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Preface

The subject of chaos theory has passed from the domain of scientific research to the
general domain of interest among non-scientists. It is not unusual to hear of the
subject of chaos discussed by professional scientists and laymen alike. It is well
known that the subject touches on diverse areas such as population dynamics, the
study of climates and weather, chaos in atoms and chemical reaction physics, and
the subject of quantum chaos.

The current volume presents 12 very interesting contributions to this active area of
research. One of the main contributions of the book is to illustrate the wide diver-
sity of subjects that this area of research impacts. The papers themselves range over
a wide collection of topics such as chaos and complex dynamics, several papers on
nonlinear dynamics, another on quantum integrability, a paper that pertains to the
Covid epidemic, chaotic behavior of ICT users, and as well as 3 papers related to
perturbation theory and chaos.

The book has been assembled out of the hard work of an international group of
invited authors. It is a pleasure to thank them for their efforts and scientific contri-
butions. The editors are also grateful to acknowledge with much thanks to the
continuous support and assistance of Mr. Josip Knapić, Author Services Manager, as
well as the IntechOpen publishing group for the opportunity to participate in the
assembly of this collection of papers.

Paul Bracken
Professor,

Department of Mathematics,
University of Texas RGV,

Edinburg, TX USA

Dimo I. Uzunov
Professor,

Bulgarian Academy of Sciences,
Bulgaria





Chapter 1

Classical and Quantum
Integrability: A Formulation
That Admits Quantum Chaos
Paul Bracken

Abstract

The concept of integrability of a quantum system is developed and studied. By
formulating the concepts of quantum degree of freedom and quantum phase space,
a realization of the dynamics is achieved. For a quantum system with a dynamical
group G in one of its unitary irreducible representative carrier spaces, the quantum
phase space is a finite topological space. It is isomorphic to a coset space G=R by
means of the unitary exponential mapping, where R is the maximal stability sub-
group of a fixed state in the carrier space. This approach has the distinct advantage
of exhibiting consistency between classical and quantum integrability. The formal-
ism will be illustrated by studying several quantum systems in detail after this
development.

Keywords: classical, quantum, chaos, integrability, conservation law, algebra

1. Introduction

In classical mechanics, a Hamiltonian system with N degrees of freedom is
defined to be integrable if a set of N constants of the motion Ui which are in
involution exist, so their Poisson bracket satisfies Ui,U j

� � ¼ 0, i, j ¼ 1, … ,N. For
an integrable system, the motion is confined to an invariant two-dimensional torus
in 2N-dimensional phase space. If the system is perturbed by a small nonintegrable
term, the KAM theorem states that its motion may still be confined to the N-torus
but deformed in some way [1–3]. The first computer simulation of nonequilibrium
dynamics for a finite classical system was carried out by Fermi and his group. They
considered a one-dimensional classical chain of anharmonic oscillators and found it
did not equilibrate.

Classically, chaotic motion is longtime local exponential divergence with global
confinement, a form of instability. Confinement with any kind of divergence is
produced by repeatedly folding, a type of mixing that can only be analyzed by using
probability theory. The motion of a Hamiltonian system is usually neither
completely regular nor properly described by statistical mechanics, but shows both
regular and chaotic motion for different sets of initial conditions. There exists
generally a transition between the two types of motion as initial conditions are
changed which may exhibit complicated behavior. As entropy or the phase space
area quantifies the amount of decoherence, the rate of change of the phase space
area quantifies the decoherence rate. In other words, the decoherence rate is the
rate at which the phase space area changes.
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It is important to extend the study of chaos into the quantum domain to better
understand concepts such as equilibration and decoherence. Both integrable as well
as nonintegrable finite quantum systems can equilibrate [4, 5]. Integrability does
not seem to play a crucial role in the structure of the quasi-stationary state. This is in
spite of the fact that integrable and nonintegrable quantum systems display differ-
ent level-spacing statistics and react differently to external perturbation. Although
integrable systems can equilibrate, the main difference from nonintegrable systems
may be longer equilibration times. This kind of behavior is contrary to integrable
classical finite systems that do not equilibrate at all. Nonintegrable classical systems
can equilibrate provided they are chaotic.

The properties of a quantum system are governed by its Hamiltonian spectrum.
Its form should be important for equilibration of a quantum system. The equilibra-
tion of a classical system depends on whether the system is integrable or not.
Integrable classical systems do not tend to equilibrate, they have to be
nonintegrable. Quantum integrability in n dimensions may be defined in an analo-
gous way requiring the existence of n mutually commuting operators, but there is
no corresponding theorem like the Liouville theorem. An integrable system in
quantum mechanics is one in which the spectral problem can be solved exactly, and
such systems are few in number [6, 7].

In closed classical systems, equilibration is usually accompanied by the appear-
ance of chaos. Defining quantum chaos is somewhat of an active area of study now.
The correspondence principle might suggest we conjecture quantum chaos exists
provided the corresponding classical system is chaotic and the latter requires
the system to be nonintegrable. Classical chaos does not necessarily imply
quantum chaos, which seems to be more related to the properties of the energy
spectrum.

It was proposed that the spectrum of integrable and nonintegrable quantum
systems ought to be qualitatively different. This would be seen in the qualitative
difference of the density of states. At a deeper level, one may suspect that changes
in the energy spectrum as a whole may be connected to the breaking of some
symmetry or dynamical symmetry. This is the direction taken here [8–10].

It is the objective to see how algebraic and geometric approaches to quantization
can be used to give a precise definition of quantum degrees of freedom and quan-
tum phase space. Thus a criterion can be formulated that permits the integrability of
a given system to be defined in a mathematical way. It will appear that if the
quantum system possesses dynamical symmetry, it is integrable. This suggests that
dynamical symmetry breaking should be linked to nonintegrability and chaotic
dynamics at the quantum level [11–13].

Algebraic methods first appeared in the context of the new matrix mechanics in
1925. The importance of the concept of angular momentum in quantum mechanics
was soon appreciated and worked out by Wigner, Weyl and Racah [14–16]. The
close relationship of the angular momentum and the SO 3ð Þ algebra goes back to the
prequantum era. The realization that SO 4ð Þ is the symmetry group of the Kepler
problem was first demonstrated by Fock. A summary of the investigation is as
follows. To familiarize those who are not familiar with algebraic methods in solving
quantum problems, an introduction to the algebraic solution of the hydrogen atom
is presented as opposed to the Schrödinger picture. This approach provides a plat-
form for which a definition of quantum integrability of quantum systems can be
established. Thus, at least one approach is possible in which a definition of concepts
such as quantum phase space, degrees of freedom as well as how an idea of quantum
integrability and so forth can be formulated [17–21]. After these issues are
addressed, a number of quantum models will be discussed in detail to show how the
formalism is to be used [22–24].

2

A Collection of Papers on Chaos Theory and Its Applications



1.1 The hydrogen atom

The hydrogen atom is a unique system. In this system, almost every quantity of
physical interest can be computed analytically as it is a completely degenerate
system. The classical trajectories are closed and the quantum energy levels only
depend on the principle quantum number. This is a direct consequence of the
symmetry properties of the Coulomb interaction. Moreover, the properties of the
hydrogen atom in an external field can be understood using these symmetry prop-
erties. They allow a parallel treatment in the classical and quantum formalisms.

The Hamiltonian of the hydrogen atom in atomic units is

H0 ¼ p2

2
� 1

r
: (1)

The corresponding quantum operator is found by replacement of p by �i∇. Due
to the spherical symmetry of the system, the angular momentum components are
constants of the motion,

L ¼ r� p, H0,L½ � ¼ 0: (2)

So H0,L2,Lz
� �

is a complete set of commuting operators classically, so three
quantities in mutual involution, which implies integrability of the system.

The Coulomb interaction has another constant of the motion associated with the
Runge-Lenz vector R. This has the symmetrized quantum definition

R ¼ 1
2

p� L� L� pð Þ � r
r
, H0,R½ � ¼ 0: (3)

If the R direction is chosen as the reference axis of a polar coordinate system in
the plane perpendicular to L, one deduces the equation of the trajectory as

r ¼ L2

1þ kRk cos ϑ : (4)

The modulus determines whether the trajectory is an ellipse, a parabola or a
hyperbola.

There are then 7 constants of the motion L,R,H0ð Þ are not independent and
satisfy

R � L ¼ 0, L2 � R2

2H0
¼ � 1

2H0
� 1: (5)

The minus one on the right in (5) is not present in classical mechanics. The
mutual commutation relations are given in terms of εijk, the fully antisymmetric
tensor as follows,

Li,L j
� � ¼ iεijkLk, Li,R j

� � ¼ iεijkRk, Ri,R j
� � ¼ iεijk �2H0ð ÞLk, (6)

Let us look at the symmetry group of the hydrogen atom. The symmetry group is
the set of phase space transformations which preserve the Hamiltonian and the
equations of motion. It can be identified from the commutation relations between
constants of motion. For hydrogen, for negative energies, the group of rotations in
4-dimensional space is called SO 4ð Þ.
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The generators of the rotation group in an n-dimensional space are the
n� 1ð Þn=2 components of the n-dimensional angular momentum

Lij ¼ xip j � x jpi, 1≤ i, j≤ n: (7)

In (7), Lij is the generator of the rotations in the i, jð Þ-plane and has the following
commutation relations

Lij,Lkl
� � ¼ 0, Lij,Lik

� � ¼ iLjk: (8)

The first bracket in (8) holds if all four indices are different.
Define the reduced Runge-Lenz vector to be

R0 ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffi�2H0
p : (9)

The commutation relations (6) are those of a four-dimensional angular
momentum with the identification

L12 ¼ Lz L23 ¼ Lz L31 ¼ Ly

L14 ¼ Rz0 L24 ¼ Ry0 L34 ¼ Rz0 ,
(10)

and Casimir operator

L2 ¼
X
i< j

Lij
� �2 ¼ L2 þ R2 ¼ � 1

2H0
� 1: (11)

The classical trajectory is thus uniquely defined with the 6 components of L and
L � R0 ¼ 0. Any trajectory can be transformed into any other one having the same
energy by a 4-dimensional rotation. An explicit realization of this four-dimensional
invariance is to use a stereographic projection from the momentum space onto the
4-dimensional sphere with radius p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi�2H0
p

. On this sphere, the solutions to
Schrödinger’s equation as well as the classical equations of motion are those of the
free motion. Schrödinger’s equation on the four-dimensional sphere can be sepa-
rated into six different types of coordinates each associated with a set of commuting
operators.

Spherical coordinates correspond to the most natural set, and choosing the
quantization axis in the 4 direction and inside the (1,2,3) subspace, the z-axis or
usual 3-axis as reference axis, the three operators can be simultaneously
diagonalized,

L2 ¼ � 1
2H0
� 1,

L2 ¼ L2
12 þ L2

31 þ L223 ¼ L2
x þ L2

y þ L2
z,

Lz ¼ L12,

(12)

The respective eigenvalues of these operators are n2 � 1, l lþ 1ð Þ andM such that
∣M∣ ≤ l≤ n� 1, so the total degeneracy is n2. It corresponds to a particular subgroup
chain given by

SO 4ð Þn ⊃ SO 3ð Þl ⊃ SO 2ð ÞM: (13)
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Other choices are possible, such as other spherical coordinates obtained from the
previous by interchanging the role of the 3 and 4 axes. This simultaneously diago-
nalizes the three operators

L2 ¼ � 1
2H0
� 1,

λ2 ¼ L2
12 þ L2

14 þ L2
24 ¼ R02x þ R‘02y þ L02z,

Lz ¼ L12:
(14)

The respective eigenvalues of these operators are n2 � 1, λ λþ 1ð Þ and M such
that ∣M∣ ≤ λ≤ n� 1. The subgroup chain for this situation is

SO 4ð Þn ⊃ SO 3ð Þλ ⊃ SO 2ð ÞM: (15)

Another relevant case is the adoption of cylindrical coordinates on the 4-dimen-
sional sphere associated with the following set of commuting operators

L2 ¼ � 1
2H0
� 1,

L12 ¼ Lz,

L34 ¼ R0z:

(16)

This set has the following associated subgroup chain,

SO 4ð Þ⊃ SO 2ð Þ⊗ SO 2ð Þ: (17)

In configuration space, this is associated with separability in parabolic coordi-
nates. This is a specific system but it exhibits many of the mathematical and
physical properties that will appear here.

2. Quantum degrees of freedom

The time evolution of a system in classical mechanics in time is usually
represented by a trajectory in phase space and the dynamical variables are functions
defined on this space. The dimension of phase space is twice the number of degrees
of freedom, and a point represents a physical state. The space is even-dimensional
and it is endowed with a symplectic Poisson bracket structure. Dynamical
properties of the system are described completely by Hamilton’s equations within
this space.

For a quantum system, on the other hand, the dynamical properties are
discussed in the setting of a Hilbert space. Dynamical observables are self-adjoint
operators acting on elements of this space. A physical state is represented by a ray of
the space, so the Hilbert space plays a role similar to phase space for a classical
system. The Hilbert space cannot play the role of a quantum phase space since its
dimension does not in general relate directly to degrees of freedom. Nor can it be
directly reduced to classical phase space in the classical limit. Let us define first the
quantum degrees of freedom as well as giving a suitable meaning to quantum phase
space.

SupposeH is a Hilbert space of a system characterized completely by a complete
set of observables denoted C. Set C is composed of the basic physical observables,
such as coordinates, momenta, spin and so forth, but excludes the Hamiltonian. The
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basis vectors of the space can be completely specified by a set of quantum numbers
which are related to the eigenvalues of what are usually referred to as the fully non-
degenerate commuting observables C0 of C. A fully degenerate operator or observ-
able O∈ C has for some constant λ the action

O ∣ψ ii ¼ λ ∣ψ ii, ∣ψ ii∈H: (18)

Definition 1: (Quantum Dynamical Degrees of Freedom) Let C :
O jj Oi,O j
� � ¼ 0; i, j ¼ 1, … ,N

� �
be a complete set of commuting observables of a

quantum system. A basis set of its Hilbert space H can be labeled completely by M
numbers αi : i ¼ 1, … ,Mf g called quantum numbers which are related to the
eigenvalues of the non-fully degenerate observables Oi : i ¼ 1, … ,M M≤Nð Þf g, a
subset of C. Then the number M is defined to be the number of quantum dynamical
degrees of freedom. □

Since the members of C are provided by the system, not including the Hamilto-
nian, it depends only on the structure of the system’s dynamical group G. Thus the
number of quantum dynamical degrees of freedom based on this definition is
unique for a given system with a specific Hilbert space H.

The physical and mathematical considerations for defining the dimension of the
nonfully degenerate operator subset C0 of C, not the dimension of C itself, as the
number of quantum dynamical degrees of freedom is as follows. In a given H, all
fully degenerate operators in C are equivalent to a constant multiple of the identity
operator guaranteeing the irreducibility of H. The expectation values of any fully
degenerate operator is a constant and contains no dynamical information.

A given quantum system generally has associated with it a well-defined
dynamical group structure due to the fact that the mathematical image of a quan-
tum system is an operator algebra g in a linear Hilbert space. This was seen in the
case of hydrogen. It comes about from the mathematical structure of quantum
mechanics. The dynamical group G with algebra g is generated out of the basic
physical variables, with the corresponding algebraic structure defined by the
commutation relations.

The Hamiltonian H and all transition operators Of g can be expressed as
functions of a closed set of operators

H ¼ H Tið Þ, O ¼ O Tið Þ, Ti,T j
� � ¼

X
k

Ck
ij Tk: (19)

The Ck
ij in (19) are called the structure constants of algebra g. The Hilbert space

is decomposed into a direct sum of the carrier spaces of unitary irreducible (irrep)
representations of the group. Consequently, the dynamical symmetry properties of
the system can be restricted to an irreducible Hilbert space which acts as one of the
irrep carrier spaces of G.

From group representation theory, it will be given that a total of σ subgroup
chains exist for a given group

Gα ¼ Gα
sα ⊃Gα

sα�1 ⊃⋯⊃Gα
1

� �
, α ¼ 1, … , σ: (20)

For each subgroup chain Gα of G, there is a complete set of commuting operators
Cwhich specifies a basis set of its irreducible basis carrier spaceH, so the dimension
of C for all subgroup chains of G is the same. A subgroup chain of dynamical group
G serves to determine the M quantum dynamical degrees of freedom for a given
quantum system with Hilbert space H an irrep carrier space of G.
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Definition 2: For a quantum system with M independent quantum dynamical
degrees of freedom the quantum phase space is defined to be a 2M-dimensional
topological space. The space is isomorphic to the coset space G=R with explicit
symplectic structure. Here G is the dynamical group of the system and R⊂G is the
maximal stability subgroup of the Hilbert space. □

3. Quantum integrability and dynamical symmetry

Quantum phase space defined here can be compact or noncompact depending
on the finite or infinite nature of the Hilbert space. A consequence of this develop-
ment is that the classical definition of integrability can in general be directly trans-
ferred to the quantum case.

Definition 3: (Quantum Integrability) A quantum system with M independent
dynamical degrees of freedom, hence a 2M-dimensional quantum phase space, is
integrable if and only if there are M quantum constraints of motion, or good
quantum numbers, which are related to the eigenvalues of M non-fully degenerate
observables: O1,O2, … ,On. □

Any set of variables that commute may be put in the form of a complete set of
commuting observables C by including certain additional observables with it. The
definition then says that if the system is integrable, a complete set of commuting
variables C can be found so that the Hamiltonian is always diagonal in the basis
referred to by C. In the reverse sense, the definition implies that if the system is
integrable, simultaneous accurate measurements of M non-fully degenerate
observables in the energy eigenvalues can be carried out.

The link with the dynamical group structure can be developed. This specifies
exactly the integrability of a quantum system. To this end the definition of dynam-
ical symmetry is needed.

Definition 4: (Dynamical Symmetry) A quantum system with dynamical group G
possesses a dynamical symmetry if and only if the Hamiltonian operator of the
system can be written and presented in terms of the Casimir operators of any
specific chain with α fixed

H ¼ F Cα
kj

� �
(21)

The index of a particular subgroup chain Cα
kj the i-th Casimir operator of subgroup

Gα
k, k ¼ sα, … , 1, i ¼ 1, … , lαk and lαk denotes that the rank of subgroup Gα

k is l. It is
now possible to state a theorem which gives a condition for integrability to apply.

Proposition 1: (Quantum Integrability) A quantum system with dynamical group
G is said to be integrable if it possesses a dynamical symmetry of G.

To prove this, note that it can be broken down into two cases or subgroup classes
for a given dynamical group G and are referred to as canonical and noncanonical.

First consider the case in which Gα is a canonical subgroup chain of G. The
Casimir operators of G, CGif g and all Casimir operators Cα

ki

� �
corresponding to the

subgroups in chain Gα form a complete set of commuting operators Cα of any
carrier irrep space H of Gα so for fixed α,

Cα : CGif g∪ Cα
ki

� � � Q j, j ¼ 1,⋯,N
n o

: (22)

When Gα is the dynamical symmetry of the system, all operators in Cα are
constants of motion
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H,Q j

h i
¼ 0: (23)

There are always M nonfully dynamical operators in Cα. By the third definition,
the system is integrable.

For a non-canonical subgroup chain Gα the number of Casimir operators CGif g
of G and all Casimir operators of Cα

ki

� �
of Gα is less than the number of the complete

set of commuting operators C of any irrep carrier space of G. By definition, of any
complete set of commuting operators, there must exist other commuting operators
O j
� �

that commute with CGif g and Cα
ki

� �
. These have to be included in the union as

well when putting together Cα

Cα : CGif g∪ Cα
ki

� �
∪ O j
� � � Q j : j ¼ 1, … ,N

n o
: (24)

When the system is characterized by the dynamical symmetry of Gα, the oper-
ators in (24) satisfy relation (23) as well. In this case as well, there must exist M
non-fully degenerate operators of constants of motion as in the previous case.

Based on this proposition, it can be stated that nonintegrability of a quantum
system involves the breaking of the dynamical symmetry of the system. It may be
concluded that dynamical symmetry breaking can be said to be a property which
characterizes quantum nonintegrability. □

Let us summarize what has been found as to what quantum mechanics tells us.
In a given quantum system with dynamical Lie group G which is of rank l and
dimension n, the dimension of a complete set of commuting operators C of G with
any particular subgroup chain is d ¼ lþ n� lð Þ=2 in which the l operators are
Casimirs of G and are fully degenerate for any given irrep of G. The number M of
the non-fully degenerate operators in C for a given irrep of G cannot exceed
M≤ n� lð Þ=2. When dynamical symmetry is broken such that any of the M con-
stants of the motion for the system is destroyed the system becomes nonintegrable.

4. Quantum phase space

It is of interest then to develop a model for phase space for quantum mechanics
which may be regarded as an analogue to classical physics. By what has been said so
far, the Hilbert space H of the system can be broken up into a direct sum of the
unitary irreps carrier spaces of G,

H ¼
X
Λ

⊕YΛHΛ: (25)

In (25), the subscript Λ labels a particular irrep of Lie group G, Λ is the largest
weight of the irrep and YΛ the degeneracy of Λ in H with no correlations existing
between various HΛ. The study of the dynamical properties of the system can be
located on one particular irreducible subspace HΛ of H. For a quantum system with
MΛ independent quantum dynamical degrees of freedom, the corresponding quan-
tum phase space should be a 2MΛ-dimensional, topological phase space without
additional constraints.

To construct the quantum phase space from the quantum dynamical degrees of
freedom for an arbitrary quantum system, the elementary excitation operators can
be obtained from the structures of G and HΛ. Let a†i

� �
be a subset of generators of G

such that any states ∣Ψi of the system are generated for all ∣Ψi∈HΛ by means of

8

A Collection of Papers on Chaos Theory and Its Applications



∣Ψi ¼ F a†i
� �

∣0i: (26)

Moreover F a†i
�

) is a polynomial in the operators a†i
� �

and ∣0i∈HΛ is the refer-
ence state. The requirement placed on state ∣0i is that one can use a minimum subset
of g to generate the entire subspace HΛ from ∣0i. In this event, the collection a†i

� �
is

called the set of elementary excitation operators of the quantum dynamical degrees of
freedom. If G is compact, ∣0i is the lowest ∣Λ, � Λi or highest weight ∣Λ,Λi state of
HΛ. If G is noncompact, it is merely the lowest state. The number of a†i

� �
is the same

as the number of quantum dynamical degrees of freedom. Physically this has to be
the case since that is how the operators are defined. Thus the set a†i

� �
and Hermitian

conjugate aif g in gΛ form a dynamical variable subspace μ of g so we can write

μ : a†i , ai; i ¼ 1, … ,MΛ
� �

: (27)

With respect to μ there exists a manifold whose dimension is twice that of the
quantum dynamical degrees. It can be realized by means of a unitary exponential
mapping of the dynamical variable operator subspace μ

Ω ¼ exp
XMΛ

i¼1
ηia

†
i � η ∗

i ai
� � !

∈∐: (28)

The ηi are complex parameters and i ¼ 1, … ,MΛ. In fact, Ω is a unitary coset
representation of G=R, where R⊂G is generated by the subalgebra κ ¼ g � μ. Thus
(28) shows that q is isomorphic to the 2MΛ-dimensional coset space G=R, and will
be denoted this way from now on. The discussion will apply just to semi-simple Lie
groups whose g satisfies the usual Cartan decomposition g ¼ κ þ μ and κ, κ½ �⊂ κ,
κ, μ½ �⊂ μ and μ, μ½ �⊂ κ. Thus G=R will be a complex homogeneous space with
topology and a group transformation acting on G=R is a homomorphic mapping of
G=R into itself.

The homogeneous space G=R has a Riemannian structure with metric

gij ¼
∂
2 logK z, zð Þ

∂zi∂z j
(29)

The function K z, zð Þ is called the Bergmann kernel of G=R and can be
represented as

K z, zð Þ ¼
X
λ

f λ zð Þ f ∗
λ zð Þ: (30)

The functions f λ zð Þ in (30) constitute an orthogonal basis for a closed linear
subspace L2 G=Rð Þ of L2 G=Rð Þ such that

ð

G=R
f λ zð Þ f ∗

λ0 zð ÞK�1 z, zð Þdν z, zð Þ ¼ δλλ0 , (31)

and dν z, zð Þ is the group invariant measure on the space G=R. It will be written

dν z, zð Þ ¼ ζ det gij
� �h iYMλ

i¼1

dzidzi
π

: (32)
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In (32) ζ is a normalization factor given by the condition that (32) integrated
over the space G=R is equal to one. There is also a closed, nondegenerate two-form
on G=R which is expressed as,

ω ¼ iℏ
X
i, j

gij dzi ∧ dz j: (33)

Corresponding to this two form there is a Poisson bracket which is given by

f , hf g ¼ 1
iℏ

X
i, j

gij
∂f
∂zi

∂h
∂z j
� ∂f
∂z j

∂h
∂zi

� �
: (34)

In (34) f and h are functions defined on G=R. By introducing canonical coordi-
nates q,pð Þ these quantities can be rewritten in terms of these coordinates.

4.1 Phase space quantum dynamics

Based on what has been stated about G=R, it would be useful to describe the
quantum phase space. This means for a given quantum system a phase space
representation must exist. Such a representation can be found if there exists an
explicit mapping such that

O Tið Þ ! U q,pð Þ, ∣Ψi ! ρ qþ ipð Þ: (35)

Here O is given by (19), and ρ q,pð Þ∈L2. For a quantum system with a quantum
phase space G=R, this mapping can be realized by coherent states. To construct
coherent states of G and HΛ defined on G=R, the fixed state ∣0i is chosen as the
initial state

g∣0i ¼ Ωr∣0i ¼ ∣Λ,Ωieiφ rð Þ, g∈G, r∈R, Ω∈G=R: (36)

Then R is the maximal stability subgroup of ∣0i so any r∈R acting on ∣0i will
leave ∣0i invariant up to a phase factor

r∣0i ¼ eiφ rð Þ∣0i: (37)

The ∣Λ,Ωi are the coherent states which are isomorphic to G=R. Therefore,

∣Λ,Ωi � Ω∣0i ¼ exp
XMΛ

i¼1
ηia

†
i � η ∗

i ai
� � !

∣0i ¼ K1=2 z, zð Þ exp
XMΛ

i¼1
zia

†
i

 !
∣0i

¼ K�1=2 z, zð ÞkΛ, zi:
(38)

K z, zð Þ ¼ 0j exp
XMΛ

i¼1
ziai

 !
exp

XMΛ

i¼1
zia

†
i

 !
j0

* +
¼ Λ, zkΛ, zh i ¼ ∣i0 Λ, 0ij j2

¼
X
λ

fΛλ zð Þ f ∗
Λλ zð Þ:

The Bargmann kernel was introduced in (30), and for a semisimple Lie group,
the parameters zi are given by
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z ¼
η
tan η†ηð Þ1=2

η†ηð Þ1=2
, Gcompact,

η
tanh η†ηð Þ1=2

η†ηð Þ1=2
, Gnoncompact:

8>>>>><
>>>>>:

(39)

Here η represents the nonzero k� p block matrix of the operatorPMΛ
i¼1 ηiai � η ∗

i a
†
i

� �
. The state kΛ, zi in (38) is an unnormalized form of ∣Λ,Ωi and

fΛ,λ zð Þ is the orthogonal basis of L2 G=Rð Þ the function space

fΛ,λ zð Þ ¼ Λ, λkΛ, λh i, (40)

where ∣Λ, λi is a basis for HΛ, a particular irreducible subspace of the Hilbert
space. The coherent states of (38) are over-complete

ð

G=R
∣Λ,ΩihΛ,Ω∣dν zð Þ ¼ I: (41)

A classical-like framework or analogy has been established in the form of a
quantum phase space specified by G and HΛ. Variables which reside in this classical
analogy are denoted thus ~c. The 2MΛ-dimensional quantum phase space G=R has all
the required structures of a classical mechanical system. It is always possible a
classical dynamical theory can be established in G=R whose motion is confined to
G=R and is determined by the following equations of motion

d ~U
dt
¼ ~U q, pð Þ, ~H q, pð Þ� �

, q, p∈G=R: (42)

This equation can be replaced by Hamilton’s equations

dqi
dt
¼ ∂~H q, pð Þ

∂pi
,

dpi
dt
¼ � ∂~H q, pð Þ

∂qi
: (43)

In (42) and (43), ~H q, pð Þ is the Hamiltonian of the system, and ~U q, pð Þ is a
physical observable. A correspondence principle is implied here and requires that
suitable conditions can be found such that the quantum dynamical Heisenberg
equations can be written this way.

Clearly, if suitable conditions hold the phase space representation of the com-
mutator of any two operators is equal to the Poisson bracket of the phase space
representation of these two operators so that

1
iℏ

Λ,Ωj AH,BH½ �jΛ,Ωh i ¼ ~A, ~B
n o

: (44)

Then the phase space representation of the Heisenberg equation

dAH

dt
¼ 1

iℏ
AH,HH½ �, (45)

given by (42) is therefore equivalent to (43). In (45),AH is the Heisenberg operator

AH ¼ UAU�1, U ¼ eiHt=ℏ, (46)
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and A is time-independent in the Schrödinger picture. The coherent state on the
left of (44) is time-independent. Observables on the right side are the expectation
values of the Schrödinger operators in the time-dependent coherent state. The quan-
tum phase space maintains many of the quantum properties which are important,
such as internal degrees of freedom, the Pauli principle, statistical properties and
dynamical symmetry. Formally the equation of motion is classical. The phase space
representation is based on the whole quantum structure of the coset space G=R.

