperation 
between the user and robot. We also applied the position control using force infor-
mation for the cooperation between the two robots. We also investigate the effects 
of the control by experiment.
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robot by taking advantage of human perception of force direction by experiment. 
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mation for the cooperation between the two robots. We also investigate the effects 
of the control by experiment.
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6. Challenges and future directions of QoS control

As described in the previous section, although we proposed serval types of 
QoS control for the remote robot system with force feedback, there still exist many 
challenges. In this section, we discuss the challenges and future directions of QoS 
control.

6.1 Integration of QoS control and stabilization control

In order to achieve stable and high quality of service, we also need to carry out 
stabilization control, and it is important to integrate the QoS control with stabiliza-
tion control. To integrate the QoS control with stabilization control, we can carry 
out QoS control and stabilization control independently, or integrate QoS control 
into stabilization control for the system. We investigate the effects by integrating 
the position control using force information as QoS control with stabilization con-
trol with filters [9], and experimental results show that the effect when we carry out 
QoS control in the loop of stabilization control is better than that when we carry out 
QoS control and stabilization control independently. It is important to investigate 
the effect by using other types of QoS control and stabilization control.

6.2 Multilateral control

In this chapter, we introduced the QoS control only in a communication loop, 
which is between a haptic interface device and a remote robot (see Figure 3). 
However, in the remote operation using multiple systems, there are multiple loops 
caused by communication in the systems (see Figure 4), and there exist inter-
relationships among the loops. This means that we need to carry out multilateral 
control for QoS as well as stabilizations and it becomes complex and difficult.

6.3 Application of big data, cloud computing and AI technologies

In order to improve the efficiency of QoS control, we need to take account of 
many factors, for example, contents of work, movement speed, room temperature 
and wind [27]. Therefore, big data [28], cloud computing [29], and AI (Artificial 
Intelligence) [30] technologies such as neural network, fuzzy theory, and genetic 
algorithm can be useful methods for efficient control. The necessary information 
for QoS control can be transmitted to a cloud server, and the information can be 
combined as big data for analysis and applied as training data and evaluation data. 
Efficient QoS control can be expected by using AI after studying the training data. 
Also, in order to solve the problem of AI computing, we can apply AI chips [31], 

Figure 4. 
Control loops in remote robot operations.
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which realizes edge AI computing, to the remote robot terminal to improve the 
efficiency of QoS control.

6.4 Others

Since we need to transmit the necessary information for QoS control to a cloud 
server, it is important to consider the safety and security of data. Also, in many 
situations, we need to use movable robots as remote robots. This means that we 
may need to consider the QoS control in wireless and/or mobile networks. This is 
because a 5G network [32] which is wideband and low latency becomes available 
and the possibility of the application over the mobile network increases.

In addition, we need to carry out QoE assessment to investigate the effects of 
QoS control and to clarify how to set parameter values optimally under each type of 
the control as well as QoS assessment at lower layers. QoE subjective assessment is 
the most important because the assessment can reflect end users’ opinions directly 
[4], [33–35].

7. Conclusions

In this chapter, we focus on QoS control for remote robot operation. We intro-
duce our remote robot system with force feedback which we constructed to study 
QoS control. We also present the expected applications and the problems to be 
solved for widespread application of remote robot system with force feedback. 
We mainly focused on the problems of network delay, delay jitter, and packet loss. 
We explain several types of QoS control which we previously proposed to solve 
the problems. Finally, we also discuss the challenges and future directions of QoS 
control.

For the future plan of our study, we need to solve the problems described in 
Section 6.
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which realizes edge AI computing, to the remote robot terminal to improve the 
efficiency of QoS control.
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Since we need to transmit the necessary information for QoS control to a cloud 
server, it is important to consider the safety and security of data. Also, in many 
situations, we need to use movable robots as remote robots. This means that we 
may need to consider the QoS control in wireless and/or mobile networks. This is 
because a 5G network [32] which is wideband and low latency becomes available 
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Chapter 5

Using Ontologies in Autonomous
Robots Engineering
Esther Aguado and Ricardo Sanz

Abstract

The construction and operation of autonomous robots is heavily based of
systemic conceptualizations of the reality constituted by the robot, its controller
and the environment where it performs. In this chapter we address the role that
computer ontologies play in the whole life cycle—engineering and operation—of
autonomous robots: from its conception and construction by human engineering
teams to deployment and autonomous operation in dynamic and uncertain
environments. This chapter summarizes the state of the art, gives some examples
and establishes a roadmap for future activity in this domain to produce shareable
ontologies that could streamline autonomous robot development and exploitation.

Keywords: Robotics, Engineering, Ontology, Autonomy, Adaptation

1. Introduction

Technical systems are designed and built to perform a variety of operations in
pursue of user needs. In many cases we want these systems to operate without
human intervention for performance, cost or safety reasons. We want many tech-
nical systems to be autonomous. From fridge thermostats to the country-wide
electrical utilities we expect 100% availability even in changing circumstances.

Autonomy requires the ability to perform the assigned task without external
help. The autonomous car shall be able to negotiate an intersection and the autono-
mous space probe shall be capable of reorienting itself. But autonomy without
robustness is a no go. Real autonomy also requires capabilities for enduring distur-
bances during operation. Conventional control systems are built to overcome some
forms of disturbance—up to a limit. Autonomy shall be robust to operate in a wider
range of circumstances.

In many cases, these systems need to be endowed with autonomy features to be
able to operate in unstructured and hazardous environments. Many real-world
situations show high levels of disturbance and uncertainty that displace the system
from the normal operating region for which it was designed. In other cases, the
disturbances come from inside the system. Electrical interference or device faults
can lead the system to mission-level failure.

In all these situations—when the system is pushed out of the designed region of
operation—the system requires certain adaptation capabilities to provide the levels
of robustness and resilience necessary to overcome the adverse situation and ensure
mission fulfillment.

As said, these disturbances may come from outside the system, such as changes
in the environmental conditions, e.g. amount of obstacles, terrain characteristics,
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etc., or from the system itself, such as failures in individual components used to
perform a specific task or providing communication mechanisms. To overcome
localized failures, autonomous systems require, when deployed, a certain level of
redundancy to enable the use of fault-handling techniques to overcome these dis-
turbances. These redundancies can be structural—e,g, when having spare compo-
nents or using triple modular redundancy—or functional—e.g. when having
different ways of reducing car speed.

In any case, all these mechanisms require ways of representing the knowledge
about them both at design time—by engineers building the system—and at run-
time—by the autonomous system itself. Engineers capture this knowledge in the
engineering models and autonomous systems may use it in knowledge-driven
perception-decision-action loops.

In this chapter, we address the use of ontologies as substratal assets for these
knowledge based processes. Ontologies can be used to decouple those conceptual
elements for system adaptation from the particular implementation used in a concrete
deployed system. Decoupling design knowledge and realization promotes reusability,
modularity, and scalability. All of them, critical properties of sound engineering
processes. Ontologies can provide a shared understanding of all stages of the system
life cycle—from conceptualization to decommission—to both ease the task of the
engineer and improve system run-time operation. In this chapter, we specifically
focus on the benefits of using ontologies in autonomous systems, especially in auton-
omous robots, and present an implementation case with adaptive mobile robots.

The chapter is organized as follows: Section 2 defines what is an ontology and
collects well-known ontologies for autonomous robots. Section 3 defines what is
autonomy and other the key concepts we aim to reach in this type of systems.
Section 4 presents the scope of ontologies within the life cycle of autonomous
systems. Section 5 addresses a concrete proof-of-concept of ontologies for
augmenting the autonomy level in a mobile robot. Section 6 discusses the general
implications at system level when using ontologies. Section 7 presents a roadmap for
the use of ontologies to streamline autonomous robot development and exploita-
tion. Lastly, Section 8 presents the conclusions of the chapter.

2. Ontologies for autonomous robots

Ontology—with upper case—is the branch of philosophy dedicated to the study
of being. From this perspective of analyzing what exists, derives the use of ontol-
ogies—with lower case—in computer and information science. Computer ontol-
ogies are specifications of conceptualizations [1]. They formally document the types
of entities that exist in a domain, their properties, and the relationships between
them1. A conceptualization is an abstract, simplified perspective in some area of
interest. The conceptualization includes the objects, concepts, and other entities and
the relationships among them. Ontologies are used in information systems to guar-
antee the conformance of a knowledge base with a certain conceptual specification.

Ontologies are built on top of terms that are used to capture the concepts. They
provide a formal naming and definition of categories, properties, and relations
between concepts, data, and entities. In practice, ontologies are just computer-
readable files in a specific computer language that reify a conceptualization of
elements of a specific domain.

1 To be precise, they formally document the information about the types of entities, their properties, and
the relationships between them.
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In general, ontologies define a common vocabulary for a domain, allowing the
reuse of domain-specific knowledge. Moreover, it provides a common understand-
ing about a field for both people and artificial agents. It is this shareable knowledge
among humans and software entities that makes ontologies a valuable asset in
autonomous robot engineering. In [2] the authors remark the importance of for-
mally represented knowledge and its foundation in conceptualizations that are
shared among people. In our case these conceptualizations will be shared among
humans—engineers—and intelligent machines—robots. These concepts are widely
used in computational operations nowadays. For instance, in [3], the authors use an
ontology-based method to assign tasks to a satellite cluster; in [4] they use ontology-
aided reconfiguration to manage an IT infrastructure; and in robotics, works like
the one presented in [5], make use of ontologies to define an information model to
integrate the knowledge of heterogeneous fleets of robots in underwater operations.

2.1 Ontologies in robotics

The IEEE 1872-2015 standard [6] was published in early 2015. This is a standard
for the robotics and automation domain that defines a set of ontologies for robots.
The most popular of these ontologies is the core ontology for robotics and automa-
tion (CORA) which specifies the most general concepts in the robotics domain [7].

This standard is based on the Suggested Upper Merged Ontology (SUMO) [8].
SUMO—a top-level ontology—is used to provide differentiation among terms that
refer to physical and abstract entities and serves as the basis of the robotics ontology.
In SUMO, classes such as agent, process or proposition are defined. This knowledge is
then specialized by CORA with classes such as Robot or Robotic System. Other ontol-
ogies defined in this standard are the position (POS) ontology [9] that captures the
main concepts and relations regarding the position, orientation, and pose which are
key elements for robot navigation and manipulation, and the RPARTS ontology that
provides a set of specific types of roles that specialize the general role of robot parts.

The IEEE 1872 ontologies are explicit and formal, however, they are maybe too
general for practical use. For this reason, there are a variety of more specific
ontologies with different scopes in the robotics domain. Olszewska [10] presents an
autonomous robot architecture ontology (ROA). ROA defines the main concepts
and relations for defining a robot architecture. This ontology has been tested in
driving a human-robot interaction scenario. A human operator specifies a task and
this task is divided and associated with a robot according to its capabilities. All these
types of entities are captured in the ontology and used to create information ele-
ments that enable human-robot communication. In [11] an extension of CORA
is presented with concepts of design, environment, and interaction on artificial
systems.

Most of these ontologies reuse knowledge from other ontologies. Sometimes
ontologies are identified with knowledge bases, especially after the use of standard-
ized languages to capture both generic and specific knowledge. In order to facilitate
reuse, ontologies are designed following the principle of modularisation. Modularity
provides a series of benefits in contrast to the problems of using big, complex,
monolithic ontologies [12]:

• Scalability for querying data and reasoning. Small-scale ontologies allow easier
concept assertion and reasoning than when handling a large number of entities.

• Scalability for update and maintenance. Ontologies, as any other artifact
requires maintenance and may need to be updated and enlarged with new
knowledge. This task is easier if the knowledge is structured in modules.
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augmenting the autonomy level in a mobile robot. Section 6 discusses the general
implications at system level when using ontologies. Section 7 presents a roadmap for
the use of ontologies to streamline autonomous robot development and exploita-
tion. Lastly, Section 8 presents the conclusions of the chapter.

2. Ontologies for autonomous robots

Ontology—with upper case—is the branch of philosophy dedicated to the study
of being. From this perspective of analyzing what exists, derives the use of ontol-
ogies—with lower case—in computer and information science. Computer ontol-
ogies are specifications of conceptualizations [1]. They formally document the types
of entities that exist in a domain, their properties, and the relationships between
them1. A conceptualization is an abstract, simplified perspective in some area of
interest. The conceptualization includes the objects, concepts, and other entities and
the relationships among them. Ontologies are used in information systems to guar-
antee the conformance of a knowledge base with a certain conceptual specification.

Ontologies are built on top of terms that are used to capture the concepts. They
provide a formal naming and definition of categories, properties, and relations
between concepts, data, and entities. In practice, ontologies are just computer-
readable files in a specific computer language that reify a conceptualization of
elements of a specific domain.

1 To be precise, they formally document the information about the types of entities, their properties, and
the relationships between them.
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In general, ontologies define a common vocabulary for a domain, allowing the
reuse of domain-specific knowledge. Moreover, it provides a common understand-
ing about a field for both people and artificial agents. It is this shareable knowledge
among humans and software entities that makes ontologies a valuable asset in
autonomous robot engineering. In [2] the authors remark the importance of for-
mally represented knowledge and its foundation in conceptualizations that are
shared among people. In our case these conceptualizations will be shared among
humans—engineers—and intelligent machines—robots. These concepts are widely
used in computational operations nowadays. For instance, in [3], the authors use an
ontology-based method to assign tasks to a satellite cluster; in [4] they use ontology-
aided reconfiguration to manage an IT infrastructure; and in robotics, works like
the one presented in [5], make use of ontologies to define an information model to
integrate the knowledge of heterogeneous fleets of robots in underwater operations.

2.1 Ontologies in robotics

The IEEE 1872-2015 standard [6] was published in early 2015. This is a standard
for the robotics and automation domain that defines a set of ontologies for robots.
The most popular of these ontologies is the core ontology for robotics and automa-
tion (CORA) which specifies the most general concepts in the robotics domain [7].

This standard is based on the Suggested Upper Merged Ontology (SUMO) [8].
SUMO—a top-level ontology—is used to provide differentiation among terms that
refer to physical and abstract entities and serves as the basis of the robotics ontology.
In SUMO, classes such as agent, process or proposition are defined. This knowledge is
then specialized by CORA with classes such as Robot or Robotic System. Other ontol-
ogies defined in this standard are the position (POS) ontology [9] that captures the
main concepts and relations regarding the position, orientation, and pose which are
key elements for robot navigation and manipulation, and the RPARTS ontology that
provides a set of specific types of roles that specialize the general role of robot parts.

The IEEE 1872 ontologies are explicit and formal, however, they are maybe too
general for practical use. For this reason, there are a variety of more specific
ontologies with different scopes in the robotics domain. Olszewska [10] presents an
autonomous robot architecture ontology (ROA). ROA defines the main concepts
and relations for defining a robot architecture. This ontology has been tested in
driving a human-robot interaction scenario. A human operator specifies a task and
this task is divided and associated with a robot according to its capabilities. All these
types of entities are captured in the ontology and used to create information ele-
ments that enable human-robot communication. In [11] an extension of CORA
is presented with concepts of design, environment, and interaction on artificial
systems.

Most of these ontologies reuse knowledge from other ontologies. Sometimes
ontologies are identified with knowledge bases, especially after the use of standard-
ized languages to capture both generic and specific knowledge. In order to facilitate
reuse, ontologies are designed following the principle of modularisation. Modularity
provides a series of benefits in contrast to the problems of using big, complex,
monolithic ontologies [12]:

• Scalability for querying data and reasoning. Small-scale ontologies allow easier
concept assertion and reasoning than when handling a large number of entities.

• Scalability for update and maintenance. Ontologies, as any other artifact
requires maintenance and may need to be updated and enlarged with new
knowledge. This task is easier if the knowledge is structured in modules.

73

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357



• Complexity management. The design process is more straightforward when
working with small modules—i.e. a reduced set of concepts—integrated into
the final ontology.

• Understandability. It is easier to understand an ontology in small portions than
a huge ontology, either in a textual or visual form.

• Context-awareness. The use of modular ontologies simplifies the
contextualization in the creation of knowledge. Each module can focus on any
aspect regarding one context.

• Reusability. The split of an ontology into modules provides the reuse of specific
parts in other ontologies.

Nevertheless, modular ontologies may lead to some problems during the process
of creation and use. For example, the integration of other concepts by importing
existing ontologies may lead to unexpected consequences such as inconsistencies
related to reused vocabulary—e.g. conflicting definitions for homonyms. Keeping
safety and correctness in a modular ontology is a key element when extracting or
importing knowledge among ontologies and modules.

2.2 Standard ontologies beyond CORA

As said, CORA is a quite general standard that is not very effective for concrete
applications. The above-mentioned ontologies by Olszewska or Fiorini try to pro-
vide more specific ontologies directly usable in concrete applications.

This fact is recognized by the Standards Association of the IEEE who is currently
developing a collection of CORA-based standards to address different aspects of the
robotics domain. These standards address different aspects of relevance like task
specification, autonomy, ethics, agility, or verification of autonomous behavior.

In particular, the Robotics and Automation Society Standing Committee on
standards working group 1872.22 is elaborating a CORA-based standard ontology for
autonomous robotics [13]—the Autonomous Robotics (AuR) Ontology.

The AuR standard under development shall extend the CORA ontology by
defining additional ontologies for the autonomous robots domain. These ontologies
will address different aspects of relevance: (i) general concepts for autonomous
robots; (ii) core design patterns specific to autonomous robot systems; and (iii)
general use cases and/or case studies.

2.3 Ontologies and model-driven engineering

Currently, there are no generally accepted method or framework for the design
of complex robotic systems [14]. However, this task of building complex robotic
systems can easily leverage extant systems and software development methods. In
complex system developments, the design is focused at a different level of abstrac-
tions, and modularity is used to both organize the design and implement the system
[15]. Examples of this modular approach are the developments based on object-
oriented methods, middleware, and component-based design.

The structural, modular organization of design knowledge and the exploitation
of formally captured system knowledge is the basement of the large collection of

2 https://standards.ieee.org/project/1872_2.html
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model-based approaches in model-driven engineering (MDE). For example, OMG’s
Model-driven Architecture (MDA) focuses on design models a level of abstraction
up of objects and components to reach modular reusable abstractions that can be
later particularised for specific uses (Platform-Independent Model (PIM) !
Platform-Specific Models (PSM)). In the system’s domain—closer to the robotics
domain—languages like Systems Modeling Language (SysML) are gaining momen-
tum due to their universality as a vehicle for augmented design formalization.
However, MDE methods often suffer from a lack of semantics and truly formal
knowledge representations that can be effectively exercised [16].

To overcome these bottlenecks, a formal ontology can be included as part of the
model definition. One example of a model that makes use of ontologies to specify
the system behavior and architecture is the Teleological and Ontological Model for
Autonomous Systems (TOMASys) framework [17]. TOMASys is a domain-
independent metamodel that allows the construction of models to define architec-
tural alternatives in component-based systems. This metamodel is teleological
because it incorporates core concepts in the engineering conceptualization as are the
concepts of system intention and the purpose of the designers when creating a
specific subsystem. And it is ontological because it defines a formal vocabulary for
systems structure and behavior.

The ontological approach followed in this chapter and presented in the proof-of-
concept in Section 5 is built upon the TOMASys framework that was designed
following the ideas of model-based systems engineering and particularized for the
autonomous system engineering domain.

3. Autonomy and relate

The work described in this article addresses the use of ontologies for the aug-
mentation of autonomy in robots [18]. As ontologies foster the use of formality in
conceptualizations, it seems natural to try to provide a definition of the adjective
autonomous.

The term “autonomous” is a buzzword these days and has received different
meanings in different contexts3. In the analysis of the use of the term “autonomous”
in automatic control and robotics, there are two major generalized uses of the term
“autonomous”:

• A robot is said to be autonomous if it has the capability of moving by its own
resources and under self-control.

• A robot is said to be autonomous if it has the capability of performing certain
tasks without human—or external—help. A task-generalization of the former.

In our position as autonomous systems engineers, it is the second interpretation
that we focus on. In systems engineering the task to be performed by the system is
always something of value to the final user. An useful mobile robot shall not just
wander around but perform some task of value during this wandering (find an
object, move an object, detect intruders, etc.). When we say that a robot is autono-
mous we mean that it is capable of performing its assigned activities—e.g. generate a
map—without the need of external intervention [19]. This also applies to the

3 It has indeed a long tradition of use in the domains of healthcare and political science.
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tions, and modularity is used to both organize the design and implement the system
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independent metamodel that allows the construction of models to define architec-
tural alternatives in component-based systems. This metamodel is teleological
because it incorporates core concepts in the engineering conceptualization as are the
concepts of system intention and the purpose of the designers when creating a
specific subsystem. And it is ontological because it defines a formal vocabulary for
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The ontological approach followed in this chapter and presented in the proof-of-
concept in Section 5 is built upon the TOMASys framework that was designed
following the ideas of model-based systems engineering and particularized for the
autonomous system engineering domain.
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mentation of autonomy in robots [18]. As ontologies foster the use of formality in
conceptualizations, it seems natural to try to provide a definition of the adjective
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The term “autonomous” is a buzzword these days and has received different
meanings in different contexts3. In the analysis of the use of the term “autonomous”
in automatic control and robotics, there are two major generalized uses of the term
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• A robot is said to be autonomous if it has the capability of moving by its own
resources and under self-control.

• A robot is said to be autonomous if it has the capability of performing certain
tasks without human—or external—help. A task-generalization of the former.

In our position as autonomous systems engineers, it is the second interpretation
that we focus on. In systems engineering the task to be performed by the system is
always something of value to the final user. An useful mobile robot shall not just
wander around but perform some task of value during this wandering (find an
object, move an object, detect intruders, etc.). When we say that a robot is autono-
mous we mean that it is capable of performing its assigned activities—e.g. generate a
map—without the need of external intervention [19]. This also applies to the

3 It has indeed a long tradition of use in the domains of healthcare and political science.
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capability of movement—including the whole robot navigation infrastructure—
and to all the other functions that the robot may perform subsidiarily to the
main task [20].

3.1 Autonomy and disruption

A second aspect concerning task execution that is of maximal importance is the
distinction between (i) being able to perform certain tasks alone (e.g. moving to a
pose or building a map); (ii) doing so while handling some degree of disturbance;
and (iii) being able to perform these tasks alone in the presence of severe distur-
bances4. In the first case, a simple automaton can do the job. In the second case, a
feedback control system can do the job. In the third case, a perception-thought-
action loop is necessary to provide both feedback, adaptation, and anticipation.
Some people use the term “automatic” for the first or second cases, keeping
“autonomous” for the third. In the automatic control domain, some authors may
use “open loop” and “closed-loop” to make this distinction, but for us, the second
case also includes closed-loop controllers for operational set-points.

A more thorough distinction could be done concerning the nature of the distur-
bances, especially when severe. In the case of anticipated, well known severe dis-
turbances, the system could be built in accordance to them to be able to respond
adequately and predictably. If the disturbances are not predictable—or don’t want
to bother about their anticipation—the system can be built to respond reactively to
them. In the design of the system, we shall define, however, a set of bounds of the
system operational environment to be able to design the system to behave robustly
in this region.

In the work described in this chapter, we address situations where the system
finds itself outside the boundaries set for its operation at design time—its normal
operational profile. In these circumstances, the only possibility for keeping the
mission going is for the robot to adapt to the new situation: it shall change its very
design/realization to be able to still achieve mission objectives in this new situation.

3.2 Autonomy and trustworthiness

Trustworthiness is a necessary but not sufficient condition to carry out tasks in
open environments [23]. In real operation, autonomous systems are deployed in
complex environments plagued with uncertainty. This affects the system capability
to complete the mission assigned to it by the user. For a user to confidently rely on
an autonomous system, the system shall be trustworthy.

Trust and trustworthiness may seem similar but they must be distinguished;
especially in an autonomous system, where behavior assurance is quite more com-
plex. Trust is a human-system relational property; i.e. something that the human
user perceives or feels about the robot. On the contrary, trustworthiness is a prop-
erty of the system itself, i.e. that the system is robust and resilient in relation to its
mission and hence, it deserves trust by the human user [24]. This implies that a
human user may not trust a trustworthy system [25] because user perception is

4 A severe disturbance is a disturbance that violates the system design assumptions for normal

operational conditions. An example of severe external disturbance is a slippery floor for an unmanned

ground vehicle (UGV) when designed to operate on a non-slippery floor. An example of severe internal

disturbance is the failure of a laser range sensor used in robot navigation. See [21] for a discussion of

types of system change under the Klir general systems framework [22].
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affected by limited knowledge, observation capability, and biased by previous
experiences.

The problem we are addressing here is achieving trustworthiness, specifically
dependability and mission assurance. The framework discussed here provides engi-
neering tools in terms of system and mission concepts and relationships to define
system design alternatives to deal with abnormal scenarios and unpredictable envi-
ronments.

The underlying idea is to break the design/operation barrier. Using ontologies
we can make available the engineering design knowledge at run-time to allow
system self-reconfiguration using self-knowledge. With this approach, the scope of
the ontologies covers from the system conceptualization until the system deploy-
ment. The use of ontologies at run-time provides an information-driven adaptation
capability to enhance system autonomy [18].

4. Ontologies in the life cycle of autonomous systems

In systems engineering, the life cycle of an artifact usually includes eight stages:
(i) identify the needs, (ii) define the system concept, (iii) specify system require-
ments, (iv) design the system, (v) implement the system, (vi) verify the system,
(vii) deploy the system and (viii) operate it5. In the first six stages, the work is
typically iterative until the deployment phase, when requirements and design deci-
sions are frozen and remain implicit in the final artifact.

In fault-tolerant systems, a set of methods and algorithms intervene at run-time
to keep the functional activity of the system, i.e. to maintain the operation as it was
designed. The fault-tolerance mechanics is predefined, blind, and triggered by
certain events. There is no system knowledge to reason about but its reification in
rigid adaptation mechanisms. The idea we pursue in this work is the usage of
ontologies to include the knowledge of engineering as part of the run-time system to
endow the system with flexible reconfiguration capability based on system knowledge.
With this approach, the design phase and the deployed phase maintain an explicit
link through the system knowledge because the system ontology provides a
metamodel that spans the whole system life cycle. This link can be exploited to
combine other subsystems and create new designs at run-time more suitable for
addressing certain contingencies.

Ideally, the system knowledge base should encode all include all the system con-
cepts developed in early phases of the system life cycle, for example, user needs as the
artifact is produced to satisfy the needs defined in the first stage. With this informa-
tion, the system could be able to ensure the mission and reason about it at any stage.

In adaptive systems, with component or functional redundancy, the early stages
of the life cycle are not addressed. The reconfiguration in this case aims to comply
with the initial system design or a few designs for possible known contingencies.

However, by providing the system with capabilities to trace until the needs that
justify its existence as well as the requirements that justify that design, the system
can augment its autonomy in search of trustworthiness. If a requirement is imposed
by a component that is not functioning and is going to be substituted with another
element, that requirement is no longer applicable to the system. Therefore, besides
the component in use, other adjustments can be made in the system for better
performance.

5 A final decommissioning stage is also of importance, esp. in terms of sustainability, for real-world

systems. We do not address this stage here.

77

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357
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affected by limited knowledge, observation capability, and biased by previous
experiences.
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ronments.

The underlying idea is to break the design/operation barrier. Using ontologies
we can make available the engineering design knowledge at run-time to allow
system self-reconfiguration using self-knowledge. With this approach, the scope of
the ontologies covers from the system conceptualization until the system deploy-
ment. The use of ontologies at run-time provides an information-driven adaptation
capability to enhance system autonomy [18].
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In systems engineering, the life cycle of an artifact usually includes eight stages:
(i) identify the needs, (ii) define the system concept, (iii) specify system require-
ments, (iv) design the system, (v) implement the system, (vi) verify the system,
(vii) deploy the system and (viii) operate it5. In the first six stages, the work is
typically iterative until the deployment phase, when requirements and design deci-
sions are frozen and remain implicit in the final artifact.

In fault-tolerant systems, a set of methods and algorithms intervene at run-time
to keep the functional activity of the system, i.e. to maintain the operation as it was
designed. The fault-tolerance mechanics is predefined, blind, and triggered by
certain events. There is no system knowledge to reason about but its reification in
rigid adaptation mechanisms. The idea we pursue in this work is the usage of
ontologies to include the knowledge of engineering as part of the run-time system to
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cepts developed in early phases of the system life cycle, for example, user needs as the
artifact is produced to satisfy the needs defined in the first stage. With this informa-
tion, the system could be able to ensure the mission and reason about it at any stage.
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of the life cycle are not addressed. The reconfiguration in this case aims to comply
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However, by providing the system with capabilities to trace until the needs that
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An example of this case is the use of different navigation sensors in a mobile
robot. Suppose we have an autonomous robot with laser and ultrasound sensors to
navigate. An initial objective may be to reach a point as fast as possible. According
to the final design of the robot, that requirement would be specified with a specifi-
cation of a targeted velocity value.

The laser is a device with a high refresh rate so the robot can navigate safely at
higher velocities. If the robot enters a room with glass walls, the laser is not reliable.
If the robot detects through the reasoning that the environmental conditions are not
suitable for the laser and triggers a reconfiguration to use the ultrasound sensor, the
robot can keep its operation to fulfill the mission. However, as the design has
changed, the requirements that can be fulfilled are not the same. In this case, as the
ultrasound sensor has a shorter range, the maximum velocity of the robot shall be
significantly less to keep a safe operational profile. Once the robot has traversed that
glass room, the laser can be re-activated so the requirements must change again to
achieve the maximum performance available.

This is a naive example of how a system engineering knowledge base can
improve a navigation task. However, real-world missions are composed of complex-
orchestrated tasks, for instance, the operation of a waiter-robot which must serve a
drink, or a miner-robot that must obtain a certain mineral. In this case, that knowl-
edge can be further exploited with deep reasoning to perform adaptation at
different tasks and several stages of the system life cycle.

5. Fault-tolerant mobile robot proof-of-concept

Following the naive example above, an ontology-driven reconfiguration capa-
bility for mobile robots has been explored in the Metacontrol for Robot Operating
System (MROS) project6. In this implementation, the robot’s mission is to move to a
certain point. During the mission, several contingencies may occur. In this case, we
contemplate the internal contingency cases of (i) laser rangefinder failure and (ii)
low battery. Additionally, the mission has some operational requirements associated
in terms of performance, safety, and energy consumption that the robot must
ensure during the navigation.

The assurance of the operational requirements along with the contingency han-
dling is governed by a knowledge base structured on description logics and exerted
by a reasoner. The key of this approach is the usage of the general modeling
framework presented in Section 2.3, TOMASys. The TOMASys ontology is particu-
larized with two sets of individuals: the navigation-domain ontology and an
application-specific ontology. We use a modular approach in the construction of the
ontology to be capable of reusing a part of the non-specific knowledge in any
navigation application in mobile robotics. The ontologies are instantiated for run-
time use as a knowledge base composed of three OWL 2 [26] files.

The TOMASys metamodel is used to depict structure and behavior with an
explicit representation of the objectives of the system as well as the components
required to realize them. The system concepts provided by this metamodel are
divided into two main groups:

• The static knowledge is stored in Functions and Function Designs. The
Function element allows the definition of abstract Objectives for the system
to complete the mission. The Function Design element stores all the design

6 https://robmosys.eu/mros/

78

Robotics Software Design and Engineering

alternatives the system engineer has thought as possible to fulfill a certain
Function.

• The instantaneous state is captured with Objectives, which define a set of
operational requirements pursued at run-time when executing a Function;
Function Groundings, that are used at run-time to specify which Function
Design is in use; and Components, used to describe the structural modules at
that instant. Lastly, Quality Attributes affect both static and run-time
knowledge. They are used to make explicit the operational requirements of the
mission.

• Each Objective has a Quality Attribute associated to meet operational
requirements such as safety, performance, and energy consumption. Likewise,
each Function Design has a Quality Attribute value estimation to select the
best design alternative to meet the mission requirements. Additionally, the
Function Grounding measures the real Quality Attribute value to monitor if
those requirements are being fulfilled.

As it was previously mentioned, the knowledge base is completed with two sets
of individuals. The navigation-domain file contains instances of widely-used navi-
gation sensors such as ultrasound, laser, RGBD cameras, etc., and other important
elements in autonomous robots such as the battery. These elements are instances of
the TOMASys class Component. Besides, popular Quality Attributes are defined
such as energy, safety, and performance.

The application-specific knowledge base is made of all the Function Designs,
these are the design alternatives to perform navigation. Other elements are the
instance of an Objective, the instance of a Function Grounding, this is the Func-
tion Design in use, and the Quality Attributes relative to them. Each Function
Design has a Quality Attribute estimation in safety and energy, which is calcu-
lated for the Function Grounding. This calculated Quality Attribute value is
compared with the non-functional requirements (NFR) defined for the Objective.
The NFRs are the Quality Attributes required for the specific mission.

5.1 Run-time reconfiguration for fault-tolerance

To use the knowledge base at run-time, it is written in a machine-readable
format using the Web Ontology Language (OWL). A descriptive logic (DL) rea-
soner uses it during the system operation to evaluate the robot’s functioning. Once
an Objective is defined, and it is linked to the Function that solves it, a Function
Grounding is selected according to the mission requirements and the Component
availability. In the MROS proof-of-concept, two possible classes of contingencies
are addressed: component fault and mission requirements non-fulfillment.

Each Component has a required by relationship with the Function Design that
makes use of it. If a Component is malfunctioning, those Function Designs that use
it becomes unavailable. Figure 1 depicts the main relationships contained in the
knowledge base. The two components considered, laser and battery, are required
for all Function Designs except one. In case of laser failure, the Function Design
degraded mode should be selected. Likewise, in the case of a low battery, the
Function Design energy saving mode should be selected. This is implicitly shown
in the figure, as there are no links between those Function Design individuals and
the corresponding Component individual.

The ontology also includes some rules using the Semantic Web Rule Language
(SWRL) to perform functional diagnosis. This is done by asserting the information
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knowledge base. The two components considered, laser and battery, are required
for all Function Designs except one. In case of laser failure, the Function Design
degraded mode should be selected. Likewise, in the case of a low battery, the
Function Design energy saving mode should be selected. This is implicitly shown
in the figure, as there are no links between those Function Design individuals and
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about the status of the Components that compose the system, the design in use to
solve a function (Function Grounding), and the status of the Objective.

There are three sets of rules that: (i) set the Objective in error if the objective
requirements, NFR Quality Attributes, are not met; (ii) set an Function Ground-
ing in error if a Component in use is in error; and (iii) propagate Function
Grounding error to the Objective. Lastly, there are some additional rules regarding
the storage in a log file of the Function Grounding that have been in error and the
status of a Function Design realisability depending on the status of the Compo-
nents. For instance, if the laser is in error, the only Function Design with
realisability with a true value will be f_degraded_mode according to Figure 1.
Table 1 shows three example SWRL rules used in this proof-of-concept.

Figure 1.
Main individuals and relationships of the proof-of-concept knowledge base. The Objective o_navigate is fulfilled
by the Function Grounding fg_normal_mode, this Function Grounding is a realization of the Function Design
f_normal_mode which solves the Function f_navigate. This Function is required as is the one that solves the
Objective. Component required for this Function Design are laser and battery. Among all the possible Function
Design, the one that does not require the laser if it becomes unavailable is f_degraded_mode. Additionally,
Quality Attributes values relative to the non-functional requirements (NFRs) of the Objective are depicted for
the Quality Attributes of safety and energy.

Rule no.1 tomasys:Component(?c) tomasys:c_status(?c, false) mros:requiredBy(?c, ?fd) tomasys:typeFD(?fg,
?fd) tomasys:FunctionGrounding(?fg) ! tomasys:fg_status(?fg, INTERNAL_ERROR)

If a Component has a status in false (in error), and that component is required by a Function Design
with the same type as the Function Design in use, Function Grounding, then that Function Grounding
status is set as INTERNAL ERROR.

Rule no.2 tomasys:FunctionGrounding(?fg) tomasys:fg_status(?fg, INTERNAL_ERROR) tomasys:solvesO(?
fg, ?o) tomasys:Objective(?o) ! tomasys:o_status(?o, INTERNAL_ERROR)

If a Function Grounding has a status in INTERNAL ERROR, and that Function Grounding solves an
Objective, then that Objective status is set as INTERNAL ERROR.

Rule no.3 tomasys:Component(?c) tomasys:c_status(?c, false) mros:requiredBy(?c, ?fd) ! tomasys:
fd_realisability(?fd, false)

If a Component has a status in false (in error), and that Component is required by a Function Design
then that realisability is set to false.

Table 1.
SWRL rules for proof-of-concept implementation. The first one sets the Function Grounding in error if it uses a
faulty Component, the second one sets the Objective in error if the Function Grounding is in error and the third
one marks as unreachable the Function Design that require unavailable Components.
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When the system needs adaptation because the mission (Objective) is in error
according to rule no. 2, a selection of a design alternative is required. In this case,
rule no. 3 is applied to determine the solution available in terms of components. An
equivalent rule in terms of Quality Attributes and NFRs is used to select the
design compliant with the mission requirements. If there are several Function
Designs available, the module in charge of the reconfiguration, called
Metacontroller, selects the Function Design with higher estimated performance.

In this case, each Function Design represent a system mode. For instance, the
normal mode uses the laser to navigate at maximum velocity levels in environments
with few obstacles but not crowded. The degraded mode, uses an RGBD camera
instead of a laser to navigate, as the refresh rate of this device is considerably less
than the laser, the velocity is reduced to keep navigation with safety. By contrast,
the energy-saving mode is a very safe and slow implementation to reduce at maxi-
mum the battery consumption, impacting the duration of the mission, and there-
fore, the performance.

The ontology implementation has been evaluated in a complete robotic application,
a patrolling corridors mission.While the robot performs the patrol, contingencies such
as the laser error described previously. The robot used is a TurtleBot2 composed of a
Kobuki platform RPLidar A2 laser and an Orbec Astra RGBD camera. The experiments
consisted of simulating a laser error at a random instant. These data were corrupted by
generating realistic data as if something was blocking the laser, or if there was a
misalignment, maybe due to a hit or a fall of the robot. This was done by publishing
scanmessages with erroneous data (a vector of 0’s) in the gazebo plugin topic. Figure 2
depicts the simulation used to develop the reasoner to implement the ontology-driven
reconfiguration. The output from the reasoner once the laser is malfunctioning and the
robot with the navigation mode to degraded is shown in Figure 3.

The main experiment carried measures the recovery time for a laser failure using
ontology-driven reconfiguration. After 50 iterations of the experiment, the time
required is 1.995 s with a standard deviation of 0.478. Without it, the estimated
recovery time for this failure is about 300 s (indeed tied to system maintenance).

Furthermore, another testbed has been used to prove the ontology reusability
along with the reconfiguration performance. In this case, we have used a simulation
of an unmanned underwater vehicle performing exploration in a flooded mine [27].

Figure 2.
Simulation of robot patrolling with navigation and localization system; in red, the button to inject laser failure.
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With this proof-of-concept, we have implemented a fault-adaptive subsystem in
general terms to ensure mission requirements and face component faults. This
approach provides a general and reusable asset for systems in which there are
design alternatives in terms of behavior and/or components. This approach aptly
realizes the vision of using ontologies for building knowledge bases to decouple the
mission-oriented system operation core from the reconfiguration needed to over-
come disturbances or failures. Moreover, with this experimental setting, we have
shown evidence of the advantages of automatic reconfiguration through ontological
architectures for reducing the recovery time for laser contingencies.

6. Systemic implications of ontologies

As stated in Section 2, ontologies provide a variety of tools to define a system in
terms of concepts and the relationships among them. Besides, given their formal
nature, they can be included in the system as an explicit source of knowledge to
improve its run-time operation.

Ontologies can be treated as a sub-system itself, that may be designed following
the systems engineering principles of modularity, scalability, and reusability. The
proof-of-concept presented here (Section 5), is an example of the use of ontologies
to augment the autonomy level of a robot, increasing its dependability by improv-
ing mission assurance. In this proof-of-concept system ontologies are components
of the deployed system.

However, the use of ontologies as part of autonomous systems engineering
processes goes well beyond this [18], because they can have a strong impact on the
many processes of the systems life cycle [28]. In this section, we analyze three
classes of impacts: (i) impacts on complexity; (ii) impacts on collaboration; and (iii)
impacts on risk management.

6.1 Implications on complexity

Section 2 summarised some of the benefits of modularity in ontologies. The key
feature of the modular approach is the reduction obtained in the ontology

Figure 3.
Console from the reasoner ROS2 node to implement the ontology-driven reconfiguration; in red the component
status of the laser as ’FALSE’, malfunctioning and the navigation mode required, the Function Grounding
’DEGRADED MODE’.
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complexity when working on small modules integrated into a whole ontology. This
conceptual decomposition and complexity reduction can be extrapolated to the
conceptualization that underlies all system engineering processes7, especially in
systems-of-systems contexts, [29].

The use of a knowledge base that makes explicit the requirements and the design
decisions on the system, provides systems engineering knowledge that can be leveraged
at the whole life cycle. The explicitness of mission-oriented conceptsmakes it easier for
the developer at the verification phase to understand possible fault sources and inte-
gration problems. The trend in systems engineering towardsmodel-based approaches is
rooted in the formal verification capability thatmodels provide at all stages (esp. at early
stages where the costs of re-engineering are much lower). At the early stages of the
model, complexity is lower and formal analyses may bemore exhaustive and effective.

In the deployment phase—as shown in our proof-of-concept—ontologies may be
used as fault-tolerance assets. The use of ontologies to reason about the state of the
mission and the architectural components in use in general terms, provide a common
framework to decouple reconfiguration actions from the particular implementation.
This separation of concerns allows for a strong reduction in the complexity of the
fault-tolerant mechanisms by both (i) the localized nature of the fault-tolerant
mechanisms; and (ii) the possibility of reusing general tested assets such as TOMASys
and some of the more general knowledge bases (as the ones presented here8).

6.2 Implications on collaborative systems

The use of ontologies in the construction of formal knowledge bases provides a
common understanding within a domain. The encoding of ontologies in machine-
readable formats such as OWL allows a truthful integration when sharing informa-
tion between different agents and/or tools. This integration obviously includes the
possibility of collaboration between different types of systems in a group mission.
This collaboration is not limited to the activities in the systems life cycle as described
earlier but spans all classes of multi-agent collaboration in fielded systems.

An example of this is the enabling of collaborative work between fleets of robots,
especially when they are heterogeneous. For example, the shared information
between an unmanned aerial vehicle (UAV) and an unmanned ground vehicle
(UGV) may encounter incompatibilities just in the coordinate systems they use, as
the UGV does not take into account the vertical axis. Moreover, robots may have
different capabilities, a UAV may be able to map the environment whilst the UGV
may have an arm to interact with it.

The same occurs when the system includes a human as an external operator or
supervisor, the system must exchange information to ensure collaborative work.
Usually, the combination of data is done implicitly by the system designers. How-
ever, using ontologies for formal integration of all the different perspectives of a
system of systems with an explicit conceptualization provides a robust and trust-
worthy method for sharing information that affects the way humans interact and
collaborate with machines.

6.3 Implications on risk management

As said before, a formal definition of system concepts can be used for better
formal analysis along the whole life cycle. This upstream analysis implies a

7 See for example http://www.sebok.org.
8 Available at: https://github.com/MROS-RobMoSys-ITP/mros_ontology
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complexity when working on small modules integrated into a whole ontology. This
conceptual decomposition and complexity reduction can be extrapolated to the
conceptualization that underlies all system engineering processes7, especially in
systems-of-systems contexts, [29].

The use of a knowledge base that makes explicit the requirements and the design
decisions on the system, provides systems engineering knowledge that can be leveraged
at the whole life cycle. The explicitness of mission-oriented conceptsmakes it easier for
the developer at the verification phase to understand possible fault sources and inte-
gration problems. The trend in systems engineering towardsmodel-based approaches is
rooted in the formal verification capability thatmodels provide at all stages (esp. at early
stages where the costs of re-engineering are much lower). At the early stages of the
model, complexity is lower and formal analyses may bemore exhaustive and effective.

In the deployment phase—as shown in our proof-of-concept—ontologies may be
used as fault-tolerance assets. The use of ontologies to reason about the state of the
mission and the architectural components in use in general terms, provide a common
framework to decouple reconfiguration actions from the particular implementation.
This separation of concerns allows for a strong reduction in the complexity of the
fault-tolerant mechanisms by both (i) the localized nature of the fault-tolerant
mechanisms; and (ii) the possibility of reusing general tested assets such as TOMASys
and some of the more general knowledge bases (as the ones presented here8).

6.2 Implications on collaborative systems

The use of ontologies in the construction of formal knowledge bases provides a
common understanding within a domain. The encoding of ontologies in machine-
readable formats such as OWL allows a truthful integration when sharing informa-
tion between different agents and/or tools. This integration obviously includes the
possibility of collaboration between different types of systems in a group mission.
This collaboration is not limited to the activities in the systems life cycle as described
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(UGV) may encounter incompatibilities just in the coordinate systems they use, as
the UGV does not take into account the vertical axis. Moreover, robots may have
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may have an arm to interact with it.

The same occurs when the system includes a human as an external operator or
supervisor, the system must exchange information to ensure collaborative work.
Usually, the combination of data is done implicitly by the system designers. How-
ever, using ontologies for formal integration of all the different perspectives of a
system of systems with an explicit conceptualization provides a robust and trust-
worthy method for sharing information that affects the way humans interact and
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As said before, a formal definition of system concepts can be used for better
formal analysis along the whole life cycle. This upstream analysis implies a
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8 Available at: https://github.com/MROS-RobMoSys-ITP/mros_ontology
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reduction of the probability of faults during system operation but it also includes
the possibility of better diagnostic features. having explicit knowledge on relation-
ships among system entities allows the system to trace the source of faults and take
action in the implicated parts.

Besides, the system may adapt itself as the case presented in Section 5 to reduce
damage or can even take preventive action based on deep reasoning. When the
system is able to adapt to overcome problems derived from environmental changes
or malfunctioning components, the system becomes more autonomous and trust-
worthy.

Design decisions have always associated risks. Usually, the final design is com-
monly the solution with less risk in the context where the system is deployed. The
use of ontologies provides a tool for risk management as design decisions may be
justified in the knowledge base. Furthermore, this information can be used at run-
time to apply the most suitable solutions if the operational environment changes.

In the proof-of-concept presented here, quality attributes are used to select
among design alternatives. When risk augments because of not meeting the security
standards of the mission, other designs can be used. This may affect the perfor-
mance of the mission but ensures its fulfillment. The system engineer must coordi-
nate adequately those quality attributes to ensure a trade-off between performance
and security. In this context, risk ceases to be a collateral effect of system design and
operation to become a first-level citizen in the explicit design of the system.

7. Towards a full life cycle ontology

Ontologies are commonly used to store information within a domain. For this
reason, they are a valuable asset to model the shared understanding of the system
and its concepts at different stages of its life cycle. Here, we propose to take a
further step and use that information model at run-time to provide the system with
knowledge-driven self-adaptation.

The proof-of-concept presented here addresses reconfiguration to ensure the
mission fulfillment within a set of predefined operational requirements. The main
limitation is imposed by the set of alternative designs predefined for the system and
its possible contingencies. Here, ontologies have been used to orchestrate the
deployment of different design solutions at run-time.

To increase the autonomy levels of systems, particularly in the case of robots, we
propose to take a further step and include all early phases of system life cycles, from
the need identification to fulfill a mission to the verification of the system (see
Figure 4).

When the system is deployed, each time a contingency is detected and it
requires reconfiguration, the system should return to the needs evaluation and
analyze which tools it has available to satisfy the need. According to that, it can
adopt some requirements and come across with a design by itself. That design may
be tested in simulation with a digital twin or just deployed if it has been evaluated in
previous operations.

To reach such an elevated autonomy level, a massive effort in ontology stan-
dardization in systems engineering is required9. Moreover, the design engineers
must encode all the information they have about the system in terms of those

9 See for example the efforts of the IEEE 1872.1 working group on robot task standardization or the IOF
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standards. That information also includes discarded ideas and the reason why they
are not included in the final design, as can become part of a contingency solution.

To select the best possible design available in case of contingency, knowledge
bases should include metrics regarding the cost (in terms of time, energy consump-
tion, reliability) of the resulting system after applying reconfiguration. This selec-
tion must preserve the mission fulfillment with optimal features.

8. Conclusions

Ontologies provide a baseline for shared information between systems, subsys-
tems, and external agents. But that information can also be a tool for augmenting
the autonomy levels of systems. Ontologies provide a formal conceptualization of
entities and their relationships. The knowledge stored can be used along architec-
tural models in system engineering to provide a general framework for autonomous
systems.

A concrete realization of this general framework has been tested with a mobile
robot navigating to a point in a cluttered environment. The proof-of-concept
address two contingency types, (i) a component-level failure, as the case when the
laser becomes unavailable, or (ii) not reaching the mission requirements in terms of
safety or energy consumption.

The contingencies are solved by reasoning about the status of the components in
use and the status of the objective and its quality attributes associated. Once a
contingency is encountered, the reasoner provides the most suitable design

Figure 4.
Going back in the system life cycle from an operational failure.
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alternative to overcome it according to the component availability and the esti-
mated quality values in terms of energy consumption, safety and performance.

However, this proof-of-concept focus on the selection of alternatives. To pro-
vide a complete module of self-adaptation and reconfiguration in the whole life
cycle of systems, we need to take a larger perspective. To reach complete autonomy,
the system needs to have access to knowledge from the needs for which it is
designed, besides the design alternatives and the restrictions the engineers have
faced. With this information, in case of failure, the system can have a wider picture
of its context and take corrective action at different levels of its architecture to
adapt to run-time situations.

To achieve this vision a full system life cycle ontology for autonomous systems is
needed. Current efforts in ontology development for systems engineering, robots,
and autonomous systems are quite valuable but they shall be (i) based on a general
systems foundation; (ii) harmonized, and (iii) built with a modular ontology
approach.
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Abstract

In this work, a system level design and conception of a System-on-a-Chip (SoC)
for the execution of cognitive agents in robotics will be presented. The cognitive
model of the Concurrent Autonomous Agent (CAA), which was already success-
fully applied in several robotics applications, is used as a reference for the develop-
ment of the hardware architecture. This cognitive model comprises three levels that
run concurrently, namely the reactive level (perception-action cycle that executes
predefined behaviours), the instinctive level (receives goals from cognitive level
and uses a knowledge based system for selecting behaviours in the reactive level)
and the cognitive level (planning). For the development of such system level hard-
ware model, the C++ library SystemC with Transaction Level Modelling (TLM) 2.0
will be used. A system model of a module that executes a knowledge based system is
presented, followed by a system level description of a processor dedicated to the
execution of the Graphplan planning algorithm. The buses interconnecting these
modules are modelled by the TLM generic payload. Results from simulated experi-
ments with complex knowledge bases for solving planning problems in different
robotics contexts demonstrate the correctness of the proposed architecture. Finally,
a discussion on performance gains takes place in the end.

Keywords: Autonomous Agents, Robotics, Hardware Design, Knowledge Based
Systems, Transaction Level Modelling

1. Introduction

Behaviour-based robotics is a branch of robotics that studies techniques for the
interaction of robotic agents with the environment using the perception-action
cycle in a coordinated fashion. With the addition of cognition, these agents may use
knowledge about the environment to perform more complex tasks [1–3]. In the
context of artificial intelligence, the internal structure of those agents, i. e., their
cognitive architectures, dictate how the problem-solving will take place [4].

An example of a cognitive architecture with successful applications in robotics is
the Concurrent Autonomous Agent (CAA), an autonomous agent architecture for
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mobile robots that has already proven to be very powerful [5–7]. This agent pos-
sesses a three layer architecture, in which each layer is responsible for a different
task: the reactive layer runs behaviours with a perception-action cycle; the instinc-
tive layer coordinates reactive behaviour selection; and the cognitive layer does the
high-level planning.

In this work, a system level hardware model of a System-on-a-Chip (SoC) for
cognitive agents will be presented. This model was inspired by the cognitive archi-
tecture of the CAA. Therefore, the CAA will be described in Section 2. In Sections 3
and 4 the Rete and Graphplan algorithms are described, respectively, since they are
at the core of the CAA. The SystemC and TLM 2.0 standards, the tools used to
construct the models are presented in Section 5, followed by the presentation of the
proposed architecture in Section 6. Results of experiments are shown in Section 7
and some final thoughts and conclusions are presented in Section 8.

2. The concurrent autonomous agent (CAA)

The Concurrent Autonomous Agent (CAA) is a cognitive architecture whose
taxonomy is based on the generic model for cognitive agents, which is composed by
the reactive, the instinctive and the cognitive levels [8]. The CAA levels are
presented in Figure 1 [5, 6], where the message passing between the levels is shown.
The cognitive level generates plans that are executed by the instinctive level
through the selection of reactive behaviours in the reactive level. [6].

Both the cognitive and instinctive levels apply a Knowledge Based System (KBS)
for knowledge representation and inference. The KBS is composed by a facts base, a
rules base and an inference engine, as shown in Figure 2 [6].

The facts base contains atomic logical elements that represents knowledge that is
known about the current state of the environment. The rules base contains a set of
rules in the format if PREMISE then CONSEQUENT. The premise consists of a con-
junction of ungrounded fact patterns that uses variables to increase expressiveness.