Let us discuss integrability and dynamical symmetry. A quantum system with
MΛ independent degrees of freedom is integrable if and only if the MΛ non-fully
degenerate observables can simultaneously be measured in the energy representa-
tion. There exist non-fully degenerate observables Ci : i ¼ 1, … ,MΛ � 1f g which
commute with each other and H

Ci,C j
� � ¼ 0, Ci,H½ � ¼ 0: (47)

It follows that in the classical limit which has been formulated,

~Ci, ~C j
� � ¼ 0, ~Ci, ~H

� � ¼ 0: (48)

Together with the Hamilton equations, (47) also formally defines classical inte-
grability, so quantum integrability is completely consistent with the classical theory.
In the classical analogy, the group structure of the system is defined by Poisson
brackets. The concept of dynamical symmetry is naturally preserved in the classical
analogy, so the theorem on dynamical symmetry and integrability is also meaning-
ful for the classical analogy. If the Hamiltonian has the symmetry S, then its phase
space picture representation has the same symmetry. To see this, if

SHS�1 ¼ H, (49)

in the phase space representation, it holds that

Λ,ΩjHjΛ,Ωh i ¼ Λ,ΩjSHS�1jΛ,Ω� � ¼ Λ,Ω0jHjΛ,Ω0h i: (50)

To put this concisely, we write

~H q, pð Þ ¼ ~H q0, p0ð Þ, (51)

where S�1∣Λ,Ωi ¼ S�1Ω∣0i ¼ ∣Λ,Ω0ieiφ hð Þ.

5. Applications to physical systems

5.1 Harmonic oscillator

The harmonic oscillator has dynamical group H4 and is a single-degree of
freedom system [13–15, 23]. To the dynamical group corresponds the algebra h4
defined by the set a†, a, a†a, If g with Hilbert space the Fock space VF :
jni, n ¼ 1, 2, …f g, so the fixed state is the ground state ∣0i, and elementary

excitation operator a†. The quantum phase space is constructed from the unitary
exponential mapping of the subspace μ : a†, af g of h4,

Ω zð Þ ¼ exp za† � za
� �

∈H4=U 1ð Þ⊗U 1ð Þ: (52)
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With generators a†a and I, U 1ð Þ⊗U 1ð Þ in (52) is the maximal stability subgroup
of ∣0i. As H4=U 1ð Þ⊗U 1ð Þ is isomorphic to the one-dimensional complex plane, the
quantum phase space has metric gij ¼ δij and dν zð Þ ¼ dzdz=π. It is noncompact due
to the infiniteness of the Fock space. There is a well-known symplectic structure on
the complex plane with Poisson bracket of two functions ~F1, ~F2 defined by

~F1, ~F2
� � ¼ 1

iℏ
∂~F1

∂z
∂~F2

∂z
� ∂~F1

∂z
∂~F2

∂z

� �
: (53)

It is useful to introduce the standard canonical position and momentum
coordinates

z ¼ 1ffiffiffiffiffiffi
2ℏ
p qþ ipð Þ, z ¼ 1ffiffiffiffiffiffi

2ℏ
p q� ipð Þ: (54)

The Glauber coherent states can be realized by the states ∣zi with the set of these
states isomorphic to H4=U 1ð Þ⊗U 1ð Þ and given as

∣zi � Ω zð Þ∣0i ¼ exp za† � za
� �

∣0i ¼ e� zj j2=2 exp za†
� �

∣0i: (55)

The normalization constant in (55) is the Bargmann kernel

K z, zð Þ ¼ e zj j2 : (56)

The phase space representation of the wavefunction ∣Ψi∈VF is

f zð Þ ¼ Ψkzh i ¼
X∞
n¼0

f n
znffiffiffiffi
n!
p : (57)

By Wick’s Theorem, it is always possible to write an operator A in normal
product form

A ¼ A a†, a
� � ¼

X
k, l

An
k,l a†
� �k að Þl: (58)

The phase space representation of A is just

~U z, zð Þ ¼ zjAjzh i ¼
X
k, l

An
k,lz

kzl: (59)

In the case A is simply a generator of H4, we can write (59) as

~a† ¼ zja†jz� �
, ~a ¼ zjajzh i,

~a†~a ¼ zja†ajz� � ¼ zj j2, ~I ¼ zjIjzh i ¼ I:
(60)

The corresponding algebraic structure of H4 in the phase-space representation is

iℏc ~a, ~a†
� � ¼ ~I, iℏc ~a†~a

� � ¼ �~a, iℏc ~a†~a, ~a†
� � ¼ ~a†: (61)

Here ℏc is used in the classical analogy. The algebraic structure of the H4
generators is preserved when commutators are replaced by Poisson brackets in
phase space. Using (54) the Dirac quantization condition and ~H are given by
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q, p½ � ¼ iℏc q, pf g, ~H q, pð Þ ¼ zjHjzh i: (62)

For the forced harmonic oscillator, the classical analogy of the Hamiltonian is
given by

~H q, pð Þ ¼ ω

2
p2 þ q2
� �þ i

ffiffiffi
2
p

ℜ λ tð Þqð Þ �
ffiffiffi
2
p

ℑ λ tð Þpð Þ

¼ ω

2
p2 þ q2
� �þ 1ffiffiffi

2
p λ tð Þ þ λ tð Þ� �

qÞ þ 1ffiffiffi
2
p

i
λ tð Þ � λ tð Þ� �

p
� �

:

(63)

Hamilton’s equations in (44) can be used to evaluate the t derivatives of q and p:

dq
dt
¼ ωpþ 1ffiffiffi

2
p

i
λ tð Þ � λ tð Þ� �

,
dp
dt
¼ �ωq� 1ffiffiffi

2
p λ tð Þ þ λ tð Þ� �

: (64)

Hence combining these two derivatives, we obtain

d
dt

qþ ipð Þ ¼ �iω qþ ipð Þ �
ffiffiffi
2
p

iλ tð Þ: (65)

Multiplying both sides by the integrating factor eiωt and then integrating with
respect to t, the solution is

q tð Þ þ ip tð Þ ¼ e�iωt q 0ð Þ þ ip 0ð Þð Þ � i
ffiffiffi
2
p

e�iωt
ðt
0
λ τð Þeiωτ dτ ¼ z tð Þ

ffiffiffiffiffiffiffi
2ℏc

p
: (66)

If the initial state is ∣0i or a coherent state ∣z 0ð Þi, then the exact quantum
solution is

∣ψ tð Þi ¼ ∣z tð Þieiφ tð Þ (67)

and z tð Þ is given by (66). The phase φ is a quantum effect obtained from z tð Þ

φ tð Þ ¼ � 1
2
ωt�

ðt
0
ℜ λ τð Þz τð Þ½ �dτ: (68)

This seems to imply the classical analogy provides an exact quantum solution if
the Hamiltonian is a linear function of the generators of G.

5.2 SU 2ð Þ spin system

The phase space structure of a spin system will be constructed and as well the
phase-space distribution and classical analogy.

Since the dynamical group of the spin system is SU 2ð Þ and the Hilbert space is
described by the states V2jþ1 ¼ jj,mif g where m ¼ �j, � jþ 1, … , j and j is an
integer or half-integer, the fixed state is ∣j, � ji. This is the lowest weight state of
V2jþ1. Thus the elementary excitation operator of the spin system is Jþ and the
explicit form of ∣ j,mi is

∣ j,mi ¼ 1
jþmð Þ!

2j
jþm

� ��1=2
Jþð Þ jþm∣ j, � ji: (69)
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Any state ∣Ψi ¼P j
m¼�j f m∣j,mi∈V2jþ1 can be generated by a polynomial of Jþ

acting on ∣j, � ji. This means the number of quantum dynamical degrees of freedom
is equal to the number of elementary excitation operators. The quantum phase
space can be found by mapping μ : Jþ, J�

� �
to the coset space SU 2ð Þ=U 1ð Þ by means

of ηJþ � ηJ�ð Þ ! exp ηJþ � ηJ�ð Þ where η ¼ ϑ=2ð Þe�iφ, 0≤ϑ≤ π, 0≤φ≤ 2π. The
coset space SU 2ð Þ=U 1ð Þ is isomorphic to a two-dimensional sphere. The coherent
states of SU 2ð Þ=U 1ð Þ are well known

∣jΩi ¼ exp ηJþ � ηJ�ð Þ∣j, � ji ¼ 1þ zj j2
� ��j

exp zJþð Þ∣ j, � ji ¼ 1þ zj j2
� ��j

kjzi,

z ¼ tan
ϑ

2
e�iφ:

(70)

The generalized Bargmann kernel on S2 is K z, zð Þ ¼ 1þ zj j2
� �2j

. Then the metric

gij and measure are given by

gij ¼ δij
2j

1þ zj j2
� �2 , dν ¼ 1

π
2jþ 1ð Þ dzdz

1þ zj j2Þ2 : (71)

Given the canonical coordinates

1ffiffiffiffiffiffiffi
4jℏ

p qþ ipð Þ ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zj j2

q ¼ sin
ϑ

2

� �
e�iφ, (72)

there obtains the bracket

~F1, ~F2
� � ¼ ∂~F1

∂q
∂~F2

∂p
� ∂~F1

∂p
∂~F2

∂q
, (73)

where q2 þ p2 ≤ 4jℏ, which implies the phase space of a spin system is compact.
The phase space representation of the state ∣Ψi∈V2jþ1 is for f ∈L2 S2

� �
,

f zð Þ ¼ ΨkjΩh i ¼
X∞
n¼0

f n
2j

jþm

� �1=2

z jþm, (74)

The phase space representation of an operator B ¼ B Jið Þ is

~B z, zð Þ ¼ jΩjBj jΩh i: (75)

When the operator B in (75) is chosen to be one of the three operators Jþ, J� or J0,
the results are

~Jþ ¼ jΩjJþj jΩ
� � ¼ 2jz

1þ zj j2 ,
~J� ¼ jΩjJ�j jΩh i ¼ 2jz

1þ zj j2
� � ,

~J0 ¼ jΩjJ0j jΩh i ¼ j
zj j2 � 1

1þ zj j2 :
(76)
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These can also be given in terms of q, p by using (72). The algebraic structure of
SU 2ð Þ in the phase space representation is given by the Poisson bracket

iℏc ~J�,~Jþ
� � ¼ �2~J0, iℏc ~J0,~J�

� � ¼ �~J�: (77)

The classical analogy of an observable B Jið Þ is given by the following expression

~B q, pð Þ ¼ j,ΩjB Jið Þjj,Ωh i: (78)

The classical limit is found by taking j! ∞ and the classical Hamiltonian
function is

~HC q, pð Þ ¼ H j,ΩjJijj,Ωh ið Þ ¼ H ~Jþ,~J�,~J0
� �

: (79)

5.3 SU 1, 1ð Þ quantum systems and a two-level atom

A two-level atom is considered which interacts with two coupled quantum
systems that can be represented in terms of a su 1, 1ð Þ Lie algebra. When for example
mixed four-waves are injected into a cavity containing a single two level-atom an
interaction occurs between the four waves and the atom that is electromagnetic
radiation and matter. The Hamiltonian has the form

1
ℏ
H ¼

X2
i¼1

ωi a†i ai þ
1
2

� �
þ 1
2
ω0 σz þ λ a21a

2
2σþ þ a†21 a†22 σ�

� �
: (80)

It is similar to 5.1, so we sketch the physical situation. The σ�, σz are raising
lowering and inversion operators which satisfy the commutation relations
σz, σ�½ � ¼ 2σ�, σþ, σ�½ � ¼ σz, whereas the a†i , ai are basic creation and annihilation

operators with a j, a
†
j

h i
¼ δij. The interaction term in (80) can be thought of as the

interaction between two different second harmonic modes. This can be cast in
terms of three su 1, 1ð Þ Lie algebra generators Kþ, K� and Kz which satisfy the
commutation relations,

Kz,K�½ � ¼ �K�, K�,Kþ½ � ¼ 2Kz: (81)

The corresponding Casimir K which has eigenvalue k k� 1ð Þ given by

K2 ¼ K2
z �

1
2

KþK� þ K�Kþð Þ: (82)

Given that this is the Lie algebra, it can be said that the Fock space is spanned by
the set of vectors VF : jm; kif g and the operators in (81) act on these states as follows,

Kz∣m; ki ¼ mþ kð Þ∣m; ki, K2∣m; ki ¼ k k� 1ð Þ∣m; ki,
Kþ∣m; ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1ð Þ mþ 2kð Þ

p
∣mþ 1; ki, K�∣m; ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m mþ 2k� 1ð Þ

p
∣m� 1; ki:

(83)

It is the case that K�∣0;mi ¼ 0 so this is the lowest level state. The su 1, 1ð Þ Lie
algebra can be realized in terms of boson annihilation and creation operators and
it is isomorphic to the Lie algebra of the non-compact SU 1, 1ð Þ group. For the
Hamiltonian (80) define operators K ið Þ

� and K ið Þ
z as
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K ið Þ
þ ¼

1
2
a†

2

i , K ið Þ
� ¼

1
2
a2i , K ið Þ

z ¼
1
2

a†i ai þ
1
2

� �
, i ¼ 1, 2, (84)

where the Bargmann index k is either 1=4 for the even parity states while 3=4
applies to the odd-parity states.

Using these operators, (80) is written in terms of su 2ð Þ and su 1, 1ð Þ operators
such that it has the form,

1
ℏ
H ¼

X2
i¼1

ηi K
ið Þ
z þ

ω

2
σz þ λ K 1ð Þ

þ K 2ð Þ
þ σ� þ K 1ð Þ

� K 2ð Þ
� σþ

� �
: (85)

The Heisenberg equations of motion obtained from (85) gives

i
d
dt

K 1ð Þ
z ¼ λ K 1ð Þ

þ K 2ð Þ
þ σ� � K 1ð Þ

� K 2ð Þ
� σþ

� �
, i

d
dt

K 2ð Þ
z ¼ λ K 1ð Þ

þ K 1ð Þ
þ σ� � K 1ð Þ

� K 2ð Þ
� σþ

� �
,

i
d
dt

σz ¼ λ K 1ð Þ
� K 2ð Þ

� σþ � K 1ð Þ
þ K 1ð Þ

þ σ�
� �

:

(86)

The following two operators N1 and N2 are constants of the motion

N1 ¼ K 1ð Þ
z þ σz, N2 ¼ K 2ð Þ

z þ σz: (87)

Hamiltonian (80) can now be put in the equivalent form

1
ℏ
H ¼ N þ Cþ I, (88)

where I is the identity operator and N and C are the operators

N ¼
X2
i¼1

ηiNi, C ¼ Δσz þ λ K 1ð Þ
þ K 2ð Þ

þ σ� þ K 1ð Þ
� K 2ð Þ

� σþ
� �

: (89)

The constant Δ is the detuning parameter defined as

Δ ¼ ω

2
� η1 � η2: (90)

As N and C commute, each commutes with the Hamiltonian H so N and C are
constants of the motion. The time evolution operator U tð Þ is given by

U tð Þ ¼ exp �i H
ℏ
t

� �
� exp �iNtð Þ � exp iCtð Þ: (91)

In the space of the two-level eigenstates

e�iNt ¼ e�iW1t 0

0 e�iW2t

� �
: (92)

The operators Wi, i ¼ 1, 2 are defined by W1 ¼ η1K
1ð Þ
z þ η2K

2ð Þ
z þ 1 and W2 ¼

η1K
1ð Þ
z þ η2K

2ð Þ
z � 1. The second exponential on the right of (91) takes the form,

17

Classical and Quantum Integrability: A Formulation That Admits Quantum Chaos
DOI: http://dx.doi.org/10.5772/intechopen.94491



exp �iCtð Þ ¼
cos τit� iΔ

τ
sin τ1t �iλ sin τ1t

τ1
K 1ð Þ
� K 2ð Þ

�

�iλK 1ð Þ
þ K 2ð Þ

þ
sin τ1t
τ1

cos τ2t� iΔ
τ2

sin τ2t

0
BB@

1
CCA (93)

where τ2j ¼ Δ2 þ ν j, j ¼ 1, 2 and

τ1 ¼ λ2K 1ð Þ
� K 1ð Þ

þ K 2ð Þ
� K 2ð Þ

þ , τ2 ¼ λ2K 1ð Þ
þ K 1ð Þ

� K 2ð Þ
þ K 2ð Þ

� (94)

The coherent atomic state ∣ϑ,φi is considered to be the initial state that contains
both excited and ground states and has the structure,

∣ϑ,φi ¼ cos
ϑ

2

� �
∣ei þ sin

ϑ

2

� �
e�iφ∣gi: (95)

where ϑ is the coherence angle, φ the relative phase of the two atomic states. The
excited state is attained by taking ϑ! 0, while the ground state of the atom is
derived from the limit ϑ! π. The initial state of the system that describes the two
su 1, 1ð Þ Lie algebras is assumed to be prepared in the pair correlated state ∣ξ, qi
defined by

K 1ð Þ
� K 2ð Þ

� ∣ξ, qi ¼ ξ∣ξ, qi, K 1ð Þ
z � K 1ð Þ

z

� �
∣ξ, qi ¼ q∣ξ, qi: (96)

Since the operators K 1ð Þ
� K 2ð Þ

� and K 1ð Þ
z � K 2ð Þ

z

� �
commute, ∣ξ, qi can be introduced

which is simultaneously an eigenstate of both operators,

∣ξ, qi ¼
X∞
n¼0

Cn ∣qþ nþ k2 � k1; k1; n, k2i: (97)

Then applying K 2ð Þ
� and then K 1ð Þ

� we obtain,

K 1ð Þ
� K 2ð Þ

� ∣ξ, qi

¼
X∞
n¼0

Cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 2k� 1ð Þ qþ nþ k2 � k1ð Þðqþ nþ k2 � k1 þ 2k1 � 1

q
∣qþ nþ k2 � k1 � 1, k1; n� 1, k2i,

¼
X∞
n¼0

Cnþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2kð Þ qþ nþ k2 � k1 þ 1ð Þð qþ nþ k2 � k1 þ 2k1ð Þ

q
∣qþ nþ k2 � k1, k1; n, k2i:

(98)

This calculation implies that the normalization constant Cn can be obtained by
solving

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2kð Þ qþ nþ k2 � k1 þ 1ð Þ nþ qþ k1 þ k2ð Þ

q
Cnþ1 ¼ ξC0: (99)

The new state is of the form,

∣ξ, qi ¼ Nq

X∞
n¼0

Cn ∣qþ nþ k2 � k1, k; n, k2i, N�2q ¼
X∞
n¼0

Cnj j2: (100)

If it is assumed that at t ¼ 0 the wave function of the system is ∣ψ 0ð Þi ¼
∣ϑ,φi⊗ ∣ξ, qi, using (91) on ∣ψ 0ð Þi, the state can be calculated for t>0 can be
determined
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∣ψ tð Þi ¼ e�iW1t cos τ1tð Þ � i
Δ
τ1

sin τ1tÞ cos ϑ

2

� �
� i

λ

τ1
sin τ1tð ÞK 1ð Þ

� K 2ð Þ
� e�iφ sin

ϑ

2

� �
∣ei⊗ ∣ξ, qi

þeiW2t cos τ2tþ i
Δ
τ2

sin τ2t
� �

e�iφ sin
ϑ

2
� i

λ

τ2
sin τ2tK

1ð Þ
þ K 2ð Þ

þ cos
ϑ

2

� �
∣gi⊗ ∣ξ, qi:

(101)

The reduced density matrix is constructed from this

ρ f tð Þ ¼ Tratom ∣ψ tð Þihψ tð Þ∣: (102)

6. Summary and conclusions

Explicit structures for quantum phase space have been examined. Quantum
phase space provides an inherent geometric structure for an arbitrary quantum
system. It is naturally endowed with sympletic and quantum structures. The num-
ber of quantum dynamical degrees of freedom has a great effect on determining the
quantum phase space. Inherent properties of quantum theory, the Pauli principle,
quantum internal degrees of freedom and quantum statistical properties are
included. A procedure can be stated for constructing this quantum phase space and
canonical coordinates should be derivable for all semi-simple dynamical Lie groups
with Cartan decomposition. The coset space G=R provides a way to define coherent
states which link physical Hilbert space and quantum phase space. This motivates
the study of the algebraic structure of the phase space representation of observables.
The algebraic structure of operators is preserved in phase space if the operators are
those of the dynamical group G. Through this approach, this property results in an
explicit realization of the classical limit of quantum systems. A classical analogy was
developed and seen in the examples as well for an arbitrary quantum system
independently of the existence of the classical counterpart, so the classical limit of
the quantum system can be obtained explicitly if it exists. The classical analogy will
contain the first-order quantum correlation. A theorem which pertains to the rela-
tionship between dynamical symmetry and integrability has been proved, and is
also valid in classical mechanics. It is then possible to construct a way to look for the
quantum manifestation of chaos. Finally, it is then consistent with Berry’s defini-
tion, the study of semi-classical but nonclassical, behavior characteristic of systems
whose classical motion exhibits chaos.
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Chapter 2

The Chaotic Behavior of ICT Users
Sumiyana Sumiyana and Sriwidharmanely Sriwidharmanely

Abstract

This paper describes how chaos theory was implemented to explain a behavioral 
aspect in an information system. The chaos theory was developed from the physical 
sciences and has been widely applied to many fields. However, this theory may also 
be applied to the social sciences. For certain types of human behavior, the chaos 
theory could comprehensively explain the phenomena of the use of information 
and communications technology (ICT). It means that this theory could clarify all 
the different kinds of human interactions with ICT. When the researchers used the 
chaos theory integratively, they could explain the distressed behavior of ICT users 
comprehensively. This theory argues that an individual acts randomly, even though 
the system is deterministic. When individuals use ICT, they could get technostress 
due to either the information systems or other users. This paper explains that 
ICT users could use information systems, with their complicated procedures and 
outputs. They were also probably disturbed by other users. The users, furthermore, 
experience chaotic pressures through their experiential values. This paper shows 
that users’ behavior when facing chaotic pressure depends upon their personality 
dimensions. The authors finally propose a new paradigm that this chaos theory 
could explain the chaotic actions of ICT users.

Keywords: chaos theory, chaotic situation, technostress, coping strategy, creativity, 
controlling

1. Introduction

When individuals interact with information and communications technology 
(ICT) in either an information system or an application, they will relate to its com-
plicated connections. They should try to have collaborative relationships with ICT. 
This relationship between users and ICT can lead them in either a circular motion or 
a non-linear direction that depends on the complexity of the problem. Meanwhile, 
the complexity of the problem is a result of the science used, and technology’s prog-
ress, which sometimes makes surprising leaps forward. Thus, the problem requires 
not only the individual user’s control and creativity but also his/her subtlety [1] to 
find alternative answers to the problems. Therefore, it is crucial to appreciate the 
potential for individuals to continue the interaction and influence the organiza-
tional direction and innovation. These individual are the people who can overcome 
an administration’s dissolution and create workflow systems procedurally [2].

The chaos theory attempts to explain the complex and unexpected move-
ments or system dynamics that depend on the initial condition. Wheatley [3] 
 suggested that chaotic situations occurred when an organization left its ICT users 
to perceive the information system’s devices themselves. The ICT users will usually 
follow inherent patterns and structures, based on their perceived procedures   and 
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rules. The users continue to stay within a particular gap, to define and shape their 
 direction. Thus, chaos can become an ally when the information system requires to 
integrate its quality into the organizational workflows [4]. It means that the organi-
zation strives to find someone to innovate and develop this system’s workflows [4].

Both an accounting information system (AIS) and other applications are 
dynamic workflows. Complex interactions and collaborations between the systems’ 
elements can cause unexpected and dramatic changes that create chaos. In other 
words, complex interactions and collaborations between users and ICTs in an AIS 
cause chaos (among others, i.e. technostress). In this condition, if the users cannot 
adapt to this technological progress and complexity, they will feel frustrated and 
depressed, experiencing what is called technostress. Then, this technostress will 
have an impact on decreasing the users’ satisfaction with this ICT [5–12], their 
performance [5, 13–15], productivity [16–18], innovation [12, 13], commitment to 
the organization [11, 12], and role conflicts [12, 16]. They could survive in these 
chaotic conditions if their organizations facilitate the users with flexibility and 
adaptability in the ICT systems [19]. Briggs and Peat [1] described that chaos would 
not reoccur in organizations when the ICT users have three techniques, which are: 
control, creativity and subtlety.

The chaos theory could be used to highlight the initial use of an information 
system and its complexity by organizations. These complexities could destroy the 
user experience because these information systems could produce some unexpected 
consequences for the ICT users in their organizational environment. This paper 
takes into account that a user will interpret the information he/she obtains in differ-
ent ways to the other users, due to the dominant characteristics of their personal-
ity traits. It means that each user personality triggers various complex responses 
[20]. Thus, individuals with different personality traits will evaluate and assess 
the destructive events caused by ICT in different ways. Unequal evaluations and 
 assessments are due to the various intrinsic and extrinsic needs of each user.

The authors argue that an ICT user could make either a positive or negative 
evaluation. We noted that ICT users when facing technostress creators, would be 
influenced by their extrinsic needs since those are the situational factors. ICT users 
will continuously choose available mitigating strategies. From another side, the 
ICT users are affected by their intrinsic conditions, which are the dimensions of 
their personalities [21]. Finally, the chaos theory suggests that an individual could 
act randomly, although the systems are deterministic. These random actions are 
profoundly possible because of an individual’s creativity or innovative capability, 
personality traits, or how well he/she can control him/herself.

From another perspective of the mobile internet, the authors explain that an ICT 
user probably faces technostress creators that are from other users. We took into 
account that the other users could either deface the infrastructure of the ICT [22] 
or act in an iconoclastic manner, [23] that could hurt some individuals. However, 
the authors define the defacement and iconoclasm are in the context of ICT users’ 
communication, either orally or written. We accentuate that the other users utilize 
linguistic communications that destroy an individual’s cognition. In other words, 
different users employ sarcastic messages that destroy a person’s cognitive flow. This 
means the victimized user will suffer from technostress because of what the other 
users did. Consequently, this user will, most probably, stop working with the other 
users and the information system or application. The authors, moreover, argue that 
whether or not the user continues using the mobile internet depends upon his/her 
personality’s dimensions.

The latest discussion of this paper is that technostress causes variations in 
the ICT users’ behavior through the state of their cognitive flow. In other words, 
technostress’s creators influence ICT users’ experiential values. The authors argue 
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that chaotic pressure, due to the complicated information systems and applications, 
affects the users’ enjoyment, entertainment, social affiliations, visual appeal, and 
escapism [24–26]. ICT users experiencing a technostress creator find it affects their 
motivation to achieve task-related performance levels and satisfaction. Ultimately, 
we re-emphasize that the chaotic experiential values of ICT users could be from a 
complicated interconnection and collaboration with the information systems, or the 
systems’ defacement, or iconoclastic actions. The authors, in other words, propose 
that the technostress creators could support the users’ continued use of, or aban-
donment of, information systems and applications. However, this continued use of 
ICT is related to each user’s personality dimensions.

The remains of this paper will discuss the chaotic behavior of ICT users in four 
subsections. SubSection 2 presents a resume of chaos theory. The chaos theory, 
chaotic situations, and usefulness of this theory as an idea in explaining ICT users 
will be explored in subsections 3 and 4 consecutively. The last subsection has a 
conclusion.

2. The resume of chaos theory

In 1961, the meteorologist Edward Lorenz was the first to introduce the chaos 
theory. This theory tried to find a form of uniformity from seemingly random data 
[27]. Lorenz discovered this theory accidentally. He was looking for a reason why 
the weather was unpredictable. He used computer assistance and 12 formulation 
models. He created a program which could not predict the weather but can illustrate 
what the weather will be like if its starting point is known. One time Lorenz wanted 
to see the results of the weather model’s sequence.

He started from the middle, not from the beginning. For simplicity, Lorenz 
entered a value consisting of three decimal numbers (0.506), while the number 
of the sequence was 0.506127. Because the rounding was correct, then the pattern 
formed by the two numbers should be similar, but it turned out that the design 
which appeared was more and more different from before. Based on this discovery, 
Lorenz re-experimented, this time using a simpler model with only three formula-
tions. The result of the data, when displayed, again appeared to be random, but 
when the data were entered in graphical form, a phenomenon called the  butterfly 
effect was created. A small difference at the starting point (only 0.000127 
 difference) changed the overall pattern.

The chaos theory refers to the tendency of dynamic, non-linear systems toward 
disorder or chaos, sometimes behaving unexpectedly, but always deterministically 
[27]. This theory also refers to the underlying linkages, which exist in random 
events, which are calculated from the initial conditions [1, 28, 29]. Chaos science 
focuses on hidden patterns, nuances, sensitivity to things, and rules about how 
something that cannot be predicted leads to human behaviors.

This theory is not only applied to exact sciences but also social ones, such as the 
social sciences, psychology, finance, decision making, management and behavioral 
or information systems. McBride [29] was the first researcher to use a framework 
based on the chaos theory in the field of information systems. This framework 
consisted of interaction domains, initial conditions, foreign attractors, events and 
choices, peak clutter, bifurcation, looping, and connectivity. The focus of this inter-
pretive model was on the value of building descriptions of information systems’ 
interactions in organizations.