Figure 1.
Cocurrent autonomous agent architecture.
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The consequent, in turn, has instructions on how to modify the facts base and
which message should be sent to other levels, if any. The KBS then goes through the
following cycle [9].

• Recognition: identify which rules can be activated by checking if the premises
matches the facts in the facts base;

• Conflict Resolution: among the activated rules (conflict resolution set), decide
which should be executed; and

• Execution: the chosen rule in the conflict resolution phase has its consequent
executed.

The Rete matching algorithm is applied in the recognition phase to generate the
conflict resolution set. The instinctive level uses its KBS to select the appropriate
reactive behaviour to be selected given the current world state. The cognitive level,
in turn, uses its KBS inside the Graphplan algorithm (that will be described later in
this chapter), in the state space expansion stage [10].

3. The Rete algorithm

As mentioned earlier in this chapter, the Retematching algorithm is employed in
the recognition stage the KBSs used by the CAA. It is proposed in [11], and is named
after the latin word for “network”.

The algorithm builds a graph out of the rules base of the KBS where each node
has a special purpose. In the end, it avoids running through the entire facts base for
each rule premise, every time a new fact arrives, by saving information about
partial matches in some of its nodes [11].

The constructed graph has two portions: the alpha network, responsible for
comparing the constants in the premises with the corresponding fields in the
incoming fact; and the beta network, which checks for variable assignment consis-
tency and maintenance of partial matches [10].

The nodes the compose the alpha network are the following [10]:

• Root Node: entry point for new facts;

Figure 2.
KBS used by AAC.
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• Constant Test Nodes (CTN): compares constant fields of premises with
corresponding ones in the current fact; and

• Alpha Memories (AM): stores facts that successfully passed the tests in CTNs.

The beta network is composed by the following nodes [10]:

• Join Nodes (JN): perform tests that ensure variable assignment consistency
inside a premise instance (partial match);

• Beta Memories (BM): stores partial matches produced in JNs; and

• Production Nodes: terminal nodes for full rule matches.

4. The Graphplan algorithm

The cognitive level uses the Graphplan algorithm to generate the plans that the
other levels should execute. Originally, the algorithm used a propositional knowl-
edge representation, so this will be adopted here for the algorithm description. The
rest of this section uses [12, 13] as references.

Mathematically, a planning problem may be stated as P ¼ Σ, s j, g
� �

, where Σ ¼
S,A, γð Þ is the problem domain (that comprises the set of states S, the set of actions
A and a state transformation function γ ¼ S� A! S), s j is the initial state and g is
the goal state.

Each action a∈A has a set prencond að Þ of precondition propositions and a set
effects að Þ ¼ effectsþ að Þ ∪ effects� að Þ of effects. The effects, in turn, may be broken
down into two subsets: effectsþ að Þ, the set of positive propositions (propositions to
be added), and effects� að Þ, the set of negative propositions (propositions to be
deleted). The applicability condition for an action a, in a given state s, may be
written as precond að Þ⊆ s. The new state produced by the application of a would be
γ s, að Þ ¼ s� effects� að Þð Þ ∪ effectsþ að Þ.

Consider an action layer Aj and the propositional layer Pj�1 preceding it. Aj

contains all actions a such that precond að Þ⊆Pj�1, and Pj�1 all propositions p such
that p∈Pj�1. The so called planning graph is the built by connecting elements in
Pj�1 to elements in Aj by edges:

• edges connecting a proposition p∈Pj�1 to an action a∈A j;

• edges connecting an action a∈Aj to a proposition p∈Pj�1, such that
p∈ effectsþ að Þ (positive arc); and

• edges connecting an action a∈A j to a proposition p∈Pj�1, such that
p∈ effects� að Þ (negative arc).

If two actions a1, a2 ∈A j obey effects� a1ð Þ ∩ precond a2ð Þ ∪ effectsþ a2ð Þ
� � ¼ ∅ and

effects� a2ð Þ ∩ precond a1ð Þ ∪ effectsþ a1ð Þ
� � ¼ ∅, they a said to be independent; if not,

they are dependent, or mutually exclusive (mutex).
Propositions can also bemutex: p and q aremutex if every action in A j that adds p

is mutex with every action in Aj that produces q, and there are no actions in Aj that
adds both p and q. Also, if a precondition of an action is mutex with a precondition
of another action, the actions are mutex.
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The algorithm begins by expanding the graph. The pseudo-code for the expan-
sion step is given in Algorithm 1.

Algorithm 1 Planning graph expansion

1: procedure EXPAND (si) ▷si: i-th state layer
2: Aiþ1  KBS:InferenceCycle si,Að Þ ▷A: action profiles
3: siþ1  ∪Aiþ1:effects

þ

4: μAiþ1  a, bð Þ∈A2
iþ1, a 6¼ b j�

Dependent a, bð Þ∨∃ p, qð Þ∈ μsi : p∈ preconds
að Þ, q∈ preconds bð Þg

5: μsiþ1  p, qð Þ∈ s2iþ1, p 6¼ q j∀ a, bð Þ∈A2
iþ1 : p∈ effectsþ

�
að Þ∧q∈ effectsþ bð Þ ! a, bð Þ∈ μAiþ1g

6: end procedure

The expansion stops when the goal state g is detected in the state layer si. It then
triggers a recursive search for non-mutex actions in all the preceding action layers
that could have produced the goal state found in si. This procedure is composed by
the functions Search (Algorithm 2) and Extract (Algorithm 3).

Algorithm 2 Search for non-mutex actions.

1: procedure SEARCh(g, πi, i)
2: if g ¼ ∅ then
3: Π Extract ∪ preconds að Þ j∀a∈ πif g, i� 1ð Þ
4: if Π ¼ Failure then
5: return Failure
6: end if
7: return Π:πi
8: else
9: select any p∈ g
10: resolvers a∈Ai jp∈ effectsþ að Þ∧∀b∈ πi : a, bð Þ �∈ μAi

� �
11: if resolvers ¼ ∅ then
12: return Failure
13: end if
14: nondeterministically choose a∈ resolvers
15: return Search(g � effectsþ að Þ, πi∪ af g, i)
16: end if

17: end procedure

Algorithm 3 Extract a plan.

1: procedure EXTRACT(g, i)
2: if i ¼ 0 then
3: return ∅
4: end if
5: πi  Search g,∅, ið Þ
6: if πi 6¼ Failure then
7: return πi
8: end if
9: return Failure
10: end procedure
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5. SystemC and transaction level modelling

This work uses SystemC and the TLM 2.0 as modelling and simulation tools, so
in this section they will be described.

5.1 SystemC

In the design of complex digital systems, obtaining a high-level executable
specification of the project in early stages of the design process is useful for
detecting errors or validate functionality prior to implementation. This is one of the
main advantages of SystemC, a C++ class library for hardware design at various
abstraction levels - from system level to Register Transfer Level (RTL). Figure 3
shows the typical design flow for SystemC projects [14].

The SystemC library contains elements that facilitates representation of hard-
ware systems parallelism. Hardware models in SystemC are represented by modules
that may run in parallel interconnected by ports and channels (Figure 4). In this
way, the initial model may contain a few modules representing system level

Figure 3.
SystemC hardware design flow [14].
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functionality and, as the model gets refined, those initial high-level modules are
further divided into more specific interconnected modules, until the RTL is
reached [14].

5.2 Transaction level modelling

In hardware models of higher levels of abstraction, executing all modules at each
time step may produce an unnecessary overhead. Thinking of a digital systems as
components connected by a bus, reading from and writing to it, it would be more
efficient to execute modules only when they have something massages to send/
receive. This is the rationale behind Transaction Level Modelling (TLM), the mes-
sage exchange being called a transaction [15].

With SystemC, an implementation of the TLM called TLM 2.0 is provided. It
inherits all the SystemC capabilities, mainly the module concept, extending it with
sockets, transactions and payloads (Figure 5).

Figure 4.
Typical SystemC RTL module [14].

Figure 5.
TLM basic elements [15].
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6. Proposed architecture

The hardware architecture proposed in this work takes full advantage of
SystemC and TLM 2.0 capability of developing executable specifications from sys-
tem level to RTL. In this sense, the approach employed was to obtain a high level
model and validate its functionality using experiments in a robotics context.

The TLM model proposed is shown in Figure 6. It consists of modified SystemC
model of the Rete processor presented in the authors previous work [10]. As can be
seen in Figure 6, the instinctive module now implements a detailed Rete processor,
that uses two Content Addressable Memories (CAMs) to implement the knowledge
base and an auxiliary stage for test execution.

The Instruction Set Architecture (ISA) of the Rete processor described in [10] is
still employed in this model, but now some tasks related to join node in the Rete
network are performed separately in the Join Node Module.

7. Results

7.1 Problem domain and simulation environment

The experiments were performed using the Webots R2021a robotics
simulator. In the context of the CAA, the reactive level of the agent was

Figure 6.
TLM model of the SoC.

Figure 7.
Simulation environment for start state.
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implemented inside this simulator, in the form of behaviours and controllers the
interface with the environment. In the simulator, the planning problem domain was
constructed: a simplified version of the blocks domain. The simulation consisted of
three coloured boxes (red, green and blue) disposed in a given order around KUKA
Youbot robot, which is a mobile robot with a robotic arm and a plate. The
simulation environment and the robot in the initial state are shown in the
Figure 7.

The planning problem consisted of reordering the blocks from the initial posi-
tion shown in Figure 7 so that the red block is in the left side or the arm, the blue in
the right and the green in the front.

Figure 8.
Sequence diagram for graph expansion.
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7.2 Cognitive module results

The operation of this module will be presented through a sequence diagram. The
first part of this diagram, shown in Figure 8, shows how this level expanded the
planning graph until what was labelled as last expansion.

The Rete and Expansion TLM modules together expand the planning graph: the
current state is given as an input for the Rete module, that gives in return the next
action layer. This is done 3 times, until action layer A2 is reached. The Expansion
Module then processes the consequence of the newly added actions, updating the
state layer. But this time, the goal state is present in the state layer, so a transaction
is sent to the search module to backtrack the goal state checking if the actions that
produced are mutex with any other. If no mutex relation is found, those actions
form the plan. And, as shown in Figure 9, this plan is, indeed, found in the first
backtrack attempt.

As can be seen in Figure 9, during the search for a solution, the expansion
continues to take place, but is interrupted when the Search Module reports the
solution. The plan found to the given problem was composed by the actions move
(green, right, front), move(blue, left, right) and move(red, back, left).

7.3 Instinctive module results

The reactive behaviours for the robotic arm were defined as: going to a reset
position; moving to left, right, front or back; grip and release. In order to execute
the actions produced by the cognitive level, a knowledge base was created and

Figure 9.
Sequence diagram for finding a plan (continuation of Figure 8).
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compiled for the Rete processor using its application specific ISA. The rules in this
knowledge based were “grab” and “put”. Both has as precondition that the arm is in
the reset position and variables to specify the side where to grab from and the side
where to put. The sequence of reactive behaviours activate by the instinctive level is
show for the execution of the first action of the plan (move(green, right, front)) in
Figure 10.

8. Conclusions

This chapter presented a SoC for cognitive agents that can perform symbolic
computations at the hardware level. The cognitive model of the CAA was used as a
reference for the hardware system-level model development, mapping its instinc-
tive level to module with an application specific processor that executes the Rete
matching algorithm, and with its cognitive level mapped into a module specifically
designed for running the Graphplan planning algorithm (also with the use of the
Rete processor). The SystemC and the TLM were used to build executable specifi-
cations that could validate its functionality in a robotics context. This version of the
model was presented in a unified fashion, using SystemC/TLMmodules and threads
for the executable specification generation.

The results shown that the planning problem was solved by the Cognitive Mod-
ule of the proposed architecture and successfully executed by its Instinctive Mod-
ule, that consists of a Rete processor. By using a parallel architecture, the Cognitive
Module broke the planning task into concurrent tasks in such a way that the
backtrack search of the plan could take place while the graph were still expanding,
as shown in Figure 9. In a complex planning problem this is advantageous because
the solution usually does not come from the first backtrack search; thus, by not
stalling the graph expansion, performance is gained.

In future works, tests with more complex knowledge bases and planning
domains will be performed. Also, further refinements should be made in the archi-
tecture aiming synthesis.

Figure 10.
Sequence of arm configurations and the reactive behaviours executed between them.
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action layer. This is done 3 times, until action layer A2 is reached. The Expansion
Module then processes the consequence of the newly added actions, updating the
state layer. But this time, the goal state is present in the state layer, so a transaction
is sent to the search module to backtrack the goal state checking if the actions that
produced are mutex with any other. If no mutex relation is found, those actions
form the plan. And, as shown in Figure 9, this plan is, indeed, found in the first
backtrack attempt.

As can be seen in Figure 9, during the search for a solution, the expansion
continues to take place, but is interrupted when the Search Module reports the
solution. The plan found to the given problem was composed by the actions move
(green, right, front), move(blue, left, right) and move(red, back, left).

7.3 Instinctive module results

The reactive behaviours for the robotic arm were defined as: going to a reset
position; moving to left, right, front or back; grip and release. In order to execute
the actions produced by the cognitive level, a knowledge base was created and

Figure 9.
Sequence diagram for finding a plan (continuation of Figure 8).
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compiled for the Rete processor using its application specific ISA. The rules in this
knowledge based were “grab” and “put”. Both has as precondition that the arm is in
the reset position and variables to specify the side where to grab from and the side
where to put. The sequence of reactive behaviours activate by the instinctive level is
show for the execution of the first action of the plan (move(green, right, front)) in
Figure 10.

8. Conclusions

This chapter presented a SoC for cognitive agents that can perform symbolic
computations at the hardware level. The cognitive model of the CAA was used as a
reference for the hardware system-level model development, mapping its instinc-
tive level to module with an application specific processor that executes the Rete
matching algorithm, and with its cognitive level mapped into a module specifically
designed for running the Graphplan planning algorithm (also with the use of the
Rete processor). The SystemC and the TLM were used to build executable specifi-
cations that could validate its functionality in a robotics context. This version of the
model was presented in a unified fashion, using SystemC/TLMmodules and threads
for the executable specification generation.

The results shown that the planning problem was solved by the Cognitive Mod-
ule of the proposed architecture and successfully executed by its Instinctive Mod-
ule, that consists of a Rete processor. By using a parallel architecture, the Cognitive
Module broke the planning task into concurrent tasks in such a way that the
backtrack search of the plan could take place while the graph were still expanding,
as shown in Figure 9. In a complex planning problem this is advantageous because
the solution usually does not come from the first backtrack search; thus, by not
stalling the graph expansion, performance is gained.

In future works, tests with more complex knowledge bases and planning
domains will be performed. Also, further refinements should be made in the archi-
tecture aiming synthesis.

Figure 10.
Sequence of arm configurations and the reactive behaviours executed between them.
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Chapter 7

Quadrotor Unmanned Aerial
Vehicles: Visual Interface for
Simulation and Control
Development
Manuel A. Rendón

Abstract

Quadrotor control is an exciting research area. Despite last years developments,
some aspects demand a deeper analysis: How a quadrotor operates in challenging
trajectories, how to define trajectory limits, or how changing physical characteris-
tics of the device affects the performance. A visual interface development platform
is a valuable tool to support this effort, and one of these tools is briefly described in
this Chapter. The quadrotor model uses Newton-Euler equations with Euler angles,
and considers the effect of air drag and propellers’ speed dynamics, as well as
measurement noise and limits for propeller speeds. The tool is able to test any
device just by setting a few parameters. A three-dimensional optimal trajectory
defined by a set of waypoints and corresponding times, is calculated with the help
of a Minimum Snap Trajectory planning algorithm. Small Angle Control, Desired
Thrust Vector (DTV) Control and Geometric Tracking Control are the available
strategies in the tool for quadrotor attitude and trajectory following control. The
control gains are calculated using Particle Swarm Optimization. Root Mean Square
(RMS) error and Basin of Attraction are employed for validation. The tool allows to
choose the control strategy by visual evaluation on a graphical user interface (GUI),
or analyzing the numerical results. The tool is modular and open to other control
strategies, and is available in GitHub.

Keywords: Quadrotor, Trajectory Planning, Trajectory Tracking

1. Introduction

Quadrotors are a special type of unmanned aerial vehicles (UAVs), increasingly
employed last years for mapping, surveillance, searching and tracking operations, in
rescue missions, agriculture, traffic management, landscape film making, and
others [1–3].

When quadrotors applications demand large angle attitude control and obstacle
avoidance, the following areas still need to be strengthened: Aggressive maneuver-
ing control, visual-based control, localization in indoor environments, optimizing
the computational cost for complex algorithms, and fault-tolerant disturbance
rejection [4]. Several controllers have been proposed for these tasks: classic tech-
niques as PD [5] and PID [6], optimal techniques as LQR [7] and LQG [8], non-
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linear techniques such as Lyapunov [9] and Backstepping [5, 9] and intelligent and
adaptive control techniques as Fuzzy200 [10] and Reinforcement Learning [11].

Research in quadrotor demand sophisticated equipment and costly laboratory.
However, it can be optimized employing low cost virtual development tools. In
autonomous control the path planning, path tracking and joint operation with other
UAVs, can be supported by optimization techniques with support of software tools
[1, 2, 12]. Published works relate the use of software such as Visual Basic, MatLab,
Panda3D, Gazebo, or more open applications developed in languages as Python and C+
+ [2]. In [1], a UAV 3D flight environment programmed in Python and developed in
Panda3D is presented. A GUI developed in LabVIEWwas published in [2], and other
developed onMatLab-Simulink employs quadratic linear regulator (LQR) control [13].

Gazebo is an important virtual environment for robotics. Its integration with
ROS provides a powerful testbed to analyze control algorithms. In [12] works that
employ Gazebo and ROS for developing simulation of UAVs are described.

Most of the cited simulation tools have a difficult start for users with little program-
ming experience. Even open-sourcemodels can be tricky. An interesting tool depicted
in [14, 15] gives support for quadrotor control development, analyzing and comparing
various control strategies on challenging trajectories. It may be used by beginning users
with notmuchknowledge inROS,Gazebo or in programming languages such as Python
orC++. The tool easies the understanding of quadrotor dynamics and related equations,
as well as the development of control strategies. The present Chapter describes this
user-friendly framework, the employed techniques are described in [14–17].

Section 2 presents a description of the employed model. Section 3 explains the
optimal trajectory planning method. Section 4 describes the controllers available in
the tool. Section 5 presents the graphical user interface developed by the tool.
Section 6 presents the graphical and numerical results. In the end of the Chapter,
the Section 7 emphasizes the main aspects and critical issues related.

2. Quadrotor model

The equations are described in the rigid body model of the quadrotor, and its
displacement is related to an inertial frame, fixed on the Earth surface [18]. Three
main frames are considered for a quadrotor model: Inertial (I), Vehicle (V) and
Rigid Body (B), as illustrated in Figure 1.

The quadrotor owns 4 propellers in cross configuration. Each pair of propellers
(1,3) and (2,4) rotates in opposite directions (Figure 1). Setting different rotor
speeds to each pair (ω2 6¼ ω4) or (ω1 6¼ ω3) produces roll or pitch rotations with
corresponding lateral motion. Yaw rotation results from rolling moments difference
(M1 þM3 �M2 �M4) between propellers [9]. Maximum and minimum motor
speeds are some of the parameters to be set in the model.

Newton-Euler equations describe quadrotor dynamics and kinematics [9, 18].
The Rotation Matrix represents the rotation around the three axes in the sequence
Z � X � Y (1), and is described in (2).

RI
BZ�X�Y ¼ RI

A2 ψð ÞRA2
A1 ϕð ÞRA1

B θð Þ (1)

RI
BZ�X�Y ¼

Δ
cψcθ � sϕsψ sθ �cϕsψ cψ sθ þ cθsϕsψ
cθsψ þ cψ sϕsθ cϕcψ sψ sθ � cθsϕcψ
�cϕsθ sϕ cϕcθ

2
64

3
75 (2)

The angle ϕ around the x axis is the roll angle, the angle θ around the y axis is
pitch angle, and the ψ angle around the z axis is yaw angle.
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The orientation vector is defined by η and the position of quadrotor’s center of
mass is defined in the reference frame I by r. Angular velocities in the body frame B
(p, q and r) are defined by ν (3).

η ¼
ϕ

θ

ψ

2
64

3
75 r ¼

x
y
z

2
64

3
75 ν ¼

p
q
r

2
64

3
75 (3)

The derivative of the angles ϕ, θ and ψ and the angular velocities measured by a
sensor fixed to the Frame of the Rigid Body are not the same. p, q and r are the
angular velocities around the x, y and z axes of the Rigid Body Frame. The
relationship with the angular rates _ϕ, _θ and _ψ in the same frame B is in (4).

p
q
r

2
64

3
75 ¼ T

_ϕ
_θ

_ψ

2
64

3
75 ¼

cθ 0 �cϕsθ
0 1 sϕ
sθ 0 cϕcθ

2
64

3
75

_ϕ
_θ

_ψ

2
64

3
75 (4)

Considering that the body is symmetrical with respect to the x-z and y-z planes
of the frame B,and that the only forces acting on it are the weight and the four
thrusts, its resulting linear acceleration with respect to the inertial Frame can be
described using Newton’s Second Law. Air drag forces are represented by a matrix
in (5), and the values of Ax, Ay and Az, are inputs on the parameters set.

m €rf gI ¼
0

0

�mg

2
64

3
75

8><
>:

9>=
>;

I

þ RI
B

0

0P
Fi

2
64

3
75�

Ax 0 0

0 Ay 0

0 0 Az

2
64

3
75

8><
>:

9>=
>;

B

(5)

Figure 1.
Main frames in a quadrotor.
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linear techniques such as Lyapunov [9] and Backstepping [5, 9] and intelligent and
adaptive control techniques as Fuzzy200 [10] and Reinforcement Learning [11].

Research in quadrotor demand sophisticated equipment and costly laboratory.
However, it can be optimized employing low cost virtual development tools. In
autonomous control the path planning, path tracking and joint operation with other
UAVs, can be supported by optimization techniques with support of software tools
[1, 2, 12]. Published works relate the use of software such as Visual Basic, MatLab,
Panda3D, Gazebo, or more open applications developed in languages as Python and C+
+ [2]. In [1], a UAV 3D flight environment programmed in Python and developed in
Panda3D is presented. A GUI developed in LabVIEWwas published in [2], and other
developed onMatLab-Simulink employs quadratic linear regulator (LQR) control [13].
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employ Gazebo and ROS for developing simulation of UAVs are described.
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various control strategies on challenging trajectories. It may be used by beginning users
with notmuchknowledge inROS,Gazebo or in programming languages such as Python
orC++. The tool easies the understanding of quadrotor dynamics and related equations,
as well as the development of control strategies. The present Chapter describes this
user-friendly framework, the employed techniques are described in [14–17].

Section 2 presents a description of the employed model. Section 3 explains the
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Besides the force each rotor produces a moment in the rigid body perpendicular
to the plane of rotation of the propeller (Mi), contrary to the direction of rotation of
the propellers. L is the size of the quadrotor arm (Figure 1) and J the inertia matrix
presented in (6).

J ¼
Jxx 0 0

0 Jyy 0

0 0 Jzz

2
64

3
75 (6)

Due to the forces produced by the rotors, moments are produced in the rigid
body (L � Fi), causing the system to rotate around the x and y axes. The rotation
around the z axis is due to the torque created by the rotation of the motors, which
are fixed to the plant. Based on the Coriolis Equation, the equation that describes
the angular acceleration in the Frame B is in (7).

J
_p
_q
_r

2
64

3
75

8><
>:

9>=
>;

B

¼
L F2 � F4ð Þ
L F1 � F3ð Þ

M1 þM2 þM3 þM4

2
64

3
75

8><
>:

9>=
>;

B

�
p
q
r

2
64

3
75

8><
>:

9>=
>;

B

� J
p
q
r

2
64

3
75

8><
>:

9>=
>;

B

(7)

For simulating the measurement noise, the tool allows to add a random signal to
position and orientation variables and their derivatives. A first order delay between
the comands u1 and u2 and rotor speed variations, with a time constant τ seconds,
was included in the tool to simulate the rotor dynamics.

3. Trajectory planning for a set of waypoints

Due to the low inertia of quadrotor it is necessary to calculate a smooth trajec-
tory to minimize the risk of collapse. Euler–Lagrange equations are used to find the
minimum snap trajectory [15, 19]. For a two waypoints trajectory, the boundary
conditions of position, velocity, acceleration, and jerk are defined in Table 1.

With this boundary conditions the equations’ coefficients for the two-points
optimal desired trajectory are calculated for each coordinate of position (xdes, ydes
and zdes) and orientation (ψdes) (8).

xdes
ydes
zdes
ψdes

2
6664

3
7775 ¼

c1,7 c1,6 c1,5 c1,4 c1,3 c1,2 c1,1 c1,0
c2,7 c2,6 c2,5 c2,4 c2,3 c2,2 c2,1 c2,0
c3,7 c3,6 c3,5 c3,4 c3,3 c3,2 c3,1 c3,0
c4,7 c4,6 c4,5 c4,4 c4,3 c4,2 c4,1 c4,0

2
6664

3
7775

t7

t6

t5

t4

t3

t2

t
1

2
66666666666664

3
77777777777775

(8)

Time t Position xdes tð Þ Velocity _xdes tð Þ Acceleration €xdes tð Þ Jerk €xdes tð Þ
0 xdes 0ð Þ 0 0 0

T xdes Tð Þ 0 0 0

Table 1.
Boundary conditions.
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Desired angles for roll (ϕdes) and pitch (θdes) are calculated from ψdes, the
equations depend on which control strategy is employed.

This procedure yields a minimum snap trajectory for two points. For additional
waypoints it is necessary to considermore equations and intermediary restrictions [15].

The tool calculates the complete optimized trajectory for any set of waypoints.
Desired trajectory rdes, orientation ψdes, and their derivatives are calculated for being
used in the control algorithms.

4. Attitude and trajectory following control strategies

Some of the challenges to be overcome in quadrotor operation are: attitude
stability for large angles, trajectory following, collision avoidance through aggres-
sive maneuvers, monitoring, and others [2, 4].

The control architecture employed in the following control strategies uses two cas-
caded loops. The inner loop (attitude control) runs in a fast time-scale and is assumed
exponentially stable. The outer loop (position control) runs in a slow time-scale, with a
higher bandwidth [4]. All of them employ a feed-forward with proportional plus deriv-
ative structure (FF-PD). The tool is open to easily addmore control strategies.

4.1 Small angle control

Small Angle control assumes an operation not too far from the hovering condi-
tion. A simple heuristic method with FF-PD control calculates the required acceler-
ations for the desired trajectory (9).

€xc
€yc
€zc

2
64

3
75 ¼ rdes þ Kp er þ Kd er (9)

It is assumed small deviations from zero in roll and pitch angles, small deviations
in the yaw angle from the desired value, and angular velocities close to zero. The
algorithm assumes all upward-pointing thrust vectors (control signal u1 in (10)).

u1 ¼ m g þ €zcð Þ (10)

After linear simplifications the equations for attitude control are defined in (11)
and (12) [16].
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νc ¼
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3
75 ¼ Tηc (12)

A PD control law is used for attitude control and to calculate u2 (13) [16].

u2 ¼ KR ηc � ηð Þ þ Kν νc � νð Þ (13)
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For simulating the measurement noise, the tool allows to add a random signal to
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Time t Position xdes tð Þ Velocity _xdes tð Þ Acceleration €xdes tð Þ Jerk €xdes tð Þ
0 xdes 0ð Þ 0 0 0

T xdes Tð Þ 0 0 0

Table 1.
Boundary conditions.
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Desired angles for roll (ϕdes) and pitch (θdes) are calculated from ψdes, the
equations depend on which control strategy is employed.

This procedure yields a minimum snap trajectory for two points. For additional
waypoints it is necessary to considermore equations and intermediary restrictions [15].

The tool calculates the complete optimized trajectory for any set of waypoints.
Desired trajectory rdes, orientation ψdes, and their derivatives are calculated for being
used in the control algorithms.
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4.2 Desired thrust vector control

At high speeds and roll and pitch angles far away from zero, a more robust
strategy is necessary. A FF-PD control law calculates the control signal u1 for the
trajectory following and compensates the gravity. Vector t is calculated with the
attitude for the desired effect (14). As u1 acts along the z direction in frame B (axis
bz), it must be referred to frame I (15).

t ¼ m rdes þ Kp er þ Kd er
� �þmgaz (14)

u1 ¼ tTRbz (15)

The axis bz is desired to be aligned with t. The desired rotation matrix Rdes is
calculated from the equation of rotation of bz in the direction of t (16).

Rdesbz ¼ t
tk k (16)

As we know ψdes we use (16) to calculate ϕdes and θdes. Rdes is constructed with
these three angles with the same structure of (2). The error in rotation ΔR is
calculated from (17).

ΔR ¼ RI
B

� �T
Rdes (17)

With the Rodrigues formula [20], the axis of rotation v and the rotation angle β
are calculated (18). I3�3 is the identity matrix and v̂ is the skew-symmetric matrix of
v (19). The related error is calculated with (20).

ΔR ¼ I3�3 cos β þ vvT 1� cos βð Þ þ v̂ sin β (18)

v̂ ¼
0 �v3 v2
v3 0 �v1
�v2 v1 0

2
64

3
75 (19)

eR ¼ βv (20)

A PD control law is used to calculated u2 (22).

eν ¼ νc � ν (21)

u2 ¼ ν� Jνþ J �KR eR � Kν eνð Þ (22)

Basin of attraction Ψ limits the set of rotations from which the quadrotor is
able to converge to the hovering state. It is a dimension of the set of angular and
linear velocities for a stable performance. For this control strategy it must be lower
than 2 (23).

Ψ ¼ tr I3�3 � RT
desR

I
B

� �
< 2 (23)

4.3 Geometric tracking control

Geometric Tracking Control exhibits almost global exponential attractiveness to
the zero equilibrium of tracking errors [17]. t and u1 are calculated as in (14) and
(15). bx is the desired direction vector in the first body-fixed axis (24).
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bx ¼
cosψdes

sinψdes

0

2
64

3
75 (24)

With t and bx is possible to calculate Rdes with (25) to (27) [17].

bz ¼ t
tk k (25)

by ¼ bz � bx

bz � bxk k (26)

Rdes ¼ by � bz by bz
� �

(27)

(27) calculates the desired attitude for the quadrotor given t and ψdes. The basin
of attraction Ψ (28) is bigger than in the previous strategy (23) as this is a more
robust approach [17].

Ψ ¼ 1
2
tr I3�3 � RT

desR
I
B

� �
< 2 (28)

Attitude tracking error and angular velocity error are calculated from (29, 30).
The control vector u2 is calculated in (31) [17].

eR ¼ 1
2

RT
desR

I
B � RI

B
T
Rdes

� �∨
(29)

eν ¼ ν� RI
B
T
Rdes νdes (30)

u2 ¼ ν� Jνþ J �KReR � Kνeνð Þ � J ν̂RI
B
T
Rdes νdes � RI

B
T
Rdes _νdes

� �
(31)

4.4 Particle swarm optimization for control gains tuning

A PSO algorithm is employed to tune the control gains. Some adjustments were
performed to reduce the processing [14, 15], s. Each particle αi is a vector with the
proportional and derivative gains (32).

αi ¼ Kp Kd KR Kν
� �

(32)

Using a predefined set of waypoints chosen by the user, the code calculates the
desired trajectory and tests each particle, calculating the RMS error. The PSO
algorithm evolves in the direction of the best validated solution in each iteration,
until achieving a minimum error tolerance. For faster convergence, every time a
particle is evaluated, the evaluation is interrupted in the middle of the trajectory if
the error increases above a predefined limit.

5. The graphical user interface

A user-friendly 3D animated GUI was developed in MatLab. It is able to evaluate
and compare the performance of various quadrotor control strategies for any user-
chosen trajectory. A few of quadrotor parameters are easily set in this interface [15].

A red vertical line indicates the upper side of the device, and a red circle the
front rotor. Waypoints are represented by red markers, the desired trajectory is on
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algorithm evolves in the direction of the best validated solution in each iteration,
until achieving a minimum error tolerance. For faster convergence, every time a
particle is evaluated, the evaluation is interrupted in the middle of the trajectory if
the error increases above a predefined limit.

5. The graphical user interface

A user-friendly 3D animated GUI was developed in MatLab. It is able to evaluate
and compare the performance of various quadrotor control strategies for any user-
chosen trajectory. A few of quadrotor parameters are easily set in this interface [15].
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dashed blue line, and the 3D interface axis limits are automatically adjusted from
the waypoints (Figure 2).

Waypoints, quadrotor parameters and simulation comands are set in th buttons
on the left side of the GUI.

The user may test its own control strategy just by creating the corresponding
code like the following example:

function New_Controller
% declare global variables
global quad;
% holds the quadrotor in the last waypoint
if(quad.iteracao > length(quad.rdes(1,:)))
Controlador_Position_Hold()
end
% start the controller code and calculate the global control commands
quad.u1=...
quad.u2=...

The code New_Controller.mmust be stored in the folder Controllers, and will
be recognized in the dropdown menu in the lower left side of Figure 2.

6. Results

The tool developed in MatLab and is available in GitHub [21]. The values
employed for these results are in Table 2 [3].

For simulating the measurement noise, a random signal was added to position
(�0:01 m) and orientation (�0:5∘) variables and their derivatives. Maximum and
minimum motor speeds make the simulation more reliable. A time constant τ of 0.1
s for dynamic rotor speed variation was considered.

Two sets of waypoints of challenging trajectories were tested, each one was
simulated in three different initial conditions: Case 1 starting with an orientation

Figure 2.
Graphical user interface.
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angle of ϕ 0ð Þ ¼ 0∘, Case 2 with ϕ 0ð Þ ¼ 88∘, and Case 3 with ϕ 0ð Þ ¼ 178∘. The three
control strategies available in the tool were graphically and numerically validated.

6.1 Elliptical helix trajectory

The first trajectory waypoints (Table 3) describe an elliptical helix in a forward
trajectory along with the x axis of inertial frame ix.

Parameter Value Units

Jxx 4:856� 10�3 kg:m2

Jyy 4:856� 10�3 kg:m2

Jzz 8:801� 10�3 kg:m2

k 2:980� 10�6 N:s2=rad2

g 9:81 m=s2

m 0:468 kg

Ax 0:25 kg=s

Ay 0:25 kg=s

Az 0:25 kg=s

b 1:100� 10�7 N:m:s2=rad2

L 0:225 m

Nimax 8500 rpm

Nimin 1300 rpm

τ 0:1 s

Table 2.
Quadrotor parameters [3].

t sð Þ xdes mð Þ ydes mð Þ zdes mð Þ ψdes radð Þ
0.00 �0.40 0.00 2.00 0.00

1.20 0.00 0.00 2.00 0.00

1.80 0.20 0.00 2.60 0.00

2.40 0.40 0.40 2.00 1.57

3.00 0.60 0.00 1.40 3.14

3.60 0.80 �0.40 2.00 4.71

4.20 1.00 0.00 2.60 6.28

4.80 1.20 0.40 2.00 7.85

5.40 1.40 0.00 1.40 9.42

6.00 1.60 �0.40 2.00 11.00

6.60 1.80 0.00 2.60 12.57

7.20 1.80 0.00 2.60 12.57

Table 3.
Waypoints test 1.
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With this set it was calculated the desired optimal trajectory. Using this trajec-
tory the PSO algorithm calculates the optimal gains for each of the three evaluated
control algorithms.

With this gains the simulation was performed and validation errors in each of
the four coordinates were registered. Tables 4–6 present the gains used in each
case, and corresponding validation errors.

When calculating the gains using PSO it was observed that the processing time
increases substantially with the initial orientation angle (ϕ 0ð Þ). It was also observed
in cases 2 and 3 that once a set of optimal gains is calculated, later results do not
reduce substantially the validation error.

Small angle control is more sensible to variations in rotational positions as
observed in the results. Optimal small angle control gains are bigger than rotational
(Tables 4–6). The opposite occurs for DTV and geometric tracking.

Case 3 is the most challenging since the quadrotor starts almost upside down.
Geometric tracking controller is more sensitive to noise error, PSO did not succeed
in finding a set of gains in Case 3.

A visual validation is possible using the tool. Graphics in Figure 3 show the
performance of small angle control in Case 3. The quadrotor drops and recoverers
the vertical position, and continues along with the desired trajectory. Graphics on
the right supports a visual validation of position and orientation variables.

In the graphics of propellers’ speeds of Figure 4, dashed red lines indicate the
speed extremes. In extreme situations, the controller attains the propellers’ limits.

Figure 5 presents the performance of DTV Control on Case 3. It is observed a
faster reaction and a more accurate trajectory following.

Near the third point the trajectory leads the quadrotor to its limits. Propellers’
speeds in Figure 6 show a more stable performance than the previous strategy.

Control Strategy Kp Kd KR Kν xv % yv % zv % ψv %

Small Angle 17.96 7.11 0.231 0.16 1.373 7.763 6.301 1.0300

DTV 18.91 10.77 44.920 23.43 2.112 4.907 5.300 0.6455

Geometric Tracking 7.34 7.35 90.590 20.75 3.172 8.807 26.680 0.3973

Table 4.
Elliptical helix trajectory case 1, ϕ 0ð Þ ¼ 0∘.

Control Strategy Kp Kd KR Kν xv % yv % zv % ψv %

Small Angle 22.76 2.00 0.765 0.197 2.01 32.69 26.22 0.6344

DTV 19.70 4.85 155.400 26.710 1.58 22.03 27.65 0.4949

Geometric Tracking 8.24 5.62 220.200 27.670 3.17 35.94 51.57 0.4027

Table 5.
Elliptical helix trajectory case 2, ϕ 0ð Þ ¼ 88∘.

Control Strategy Kp Kd KR Kν xv % yv % zv % ψv %

Small Angle 8.180 2.349 2.45 0.4371 5.988 64.98 146.1 1.223

DTV 7.268 3.434 236.40 31.4300 4.709 33.71 105.4 1.351

Geometric Tracking — — — — — — — —

Table 6.
Elliptical helix trajectory case 3, ϕ 0ð Þ ¼ 178∘.
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Compared with small angle, this strategy seems to be more robust and accurate.
Figure 7 presents the performance of geometric tracking control in Case 2.

This strategy reacts faster to challenging situations, since it recovers in a shorter

Figure 3.
Elliptical helix trajectory case 3 small angle control, ϕ 0ð Þ ¼ 178∘.

Figure 4.
Propellers’ speeds in rpm with small angle control.

Figure 5.
Elliptical Helix Trajectory Case 3 DTV Control, ϕ 0ð Þ ¼ 178∘.
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Elliptical helix trajectory case 1, ϕ 0ð Þ ¼ 0∘.

Control Strategy Kp Kd KR Kν xv % yv % zv % ψv %

Small Angle 22.76 2.00 0.765 0.197 2.01 32.69 26.22 0.6344

DTV 19.70 4.85 155.400 26.710 1.58 22.03 27.65 0.4949

Geometric Tracking 8.24 5.62 220.200 27.670 3.17 35.94 51.57 0.4027

Table 5.
Elliptical helix trajectory case 2, ϕ 0ð Þ ¼ 88∘.

Control Strategy Kp Kd KR Kν xv % yv % zv % ψv %

Small Angle 8.180 2.349 2.45 0.4371 5.988 64.98 146.1 1.223

DTV 7.268 3.434 236.40 31.4300 4.709 33.71 105.4 1.351

Geometric Tracking — — — — — — — —

Table 6.
Elliptical helix trajectory case 3, ϕ 0ð Þ ¼ 178∘.
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Compared with small angle, this strategy seems to be more robust and accurate.
Figure 7 presents the performance of geometric tracking control in Case 2.

This strategy reacts faster to challenging situations, since it recovers in a shorter

Figure 3.
Elliptical helix trajectory case 3 small angle control, ϕ 0ð Þ ¼ 178∘.

Figure 4.
Propellers’ speeds in rpm with small angle control.

Figure 5.
Elliptical Helix Trajectory Case 3 DTV Control, ϕ 0ð Þ ¼ 178∘.
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time its hovering orientation. This fast reaction makes it more sensitive to
measuring noise.

Propellers’ speeds in Figure 8 confirm the faster command reaction of the con-
troller compared with Figures 4 and 6. This strategy is also sensitive to nonlinear
behaviour. When it reaches the propeller limits, it is highly prone to instability.

The gains calculated for the more challenging Cases were later tested on Cases 1
and 2. Despite being less optimal they displayed a stable behaviour. The perfor-
mance is presented in Table 7.

Graphical results of small angle control performance on Case 1, when using the
optimal gains compared with the performance with the gains calculated for Case 3.
The system holds the attitude performance. The same comparison was performed
for DTV control. The decrease in performance is lower than with the small angle
controller [15].

Figure 6.
Propellers’ speeds in rpm with DTV control.

Figure 7.
Elliptical helix trajectory case 2 geometric tracking, ϕ 0ð Þ ¼ 88∘.

Figure 8.
Propellers’ speeds in rpm with geometric tracking.

114

Robotics Software Design and Engineering

6.2 Lemniscate Shape Trajectory

A second set of waypoints presented in Table 8, depicts a lemniscate shape
trajectory varying the position in Z, orienting the front of quadrotor (yaw angle ϕ)
in the direction of displacement.

Figure 9 depicts the second trajectory.

Control Strategy ϕ 0ð Þ∘ xv % yv % zv % ψv %

Small Angle 0° 1.373 7.763 6.301 1.0300

Small Angle1 0° 3.111 21.960 28.390 0.2430

Small Angle 88° 2.010 32.690 26.220 0.6344

Small Angle1 88° 3.242 51.760 49.580 0.3378

DTV 0° 2.112 4.907 5.300 0.6455

DTV1 0° 4.625 15.650 13.310 0.2350

DTV 88° 1.584 22.030 27.650 0.4949

DTV1 88° 4.886 41.580 44.530 0.3509

Geometric Tracking 0° 3.172 8.807 26.680 0.3973

Geometric Tracking2 0° 3.338 5.917 28.660 0.2615

1 Calculated with Gains of Case 3.
2 Calculated with Gains of Case 2.

Table 7.
Validation comparison for cases 1 and 2.

t sð Þ xdes mð Þ ydes mð Þ zdes mð Þ ψdes radð Þ
0.00 0.00 0.00 2.00 �1.57
0.40 0.12 �0.28 1.58 �0.79
0.80 0.40 �0.40 1.40 0.00

1.20 0.68 �0.28 1.58 0.79

1.60 0.97 0.00 2.00 0.79

2.00 1.25 0.28 2.42 0.79

2.40 1.53 0.40 2.60 0.00

2.80 1.81 0.28 2.42 �0.79
3.20 1.93 0.00 2.00 �1.57
3.60 1.81 �0.28 1.58 �2.36
4.00 1.53 �0.40 1.40 �3.14
4.40 1.25 �0.28 1.58 �3.93
4.80 0.97 0.00 2.00 �3.93
5.20 0.68 0.28 2.42 �3.93
6.60 0.40 0.40 2.60 �3.14
6.00 0.12 0.28 2.42 �2.36
6.40 0.00 0.00 2.00 �1.57

Table 8.
Waypoints test 2.
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6.2 Lemniscate Shape Trajectory
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As with the to previous trajectory, the small angle control compensates its
limitations with lower gains to guarantee stability, gains are bigger for position
control than for attitude.

DTV Control is again the best validated strategy. Geometric tracking presents a
lower performance due to its sensitivity to noise and nonlinear operation condi-
tions. The DTV control had presented the best validation even in the most chal-
lenging conditions.

Detailed results and analysis of this trajectory are available in [15].
Using the tool the graphical and numerical analysis was easier. Not much pro-

gramming knowledge was necessary for using and configuration, just basic MatLab
programming. Access to quadrotor parameters of the analyzed device, analyzing the
influence of measurements noise, and comparing and simulating different control
strategies is easier than with other visual platforms. Graphical and numerical simu-
lation results are easily available with the interface buttons.

7. Summary

Quadrotor control is a fascinating research area, but the equations involved and
programming skills requirements can be arduous for initiating students. It is a
worth to develop motivational appliances for beginners. This was the motivation to
present a beginner-friendly visual interface tool for the development of quadrotor
control strategies. It is easy to understand, device characteristics are simple to
configure, and control algorithms can be implemented and analyzed with not much
effort. It is not necessary to have a deep knowledge in programming languages, and
may be an introduction to this field of research.

This tool uses RMS and basin of attraction for numerical validation, and the GUI
may help to evaluate stability, robustness, and accuracy. It integrates these criteria
in a unique interface and helps to measure and visualize details and requirements
that may not be so clear using other visual tools.

Figure 9.
Lemniscate shape trajectory.
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Baseline controllers are offered so students may compare performance, and is
open to easily introduce other strategies for comparison. A trajectory planning
based on minimum snap give support to trajectory following control, and GUI
allows the evaluation in dimensions of position and time.

The tool makes easier and faster to realize critical quadrotor requirements and
limitations for challenging applications. These requirements may be related with
the complexity of a defined trajectory, the weakness of a control strategy, or the
improvements that may be carried out in the quadrotor (size, weight, propeller
power, etc.) to accomplish the desired results.

Other controllers can be studied and compared using this tool, such as
Backstepping and intelligent strategies. In the trajectory planning stage, applications
with obstacles may be simulated. Support for multiple quadrotors, communication
with the controller via Robotics Operating System (ROS) and implementation of
obstacles are some of the future improvements planned for this tool.

Abbreviations

ROS Robot Operating System
PSO Particle Swarm Optimization
DTV Desired Thrust Vector
RMS Root Mean Square
GUI Graphical User Interface
UAV Unmanned Aerial Vehicles
PD Proportional plus Derivative Control
PID Proportional Integral Derivative Control
LQR Linear Quadratic Regulator
LQG Linear Quadratic Gaussian
FF-PD Feed-forward Proportional Derivative Control

Nomenclature

I Inertial frame
V Vehicle frame
B Rigid Body frame
ωi Speed of the rotor i
Mi Moment produced by the rotor i
Fi Propulsion force produced by the rotor i
ϕ Roll
θ Pitch
ψ Yaw
_ϕ Rate of change of Roll
_θ Rate of change of Pitch
_ψ Rate of change of Yaw
sϕ,sθ,sψ Sine of angles ϕ, θ and ψ
cϕ,cθ,cψ Cosine of angles ϕ, θ and ψ

RY
X Rotation matrix of a vector represented in an arbitrary frame X for an

arbitrary Y frame
p Angular speed related to the x axis in the Frame B
q Angular speed related to the y axis in the Frame B
r Angular speed related to the z axis in the Frame B
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Baseline controllers are offered so students may compare performance, and is
open to easily introduce other strategies for comparison. A trajectory planning
based on minimum snap give support to trajectory following control, and GUI
allows the evaluation in dimensions of position and time.
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the complexity of a defined trajectory, the weakness of a control strategy, or the
improvements that may be carried out in the quadrotor (size, weight, propeller
power, etc.) to accomplish the desired results.
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_ϕ Rate of change of Roll
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_ψ Rate of change of Yaw
sϕ,sθ,sψ Sine of angles ϕ, θ and ψ
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X Rotation matrix of a vector represented in an arbitrary frame X for an

arbitrary Y frame
p Angular speed related to the x axis in the Frame B
q Angular speed related to the y axis in the Frame B
r Angular speed related to the z axis in the Frame B

117

Quadrotor Unmanned Aerial Vehicles: Visual Interface for Simulation and Control…
DOI: http://dx.doi.org/10.5772/intechopen.97435



_p Angular acceleration related to the x axis in the Frame B
_q Angular acceleration related to the y axis in the Frame B
_r Angular acceleration related to the z axis in the Frame B
η Angular position vector in the Frame I
r Linear position vector in the Frame I
€r Linear acceleration vector in the Frame I
ν Angular speed vector in the Frame B
T Rotation matrix for angular velocity
L Size of the quadrotor arm
J Inertia matrix
x Linear position of quadrotor in the x axis of frame I
y Linear position of quadrotor in the y axis of frame I
z Linear position of quadrotor in the z axis of frame I
er Linear position error vector
er Linear velocity error vector
Kp Linear control gain
Kd Derivative control gain
m Quadrotor mass
g Gravity constant
KR Angular position control gain
Kν Angular velocity control gain
t Desired orientation vector
bi Desired direction vector on axis i of frame B
I3x3 Identity matrix
v Axis of rotation of Rodriguez formula
β Angle of rotation of Rodriguez formula
eR Angular position error vector
eν Angular velocity error vector
Ψ Basin of attraction
α Particle of the PSO algorithm
k Constant of the rotor force
b Constant of the rotor moment
τ Time constant for rotor delay dynamics
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Chapter 8

AI-Based Approach for Lawn
Length Estimation in Robotic
Lawn Mowers
Yoichi Shiraishi, Haohao Zhang and Kazuhiro Motegi

Abstract

This chapter describes a part of autonomous driving of work vehicles. This type
of autonomous driving consists of work sensing and mobility control. Particularly,
this chapter focuses on autonomous work sensing and mobility control of a com-
mercial electric robotic lawn mower, and proposes an AI-based approach for work
vehicles such as a robotic lawn mower. These two functions, work sensing and
mobililty control, have a close correlation. In terms of efficiency, the traveling
speed of a lawn mower, for example, should be reduced when the workload is high,
and vice versa. At the same time, it is important to conserve the battery that is used
for both work execution and mobility. Based on these requirements, this chapter is
focused on developing an estimation system for estimating lawn grass lengths or
ground conditions in a robotic lawn mower. To this end, two AI algorithms, namely,
random forest (RF) and shallow neural network (SNN), are developed and evalu-
ated on observation data obtained by a fusion of ten types of sensor data. The RF
algorithm evaluated on data from the fusion of sensors achieved 92.3% correct
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Chapter 8

AI-Based Approach for Lawn
Length Estimation in Robotic
Lawn Mowers
Yoichi Shiraishi, Haohao Zhang and Kazuhiro Motegi

Abstract

This chapter describes a part of autonomous driving of work vehicles. This type
of autonomous driving consists of work sensing and mobility control. Particularly,
this chapter focuses on autonomous work sensing and mobility control of a com-
mercial electric robotic lawn mower, and proposes an AI-based approach for work
vehicles such as a robotic lawn mower. These two functions, work sensing and
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and vice versa. At the same time, it is important to conserve the battery that is used
for both work execution and mobility. Based on these requirements, this chapter is
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production lines. As these vehicles share a battery for their work and mobility, the
interaction between their functions should be effectively controlled to reduce bat-
tery charging frequency and time, as well as working time. The authors in [4]
attempted to optimize the skidding control of a snow blower, which has a motor for
mobility and an engine for blowing snow. In this case, the engine is also used to
generate electric power, which is then used to charge the battery that powers the
motor. In this sense, its work and mobility share the energy, thus the two functions
require effective energy management. Precise control handling of work load in
these work vehicles is critical for optimizing its energy management.

In the following sections, because commercial robo-mowers [8] are popular and
readily available for experiments, a robo-mower is used as an example for optimiz-
ing energy management in work vehicles. Mobility control is the next research
theme for optimizing the energy management of robo-mowers. Current robo-
mowers do not recognize the length of lawn grasses or ground conditions such as
dirt, gravel, or concrete. As a result, the motor for cutting lawn grasses operates at a
constant rotation speed from start to finish. Therefore, if the rotation speed of the
motor for a lawn grass cutter is precisely controlled, battery wastage can be
avoided. Moreover, because the control of grass cutting and mobility is correlated,
the mobility speed should be controlled according to the lawn grass lengths and
ground conditions. Then, the working time can also be reduced. Therefore, the
precise estimation of lawn grass lengths using effective sensor data is required in the
first stage, i.e., preventing battery wastage. Then, in the second step, the mobility of
robo-mowers is controlled according to the estimation results from the first stage.
Finally, a cooperative control of a group of robo-mowers is researched [3] and
implemented. In particular, the group control of robo-mowers becomes meaningful
when the performance of each robo-mower is optimized.

In this study, an AI-based approach is adopted for the estimation of lawn grass
lengths from the fusion of sensor data. A random forest (RF) algorithm and shallow
neural network (SNN) are suggested. Ten measurement data types are obtained
from sensors attached to a robo-mower. The combination of sensor data types is
essential for lawn grass estimation, that is, a sensor fusion problem is discussed. In
general, the sensor fusion and use of big data have attracted many researchers’
interest. Recently, there have been detailed surveys on the combination of sensor
fusion and big data analysis [9, 10]. Some applications to actual problems have also
been reported [11–13]. The popular approach for big data analysis is the use of
machine learning. Takami G., et al. [11] studied the observation of plant status.
They used three kinds of sensors and a deep learning (DL) algorithm for big data
analysis. The details of the DL are not described, and the processing time of the
observation system is not known; however, it may be useful to learn that they
predicted the deterioration of sensors performance through their combination.
Alonso S., et al. [12] also adopted the same approach for observing a screw com-
pressor in a chiller. They used five kinds of sensor data and a 1D convolutional
neural network (CNN) for their analysis. The adoption of 1D CNN makes monitor-
ing faster and real-time processing is realized. Their approach is probably suitable
for data without any estimated features; however, in this study some features may
be efficient for the estimation task in advance. Li C., et al. [13] performed the
diagnosis of rotating machinery. They used vibration sensor signals, and the
Gaussian-Bernoulli deep Boltzmann machine was used for their analysis. The accu-
racy of fault estimation was evaluated; however, its real-time processing require-
ment was not mentioned. Therefore, this approach cannot be applied to the
problem dealt with in the following.