Levy [19] applied the chaos theory when making theoretical frameworks to 
understand the dynamics of the industrial evolution and the complex interactions 
among industry players. An industry can be conceptualized and modeled as a 
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complex and dynamic system, which shows both uncertainty and underlying order. 
Levy created a simulation model to illustrate the interactions between computer 
manufacturers, their suppliers, and their markets. The simulation’s results showed 
how managers might underestimate the costs of international production. He 
concluded that, by understanding that any industry is a complex system, managers 
could improve their decision making and find innovative solutions.

Meanwhile, Ayers [28] mentioned that, in the field of psychology, the concept 
of chaos had been explored extensively. This concept is primarily in the area of 
psychoanalysis, on a symbolic level. Outside of psychoanalysis, the chaos theory has 
been applied to a variety of clinical subjects to varying degrees. Still, almost all of its 
applications appear metaphorical (although one cannot always make this statement 
explicitly). This theory was also used for psychological processes through the prac-
tical application of chaos methodology, e.g. [30, 31]. It showed that, even though 
the application of metaphors is useful in providing appropriate ways of looking at 
psychological disorders, the successful application of future psychopathological 
changes depends on whether it is validated by practical work demonstrating chaos 
in the associated psychological phenomena.

Moreover, Radu et al. [32] presented the application of chaos theory in man-
agement. Also, they explained the positive and negative sides of this theory in a 
company’s current strategic management, in organizational change projects or 
the management of highly dynamic projects. Furthermore, Klioutchnikov et al. 
[33] explained that the chaos theory is very suitable for understanding financial 
perspectives because several circumstances determine the behavior of the financial 
markets, which are relative to the needs, and internal and external reasons can 
cause those circumstances to arise. They tried to clarify several points related to 
the possibility of using chaos theory in finance. Its mechanism of implementation 
in finance was in macro- and micro-processes. This mechanism also used specific 
methods and instruments, such as fractal and stochastic processes and predictions.

The latest work by Sauermann [34] involved chaos theorems drawn from the 
social choice theory and used to investigate the relationship between the indetermi-
nacy of majority rule leads and voting cycles and to make democratic decisions. The 
study’s results contradicted Riker’s interpretation of the chaos theorems’ implica-
tions. This core exhibited less attraction than generally assumed. Then, an empty 
core is not associated with majority rule’s increased instability. Instead, conflicting 
preferences lead to more instability irrespective of the existence of an equilibrium.

3. Chaos theory and the chaotic situation

3.1 Technostress

Brod [35] introduced technostress as a disease caused by a person’s inability to 
adapt to new computer technology. This paper argues that ICT users feel unhealthy 
and have little or no motivation to use information systems or applications any-
more. This technostress could be manifested by ICT users getting either excessive 
fear or computer anxiety. Ragu-Nathan et al. [11] suggested that information tech-
nology created many problems which ICT users cannot overcome. In other words, 
ICT users feel that they cannot become familiar with the information systems or 
applications and what is required for them to follow the procedural tasks.

Srivastava et al. [36] suggested that technostress occurred when the require-
ments for using ICT exceeded a user’s capabilities to cope with or mediate such 
stress. Moreover, Stich et al. [37] also concluded that technostress is impaired 
experiential cognition experienced by users because of the complicated ICT. Stich 
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et al. [37] constructed two main concepts: stressors (the creators of technostress) 
and strains (the results of technostress). Finally, Tarafdar et al. [10, 16] conceptual-
ized five main categories of techno-creators, which are:

1. Techno-overload describes situations where ICT users are forced to accomplish 
their work in the allotted time. Otherwise, there would be a massive workload 
placed on the information systems.

2. Techno-invasion refers to the information systems which could probably 
invade ICT users’ privacy. This technostress also illustrates the effect of ICT’s 
invasion in creating insufficient motivation, where ICT users have to continue 
or stop, using the information systems or applications.

3. Techno-complexity describes a situation where the complicated tasks associ-
ated with ICT users makes them feel inadequate. Thus, this technostress forces 
them to spend more time and effort. It could also be explained that these tasks 
need ICT users to learn and understand various aspects of the information 
technologies they use.

4. Techno-insecurity refers to conditions where ICT users feel threatened 
with losing their jobs due to the presence of new information systems and 
 applications. This technostress is caused by the ability of ICT to replace human 
working processes. It also applies to ICT users that do not have a great deal of 
knowledge.

5. Techno-uncertainty describes situations where new information systems or 
applications disturb the users due to the needs of their additional capabilities. 
This technostress would probably occur during the implementation of a new 
ICT system, for which the users have to learn new things.

From another perspective, Tarafdar et al., [10, 16], and Ayyagari et al. [38] 
identified and then clustered five technostress triggers, which are:

1. Work-home conflict - ICT users perceived their intra-personal conflict to be 
between their work and family needs.

2. Invasion of privacy - information systems would probably not protect ICT 
users’ privacy. The users perceive that internet systems must not compromise 
their privacy due to their data being saved by a third party.

3. Work overload - ICT users think that their capabilities and competencies do 
not match with the requirements of the information systems. In other words, 
ICT users feel that their abilities or skill levels are not skilled enough to operate 
this ICT.

4. Role ambiguity - many users say that they feel uncertainty when accomplish-
ing their work using information systems. They do not know a procedurally 
work order or its consequences on their performance. This paper also explains 
that ICT users suffer from a lack of information when they want to expedite 
their roles and authority.

5. Job insecurity - the presence of ICT means the ICT users may lose their jobs 
because the information technology could replace them and do their job.
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Ayyagari et al. [38] classified three technological characteristics that could 
influence techno-stressors, which are: usability, dynamic features, and intrusive 
features. Usability, complexity, and reliability are generally associated with the use 
of information technology. These three characteristics of information technology 
are part of its usability features. The rate and frequency of technological changes 
relate to the nature of ICT, which are dynamic features. The ICT feature refers to the 
extent to which a person feels a shift in the technological environment is happening 
quickly. In contrast, the presentism and anonymity of the invasion by ICT represent 
the intrusion feature. Presentation’s characteristics describe the extent to which 
technology allows users to either reach it or not. In contrast, anonymity describes 
the times when ICT users feel that they could not identify or trace the work they 
produced using ICT.

As mention earlier, some previous studies showed that technostress had harmed 
ICT users’ outcomes, including reducing their satisfaction and performance [5–12, 
14, 15, 18, 39]. ICT users, moreover, could not survive in these technostress condi-
tions, which organizations must have facilitated using all the aspects of their skill, 
flexibility and adaptability [19]. Hwang and Cha [40] showed that security-related 
technostress creators in organizations negatively affect employees’ organizational 
commitments, both indirectly and directly. This technostress occurred through 
their complex role and then reduced their intentions to comply with the informa-
tion system’s security. From another perspective, employee-focused promotions 
could moderate the relationship between technostress creators and role stress. 
Employees with a focus on gaining promotion are more resistant to the adverse 
effects of technostress creators, because they experienced lower role stress. Nimrod 
[41] made a new scale to measure technostress levels between younger and older 
workers. Technostress, moreover, must be considered a particular threat to the 
future well-being of ICT users.

Qi (2019), developed a theoretical framework to investigate the double-edged 
effects of using mobile devices. It used the sampling design of mobile devices 
among college students. This framework argued that positive results (an improve-
ment in their academic performance) were investigated from their use, while 
adverse effects triggered technostress. This paper takes into account that Qi’s study 
was based on the person-technology fit model (P–T fit model). It explained that the 
educational use of mobile devices by students does not lead to technostress. This 
use, however, could improve academic performance due to their high usage of ICT. 
The paper argued that students’ self-efficiency and their skill level in using cellular 
technology affected their high-low technostress.

Human-technology interactions, especially during the development of informa-
tion systems, are complex. To portrait this complex phenomenon, McBride [29] 
adopted the chaos theory to make a framework for interpreting the success of 
information systems’ implementations in organizations. McBride’s paper suggested 
that the chaos theory could explain the complicated phenomenon and the non-
linear and dynamic systems [19] such as the technostress creators in the implemen-
tation of an information system’s development. The chaos theory means there is an 
underlying interconnectedness that exists in random events; hence the ICT users 
are concerned with the initial conditions [1, 28].

Through the chaos theory, the authors portray the phenomena of technostress 
holistically. We noted that developments to information systems are the domain of 
human-computer interactions, in what is probably a chaotic space between humans 
and information technology. The implementation of new information systems and 
complex ICT by organizations could be regarded as destructive events, resulting in 
some unexpected and unpredictable consequences for the users’ environments [20]. 
When humans and information technology interact, individuals have to learn the 



29

The Chaotic Behavior of ICT Users
DOI: http://dx.doi.org/10.5772/intechopen.94443

new processes that are required. These processes will flow according to the respec-
tive ICT users’ methods. However, when ICT users encounter a disturbance, it will 
cause various impacts depending on their motivation to respond to it. Likewise, 
what happens when ICT users are facing technostress is also a chaotic situation.

3.2 Defacement and inconoclasm

The authors state in this paper that the interaction between humans and 
 information technology is complex. Individuals could not deny this complexity 
is all around them, as a result of the increasingly digitalized world. The authors 
show some pieces of evidence about the destructive nature of technology, such as 
is found in the global digital infrastructure, social media, the Internet of Things, 
robotic processes’ automation, digital business platforms, algorithmic decision 
making, and other digitally-enabled networks and ecosystems; all of which also 
fuel the complexity people feel around them [42]. Building up hyper-connections 
and mutual dependencies among the human actors, technical artifacts, processes, 
organizations, and institutions caused this complexity; which affects human 
experiences within their cognitive state in all magnitudes. Both organizations and 
individuals turn to digitally enabled solutions to cope with the problems arising 
from  computerized digitalization.

In the digital world, complexity and digital solutions present new opportunities 
and challenges for research into the information systems. Systems-wide changes in 
natural open systems reveal how unorganized entities in a given system, subjected 
to an externally imposed tension, could engage in far-from-equilibrium dynamic 
actions. The entities, therefore, could self-organize into distinct phase transitions 
leading to new higher-level orders [43]. Defacing the machinery and sending out 
iconoclastic messages, for instance, could drive and hamper these changes in a 
chaotic situation.

A defacement is a physical act of vandalism or the destruction of a material 
thing. In the IT field, defacement has been bastardized to mean website destruction. 
Romagna and Hout [44] defined defacement as a kind of electronic graffiti and, like 
other forms of vandalism, it has been used to spread messages by “cyber protesters” 
or politically motivated hackers. Davanzo et al. [22] defined defacement as destruc-
tion in the form of a general attack on a website. In this case, the site’s content is 
partially or entirely replaced, by the attacker, with content that is embarrassing to 
the site owner, for example, disturbing images, political messages, the attacker’s 
signature form, and so on [22]. Meanwhile, Bellman [45] defined defacement as 
enlightenment. In short, defacement implies causing damage to something which, 
in this paper, is the ICT users’ communication.

In behavioral research, defacement means as an attack aimed at changing users’ 
behavior. Thompson et al. [46] explained that defacers try to make some changes 
in users’ behavior, by manipulating their perceptions of reality. Criminals cannot 
achieve the desired results from their attack unless the users change their behavior 
in some way [46]. It is this modification of the users’ actions that is an essential link 
in the cognitive attack sequence. In the case of the multiplayer online battle arena 
(MOBA) game player, we defined defacement as a communication breakdown that 
causes someone to decide to deface or vandalize something. In other words, the 
vandalism of communications equipment aims to destroy the recipient. This paper 
argues that defacement behavior causes damage that results in behavioral or cogni-
tive changes in MOBA game players. In a game, defacement behavior occurs when a 
player deliberately throws out bad words to lure other players in and interfere with 
the game. A user could create chaos among the players so that the other players do 
not focus on playing the game and do not intend to play it again.
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Iconoclasm is the social belief in the importance of destroying icons, images and 
monuments [47–49]. Latour [23] defined iconoclasm as an act of destruction, where 
the intention to do damage is apparent. Besides, Clapperton et al. [50] defined 
iconoclasm as the use of a strategy that represents a logical and instrumental means 
for using violence to achieve political goals. Furthermore, Clay [49] stated that they 
used iconoclasm to show domination and control over a group. During research into 
the field of communication, Smith [51] used iconoclasm via internet memes as a 
tool to display fake news to damage or reduce the image of a public institution.

In the MOBA game, it described iconoclasm as the destruction of an icon. In this 
case, it was the “hero.” In this game, icons which describe the identity of the game 
players represent heroes [52]. Iconoclasm tends to harm or destroy the players. It 
usually occurs when a player chooses a hero that iconoclasts do not like. Iconoclastic 
players will insult the person because they feel that the hero is not suitable for use 
in the game. This incident will result in the players’ fighting each other, which 
may also be carried over into the game. This paper argues that when people insult 
someone else’s favorite heroes, the players could lose their cognition. The player is 
less motivated to play, and he/she stops playing, or continues playing, but not in a 
serious manner. This chapter also posits that the destruction of communications, 
either through defacement or iconoclastic actions, is a form of destruction in the 
MOBA game’s communication channel. Both defacement or iconoclasm could 
destroy the players’ cognition and cause chaos in the game.

3.3 Experiential value

The authors recall that chaos theory is supposed to explain complex, non-linear 
dynamic systems. From a theoretical perspective, this theory is also equivalent 
to the postmodern paradigm. This paradigm questions deterministic positivism 
because it recognizes the complexity and diversity of experience. Boccaletti et al. 
[53] suggested that advocates of the chaos theory enthusiastically highlight signs 
everywhere. These signs are pointing to the complex dynamic systems which are 
ubiquitous in the social world, and the similarities between the patterns produced 
by simulating non-linear systems and sequences. For example, this paper presents 
how share prices in the stock market and commodity prices fluctuated abruptly 
because these reactions always change seconds per second.

The diversity of experiential values of ICT users could be characterized by their 
optimal behavior [24], such as is seen in their flow experience [25]. Experiential 
values could also be explained as a result of sophisticated learning. Moreover, 
Moneta and Csikszentmihalyi [26] demonstrated that experiential values require 
total concentration and a great deal of interest in the activities characterized by 
optimal experience. The attributes of the experiential values of ICT users are as 
follows:

a. Escapism - escapism is a behavioral view related to the personal activities 
undertaken to avoid the realities that are challenging, impossible or un attain-
able [54]. Running away occurs when a person finds his/her life is spent in 
unsatisfactory conditions, which cause him/her to become detached from real-
ity, and is done to reduce his/her anxiety [55]. Thus, the impact of chaos is felt 
when the individual cannot optimally realize the value of his/his experiences. 
The individual then experiences confusion which can act on his/her cognitive 
processes and causes the formation of affective disorders in the user.

b. Enjoyment - enjoyment is the pleasure that an individual feels objective when 
doing certain activities [56]. Based on the flow theory, Csikszentmihalyi [24] 
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stated that enjoyment occurs when a person not only fulfills the expectations 
that occur before or satisfies his/her desires but also achieves unexpected 
needs, which may have been previously unimaginable. Enjoyment occurs when 
a person feels involved in pleasure from within. This condition, therefore, 
causes people to tend to experience flow processes that form their cognitive 
and affective processes. It means that if an individual does not experience an 
optimal level of enjoyment, he/she will tend to have a chaotic pattern.

c. Social affiliation - it is through his/her social affiliations that a person feels 
interested in society, these are usually generated by his/her employer’s com-
pany services, as an efficient approach to marketing [57]. Social collaboration 
occurs automatically and experiences a flow when the feelings of the individu-
als affect each other. The presence of an individual’s flow in a social affiliation 
does not create an optimal experience. There will be a pattern of chaos in the 
individual’s cognitive and affective flow so that it will harm the interaction 
socially.

d. Visual appeal - the visual appeal is a reactive source of esthetic value [58]. 
Visual appeal is a dominant matter to attract consumers’ attention. From a 
marketing perspective, the attractiveness refers to the selection of data and 
information, and their transformation and presentation. Most companies 
usually facilitate customers’explorations and understanding [59, 60]. It means 
that a person’s visual attractiveness shapes his/her experiences in condemning 
his/her affective and cognitive flow through data and information’s selection, 
transformation, and presentation. Therefore, the experiential values are an 
essential source for the optimal experience to avoid cluttering the visual power.

e. Entertainment - entertainment involves observing the customers in a 
 performance which leads to a relaxed reaction [61, 62]. This entertainment 
is an attribute of the ICT users’ experiential values because their pleasured 
responses that make the results optimally. Thus, if it is not in the optimal joy, 
the chaotic patterns emerge in the ICT users’ affective and cognitive flows.

The constructivist theory of learning [63] may be aligned with experiential 
values in which the outcomes of the learning process are varied and often unpre-
dictable. This paper argues that an individual plays a critical role in assessing his/
her learning outputs. An individual receives his/her experiential values from use or 
appreciation of a product or service [60] as like as information systems or an appli-
cation. In this assessment process, everyone will respond differently depending on 
their self-control, activity and subtlety [1]. This process will always follow inherent 
patterns and structures, based on intrinsic values and rules, i.e. experiential values. 
In other words, this process always stays within certain boundaries to define and 
shape the direction of ICT users; otherwise, chaotic situations could occur [3].

4. Inducing the chaos theory to explain behavioral phenomena

Generally, many organizations use ICT to improve their competitive advantage 
so that this could transform their organizational efficiency, productivity, and 
effectiveness. From another point of view, they intend to use ICT to change their 
social and corporate environments [39]. However, if they cannot manage their 
ICT correctly, they are shadowed by the adverse effects due to their low use of it 
[40]. This paper recalls the implementation of a new ICT system that consisted of 
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complex and collaborative relationships. This implementation led to stress for the 
users as they could not cope with their organization’s demand that they use the new 
ICT system. Brod [35] introduced technostress as an illness resulting from a person’s 
inability to adapt to new computer technology. It is typified by over-identification 
or computer anxiety. Ragu-Nathan et al. [11] described technostress as a problem 
because the users could not overcome the difficulties with the new ICT system, or 
they could not become familiar with the new system. Technostress can affect the 
individual’s orientation regarding the time he/she spends doing something, his/her 
communication mode, and his/her interpersonal relationships as well as his/her job 
outcomes, i.e., performance or satisfaction.

To explain this phenomenon, researchers into information systems conduct 
studies in various disciplines, including psychology, sociology, philosophy, and 
organizational studies. These disciplines explain the stress phenomenon as a source 
of contextual paradigms, and previous researchers often used the person-environ-
ment fit model to describe technostress [5, 39, 40]. This theory stated that when 
the relationship between people and their environment is beyond the equilibrium 
condition, it will create stress [41], i.e., technostress. This theory also portraits 
technostress as a linear system, while the interaction between humans and technol-
ogy (i.e. computers) is problematic for the development of information systems.

This paper argues that ICT users have specific conditions with which they can 
interpret and understand the environmental conditions through their capabilities. 
ICT users’ power triggers them to find various and complex responses. Thus, chaos 
can be an ally or a desired quality when integrated into an organizational system, 
especially when the ICT users try to innovate and develop [4]. This theory showed 
that the users’ chaotic cognition triggers the relationship of their stressed transac-
tions. ICT users, furthermore, must have strategies to deal with the chaos. Coping 
is a thing that individuals do, which sometimes allows them to solve problems and 
adapt to changes.

The inducement of the chaos theory in explaining the ICT users’ behavior is not 
deniable. The authors demonstrate the chaotic behavior from two sides, which are 
complex interactions and the collaboration of the ICT system’s elements [5–18], and 
both defacement [22] and iconoclastic methods [23]. These two sides affect ICT 
users’ behavior when they have to face the technostress’s creators. By these means, 
these sides influence the ICT users’ performances and satisfaction when they 
are in a chaotic situation. Although the ICT users could mitigate this chaos, they 
may choose to face it, depending on how mature their personalities are. In other 
words, the ICT users have to cope with the complicated uncertainty or technostress 
creators by relying upon their personalities and emotions to overcome the chaotic 
problems.

This paper supports the undeniable inducement of the chaos theory to explain 
the ICT users’ mitigation of the harmful effects of technostress. It argues that the 
technostress’s creators at first settled on the ICT users’ cognitive states. In other 
words, the ICT users got their experiential values, which are enjoyment, escapism, 
visual appeal, social affiliation, and entertainment, when they faced situations 
with technostress. From the perspective of learning, the authors propose that 
chaos theory relates to the ICT users’ learning processes [63]. We take into account 
that chaotic mitigation affects the ICT users and may prevent them from dealing 
with the technostress efficiently and effectively. We recommend that information 
systems or applications must be developed with consideration given to facilitat-
ing the ICT users’ experiential values. It means that the information systems and 
applications make the ICT users increase their enjoyment, entertainment, social 
affiliation and visual appeal as well as decreasing their escapism. The authors argue 
that technostress for ICT users would otherwise have occurred.
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4.1 Technostress and a proactive personality

Personality is a characteristic of an individual, and this determines the person’s 
thinking and behavior. Every individual has a unique personality, which differs 
from that of other people. Bateman and Crant [64] defined a proactive personality 
as someone who is relatively unrestricted by the situational forces which influence 
environmental change. Someone with a proactive nature identifies opportunities 
and demonstrates initiative, takes action when appropriate, and persists until 
meaningful change occurs. Parker and Sprigg [65] explained that proactive person-
alities usually engage in activities that affect themselves and their environment.

From the perspective of the chaos theory, whenever individuals face tech-
nostress, they are either in a chaotic situation or not. It means that the users’ 
performance and satisfaction would be explained when both the chaos and tech-
nostress theories work concurrently. To overcome this chaotic situation, the user has 
to be creative [1, 4, 66], because his/her behavior will vary based on experiences. 
Personal innovativeness means that individual traits have a role in technology’s 
adoption. This innovativeness entails the implementation of creativity or the gener-
ation of novel and useful ideas for the development of new products and processes 
[67]. Thus, in the implementation of advanced ICT systems, a proactive personality 
can boost the creativity of the users. Therefore, we posit that a proactive personality 
can play a role in mitigating the harmful technostress to a user’s satisfaction.

Based on the chaos theory, Sumiyana and Sriwidharmanely [68] demonstrated 
that individuals work randomly or differently because of their creativity or per-
sonal innovations [1, 69, 70]. They can mitigate the adverse effect of technostress 
on ICT users’ performance by inducing their proactive personalities. This study 
shows that when users interact with new technologies, and the users feel there is a 
mismatch (cognitive impairment) between their abilities and the requirements of 
the latest technology, this condition creates discomfort during their interactions (a 
chaotic situation, known as technostress). However, this sense of discomfort will be 
minimized if they have the creativity to use technology to help them complete their 
tasks. So, in the end, they can maintain their performance levels. In other words, 
they can turn a threat into an opportunity.

Specifically, this study’s result shows that proactive-transform personalities 
maintained their performance better than proactive-conform personalities did 
when the ICT users experienced high technostress. It meant that the creativity 
of the users was more active when they faced high levels of technostress than 
low levels, which offered significantly more benefits for the proactive-transform 
personalities. The ICT users can take advantage of the work overload and deadline 
times in the system, so they can still maintain their performance. Even for the same 
proactive-transform personalities, the user faced with high levels of technostress 
performed better than the user who experienced the lower levels.

4.2 Technostress and positive emotions

ICT users probably feel that their capabilities are not compatible with the 
requirements of the new ICT and that they have limited control over them. They 
then feel uncomfortable because this creates technostress. So they will implement 
strategies to overcome these painful experiences (mitigation), whether they are 
related to the users’ psychological expectations, rejection or wishful thinking 
(inward), or related to realizing and seeking support that affects their emotions 
directly (outward), or not. This strategy is called emotion-focused coping [71].

This strategy mainly focuses on the effort to restore emotional stability and 
reduce the tension caused by the implementation of a new ICT system. This paper 
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highlights that cognitive dynamic instability results in the ICT users’ adverse 
impacts. For instance, we infer that the users’ coping strategies are based on the 
control theory [1, 72], which was mentioned earlier, and these can cope with a 
chaotic situation or technostress. We argue that users’ self-control (inward) and 
feedback on the assigned task’s performance (outward) are the types of strategies 
which have a direct impact.

Self-control gives ICT users the belief that they could implement the system 
 successfully. It takes into account the users’ self-control because the system’s devel-
opment process is complex, and needs intensive involvement and the interaction of 
various agents [73]. Meanwhile, feedback is a communication process that involves 
a source (sender) and destination (receiver) [74]. Concerning the performance 
aspects or understanding the system, the ICT itself could provide feedback to the 
users who search for answers and solutions, so that they can evaluate whether they 
have the correct response or not [75].

By applying a contrast analysis, we confirmed that the broaden-and-build 
theory [76] explains that positive emotions can improve ICT users’ capabilities to 
cope with their technostress. Positive emotions are affective components which 
ICT users typically find pleasurable to experience. Positive emotions could help 
ICT users to broaden their horizons, and then widen the scope of their focus [77]. 
Positive emotions could also increase the users’ performance of a cognitive task by 
lifting their spirits without distracting them [78].

Expressly, we undertook a study which indicated that positive task performance 
feedback could boost the positive feelings of ICT users. It documented that the 
users who have low self-control also perform their tasks poorly. If they receive some 
form of therapy and positive feedback, their understanding is better than that of 
the ICT users who receive negative feedback. Our study, furthermore, showed that 
positive emotions play an essential role when ICT users face the harmful effects of 
technostress on their performance [76, 79]. Moreover, this study found that positive 
emotions affect both those with low and high self-control. It found that ICT users’ 
task performances, for those with both low and high levels of self-control, were not 
different. It means that positive emotions have a more profound effect on mitigat-
ing the adverse impacts of technostress. The authors, therefore, argue that positive 
feedback could enhance the users’ self-efficacy and individual innovativeness.

5. The chaos theory in behavior research as a new paradigm

The chaos theory suggests that an individual could act randomly although the 
systems are deterministic. The individual acts randomly because of his/her level 
of self-control, creativity or personal innovativeness and subtlely [1, 69, 70]. If the 
individual is in a state of technostress, or a chaotic situation, his/her capabilities are 
shown by the coping strategies that he/she uses to accomplish a complicated task. 
The authors argue that coping behavior is a transaction carried out by an individual 
to overcome the various demands (internal and external) of the thing that burdens 
and interferes with his/her survival. Coping is a cognitive and behavioral effort 
to manage (reduce, minimize, or tolerate) the internal and external demands of 
the person-environment transactions that an individual judge to exceed his/her 
resources [80]. Each individual will have a unique coping strategy for overcoming 
or hinting at a way to solve his/her problem. It means that when ICT users experi-
ence technostress, they should adjust themselves to the system or organizational 
environment.

When dealing with stress triggers, individuals overcome these disorders by using 
two main processes that are continuous, and which influence each other [80, 81]. 
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These are also known as cognitive appraisals and coping strategies. First, individu-
als evaluate the potential consequences of events by making a judgment. The central 
assessment is one’s judgment regarding the significance of an event that is stressful, 
positive, controlled, challenging, or irrelevant. Subsequent inspections are assess-
ments of the resources and choices of individual mitigation strategies. This second 
assessment addresses what individuals can do to control the situation. Individuals 
take different actions to deal with chaotic conditions. It means that their mitigation 
strategy is to face the harmful effects of technostress. Thus, a mitigation strategy is 
an adaptive action that individuals do in response to disturbing events that occur in 
their environment.

More broadly, the interactions between the socio-technical entities produce 
a lot of the results that appear in the information system. This paper presents an 
example, which includes the creation of collaborative online orders and technol-
ogy’s capabilities [82]. It demonstrates that the organizations need the information 
systems to be in alignment [83] and that new configurations between organiza-
tional, platform and participant dimensions exist [84]. The emergence perspective 
offers a lens to understand the many unpredictable socio-technical phenomena that 
reach the individual, group, organizational and community levels, in the context of 
expanding digitalization.

In practice, the chaos theory can help accountants, auditors, and educators 
understand their environment holistically so that they can control or behave cre-
atively to adapt and continue to survive in their environment. Levy [19] suggested 
the need for innovativeness to be examined. The advantages of the chaos theory are 
that it can portray industrial phenomena holistically. In a complex system, manag-
ers must be creative to improve the quality of their decision making and to help 
them find innovative solutions. Not all accountants, auditors, or educators have 
the resources to keep pace with the development of new information systems or 
applications. The implementation of new information systems enables ICT users to 
experience technostress. Facing this condition, each individual will have a differ-
ent coping response or behavior. Holistically, ICT users can utilize their creativity 
or innovation to mitigate the negative impact of information technology. The ICT 
users, therefore, would not allow a new ICT system to continue to interfere with 
them achieving the required performance. Managers can make policies related to 
their staff ’s dysfunctional behavior due to complicated information technology. 
Managers must consider who gets stressed and how it impacts on them and oth-
ers. Furthermore, managers can accommodate ICT users’ innovations for facing 
technostress. In other words, managers can recommend ICT media that can be used 
to improve the users’ learning of coping strategies.

6. Conclusions

The chaos theory implies that an individual could act randomly although the 
systems are deterministic. The individual acts randomly because of his/her self-
control, creativity or personal innovativeness and subtlely. We can recommend the 
chaos theory needs further research because this theory could be used to explain the 
phenomena of technostress. We propose that the chaos theory and its conceptual 
framework could overcome the weaknesses of some previous approaches that only 
investigated technostress phenomena from a single side. This paper argues for the 
proper way to apply the chaos theory so that future researchers could portray the 
technostress phenomena comprehensively.

Not all ICT users can meet the needs or requirements of new information 
technology in an organization. It means that coping behavior could occur in the 
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unit analysis, either for individual or group users. This phenomenon still provides 
opportunities for further research. On the other hand, some research has also 
shown that the effects of information technology are not only harmful, just like 
other stressors, but they also have positive impacts. These positive consequences, 
due to technostress, also provide an opportunity to conduct further investigations 
because this impact could be not only linear but also non-linear.