In the experiments of the proposed AI-based approach, the application of RF
algorithm to the fusion of seven sensors attained a 92.3% correct estimation ratio in
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several experiments on actual lawn grass areas. In addition, the application of SNN
attained 95.0%. Moreover, the accuracy of SNN is 94.0% in such trials in which
sensing data are continuously obtained while the robo-mower is in operation. The
proposed estimation system is being developed by integrating it with two types of
motor control systems for grass cutting and robot mobility, respectively. At present,
the authors are promoting the research and development of robo-mowers for com-
mercial use by collaborating with an automobile company.

The outline of this chapter is as follows. Section 2 describes the Hybrid Twin ™,
which is the basic idea for controlling the robo-mower in real time. Section 3
describes robo-mower used in this chapter; however, the discussions are not limited
to this robo-mower. Moreover, the estimation problem of lawn grass lengths is also
defined in this section. Section 4 describes the proposed RF and SNN algorithms.
Section 5 describes the experimental results based on the big data obtained from
sensor fusion and a set of features for classifying the sensor data are. Furthermore,
the set of necessary sensors and performance evaluations of the proposed algo-
rithms are stated. Section 6 describes the evaluation of the proposed SNN algorithm
when applied to the consecutive sensor data obtained in real-world use. Finally, the
chapter is summarized in Section 7.

2. Hybrid twin within work vehicle

The Hybrid Twin ™ approach [14] is efficient for real-time object control. The
proposed estimation method is useful for controlling the operation of lawn grass
cutter motor and a mobility motor. When the robot is operating in an area with long
lawn grasses, the motor should be set to the maximum rotation speed. On the other
hand, the rotation speed should be reduced or stopped when the robo-mower is
operating in an area with short lawn grasses or in an area without any lawn grasses,
respectively. As a result, battery consumption will decrease. Furthermore, if it is
possible to control the robo-mower’s speed so that it decreases or increases
according to the length of lawn grasses, the working time will be greatly reduced.
When a ground without lawn grasses is identified, laying the electric cable that
defines the boundary of the area is no more necessary and, as a result, the required
maintenance is reduced.

Digital Twin has become popular for implementing smart factory, and it has been
used [15] for controlling mission-critical systems, such as nuclear plant, airplane
control, or rocket control in the aerospace industry. The Digital Twin constructed in
the virtual space means a twin of a real space object. The twin is a precise model, and
its behaviors are reproduced in the virtual space. The Hybrid Twin ™ is an extension
of Digital Twin. As the target system has become large and complicated, the Virtual
Twin has been separated from the Digital Twin, as shown in Figure 1.

The Digital Twin only obtains data from a fusion of sensors, and measurement
data with some abstractions are transferred to the Virtual Twin. The Virtual Twin is a
precise co-simulator consisting of subsystems obtained using a model-based design
method. This simulator must be sufficiently fast, and it is usually a 1-D simulator,
which is a high-speed version of the original 3-D simulator is used. The Hybrid is a
combination of the Virtual Twin and Digital Twin, and the optimized state of the real
system on time tþ Δtð Þmust be fedback to the real system from the state on time tð Þ.
This loop is iterated over with the time interval Δtð Þ. As a result, the state of the real
system is optimized in real time. Measurement data are extracted from the fusion of
sensors for robo-mower operations, and noise reduction is applied to the obtained
parameters in the Digital Twin. This means that the Digital Twin is an accurate
numerical model of real objects. The Virtual Twin receives the obtained data s(t) at
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motor. In this sense, its work and mobility share the energy, thus the two functions
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these work vehicles is critical for optimizing its energy management.
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implemented. In particular, the group control of robo-mowers becomes meaningful
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In this study, an AI-based approach is adopted for the estimation of lawn grass
lengths from the fusion of sensor data. A random forest (RF) algorithm and shallow
neural network (SNN) are suggested. Ten measurement data types are obtained
from sensors attached to a robo-mower. The combination of sensor data types is
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general, the sensor fusion and use of big data have attracted many researchers’
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fusion and big data analysis [9, 10]. Some applications to actual problems have also
been reported [11–13]. The popular approach for big data analysis is the use of
machine learning. Takami G., et al. [11] studied the observation of plant status.
They used three kinds of sensors and a deep learning (DL) algorithm for big data
analysis. The details of the DL are not described, and the processing time of the
observation system is not known; however, it may be useful to learn that they
predicted the deterioration of sensors performance through their combination.
Alonso S., et al. [12] also adopted the same approach for observing a screw com-
pressor in a chiller. They used five kinds of sensor data and a 1D convolutional
neural network (CNN) for their analysis. The adoption of 1D CNN makes monitor-
ing faster and real-time processing is realized. Their approach is probably suitable
for data without any estimated features; however, in this study some features may
be efficient for the estimation task in advance. Li C., et al. [13] performed the
diagnosis of rotating machinery. They used vibration sensor signals, and the
Gaussian-Bernoulli deep Boltzmann machine was used for their analysis. The accu-
racy of fault estimation was evaluated; however, its real-time processing require-
ment was not mentioned. Therefore, this approach cannot be applied to the
problem dealt with in the following.

In the experiments of the proposed AI-based approach, the application of RF
algorithm to the fusion of seven sensors attained a 92.3% correct estimation ratio in
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several experiments on actual lawn grass areas. In addition, the application of SNN
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motor control systems for grass cutting and robot mobility, respectively. At present,
the authors are promoting the research and development of robo-mowers for com-
mercial use by collaborating with an automobile company.

The outline of this chapter is as follows. Section 2 describes the Hybrid Twin ™,
which is the basic idea for controlling the robo-mower in real time. Section 3
describes robo-mower used in this chapter; however, the discussions are not limited
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The Hybrid Twin ™ approach [14] is efficient for real-time object control. The
proposed estimation method is useful for controlling the operation of lawn grass
cutter motor and a mobility motor. When the robot is operating in an area with long
lawn grasses, the motor should be set to the maximum rotation speed. On the other
hand, the rotation speed should be reduced or stopped when the robo-mower is
operating in an area with short lawn grasses or in an area without any lawn grasses,
respectively. As a result, battery consumption will decrease. Furthermore, if it is
possible to control the robo-mower’s speed so that it decreases or increases
according to the length of lawn grasses, the working time will be greatly reduced.
When a ground without lawn grasses is identified, laying the electric cable that
defines the boundary of the area is no more necessary and, as a result, the required
maintenance is reduced.

Digital Twin has become popular for implementing smart factory, and it has been
used [15] for controlling mission-critical systems, such as nuclear plant, airplane
control, or rocket control in the aerospace industry. The Digital Twin constructed in
the virtual space means a twin of a real space object. The twin is a precise model, and
its behaviors are reproduced in the virtual space. The Hybrid Twin ™ is an extension
of Digital Twin. As the target system has become large and complicated, the Virtual
Twin has been separated from the Digital Twin, as shown in Figure 1.

The Digital Twin only obtains data from a fusion of sensors, and measurement
data with some abstractions are transferred to the Virtual Twin. The Virtual Twin is a
precise co-simulator consisting of subsystems obtained using a model-based design
method. This simulator must be sufficiently fast, and it is usually a 1-D simulator,
which is a high-speed version of the original 3-D simulator is used. The Hybrid is a
combination of the Virtual Twin and Digital Twin, and the optimized state of the real
system on time tþ Δtð Þmust be fedback to the real system from the state on time tð Þ.
This loop is iterated over with the time interval Δtð Þ. As a result, the state of the real
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time (t), and then, estimation results c s tð Þð Þ are obtained using AI algorithms. The
control parameter set at time tþ Δtð Þ for motors is given to the real robo-mower. This
loop is repeated during the operation of the robo-mower.

3. Work vehicles

This section describes the work vehicle used in the following discussions and
experiments. A commercial robo-mower [8] is used as the experimental hardware
for evaluating the proposed algorithms with the available fusion of sensors.

3.1 Robotic Lawn mower

The exterior and the backside of the robo-mower are shown in Figure 2(a). The
system configuration is shown in Figure 2(b). It has two kinds of motor controllers,

Figure 1.
Hybrid twin within work vehicles.

Figure 2.
Robotic Lawn mower and target system configuration.
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one of which is used for controlling the lawn grass cutter and another is for its
mobility. These controllers are powered by the same battery, and therefore, battery
wastage depends on their usages. The subsystem, “Lawn Grass Length/Not Lawn
Grass Estimator” is newly developed.

The robo-mower is used for experiments by attaching sensors, a single-board
computer, a personal computer and peripheral devices on the robo-mower, as
shown in Figure 3. All these devices are managed by an ROS (robot operating
system) running on the personal computer. The robo-mower can be autonomously
driven; however, it is controlled using a Bluetooth controlling device in the exper-
iments to increase the accuracy of the experiments. A camera can be used as a
sensor, but it is inadequate for the experiments due to its high cost of image
processing software and hardware. In the experiments, it will be shown that no
camera is needed for the required estimation.

3.2 Fusion of sensors

The sensors attached to the robo-mower shown in Figure 3 are listed in Table 1.
The robo-mower has originally been equipped with built-in sensors. The 9-axis

Figure 3.
Robotic Lawn mower with sensors and devices for development.

Sensors Mounting positions Measurements

9-axis Inertial Measurement Unit Inside of the Robo-mower Acceleration

Angular Acceleration

Surface of the Robo-mower Acceleration

Angular Acceleration

Built-In Battery Voltage

Current

Power

Rotation of Grass Cutting Motor

Rotation of Traveling Motor

Horizontal/Vertical Acceleration

Table 1.
Fusion of sensors.
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one of which is used for controlling the lawn grass cutter and another is for its
mobility. These controllers are powered by the same battery, and therefore, battery
wastage depends on their usages. The subsystem, “Lawn Grass Length/Not Lawn
Grass Estimator” is newly developed.

The robo-mower is used for experiments by attaching sensors, a single-board
computer, a personal computer and peripheral devices on the robo-mower, as
shown in Figure 3. All these devices are managed by an ROS (robot operating
system) running on the personal computer. The robo-mower can be autonomously
driven; however, it is controlled using a Bluetooth controlling device in the exper-
iments to increase the accuracy of the experiments. A camera can be used as a
sensor, but it is inadequate for the experiments due to its high cost of image
processing software and hardware. In the experiments, it will be shown that no
camera is needed for the required estimation.
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The sensors attached to the robo-mower shown in Figure 3 are listed in Table 1.
The robo-mower has originally been equipped with built-in sensors. The 9-axis

Figure 3.
Robotic Lawn mower with sensors and devices for development.

Sensors Mounting positions Measurements

9-axis Inertial Measurement Unit Inside of the Robo-mower Acceleration

Angular Acceleration

Surface of the Robo-mower Acceleration

Angular Acceleration

Built-In Battery Voltage

Current

Power

Rotation of Grass Cutting Motor

Rotation of Traveling Motor

Horizontal/Vertical Acceleration

Table 1.
Fusion of sensors.

125

AI-Based Approach for Lawn Length Estimation in Robotic Lawn Mowers
DOI: http://dx.doi.org/10.5772/intechopen.97530



inertial measurement units (IMUs), MPU-9250 [16], are attached inside and to the
surface of the robo-mower to measure acceleration and angular acceleration. Six
built-in sensors are available for measuring the corresponding parameters as shown
in Table 1. Here the noise of sensors is negligibly small; however, outliers are
excluded in the Digital Twin. The adequate fusion of these sensors is determined in
each of the proposed algorithms, and this is verified in the experiments.

3.3 Estimation problem of Lawn grass lengths

The estimation problem of lawn grass lengths and ground conditions is defined
below. The problem is to estimate lawn grass lengths in real time using sensor fusion
data. The objective function is to increase the accuracy of estimation.

The Estimation Problem.
Input: set of available sensors, robo-mower’s specifications, set of areas labeled.
long lawn grass, short lawn grass, and without lawn. grasses, some of which are

specified as test areas.
Output: fusion of sensors necessary for estimation and estimation results for test

areas.
Objective Function: maximization of estimation accuracy.

4. AI-based approach

An AI-based approach is adopted for solving the estimation problem. The reason
for this is that a combination of different types of sensor data should be handled,
and the definition of long or short lawn grass is determined by the height of the
lawn grass cutter from the ground. Moreover, a human operator estimates the
length of a lawn grass based on sounds made by the lawn grass cutter while cutting
grasses. Estimation using an AI-based approach is expected to be more efficient and
accurate than estimation based on human judgment. The RF algorithm and SNN are
adopted considering the execution speed in real-world applications.

4.1 Random Forest algorithm

The RF algorithm, a machine learning algorithm, originates from Breiman
[17], and recently, its deep version has also been proposed [18]. This algorithm
is used for classification, regression or clustering, etc. and is a type of ensemble
algorithm using a set of decision trees as weak learners to avoid over-fitting and
to maintain its high generalization performance. It is fast and achieves a com-
paratively high performance. According to the study [18], the deep RF algo-
rithm achieves better results in specific applications while performing nearly as
well in other wide applications. In the following, a specific RF algorithm is
developed.

An RF algorithm consists of a given number of binary decision trees. The
training and inference phases of the algorithm are shown in Figure 4(a) and (b),
respectively. In the configuration of binary decision trees, a set of training data
sampled from input data is given to each of the binary decision trees. Then, the
binary decision trees are constructed, as shown in Figure 5.

The data consist of the followings:
nif g i ¼ 1, 2,⋯, pð Þ: input data for classification, regression or clustering, etc.
xif g i ¼ 1, 2,⋯, qð Þ: features for classifying input data nif g.
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4.1.1 Configuration of binary decision tree

An example of a binary decision tree is shown in Figure 5. In the root node, the
input data are divided into two subsets using the conditions, x1 < c1 and x1 ≥ c1. If
the data satisfy the condition x1 < c1, the data are classified into the class l1 as shown
in this figure. When all data are classified into the corresponding classes (that is,
leaves), the binary decision tree is completed. Here, for example, a classification
and regression tree algorithm is used for classification, and the objective function is
Gini’s diversity index [18]. All parameters in binary decision trees are used in the
classification phase.

4.1.2 Classification of data

For example, Bagging, an ensemble algorithm, is used for data classification. In
this case, data that should be classified are distributed to all binary decision trees,
and the decision of each binary decision tree is obtained. The final decision, that is,

Figure 4.
Random forest algorithm.

Figure 5.
Construction of binary decision tree.
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developed.
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xif g i ¼ 1, 2,⋯, qð Þ: features for classifying input data nif g.
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4.1.1 Configuration of binary decision tree

An example of a binary decision tree is shown in Figure 5. In the root node, the
input data are divided into two subsets using the conditions, x1 < c1 and x1 ≥ c1. If
the data satisfy the condition x1 < c1, the data are classified into the class l1 as shown
in this figure. When all data are classified into the corresponding classes (that is,
leaves), the binary decision tree is completed. Here, for example, a classification
and regression tree algorithm is used for classification, and the objective function is
Gini’s diversity index [18]. All parameters in binary decision trees are used in the
classification phase.

4.1.2 Classification of data

For example, Bagging, an ensemble algorithm, is used for data classification. In
this case, data that should be classified are distributed to all binary decision trees,
and the decision of each binary decision tree is obtained. The final decision, that is,

Figure 4.
Random forest algorithm.

Figure 5.
Construction of binary decision tree.
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the class to which the data belong, is determined on the basis of the majority rule.
This process is faster if the binary decision trees are executed in parallel, and the
decision quality is higher than if only one binary decision tree is used. As a 1D
simulator, or a Virtual Twin, processing time for estimating the target area is
essential.

4.2 Shallow neural network

As another AI-based approach, a SNN is used. “Shallow” means it has only one
hidden layer, and this is expected to fasten processing. The estimation performance
of SNN is compared with that of the RF algorithm.

4.2.1 Design of shallow neural network

The deep neural network performs well in image recognition, and it has been
used in autonomous driving of automobiles, appearance inspection, image recogni-
tion of robots, and other applications. However, it requires a large amount of
training data, and accordingly, a huge amount of processing time is needed in
network training. In addition, the inference should also be executed on a GPU
machine. On the contrary, the size of signal data is not so big because they are time-
series, and no deep neural network may be needed for its recognition. For example,
the on-line hammering sound inspection based on the simplest neural network with
no hidden layers, a support vector machine, achieves more than 99% accuracy
within a short time [19].

In the following, an SNN, as shown in Figure 6, is constructed. Here, the
number of hidden layers is only one, and this layer has ten neurons. The number of
neurons in the input layer equals the size of input signal length or statistical features
such as the maximum value, minimum value, average value, median value, stan-
dard deviation value, peakedness value, and skewness value, all of which are
obtained from the input sensor signal. The number of neurons in the output layer is
two, that is, areas with or without lawn grasses, or with short or long lawn grasses.
A hyperbolic tangent activation function and a softmax function are incorporated
into the output layer.

Figure 6.
Shallow neural network configuration.
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4.2.2 Application of shallow neural network

In the following, two SNN models are developed with a cascade connection. The
first model estimates the target areas that are with or without lawn grasses because
this can be distinguished according to the acceleration of the robo-mower operating
in a corresponding area. The second model estimates the height of the lawn grass as
long or short. It is expected that this might be determined by checking the current
of the motor depending on the load on the cutting blade. These two models are
connected in series, that is, a cascade configuration. Furthermore, these SNNs are
trained independently.

5. Experimental results

This section focuses on the experiments and evaluations of the RF algorithm and
SNN on real-world sensing data.

5.1 Experiments on RF algorithm

5.1.1 Measurement data

The data measured by the sensors are obtained by driving the robo-mower on a
field with long lawn grasses and short lawn grasses as well as without lawn grasses.
The actual remote-controlled robo-mower is shown in Figure 7. The remote-control
system through Bluetooth communication is incorporated in the robo-mower by
mounting a mini-PC and running an ROS on it. The mini-PC can also handle the
collected sensor data.

Figure 7.
Remote-controlled driving of Robo-mower.
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The collected data are manually categorized into long and short lawn grass datasets
according to the height of the grass cutter from the ground. If the length of lawn
grasses exceeds the height of the grass cutter, the lawn grass length is defined as long
and otherwise, short. When the heights of lawn grasses and grass cutter are equal, a
human operator determines whether the lawn grass is long or short according to the
operating sound of the grass cutter. The measurement data are collected within a total
time of 2.3 h. All data are collected on flatlands on sunny days.

5.1.2 Features for classifying data

Statistical features of input data xif g i ¼ 1, 2,⋯, qð Þ for classification are calcu-
lated, including (i) maximum value, (ii) minimum value, (iii) average value, (iv)
median value, (v) standard deviation value, (vi) kurtosis value, and (vii) skewness
value. The values of seven feature types are normalized into the interval [˗1,1].
These features are used in configuring binary decision trees, and they are calculated
for each time frame obtained approximately every 3.2 s over 2.3-h measurement
data. The details of the collected data are shown in Table 2. Even if the total time
for data collection is less than 2.3 h because of, for example, some issues with
measurement devices, the obtained data are used.

In the experiments, a subset of time frames obtained from each field data is used
for configuring the binary decision trees, and the completed forest is applied to the
remaining test data. Then, classification performance of the RF algorithm is evaluated.

The number of time frames (training data) used to configure the binary decision
trees in each group is chosen at random from the measurement data. The remaining
time frames are used as test data for evaluating the RF’s performance. These are
shown in Table 3.

5.1.3 Evaluation criteria

Each of the time frame data has its label, that is, long lawn grasses, short lawn
grasses, and not lawn grasses, and the estimation can be verified. This process

Groups Number of time frames

Long Lawn Grasses 2,356

Short Lawn Grasses 1,575

Not Lawn Grasses 3,374

Total 7,305

Table 2.
Specifications of measurement data for evaluating RF algorithm.

Groups Number of time frames

For training For testing

Long Lawn Grasses 1,686 670

Short Lawn Grasses 904 671

Not Lawn Grasses 2,705 669

Total 5,295 2,010

Table 3.
Number of time frames for training and testing RF algorithm.
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consists of two stages. The first stage is used to estimate whether an area is with or
without lawn grasses. In the second stage, an area is further estimated whether it
has long or short lawn grasses when it is estimated to have lawn grasses. In the
testing, four kinds of evaluation criteria are used. These are defined below [20].

Actuals

Positive Negative

Predictions Positive TP FP

Negative FN TN

1.Accuracy

Accuracy ¼ TPþ TN
TPþ FPþ FN þ TN

(1)

2.Precision

Precision ¼ TP
TPþ FP

(2)

3.Recall

Recall ¼ TP
TPþ FN

(3)

4.F-Measure

F �Measure ¼ 2 ∗Presision ∗Recall
Precisionþ Recall

(4)

where TP,TN, FP, and FN denote “True Positive,” “True Negative,” “False
Positive,” and “False Negative,” respectively.

5.1.4 Evaluation results

Seven combinations of sensor data used are shown in Table 4. These combina-
tions cover all possible cases. Using the measurement data from C1 to C7, the best
combination of sensor data is determined based on the above-mentioned evaluation
criteria.

The procedure of experiments is as follows.

1.Select the sensor data corresponding to the cases shown in Table 4 collected in
three ground conditions, that is, “Long Lawn Grasses,” “Short Lawn Grasses,”
and “Not Lawn Grasses.”

Determine the subset of sensor data (1) and partition it to configure the binary
decision trees and to test the RF algorithm according to the number of the time
frames shown in Table 3.
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2.Configure the binary decision trees.

3.Evaluate the performances of the RF algorithm based on the evaluation
criteria.

The number of binary decision trees, that is, the size of the forest is set to 1,000.
Each binary decision tree is configured using the seven features mentioned in 5.1.2
until each leaf coincides with one of three ground conditions. An example of an
actually constructed binary decision tree is shown in Figure 8. Here, the feature,
median value, obtained from built-in vertical angle sensor data with its threshold
370.75, is used for classifying the input data on the root node. The class

Sensors Mounting
positions

Measurements C1 C2 C3 C4 C5 C6 C7

9-axis Inertial Measurement
Unit

Inside of Body Acceleration √ √ √ √ √ √

Angular
Acceleration

√ √ √ √ √ √

Surface of Body Acceleration √ √ √

Angular
Acceleration

√ √ √

Built-In Battery Voltage √ √ √ √ √

Current √ √ √ √ √

Power √ √ √ √ √

Rotation of Grass Cutting Motor √ √ √ √ √

Rotation of Traveling Motor √ √ √ √ √

Horizontal/Vertical Angles √ √ √

Table 4.
Combinations of sensor data.

Figure 8.
Example of binary decision tree in RF algorithm.
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“TreeBagger” included in “Statics and Machine Learning Toolbox” in MATLAB [21]
is used for implementing the RF algorithm. The processing time for configuring
1,000 binary decision trees is less than ten minutes on a PC with the standard
performances. The completed forest is applied to the testing data whose size is
approximately 700 in each of the three ground conditions shown in Table 3. The
estimating time is negligibly small, and this is no issue in the actual Hybrid Twin
approach. Table 5 shows the performance of the algorithm according to different
sensor data combinations. Seven cases are evaluated with respect to the measure-
ment criteria in each ground condition. The most important performance is the
accuracy, and it increases when the built-in sensor data are used. Particularly, C6
and C7, excluding the built-in horizontal or vertical angle sensor, have higher
accuracy. It seems reasonable that the battery status and motor rotation conditions
contribute to higher performance because the rotation of the motor becomes high
when it encounters long lawn grasses. On the other hand, the load on both the grass
cutting motor and traveling motor is reduced when the robo-mower travels on a
ground without lawn grasses. From the evaluation results, C6 is desirable among
seven cases. The reason is that

1.the accuracy is high, with a difference of only 0.1 points from maximum
92.28%,

2.the recall ratio of Short Lawn Grasses, 87.08%, is the highest.

Especially, the low recall ratio of Short Lawn Grasses means that the probability
of incorrectly recognizing short lawn grasses as long lawn grasses or a ground other
than lawn grasses is high. Then, the traveling speed of the robo-mower is reduced,
and the rotation of the grass cutting motor is increased. This would increase the
working time and waste electric energy. Moreover, when a short lawn grass area is
incorrectly classified as a ground without lawn grasses, the robo-mower will not
move on the areas and will not cut lawn grasses. Therefore, it would be concluded
that C6 is the best combination in this evaluation results. Sensor data, including the
acceleration and angular acceleration values obtained using the 9-axis IMU attached
inside the robo-mower; the voltage, current, and power of the battery; the rotation

Combinations of sensor data C1 C2 C3 C4 C5 C6 C7

Accuracy 75.84 77.52 86.32 90.92 91.58 92.18 92.28

Long Lawn Grasses Precision 77.06 70.70 92.68 92.60 91.46 92.66 91.04

Recall 73.02 67.70 93.46 93.60 93.64 93.44 93.56

F-measure 74.99 69.17 93.07 93.10 92.54 93.05 92.28

Short Lawn Grasses Precision 72.66 73.84 87.30 90.48 92.12 89.40 92.04

Recall 60.88 68.28 70.06 82.00 83.26 87.08 85.58

F-measure 66.25 70.95 77.73 86.03 87.47 88.22 88.69

Not Lawn Grasses Precision 77.06 86.34 80.24 89.70 91.34 94.40 93.72

Recall 93.60 96.60 95.46 97.20 97.90 96.08 97.70

F-measure 84.53 91.18 87.19 93.30 94.51 95.23 95.67

Average of Precision, Recalls, and F-measures 75.56 77.20 86.35 90.89 91.58 92.17 92.25

Table 5.
Evaluation results for sensor fusions.
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speed of the grass cutting and traveling motors obtained using built-in sensors, are
used in C6.

5.2 Experiments for SNN

5.2.1 Available sensors

The built-in sensors attached to the robo-mower are listed in Table 1. Six built-
in sensors are available for measuring the corresponding parameters shown in
Table 1. The objectives of the experiments are first to evaluate the accuracy of lawn
grass height estimation and ground condition estimation and, second, to compare
the SNN’s results with those of the RF algorithm.

5.2.2 Measurement data

The data measured by sensors are collected while driving the robo-mower on a
field with long and short lawn grasses as well as without lawn grasses. The three
types of lawn grasses are shown in Figure 9(a)–(c) are used for the experiments. In
each of these cases, the long lawn grass case and short lawn grass case are performed
by adjusting the lawn grass cutting blade height from the ground. Similarly, several
ground conditions without lawn grasses are adopted as shown in Figure 9(d)–(f),
which are asphalt, gravel, and stone pavement, respectively.

The collected data are categorized into three groups. The first group is for long
lawn grasses, that is, the height of lawn grass is larger than the specified one. The
second group is for the short lawn grasses, that is, the lawn grass is shorter than or
equal to the specified one. The third group is the field without lawn grasses, that is,
dirt, gravel, stone pavement, tiled, asphalt, or concrete fields. The measurement
data are collected for a total driving time of 2.3 h for each group with various fields.

Figure 9.
Variations of target areas.
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5.2.3 Fusion of sensors for SNN

The fusions of sensors for two SNNs SNN1 and SNN2 are experimentally deter-
mined. Ten types of sensors, as shown in Table 1. As Figure 10 shows, SNN1 and
SNN2 are cascade connected, where SNN1 estimates if a target area is with or
without lawn grasses, and SNN2 provides the result that an area is with long/short
lawn grasses. The basic idea behind this configuration is that sensor fusion may
differ with these two types of estimations.

For SNN1, the Horizontal/Vertical Acceleration sensor seems adequate, and the
combinations of x, y, and z-axis sensor data are experimented with and evaluated on
some datasets. The obtained accuracy is shown in Figure 10. For the estimation of
lawn lengths, sensor fusion indicating the load of the lawn grass cutter seems
effective. Therefore, the measurement data obtained from the combinations of the
battery sensor and duty ratio given to the cutting motor are evaluated with some
datasets. As shown in Figure 10, the multiplication of battery voltage and the duty
ratio for the cutting motor achieves maximum accuracy. The differences are minor;
however, this multiplication is probably the reason for showing the load of grass
cutting motor.

As a result, the x-axis and z-axis values obtained from the Horizontal/Vertical
Acceleration sensor are used as inputs for SNN1. Similarly, the multiplication of
battery voltage and the duty ratio for the grass cutting motor, respectively, obtained
from Battery Voltage and Rotation of Grass Cutting Motor are used as inputs for
SNN2.

5.2.4 Features for classifying data

The input data features are (i) maximum value, (ii) minimum value, (iii) aver-
age value, (iv) median value, (v) standard deviation value, (vi) peakedness value,
and (vii) skewness value. In signal recognition based on machine learning, some

Figure 10.
Fusion of sensors for SNN.
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second group is for the short lawn grasses, that is, the lawn grass is shorter than or
equal to the specified one. The third group is the field without lawn grasses, that is,
dirt, gravel, stone pavement, tiled, asphalt, or concrete fields. The measurement
data are collected for a total driving time of 2.3 h for each group with various fields.

Figure 9.
Variations of target areas.
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5.2.3 Fusion of sensors for SNN

The fusions of sensors for two SNNs SNN1 and SNN2 are experimentally deter-
mined. Ten types of sensors, as shown in Table 1. As Figure 10 shows, SNN1 and
SNN2 are cascade connected, where SNN1 estimates if a target area is with or
without lawn grasses, and SNN2 provides the result that an area is with long/short
lawn grasses. The basic idea behind this configuration is that sensor fusion may
differ with these two types of estimations.

For SNN1, the Horizontal/Vertical Acceleration sensor seems adequate, and the
combinations of x, y, and z-axis sensor data are experimented with and evaluated on
some datasets. The obtained accuracy is shown in Figure 10. For the estimation of
lawn lengths, sensor fusion indicating the load of the lawn grass cutter seems
effective. Therefore, the measurement data obtained from the combinations of the
battery sensor and duty ratio given to the cutting motor are evaluated with some
datasets. As shown in Figure 10, the multiplication of battery voltage and the duty
ratio for the cutting motor achieves maximum accuracy. The differences are minor;
however, this multiplication is probably the reason for showing the load of grass
cutting motor.

As a result, the x-axis and z-axis values obtained from the Horizontal/Vertical
Acceleration sensor are used as inputs for SNN1. Similarly, the multiplication of
battery voltage and the duty ratio for the grass cutting motor, respectively, obtained
from Battery Voltage and Rotation of Grass Cutting Motor are used as inputs for
SNN2.

5.2.4 Features for classifying data

The input data features are (i) maximum value, (ii) minimum value, (iii) aver-
age value, (iv) median value, (v) standard deviation value, (vi) peakedness value,
and (vii) skewness value. In signal recognition based on machine learning, some

Figure 10.
Fusion of sensors for SNN.
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features are typically extracted from input signal data during pre-processing. The
obtained features are used as input data to a machine learning algorithm. Therefore,
for each sensor data, seven neurons are needed in the input layer of SNN shown in
Figure 6. In the experiments, these features are obtained from a time frame
obtained every 3.2 s over 2.3-h measurement data.

The details of collected data are shown in Table 6. In the experiments, a subset
of time frames from each field data is used for training the SNN, and the obtained
model is tested on the remaining test data. The number of time frames used for
testing is approximately 670 in each group. The remaining time frames are used for
training, as shown in Table 7.

5.2.5 Shallow neural network construction

Two SNNs are constructed, and they are cascade connected. The first SNN1
estimates whether the ground is with or without lawn grasses using the horizontal
or vertical acceleration sensor. These sensors are expected to measure the accelera-
tion changes caused by the surface of the ground. There are seven feature types, as
mentioned in 5.2.4, and 14 neurons in the input layer of SNN1. The second SNN2
estimates the lawn grass lengths using the product of the battery voltage and duty
ratio of the motor control signal. This product value tends to vary according to the
loads given to the cutting motor. The number of neurons in the input layer of SNN2
is seven. These networks are constructed using “Statistics and Machine Learning
Toolbox” in MATLAB [22]. The specifications of the two SNNs are summarized in
Table 8.

5.2.6 Evaluation results

In the following, two SNNs are first trained, and next, they are used to estimate
lawn grass lengths or ground conditions. Their results are compared with those of
the RF algorithm. The evaluations are repeated ten times, and their averages are

Groups Number of time frames

Long Lawn Grasses 2,356

Short Lawn Grasses 1,574

Not Lawn Grasses 2,470

Total 6,400

Table 6.
Specifications of measurement data for evaluating SNN.

Groups Number of time frames

For training For testing

Long Lawn Grasses 1,686 670

Short Lawn Grasses 904 670

Not Lawn Grasses 1,801 669

Total 4,391 2,009

Table 7.
Number of time frames for training and testing SNN.
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used because the set of training data is randomly selected from the set of time
frames, as shown in Table 7.

The evaluation results are shown in Table 9. The evaluation results
corresponding to the evaluation measurements defined in 5.1.3 are shown in this
table. The accuracy of the SNN outperforms that of the RF algorithm on average,
and the differences in evaluation criteria of each estimation are shown in the “Diff”
column in Table 9. Except for the Precision of “Long Lawn Grasses” and the Recall
of “Short Lawn Grasses,” the differences are positive. However, the differences are
not as large in all estimations, and the required estimation time is negligible.

6. Evaluations of SNN against sensor data stream

As stated in 5.2.6, the SNNs outperforms the RF algorithm, and the estimation
system based on the SNNs is implemented on a Raspberry Pi assuming an actual
ECU. The processes Lawn Grass Length/Not Lawn Grass Estimator are shown in
Figure 11. The sensor data streams are sent in a serial format and are received and
saved in the memory of the Raspberry Pi. When the required data size is reached, a
set of data is preprocessed. Seven features mentioned in 5.2.4 are extracted
according to the sensors, including Horizontal/Vertical Acceleration and Battery
Voltage times Duty of Cutting Motor, as shown in Figure 10. Then, the Lawn
Length/Not Lawn Grass Estimator based on the SNNs estimates that a target area is
with Long Lawn Grasses, Short Lawn Grasses, or without Lawn Grasses. Finally, the
estimation result is sent to the motor controllers, as shown in Figure 2(b).

Number of neurons Used sensors

Input Hidden Output

SNN1 for Ground Condition 14 10 2 Horizontal or Vertical Acceleration
Sensor

SNN2 for Long/Short Lawn
Grasses

7 10 2 Battery Voltage & Control Signal’s Duty

Table 8.
Configurations of two SNNs.

Estimation SNN RF Diff.

Precision Long Lawn Grasses 92.3 94.1 ˗1.8

Short Lawn Grasses 96.2 92.8 +3.4

Not Lawn Grasses 95.8 95.5 +0.3

Recall Long Lawn Grasses 97.6 94.1 +3.5

Short Lawn Grasses 90.9 92.4 ˗1.5

Not Lawn Grasses 96.3 95.9 +0.4

F-Measure Long Lawn Grasses 94.9 94.1 +0.8

Short Lawn Grasses 93.5 92.6 +0.9

Not Lawn Grasses 96.0 94.1 +0.3

Accuracy 94.8 94.1 +0.7

Table 9.
Evaluation of SNN.
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for each sensor data, seven neurons are needed in the input layer of SNN shown in
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used because the set of training data is randomly selected from the set of time
frames, as shown in Table 7.

The evaluation results are shown in Table 9. The evaluation results
corresponding to the evaluation measurements defined in 5.1.3 are shown in this
table. The accuracy of the SNN outperforms that of the RF algorithm on average,
and the differences in evaluation criteria of each estimation are shown in the “Diff”
column in Table 9. Except for the Precision of “Long Lawn Grasses” and the Recall
of “Short Lawn Grasses,” the differences are positive. However, the differences are
not as large in all estimations, and the required estimation time is negligible.

6. Evaluations of SNN against sensor data stream

As stated in 5.2.6, the SNNs outperforms the RF algorithm, and the estimation
system based on the SNNs is implemented on a Raspberry Pi assuming an actual
ECU. The processes Lawn Grass Length/Not Lawn Grass Estimator are shown in
Figure 11. The sensor data streams are sent in a serial format and are received and
saved in the memory of the Raspberry Pi. When the required data size is reached, a
set of data is preprocessed. Seven features mentioned in 5.2.4 are extracted
according to the sensors, including Horizontal/Vertical Acceleration and Battery
Voltage times Duty of Cutting Motor, as shown in Figure 10. Then, the Lawn
Length/Not Lawn Grass Estimator based on the SNNs estimates that a target area is
with Long Lawn Grasses, Short Lawn Grasses, or without Lawn Grasses. Finally, the
estimation result is sent to the motor controllers, as shown in Figure 2(b).

Number of neurons Used sensors

Input Hidden Output

SNN1 for Ground Condition 14 10 2 Horizontal or Vertical Acceleration
Sensor

SNN2 for Long/Short Lawn
Grasses

7 10 2 Battery Voltage & Control Signal’s Duty

Table 8.
Configurations of two SNNs.

Estimation SNN RF Diff.

Precision Long Lawn Grasses 92.3 94.1 ˗1.8

Short Lawn Grasses 96.2 92.8 +3.4

Not Lawn Grasses 95.8 95.5 +0.3

Recall Long Lawn Grasses 97.6 94.1 +3.5

Short Lawn Grasses 90.9 92.4 ˗1.5

Not Lawn Grasses 96.3 95.9 +0.4

F-Measure Long Lawn Grasses 94.9 94.1 +0.8

Short Lawn Grasses 93.5 92.6 +0.9

Not Lawn Grasses 96.0 94.1 +0.3

Accuracy 94.8 94.1 +0.7

Table 9.
Evaluation of SNN.
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Figure 12 shows the frames of sensor records and estimation result record. The
sensor record has 24 bytes, and it is framed using COBS (Consistent Overhead Byte
Stuffing) [23]. This frame has 8-bit Data ID, 13-bit Measurement Data (floating point
value), and a 1-bit CRC (cyclic redundancy check) [24] for error detection. The frame
of estimation result record consists of COBS, CRC, Data ID, and the estimation result,
which is a 1-byte integer (1, 2, or 3) representing the three kinds of estimations.

The sensor data records are obtained every 0.1 s. The 32 records, that is, the 3.2-s
measurement data are handled in the SNN training, as shown in Figure 13(a). The
robo-mower travels with a speed of 0.55 m/s on average [8], and it moves 1.76 m
before the 3.2-s sensor data are obtained. Furthermore, if the total processing time for
data I/O, motor control, and wheel driving are assumed to be 2 s, the robo-mower will
travel 2.86 m if the estimation waits for a 3.2-s data stream. This distance is too large
when the robo-mover reaches the boundary between areas with and without lawn
grasses. Therefore, as shown in Figure 13(b), the sensor data stream should be treated

Figure 11.
Implementation of estimator on ECU.

Figure 12.
Frame Design of Sensor and Estimation Result Records.
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as a pipeline. This means that the estimation is performed every 2.1 s (i.e., 0.1 + 2),
resulting in 1.16-m traveling, which is not a significant issue in the real world. The
other cause for the estimation delay is the acceleration of other related processes.

Another problem to consider when using the robo-mower in the real world is
estimation accuracy. This is because the SNNs are trained with each 3.2-s data frame
of sensor data, as shown in Figure 13(a), ensuring that there are no overlaps in the
consecutive dataset. The data streams in the pipeline processing have 3.1-s overlap
because they are obtained every 0.1 s. The accuracy comparison result is shown in
Table 10, and the decrement is 1.0 points. Therefore, the estimation accuracy in the
pipeline process is not a major issue.

7. Conclusions

The workload estimation methods for autonomous driving of work vehicles are
proposed and evaluated. A commercial electric robo-mower is used for the

Figure 13.
Pipeline processing of Lawn length estimation.

Estimation Pipeline Non-Pipeline Diff.

Precision Long Lawn Grasses 98.9 97.2 +1.7

Short Lawn Grasses 88.7 90.8 ˗2.1

Not Lawn Grasses 94.7 97.4 ˗2.7

Recall Long Lawn Grasses 97.6 92.7 +4.9

Short Lawn Grasses 95.0 96.7 ˗1.7

Not Lawn Grasses 89.3 95.5 ˗6.2

F-Measure Long Lawn Grasses 98.3 94.9 +3.4

Short Lawn Grasses 91.7 92.8 ˗1.1

Not Lawn Grasses 91.9 95.4 ˗3.5

Accuracy 94.0 95.0 ˗1.0

Table 10.
Accuracies between pipeline and non-pipeline processes.
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as a pipeline. This means that the estimation is performed every 2.1 s (i.e., 0.1 + 2),
resulting in 1.16-m traveling, which is not a significant issue in the real world. The
other cause for the estimation delay is the acceleration of other related processes.

Another problem to consider when using the robo-mower in the real world is
estimation accuracy. This is because the SNNs are trained with each 3.2-s data frame
of sensor data, as shown in Figure 13(a), ensuring that there are no overlaps in the
consecutive dataset. The data streams in the pipeline processing have 3.1-s overlap
because they are obtained every 0.1 s. The accuracy comparison result is shown in
Table 10, and the decrement is 1.0 points. Therefore, the estimation accuracy in the
pipeline process is not a major issue.

7. Conclusions

The workload estimation methods for autonomous driving of work vehicles are
proposed and evaluated. A commercial electric robo-mower is used for the
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experiments. Specifically, the task to recognize ground conditions, including
grounds with long lawn grasses, short lawn grasses, or no lawn grasses, is handled
by analyzing data obtained from sensors attached to the robo-mower. Two AI-based
algorithms, namely, an RF algorithm and a SNN are proposed. A sensor fusion
problem is defined and solved to determine the best combination of sensor data
from ten different sensor types. The RF algorithm consisting of 1,000 decision trees
and the SNN with only one hidden layer are implemented and evaluated on obser-
vation data obtained from various grass cutting field experiments. The RF algorithm
achieves 92.3% correct estimation ratio on sensor fusion data in several experi-
ments, while the SNN achieves 95.0%. Furthermore, the accuracy of the SNN is
94.0% in experiments where sensing data are continuously collected as a data
stream in real time while the robo-mower is operating. Presently, the proposed
estimation system is being developed by integrating two motor control systems into
a robo-mower, one for grass cutting and the other for the robot’s mobility.
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Chapter 9

A Distributed Approach for
Autonomous Cooperative
Transportation
Amar Nath and Rajdeep Niyogi

Abstract

Autonomousmobile robots have now emerged as ameans of transportation in
several applications, such as warehouse, factory, space, and deep-sea where direct
human intervention is impossible or impractical. Since explicit communication pro-
vides a better and reliable way ofmulti-robot coordination compared to implicit
communication, so it is preferred in critical missions, such as search and rescue, where
efficient and continuous coordination between robots is required. Cooperative object
transportation is neededwhen the object is either heavy or too large or needs extra care
to handle (e.g., shifting a glass table) or has a complex shape, whichmakes it difficult
for a single robot to transport. All groupmembers need no participation in the physical
act of transport; cooperation can still be achievedwhen some robots transport the
object, and others are involved in, say, coordination and navigation along the desired
trajectory and/or clear obstacles along the path. A distributed approach for autono-
mous cooperative transportation in a dynamicmulti-robot environment is discussed.

Keywords: cooperative transportation, distributed algorithm, dynamic
environment, multi-agent coordination and cooperation

1. Introduction

Autonomous mobile robots are now used in several applications, such as ware-
house, factory, space, and deep-sea, that may be inaccessible for humans. The main
concern is to find an effective coordination mechanism among autonomous agents
to perform tasks in order to achieve high quality overall performance. Although
MAS research has received substantial attention, multi-robot coordination remains
a challenging problem since the overall performance of the system is directly
affected by the quality of coordination and control among the robots while execut-
ing cooperative tasks. Coordination in a multi-robot system can be achieved either
by explicit or by implicit communication. Since explicit communication provides a
better and reliable way of multi-robot coordination compared to implicit commu-
nication, so it is preferred in critical missions, such as search and rescue, where
efficient and continuous coordination between robots is required.

A collaborative task cannot be executed by any single agent. It requires multiple
agents at the task’s location. Execution of such tasks is quite challenging in a
dynamic environment, as the time and location of a task arrival, required skills, and
the number of robots required for its execution may not be known a priori. This
necessitates the design of a distributed algorithm for collaborative task execution
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efficient and continuous coordination between robots is required. Cooperative object
transportation is neededwhen the object is either heavy or too large or needs extra care
to handle (e.g., shifting a glass table) or has a complex shape, whichmakes it difficult
for a single robot to transport. All groupmembers need no participation in the physical
act of transport; cooperation can still be achievedwhen some robots transport the
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1. Introduction

Autonomous mobile robots are now used in several applications, such as ware-
house, factory, space, and deep-sea, that may be inaccessible for humans. The main
concern is to find an effective coordination mechanism among autonomous agents
to perform tasks in order to achieve high quality overall performance. Although
MAS research has received substantial attention, multi-robot coordination remains
a challenging problem since the overall performance of the system is directly
affected by the quality of coordination and control among the robots while execut-
ing cooperative tasks. Coordination in a multi-robot system can be achieved either
by explicit or by implicit communication. Since explicit communication provides a
better and reliable way of multi-robot coordination compared to implicit commu-
nication, so it is preferred in critical missions, such as search and rescue, where
efficient and continuous coordination between robots is required.

A collaborative task cannot be executed by any single agent. It requires multiple
agents at the task’s location. Execution of such tasks is quite challenging in a
dynamic environment, as the time and location of a task arrival, required skills, and
the number of robots required for its execution may not be known a priori. This
necessitates the design of a distributed algorithm for collaborative task execution
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via runtime team/coalition formation. To form a team with a lack of global knowl-
edge, the robots need to communicate with each other to acquire relevant informa-
tion. Here, a distributed approach for collaborative task execution in a dynamic
environment is discussed. We illustrate the applicability of the approach with urban
search and rescue (USAR) domain and evaluate its performance with extensive
experiments using ARGoS, a realistic multi-robot simulator.

We now illustrate an example scenario of the problem considered as shown in
Figure 1. The environment, a grid world of size 4� 3, consists of 12 locations
marked as a, b, … , l. Robots can move to its adjacent location. Boxes arrive at the
locations at different points in time. The task is to move a box from its arrival
location to the goal location, which is marked on the box.

The snapshots of the environment at different instants of time is shown in
Figure 1. At time t1, two tasks τ1 and τ2 arrive at locations a and g respectively, 4
robots are present at the locations b, c, f and h. The robots r1 and r4 detect the tasks
τ1 and τ2 respectively. At time t2, r1 and r4 move to locations a and g to attend the
tasks. Now, r1 and r4 determine the team sizes to be 2 and 3, and the goal locations
to be h and l for the tasks τ1 and τ2 respectively. At this time, r3 exits and r5 and r6
enter at locations k and j respectively.

At t2, r1 and r4 do not know the states and locations of other robots present in the
environment, and thus with this insufficient information they cannot form their
respective teams. Thus, in order to form their teams, they invoke the algorithm given in
Section 4. At t3, r1 and r4 both form their teams successfully and themembers reach the
locations of the tasks as shown in the Figure. Finally, at time t4, execution of the tasks
are completed and the teammembers for τ1 and τ2 reach their respective goal locations.

2. Related work

In the literature, several approaches have been suggested for solving the problem
of cooperative object transportation [1–4]. The work [1] is considered as the
pioneering work, targeting a cooperative transport task by a homogeneous group of
simple robots that can only push an object. The authors [1] demonstrate that
coordinated effort is not possible without explicit communication.

The work [2] proposed direct (explicit) communication to improve the coordina-
tion of a homogeneous group of two six-legged robots required to transport a rectan-
gular box towards a target cooperatively. The work [3] considered the problem of
cooperative box pushing where the roles of the members are pre-defined; specifically
one robot acts as a watcher and the others act as pusher. However, we consider a
more complex scenario of cooperative object transportation scenario, where the role
of each robot is not fixed in advance, rather decided at runtime. In [4], the robots are
designed to push the object across the portion of its surface, where it occludes the
direct line of sight to the goal. This simple behavior results in transporting the object
towards the goal without using any form of direct communication.

Figure 1.
Snapshots of a dynamic environment.
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The problem of cooperative transportation, considered in this paper, involves team
formation of heterogeneous robots and gathering the robots to the location of the
object to be transported. The number of robots required to transport the object is not
known a priori and it is decided at runtime. For the same task, the team size is
determined by the state of the environment. So, at some point in time an object may be
transported by two robots while at some other moment in time three or more robots
are required. Few works related to coalition formation strategies are discussed below.

Auction-based approaches for team formation (task allocation) are suggested in
[3, 5]. A bidder agent has some resources (e.g., data center, CPU) [5], who may bid
for multiple auctioneers concurrently. However, when we move to physical agents,
a robot cannot be a member of multiple coalitions at any point of time simply
because the tasks may be at different locations, and a robot cannot be at two
different locations at the same time, even though a robot may have the capability to
perform multiple tasks at a time.

In our work, a non-initiator robot (bidder) will not express its willingness to
multiple initiators (auctioneers) concurrently; when more than one request mes-
sage arrives, the robot stores the requests in its local queue. Having one or more
resources specified in the auction is a sufficient condition for an agent to make a bid
[5]. Having the required skills for a task is a necessary but not a sufficient condition
for a robot to express its willingness to be part of a team, in our work. A robot’s
behavior, in our work, is determined by its current state, whereas in [3, 5] states
need not be taken into consideration.

In [6], the authors describe a framework for dynamic heterogeneous team
formation for robotic urban search and rescue. The task discovery is made by a
member of a team and it is sent to the team coordinator for assignment. The team
coordinator performs the task assignment ensuring the task will be carried out by a
robot with the necessary capabilities. However, in a distributed system, no robot
knows the states, locations, and skills of other robots. Thus, the robots should com-
municate among themselves to acquire relevant information for task execution with-
out the intervention of any central authority. This necessitates the design of a
distributed algorithm for task execution in such a dynamic environment.

In our approach, unlike [6], every robot has a similar level of priority, and each
of them can perform the task management activities, i.e., searching, team/coalition
formation by acquiring the information from the robots available in the environ-
ment at that moment in time. In this paper, the arrival time and location of a task
are not known a priori; hence, task searching and coalition formation activities are
performed by a robot at runtime.

3. Problem formalization

A formal framework of a dynamic environment and some related concepts are
presented below.

Definition 3.1. (Dynamic environment) A global view (snapshot) of an environ-
ment E, with a set of locations L, taken at time t, is given by a 3-tuple Et ¼
Rt, T t, f
� �

, where Rt is the set of robots present in the environment at time t, and
T t is the set of tasks that arrive in the environment at time t, f : Rt � ↦L, is a
function that gives the location of a robot at a discrete instant of time represented
by the set of natural numbers .

A robot has a set of skills ψ (eg., gripper, camera), and at any instant of time it
may be in any state from the set of states S ¼ Idle,Ready,Promise,Busyf g. A robot
can enter the environment E at any time, but can leave only if its state is Idle. When
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The problem of cooperative transportation, considered in this paper, involves team
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because the tasks may be at different locations, and a robot cannot be at two
different locations at the same time, even though a robot may have the capability to
perform multiple tasks at a time.
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sage arrives, the robot stores the requests in its local queue. Having one or more
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knows the states, locations, and skills of other robots. Thus, the robots should com-
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a robot attends a task, it can determine the information required to begin team
formation, from the task specification, which is given below.

Definition 3.2. (Task (cooperative transportation)) A task τ is specified by a
5-tuple τ ¼ ν, l, t, k,Ψh i where ν is the name of a task (e.g., move (carry) box B to
location l0, lift desk D), l∈L is the location where the task arrived, t is the time at
which the task arrived, k> 1 is the number of robots required to execute the task,
and Ψ is the set of skills required to execute the task.

Definition 3.3. (Condition for single task execution) A task τ ¼ ν, l, t, k,Ψh i can
be executed, if there exists a set R of k available robots, such that for all r∈R,
ψ r ⊇ Ψ at some time t0 > t, and for all r∈R, location of r, locr ¼ l at some time t00 > t0.

The first condition in the if is for team formation, and the second condition is for
ensuring that all the team members converge to the location of the task.

Definition 3.4. (Condition for multiple task execution) The tasks τ1 ¼
ν1, l1, t, k1,Ψ1h i and τ2 ¼ ν2, l2, t, k2,Ψ2h i can be executed if the following conditions
hold:

1. there exists a set R1 of k1 available robots, such that for all r∈R1, ψ r ⊇ Ψ1 at
some time t01 > t, and for all r∈R1, locr ¼ l1 at some time t001 > t10 .

2. there exists a set R2 of k2 available robots, such that for all r∈R2, ψ r ⊇ Ψ2 at
some time t02 > t, and for all r∈R2, locr ¼ l2 at some time t002 > t02.

3.R1 ∩R2 ¼ ∅.

Definition 3.5. (Utility of a team for task execution) Let Γ ¼ x1, … , xkf g be a
team that can execute a task τ ¼ ν, l, t, k,Ψh i where each member of the team was
located at locxi . The utility of a team Γ for executing τ is U Γ,τh i ¼ �cost Γ,τh i, where
cost Γ,τh i ¼

P
xi ∈Γ μ xi,τh i and μ xi,τh i ¼ p xi, τð Þ � 1

αxi
þ d locxi , lð Þ � βxi .

where αxi , βxi ∈ 0, 1ð � denote remaining battery coefficient and battery con-
sumption rate respectively of (a robot) xi, p xi, τð Þ is the price of xi for τ, d l1, l2ð Þ is
the distance covered when moving from l1 to l2.