From a different perspective, this chapter proposes the anti-thesis of the ICT 
users who had been hurt by technostress. It argues the use of the build and broadens 
theory for mitigating the harmful effects of technostress. When ICT users feel con-
fused, due to the technostress’s creators, the developers of information systems and 
applications could use this theory to facilitate them in coping with chaotic prob-
lems. This theory recommends that ICT users could be encouraged by information 
systems that improve the state of their cognitive flow. It then opens opportunities 
for future research to investigate the influence of this theory in reducing ICT users’ 
emotional situations. Another future research possibility is the development of 
materials, tools or knowledge based on the build and broadens approach that could 
mitigate the negative experiential values of ICT users.
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Chapter 3

Perturbation Theory and Phase
Behavior Calculations Using
Equation of State Models
Vassilis Gaganis

Abstract

Equations of State (EoS) live at the heart of all thermodynamic calculations in
chemical engineering applications as they allow for the determination of all related
fluid properties such as vapor pressure, density, enthalpy, specific heat, and speed
of sound, in an accurate and consistent way. Both macroscopic EoS models such as
the classic cubic EoS models as well as models based on statistical mechanics and
developed by means of perturbation theory are available. Under suitable pressure
and temperature conditions, fluids of known composition may split in more than
one phases, usually vapor and liquid while solids may also be present, each one
exhibiting its own composition. Therefore, computational methods are utilized to
calculate the number and the composition of the equilibrium phases at which a feed
composition will potentially split so as to estimate their thermodynamic properties
by means of the EoS. This chapter focuses on two of the most pronounced EoS
models, the cubic ones and those based on statistical mechanics incorporating
perturbation analysis. Subsequently, it describes the existing algorithms to solve
phase behavior problems that rely on the classic rigorous thermodynamics context
as well as modern trends that aim at accelerating computations.

Keywords: statistical mechanics, perturbation theory, equation of state,
phase behavior, phase stability, phase split, algorithms

1. Introduction

Equations of State (EoS) have been widely used in the chemical engineering
industry for the calculation of process fluids phase properties. EoS models are
algebraic expressions of the form f p,T, vmð Þ ¼ 0 which relate molar volume vm to
pressure and temperature. Since the derivation of the ideal gas law and following
the pioneering work of Van der Waals, dozens of EoS models of various complexity
and thermodynamic considerations have been presented to accurately estimate
thermophysical properties. Among them, basic and extended cubic equations of
state, virial forms, EoS models with association terms and models based on statisti-
cal physics. Of them, the ones most widely used in the chemical engineering indus-
try are the cubic ones [1] due to their simplicity and speed of calculations, thus
minimizing the computing time required for flow simulations in processes, porous
media and pipelines. Less simple but more accurate models incorporating associat-
ing theory are often used in midstream and downstream applications [2].
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EoS models based on the application of statistical mechanics in conjunction to
perturbation theory to describe the thermodynamic behavior of substances at a
microscopic level are commonly used to estimate properties of liquids [3]. This
approach is based on studying the microscopic behavior of a set of molecules by
considering ensembles comprising of many instances of the set. Subsequently, the
system energy and eventually all thermodynamic properties of interest are obtained
by treating statistically the ensemble properties. However, as the derivation of a
closed form of the energy function is usually intractable, perturbation theory
greatly simplifies that task. A known closed form solution for a simple reference
system is firstly adopted, and the additional energy terms required to improve the
simple reference system to the complex one are considered as a perturbation of the
original reference system. Perturbation theory utilizes linearization to lead to
approximate closed form solutions of the combined complex system.

To obtain estimates of the thermophysical properties using EoS models, it is
necessary that the composition of the fluid is known and that a reliable characteri-
zation of the mixture components, by means of specific components properties
values, is available. Cubic EoS models though simple they are not predictive, and
the reliability of their predictions can only be ensured by “tuning” the model, i.e.
varying the components properties so that the model predictions match accurately
the available experimental measurements.

Once a tuned EoS model is available, properties such as density, fugacity coeffi-
cient, enthalpy, heat capacity, Joule-Thomson coefficient and speed of sound can be
easily computed by simple expressions. Calculations become more complex when
the phase state of a mixture is not known a priori. As an example consider a control
volume, i.e. a grid block, in a flow simulation model where the pressure and
saturation change of each coexisting phase at current timestep need to be deter-
mined in order to get a description of the fluid state. The pressure change in the
control volume is related to mass influx and outflux through fluids density and
compressibility. When the control volume content is a single-phase fluid both
properties can be easily computed by means of the EoS model. However, when the
content is saturated, it will split into two or more phases, each one exhibiting its
own properties, thus introducing the need to identify the number and composition
of the equilibrating phases, hence their density and compressibility.

In such cases, a test to determine if the fluid appears in a single or two phases
needs to be run, known as stability test [4]. If the test indicates the presence of two
or more phases in equilibrium, the phase split problem further needs to be solved to
compute the composition and the amount of the two coexisting properties [5]. By
knowing their composition, all properties of the equilibrium phases can then be
computed regularly.

In this chapter, the utilization of EoSmodels of the cubic form and those based on
perturbation theory is discussed and their application to compute fluids thermophysical
properties is presented. Algorithms to run phase stability and phase split in the classic
context as well as in the reduced variables one are also discussed. Additionally, the
chapter discusses the recent developments in the use of soft computing techniques to
accelerate the solution of the stability and phase split problems in flow simulations.

2. The PR and SRK cubic EoS models

2.1 Development of the cubic EoS models

The ideal gas law pvm ¼ RT, where the gas constant R ¼ kBNA is defined as the
product the Boltzmann constant and the Avogadro number, only considers the
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elastic collision of molecules thus considering the thermodynamic behavior of the
fluid as a purely kinetic process. As a result, it exhibits accurate predictions of the
molar volume only when gases at pressures and temperatures close to the atmo-
spheric ones are considered. On the other hand, the real gas law pvm ¼ ZRT can be
used to describe accurately the properties of any fluid and at any conditions pro-
vided that the appropriate value of the compressibility factor Z (also known as
deviation factor in the sense that it considers the deviation of the real gas law from
the ideal gas one) can be computed. Clearly, the real gas law simplifies to the ideal
one by simply setting Z ¼ 1.

Van der Waals was first to recognize the need to separately consider attractive
and repulsive forces between the fluid molecules thus leading to the first cubic
equation

p ¼ RT= vm � bð Þ � a=v2m: (1)

Indeed, the a term in Eq. (1) can be thought of as a term accounting for the
attractive forces between molecules as it reduces pressure. Parameter b accounts for
the molecules volume which becomes significant at high pressures (i.e. liquid state)
as lim p!∞vm ¼ b. Both parameters are functions of the properties of the compo-
nent or mixture under consideration. Clearly, by setting both parameters to zero we
revert back to the ideal gas law.

Ever since, various new cubic EoS models have been proposed with the Soave-
Redlich-Kwong (SRK) and the Peng-Robinson (PR) ones [6] being by far the most
commonly used ones in the chemical engineering industry. Both are pressure
explicit and are defined by the following expression

p ¼ RT
vm � b

� a
vm þ δ1bð Þ vm þ δ2bð Þ , (2)

where the parameters values are given in Table 1. The temperature dependent
term in that Table is given by

α Tð Þ ¼ 1þm 1�
ffiffiffiffiffiffiffiffiffiffiffi
T=Tc

p� �� �2
, (3)

where m is a function of the component acentric factor ω defined by

m ¼
0:48þ 1:574ω� 0:176ω2 SRK

0:37464þ 1:54226ω� 0:26992ω2 PR,ω≤0:49

0:3796þ 1:485ω� 0:1644ω2 þ 0:01667ω3 PR,ω>0:49

8><
>:

: (4)

The required properties of pure components can be found in any standard
petroleum thermodynamics textbook [7]. When pseudo-components are used to
describe the fluid composition, such as such as pseudo-C8 and pseudo-C11 in petro-
leum mixtures, average values can also be obtained from the literature. Custom

EoS δ1 δ2 a b

SRK 0 1 0:42747αR2T2
c=pc 0:08664RTc=pc

PR 1 + √2 1-√2 0:45724αR2T2
c=pc 0:07780RTc=pc

Table 1.
Cubic EoS models constants.
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pseudo-components such as petroleum mixtures heavy end need to be treated by
means of suitable correlations which utilize molar mass and density to provide
estimates of the critical properties and the accentric factor or other required prop-
erties [8]. When it comes to mixtures, parameters mixing rules need to be utilized
to estimate a and b. For a mixture of known composition zi, they are given by

amix ¼
Xn
i¼1

Xn
j¼1

ziz j
ffiffiffiffiffiffiffiffiffi
aia j
p

1� kij
� �

bmix ¼
Xn
i¼1

zibi:

(5)

The Binary Interaction Parameters (BIP) kij account for the interaction between
different constituents and are usually initialized either to zero or by the Prausnitz
[9] rule

kij ¼ 1� 2v1=6ci v1=6c j

v1=3ci þ v1=3c j

 !θ

, (6)

where the critical molar volume is obtained by solving the EoS at critical conditions

vc ¼ ZcRTc=pc, (7)

and the critical value Zc of the compressibility factor for the PR EoS equals to
0.3074. Parameter θ is user dependent and is usually set to 1.2. Note Eq. (6) is only
used to determine BIPs between hydrocarbon components. BIPs between
nonhydrocarbons or between hydrocarbon and nonhydrocarbon components are
taken from Tables [6].

Once all parameters have been estimated for a mixture of known composition at
fixed pressure and temperature, the EoS can be solved for volume. Usually a dimen-
sionless form that can be solved for Z ¼ pvm=RT rather than for vm is preferred

Z3 þ δ1 þ δ2 � 1ð ÞB� 1ð ÞZ2 þ Aþ δ1δ2B� δ1 þ δ2ð ÞB Bþ 1ð Þð ÞZ
� ABþ δ1δ2B2 Bþ 1ð Þ� �
¼ 0, (8)

where the dimensionless EoS constants are given by

A ¼ amixp= RTð Þ2, B ¼ bmixp= RTð Þ: (9)

2.2 Use of the cubic EoS models

As soon as the EoS constants have been defined, the compressibility factor Z can
be obtained by solving the cubic polynomial Eq. (8) [10]. When more than one real
positive roots are obtained, the smallest one is selected when the fluid is a liquid
whereas the largest one is used for a gas. Molar volume and density can be easily
computed by

vm ¼ ZRT=p, ρ ¼ pM=ZRT, (10)

where M denotes the fluid molar mass. Components fugacity coefficients φi,
hence fugacity f i ¼ φizip, can be computed by the following expressions
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lnϕi ¼ Bi=B Z � 1ð Þ � ln Z � Bð Þ þ A= δ1 � δ2ð ÞBð Þ 1=A ∂A=∂zf gi � Bi=B
� ��

� ln Z þ δ1Bð Þ= Z þ δ2Bð Þ,
(11)

where Ai ¼ aip= RTð Þ2, Bi ¼ bip= RTð Þ and ∂A=∂zf gi ¼
Pn

j¼1z j 1� kij
� � ffiffiffiffiffiffiffiffiffiffi

AiA j
p

.
Derivative properties such as the Joule-Thomson coefficient μJT can be computed by
differentiating the EoS and incorporating the derivatives in the rigorous thermody-
namic definitions of the properties. For example,

μJT ¼
vm
cp

T
vm

∂vm
∂T

����
p
� 1

 !
: (12)

2.3 Volume translation

Cubic EoS models are notoriously known for their deficiency in estimating liquid
density. A simple modification, known as volume shifting or volume translation,
originally proposed by Peneloux [11], can greatly improve the capabilities of cubic
EoS. The idea lies in “shifting” the predicted phase molar volumes vEoSm by some
amount that depends on the fluid composition and its components properties. More
specifically, the shifted volume is given by

vm ¼ vEoSm �
Xn
i¼1

zici: (13)

Parameters ci are component specific and they are usually given as functions of
the covolume parameters bi, that is

si ¼ cibi, (14)

where values of si for common pure components are available in Tables [6].
It should be noted that “shifting” (or “translating”) the volume also affects the Z

factor which needs to be updated to ensure calculations consistency

Z ¼ ZEoS � p=RT
Xn
i¼1

zici: (15)

It can be shown that when applying volume translation to two phases that
equilibrate, the fugacities of the components do change but they do in the same
amount so that they remain equal, thus not disturbing the equilibrium. As a result,
volume translation does not affect phase compositions in flash calculations or satu-
ration conditions but only phase density.

3. EoS models in the thermodynamic perturbation theory context

Unlike macroscopic EoS models such as those described in the previous section,
major efforts have been oriented toward the development of microscopic
approaches based on statistical mechanics where the individual behavior of each
particle in a fluid substance is considered. The repulsive and attractive forces are
handled separately and combined to provide a description of the thermodynamic
properties of fluids through methods based on statistical physics.
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The basic idea is to study the microscopic behavior of a set of molecules by consid-
ering many instances of the set, each one corresponding to one possible state. This
ensemble is described through the statistical properties averaged over all possible
states. The basic components for this task is the pair potential function u rð Þ and the pair
correlation function g rð Þ respectively, both functions of the distance r away from the
center of some molecule. By defining them one can generate expressions to compute
the system free energy and eventually all thermodynamic properties of interest [3].

Arriving to the energy expression while starting from u rð Þ and g rð Þ is a very
complex task from the mathematical treatment point of view. Complex expressions
of the two functions might correspond to more accurate description of the mole-
cules dynamics but they also lead to intractable mathematical expressions. For this
task perturbation theory has greatly enhanced the derivation of EoS models by
firstly utilizing known closed form solutions for simple reference functions. Subse-
quently, the small changes between the accurate u rð Þ and g rð Þ functions and the
reference ones are treated in a very elegant way by means of perturbation theory
thus leading to approximate closed form solutions for complex pair functions [12].

3.1 The correlation function formalism to derive EoS models

Consider a thermodynamically large system comprising of a fixed number of
molecules, at fixed temperature and volume, which is allowed to exchange heat
with the environment. Subsequently, consider a collection of many such
probable systems forming what is known as a canonical ensemble. The aggregate
thermodynamic properties of such systems can be described as functions of the
statistic properties of the ensemble. For this task the canonical partition function is
defined by

Q ¼
X

exp �βEið Þ, (16)

where Ei corresponds to the energy of each possible microstate, β ¼ 1=kBT is the
thermodynamic beta and kB is the Boltzmann constant. Note that Q is dimension-
less and as it will be shown later it relates macroscopic thermodynamic properties of
the system to the energy of the microscopic systems forming the ensemble.

For a system comprising of N identical molecules the partition function
QN V,Tð Þ at given volume and temperature is given by [3].

QN V,Tð Þ ¼ ZN V,Tð Þ
N!Λ3 , (17)

where

ZN V,Tð Þ ¼
ð

N

exp �βUN rN
� �� �

drN, Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2

2πmkBT

s
, (18)

and ZN V,Tð Þ is known as the configuration integral. It is easy to show that if the
system potential energy UN is assumed to be zero then the configuration integral ZN
simplifies to the system volume and the application of the related partition function
leads simply to the ideal gas law. On the other hand, when UN 6¼ 0, it is often
represented by a sum of pair-wise potentials, i.e.

U rN
� � ¼

X
i

X
j> i

u rij
� �

: (19)
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Various pair potential models u rð Þ have been presented with the hard-sphere,
the square well and the Lennard-Jones being the most pronounced ones [12]. The
hard sphere model assumes that the particles are perfect spheres of diameter σ, the
potential at distances less than the sphere diameter is equal to infinite (hence the
“hard” sphere) and zero beyond that. Therefore, u rð Þ and the corresponding
Boltzmann factor are given by

u rð Þ ¼ ∞ r< σ

0 r> σ

�
, exp �βu rð Þð Þ ¼ 0 r< σ

1 r> σ

�
: (20)

The square-well model [13] further allows for a negative value at some distance
beyond the hard sphere diameter:

u rð Þ ¼
∞ r< σ

�ε σ < r< γσ

0 r> γσ

8><
>:

: (21)

The Lennard-Jones model [14] offers the advantage of being defined by a con-
tinuous function of the distance r:

u rð Þ ¼ 4ε l=rð Þ12 � l=rð Þ6
h i

: (22)

In the equations above σ is the sphere diameter, parameter γ is used to scale the
well width, l is the length parameter and ε is the energy parameter. A detailed
description on how to use the hard-sphere model pair potential function to develop
an EoS model is given in Section 3.3.

3.2 Derivation of fluid properties for specific pair functions

By selecting the pair potential model u rð Þ and incorporating it the configuration
integral ZN and eventually to the canonical partition function expression, internal
energy can be obtained by noting that

E ¼ kBT2 ∂

∂T
QN V,Nð Þ: (23)

By utilizing the pair-wise potential energy model of Eq. (19) it can be shown that

E ¼ 3
2
NkBT þ 2πρN

ð∞

0

u rð Þg rð Þr2dr: (24)

Therefore, internal energy can be obtained as a function of the particle proper-
ties u rð Þ and g rð Þ. Clearly, the first term corresponds to the kinetic energy of the
particles, that is the ideal gas contribution of the system.

Using similar arguments, pressure can be obtained by as the volume derivative
of the configuration integral ZN, that is

p ¼ kBT
∂

∂V
ZN V,Nð Þ ¼ kBT

N
V
� 2π

3
ρ2
ð∞

0

r3
∂u rð Þ
∂r

g rð Þdr: (25)
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Again, the first term corresponds to the ideal gas pressure term. The system
Helmholtz energy is defined by

H ¼ E� TS ¼ �kBT lnQN V,Tð Þ: (26)

The chemical potential corresponds to the energy required to add one more
particle in the collection it is given by

μ ¼ H V,T,Nð Þ �H V,T,N � 1ð Þ ¼ ∂H
∂N

����
V,T

, (27)

and eventually

μ ¼ kBT ln ρΛ3 þ 4πρ
ð1
0

ð∞
0
r2u rð Þg r, λð Þdrdλ: (28)

Given the expression above, entropy can be obtained by

S ¼ E�H
T

: (29)

3.3 The hard-sphere model

The generic fluid properties expressions derived in the previous section are now
applied to the hard sphere model for the pair potential energy. By noting that the
derivative of the Boltzmann factor of the hard-sphere model is simply the Dirac
delta function [15] and replacing it to the generic properties’ expressions of the
previous paragraph, it follows for pressure that

p ¼ pIG þ pEX ¼ ρkBT þ ρkBT
4η� 2η2

1� ηð Þ3 ¼ ρkBT
1þ ηþ η2 þ η3

1� ηð Þ3 , (30)

where the pressure is now split into the ideal gas and the excess part and the
packing function η which corresponds to the ratio of the particles volume over the
total one is given by

η ¼ 1
V
N
4π
3

σ

2

� �3
¼ π

6
ρσ3: (31)

The expressions for the other properties of interest are obtained similarly and
they are given by

H ¼ HIG þHEX ¼ NkBT ln ρΛ3 � 1
� �þNkBT

4η� 3η2

1� ηð Þ2

S ¼ SIG þ SEX ¼ �NkB ln ρΛ3 � 5
2

� �
�NkB

4η� 3η2

1� ηð Þ2

μ ¼ μIG þ μEX ¼ kBT ln ρΛ3 � 1
� �þ kBT

1þ 5η� 6η2 þ 2η3

1� ηð Þ3 :

(32)

3.4 Thermodynamic perturbation theory

Although the hard-sphere pair potential model allows for an explicit calculation
of thermodynamic properties of interest, its results are not that accurate mostly due
to the inherent simplicity of the hard-sphere model itself. Nevertheless, many
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researchers have pointed out that the comparison between the experimental struc-
ture factor and the one obtained computationally from the hard-sphere model
indicates that the two curves are quite close to each other. To get a better match a
more complex pair potential model could be sought which, however, would inevi-
tably lead to mathematically intractable expressions of the properties. Alternatively,
perturbation methods can be applied to the original simple hard-sphere model to
add thermodynamic complexity under controlled extra computational burden.

The idea, firstly presented by Zwanzig [16], is to divide the total potential
energy into two terms, U0 and Up respectively, where the first term corresponds to
a reference system and the second one corresponds to the perturbation, which
needs to be significantly smaller than the reference one for the perturbation method
to be applied successfully. The total energy is then given by

U ¼ U0 þ λUp: (33)

The perturbation parameter λ allows for various mixtures of U0 and Up whereas
the original fluid energy is obtained for λ ¼ 1. By replacing that expression to the
configuration integral we obtain

ZN V,Tð Þ ¼ Z 0ð Þ
N V,Tð Þ exp �βλUp

� �� �
0, (34)

where the :h i operator denotes the statistical average of the reference system.
Replacing Eq. (34) to the expression for the Helmholtz energy we obtain

�βH ¼ ln
ZN V,Tð Þ
N!Λ3N þ ln exp �βλU1ð Þh i0 ¼ �βH0 � βHp, (35)

where the first term corresponds to a multiple of the Helmholtz energy of the
reference system and the second term accounts for the energy of the perturbation.
By combining the Taylor expansion forms of the exponential term and of the
logarithmic term we obtain

�βHp ¼ ln exp �βλUp
� �� �

0 ¼ � λβð Þc1 þ λβð Þ2c2 � λβð Þ3c3 þ … , (36)

where

c1 ¼ Up
� �

0

c2 ¼ 1
2!

U2
p

D E
0
� Up
� �2

0

� �

c3 ¼ 1
3!

U3
p

D E
0
� 3 Up
� �

0 U2
p

D E
0
þ 2 Up
� �3

0

� �
:

(37)

The treatment above has allowed the energy to be described by simpler expres-
sions of the perturbation energy term based on the c1, c2, c3 parameters. Therefore,
to get the full energy expression one needs to choose the Up model, compute the
values of the c1, c2, c3 parameters and replace then in Eq. (36) while setting λ ¼ 1. All
thermodynamic properties of interest can then be computed as functions of the
energy as shown in Section 3.2.

The beauty of the perturbation theory is that although the calculation of the
c1, c2, c3 parameters, which have been introduced by the application of perturbation
theory and the assumption of a simple reference system, is not an easy task it still is
significantly easier than replacing a complex pair potential and pair correlation
function and running mathematical operations in Eq. (18).
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As an example application of perturbation theory in statistical mechanics based
thermodynamics, consider the use of the model obtained by perturbation theory
to generate the Van der Waals EoS, this time from a statistical mechanics point of
view instead from the classic macroscopic one. Firstly, let us state the following
assumptions:

1.The potential energy consists of the sum of all pair potentials:
Up ¼

P
i
P

j> iup rij
� �

.

2.The pair potentials are equal between any pair of molecules:
Up ¼

P
i
P

j> iup rij
� � ¼ N N�1ð Þ

2 up r12ð Þ.

By introducing those assumptions to Eq. (37) the calculation of coefficient c1
simplifies to

c1 ¼ ρ2

2

ð
dr
ð
up rð Þgo rð Þdr: (38)

To proceed we further need to introduce the following assumptions:

1.The reference system to describe U0 is the hard-sphere one

2.The particles are uniformly distributed which implies that the pair correlation
function g0 rð Þ is equal to one at any distance beyond the limits of the particle
and equal to zero inside that

3.The free fluid volume is V �Nb where b is the particle volume that equals to
b ¼ 2=3πσ3

and we end up with

c1 ¼ �aρN, a ¼ �2π
ð∞
σ
up rð Þr2dr: (39)

Finally, by utilizing first order approximation only (up to c1), replacing c1 in
the free energy Eq. (36) and differentiating over volume to obtain pressure (i.e.
p ¼ �∂H=∂VjT) the well known Van der Waals equation is obtained

p ¼ NkBT
V �Nb

� a
N2

V2 : (40)

Interestingly, the perturbed energy term up has not been defined explicitly but it
has been incorporated into the EoS a parameter. From a perturbation theory point of
view, the accuracy of the Van derWaals equation of state can be improved by further
considering the c2 term, the calculation of which, however, is quite more complicated.

4. Conventional phase behavior calculations

4.1 The stability test

The question answered by a stability test is whether a mixture of given
composition, at given pressure and temperature, will appear as a single phase or as a
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multi-phase one. Clearly, the question can be answered if the bubble point/upper
dew point pressure and the lower dew point pressure (if any) of the mixture at
operating temperature is known. Any fluid above its bubble point pressure will
appear as single-phase liquid whereas when above its upper dew point or below its
lower dew point pressure it will appear as single-phase gas.

As the saturation pressure calculation is very costly, a brilliant approach by
Michelsen [4] is most preferably used. The idea lies in the fact that if a mixture is
unstable, i.e. if it splits into two or more phases when in equilibrium, there exists at
least one composition which when forms a second phase in an infinitesimal quantity
leads to a reduction of the system’s Gibbs energy. Therefore, one should try a bubble/
drop of any possible composition, consider that as a second phase that coexists with
the original fluid and examine whether the system Gibbs energy is reduced compared
to that of the original single phase fluid. To avoid looking over all possible composi-
tions, Michelsen suggested that one should only look for compositions that minimize
the mixture’s Gibbs energy rather than simply reduce it. If all minima lie above the
single-phase fluid Gibbs energy, then there is no composition that allows for an
energy reduction, hence the fluid is single phase, and otherwise it lies in two-phase
equilibrium. The Gibbs energy difference, the sign of the minimum of which is used
to determine the fluid phase state, is referred to as the Tangent Plane Distance (TPD).

Locating the minima of the TPD is not an easy task as any optimization algo-
rithm may be trapped in a local positive rather than the global negative minimum,
thus leading to wrong conclusion about the number of phases present. Additionally,
the stability problem has a natural “trivial solution”, the one corresponding to a
second phase composition same to that of the original fluid. This solution leads to a
zero TPD value and it may attract any optimization algorithm, thus misleading the
stability algorithm away from the true TPD minimum.

To overcome those issues two approaches can be envisaged. Firstly, one might
use global minimization algorithms which ensure that the minimum found is the
global one [17]. Such algorithms take significant time to run hence they can only be
applied to single calculations rather than batch ones, as is the case in fluid flow
simulation. The second approach considers the repeated run of simple optimization
algorithms, each time with appropriate initial values so that the global minimum
will be located by at least one of those tries.

Based on the above observations, Michelsen [4] presented an algorithm which
constitutes the standard approach to treat phase stability. To simplify calculations,
it is recommended to optimize TPD by varying the equilibrium coefficients ki ¼
yi=zi, also known as distribution coefficients, rather than the bubble composition yi
itself. The algorithm is as follows

1.Compute fugacity of each component of the feed f zÞð
i using the EoS model

2.Initialize ki using Wilson’s correlation [18]

3.Assume feed is a liquid and look for a bubble, i.e. compute Yi ¼ kizi

4.Compute trial bubble composition sum SV ¼
P

Yi

5.Normalize composition yi ¼ Yi=SV and compute its fugacity f yÞð
i

6.Compute correction factor Ri ¼ 1=SV f zÞð
i = f yÞð

i

7.Check for convergence by evaluating
P

Ri � 1ð Þ2 < ε
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8.If convergence has not been achieved, update the equilibrium coefficients by
applying ki  kiRi

9.After convergence has been achieved check if the algorithm has arrived at a
trivial solution by evaluating

P
ln kið Þ2 < δ

The algorithm needs to be repeated, this time by assuming that the feed is a gas
and the second phase is a drop. In that case, the algorithm is as follows

1.Assume feed is a liquid and look for a drop, i.e. compute Xi ¼ zi=ki

2.Compute drop composition sum SL ¼
P

Xi

3.Normalize composition xi ¼ Xi=SL and compute its fugacity f xÞð
i

4.Compute correction factor Ri ¼ 1=SL f
xÞð
i = f zÞð

i

5.Check for convergence by evaluating
P

Ri � 1ð Þ2 < ε

6.If convergence has not been achieved, update the equilibrium coefficients by
applying ki  kiRi

7.After convergence has been achieved check if the algorithm has converged to a
trivial solution by evaluating

P
ln kið Þ2 < δ

As soon as both calculations have been completed, Table 2 can be used to reckon
on the phase state.

The algorithm described above is known as the “two-sided” stability test as the
trial phase is tested both from the bubble as well as from the drop side. The bubble
test converges to nontrivial negative solutions only when the test pressure and
temperature conditions lie within the phase envelope in the range where the feed is
predominantly liquid. Similarly, the drop test converges to nontrivial negative
solutions only when the feed is predominantly gas. The two ranges overlap in a
region known as “the spinodal” [19] where both tests converge to solutions with a
negative TPD value indicating instability of the feed (Figure 1).

Vapor phase test Liquid phase test Result

Trivial solution Trivial solution Stable

SV ≤ 1 Trivial solution Stable

Trivial solution SL ≤ 1 Stable

SV ≤ 1 SL ≤ 1 Stable

SV > 1 Trivial solution Unstable

Trivial solution SL > 1 Unstable

SV > 1 SL > 1 Unstable

SV > 1 SL ≤ 1 Unstable

SV ≤ 1 SL > 1 Unstable

Table 2.
Stability test result selection.
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4.2 The phase split

Once the stability test has indicated that the feed is split into two or more phases, a
phase split algorithm, also known as flash, needs to be run to determine the compo-
sition and relative amount of each phase present in equilibrium. For the simple case
of vapor-liquid equilibrium (VLE) which is most commonly encountered in petro-
leum engineering applications, the phase split algorithm will provide the composi-
tions of the gas and liquid phase, yi and xi respectively, as well as the vapor phase
molar fraction β. At equilibrium, the two phases should satisfy two conditions,
namely the mass balance and the minimization of the system Gibbs energy. The first
condition simply requires that the mass of each component in the feed should equal
to sum of their mass in the resulting two phases in equilibrium, i.e.

zi ¼ 1� βð Þxi þ βyi i ¼ 1, … , n: (41)

The second condition additionally requires the phase compositions to be so that
the two-phase system’s Gibbs energy, defined by

G ¼ 1� βð Þ
Xn
i¼1

xi ln f xð Þ
i þ β

Xn
i¼1

yi ln f yð Þ
i , (42)

is at its minimum. It is easy to show that setting the Gibbs energy gradient equal
to zero, an equivalent condition is obtained which requires that the fugacity of each
component in the vapor phase is equal to its fugacity in the liquid phase, i.e.

f xð Þ
i � f yð Þ

i ¼ 0) ϕ
yð Þ
i yip� ϕ xð Þ

i xip ¼ 0) ϕ xð Þ
i

ϕ
yð Þ
i

¼ yi
xi
¼ ki, i ¼ 1, … , n: (43)

Finally, we need to ensure that the composition of each equilibrium phase is
consistent by summing up to unity. Equivalently, we may require that

Xn
i¼1

xi � yi
� � ¼ 0: (44)

Summarizing, the solution of the flashproblemcanbe seen as the solutionof a system
of 2nþ 1 equations, that is Eq. (41), (43) and (44), in 2nþ 1 unknowns, i.e. yi, xi and β.

Figure 1.
The spinodal.
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Note that the mass balance equations are linear in the phase compositions, hence
they can be solved and replaced in Eq. (44) thus allowing the flash problem to be
reformulated in terms of the k-values and the molar fraction β. Indeed, by incorpo-
rating Eq. (41) and the k-values definition in Eq. (43) to Eq. (44), the famous
Rachford-Rice equation is obtained

r βð Þ ¼
Xn
i¼1

zi
β � βi

¼ 0, (45)

where βi ¼ 1= 1� kið Þ, which can be solved for the molar fraction β. Given β and
the k-values, the equilibrium phase compositions can then be obtained by

xi ¼ 1
ki � 1

zi
β � βi

, yi ¼ kixi, i ¼ 1, … , n (46)

Therefore, the phase split problem can be treated as the solution of a system of nþ 1
equations, that is Eq. (43) and (45), in nþ 1 unknowns, i.e. ki and β. Of course, if the k-
values are known by anymeans, the problem simplifies to the solution of the Rachford-
Rice Eq. (45) to compute β and phase compositions are obtained from Eq. (46).

From Eq. (45) it can be seen that the Rachford-Rice equation is a monotonically
decreasing one, as its derivative is always negative, and that it is nonlinear in the
molar fraction. In fact, as shown in example Figure 2, it is a sum of many decreasing
hyperbolas each one defined by its own asymptote βi, hence it comprises of nþ 1
branches and exhibits n� 1 distinct roots. The only physically sound one is bounded
in the [0, 1] range and it can be proved that the asymptotes which enclose that
range are the ones corresponding to the maximum and to the minimum k-values,
i.e. [βmin ¼ 1= 1� kmaxð Þ, βmax ¼ 1= 1� kminð Þ]. Beyond the obvious option of using
the Newton-Raphson method to find the root, various alternative methods have
been presented taking advantage of its special form to ensure safe and rapid
convergence to the desired root [20, 21].

Alternatively, the phase split problem can be treated as a constrained optimiza-
tion problem where the system Gibbs energy in Eq. (42) needs to be minimized by
varying ki under the mass balance constraint in Eq. (45).

4.2.1 Using k-values from correlations and charts

Equilibrium coefficients are functions of pressure, temperature and composi-
tion. However, at low pressures and temperatures, such as those prevailing at

Figure 2.
The Rachford-Rice equation and its asymptotes.
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surface separators, the dependency on composition is very loose, thus allowing for
the derivation of k-values correlations which only utilize pressure and temperature
such as the one by Wilson [18].

ki p,Tð Þ ¼ exp 5:37 1þ ωið Þ 1� Tci=Tð Þð Þ
p=pci

: (47)
.

Similar correlations by Standing [22] and Whitson and Torp [23] have also been
presented. An alternative approach is based on the utilization of charts which provide
k-values at various pressures and temperatures. The generation of those charts is
based on the observation that at high pressures k-values approach unity. In fact, there
exists a composition dependent pressure value, known as the convergence pressure
pk, at which all k-values become equal to unity. Charts for various convergence
pressure values and system temperatures provide plots of the k-values as functions of
pressure [24]. To utilize them in flash calculations, the user needs to determine the
convergence pressure by means of any of the available methods [23, 25, 26] and select
the appropriate chart where from the prevailing k-values can be obtained.

The solution algorithm is as follows

1.Estimate convergence pressure pk

2.Get ki from convergence pressure-based correlations or Tables

3.Solve the Rachford-Rice equation (Eq. (45)) for the vapor phase molar
fraction.

4.Compute phase compositions using Eq. (46).

The Rachford-Rice equation needs to be solved by means of any iterative
function-solving method such as the Newton-Raphson one and the molar fraction
update is given by

β  β � dr
dβ

����
β

r βð Þ, (48)

where

dr
dβ
¼ �

Xn
i¼1

zi
β � βi
� �2 : (49)

4.2.2 Using composition dependent k-values from an EoS model

When an EoS model is available, components fugacity f i, hence fugacity coeffi-

cients φi and k-values ki ¼ φ xð Þ
i =φ yð Þ

i can be accurately computed rather than been
read from charts. Apart from the nonlinearity of the Rachford-Rice equation
(Eq. (45)), the complex formulae (Eq. (11)) relating phase composition to fugacity
through the EoS model introduces additional nonlinearity to the calculation of the
k-values thus imposing the need for iterative solution methods.

Computations may involve any one of the three methods available, i.e. Succes-
sive Substitution (SS), numerical solution of the systems of equations in Eq. (43)
and (45) by means of the Newton Raphson method or direct minimization of the
system Gibbs energy in Eq. (42) by means of optimization algorithms.
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The SS method starts with an estimation of the k-values, solves the Rachford-
Rice equation for β to ensure mass balance and computes the phase composition and
components fugacity. If phase fugacities are not equal, k-values are updated by the
inverse fugacity coefficient ratio in Eq. (43). The algorithm is as follows

1.Initialize ki

2.Solve the Rachford-Rice equation (Eq. (45)) for the molar fraction β

3.Compute phase compositions using Eq. (46)

4.Solve the cubic polynomial of each phase (Eq. (8)) and compute components
fugacity (Eq. (11))

5.Check for convergence by evaluating
P

ln f yð Þ
i = f xð Þ

i

� �2
< ε

6.If convergence has not been achieved, update the equilibrium coefficients by

applying Eq. (43), i.e. ki  kiφ
xð Þ
i =φ

yð Þ
i , and return to step 2

As mentioned above, the flash problem is governed by nþ 1 equations in nþ 1
unknowns. The problem can be further split to the solution of a system of n
nonlinear equations (Eq. (43)) subject to one more nonlinear one (Eq. (45)).
This way one needs to apply the Newton-Raphson method to solve the n
nonlinear thermodynamic equilibrium equations and at each iteration compute β
to ensure mass balance and composition consistency. To describe this algorithm,
we define

gi ¼ f yð Þ
i � f xð Þ

i , (50)

or equivalently, in a vector format:

g z,kð Þ ¼ f yð Þ � f yð Þ, (51)

which needs to be driven to zero, i.e. g z,kð Þ ¼ 0, by varying ki. The algorithm is
identical to the SS one except step 6 which now reads.

6. If convergence has not been achieved, update the equilibrium coefficients by
the Newton-Raphson method k k� J�1g z,kð Þ and return to step 2. The
nxn Jacobian matrix is defined by

J ¼ ∂g z,kð Þ
∂k

¼ ∂gi
∂k j

� �
¼ ∂ f xð Þ

i

∂k j
� ∂ f yð Þ

i

∂k j

( )
: (52)

The optimization approach uses any optimization method to minimize
Gibbs energy subject to mass balance. Quasi-Newton methods such as the BFGS [27]
only require computation of the Gibbs energy gradient with respect to the k-values,
whereas a Newton method also requires the Hessian [27]. Hence, step 6 now reads.

6a. If convergence has not been achieved, compute the Gibbs energy gradient,
update k-values by means of the BFGS method and return to step 2 or.

6b. If convergence has not been achieved, compute the Gibbs energy gradient and
Hessian, update k-values by means of the Newton method and go to step 2.
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The gradient and Hessian are defined by

∂G z,kð Þ
∂k

¼ ∂G
∂ki

� �
(53)

∂
2G z,kð Þ
∂k∂kT ¼ ∂

2G
∂ki∂k j

� �
¼ ∂

2

∂ki∂k j
1� βð Þ

Xn
i¼1

xi ln f xð Þ
i þ β

Xn
i¼1

yi ln f yð Þ
i

 !( )
: (54)

Although the Jacobian, gradient andHessian formulae are rather complex to compute
they allow for the very quick convergence of the optimization algorithm to its solution.

4.2.3 k-value initialization

Flash equations are always satisfied by a “trivial” solution which simply implies
that xi ¼ yi ¼ zi, hence ki ¼ 1. Clearly, that solution satisfies mass balance and
equilibrium conditions (Eq. (41) and (43)) and it also satisfies composition consis-
tency (Eq. (44)) for any vapor phase molar fraction value. Converging to the
physically sound rather than the trivial solution can only be ensured by utilizing
appropriate initial estimates of the equilibrium coefficients. SS has proved to be
more robust, yet slow, when initialized away from the true solution, as opposed to
the Newton-Raphson, BFGS and Newton methods which perform rapidly only
provided that they are initialized close to the solution.

To benefit from the advantages of each method most flash algorithms run a few

SS iterations until the convergence criterion
P

ln f yð Þ
i = f xð Þ

i

� �2
becomes sufficiently

small. Then the algorithm switches to any other method that converges rapidly to
the solution. To initialize SS, Wilson’s correlation (Eq. (47)) might be used. If a
stability test has been run before the phase split, the k-values obtained can be used
as a very good estimate of the final solution.

In flow applications where physical properties are obtained by EoS models,
k-values are often initialized to the values they exhibited at the same point in the
previous timestep, thus taking advantage of the fact that flow in petroleum engi-
neering applications is a slow varying process with time. Even more accurate esti-
mations can be obtained by extrapolating the converged k-values obtained in the
previous 2 or 3 timesteps using linear or quadratic interpolation respectively [28].

4.3 Saturation condition calculations

The estimation of saturation pressure or temperature can be considered as a
special case of a flash calculation where the molar ratio is known, i.e. β ¼ 0 for a
bubble point or β ¼ 1 for a dew one, whereas pressure or temperature needs to
estimated. The bubble or drop composition, known as incipient phase, needs to be
estimated as well. At saturation conditions, the Rachford-Rice equation reads

Xn
i¼1

ziki � 1 ¼ 0 for pb (55)

Xn
i¼1

zi=ki � 1 ¼ 0 for pd : (56)

Equilibrium, i.e. equality of fugacity between the feed and the incipient phase,
needs to be respected. Therefore, the nþ 1 equations that need to be solved for the case
of a bubble point calculation are Eqs. (55) and (43) where xi ¼ zi. The nþ 1 unknowns
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are the bubble composition yi ¼ ziki, or equivalently the prevailing k-values, and the
saturation pressure or temperature. For the case of a dew point calculation, the equa-
tions are (56) and (43) where yi ¼ zi and the drop composition is xi ¼ zi=ki.

An alternative, more elegant approach is based on the fact that the TPD at a
saturation point needs to be equal to zero. In other words, forming a bubble with
the incipient phase composition, different than the feed one, retains the system

Gibbs energy. A zero TPD value implies f yð Þ
i ¼ f zð Þ

i , hence Yi ¼ ziki ¼ ziφ
zð Þ
i =φ yð Þ

i ¼
yi f

zð Þ
i = f yð Þ

i which in turn implies
P

Yi ¼
P

yi ¼ 1. When dealing with a dew point,
i.e. Eq. (56), a similar result is obtained,

P
Xi ¼

P
xi ¼ 1. Michelsen’s algorithm

[29] varies pressure until the following condition is met

Q p, kið Þ ¼ 1�
X

Yi ¼ 0orQ p, kið Þ ¼ 1�
X

Xi ¼ 0: (57)

In detail, the algorithm is as follows

1.Initialize psat to a pressure guaranteed to be in the two-phase region. This can
be done by running a stability test at various pressures

2.Initialize ki

3.Compute Yi ¼ ziki for a bubble point or Xi ¼ zi=ki for a dew point

4.Compute SV ¼
P

Yi or SL ¼
P

Xi

5.Normalize incipient phase composition using yi ¼ Yi=SV or xi ¼ Xi=SL

6.Compute incipient phase fugacity f yð Þ
i or f xð Þ

i

7.Update incipient phase composition using Yi ¼ yi f
zð Þ
i = f yð Þ

i or Xi ¼ xi f
zð Þ
i = f xð Þ

i

8.Update pressure by running a Newton-Raphson iteration p p� Q
∂Q=∂p

9.Check for convergence by evaluating
P

ln f yð Þ
i = f zð Þ

i

� �2
< ε or

P
ln f χð Þ

i = f zð Þ
i

� �2
< ε

10.Check trivial solution by evaluating
P

ln yi=zi
� �2 < δ or

P
ln χi=zið Þ2 < δ

The Newton-Raphson derivative is given by

∂Q
∂p
¼
Xn
i¼1

yi
f zð Þ
i

f yð Þ
i

∂ f yð Þ
i

∂p
1

f yð Þ
i

� ∂
zð Þ
i

∂p
1

f zð Þ
i

 !
for pb

∂Q
∂p
¼
Xn
i¼1

xi
f zð Þ
i

f xð Þ
i

∂ f xð Þ
i

∂p
1

f xð Þ
i

� ∂ f zð Þ
i

∂p
1

f zð Þ
i

 !
for pd

: (58)

4.4 Negative flash calculations

Whitson and Michelsen [30] extended the regular phase split algorithm beyond
the limits of the phase envelope to allow flash calculations at conditions where the
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fluid is physically single phase. They showed that the phase split equations can still
be satisfied, this time with negative β values at pressures above the bubble point or
with β values above unity at pressures above the upper or below the lower dew
point. The more is the distance from the phase boundary the more is the absolute
value of the molar fraction, eventually approaching �∞ and þ∞ at the convergence
pressure pk. At convergence pressure, the equilibrium coefficients become equal to
unity whereas beyond pk the flash equations have only one solution, the trivial one.
Algorithms to compute the locus of the convergence pressure over a temperature
range, known as “convergence locus” (CL), have been developed [31]. The negative
flash area between the regular phase envelope and the CL is often referred to as the
“shadow region” [32].

They also showed that stability tests can also be interpreted outside the phase
envelope. Each of the two trial phases converges to a nontrivial solution (i.e. the
TPD distance is positive) up to a locus in the shadow region, known as “stability test
limit locus”, STLL) which is enclosed by the CL. Such stability test results can be
used to initialize negative flash calculations. Beyond STLL, the stability test only
converges to the trivial solution. The regions discussed are shown in Figure 3 for a
black oil, where the phase envelope interior is shown in red, cyan and yellow color
and the latter corresponds to the spinodal. The shadow regions above the bubble
point and the dew point lines are shown in pink and blue color respectively. Green
color indicates the area outside the CL where the trivial solution is the only one to
the phase split problem.

To interpret physically the results of a negative flash we firstly need to note that
a molar fraction value of 0< β< 1 in a regular flash calculation implies that β moles
of gas of composition yi need to be added to 1� β moles of liquid of composition xi
to reconstruct the original feed composition zi. In a negative flash with β<0, βj j ¼
�β moles of gas need to be removed from 1� β ¼ 1þ βj jmoles of liquid to
reconstruct one mole of the original feed composition. Similarly, when β> 1, β � 1
moles of liquid need to be removed from β moles of gas.

Clearly, negative flash solutions are not of any direct use in fluid flow calcula-
tions. However, they can significantly improve the convergence properties of the
regular flash calculations close to the phase boundary by allowing the solution at
some iteration to escape temporarily outside the phase envelope while trying to
arrive to the exact solution.

Figure 3.
Regular phase envelope, shadow region and trivial solution region.
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4.5 Multiphase calculations

The need for multiphase calculations varies depending on the chemical engineer-
ing field. For example, in the upstream petroleum industry it is not that intense as
multiphase equilibrium very rarely occurs in the reservoir and only when special
studies in the wellbore and pipeline flow are considered. A case that is possible to
happen in the reservoir is the presence of oil with high CO2 content where two liquid
phases (a CO2-rich and a CO2-poor one) and a vapor one could be formed. Things
become more complicated when solids are considered as is the case with asphaltenes,
waxes or hydrates. In the latter case, the phases that need to considered as possible to
form are the solid one which may correspond to more than one hydrate structures (i.e.
sI, sII and sH [33]), the aqueous phase which can be in liquid of solid form (ice) and
the hydrocarbons phase (liquid, vapor or both). Nevertheless, multiphase equilibrium
appears very often in chemical engineering processes taking place in process plants.

To identify such situations the standard approach is to repeatedly use the con-
ventional two-phase Michelsen’s stability test. Firstly, the test is run and if instabil-
ity is detected then the vapor-liquid flash problem is solved. Subsequently, the
equilibrium phase compositions are used as feeds (i.e. xi and/or yi instead of zi) with
suitable initial k-values to further detect if indeed they are stable or if one of them
(e.g. the liquid one) will further split to two liquids.

Although many multiphase flash algorithms have been presented, the one
developed by Michelsen is still considered as the most elegant one. By directly
extending the two-phase flash requirements to a total of F phases, the mass balance,
equilibrium and composition consistency expressions generalize to

XF
j¼1

β jy
j
i ¼ zi i ¼ 1, … , n

f
y1ð Þ

i ¼ f
y2ð Þ

i ¼ … ¼ f
yFð Þ

i ⇔ y1iϕ
y1ð Þ

i ¼ y2iϕ
y2ð Þ

i ¼ … ¼ yFi ϕ
yFð Þ

i i ¼ 1, … , n
Xn
i¼1

y j
i ¼ 1 j ¼ 1, … ,F,

(59)

where β j denotes the molar fraction of phase 1≤ j≤ F and y j
i denotes the

concentration of component 1≤ i≤ n in phase 1≤ j≤ F. Michelsen [34] proposed
varying y j

i and β j to minimize the objective function given by

Q ¼
XF
j¼1

β j �
Xn
i¼1

zi
XF

k¼1

βk

ϕ
ykð Þ

i

, (60)

which satisfies Eq. (57) at its minimum.
An alternative approach that combines stability and flash calculations in a single

algorithm [35] at the cost of an increased set of variables that need to be determined,
has also been presented. Unlike the previous algorithms, in the one presented here F
denotes the maximum number of phases that might be present in equilibrium rather
than the actual number of them. Upon convergence, this algorithm will also provide
information about the presence or absence of each one of the potential phases.

The algorithm requires that one phase, surely known to be present in the mix-
ture, is considered as the reference one, say phase r. This way, the equilibrium
coefficients of any other potential phase can be defined with respect to the refer-
ence one, i.e. k j

i ¼ y j
i =y

r
i , where kri ¼ 1. Let θ j be the stability variable of a phase,

defined so that it is equal to zero when the phase is present (hence β j >0) or
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exhibits a positive value when the phase does not exist (i.e. when β j ¼ 0). There-
fore, β j >0 and θ j ¼ 0 for an existing phase whereas β j ¼ 0 and θ j >0 for a
nonexisting one.

To solve the phase split problem we need to determine all k-values k j
i , the molar

fractions β j and the stability variables θ j for all phases but the reference one.
Indeed, once those variables have been determined, the composition of any equi-
librium phase can be computed by

y j
i ¼

zi

1þPF
j ¼ 1

j 6¼ r

β j k j
i e

θ j � 1
� � , i ¼ 1, … , n, j ¼ 1, … , F: (61)

At the solution the mass balance and thermodynamic equilibrium conditions
need to be simultaneously satisfied. For the first condition, the two-phase Rachford-
Rice equation is extended to multiphase calculations as follows

rk β, θð Þ ¼
Xn
i¼1

zi kki e
θk � 1

� �

1þPF
j ¼ 1

j 6¼ r

β j kkje
θ j � 1

� � , j ¼ 1, … , F: (62)

Note that the above equation needs to be satisfied for all k ¼ 1,⋯, F and k 6¼ r.
To satisfy the second condition, a minimum of the Gibbs energy is achieved when

β jθ j ¼ 0, (63)

subject to β j ≥0, θ j ≥0 for all phases. Note that Eq. (63) is satisfied by definition
for the reference phase, i.e. j ¼ r, as that phase is known to exist, hence θr ¼ 0.

To solve the numerical problem it is initially assumed that all phases are present,
hence all θ j are set to zero, the k-values are initialized using appropriate correlations
or expected equilibrium phase compositions and molar fractions are equally spaced.
Firstly, the mass balance and equilibrium equations are solved for the molar frac-
tions and the stability variables using the currently estimates of the k-values. Sub-
sequently, phase compositions and fugacities are computed using Eq. (61). Finally,
k-values are updated in an inner loop by

k j
i ¼ ϕ rð Þ

i =ϕ
jð Þ

i , (64)

and calculations are repeated until convergence.
It is interesting to note that for the case of VLE phase split calculations, by

defining the liquid phase to be the reference one, Eq. (61) simplifies to Eq. (46).
Furthermore, the extended Rachford-Rice equation reduces to

r β, θð Þ ¼ zi kieθ � 1
� �

1þ β kieθ � 1ð Þ : (65)

When both phases are present, θ ¼ 0 and Eq. (65) simplifies to Eq. (45).

5. Accelerated phase behavior calculations

When flow simulations are considered, reliability undoubtedly comes first as
lack of convergence or obtaining unrealistic results during the calculations at any

63

Perturbation Theory and Phase Behavior Calculations Using Equation of State Models
DOI: http://dx.doi.org/10.5772/intechopen.93736



grid block would lead to a general failure of the reservoir simulation run. However,
some tolerance can be shown to the accuracy of the EoS model produced results due
to the latter’s inherent simplicity, to the nonexhaustive fluid’s compositional analy-
sis available and to questionable tuning procedures. In fact, small inaccuracies in the
fluid behavior calculations that might be introduced can be partially remediated by
the history matching procedure of the field model.

On the other hand, the ever increasing demand for complex flow domain models
in terms of both grid and fluid models complexity has rendered nowadays the speed
of phase behavior calculations as one of the most critical issues of flow simulation,
especially for cases of complex thermodynamic phenomena such as near critical
phase behavior and multiphase equilibrium in the presence of solids. As a result,
speeding up phase behavior calculations is considered as a major issue, even if this
involves some sacrifice in the calculations accuracy.

5.1 Rigorous methods

Reducing the number of components used to describe the fluid composition
through a splitting and lumping procedure is the standard way to obtain simpler,
hence faster EoS models. Firstly, the heavy end, usually corresponding to a limited
carbon number, needs to be replaced with a large number of pseudo-components
defined by means of computational methods. This way the flexibility during the EoS
model tuning increases. The most pronounced method is the one developed by
Whitson that utilizes the Gamma distribution [6]. Subsequently, the extended
number of components is reduced (lumped) to a small number of pseudo-
components, usually 3 to 5, by means of algorithms which aim at preserving the EoS
model’s performance [7]. Finally, pure components are grouped together to mini-
mize the composition vector size. Typical selections are N2 with C1, CO2 with C2,
nC4 with iC4 and nC5 with iC5. When two or more components are lumped
together, the new group’s properties need to be rematched against the available PVT
measurements. A very illustrative example is given my Ahmed [7] where a full C7+

composition that includes N2 and CO2, thus summing up to 11 components, reduces
gradually the number of components to only 7 according to the lumping procedure
shown in Table 3.

Other accelerating methods include different treatments of the mathematical
form of the problem or of its variables [36, 37] and utilizing solution acceleration
techniques such as the GDEM update one [5]. Rasmussen et al. [32] provided
criteria to completely skip phase behavior calculations during a simulation run
when the prevailing equilibrium conditions fall within specific regions of the fluid’s
phase diagram. Simply speaking, if the fluid is a single phase one, most probably it
will keep so if its distance to the phase boundary is large enough. So is the case with
fluids lying well inside the two-phase region. In both cases, the stability test can be
skipped whereas in the former one the phase split can be skipped as well.

Finally, efforts have been concentrated on utilizing advanced code optimization
[38] and High Performance Computing (HPC) techniques which take advantage of

Original components set

CO2 N2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 C7+

Lumped components set

N2 + C1 CO2 + C2 C3 + iC4 + nC4 iC5 + nC5 + C6 F1 F2 F3

Table 3.
Components’ number reduction by splitting and lumping.

64

A Collection of Papers on Chaos Theory and Its Applications



the parallel computing capabilities of modern computer architectures [39]. Despite
the difficulties in distributing the work load and in optimizing memory transfer
between clusters, impressive acceleration factors have been reported [40].

5.2 The reduced variable framework

Reduced variables methods are based on the fact that the intrinsic dimensional-
ity of the stability and phase split calculations, hence the number of equations to be
solved, is related to the rank of the complementary BIP matrix Γ, defined by γij ¼
1� kij, rather than the number n of components used. Michelsen [41] derived the
first reduced variables algorithm for cubic EoS models with zero BIPs (kij ¼ 0) by
showing that the equations to be solved could be reduced to only 3. Simply speak-
ing, although the phase composition, e.g. yi, is a vector with n components, it is
incorporated in the mixing rules only through its scalar projections to the compo-
nents’ ai and bi constants vectors, thus forming only two variables, i.e. amix ¼P ffiffiffiffi

ai
p

yi
� �2 and bmix ¼

P
biyi. By further considering the molar fraction β, the

number of variables to be determined reduces to only 3.
In general, the nþ 1 original variables (i.e. the k-values and the molar fraction)

are replaced by a set of mþ 2 reduced ones, with m≪ n, thus significantly reducing
the phase behavior problem dimensionality. Several authors extended Michelsen’s
idea to calculations with nonzero BIP [42–44] by applying Singular Value Decom-
position to the BIP matrix so as to split it in a sum of rank-1 matrices. The less is the
number of rank-1 matrices required to reconstruct accurately the original BIP
matrix, the less is the number of reduced variables that need to be utilized, hence
the less ism. Nichita and Graciaa [45] presented an alternative reduced variables set
which allows for an easier Hessian matrix computation procedure and faster con-
vergence while Gaganis and Varotsis [46] proposed a new procedure for generating
improved reduced variables.

More specifically, let the complementary BIP matrix Γ ¼ 1� kij
� �

be
decomposed to a set of eigenvalues λi and eigenvectors ti by use of the Singular
Value Decomposition method [28], so that Γ ¼Pm

i¼1λitit
T
i , where m denotes the

rank of Γ. For the vapor phase, we define the projection vectors qi ¼ ti∘
ffiffiffi
a
p

and the
reduced variables hV ¼ Q Ty, where a ¼ aif g is the vector containing the compo-
nents energy parameters, Q ¼ q1 ⋯ qm

� �
and operator ∘ denotes the Hadamard

vector product (by element multiplication). The phase energy parameter aV and its
derivative (required for the computation of phase fugacity) can be computed as
functions of the reduced variables, that is aV ¼ hT

VΛhV and ∂aV=∂y ¼ 2QΛhV ,
where Λ ¼ diag λ1 ⋯ λmf g. By further considering the vapor phase volume
parameter bV as an unknown variable all required quantities (i.e. compressibility
factor ZV from Eq. (7) and fugacity coefficients from Eq. (10)) can now be
completed as functions of hV and bV .

The corresponding variables of the liquid phase can be easily computed by
considering the vapor phase molar fraction β as an unknown variable and applying
mass balance, i.e. hL ¼ Q Tz� βhV

� �
= 1� βð Þ and bL ¼ bTz� βbV

� �
= 1� βð Þ, thus

allowing for the computation of the liquid phase properties as well.
To summarize, hV , bV and β form an alternative set of variables in terms of

which the phase split problem can be cast. The constraining equations that need to
be satisfied are

hV �Q Ty ¼ 0 (66)
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bV � bTy ¼ 0 (67)

X zi ki � 1ð Þ
1þ β ki � 1ð Þ ¼ 0: (68)

The solution algorithm is as follows

1.Initialize yi and β

2.Compute hV ¼ Q Ty

3.Compute aV ¼ hT
VΛhV , ∂aV=∂y ¼ 2QΛhV and bV ¼ bTy

4.Compute hL ¼ Q Tz� βhV
� �

= 1� βð Þ and bL ¼ bTz� βbV
� �

= 1� βð Þ

5.Compute aL ¼ hT
LΛhL, ∂aL=∂x ¼ 2QΛhL and bL ¼ bTx

6.Solve the cubic polynomial for both phases (Eq. (8))

7.Compute fugacity coefficients for both phases using (Eq. (11))

8.Compute ki ¼ φ xð Þ
i =φ

yð Þ
i and phase compositions using (Eq. (46))

9.Check convergence by evaluating if Eq. (66) are satisfied

10.If convergence has not been achieved, update hV , bV and β by means of a
Newton-Raphson step and return to step 3.