A robot with higher α value ensures that it will not fail due to its more remaining
battery backup. A robot with lower β value ensures that it will last for a longer
period of time.

4. Distributed algorithm for cooperative transportation

Following assumptions are made for the study. Multiple robots are required for
any task execution. A robot can execute at most one task at a time. Each robot has a
unique identifier (id). A wireless network that is lossless, message delay is finite,
data is not corrupted during transmission is considered. Messages are delivered in a
FIFO manner.

Informal description of the algorithm is given below. Let a robot i attend a task
τ ¼ ν, l, t, k,Ψh i where ψ i ⊇ τ:Ψ. To execute the task (cooperative transportation),
initiator communicates with other robots in order to form a runtime team. Here, the
i is named as an initiator, and the other robots as non-initiators.

After task detection, i broadcasts a Request message to know the current state of
the other robots present in the environment at that moment in time and waits for
some time, say Δ. The broadcast messages are delivered only to those robots who
are present in the range. Now, on receipt of Request message, a non-initiator j takes
the necessary actions. A non-initiator who has the desired skill will send a Willing
and an Engaged message if its state is other then Idle.
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The counter c of initiator is increased on receipt of Willing message. The
parameter (c≥ k� 1) is checked after Δ time has elapsed. Now, if the value of
(c≥ k� 1) is true then team formation that has maximum utility is possible and
sends Confirm message to the members of the team and sends a Not-Required
message to (c� k� 1ð Þ) robots, if any. However, if the value of the condition
(c≥ k� 1) is false, i sends a Not-Requiredmessage to all c robots who expressed their
willingness to help. Also, i changes its state from state Ready to Idle The algorithm
has the non-blocking property since a timer is used. If there was no timer, an
initiator would have waited indefinitely and thereby forcing some non-initiators to
wait indefinitely as well; thus the system would be blocked.

The receive function of a robot is given in Algorithm 2. The agents take the action
based on the current state that may be Idle (line 17–21), Promise (line 22–39), Busy
(line 12–16 and 41–45), and Ready (line 1–11). Within a state, the type of message is
checked and appropriate actions are taken. For example, if an agent receives a
Request message in Idle, the identifier of the sender is enqueued, and flag is set to
true; if it has appropriate skills then it sends the Willing message to the sender
(initiator) and flag is set to false.

The behavior of the agent is captured with communicating automata (CA) [7] as
shown in Figures 2 and 3. Moreover, this communicating automata is helpful in
understanding and designing the algorithm.

Transitions in CA are very general form χ : γ, where χ can either be an input a
(send message !m, receive message ?m), or a state condition g, or a, gð Þ, and γ can

Figure 2.
Finite state machine for an initiator agent.

Figure 3.
Finite state machine for a non-initiator agent.
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a robot attends a task, it can determine the information required to begin team
formation, from the task specification, which is given below.

Definition 3.2. (Task (cooperative transportation)) A task τ is specified by a
5-tuple τ ¼ ν, l, t, k,Ψh i where ν is the name of a task (e.g., move (carry) box B to
location l0, lift desk D), l∈L is the location where the task arrived, t is the time at
which the task arrived, k> 1 is the number of robots required to execute the task,
and Ψ is the set of skills required to execute the task.

Definition 3.3. (Condition for single task execution) A task τ ¼ ν, l, t, k,Ψh i can
be executed, if there exists a set R of k available robots, such that for all r∈R,
ψ r ⊇ Ψ at some time t0 > t, and for all r∈R, location of r, locr ¼ l at some time t00 > t0.

The first condition in the if is for team formation, and the second condition is for
ensuring that all the team members converge to the location of the task.

Definition 3.4. (Condition for multiple task execution) The tasks τ1 ¼
ν1, l1, t, k1,Ψ1h i and τ2 ¼ ν2, l2, t, k2,Ψ2h i can be executed if the following conditions
hold:
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some time t01 > t, and for all r∈R1, locr ¼ l1 at some time t001 > t10 .
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some time t02 > t, and for all r∈R2, locr ¼ l2 at some time t002 > t02.

3.R1 ∩R2 ¼ ∅.

Definition 3.5. (Utility of a team for task execution) Let Γ ¼ x1, … , xkf g be a
team that can execute a task τ ¼ ν, l, t, k,Ψh i where each member of the team was
located at locxi . The utility of a team Γ for executing τ is U Γ,τh i ¼ �cost Γ,τh i, where
cost Γ,τh i ¼

P
xi ∈Γ μ xi,τh i and μ xi,τh i ¼ p xi, τð Þ � 1

αxi
þ d locxi , lð Þ � βxi .

where αxi , βxi ∈ 0, 1ð � denote remaining battery coefficient and battery con-
sumption rate respectively of (a robot) xi, p xi, τð Þ is the price of xi for τ, d l1, l2ð Þ is
the distance covered when moving from l1 to l2.

A robot with higher α value ensures that it will not fail due to its more remaining
battery backup. A robot with lower β value ensures that it will last for a longer
period of time.

4. Distributed algorithm for cooperative transportation

Following assumptions are made for the study. Multiple robots are required for
any task execution. A robot can execute at most one task at a time. Each robot has a
unique identifier (id). A wireless network that is lossless, message delay is finite,
data is not corrupted during transmission is considered. Messages are delivered in a
FIFO manner.

Informal description of the algorithm is given below. Let a robot i attend a task
τ ¼ ν, l, t, k,Ψh i where ψ i ⊇ τ:Ψ. To execute the task (cooperative transportation),
initiator communicates with other robots in order to form a runtime team. Here, the
i is named as an initiator, and the other robots as non-initiators.

After task detection, i broadcasts a Request message to know the current state of
the other robots present in the environment at that moment in time and waits for
some time, say Δ. The broadcast messages are delivered only to those robots who
are present in the range. Now, on receipt of Request message, a non-initiator j takes
the necessary actions. A non-initiator who has the desired skill will send a Willing
and an Engaged message if its state is other then Idle.
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The counter c of initiator is increased on receipt of Willing message. The
parameter (c≥ k� 1) is checked after Δ time has elapsed. Now, if the value of
(c≥ k� 1) is true then team formation that has maximum utility is possible and
sends Confirm message to the members of the team and sends a Not-Required
message to (c� k� 1ð Þ) robots, if any. However, if the value of the condition
(c≥ k� 1) is false, i sends a Not-Requiredmessage to all c robots who expressed their
willingness to help. Also, i changes its state from state Ready to Idle The algorithm
has the non-blocking property since a timer is used. If there was no timer, an
initiator would have waited indefinitely and thereby forcing some non-initiators to
wait indefinitely as well; thus the system would be blocked.

The receive function of a robot is given in Algorithm 2. The agents take the action
based on the current state that may be Idle (line 17–21), Promise (line 22–39), Busy
(line 12–16 and 41–45), and Ready (line 1–11). Within a state, the type of message is
checked and appropriate actions are taken. For example, if an agent receives a
Request message in Idle, the identifier of the sender is enqueued, and flag is set to
true; if it has appropriate skills then it sends the Willing message to the sender
(initiator) and flag is set to false.

The behavior of the agent is captured with communicating automata (CA) [7] as
shown in Figures 2 and 3. Moreover, this communicating automata is helpful in
understanding and designing the algorithm.

Transitions in CA are very general form χ : γ, where χ can either be an input a
(send message !m, receive message ?m), or a state condition g, or a, gð Þ, and γ can

Figure 2.
Finite state machine for an initiator agent.

Figure 3.
Finite state machine for a non-initiator agent.
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either be a sequence of actions seq, or a sequence of actions that is to be performed
atomically seqh i, or empty. Similarly, semantics are defined.

4.1 Analysis of the algorithm

4.1.1 Message complexity

Let there be I initiators at some instant of time, say t. Each initiator broadcasts a
Request message, which is sent to N � 1ð Þ robots, where N is the total number of
robots present at time t. So, the total number of such messages would be N � 1ð Þ � I
which is O N � Ið Þ. The total number of replies obtained from non-initiators would be
at most N � 1ð Þ � I which is O N � Ið Þ. An initiator sends c number of Confirm and
Not-Requiredmessages, which is O Nð Þ. Thus total messages send by all the initiators
would be O N � Ið Þ. Thus the total number of messages would be the sum of these
messages, and this becomes O N � Ið Þ þO N � Ið Þ þ O N � Ið Þ, which is O N � Ið Þ. When
the number of initiators is relatively small compared to the total number of robots
present at time t, the message complexity would be O Nð Þ.

4.1.2 Handling multiple initiators

Let us consider the snapshot of the environment at t2 in Figure 1, where r1, r4
invoke the send function (Algorithm 1) simultaneously; r1, r4 need one, two other
robots respectively. The initiators r1, r4 broadcast Request messages corresponding
to their respective tasks. Let all the other robots be in Idle state initially and they can
satisfy the requirements of both the tasks. Eventually r2 becomes part of the team
with r1 because it received the Requestmessage from r1 before it received the Request
message from r4. Similarly, eventually r5 and r6 become part of the team with r4.
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The complete execution trace of algorithms 1,2 is shown in Figure 4 using
message sequence chart (MSC).

149

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270



either be a sequence of actions seq, or a sequence of actions that is to be performed
atomically seqh i, or empty. Similarly, semantics are defined.

4.1 Analysis of the algorithm

4.1.1 Message complexity

Let there be I initiators at some instant of time, say t. Each initiator broadcasts a
Request message, which is sent to N � 1ð Þ robots, where N is the total number of
robots present at time t. So, the total number of such messages would be N � 1ð Þ � I
which is O N � Ið Þ. The total number of replies obtained from non-initiators would be
at most N � 1ð Þ � I which is O N � Ið Þ. An initiator sends c number of Confirm and
Not-Requiredmessages, which is O Nð Þ. Thus total messages send by all the initiators
would be O N � Ið Þ. Thus the total number of messages would be the sum of these
messages, and this becomes O N � Ið Þ þO N � Ið Þ þ O N � Ið Þ, which is O N � Ið Þ. When
the number of initiators is relatively small compared to the total number of robots
present at time t, the message complexity would be O Nð Þ.

4.1.2 Handling multiple initiators

Let us consider the snapshot of the environment at t2 in Figure 1, where r1, r4
invoke the send function (Algorithm 1) simultaneously; r1, r4 need one, two other
robots respectively. The initiators r1, r4 broadcast Request messages corresponding
to their respective tasks. Let all the other robots be in Idle state initially and they can
satisfy the requirements of both the tasks. Eventually r2 becomes part of the team
with r1 because it received the Requestmessage from r1 before it received the Request
message from r4. Similarly, eventually r5 and r6 become part of the team with r4.

148

Robotics Software Design and Engineering

The complete execution trace of algorithms 1,2 is shown in Figure 4 using
message sequence chart (MSC).

149

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270



5. Implementation in ARGoS

We consider a road clearance scenario to illustrate the proposed distributed
algorithm (Section 4), where a road may be blocked by several obstacles. A team of
robots should jointly move each obstacle to one side of the road. The algorithm is
implemented using ARGoS (Autonomous Robots Go Swarming) [8], a multirobot
simulator using the 3.0.0-beta47 version on Intel⊕ Core™ i5 Processor, 4-GB of
RAM and macOS Sierra operating system. The code run in ARGoS can be directly
deployed on a real robot system.

An example scenario is shown in Figure 5, where the shaded portion in gray is
the road (10 m� 5 m), obstacles are simulated by green movable cylinders of radius
0.2 m with a blue light on top. The robots are shown in blue. The overall process of
removing an obstacle from the road is shown in Figure 5. The robots in ARGoS use
the inbuilt range and bearing sensor (rab) to communicate among themselves.

Figure 4.
Execution trace of the algorithms for multiple initiators.
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The broadcast of the messages to all other robots is done by rab actuator. The
broadcast of message is done within a certain range and in line of sight. We have
used the 3 bytes for message within the range of 15 meters. The message is received
by rab receiver within in the same network sent by rab sensors. Along with sending
and receiving the message within range, rab sensors do the work of identifying the
direction and distance from where the message is being sent. As the rab actuator
allows the only broadcast, the address of the sender and that of the receiver needs to
be specified in every message. Every robot in the simulation has a unique id of size 1
byte. Several sensors and actuators are used to control the movement and position-
ing of the robots. For example, proximity sensors are used to stay on the road and
avoiding collisions with other robots, the omni-directional sensor is used to detect
obstacles, gripper actuator is used to grip an obstacle, and turret actuator is used to
turn the gripper actuator towards the direction of the obstacle.

In Figure 5a, the initial position of the robots and blocks is shown. Three robots
detect the three obstacles and they start the formation for the same is shown in
Figure 5b. We assume that all the obstacles require two robots to move. In Figure 5c,
two initiator robots are able to form their teams. In Figure 5d, it is depicted that
robots have reached to the location of obstacles and they are ready to move the
obstacles. Figure 5e, clearly shows that both the obstacles have been shifted to one
side of the road. After dropping the obstacles, the robots again visit the road and
search for other obstacles if any. Finally, in Figure 5f, the third obstacle is also
detected and removed. In this way, all the obstacles are removed from the road.

Figure 5.
Illustration of multiple task execution in ARGoS.
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For the implementation we have written the required functions in Lua (a C-like
language). These are: (i) to control the movement of a robot to avoid obstacle or
another robot based on proximity sensor data, where the sensor detects an obstacle
or another robot, (ii) control speed and velocity, (iii) synchronizing the robots for
task execution, (iv) to control the movement of a robot when boundaries are
detected using motor-ground sensors, (v) communication among robots based on
the line of sight.

The implementation is carried out by writing the required function in Lua
language. The different functions that are identified are as follows: (i) control of
velocity and speed of the robot, (ii) control the movement of a robot so that
obstacles and other robots could be avoided, (iii) synchronizing the robots in order
to task execution, and (iv) communication among robots based on the line of sight.

6. Summary

Now, research in the field of robotics is going with a rapid rate. In many
applications such as search and rescue, space, and automated warehouse, intelligent
robots are being used. With the advancement of artificial intelligence domain,
robots are becoming the good choice. A plenty of work has been carried out in the
field of single robot. However, this chapter discuss the different aspects of work
where multiple robots act on the same object at the same time. This problem
becomes tough and different from normal multi-agent problem.

Cooperative transportation is common task in many challenging domains, i.e.,
rescue, mars and space, and autonomous warehouse etc. In this way the proposed
framework becomes very much essential and important in such domains where
multiple robots are required to execute a task.

The proposed approach also takes care of multiple task execution simulta-
neously, i.e., if multiple robots detect multiple different obstacles at the same time,
the coalition formation process for each obstacle can be started. Each robot who
detects the obstacle, starts the coalition formation, by executing the instance of the
algorithms.

Author details

Amar Nath1,2*† and Rajdeep Niyogi2†

1 Sant Longowal Institute of Engineering and Technology, Punjab, India

2 Indian Institute of Engineering and Technology, Roorkee, India

*Address all correspondence to: amarnath@sliet.ac.in

†These authors contributed equally.

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

152

Robotics Software Design and Engineering

References

[1] Kube, C. R., & Zhang, H. (1993).
Collective robotics: From social insects
to robots. Adaptive behavior, 2(2),
189-218

[2] Mataric, M. J., Nilsson, M., &
Simsarin, K. T. (1995, August).
Cooperative multi-robot box-pushing.
In Proceedings 1995 IEEE/RSJ
International Conference on Intelligent
Robots and Systems. Human Robot
Interaction and Cooperative Robots,
Vol. 3, pp. 556-561

[3] Gerkey, B. P., & Mataric, M. J.
(2002). Sold!: Auction methods for
multirobot coordination. IEEE
transactions on robotics and
automation, 18(5), 758-768

[4] Chen, J., Gauci, M., Li, W., Kolling,
A., & Gro, R. (2015). Occlusion-based
cooperative transport with a swarm of
miniature mobile robots. IEEE
Transactions on Robotics, 31(2), 307-321

[5] Kong, Y., Zhang, M., & Ye, D.
(2016). An auction-based approach for
group task allocation in an open
network environment. The Computer
Journal, 59(3), 403-422

[6] Gunn, T., & Anderson, J. (2015).
Dynamic heterogeneous team formation
for robotic urban search and rescue.
Journal of Computer and System
Sciences, 81(3), 553-567

[7] Brard, B., Bidoit, M., Finkel, A.,
Laroussinie, F., Petit, A., Petrucci, L., &
Schnoebelen, P. (2013). Systems and
software verification: model-checking
techniques and tools. Springer Science
& Business Media

[8] Pinciroli, C., Trianni, V., OGrady, R.,
Pini, G., Brutschy, A., Brambilla, M.,
Dorigo, M. (2012). ARGoS: a modular,
parallel, multi-engine simulator for
multi-robot systems. Swarm
intelligence, 6(4), 271-295

153

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270



For the implementation we have written the required functions in Lua (a C-like
language). These are: (i) to control the movement of a robot to avoid obstacle or
another robot based on proximity sensor data, where the sensor detects an obstacle
or another robot, (ii) control speed and velocity, (iii) synchronizing the robots for
task execution, (iv) to control the movement of a robot when boundaries are
detected using motor-ground sensors, (v) communication among robots based on
the line of sight.

The implementation is carried out by writing the required function in Lua
language. The different functions that are identified are as follows: (i) control of
velocity and speed of the robot, (ii) control the movement of a robot so that
obstacles and other robots could be avoided, (iii) synchronizing the robots in order
to task execution, and (iv) communication among robots based on the line of sight.

6. Summary

Now, research in the field of robotics is going with a rapid rate. In many
applications such as search and rescue, space, and automated warehouse, intelligent
robots are being used. With the advancement of artificial intelligence domain,
robots are becoming the good choice. A plenty of work has been carried out in the
field of single robot. However, this chapter discuss the different aspects of work
where multiple robots act on the same object at the same time. This problem
becomes tough and different from normal multi-agent problem.

Cooperative transportation is common task in many challenging domains, i.e.,
rescue, mars and space, and autonomous warehouse etc. In this way the proposed
framework becomes very much essential and important in such domains where
multiple robots are required to execute a task.

The proposed approach also takes care of multiple task execution simulta-
neously, i.e., if multiple robots detect multiple different obstacles at the same time,
the coalition formation process for each obstacle can be started. Each robot who
detects the obstacle, starts the coalition formation, by executing the instance of the
algorithms.

Author details

Amar Nath1,2*† and Rajdeep Niyogi2†

1 Sant Longowal Institute of Engineering and Technology, Punjab, India

2 Indian Institute of Engineering and Technology, Roorkee, India

*Address all correspondence to: amarnath@sliet.ac.in

†These authors contributed equally.

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

152

Robotics Software Design and Engineering

References

[1] Kube, C. R., & Zhang, H. (1993).
Collective robotics: From social insects
to robots. Adaptive behavior, 2(2),
189-218

[2] Mataric, M. J., Nilsson, M., &
Simsarin, K. T. (1995, August).
Cooperative multi-robot box-pushing.
In Proceedings 1995 IEEE/RSJ
International Conference on Intelligent
Robots and Systems. Human Robot
Interaction and Cooperative Robots,
Vol. 3, pp. 556-561

[3] Gerkey, B. P., & Mataric, M. J.
(2002). Sold!: Auction methods for
multirobot coordination. IEEE
transactions on robotics and
automation, 18(5), 758-768

[4] Chen, J., Gauci, M., Li, W., Kolling,
A., & Gro, R. (2015). Occlusion-based
cooperative transport with a swarm of
miniature mobile robots. IEEE
Transactions on Robotics, 31(2), 307-321

[5] Kong, Y., Zhang, M., & Ye, D.
(2016). An auction-based approach for
group task allocation in an open
network environment. The Computer
Journal, 59(3), 403-422

[6] Gunn, T., & Anderson, J. (2015).
Dynamic heterogeneous team formation
for robotic urban search and rescue.
Journal of Computer and System
Sciences, 81(3), 553-567

[7] Brard, B., Bidoit, M., Finkel, A.,
Laroussinie, F., Petit, A., Petrucci, L., &
Schnoebelen, P. (2013). Systems and
software verification: model-checking
techniques and tools. Springer Science
& Business Media

[8] Pinciroli, C., Trianni, V., OGrady, R.,
Pini, G., Brutschy, A., Brambilla, M.,
Dorigo, M. (2012). ARGoS: a modular,
parallel, multi-engine simulator for
multi-robot systems. Swarm
intelligence, 6(4), 271-295

153

A Distributed Approach for Autonomous Cooperative Transportation
DOI: http://dx.doi.org/10.5772/intechopen.98270



Chapter 10

Interaction Protocols for
Multi-Robot Systems in
Industry 4.0
Edi Moreira M. de Araujo, Augusto Loureiro da Costa
and Alejandro R.G. Ramirez

Abstract

In this chapter, the main methods of communication among multi-robot systems
involved in Machine-to-Machine (M2M) applications, especially with regard the
communication, reliability, stability and security among these robots, presenting
various concepts through papers already published. A comparative study was carried
out between two communication protocols applied in M2M technologies, the Queue
Telemetry Transport (MQTT) developed by IBM along with Eurotech and the
Constrained Application Protocol (CoAP). A study and survey of the characteristics
of each of the protocols was carried out, as well as the method of operation of each of
them and how both can be used in applications involving multiple robots. It was
concluded that both protocols are considered ideal for use in in applications involving
multi-robot systems. However, although the two protocols have been designed for
application in environments with limited communication, the MQTT exchange pro-
tocol has advantages over CoAP, as a lower ovehead between message exchanges.

Keywords: Machine-to-Machine, protocol, multi-robot system

1. Introduction

The industry, in the last century, has undergone changes in the way it operates,
generating innovation and profound social and economic changes. According to [1],
is the beginning of a revolution called Industry 4.0. This industrial revolution is
based on several concepts, among them, the Cyber-Physical System, Internet of
Things (IoT), big data analytics, Machine-toMachine (M2M) and cloud computing.
All of these concepts aim to meet the requirements of an advanced manufacturing
system, promoting the integration of an entire supply chain.

The authors in [2], Industry 4.0 creates what has been called the smart factory.
This factory has a modular structure in which cyber-physical systems monitor
physical processes, creating a virtual copy of the physical world, making
decentralized decisions using the IoT that has communication with each other and
with humans in real time. These smart factories aim to solve several challenges
found in large industrial systems, due not only to the increase in the complexity of
processes and products, but also to the increase in the varieties of these products,
which must be placed on the market due to the reduced life cycle. Thus, there is a
need to make production processes more flexible, characterized according to [3] in
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production systems with distributed units, composed of a conglomerate of autono-
mous units, which operate in cooperation in an integrated manner. Such units can
be industrial automation machines, manipulating robots, mobile robots or
microprocessed remote units.

Distributed production systems, often composed of robot machines, are
designed with the objective of providing efficiency and rationality in the use of
distributed production resources, in order to favor the manufacture of products, in
a dynamic and fast way. The production units must be able to respond, in an
intelligent and effective manner, to unforeseen disturbances in the external envi-
ronment, maintaining controlled and continuous production [3]. Considering the
need to plan and control systems for these units, complete robotization of produc-
tive systems, which in turn need means or protocols of interaction and coordination
between them.

Therefore, the justification for proposing this chapter is to deepen the studies on
the interaction protocols for existing multi-robot systems and to design a new
protocol that can be applied to concepts related to Industry 4.0, taking into account
the characteristics of self- organization of robotics structure based on the concept of
industrial agents.

This chapter is divided as follows. In Section 2, the Machine-to-Machine (M2M)
is presented, with its levels explained. In Section 3, protocols MQTT and CoAP are
presented, identifying their main characteristics and limitations. A comparison
between the protocols (MQTT and CoAP) will be demonstrated in the Section 4.
Section 5 is shown some studies that used MQTT protocol, along with Robot Oper-
ating System (ROS) in the context of Insdustry 4.0, in addition to presenting the
conclusions of the chapter.

2. Machine-to-machine communications

According to [4] the term M2M Communications, it is the machine to machine
communication, which enables the transmission of data across different devices
without the need for human intervention.

This communication opens up an immense range of applications that can,
among other things, register, process and manipulate the data generated and trans-
mitted by the objects that are interconnected. For example, an application that
continuously receives data from a sensor that measures the temperature of an
environment and, based on the data obtained, can generate statistics that describe
the sensor readings over a period of time and then send an alert via e-mail or Short
Message Service (SMS) to one or more individuals if the temperature has reached
very high levels, or even publish this information to another device that could use it
in another way, among other things.

M2M applications have the potential to become a trend in the development of
software in the coming years in view of the various sectors (such as industrial and
home automation) that need an automated solution that integrates the devices that
are part of their environment. Devices that are part of an M2M network have the
ability to at least collect data from a given environment and transmit it to an
application through a connection. Eventually, these devices will not be able to
transmit this data directly to other equipment, it is necessary to use a gateway to be
an intermediary for this transmission.

Thus, the M2M can be defined as a number of technologies that aims to establish
communication between devices with the ability to transmit information for a
particular application without the interference of a human action.
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2.1 M2M architecture

According to [4], the M2M architecture (Figure 1) is divided into three
domains, Devices, gateway and Network. The components of these domains are
described as follows:

• In the domain of devices:

M2M device: A device that runs one or more M2M applications using M2M
service capabilities. The M2M device connect to network domain in the
following for two manners, by Direct Connectivity (M2Mdevices connect to
the network domain via the access network) and Gateway as a Network Proxy
(The M2M device connects to the network domain via an M2M gateway);

• M2M Gateway: object that runs M2M applications, using M2M services and
acting as a proxy between M2M devices and the network domain;

Core network: Its main function is to ensure the functioning of the network
with connectivity via IP and other means of connectivity, as well as control
functions of network services, interconnection and roaming;

Access network allows M2M devices and gateways to communicate with the
core network. According to [5], examples of M2M include technologies such as
IEEE 802.15.1, Bluetooth, personal area network, among others, or local
networks such as power line communication with PLC and Wireless M-BUS;

• M2M area Network:

M2M Network Area: provides the connection between devices and gateways;

Provide M2M functions that are shared by different applications;

M2M applications: run the service logic;

Network Management: brings together all the functions necessary to manage
the network core and the access network;

M2M management roles: Consist of the roles needed to manage service
capabilities within the network domain;

Figure 1.
M2M architecture.
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intelligent and effective manner, to unforeseen disturbances in the external envi-
ronment, maintaining controlled and continuous production [3]. Considering the
need to plan and control systems for these units, complete robotization of produc-
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between them.

Therefore, the justification for proposing this chapter is to deepen the studies on
the interaction protocols for existing multi-robot systems and to design a new
protocol that can be applied to concepts related to Industry 4.0, taking into account
the characteristics of self- organization of robotics structure based on the concept of
industrial agents.