Eqs. (66) and (67) guarantee thermodynamic equilibrium whereas Eq. (68)
ensures mass balance. Clearly, the equations are nonlinear and their solution still
requires the utilization of iterative function solving methods. Nevertheless, the
benefit of the reduced variables approach lies in the cardinality of the variables set
which is usually smaller than that of the conventional approach as it equals tomþ 2.
When the BIP matrix contains many small or even zero values, as it is commonly
the case with the EoS modeling of multicomponent fluids, the rank of matrix Γ is
much smaller than its size (m≪ n) which implies that the number of equations that
need to be solved is significantly reduced. Moreover, reduced variables hi
corresponding to very low eigenvalues λi can also be neglected at the cost of the
truncation error of matrix Γ. For the extreme case where all BIPs are equal to zero,
m ¼ 1, Eq. (66) simplifies to a scalar one and only three nonlinear equations need to
be solved regardless of the number of the mixture components [41]. Nevertheless,
there has been some questioning about the real benefit of reduction methods as
modern computers architecture has significantly reduced their computing time gain
against the conventional ones [47, 48].

5.3 Soft computing methods

Soft computing methods aim at solving phase equilibrium problems by utilizing
data points rather than solving the thermodynamically rigorous equations discussed
in the previous sections. Simply speaking, data related to the stability and phase
split problems are generated and subsequently used to build correlations which
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provide directly the variables of interest such as the TPD value and the prevailing k-
values for the stability and phase split problems respectively. Such flow-specific and
fluid-specific soft computing models are case dependent as they are generated using
data obtained either prior to the specific simulation of interest or during that.

The benefit lies in that the generated correlations consist of simple, noniterative
calculations which are by orders of magnitude faster than the conventional iterative
ones. Although the numerical treatment of the datapoints involves purely numerical
techniques such as regression, classification and clustering [49], thermodynamics
are still incorporated indirectly in the soft computing based models as the data
points used to build the models have been generated in advance by conventional
rigorous methods.

Composition independent correlations to estimate the equilibrium coefficients
(k-values), such as those of Standing and Whitson as well as the convergence
pressure method, all discussed in 3.2.1, can be thought of as the simplest soft
computing method to treat the phase split problem as they provide k-values esti-
mates without being based on a rigorous EoS model, hence avoiding the iterative
solution of the fugacity equations or the minimization of the Gibbs energy.

Voskov and Tchelepi [50] proposed the generation and storage of the encoun-
tered tie-lines in Tables “on the fly”. Initially, for each feed composition encoun-
tered during the simulation, the phase split problem is solved conventionally and
the equilibrium compositions (i.e. the tie line endpoints) are stored. For each sub-
sequent feed the algorithm searches quickly the Tables to identify the closest stored
tie-lines and interpolate them linearly to get the equilibrium compositions. If no
close enough tie lines can be found, the phase split problem is solved convention-
ally, and the table is enriched. Stability is determined by using the negative flash
approach [30]. To reduce the computing time cost for accessing and further
building-up the tie line Table, Belkadi et al. [51] proposed the Tie-line Distance
Based Approximation which further accelerates the search procedure.

Gaganis and Varotsis [52, 53] presented the methodology to develop proxy
models for treating both the phase stability and phase split problems using machine
learning tools. Their approach aims at solving conventionally the phase behavior
problem for a set of sampled operating points and using the obtained data to
generate explicit proxy models using multivariate regression models such as neural
networks to directly predict the prevailing equilibrium coefficients values given
feed composition, pressure and temperature (for nonisothermal runs). For the

Figure 4.
The SVM output equals to zero at the phase boundary.
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phase stability problem, their model outputs a positive nonlinear transformation of
the conventional TPD value that exhibits the same sign as the former (Figure 4).
Their model utilizes Support Vector Machines, SVM [54] to provide the same
binary stable/unstable answers anywhere in the operating space even outside the
stability test limit locus [31]. An improved stability test method has been presented
by Gaganis [55] which reliefs the need to model accurately the phase boundary thus
allowing for even simpler and faster to evaluate stability models. His approach
develops two classifiers which only identify whether the point under question lies
“far enough” from the phase boundary or not. If it lies far enough outside of the
phase envelope, then the fluid is surely single phase whereas it is certainly at two-
phase when lying well inside the phase envelope. If a certain answer cannot be
obtained, a regular stability algorithm is invoked.

6. Conclusions

Equations of State of varying complexity and accuracy are nowadays available to
describe the thermodynamic behavior of almost all types of fluids. Beyond the
classic and easy-to-implement cubic EoS models, recent advances in perturbation
theory have allowed its application to the derivation of models that describe accu-
rately in a microscopic level the behavior of fluids.

Phase behavior calculations by means of EoS models are massively required
during all types of flow simulations, thus rendering the availability of robust,
thermodynamic rigorous algorithms as of major importance. However, as the
required computational load can be very heavy, various accelerating methods have
been developed, and they have been proved to perform very well.
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Chapter 4

Life Is Not on the Edge of Chaos
but in a Half-Chaos of Not Fully
Random Systems. Definition and
Simulations of the Half-Chaos in
Complex Networks
Andrzej Gecow

Abstract

The research concerns the dynamics of complex autonomous Kauffman net-
works. The article defines and shows using simulation experiments half-chaotic
networks, which exhibit features much more similar to typically modeled systems
like a living, technological or social than fully random Kauffman networks. This
represents a large change in the widely held view taken of the dynamics of complex
systems. Current theory predicts that random autonomous systems can be either
ordered or chaotic with fast phase transition between them. The theory uses shift of
finite, discrete networks to infinite and continuous space. This move loses impor-
tant features like e.g. attractor length, making description too simplified. Modeled
adapted systems are not fully random, they are usually stable, but the estimated
parameters are usually “chaotic”, they place the fully random networks in the
chaotic regime, far from the narrow phase transition. I show that among the not
fully random systems with “chaotic parameters”, a large third state called half-
chaos exists. Half-chaotic system simultaneously exhibits small (ordered) and large
(chaotic) reactions for small disturbances in similar share. The discovery of half-
chaos frees modeling of adapted systems from sharp restrictions; it allows to use
“chaotic parameters” and get a nearly stable system more similar to modeled one. It
gives a base for identity criterion of an evolving object, simplifies the definition of
basic Darwinian mechanism and changes “life on the edge of chaos” to “life evolves
in the half-chaos of not fully random systems”.

Keywords: Kauffman networks, complex networks, chaos, edge of chaos,
damage spreading, connectivity
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1. Introduction

This is empirical work1 using simulation. It concerns dynamics in complex
autonomous Kauffman networks that are finite and discrete, shows that current
theory used for them, based on Lyapunov coefficient in infinite, continuous space,
implies false expectations.

Kauffman [5, 6] has considered as a general model of a system an autonomous,
dynamic, deterministic, complex, random Boolean networks (known as RBN). The
discovery of chaos, order, and phase transition between them in such the networks,
allowed to look into this very complex world. Lot of works are based on this model
[5, 7–17]. Now, slowly become aware of new important aspects that we have not yet
considered adequately. In this paper, such the way is developed, but considered
networks are not fully random and use more signal variants than only two. A new
obtained vision is clearly different and more adequate for description of adapted
objects than now widely accepted. The discovery of half-chaos is the main new
element here, which above all frees from strong limitations in systems modeling
imposed by the contemporary vision. The statistical properties of the systems are
easiest to investigate for fully random systems and from these, we should have
started (like Kauffman did), but the systems we model are usually suited to some
tasks and are certainly not completely random.

Lyapunov exponents are the most widely used measures to describe chaotic
behavior of dynamical systems, however, to check an adequateness of theory by
observation of the behavior of finite dynamical networks it must be defined using
its main features expected by the theory. The main characteristic of the chaotic
behavior of dynamic systems is a high sensitivity to initial conditions, leading to
maximally different effects for very similar initial conditions. A small disturbance is
a small change in initial conditions. An effect of such small disturbance is called
damage. Distribution of damage size [6] (“size distribution of avalanches” in [17])
is then the main feature observed in experiment and expected by the theory that
may be compared. It is original; theories using Lyapunov exponents or percolation
are derivative. The term ‘chaos’ is used here in such the meaning, similarly as
Kauffman does (see ch.2.3). To fit the current theory the damage distributions
should fit a Derrida’s annealed approximation model [18] and for chaotic systems -
an equilibrium level found in it.

It is commonly believed, that system can be only either chaotic or ordered, but
not simultaneously both of them - this is shown to be false. On this believing, a
“criticality hypothesis” (critical regions have also been said to be “at the edge of

1 The description of the investigation and the arguments for introducing the half-chaos given in this

article is necessarily shortened and simplified. A much more extensive description is available in

supplement [1, 2] to this article. Earlier, simpler versions of the article are available in preprints [3, 4].

The data (programs and its sources, results of simulations) analyzed during the current study are

available from the author on any request.

Wider list of abbreviations and new terms is placed on the end.

In this work a few abbreviations that are not standard are used: s - number of equally probable signal
variants.

Network types: sf - scale-free; ss - single scale; er - Erdős-Rényi “random”; sh and si are respectively sf
and ss with 30% removal of nodes.

tmx - maximum number of counting steps of time t;
dmx - mean maximal damage d, i.e. Derrida equilibrium for chaotic behavior;

q - degree of order, fraction of damage which are a small change of network functioning at tmx, capacity

of left peak of P(d).
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chaos” in parameter space of systems) is formulated (see e.g. [17]). Evolution needs
small changes which practically occur only in critical regions in such the systems.
Current theory and this believing (see e.g. [17]) are based on the assumption that
networks are fully random. However, interesting phenomena concerning life occur
in not fully random networks due to natural selection. The current theory of chaos
was built for functions in infinite and continuous space, but it is used for finite
discrete networks [7, 8], such a method is an approximation. It loses a few impor-
tant phenomena present in such the networks, but absent in the infinite and con-
tinuous space. Due to such the reasons, expectations of the theory that life is on the
edge of chaos can be and are inadequate. Here such phenomena are shown; they
need much more complex theory which will not use the assumption of full ran-
domness of network and infinite continuous space, but to build such theory is the
next step, which is the task for mathematicians. The description of this experiment
in the language of mathematical equations seems to me inadequate and
unattainable, and in my opinion useless, but mathematicians may have a different
opinion. Programming languages are a natural and appropriate tool for describing
such issues. I can share the program, but it is complex. It is not true that the below
description of experiment is not exact enough to be repeated by every IT specialist.
Therefore it is enough exact to understand by mathematicians too.

Indication of adequate ranges of parameters of a complex “purposeful” (adapted)
system describing living, technological or social object is a key for modeling their
processes. An important parameter is a connectivity [19], which current theory
strongly limits. The system can be any, e.g. the solar system is also a system, but
usually, in human intuition, the system has to somehow work (therefore above
“purposeful”), and despite some changeability, it has to keep its identity. The evolu-
tion of the system is a term that reconciles two adversities - variability that is the
essence of evolution, and the identity of the evolving object. This is not a philosoph-
ical problem, but a particular problem for modeling. In this work a base for solving
this problem is found. A good approximation of the system description is a dynamic
complex network, although it undoubtedly has many important simplifications. We
are just entering this subject and it is difficult for our intuitions to operate on more
complex, more adequate descriptions, such as process algebras [20].

Half-chaos is a state of the system that is not fully random, with parameters that
make the random system strongly chaotic (hereinafter we will call them “chaotic
parameters”, such the parameters are usually estimated for real systems), however
small disturbances give an ordered reaction (small damage) with a similar proba-
bility to a chaotic reaction (damage near the Derrida balance [18], Figure 1c,d).
Acceptance of changes that trigger ordered reactions preserves the half-chaotic
state allowing for a long evolution of the slowly changing system (the system retains
identity), but acceptance of one change that gives a chaotic reaction leads to prac-
tically irreversible entry into normal chaos (the system works completely different,
ceases to be itself). Thus, the basic Darwinian mechanism emerges - this has large
interpretational consequences.

The assessment of whether a given system is chaotic or ordered is currently
based on parameters that in the case of a half-chaotic system indicate chaos for the
fully random system (I call them “chaotic parameters”), but the behavior of the
system turns out to be inconsistent with such prediction. This work presents half-
chaotic systems and simple ways to obtain such systems. The experimental results
are unambiguous and easy to repeat. The constraints forming the half-chaotic
system are small, which means that there are a lot of such systems, though
undoubtedly significantly less than of fully random.

The practical result of this work is the realignment of the acceptable range of
parameters for system modeling. This is a fundamental change. First and foremost,
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“chaotic parameter” for the Kauffman (Boolean) network - connectivity is included
in this scope, but also a larger number than two of signal variants, also omitted due
to the effect in the form of a chaotic system (for fully random systems). The need to
introduce a larger number of signal variants for statistical investigations was already
explained in [21]. The maintenance of the name of the ‘Kauffman network’ for
such a network was there postulated, to be no longer synonymous with Boolean
networks. However, these postulates acquire practical significance only after
demonstrating half-chaos.

Figure 1.
Comparison of models based on p and s; - of influence of s and K on Derrida equilibrium, Derrida plot; d(t).
a - Comparison of models based on probability p of one Boolean signal variant and on s equally probable signal
variants in dependency on K. As the basic argument s is taken. For it p is added as 1/s, it is for the case if in
reality there are s different equally probable signal variants, but we are interested only in one of them, and rest
we collect to the second one. Values of the coefficient of damage propagation ws for s,K and wp for p and K are
used. The equation for wp is taken from [5, 14]. Both models give very different results, it means, that they
cannot replace each other. (See also ([21] Fig. 4)). b - Derrida equilibrium (dmx) for chaotic response in the
system of s,K. Kauffman using Boolean networks has considered only K as the most interesting variable, but s
influences dmx more hardly. However, he cannot use s other than 2, because for each s > 2 the chaos is present
(dmx > 0 exists), like for any K > 2. Among sensible s,K, only for 2,2 exist order, it is an especially extreme
case. c,d - theoretical damage spreading calculated using the Derrida’s annealed approximation model. d - The
change of damage in one step of the time in synchronous calculation known as the ‘Derrida plot’, extended [21]
for the case s > 2. The crossing of curves dt+1(dt, s, K) with diagonal dt+1 = dt shows equilibrium levels dmx up
to which damage can grow. Case s,K = 2,2 has a damage equilibrium level in d = 0. These levels are reached on
the left which shows damage size in time dependency. For s > 2 they are significantly higher than for Boolean
networks. All cases with the same K have the same color to show the influence of s. c - In this plot expected d(t)
for N = 2000 is shown. It is an effect of ‘Derrida plot’ shown in d. A simplified expectation d(t) = d0ws

t based
on coefficient ws is shown for the first critical period when d is still small - three short curves to the left of the
longer curves reaching equilibrium. Parameter s,K (treated as a vector) is the main variables in the simulations.
Most of the studies are made for s,K = 4,3, also sometimes for s,K = 2,4 (that is, for Boolean network). They
provide highly chaotic random systems - ‘coefficient w of damage propagation’ is significantly higher than one.
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2. Main assumptions

2.1 Variables K, k, t, N, A and d in Kauffman networks

The considerations concern the statistical stability of the deterministic discrete
Kauffman networks [5, 6, 22] (a little bit extended). The network consists ofN nodes.
A node in such a network receives signals at the K inputs, converts them uniquely
using its function to the output signal called the state of the node, and then sends it to
other nodes by k output links. States of all N nodes together creates a state of the
network. The calculation of function takes a time step. Up to now, 2 (logical) signal
states (variants) have been used. In the simplest case, it was assumed the same
probability of signal variants and full randomness of connections, functions, and initial
states of each node, such networks were called RBN (Random Boolean Networks).
Here, deviation from this full randomness is made2 by assuming short attractor (a
small number of time-steps until meeting the same network state), especially – point
attractor (next network state is the same). In other here described investigations
(met7, ch.3.5) – by controlled construction of in-ice-modular network (ch.3.3) or
(met1-4b, ch.4) – by an increase of the fraction of negative feedbacks or classic
modularity. K (called “connectivity”, see [19]) was the basic variable for Kauffman.

Synchronous computing is used, i.e., the states of nodes from the discrete time t
are input signals and arguments of the function of other nodes, and the results of
these functions are nodes states at the next moment (t + 1). Variable t – is the
number of time steps from a disturbance initiation. As the disturbance a permanent
change in the value of the function of the node for its input state is used at the time
t = 0; in method ‘8’ (met8) it was an addition or removing a node. Parameter tmx -
the maximum number of calculated time steps is chosen arbitrarily, but it is
checked whether its increase does not change the results (Figures 2, 3 and 5).

Considerations have been limited to autonomous systems – they do not take
signals from the environment. Determining the states and functions of all nodes and
the connections between nodes uniquely determines the trajectory - consecutive
states of the whole network (sets of states of all nodes). We simulated the process of
transformation of the disturbed system on the section tmx, then we compared the
resulting state of the system with the undisturbed system. It is also looked after the
node functions are correctly random, but this assumption cannot always be fully
met, so the impact of the derogations is checked.

The size of a change in a network function at time t after a small disturbance is
measured by the number A (from Avalanche [23]) of the nodes, which have a
different state in the pattern network – identical network, but without disturbance.
The value d = A/N is called damage. The distribution of damage size at the time tmx
as P(d) or P(A) is an especially important result (Figure 6).

For random networks, this result creates two system states – ordered and cha-
otic. In system parameters space they occupy areas which Kauffman calls ‘solid’ and
‘gas’ respectively. Between them, there is a fairly quick transition (near K = 2, if
Boolean signals are equally probable) treated as a phase transition. Only in systems
in the vicinity of this transition (Kauffman calls it ‘liquid’ - the area between ‘solid’
and ‘gas’) changes in the system function (damage) often enough are small, there-
fore suitable for biological evolution. This is the main basis for the Kauffman’s
hypothesis: life on the edge of chaos. However, this conclusion aroused doubts [21],
therefore, it has been subjected to a deeper analysis presented here.

2 It is made using few method, in short: ‘met’. Each of them is called using digit on the end and, if need be,

some letter for its variant. In this case they are: met4c, met4d, met5, met6, met8, described in ch.3.1–4.
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Figure 2.
Half-chaos and chaos in the presentation of A(t) for a full set of initiations on the example of met7b J and X for
network ss. This is a presentation observed dynamically during a simulation on the screen pixels. The details
should be watched in enough magnification. In met7b N = 800, tmx = 2000 was used. A rectangle has the
dimension of 400*1000 pixels, so on each axis, one pixel shows 2 values. In Figure 3, for which this figure is a
description of form, N = 400 and tmx = 1000 is used, so the there unit on the axes corresponds to a pixel. The
vertical axis is originally scaled in the A - number of the nodes states different than in the pattern. The
horizontal axis is the number of steps t of simulation of network functioning. After each initiation by small
permanent change, the state A(t) was drawn with a continuous line on the screen after every step of the
calculation. In case of initiation of a node in the in-ice-module black color is used and for initiation in the walls
between in-ice-modules - purple. In met5 shown in Figure 3, this distinction was not known and always black
was used. To optimize the simulation a counting after 70 steps from the explosion to chaos (crossing over the
threshold, here = 300, marked in red on the left) was stopped - there the process has no chance to return. As can
be seen, the transition to chaos in the vicinity Derrida balance is not slow, but rapid in several to over a dozen
steps, where A increases drastically, so - “explosion.” after deflection from a small value to say A = 80 no longer
the returns happened (as checked without optimization, see [1]). After the end of initiation set, the red curve
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The conflict [7, 8] of a size of K in the Kauffman model and K estimated from
nature [19] is a problem solved here. Kauffman postulates that the natural property
of the random ordered systems (order for free [10]) is the source of stability, but then
K should be extremely small (K ≤ 2) [18]. The attempts to prove that the real genetic
network (using model GRN – Gene Regulatory Network) is ordered [14, 15, 17, 23]
assume such a source of stability. Different circumstances allowing system with
greater K to be in the ordered phase were indicated (p.48 in [7]), such as a significant
difference in probabilities of logical states [18], or deviation from the randomness of
the function (canalizing [11]), but these and other suggestions are not satisfactory for
many reasons [21]. The model GRN has disappointed many expectations, mainly due
to restrictions arising from the range of ‘liquid region’, it was replaced by the more
attractive Banzchaf model [24], but GRN is still being studied [25].

For investigation shown here, as typically, the same K for all N nodes of the
network are taken.

2.2 More than two signal variants s ≥ 2

According to my previous [21] suggestions, here I also study a larger number of s
(>2, usually 4) of equally probable signal states, which in random networks for
every sensible K (≥ 2) always gives chaos (Figure 1). In the range of sensible
parameters s and K, the order appears only for s = 2 and K = 2, it is absolutely
exceptional (Figure 1b,d). Attempts to introduce more signal states already exist
[12, 16], but they assume the possibility of an ordered phase for the random
network therefore these states cannot be equally probable.

I repeat here briefly my basic arguments given in ([21]; ch.2) for using s ≥ 2 in
Kauffman networks for statistical investigations:

1.Using Boolean network we can describe each complex relationship
(mechanism), but bringing to two-value description frequent cases where
significant signals take more than two variants, we generate unrealistic
situations, presumably - to skip. In the statistical analysis, however, they are not
skipped and give a false picture. Or we simplify something which we do not
want to simplify. In both cases the statistical investigation is false. It was shown
on the example of the thermostat ([21]; Fig. 3, p. 292). The only way is to use a
real number of signal variants and not limit ourselves to only two Boolean
alternatives. Because such case is frequent, then in one system it should appear
for a lot of signals and the investigations based on s = 2 must be false (extreme).

2.Two variants are often subjective ([21] ch.2.1.2). There are typically lots of real
alternatives, but we are watching one of them and all the remaining we collect
into the second one. Typically our interesting variant has much lower

q(t) was added to the figure. In met7 it is originally scaled by the A as the number of initiation, which does not
exceed the threshold = 300, but there are 3 N = 2400 of initiations. In met5 in a Figure 3 q(t) is divided by the
number = 3 of initiation in node, so that q = 1 for A = N. The red description in the left has been added for
readability and here q(t) is the share of processes that in the time t did not pass the threshold. a – Half-chaos,
experiment J for network ss, model b. There were 600 of such simulations for each type of networks sf, ss, er
and models a and b of met7. The red curve q(t) quickly stabilizes at a high level q = 0.22. In the lower part of
the graph, many trajectories are visible (there are L = 532 of 2400) that a little over t = 200 no longer explode.
So R = 1868 processes from the very beginning went to chaos - a Derrida balance. b - Chaos on the example of
experiment X performed immediately after the measurement of the J illustrated above in the a. There were 300
of such simulations for each type of networks sf, ss, er and models a and b of met7 and for each experiment of X,
S, T, F. Here, q(t) is steadily decreased until all the processes are not ‘exploded’. At the end there is exact LX = 0
of them, means q = 0. Blue points describe the number of processes that currently have A = 0, i.e., damage fade
out, but for the X the secondary initiations lead to their explosion.
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probability, resulting from the similar probability of each one, but description
basing on p – the probability of signal variant leads to much different results
(Figure 1a) than for the case, when we consider all variants. Adding the
parameter p to the two-value description does not solve the problem here.
Adoption of s ≥ 2 equally probable signal variants is an alternative method of
model realignment. However, it seems to be often more adequate. Both
methods give different results which significantly increases the importance of
the correct choice of description.

3.Parameter s is more important in the description of damage spreading than K
treated as the most important – see Figure 1b. Value dmx – mean maximal
damage, i.e. Derrida equilibrium for chaotic behavior (Figure 1c,d), much
stronger depends on s than on K.

2.3 Criteria of chaos, coefficient of damage propagation w

The main characteristic of the chaotic behavior of dynamic systems is high
sensitivity to initial conditions, leading to maximally different effects for very
similar initial conditions. It is original, theories using Lyapunov exponents or per-
colation are derivative. I use the term ‘chaos’ in such the meaning, similarly as
Kauffman [6] does. For chaotic Kauffman networks a small initiation of damage

Figure 3.
Simulations met5 (changes accumulation) in the presentation of A(t). Except for red description q on the left,
each drawing was created dynamically on the screen during the simulation of one full set of initiation without
blocking of reverse initial changes. It is accurate to the pixel. Description of the presentation elements in
Figure 2. a - Full typical image for the M13 met5c (met5 in other figures, model c from met4), network sf.
Almost an immediate end of the explosions to the chaos can be seen. At the top - the state of chaos in the Derrida
balance (short due to optimization by interrupting the counting after 70 steps, as in Figure 2). At the bottom -
a repeating pattern in accordance with the global attractor marked on the top frame (pattern network state as
in tmx before the first initiation of the set). Here L and R under the lower frame is the sum from the beginning of
the evolution simulation of this network. In this set 383 of initial changes were accumulated of 1200 tested, but
accepted changes defining q (not exceeding the threshold = 150) were a little bit more (with global attractor <
7). b - Typical image of network er simulation in met5c. The upper part of the almost identical to a is cut. The
level of q(t) is lower, the belt at the bottom - clearly thinner, the time of the latest explosion to chaos - shorter. c,
d – The lower part of the image for met5b (with minimal regulation). Here the level of q(t) was much higher
than in a. In the model b, the width of the lower belt is greater due to the possibility of regulation. Simulations
slightly different model than in Figure 4d - here without blocking of reverse changes, but with the condition
non-decreasing of global attractor and accumulation of changes not less than A = 3, the shift of beginning = 2,
but not 50. In these simulations, a distribution of damage size for ordered cases (A < 150) was studied on the
section from t = 600 to tmx for a given set of initiations (purple curve on the right frame) and the sum of the sets
in the final set M20 (blue curve in c). It is one of several ways to look for proof of the in-ice-modules existence.
As can be seen, in both (c,d) shown cases in these distributions the significant peaks are visible. They indicate an
existence of one (in the c M20) or two (in d M1) hypothetical in-ice-modules. Under the scope of these peaks,
there is a clear gap in the minimum of distribution. An interpretation of these peaks can vary, they are not proof
of the in-ice-modules existence, which was shown later watching nodes states repeating, but they are a strong
premise. The q level here is high: in c q = 0.46 and in d q = 0.55. In c the attractor was not found at the
beginning of the set (attr ≥900), and because it could not decrease, no one accumulation happened (not.PAS
saved = 0). It does not mean, however, that there is no here acceptable (A < 150) cases (there are 220), which
indicates q and wide black belt below the A = 150.
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Figure 4.
Increasing regulation or another factor - the point attractor. The primary result of the met4. In the met4
removing a presumed cause of the poor performance of the met2, we start with the non-random system with
extremely short attractor – a point attractor: initially, all states are set to 0 and f(0) = 0 (f – node function).
The models were tested in the sequence a, b, c (s,K = 4,3) and d (s,K = 2,4) starting from strong regulation and
ending with the lack of regulation in the models c and d. Care was taken that each signal has the same
probability in the function of each node.Model a contains a negative feedback with a positive (1) and negative
(3) deflection from equilibrium (0) in each of the three input signals. It contains also the leaving of homeostasis
into the area of randomness (when deflection is too great or one of the input signals = 2, then the node function is
defined randomly). A more exact description of this formula can be found in the text of ch.4.3 and is available
in [1].Model b has a minimal regulation: the condition of the point attractor f(0,0,0) = 0 is supplemented only
by condition f(0,0,1) = f(0,1,0) = f(1,0,0) = 0 that there is no in model c. Model d of Boolean network (s,
K = 2,4) has only condition f (0,0,0,0) = 0 similar to model c. Each model is simulated for three combinations
of N,tmx = 400,200; 400,2000; 4000,200 for networks sf and er, so as to always number of initiations was
48,000 in the series. The threshold of small change for N = 400 was set to 100, and for N = 4000 to 800. Each
initiation by definition of met4 is made for node state = 0 and for input state = (0,0,0). So only in the model c 3
other function values may be used for initiation. For model a the only one value 2 remains, for b only two values:
2 and 3, which are new states of a node without the mandatory fade out of damage at the destination. a,c - The
counts #(A) of processes ending in tmx with value A (changed states of nodes in tmx) are shown. Also, the scale
of the P(A) or P(d) are added. The results showed here in the linear plot a (N = 400) for models c and d are
also in Figure 6 in log scale. The series showed in c contains 10 times fewer networks, which gave peaks much
narrower (in damage d scale instead of A) than in a. The right peak for models b, a is becoming smaller due to
increased regulation, which is reflected in the diagram d as less participation of chaos. Place of the right peak in
a and c are well designated by Derrida balance (Figure 1d) (different for s = 2 and s = 4), which is the
property of a mature chaos. b - The table of results #(A) for tmx = 200 for the same networks as in a for which
tmx = 2000. The counts differ only for af by 140 and for df by 2 (less for left peak). d - A complementary for
Figure 8 juxtaposition of a fraction of ordered cases (q) and chaotic cases (1-q) for minor experiments
discussed in the article. While Figure 8 lists only the study of impact of small attractor, it is here - the impact of
increasing the share of regulation in met2 (only sf 2,4 can be considered in met2 as entry into half-chaos, see
Figure 5a,b); of modularity in met3; assembling of met3 and met2 (Figure 9); assembling of point attractor
and regulations in met4ab and met5b. Among them only met5b examined the evolutionary stability included in
the definition of half-chaos. As can be seen, the assembling is more effective than approach alone and should be
expected of such a strategy in biological evolution. The case af shows that the way evolution can lead to a state
where the half-chaotic system may seem as ordered. Evolution met5b decreased q comparing met4b when met5
(Figure 8) worked in the opposite direction relative to met4c (these are uncertain trends), but the expected
strategies of biological evolution its creative aspect is important, not modeled in the presented simulations, too
simplified to such a task.
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typically causes a large avalanche of damage which spreads onto a big part (perco-
lates) of the discrete and finite system and ends at a Derrida equilibrium level dmx
[18, 21, 26] (Figure 1c,d), which is a maximal loss of information about the previ-
ous system. Such distance cannot be infinite in the finite network witch finite
discrete s. The existence of this limitation is the main difference between this ‘chaos’
and the more commonly taken definition [27] used for continuous variables on
infinite space, where Lyapunov description works. The term ‘chaos’ is not
reserved for one of those separate areas. The distribution of damage size is the
experimental base to classify a particular system of Kauffman network as
chaotic or ordered using levels of damage equilibrium calculated from
Derrida’s annealed approximation (Figure 1d). In Derrida’s model only case s,
K = 2,2 (I use s,K as a vector) is ordered – it has no other cross of diagonal than in
dt + 1 = dt = 0. In any other cases, such cross called here dmx exists; it is Derrida
equilibrium level of chaotic reaction for the disturbance.