This chapter is divided as follows. In Section 2, the Machine-to-Machine (M2M)
is presented, with its levels explained. In Section 3, protocols MQTT and CoAP are
presented, identifying their main characteristics and limitations. A comparison
between the protocols (MQTT and CoAP) will be demonstrated in the Section 4.
Section 5 is shown some studies that used MQTT protocol, along with Robot Oper-
ating System (ROS) in the context of Insdustry 4.0, in addition to presenting the
conclusions of the chapter.

2. Machine-to-machine communications

According to [4] the term M2M Communications, it is the machine to machine
communication, which enables the transmission of data across different devices
without the need for human intervention.

This communication opens up an immense range of applications that can,
among other things, register, process and manipulate the data generated and trans-
mitted by the objects that are interconnected. For example, an application that
continuously receives data from a sensor that measures the temperature of an
environment and, based on the data obtained, can generate statistics that describe
the sensor readings over a period of time and then send an alert via e-mail or Short
Message Service (SMS) to one or more individuals if the temperature has reached
very high levels, or even publish this information to another device that could use it
in another way, among other things.

M2M applications have the potential to become a trend in the development of
software in the coming years in view of the various sectors (such as industrial and
home automation) that need an automated solution that integrates the devices that
are part of their environment. Devices that are part of an M2M network have the
ability to at least collect data from a given environment and transmit it to an
application through a connection. Eventually, these devices will not be able to
transmit this data directly to other equipment, it is necessary to use a gateway to be
an intermediary for this transmission.

Thus, the M2M can be defined as a number of technologies that aims to establish
communication between devices with the ability to transmit information for a
particular application without the interference of a human action.

156

Robotics Software Design and Engineering

2.1 M2M architecture

According to [4], the M2M architecture (Figure 1) is divided into three
domains, Devices, gateway and Network. The components of these domains are
described as follows:

• In the domain of devices:

M2M device: A device that runs one or more M2M applications using M2M
service capabilities. The M2M device connect to network domain in the
following for two manners, by Direct Connectivity (M2Mdevices connect to
the network domain via the access network) and Gateway as a Network Proxy
(The M2M device connects to the network domain via an M2M gateway);

• M2M Gateway: object that runs M2M applications, using M2M services and
acting as a proxy between M2M devices and the network domain;

Core network: Its main function is to ensure the functioning of the network
with connectivity via IP and other means of connectivity, as well as control
functions of network services, interconnection and roaming;

Access network allows M2M devices and gateways to communicate with the
core network. According to [5], examples of M2M include technologies such as
IEEE 802.15.1, Bluetooth, personal area network, among others, or local
networks such as power line communication with PLC and Wireless M-BUS;

• M2M area Network:

M2M Network Area: provides the connection between devices and gateways;

Provide M2M functions that are shared by different applications;

M2M applications: run the service logic;

Network Management: brings together all the functions necessary to manage
the network core and the access network;

M2M management roles: Consist of the roles needed to manage service
capabilities within the network domain;

Figure 1.
M2M architecture.
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In Figure 2 a simplified version of the M2M architecture is presented, where
important elements of the architecture are shown, in addition to defining the
application domain.

2.2 M2M systems categories

The authors in [6] categorize M2M systems into two types, namely dynamic
M2M systems and static M2M systems. The main difference between the two is its
topology, where in dynamic systems, some nodes (for example, M2M devices and
M2M gateways) are moving, that is, the topology is changing over time, resulting in
a change in the quality of communication, and dynamic resource allocation. Exam-
ples of dynamic M2M systems include: vehicle M2M system, the medical M2M
system and the robotic M2M system. In contrast, the topology for static M2M
systems remains unchanged for a relatively long time, as an example the M2M
power system, domestic M2M system and the industrial M2M system.

3. M2M communication protocols

There are several communication protocols responsible for managing the trans-
fer of data between computers on the internet, among them we can mention some
examples such as HTTP (Hypertext Transfer Protocol), FTP (File Transfer Proto-
col) and SFTP (SSH File Transfer Protocol). When the communication needs to be
made between two or more devices (or several applications) connected in a net-
work, the need arises to have a protocol that manages this communication, that is,
the exchange of data between the devices in an efficient way considering the
characteristics and restrictions imposed by the environment. According to [4], in
this scenario, two protocols arise that can be used in restricted environments:
Messaging Queue Telemetry Transport (MQTT) and the Constrained Application
Protocol (CoAP).

The following will present the MQTT and CoAP protocols, identifying their
main characteristics and limitations, in addition to highlighting the best scenarios
where each can be applied in the context of Industry 4.0.

3.1 MQTT: message queue telemetry transport

Created by IBM in 1999, MQTT is an open source protocol designed to be
simple, lightweight and easy to implement. It is a messaging protocol based on the

Figure 2.
Simplified version of high-level architecture.
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publish/subscribe architecture (Figure 3), which has a small transport overhead
(fixed byte header of 2 bytes), making MQTT an interesting solution for unreliable
networks with limited resources, such as bandwidth and high latency [4]. This
protocol is based on a broker (Figure 4) using the message pattern publish/
subscribe, while the server broker acts as a intermediary for messages sent from a
device that publishes to subscribing customers, providing a distribution of one-to-
many messages decoupled from the use case of the application.

For a client to send a message, it needs to publish it in a topic (called a MQTT
broker) (Figure 4). If another client wants to receive the content of this message,
he will have to subscribe to this same topic. A client can publish or subscribe to
multiple topics at the same time, and there may be situations where the publication
or subscription on a topic is disputed between different clients, thus having a
system that is asynchronous [7].

The PDU (Protocol Data Unit) of the MQTT protocol is encapsulated by the TCP
(Transmission Control Protocol) protocol, that is, the MQTT header and data are
sent in the TCP data area [8]. In this way, the MQTT protocol messages have a fixed
header (Figure 5) composed of two bytes, where the first byte contains the field
that identifies the type of message, such as also the markers (DUP, QoS level and
RETAIN). There is a version of MQTT, called MQTT-SN (MQTT Sensor Network),
where PDU is encapsulated by the UDP protocol, which, in turn, is encapsulated by
the IP or the 6LowPAN protocol. One of the main differences between two
standards, in addition to the network layer they focus on, is the simplification of

Figure 3.
Broker Publisher/subscriber messaging template.

Figure 4.
Publisher/subscriber messaging template.
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publish/subscribe architecture (Figure 3), which has a small transport overhead
(fixed byte header of 2 bytes), making MQTT an interesting solution for unreliable
networks with limited resources, such as bandwidth and high latency [4]. This
protocol is based on a broker (Figure 4) using the message pattern publish/
subscribe, while the server broker acts as a intermediary for messages sent from a
device that publishes to subscribing customers, providing a distribution of one-to-
many messages decoupled from the use case of the application.

For a client to send a message, it needs to publish it in a topic (called a MQTT
broker) (Figure 4). If another client wants to receive the content of this message,
he will have to subscribe to this same topic. A client can publish or subscribe to
multiple topics at the same time, and there may be situations where the publication
or subscription on a topic is disputed between different clients, thus having a
system that is asynchronous [7].

The PDU (Protocol Data Unit) of the MQTT protocol is encapsulated by the TCP
(Transmission Control Protocol) protocol, that is, the MQTT header and data are
sent in the TCP data area [8]. In this way, the MQTT protocol messages have a fixed
header (Figure 5) composed of two bytes, where the first byte contains the field
that identifies the type of message, such as also the markers (DUP, QoS level and
RETAIN). There is a version of MQTT, called MQTT-SN (MQTT Sensor Network),
where PDU is encapsulated by the UDP protocol, which, in turn, is encapsulated by
the IP or the 6LowPAN protocol. One of the main differences between two
standards, in addition to the network layer they focus on, is the simplification of
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messages exchanged between broker and clients, using predefined topic identifiers
and short names of topics in addition to a short message format [7].

According to [8], the PDU of the MQTT protocol is encapsulated by the TCP
protocol, that is, the MQTT header and data are sent in the TCP data area
(Figure 5). In this way the MQTT protocol messages have a fixed header (Figure 5)
composed of two bytes, where the first byte contains the field that identifies the
type of the message, as well as the markers (DUP, QoS level and RETAIN). There is
a version of MQTT, called MQTT-SN (MQTT Sensor Network), where your PDU is
encapsulated by the UDP protocol, which, in turn, is encapsulated by the IP or the
6LowPAN protocol. One of the main differences between two standards, in addi-
tion to the network layer they focus on, is the simplification of messages exchanged
between broker and clients, using predefined topic identifiers and short names of
topics in addition to a short message format [5].

As can be seen in Figure 5, “byte 1” is responsible for four fields:

• DUP (Duplicate delivery): Marker that occupies bit 4 and is activated when the
server tries to resend messages of type PUBLISH, PUBREL, SUBSCRIBE or
UNSUBSCRIBE (Figure 5).

• QoS: This marker represents the reliability of message delivery, indicating the
level of guarantee of delivery of a PUBLISH message. You can have up to three
levels of guarantee (Figure 6). Level 0 is used by those who publish/send the
message at most once and does not check whether the message has reached its
destination. This lower level is called “fire-and-forget” and the message can be
lost depending on network conditions. In Level 1, called the recognized
delivery, who publishes/sends a message at least once and check the delivery
status using a status check message. However, if this verification message loses,
the server broker can possibly send the same message twice, since there was no
confirmation that the message has been delivered. Finally we have the QoS2,
called guaranteed delivery due to its complicated process, there may be delays

Figure 5.
Fixed header of an MQTT message.

Figure 6.
QoS levels.

160

Robotics Software Design and Engineering

end-to-end larger, but no lost messages at this level. The higher the level of
QoS, the greater is the packet exchange. If the loss of messages a problem, a
lower level of QoS can be used, resulting in less consumption of available
bandwidth and less end-to-end delay, which represents limited networks wired
or wireless. To further reduce the use of the band, the UDP can be used instead
of TCP, but with reduced guaranteed message delivery [9].

3.2 CoAP: constrained application protocol

The Constrained Application Protocol (CoAP), created by the Internet Engi-
neering Task Force (IETF) working group called restricted RESTful environments
(CoRE), has been adapted from HTTP, being optimized for devices with limited
processing power and capacity, generally applied to intelligent objects in IoT envi-
ronments [9]. CoAP acts on the UDP transport layer, specifying a minimum set of
restrictions such as POST, GET, PUT and DELETE, with some support for resource
storage and discovery of embedded resources.

According to [10], CoAP is a transfer protocol aimed at nodes and restricted
networks, being designed for M2M applications, such as home automation. CoAP
has four types of messages: Confirmable, Non-confirmable, Acknowledgmente and
Reset.

• Confirmable (CON): Are those messages that need confirmation at the
destination;

• Non-confirmable (NON): They are those messages that do not require
acknowledgment of receipt, being very useful for applications that receive
constant readings in a short period of time, where the loss of one or the other
message does not affect the process;

• Acknowledgment: These are the messages that confirm receipt of a messages,
Confirmable;

• Reset: Its function is to indicate that an NOC or NON message was received,
but for lack of some context the same could not be properly processed. It can
occur in case a device has restarted and the message sent was not properly
interrupted.

The COAP uses the request/response model, where devices act as a client or as a
server, supporting service discovery and include Web services such as the Uniform
Resources Identifiers (URIs) [9].

The following are the main features of the COAP:

• The Coap message exchanges are transported over UDP, and encoding the
same are made in binary format with a 4 byte header (Figure 7), followed by a
variable width token (0 to 8 bytes);

• It has a binary header UDP-based transport, causing thus less delay and
reduced battery consumption during transmission;

• Asynchronous message exchange, allowing smart objects to send information
only when the application changes;

• HTTP mapping that allows proxies to provide access to CoAP resources.
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end-to-end larger, but no lost messages at this level. The higher the level of
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lower level of QoS can be used, resulting in less consumption of available
bandwidth and less end-to-end delay, which represents limited networks wired
or wireless. To further reduce the use of the band, the UDP can be used instead
of TCP, but with reduced guaranteed message delivery [9].

3.2 CoAP: constrained application protocol

The Constrained Application Protocol (CoAP), created by the Internet Engi-
neering Task Force (IETF) working group called restricted RESTful environments
(CoRE), has been adapted from HTTP, being optimized for devices with limited
processing power and capacity, generally applied to intelligent objects in IoT envi-
ronments [9]. CoAP acts on the UDP transport layer, specifying a minimum set of
restrictions such as POST, GET, PUT and DELETE, with some support for resource
storage and discovery of embedded resources.

According to [10], CoAP is a transfer protocol aimed at nodes and restricted
networks, being designed for M2M applications, such as home automation. CoAP
has four types of messages: Confirmable, Non-confirmable, Acknowledgmente and
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• Confirmable (CON): Are those messages that need confirmation at the
destination;

• Non-confirmable (NON): They are those messages that do not require
acknowledgment of receipt, being very useful for applications that receive
constant readings in a short period of time, where the loss of one or the other
message does not affect the process;
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• Reset: Its function is to indicate that an NOC or NON message was received,
but for lack of some context the same could not be properly processed. It can
occur in case a device has restarted and the message sent was not properly
interrupted.

The COAP uses the request/response model, where devices act as a client or as a
server, supporting service discovery and include Web services such as the Uniform
Resources Identifiers (URIs) [9].

The following are the main features of the COAP:

• The Coap message exchanges are transported over UDP, and encoding the
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only when the application changes;

• HTTP mapping that allows proxies to provide access to CoAP resources.
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4. Comparison of the protocols

The following will demonstrate a comparison between the protocols presented
(MQTT and CoAP), as implementation, data transport, communication standards,
reliability and QoS and data security will be analyzed.

4.1 Implementation

Regarding the implementation, the MQTT protocol has a simpler specification in
relation to CoAP, thus facilitating customer development. As already mentioned in
the 3.2 section, CoAP clients act as HTTP clients but in binary mode, which is
simpler than HTTP, but even more complex than MQTT [9].

4.2 Data transport

The MQTT employs a connection oriented communication given by TCP and
the CoAP uses UDP. The TCP protocol uses more data to exchange messages
between the client and the server in relation to UDP, thus having a higher. Both the
MQTT, like CoAP are designed for limited networks like 6LoWPAN (IPv6 over
low-power personal area networks). According to [9], if TCP or UDP are not
needed, an alternative is to choose the MQTT-SN over 6LoWPAN (IPv6 over low
power personal area wireless networks) 4 or even ZigBee, avoiding the complexity
of the complete TCP/IP stack. The CoAP It is also designed for limited networks
such as 6LoWPAN, in order to maintain short message overload, thus limiting the
need for fragmentation that causes significant reduction in the probability of packet
delivery.

Regarding the message format, both MQTT and CoAP are suitable to be used in
limited bands. Both have a binary message format, different from protocols like
AMQP (Advanced Message Queuing Protocol), which uses uses XML formatted
messages, in this case requiring the use of more interpreters complex, increasing the
hardware requirement.

4.3 Security

One of the main problems to be solved when M2M protocols, is the issue of
security [11]. The CoAP protocol is based on DTLS (Datagram Transport Layer
Security), so it transfers security handling to the transport layer. Four security
modes are allowed:

• NoSec: no DTLS security mechanism is applied;

Figure 7.
CoAP message format.
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• PreSharedKey: used with devices that are already pre-programmed with the
necessary key switches, where each key has a list of nodes that can
communicate;

• RawPublicKey: the device has a pair of asymmetric keys without using a
certificate, which is validated by an out-of-band mechanism;

• Certificate: the protocol makes use of the DTLS with an X.509 certificate, the
device also has a list of known roots.

According to [12], MQTT security as well as CoAP security (Table 1) is
performed by Transport Layer Security (TLS). In [13] a safe application model for
MQTT is proposed, namely SMQTT. This model is based on a lightweight attribute
that provides encryption by broadcast, on elliptical curcas. According to the
authors, SMQTT was resistant to attacks from known plaintext, known ciphertex
and man-in-the-middle.

Table 2 provides a summary of the security modes of the MQTT and CoAP
protocols. In the AAA and Integrity field, it refers to Authorization and

Atack Type Description

Protocol Parsing and
Processing of URIs

It is possible to exploit vulnerabilities in the parsing process (process that
analyzes an input sequence), to, for example, generate a denial of service
attack by inserting text which will result in parser very extensive.

Proxyinge Caching The proxy is, in itself, a man-in-the-middle, breaking all the security of
IPsec and DTLS. Threats are amplified when proxies allow to cache data.

Amplification Risk Responses in CoAP are generally larger than requests, which can facilitate
amplification attacks

IP Spoofing Attacks Since there is no handshake for UDP, the final node that has network
access can perform spoofing to send messages from ACK instead of CON,
preventing from retransmission; spoo pretend the entire payload;
spoofing of multicast requests; etc

Cross-Protocol Atacks They involve using CoAP to send attacks to other protocols, to pass
through the firewall, for example

Restriction with Nodes Whether energetic, memory or processing, make it difficult that devices
have good entropy. Therefore, it is assumed, that the processes that need
entropy, such as calculating keys, do it externally

Source: [11].

Table 1.
Threats to the CoAP – RFC 7252 protocol.

Protocol Security Modes AAA e Integrity Confidentiality

COAP No Sec
PreSharedKey
Raw Public Key
Certificate

List of Trusted Roots
Uses DTLS

AES-CCM

MQTT Uses DTLS Field for name and password uses DTLS Uses DTLS

Source: [11].

Table 2.
Summary of the security modes of the MQTT and CoAP protocols.
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that provides encryption by broadcast, on elliptical curcas. According to the
authors, SMQTT was resistant to attacks from known plaintext, known ciphertex
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preventing from retransmission; spoo pretend the entire payload;
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through the firewall, for example
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Accountability (Authentication, Authorization and Accountability). In the confi-
dentiality field, the encryptions used by the protocol are described.

4.4 Communication standards

The IoT supports some communication standards that can be defined as:

• In the Telemetry standard, information is sent from devices to the cloud,
informing possible changes in states;

• In the query pattern, devices send requests to the cloud to collect information;

• In the Commands pattern, Systems send commands to devices so that they can
perform specific activities;

• In the Notification standard, Systems send information to devices in order to
inform possible changes in the state of the physical world;

As can be seen in Figure 8, the pattern Telemetry becomes suitable for the
MQTT protocol, because it has a public/subscribed model, which is equivalent to
the telemetry standard. CoAP is not suitable for the Telemetry standard because the
connection needs from the system (client) to the server, which faces addressing
problems such as mobile roaming or NAT [9]. The CoAP protocol has a better
performance for the query communication pattern in relation to the MQTT proto-
col, since it is based on the request/response model (Figure 9). The MQTT has a

Figure 8.
Telemetry communication pattern example for (a) MQTT, (b) CoAP.

Figure 9.
Example of communication pattern notification for (a) MQTT, (b) CoAP.
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certain difficulty of implementation in the Consultation pattern because it has the
need to define a response topic for the communication since there is no way for it to
be readily constructed (Figure 10).

For the Command pattern, both protocols face difficulties. CoAP faces the same
addressing problems detailed in textit Telemetry and MQTT does not support
native result paths, thus requiring a results topic (Figure 11).

Finally, in the Notification pattern, the CoAP addressing problems, also listed in
the Command and Telemetry patterns, are present. On the other hand, the model
MQTT publishes/subscribes to the notification architecture, presenting problems
only if better flow control is needed for a large amount of data at high rates [4].

5. Conclusion and related works

Based on the information listed in the previous sections, it can be concluded that
both protocols (MQTT and CoAP) are considered for use in restricted environments
and on devices with battery, processor and limited memory. However, although the
two protocols were designed for application in limited environments, the MQTT
exchange protocol has the following advantages over CoAP:

• The transport with small overhead makes MQTT an interesting solution for
networks with resource constraints, low bandwidth and high latency;

• The MQTT is more geared for communication “many to many” (using the
TCP/IP protocol (Table 3)), since the COAP is more geared for

Figure 10.
Communication pattern example query for (a) MQTT, (b) CoAP.

Figure 11.
Communication pattern example command for (a) MQTT, (b) CoAP.
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communication “one to one” for information transfer between client and
server, using the UDP/IP protocol;

• Because the MQTT protocol has an exchange of messages based on the publish/
subscribe model (Table 3), decoupling the sender and receiver from the message
both in space and time. Thus the sensors that produce the data do not need to
know the identity of the clients who are interested in that information. While in
CoAP it is the opposite, the protocol requires the identification of both parties;

According to [14], Due to these characteristics, and mainly the characteristic of
being a protocol of communication “many to many”, the MQTT protocol, has a
greater relevance and use in the existing researches that use scenarios where the
number of devices communicating is great. The protocol is used in systems that seek
to monitor industrial environments, comparative performance analysis with other
industrial protocols of the Internet of Things and M2M and in situations of latency
estimation in communication.

In [15], the MQTT and CoAP protocols were responsible for connecting sensors
and controlling devices on channels with low bandwidth and little robustness. In
this case, they were used in conjunction with the Narrowband-IoT standard (NB-
IoT), which has the characteristic of allowing mobile phone communication to be
used by devices with limited capacities.

In [13], the authors analyze the feasibility of using ciphertext policy attribute-
based encryption (CP-ABE), to allow the security of IoT devices, using the ´MQTT
protocol and its variants SMQTT and SMQTTSN.

The authors in [16], the authors use the Prognostic Health Management (PHM)
system to detect anomalies in industrial systems. It is proposed in this way the
integration of the PHM system to the industrial environment of IoT, based on
MQTT and Cloud Computing in order to allow the assessment of the state of the
equipment in real time, thus improving the performance of the PHM.

In [17] a cloud-based architecture based on machine learning, for condition moni-
toring, fault detection and process optimization in industrial environments. The
implemented system uses the Dempster-Shafer Evidence Theory (DSET) (Figure 12).

In Figure 12, the main components proposed can be seen. In this work, the
OPC-UA/MQTT gateway is used to communicate between OPC servers on the
automation platform and the CORESYS CLOUD broker.

MQTT MQTT-SN CoAP

Network Protocol TCP/IP Not specified UDP

Useful data type Binary Binary Binary

Suitable for
microcontrollers

Yes Yes Yes

Security SSL/TLS Not specified DTLS

Scalability Simply Simply Complex

Network
architecture

Broker-based (publishes/
subscribes)

Broker-based, Client/Server,
Client/Server

Client/Server
(request/response)

Network
architecture

Broker-based (publishes/
subscribes)

Topic-based REST architecture

QoS Options Yes Yes Yes

Table 3.
Comparison table between MQTT and CoAP protocols.
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According to [18], CoreSys-Cloud four services were implemented, namely:

• Machine Learning e Data Analythics (MLDA): Module responsible for learning
and analyzing data for state assessment and monitoring;

• Flask: Software used for web application development;

• MySQL database server: responsible for storing the results MLDA evaluation;

• Server MQTT: the MQTT server is responsible for establishing communication
between the OPC-UA/MQTT gateway and CoreSys-Cloud.

Cyber security is treated as one of the technological pillars of industry 4.0,
which in turn is associated with the protection of software, machines, equipment,
network infrastructures and systems. Thinking about it [19] proposed a new
approach to protect communication between networked robotic systems, providing
authentication and data encryption.The Robot Operating System (ROS) is one of
the best robotic software development platforms, offering low-level device control,
diverse resources and many useful tools for simulating, visualizing and debugging
data, making it very popular with researchers from various robotics fields. Com-
munication in ROS is based on a publish-subscribe system, using the Remote Pro-
cedure Call Protocol (RCP) and Extensible Markup Language (XML), with the data
sent in clear text over TCP/IP or UDP/IP, without any security mechanism. Based
on these aspects, the authors proposed an integration between ROS and the MQTT
protocol, using its security features (Figure 13).

The authors performed a performance analysis comparing a system without
using the security systems offered by MQTT and another system using the MQTT
cryptography resources. The results show that the encrypted solution adds
negligible delays during communication between clients and servers.

Studies involving the implementation of ROS in industrial environments are
gaining more and more evidence. The functioning of ROS is similar to the MQTT
protocol in that it works about a publish/subscribe architecture, and use versions
ROS of TCP and UDP protocols. Both versions called TCPROS and UDPROS. Due to
the use of this architecture, ROS is composed of two elements. The master, which

Figure 12.
Framework proposed CORESYS CLOUD. Source: [17].
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acts as the MQTT broker, and the nodes, which act as the clients. As o MQTT, ROS
controls the data ow through the topics that are coordinated by the master [20]. The
main difference between ROS and MQTT, in terms of communication, is the fact
that broker has topics with defined typing, that is, a topic will be created with a
single type and will receive subscribers and publishers of this type only.

The Authors in [20], presented an implementation of MQTT integrated to ROS,
showing the feasibility of using this protocol in the 4.0 industry scenario. [21] cited
in [20], evidence the use of ROS in comparison with a traditional solution
(Figure 14).

In [22] the authors made a comparison between the AMQP (Advanced Message
Queuing Protocol) and MQTT protocols, in the context of a smart factory environ-
ment, with ROS also being used in some applications that required a more complex
and heterogeneous environment.

In [23], The authors proposed os the implementation of internet technology for
monitor and control industrial amr robot in industry. Was made a web-based
interface for monitor motion and controlling the angle of joint arm robot in a ROS
industrial simulation environment, using the mqtt protocol to communicate
between the robot and the client, give low latency data transmission.

Figure 13.
Proposed architecture. Source: [17].

Figure 14.
AMQP architecture.

168

Robotics Software Design and Engineering

The MQTT emerges as an excellent alternative for communication between
multi robot systems in several other works, as in [16] the the authors conducted a
study on the use of MQTT COAP and protocols in Ubiquitous Network Robot
Platform (UNR- PF) for the communication of a multi-robot system. In this work,
the authors were able to verify that the MQTT protocol is easier to be implemented
in the multi robot platform (UNR-PF) than CoAP, in addition to having a higher
data transfer rate. Other works related to the use of the MQTT protocol in
multi-robot systems are: [14, 24, 25].

Abbreviations

M2M Machine-to-Machine
IoT Internet of Things
IP Internet Protocol
PLC Programmable Logic Controller
HTTP Hypertext Transfer Protocol
FTP File Transfer Protocol
MQTT Messaging Queue Telemetry Transport
CoAP Constrained Application Protocol
PDU Protocol Data Unit
MQTT-SN MQTT Sensor Network
AMQP Advanced Message Queuing Protocol
DTLS Datagram Transport Layer Security
TLS Transport Layer Security
CP-ABE Ciphertext Policy Attribute-based Encryption
PHM Prognostic Health Management
MLDA Machine Learning e Data Analythics
ROS Robot Operating System
RCP Remote Procedure Call Protocol
XML Extensible Markup Language
UNR-PF Ubiquitous Network Robot Platform
AMQP Advanced Message Queuing Protocol
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