Figure 5.
Ordered fraction (q) as a function of time (t) after raising the share of negative feedbacks (met2) and the
classic modularity (met3). The upper row of all part - s,K = 2,4 (Boolean network), lower - s,K = 4,3. A – For
some moments t the shares of mechanisms: Wild - without interference met2; function narrowing as a side effect
of the method; the increased participation of negative feedback by met2. For network er, the level of q resulting
from participation k = 0 (nodes without outputs) is indicated by the green line. In the right column as a wild the
modular system resulting from met3 is used, further described in (c) as a curve a. the type of networks sf, ss, er
is described by a second letter. As can be seen, the results for the simulation parameters s,K = 2,4 and 4,3, and
network types, differ significantly. For s,K = 2,4 the function narrowing is of utmost importance to increase q,
but for s,K = 4,3 the importance of feedback turns out to be essential. For small t the effect of increase q is
significant. From these data it can be suspected to achieve half-chaos for: sf 2,4 - the result of functions
narrowing and increase of the share of regulatory feedback, and for the assembly of modularity met3 with met2
using nets er - for 2,4 mainly due to the functions narrowing, but for 4,3 due to the met2. In the remain 5
presented cases the effect practically disappears already for tmx = 1000, the use of it by living entities require
very rapid multiplication in comparison to the transformation of the construction and metabolism, which seems
unattainable. Here evolutionary stability (included in the definition of half-chaos in the result of further studies
restricting fundamental factors to a short attractor Figures 6–8) was not examined. The degree of entry into the
plateau can be better assessed in b and c. the network ss gives a similar effect to the network er, but without the
confounding effect of k = 0. b – Net sf 4,3 (350 nets) not reached a plateau even at t = 20,000, where q is
negligible, but sf 2,4 (700 nets) is almost on plateau q at t = 5000, and this level is high (compare Figure 4d).
c – The result of modularity (met3) and assembling it with met2. Result of met2 for network er is added, such as
in b, omitting, however, the share of function narrowing enough presented in a. it can be seen that the wild
system (without forced modularity, 700 nets for s = 2, 350 nets for s = 4) of network er very quickly descends to
the level of q resulting only from k = 0. Also curve b - the result of the met2 quickly closer to that level, which can
also be seen in a. forced modularity (curve a, 100 nets) gives a clear stable increase of q, and met2 help it (curve
ab) to radically increase q, but for s,K = 4,3 appears to fall within the plateau above t = 20,000. For s,K = 2,4,
almost all large and stable met2 effect results from the function narrowing only (curve afb). The network has
N = 400 nodes assembled of N2 = 50 modules each of N1 = 8 nodes.

82

A Collection of Papers on Chaos Theory and Its Applications



In a typical case, the chaos is indicated by Lyapunov exponent, which describe
the growth of distance for two, near, initial states. For finite discrete networks, it
corresponds to “coefficient of damage propagation”w described in ([21] ch.2.2.1)
and earlier, or eq. 4.8 in [23]. w = <k > (s-1)/s. It can be treated as damage
multiplication coefficient on one node if only one input signal is changed. It indi-
cates how many output signals of a node will be changed on average. For an
autonomous network with fixed K, <k > = K and we can use w = K(s-1)/s. It is easy
to see that for w > 1 damage grows, for w < 1 it disappears and w = 1 is critical – for
s = 2 it gives known critical Kc = 2. In [7] similar eq. (6.2): Kc(s-1)/s = 1 is given which
is a case for the condition w = 1. Coefficient w is a simplification for the beginning of
damage growth, later a case of more than one changed input signal happens more
and more often, but this first period is crucial (Figure 1c).

Note, we are going to know: is a particular network chaotic, ordered, or something
else, therefore we test it by statistical experiment. We make small disturbance (per-
turbation) and look how great is a change of a function (damage d) of this determin-
istic network comparing to undisturbed network. Damage is an effect of this small
disturbance. We make a lot of such small disturbances (see Figure 2), each in the
same network being tested, and we get distribution P(d) for one, tested network. For
a chaotic network, the P(d) contains one peak near dmx, for ordered – one narrow
peak near d = 0. If there are both the peaks in the distribution for one particular
network, then it is neither chaotic nor ordered network, it may be half-chaotic.

2.4 Types of networks

Several types of networks are considered. They differ in the rules of their
creation (for sf and ss see Figure 2 in [21]) and distributions of k (output links),
(K – input links is fixed for all nodes of particular network): sf (scale-free [28]), er
(classic Erdős-Rényi [29] “random”), and ss (single-scale). In the figures, the sec-
ond letter of these shortcuts indicates the network type. In studiesmet8 (denoted in
figures by ‘8’) the network grew - an addition or removal of the node was the
disturbution. There networks sh and si are respectively sf and ss with 30% removal.

Parameters: network type together with s,K (treated as a vector) are the main
variables in the simulations. In a wider description [1, 2] of here presented investi-
gation, I used more network types.

2.5 The main results

At the beginning, in ch.2.1 there is the statement: ‘the distribution of damage
size at the time tmx as P(d) or P(A) is an especially important result’. It is shown in
Figure 6 for the main range of investigation and in Figure 4 for mechanisms
supporting half-chaos. However, it is the base for more important conclusions.

In obtained here distribution of damage size for the particular system there are
two peaks: the left of small changes (ordered behavior) and the right of big changes
(chaotic, near Derrida balance). Sharp boundaries of these peaks, supported by a
clear gap between them define a “small change”.

The main result, however, is a “degree of order”q – a fraction of effects
(damage) of small perturbations which fit into the range of the “small change” of
the functioning at the time tmx. It is summarized in Figures 8 and 4d. This q
corresponds to the contents of the left peak or probability of acceptance of changes
in the modeled evolution (lack of elimination).

The degree of order q is the base (see ch.2.3) to state, that we found half-chaos
using definition given in the Introduction: Half-chaos is a state of a system that is
not fully random, with parameters that the random system make strongly
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chaotic, but small disturbances give the ordered reaction with a similar proba-
bility to the chaotic reaction. Such state is contrary to the current view, but the
current view is based on the assumption of full randomness of the network which
typically is not fitted.

The “small change” is a criterion of the acceptance of perturbing permanent
changes creating the evolution, which is enough (Figure 7) to stay in half-chaos. It
is the evolutionary stability of half-chaos. It was included in the half-chaos
definition. Acceptance of one perturbing permanent change that gives a big
change of the functioning at the time tmx (chaotic reaction) leads to practically
irreversible entry into normal chaos (elimination). Note that in such great change
of behavior only states of network nodes differ before and after, but in both cases
they have the same, random–look distribution. Nothing has changed for currently
used methods to define: is this network chaotic or ordered, but the behavior is
absolutely different.

3. Half-chaotic systems, construction and mechanisms

3.1 Short attractor and secondary initiation as the main mechanism

The preliminary search (met1-4ab described in ch.4) of mechanisms enlarging
stability for chaotic systems allowed for a deeper look at the process and its deter-
minants. However, it turned out that they concern mechanisms of secondary
importance which only support the main mechanism based on a short attractor
effected from the phenomenon of secondary initiation. The first initiation does not
have to lead to quick explosion to chaos, it even could fade out. Secondary initiation
- the cases of re-appear at the inputs of disturbed node its initial inputs state for
which the function has been permanently changed are responsible for the decline of
q(t) with increasing t (Figure 2b and 5). Such a secondary initiation takes place in
different conditions than the previous one and can also lead to entering chaos or

Figure 6.
The main result – distribution of damage size. Symbol of the method begins a signature. The methods: ‘d’, ‘5’, ‘8’
start from point attractor; ‘d’ (met4d, see ch.4.3) is the only with s,K = 2,4 and without evolution, remain s,
K = 4,3 with evolution; ‘6’ (met6) starts from small attractors; ‘7’ (met7ea) starts from constructed in-ice-
modular system. After the method the second letter of network type ends signature. Results presented here
(except ‘d’) are a sum from 4 already stabilized sets of initiation (see Figure 7). The gap between the peaks -
left (ordered) and right (chaotic, near Derrida balance, different for s = 2 and 4) is not empty only for
not really small disturbations by adding or removing a node (‘8’ – met8). The share of the left peak as q –
degree of order is summarized in Figure 8. It is the basic result of this study; it allows to introduce
half-chaos. Collecting only permanent changes which give damage from the left peak (i.e. small changes)
is sufficient to keep half-chaos in the evolution (Figure 7). The shape of the left peak is important for the
modeling an evolution of adapted systems. It is shown (without ‘8’) in more details on the left for variable
A = d*N where N is = 400. In the experiment ‘6’ there is practically only A = 0 due to lack of in-ice-modularity.
Network sf of ‘7’ differs from the others in the left slope of the right peak, (see also Figure 7c) mechanism of this
is unknown.
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fade out. After a round of attractor new such cases are no longer present (see
Figure 9a,b). If up to this point explosion to the chaos does not take place, then it
will not appear later. For short attractor, it can happen with not a negligible proba-
bility. To check it, tmx must be greater than the sum of length (in time steps) of
attractor and path to the attractor. In below-described researches, it turned out that
global attractor can be large if it is assembled of few independent short local
attractors, which is a typical case for in-ice-modularity (ch.3.3).

3.2 System with point attractor is half-chaotic

The study of the systems with a point attractor (further – ‘point attractor
system’, system state is not changed over time t, attractor is extremely short,
length = 1), with parameters s,K = 4,3 (met4c) and 2,4 (met4d), (see more in
ch.3.3, ch.4.3 and description of Figure 4) which make random systems highly
chaotic, gave clear results - such systems are neither ordered, nor chaotic. Both
reaction variants on a small initial perturbation (ordered - a small change in the
functioning and chaotic - a big change nearby of Derrida equilibrium – Figure 6)
appear in similar proportions (Figure 8). This state was named “half-chaos”.
In this state, the resultant change in the functioning (damage) can be either
very small or very large (explosions to the chaos Figure 2), but almost no
intermediate changes (Figures 2–4 and 6). This defines a small change in a natural
way. There remains the problem of the length and condition of the evolution of the
half-chaotic system.

Obtaining a point attractor is simple, just after the random generation of
networks (nodes connections and functions) and the states, it is enough to take that
for the current state of the node inputs a node function gives the current node state.
For the remain states of the input - functions stay random. The point attractor
system in Kauffman terms is a completely frozen system – there is only “ice”
(nothing changes). The predominance of the ice is a spontaneous property of
ordered systems. Obtaining small change after disturbation of half-chaotic, point
attractor system, we can expect “a small lake of activity in the ice,” (originally [5]:
“unfrozen islands”), which is the essence of the ‘liquid’ area of random systems,
where Kauffman sees place for life. But such a system ceases to be a point attractor
system. It turns out that the vast majority (typically over 99%) of “small changes of
functioning” gives also point attractor systems. Therefore, evolution may be long,
however, such the model is quite extreme and unattractive.

Simulation studies and their analysis include many important details that are
unfeasible to include in this article. They are described in more than 170 pages of
the report [1], Only basic ones will be listed here. The particular system is calculated
at tmx discrete time steps t after disturbation, and then at t = tmx, more adequate
value for the final results (Figures 6 and 8) is recorded as averaged A over the last
50 counting steps t. Due to the strong influence of various factors often sporadic,
formal errors in the obtained results are not calculated, judging such a
calculation as clearly inadequate and misleading. This problem is limited to the
similarity of results from the similar simulations and the visual evaluation of fluc-
tuations. Given here a number of networks in described series of simulations con-
cern showed results, but often experiments were repeated in a similar way, giving a
much greater certainty.

3.3 The evolution from the point attractor

Next, for models b (see ch.4.3) and c of the met4 started from point attractors
we checked how long can be evolution if it accumulates small disturbances caused
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small changes of functioning (small damage), but it does not allow new point
attractors (met5). We received (also in met6-8) that it allows to any length of
maintenances of the half-chaotic state and stabilizes its parameters (Figure 7). It is
the evolutionary stability of half-chaos which was included in the half-chaos
definition. The system still has a significant prevalence of ice (Figure 7c), and
there are usually some “small lakes of activity” forming “in-ice-modules3”.
Among the methods used to check the presence and properties of the in-ice-mod-
ules (see also Figures 3c,d and 10), the most effective was to track periods of node
states. The set of nodes with the same period in the process ended of accumulation
was treated as a local cluster corresponding with in-ice-module. On average, at
the same time occurred about 2 local clusters (Figure 7e). In the evolution, some-
times after many in the meantime accumulated changes, there appeared local clus-
ters very similar in terms of nodes composition - a collection of such local clusters
is treated as a global cluster. Methods to identify global clusters are very complex
due to the wealth of different circumstances, including merger and disintegration of
global clusters during evolution. However, we can say that they are generally quite

Figure 7.
The variability of basic parameters during evolution. The similarity of results for these 4 methods shows the
similarity of obtained half-chaos, mainly its evolutionary stability, despite the differences in the way of
obtaining. In a-c only met5c and met7ea are shown. a - Stability of parameter q (degree of order of the system,
the contents of the left peak in Figure 6) shows lack of moving towards the chaos during the evolution -
accepting permanent changes which give small changes in the functioning (in the range of left peak, additionally
excluded global attractors less than 7, and in the M20 of met5-7 also smaller than the already obtained). b -
The average time of five latest explosions to the chaos (see also Figure 5a,b) does not grow in spite of the above
indicated conditions on attractor’s length. In the chaotic networks such explosions (see Figure 4) happen almost
until the not yet exploded processes exist. c - The average size of local clusters (in met8 they are not checked) and
the ice. It makes sense for in-ice-modularity, so not for the met6 where a single local cluster covers the whole
network (N = 400). In met7e network sf has a specific derogation. A mechanism of it has not been elucidated
(see also Fig. 1, wider recognition in [1]). d - The average number of global clusters. In the met7 it also
stabilizes from theM7. In the initial set of initiation (J), still without accumulation, it is sometimes even greater
than the number generated in-ice-modules, which shows that few so defined clusters may arise within one
constructed in-ice-module. e - The average number of local clusters.
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stable formations, though they often disappear (freeze) and reappear, often in the
other company of remaining global clusters, often changing period. Their average
number for a set of initiations presents Figure 7d.

It should be emphasized that the structure of the nodes connections in the
investigated networks was constant and random, although the randomness had
various formulas that define the type of the network. In-ice-modules are also the
classic modules, however this is only one, supporting, but less important factor.
The main property of the in-ice-modules is the activity - changes of the states of
nodes forming the in-ice-module. The ice (the area where the nodes do not change
their states) surrounds them and isolates from the other in-ice-modules. In-ice-
modules are the result of the functioning defined by the functions and states of the
nodes in a given structure. Despite the selection of functions for obtaining initial
point attractor state, functions and states of nodes had truly random
characteristics.

Simulations met4, met5 and met8 start from the system with point attractor. In
the met4 (see also ch.4.3) networks sf and erwere tested. Number of nodesN = 400
and 4000, section tmx = 200 and 2000 (no variant N = 4000, tmx = 2000). One set
of initialization was tested - for s = 2 (met4d) each node is able to one initiation, for
s = 4 there was 3 of the remaining function values. There were gained 48,000 events
for each of the three variants of (N,tmx). The differences in the results of these
variants were not significant (Figures 4 and 6), for further research in met5 we
used N = 400, tmx = 1000.

We limitedmet5 (and next met6, 7, 8) to s,K = 4,3, but these studies were much
more complex. For a long process of evolution (accumulation of initiating perma-
nent changes, which give small damage) we were studied many full sets of initia-
tions, therefore the same change in function as an initiation has been repeated, but
it was separated by many accumulations. Full evolution of the particular network is
a collection of 20 sets (M) of initiations after one initial (J in Figures 2, 7, and 9) set.
In most of these sets, retrogressive changes were blocked. This results in the
exclusion of a large number of initiations from the measurements and leads to a
significant slowdown of evolution. After several such sets, the reversal is allowed
(M1, M7, M13, M19, M20), assuming that the change has already another circum-
stance. It also allows to correctly measure of various phenomena that illustrate
evolution (Figure 7). Since the attractor is decreasing spontaneously, making it

Figure 8.
Half-chaos – fractions of ordered events (q) and chaotic (c = 1-q). Experiments described as in Figure 6. In the
range of q, an order resulting from the absence of output in some nodes (k = 0) in the network er, sh and si is
isolated as yellow. All results presented here concern only the effects of length limitation of global attractors (‘6’ -
met6) or length limitation of local attractors through in-ice-modularity. For ‘8’ local attractors are not detected,
but the level of ice (Figure 7c) shows, that local clusters cannot be large. For ‘d’ and ‘X’ (met7a) there is no
evolution, the results concern the network immediately after generation of half-chaos, but for ‘X’ also after
acceptance of one chaotic change, which gives a typical chaos (see also Figure 7f). In the remaining methods
(‘5’, ‘6’, ‘7’ and ‘8’) result is a sum of the results of 4 stable complete M, as in Figure 6, (see Figure 7). Except
‘d’ where s,K = 2,4, in remain cases s,K = 4,3. See also Figure 4d.
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Figure 9.
The difference between half-chaos and chaos in met7a and b. Experiments met7a and b (without evolution)
were supposed to deeper and more accurately demonstrate the distinctiveness of the achieved half-chaotic state
and chaos. In comparison to studying the evolution, an elevated N = 800 and tmx = 2000 were used. Variant b,
over the conditions used in variant a, is forcing small attractors in in-ice-modules, and limitations: local
attractor ≤100 and global attractor >200 also a shift to the latest start of local attractor <500. Experiment
J - immediately after generation in-ice-modularity (600 networks), and after J further experiments X, S, T, F
(300 networks). X - after acceptance of one chaotic change, S - after changing the node states to be random,
T - the shift of functions to other nodes, F - after a generation of random functions for nodes. Despite the lacking
possibility of the meaningful designation of measurement errors, the reproducibility of the results and the radical
behavior otherness of J experiment clearly shows that the obtained state strongly differs from chaos.
a,b - Probability of time of explosion to chaos for met7b. This aspect is shown in the graphs of A(t) shown in
Figures 2 and 3 where late explosions resemble the image to the chaotic and increase the uncertainty of the
appropriate selection of tmx. a - J and X for network sf, ss, and er. For J the probability smoothly decreases
with time increasing, for X appears the collapse near t = 22 and the transition to a much slower decline
associated with the presence of chaotic explosion after the secondary initiations. None of the collapses for the J
results from the completion of the first round of short local attractor. After this moment there is no explosion as a
result of secondary initiation inside the in-ice-module, which would be happened in the new circumstances. This
mechanism is an approximation since initiations are also held in the icy walls between in-ice-modules, but there
damage spreads more difficult, and after penetration into in-ice-module already subjects to the indicated
mechanism. There was a clear difference in the behavior of the tested types of networks - sf has later explosions,
in this aspect it is the most similar to the chaos; er has the least of late explosions. b - J, X, S, T, F for network sf.
Apart from the half-chaotic J, the remaining chaotic X, S, T, F practically overlap. X protrudes somewhat from
below, and the S and T – from above. Very late explosions also occur in half-chaos, but they are rare. These are
usually cases of especially large global attractors, sometimes not at all found in the range of tmx, furthermore,
most initiations appear in the ice between in-ice-modules, where damage normally builds up slowly. c - Average
q(t) for fb (network sf in met7b) in experiments J, X, S, T, F. Half-chaos in the J is clearly different and
quickly stabilizes q, but X, S, T, F drop up to tmx and probably further and are a little bit different. In this
measurement the difference may be within a measurement error, which is practically impossible to determine
due to the multiplicity of factors, but in d at least the S and T seem to consistently differ from the X and F.
Reviewing diagrams A(t) as in Figure 2b similarity is noted in the range of X, S, and F, but in the case of T
there are frequent derogation of different nature, particularly for fa, where the result is strongly disturbed for a
few special cases. d - Average q for all the tested types of networks (sf, ss, er) and models (a, b) in all the five
experiments J, X, S, T, F. network er in chaotic cases hides differences due to presence k = 0. See also the
discussion of differences in the description c above. e - Average position for the right peak of chaotic Derrida
balance. Particularly large deviation for the Jfa and Jfb is shown in more detail in Figure 6 and Figure 7c. X,
S, and T behave here the nature of the derogation and the statistical derogation from the randomness of
functions, which suggests such a source of visible here differences and determines the magnitude of the impact of
non-randomness of functions on the results. X and S retain a correlation of non-randomness of functions with
node place in the structure of the network, which T breaks.
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difficult to move away from the point attractor, it is also forbidden to reduce the
global attractor to less than 7, and in theM20 (in met5, 6, 7) to reduce the attractor.

Parameters q and average time of five the latest “explosions to chaos” are the
most important, they demonstrate in Figure 7a,b lack of converging into chaos.
They stabilize starting from set M7, despite a slightly elevated length of global
attractor was forced. There were happen that the conditions for the attractor size
block further evolution. Such processes were interrupted, however, in the main
series (of met5 and met6) 100 networks were obtained, which reached the end
of M20.

It turned out that the amount of a shift (in the range of 2-50) of the point of
process start (place of the initiation) after each accumulation is an important factor.
We assumed a shift of 50 steps. The study was much broader and deeper, their wide
description can be found in [1]. Additional attempts of evolution referral more
towards the boundaries of chaos gave no noticeable nearing - a condition of accep-
tance of a small change is enough for any long evolution - gives evolutionary
stability of half-chaos.

3.4 Controlled design of the system with short-attractor

Point attractor, as extremely short, gave sought half-chaos. However, extreme is
specific and in the evolution (met5) half-chaos was maintained even when attractor
was not found in the range of tmx (Figure 3c). It should be checked whether the
alone condition of a short attractor, but significantly greater than 1, is sufficient. For
that, simulations met6 causing in the random system a global attractor (of the
whole network) = 21 was performed. From t = 21 for the unused input states of the

Figure 10.
Dynamical size distribution of local clusters and their stability through evolution met7eb. Distributions at end of
M20 of the size of local clusters in the range of up to 150 (of N = 400) nodes collected only in indicated sets. It
should be analyzed on the greatly enlarged picture in pixels – one pixel up means one event, to right – one node
more in the cluster. Dynamically observed increases are significantly more uneven than this is due to
randomness, it can be assessed painstakingly analyzing the size of the growth of a specific color assigned to the
particular set M, but it does not reflect the image of a dynamic inside the set. This non-uniformity is associated
with the presence of different in-ice-modules also changing during the accumulation. Such results are practically
identical in met7ea for er and ss, only sf clusters are there typically larger. In the er, larger local clusters are
very rare. Presented image, especially in the dynamical form in part reproduced through colors, is a strong, eye-
argument for the existence and functioning of in-ice-modules. As can be seen, in-ice-modules may even be quite
large.
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node, the function value was changed to state 20 steps backward. We obtained the
evolutionarily stable half-chaos even with a high q (Figure 8) for the same
parameters and rules of the evolution simulation as in the met5. The primary
difference is the shape of the resulting left peak (of small changes) in the
distribution of damage size - there are practically only changes of a magnitude
A = 0, but A = 1 and A = 2 are present in negligible amounts (Figure 6). This means
that practically there are no changes in the functioning and in spite of the accep-
tance of permanent changes in the functions of nodes, nothing is changed. Such a
process is not suitable for modeling of adaptive biological evolution, only for
neutral evolution. A total lack of in-ice-modules was found, but the classic mod-
ules are present like in met5. In half-chaos based on in-ice-modularity as in the
met5, the peak of a small damage contains a significant amount of change in the
range A = 1 to 4, and also larger changes occur markedly frequent (Figure 6). In-
ice-modularity in met5 explains achieved stability for the larger global attractors -
they are assembled of small local attractors (in in-ice-modules), but this solution
was checked in met7.

3.5 Controlled design of the in-ice-modular system

To determine the sufficiency of the in-ice-modular state to obtain stable half-
chaos, we have attempted to controlled create it without booting from the point
attractor (met7). Networks sf, ss, and er, s,K = 4,3 was studied. First, a network of N
nodes and their states are randomly generated (dependently on network type).
Next, analyzing of the node connections, a collection of ‘in-ice-modules’ was cre-
ated and everyone node was assigned to an in-ice-module or separating them ice.
Node created new in-ice-module when none of its link (input and output) was
connected to a node belonging to an already existing in-ice-module. When it was
connected to nodes belonging to only one in-ice-module, it was assigned to this in-
ice-module. When it was connected to the nodes belonging to several in-ice-mod-
ules or if the limit of in-ice-modules (= 10) or the size of the in-ice-module (= 100
nodes for N = 800, 25 nodes for the study of evolution) was exhausted, the node
was assigned to the ice.

Next, a trajectory was calculated by appropriately functions selecting. For the
current input state, if it was not previously defined, nodes of ice get the value of the
function equal to 0, but nodes belonging to in-ice-modules – random value.

A number of additional conditions and adjustments was applied, documentation
[1] contain a full description, their details are not important here. Initially, short
attractor was forced in each in-ice-module and using this assumption basic
investigations were made: (b) – of the in-ice-modularity state (series with N = 800
and tmx = 2000 without evolution roughly corresponding to the met4) and (eb) -
the evolution as in the met5 and met6 (series with N = 400, tmx = 1000). In the
end, the necessity of this assumption was verified and surprisingly it occurs
unnecessary. So the two most important research without the forcing of the short
attractor in in-ice-modules were repeated (called a and ea - as logically simpler).

Examination (J) of the in-ice-modularity with N = 800 mainly relied on
checking the q and the distributions of damage size. In the versions b, we demanded
the global attractor to be greater than 200 when the local attractor could not exceed
100 - the result was in line with the tested vision which explains the admissibility of
larger global attractors. In both versions (a and b) it was verified that the
statistical properties of non-randomly selected functions are not responsible
for the increase of stability, namely - how such a system behaves after: the
acceptance of one large change (X), randomly changing of node states (S), moving
the functions to other nodes (T), and the random generation of new functions (F).
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In the experiments X, S,T functions retained their statistics. In all these experiments
chaos yielded (like X in Figures 2b and 8), but it systematically slightly differed
from the full version of chaos F (Figure 9).

Comparing with the met5, particular for network sf, both peaks of the distribu-
tion of damage size have been a little bit changed (Figure 6). Also in distributions of
the ice size and the local clusters size the blur arise what caused a marked decreasing
of average ice and increasing average size of local clusters (Figure 7c). This shows
getting a slightly different state of in-ice-modularity. Like in the met5 and met6,
system parameters stabilize from the M7 and the small change as a condition of
acceptance is sufficient to any long maintain of half-chaos in the version of
such the in-ice-modularity.

3.6 Growing half-chaotic networks

Much more complicated and stronger is the disturbation of a system through
adding or removing a node (met8) [2]. There are problems with the comparison
to the undisturbed system and the interpretation of secondary initiation. These
simulations start from a small system (N = 50) with a point attractor. The
network grows in 5 successive stages M by 100 nodes and reached N = 550 at the
end. The overall picture was very close to met5 and met7. Also, half-chaos
(Figure 6 right, Figures 7a,b and 8) with evolutionary stability and stable pres-
ence of large ice share are obtained (Figure 7c). It suggests similarity of mecha-
nisms of increased stability to in-ice-modularity. In this case, the network grows by
evolving under the control of a small change. The gap between the right and left
peaks is not so empty here (Figure 6), probably because adding or removing a node
is not a very small disturbation.

4. Supports for stability

4.1 More of negative feedbacks in a random system, function narrowing

It is generally believed that the stability of the various systems results from
homeostasis based on regulation by negative feedbacks. Kauffman pointed instead
to the property of the ordered phase (order for free) [10] as the most important
reason, but for it extremely small K should be expected. The regulatory feedbacks
are generally considered the basis for the stability of living entities and their con-
centration is considered to be significantly increased in relation to the random
one. However, the complex structure of the feedbacks for this statistical sur-
plus has been replaced in the Kauffman model by their proper effect (ice) and
it remains only in random share. So much simplified model is not able to give a
proper statistical picture of a system failure and conclusions for a stability
mechanism can (and seem) significantly differ from reality.

This doubt was the main reason for undertaking the research, which initially
aimed to strong raise the share of regulatory mechanisms.

In the presented study we transform part of the feedbacks in random struc-
ture into negative feedback. It is done by changing the random function when the
state on the inputs was not used yet. It was the first method (met1) of correction of
a random chaotic system. The similar, stronger met2 has iterative change the
pattern. Network s,K = 2,4 and 4,3 were investigated. Figure 1c suggests that
Derrida chaotic balance is achieved even before the 15-th time step. Initial research
for tmx = 60 steps yielded very promising results (Figure 5a) - q was signifi-
cantly increased (especially for s,K = 4,3), the distribution of damage size already
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contained two peaks separated by a gap. A large part of this effect (especially for s,
K = 2,4) was the result of deviation from the randomness of node functions (func-
tion narrowing), which also may be included [11] to evolution tools. But it turned
out (Figure 5) that obtained in met2 stability of q usually significantly decreases
with the elongation of tmx, practically disappears already for tmx = 1000, only in
the case of Boolean networks sf 2,4 this method could be considered to be effective
to achieve half-chaos (not tested for evolutionary stability). As it can be seen in
Figure 5b,c, tmx = 20,000 was used. Simulation series contains 700 nets for s = 2
and 350 nets for s = 4.

These studies demonstrated a high range of results dependence on the net-
work type - the network sf is more ordered [9]; network ss and er are more chaotic,
similar to the reaction, but er has part k = 0 (Figures 4, 5 and 8) obstructing
observation. The parameters s,K = 2,4 and 4,3 also give a very different picture.
The simulation allowed for a deeper look at the process and its determinants, which
pointed to the short attractor (ch.3.1).

4.2 Modularity

It seemed that the most natural way to get short attractors is modularity. In
met1 and 2 no modular effects were observed, although modules exist in practi-
cally every network. It was assumed that in a random network the modules are too
‘weak’, then it was pre-checked, what stronger modularity gives for stability
(met3). Here it turned out that sufficiently small spontaneous attractors can be
expected only in so small modules that the consideration a state of chaos in them
losing meaning. Consideration of chaos in the modules network has been postponed.

In the study, the network has N = 400 nodes. It was assembled of N2 = 50
modules, each of N1 = 8 nodes. Connectivity K1 between nodes inside modules
K1 = K2 connectivity between modules. The rule of connection is taken like in type
er. Simulation series consists of 100 nets.

The modularity also gave raise q (Figure 5c), especially when met2, which
increased the share of negative feedback, is used at the same time, however,
evolutionary stability was not checked. In the distribution of damage size, the
typical for the half-chaos radical gap between peaks was not observed, only the
clear minimum. An increase of q in the experiment met3 + met2 with s,K = 2,4,
almost entirely resulted from non-randomness of functions (function narrowing).
Both of these methods and their associated factors (such as function narrowing)
belong to the most important methods of producing desired stability by biological
evolution, but in both the short attractor is an important factor.

As was described in ch.3.3, classic modules cooperate with in-ice-modules. The
theme of classic modularity and its role in system stability was here recognized only
provisionally and requires much deeper research. However, it is one more source of
modularity, than was found in [30], where the role of modularity is studied in depth
in evolution.

4.3 Regulation in system with point attractor

Lack of expected radical effect of regulatory mechanisms in the met2 was found
in the system starting from a random network, then we introduced strong regula-
tion in a system with a radically short attractor – point attractor (met4a). This time
the result was surprisingly strong (Figure 4), so we decreased the regulation to the
minimum (met4b, see also met5b, Figure 4d) and next, regulation was rejected at
all (met4c,d and later), which showed that the point attractor is sufficient to
achieve half-chaos.
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In met4 point attractor starts with all node states equal 0. It was not permitted in
met8, where states are random. Model met4c for s,K = 4,3 used later in met5 is
defined as f(0,0,0) = 0.Model d for s,K = 2,4 – as f(0,0,0,0) = 0. They are based only
point attractor, without regulation. Model b with minimal regulation (s,K = 4,3) also
used later in met5, has in addition to c also: f(0,0,1) = f(0,1,0) = f(1,0,0) = 0. For
signal value 1 interpretation was taken: deviation from proper state ‘0’, but still in the
range of homeostasis. Formodel a (s,K = 4,3) also f(0,0,0) = 0, but description is
much more complicated. Here direction of deviation in homeostasis range: 1 – posi-
tive; 3 – negative. The deviation of one of 3 input signals gives 0. The function also
gives 0 if 2 signals are deviated, but in the opposite direction and third is 0. If 2 signals
deviate in the same direction but third is 0 or 3 signals deviate, but they are not equal,
then function result is deviated, i.e., is 1 or 3. If 3 signals deviate and are equal or at
least one is 2, then the result of the base function is 2, but such value for a particular
node is converted into random value in the way that share of each function value be
equal. Other parameters of simulation in met4 are described in ch.3.3.

The result of met4a shows how strong may be the effect of the regulation in
the half-chaotic system – right peak almost disappears, that is the probability of
entry into chaos as a result of a small system failure (internal cause) is small. This
gives a deceptive picture of the ordered phase [14, 23]. There remain external
causes, which model of the autonomous network does not take into account from
assumption. However, adaptation is to the environment, which can vary and the
evolution should be tested using open systems as in [31].

5. False assumptions of Kauffman’s model – summary

The Kauffman’s widely known hypothesis “life on the edge of chaos and order”
[5, 6], pointed out an important factor in modeling of biological evolution, pro-
cesses in social organizations, and technical constructions, however, it was based on
too simple model, even – on few false assumptions:

1.Any network of conditions can be described as Boolean, then it is sufficient to
study the Random Boolean Networks (RBNs). Such complex networks are
finite, discrete, deterministic, and fully random.

The assumption that the statistical properties of Boolean networks are general
is false [21]. The number s of equally probable signal variants should be also
considered higher than only two.

2.RBNs can be either ordered or chaotic, which is observed and confirmed by the
current mathematical theory of chaos

The current mathematical theory defines chaos by Lyapunov coefficients in
infinite, continuous space. High sensitivity to initial conditions, leading to
maximally different effects for very similar initial conditions is the main
characteristic of the chaotic behavior of dynamical systems. Kauffman [6]
uses such the term ‘chaos’ to describe finite, discrete networks. The term
‘chaos’ is not reserved for just one of those separate areas. This theory is
used for finite discrete networks (e.g. [19]), but such a method is an
approximation, which loses a few important phenomena, e.g., repeating
the same argument for a function, the path length to the attractor and
attractor length (in steps of a process). Analog of Lyapunov exponent for
networks (coefficient of damage propagation [21], eq. 4.8 in [23] or eq. 6.2 in
[7] in the case of half-chaos turns out to be misleading.
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Model-forced strong limitations on parameters are not compatible with
estimations from nature [7, 12, 16, 19]. For the evolution of life, the model
allows only extreme K = 2 (connectivity, K—number of node inputs) and s = 2.
Higher values of K or s lead to useless chaos.

3.Random networks contain all possible networks, then it is not important that
living organisms are not random in the aspect of stability due to natural
selection. Many works have assumed that this stability is explained by natural
properties of the ordered system known as “order for free” [10]. These are
false assumptions. Such a picture was not very consistent with the observed
delicacy of living entities, not emphasized of regulatory structures and did not
contain a model of death necessary for the Darwinian elimination. Kauffman
[6] considered negative feedbacks, but practically [21] he left them on a
random level.

In this work, it is experimentally shown that among discrete and finite
systems that are not fully random, with parameters s and K which for fully
random system result in chaos, there is a third state of systems I call half-chaos.
The not fully random networks where half-chaos is found are obtained considering
the specific correlation of parameters which Kauffman simplifying took as random.
The analogy to the phase transition is more complex here - it is rather the
“superheating”.

The particular half-chaotic system exhibits small and large damage. Current
theory does not foresee such the possibility, but it is easy to show examples using
computer simulation – system with point attractor is half-chaotic. The modeled
objects (like living or administrative units, technological processes, and technical
constructions) are certainly neither infinite nor continuous. Half-chaotic systems
better describe the modeled objects, freeing modeling from difficult theoretical
limitations (see point 2 above), which until now are the typical basis of many
considerations [7, 10, 12, 13, 16, 17, 23]. This opens the door to adequate models
with complex networks.

The large gap between small and large damage defines in a natural way a small
change, which is very important for interpretation. The peak of great changes (of
functioning—damage) well model a death and elimination. After the great change,
the system becomes forever simply chaotic, but a small change retains half-chaos
and identity of the system, then evolution can go on. This feature as ‘evolutionary
stability of half-chaos’ was included in the half-chaos definition. Half-chaos
together with given initializing changeability completed by the multiplication of
evolving system resulting from the demand of long evolution offers the full basic
Darwinian mechanism.

The Kauffman model is trying to describe living systems and similar ones using
several easy to show, and it would appear that the main parameters, the rest of them
simplifies assuming their randomness, but natural selection works on all possible
parameters, which may be easier and more important for selection and its effect.
Indeed, it is difficult to imagine the possibility of the existence of half-chaotic
systems from Kauffman point of view. In fact, after the system is drawn, it is either
chaotic or ordered (ad. ‘observed’ in point 2 above) and the set of random systems
contains all the possible ones (point 3 above). In the interpretation of the results of
this approach, it has not been seen that the statistical absence of intermediate
systems does not imply a small number of such systems. There are a lot of half-
chaotic systems, but their share is negligible because there are radically more cha-
otic systems with given parameters (e.g., K) - for larger N not imaginable many.
Model GRN based on RBN is not false, but its assumptions are too simple. Each
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model is a simplification, for some applications it can be useful, but if it gives a false
expectation of important parameter, then some simplifications must be rejected
which is the next step of approximation. It cannot be found without a previous step.

Regulatory feedbacks (misinterpreted and practically included only on the ran-
dom level in the Kauffman model [21]) also the classic modularity and narrowing of
the function significantly increase the stability, which was noticed, but the main
and the new condition is the short attractor. They take over the role of explaining
the experience [14, 15, 17] from “order for free”, which in the half-chaos lost
importance. The reached a deeper interpretation of Kauffman hypothesis gives a
picture much more consistent with the observation and indicates systems more
adequate to the modeling of biological evolution. This significantly alters the
existing basis of many considerations and probably their conclusions. Likewise, the
description of the systems from ‘liquid’ region [5], where Kauffman saw living
objects - “small lakes of activity in the ice” (originally [5]: “unfrozen islands”)
remains valid for the primary and the most appropriate form of the half-chaos for
the evolution - in-ice-modularity discovered in these studies. The base of the in-ice-
modularity is an activity of nodes (they change their states) in the ice (where nodes
do not change their states), however, in-ice-modularity is supported by classic
modularity, which is always present.

6. Conclusion

This work examines the systems described by networks that are: autonomous,
complex, finite, discreet, directed, functioning, deterministic, and designed as the
Kauffman network (Boolean), but with the admission of more than two (s ≥ 2)
equally probable signal variants. The number K of the node inputs in a given
network is fixed. Parameters s and K have values (s = 2, K = 4 or s = 4, K = 3), which
in the case of fully random networks give unambiguous chaos.

Half-chaos is the state of such a system in which small disturbances cause both
small and large ‘damage’ (changes in the system’s functioning) occurring statisti-
cally similarly often. As a reminder, in the chaotic system there are only large
damages and in the ordered - only very small. The studied half-chaotic systems are
not fully random, but they have typical characteristics indicating a full randomness.

The evidence presented in the work indicates that half-chaos is an experimental
fact. Its basic mechanism is based on a short attractor, but it is too weak a condition
for modeling adaptive evolution. Much more adequate (to describe the purposeful
systems) the half-chaos variant depends on in-ice-modularity. The simplest way to
obtain such a state is starting from an easily attainable system with a point attractor,
but it has been shown that it is possible to build such a state based on its description
recognized in the evolution started from the point attractor. These are ‘small lakes
of (nodes) activity’ in ‘ice’ (the area of the network where nodes do not change
their states) - a picture similar to the one described by Kauffman (in the network
parameters space) of the ‘liquid’ area at the boundary of the ordered (‘frozen /
solid’) area and chaotic (‘gas’). The Kauffman model is the basis of the famous
hypothesis “life on the edge of chaos”, however, this model strongly limits the
parameters allowed for modeling life to K = 2 and s = 2 and their immediate vicinity
called phase transition. Half-chaos allows a much larger range of these parameters,
many estimates indicate such a need.

The experiments used a constant random structure (mainly scale-free and Erdős-
Rényi random networks, but also others), random initial states of nodes and random
functions, but despite the maintenance of characteristics indicating the randomness
of the function, they were non-randomly correlated with states. Evolutionary
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variability concerned node functions. However, half-chaos was also observed in
experiments, where the network grew by random addition and removing of nodes.
This testifies to the more general nature of the discovered phenomenon of half-chaos.

Acceptance (as an evolutionary change) of a disturbance that gives great damage
leads to ordinary chaos, which practically does not return to half-chaos. This is the
elimination model - death. On the other hand, acceptance of a disturbance that gives
small damage is enough to remain in half-chaos. This feature is: ‘evolutionary stability
of half-chaos’, it is one of the most important, added to the definition of half-chaos. It
creates a natural criterion of identity of the evolving object. The distinction between
small and large damage is natural because they create separate peaks in the distribu-
tion of damage size separated by a large gap, in which there are practically no counts.

The discovery of half-chaos radically changes the vision of the dynamics of the
studied systems. The famous Kauffman’s hypothesis ‘life on the edge of chaos’ is
strongly reinterpreted to ‘life evolve in half-chaos of not fully random systems’ and
the analogy to phase transition is substituted by the comparison of half-chaos to
‘superheated liquid’. Strong limitations contrary to the observation, on the parame-
ters of modeling of purposeful systems are removed.

List of abbreviations and new terms

Abbreviations used in figure descriptions are defined in those descriptions.

N network consists of N nodes.
K connectivity. A node in a network receives signals at the

K inputs.
k number of output links of the node.
types of networks sf - scale-free (Barabási-Albert), er - classic “random”

Erdős-Rényi, ss - single-scale, sh and si are respectively
sf and ss with 30% removal.

Parameters network type together with s,K (treated as a vector) are
the main variables in the simulations.

RBN Random (classic Erdős-Rényi) Boolean Network.
GRN Gene Regulatory Network proposed by Kauffman,

based on RBN.
t is the number of time steps from a disturbance

initiation.
tmx the maximum number of counting steps.
A Avalanche. The size of a change in a network function

at time t after a small disturbance is measured by the
number A of the nodes, which have a different state
from the pattern network – identical, but without
disturbance.

d damage d = A/N.
dmx maximal damage, i.e., Derrida equilibrium for chaotic

behavior.
P(d) or P(A) the distribution of damage size at the time tmx, an

especially important result.
w coefficient of damage propagation. w = <k > (s-1)/s. For

an autonomous network with fixed K, <k > = K and we
can use w = K(s-1)/s.

small change in obtained here the distribution of damage size P(d)
for the particular system there are two peaks and the
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clear gap between them: the left of small changes
(ordered behavior) and the right of big changes
(chaotic, near Derrida balance).

q - degree of order a fraction of damage in the range of the “small
change”, the capacity of the left peak of P(d).

chaotic parameters they make random system strongly chaotic.
Half-chaos state of a not fully random system, with chaotic

parameters, but small disturbances give the ordered
reaction with a similar probability to the chaotic
reaction.

evolutionary stability
of half-chaos

the “small change” as a criterion of the acceptance of
perturbing permanent changes creating the evolution is
enough to stay in half-chaos. It was included in the
half-chaos definition. (Acceptance of one change that
gives a chaotic reaction leads to practically irreversible
entry into normal chaos).

in-ice-module the set of connected active nodes surrounded by ice –
inactive nodes (with the constant state).

local cluster the set of nodes with the same period of their states in
the process ended of accumulation. It corresponds with
in-ice-module.

global cluster a collection of local clusters very similar in terms of
nodes composition in the evolution of one network.

met# method #, where # is a digit 1 to 8. Separate experi-
ments with different rules described in this article.
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Chapter 5

Perturbation Methods to Analysis
of Thermal, Fluid Flow and
Dynamics Behaviors of
Engineering Systems
Gbeminiyi M. Sobamowo

Abstract

This chapter presents the applications of perturbation methods such as regular
and homotopy perturbation methods to thermal, fluid flow and dynamic behaviors
of engineering systems. The first example shows the utilization of regular pertur-
bation method to thermal analysis of convective-radiative fin with end cooling and
thermal contact resistance. The second example is concerned with the application of
homotopy perturbation method to squeezing flow and heat transfer of Casson
nanofluid between two parallel plates embedded in a porous medium under the
influences of slip, Lorentz force, viscous dissipation and thermal radiation.
Additionally, the dynamic behavior of piezoelectric nanobeam embedded in linear
and nonlinear elastic foundations operating in a thermal-magnetic environment is
analyzed using homotopy perturbation method which is presented in the third
example. It is believed that the presentation in this chapter will enhance the
understanding of these methods for the real world applications.

Keywords: perturbation method, thermal analysis, fluid flow behavior,
dynamic response, engineering systems

1. Introduction

The descriptions of the behaviors of the real world phenomena and systems
through the use of mathematical models often involve developments of nonlinear
equations which are difficult to solve exactly and analytically. Consequently,
recourse is always made to numerical methods as alternative methods in solving the
nonlinear equations. However, the developments of analytical solutions are obvi-
ously still very important. Analytical solutions for specified problems are also
essential and required to show the direct relationship between the models parame-
ters. When analytical solutions are available, they provide good insights into the
significance of various system parameters affecting the phenomena. Such solutions
provide continuous physical insights than pure numerical or computation methods.
Indisputably, analytical solutions are convenient for parametric studies, accounting
for the physics of the problem and appear more appealing than the numerical
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solutions. Also, they help in reducing the computation and simulation costs as well
as the task involved in the analysis of real-life problems.

Although, there is no general exact analytical method to solve all nonlinear
problems, over the years, the nonlinear problems have been solved using different
approximate analytical methods such as regular perturbation, singular perturba-
tion method, homotopy perturbation method, homotopy analysis method,
methods of weighted residual, variational iterative method, differential transfor-
mation method, variation parameter method, Adomian decomposition method,
etc. The non-perturbative approximate analytic methods present explicit approx-
imate analytical solutions which often involve complex mathematical analysis
leading to analytic expressions involving large number terms. Furthermore, the
methods are inherently with high computational cost and time accompanied with
the requirement of high skills in mathematics. Moreover, in practice, analytical
solutions with large number of terms and conditional statements for the solutions
are not convenient for use by designers and engineers. Also, in these methods,
there are always search for particular value(s) that will satisfy the end boundary
condition(s). This always necessitates the use of software and such could result in
additional computational cost in the generation of solution to the problem. Also,
the quests involve applications of numerical schemes to determine the required
value(s) that will satisfy the end boundary condition(s). This fact renders most of
the approximate analytical methods to be taken as more of semi-analytical
methods than total approximate analytical methods. Moreover, these methods
have their own operational restrictions that severely narrow their functioning
domain and when they are routinely implemented, they can sometimes lead to
erroneous results. Specifically, the transformation of the nonlinear equations and
the development of equivalent recurrence equations for the nonlinear equations
using differential transformation method proved somehow difficult in some
nonlinear system such as in rational Duffing oscillator, irrational nonlinear
Duffing oscillator, finite extensibility nonlinear oscillator. There is difficulty in
the determination of Adomian polynomials for the application of Adomian
decomposition method for nonlinear problems. There are lack of rigorous theories
or proper guidance for choosing initial approximation, auxiliary linear operators,
auxiliary functions, and auxiliary parameters in the use of homotopy analysis
method. Therefore, the need for comparatively simple, flexible, generic and high
accurate total approximate analytical solutions is well established. One of the
techniques that can be applied for such quest is the perturbation method. Pertur-
bation method, although comparably old, as a pioneer method for finding
approximate analytical solutions to nonlinear problems, it offers an alternative
approach to solving certain types of nonlinear problems. In the limit of small
parameter, perturbation method is widely used for solving many heat transfer,
vibration, fluid mechanics and solid mechanics problems. It is capable of solving
nonlinear, inhomogeneous and multidimensional problems with reasonable high
level of accuracy. The most significant efforts and applications of the method were
focused on celestial mechanics, fluid mechanics, and aerodynamics. Although, the
solutions reported for other sophisticated methods to difference problems have
good accuracy, they are more complicated for applications than perturbation
method. Therefore, over the years, the relative simplicity and high accuracy espe-
cially in the limit of small parameter have made perturbation method an interest-
ing tool among the most frequently used approximate analytical methods.
Although, the perturbation method provides in general, better results for small
perturbation parameters, besides having a handy mathematical formulation, it has
been shown to have a good accuracy, even for relatively large values of the
perturbation parameter [1–5].
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2. Example 1: regular perturbation method to thermal analysis of
convective-radiative fin with end cooling and thermal contact
resistance

Consider a convective-radiative fin of temperature-dependent thermal
conductivity k(T), length L and thickness δ, exposed on both faces to a convective
environment at temperature T∞ and a heat transfer co-efficient h subjected to
magnetic field shown in Figure 1. The dimension x pertains to the length coordinate
which has its origin at the tip of the fin and has a positive orientation from the fin
tip to the fin base. In order to analyze the problem, the following assumptions are
made. The following assumptions were made in the development of the model

i. The heat flow in the fin and its temperatures remain constant with time.

ii. The temperature of the medium surrounding the fin is uniform.

iii. The temperature of the base of the fin is uniform.

iv. The fin thickness is small compared with its width and length, so that
temperature gradients across the fin thickness and heat transfer from the
edges of the fin is negligible compared with the heat leaving its lateral surface.

Applying thermal energy balance on the fin and using the above model
assumptions, the following nonlinear thermal model is developed

d
dx

1þ λ T � Tað Þ½ � dT
dx

� �
� h
kaδ

T � Tað Þ � σε

kaδ
T4 � T4

a

� �� σB2
ou

2

kaAcr
T � Tað Þ ¼ 0

(1)

The boundary conditions are

x ¼ 0, � k Tð Þ ∂T
∂x
¼ he T � Tað Þ þ σ ∈ T4 � T4

a

� �
(2)

x ¼ L, � k Tð Þ ∂T
∂x
¼ hc Tb � Tð Þ þ σ ∈ T4 � T4

a

� �
(3)

Figure 1.
(a) Schematic of the convective-radiative longitudinal straight fin with magnetic field. (b) Schematic of the
longitudinal straight fin geometry showing thermal contact resistance and boundary conditions.
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Considering a case when a small temperature difference exists within the mate-
rial during the heat flow. This actually necessitated the use of temperature-invariant
physical and thermal properties of the fin. Also, it has been established that under
such scenario, the term T4 can be expressed as a linear function of temperature.
Therefore, we have

T4 ¼ T4
a þ 4T3

a T � Tað Þ þ 6T2
a T � Tað Þ2 þ … ffi 4T3

aT � 3T4
a (4)

On substituting Eq. (4) into Eq. (1), one arrives arrived at

d
dx

1þ λ T � T∞ð Þ½ � dT
dx

� �
� h
kaδ

T � Tað Þ � 4σεT3
a

kaδ
T � Tað Þ � σB2

ou
2

kaAcr
T � Tað Þ ¼ 0

(5)

The boundary conditions

x ¼ 0, � k Tð Þ ∂T
∂x
¼ he T � Tað Þ þ 4σ ∈T3

a T � Tað Þ (6)

x ¼ L, � k Tð Þ ∂T
∂x
¼ hc Tb � Tð Þ þ 4σ ∈T3

a T � Tað Þ (7)

On introducing the following dimensionless parameters in Eq. (8) into Eq. (5),

X ¼ x
L
, θ ¼ T � Ta

Tb � Ta
, Ra ¼ gkβ Tb � Tað Þb

ανkr
, N ¼ 4σstbT

3
a

ka
, Ha ¼ σB2

0u
2

kaAcr
: (8)

Bie ¼ heb
ka

, Bic ¼ hcb
ka

, M2 ¼ hb2

kaδ
, ε ¼ λ Tb � Tað ÞBie,eff ¼ he þ σεð Þb

ka
,

Biceff ¼ hc þ σεð Þb
ka

The dimensionless form of the governing Eq. (5) is arrived at as

d
dX

1þ εθð � dθ
dX

� �
�M2θ �Nrθ �Haθ ¼ 0 (9)

On expanding Eq. (9), one has

d2θ
dX2 þ εθ

d2θ
dX2 þ ε

dθ
dX

� �2

�M2θ �Nrθ �Haθ ¼ 0 (10)

The boundary conditions are

X ¼ 0, 1þ εθð Þ dθ
dX
¼ �Bie,effθ (11)

X ¼ 1, 1þ εθð Þ dθ
dX
¼ �Bic,eff 1� θð Þ (12)

3. Method of solution using regular perturbation method

It is very difficult to develop closed-form solution for the above non-linear
Eq. (10). Therefore, in this work, recourse is made to apply a relatively simple and
accurate method approximate analytical method, the perturbation method.
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Perturbation theory is based on the fact that the equation(s) describing the phe-
nomena or process under investigation contain(s) a small parameter (or several
small parameters), explicitly or implicitly. Therefore, the perturbation method is
applicable to very small magnitudes of ε where the nonlinearity is slightly effective.
Although, it has been shown to have a good accuracy, even for relatively large
values of the perturbation parameter, ε [1, 2].

In solving Eq. (10), one needs to expand the dimensionless temperature as

θ ¼ θ0 þ εθ1 þ ε2θ2 þ … (13)

Substituting Eq. (13) into Eq. (10), up to first order approximate, we have

d2θ0
dX2 � M2 þNrþHa

� �
θ0 þ ε

d2θ1
dX2 þ θ0

d2θ0
dX2 þ

dθ0
dX

� �2

� M2 þNrþHa
� �

θ1

" #

þε2 d2θ2
dX2 þ θ1

d2θ0
dX2 þ θ0

d2θ1
dX2 þ 2

dθ1
dX

� �
dθ0
dX

� �
� M2 þNrþHa
� �

θ2

" #
¼ 0

(14)

Leading order and first order equations with the appropriate boundary
conditions are given as:

Leading order equation:

d2θo
dx2
� M2 þNrþHa
� �

θo ¼ 0 (15)

Subject to:

X ¼ 0,
dθo
dX
¼ �Bie,eff θo (16)

X ¼ 1,
dθo
dX
¼ Bic,eff θo � 1ð Þ (17)

First-order equation:

d2θ1
dX2 � M2 þNrþHa

� �
θ1 ¼ � dθo

dX

� �2

� θ0
d2θo
dX2 (18)

Subject to:

X ¼ 0, θ0
dθ0
dX
þ dθ1

dX
¼ �Bie,eff θ1 (19)

X ¼ 1, θ0
dθ0
dX
þ dθ1

dX
¼ Bic,eff θ1 (20)

Second-order equation

d2θ2
dX2 � M2 þNrþHa

� �
θ2 ¼ �θ1 d

2θ0

dX2 � θ0
d2θ1
dX2 � 2

dθ1
dX

� �
dθ0
dX

� �
(21)

The boundary conditions

X ¼ 0, θ1
dθo
dX
þ θ0

dθ1
dX
þ dθ2

dX
¼ �Bie,eff θ2 (22)

X ¼ 1, θ1
dθ0
dX
þ θ0

dθ1
dX
þ dθ2

dX
¼ Bic,eff θ2 (23)
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It can be shown from Eq. (15), (18) and (21) with the corresponding boundary
conditions of Eqs. (16), (19) and (22) that the:

Leading order solution for θo is

θo ¼
Bic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNr þHa
� �q

X
� �

� Biesinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q

X
� �n o

Bic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNr þHa
� �q� �

� Bie sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �n o

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q

Bie cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �n o

8><
>:

9>=
>;

(24)

While the first order solution θ1 is

θ1 ¼ �Bi
2
cBie
3

Bie2
Bic cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8>><
>>:

9>>=
>>;
þ

Bic M2 þ Bi2e
� �þ 4MBi2cBie

� �
cosh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

þ M M2 þ Bi2e
� �� 2MBicBie

� �
sinh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8>><
>>:

9>>=
>>;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bic cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8>><
>>:

9>>=
>>;

�Bie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�Bic sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

8>><
>>:

9>>=
>>;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

Bic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�Bie sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
BB@

1
CCA

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bie cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
BB@

1
CCA

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

2
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6666666666666666666666664

3
7777777777777777777777775

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

X

þBi2c
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bic M2 þ Bi2e

� �þ 4MBi2cBie
� �

cosh 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

þ M M2 þ Bi2e
� �� 2MBicBie

� �
sinh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8>><
>>:

9>>=
>>;
þ Bie3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�Bie sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8>><
>>:

9>>=
>>;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bic cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8>><
>>:

9>>=
>>;

�Bie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�Bic sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

8>><
>>:

9>>=
>>;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

Bic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�Bie sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
BB@

1
CCA

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bie cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
BB@

1
CCA

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

2

2
6666666666666666666666664

3
7777777777777777777777775

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

X

�Bi2c
3

Bic M2 þ Bi2e
� �þ 4MBi2cBie

� �
cosh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

X

þ M M2 þ Bi2e
� �� 2MBicBie

� �
sinh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �
X

8><
>:

9>=
>;

Bic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�Bie sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
B@

1
CA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bie cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
B@

1
CA

8><
>:

9>=
>;

2

2
66666666664

3
77777777775

(25)

The second-order solution θ2 is too huge to be included in the manuscript.
On substituting Eqs. (24) and (25) into Eq. (13) up to the first order (i.e.

neglecting the higher orders), one arrives at

θ Xð Þ ¼
Bic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q

X
� �

� Biesinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q

X
� �n o

Bic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

� Bie sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �n o

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q

Bie cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �n o

8><
>:

9>=
>;

�εBi2cBie
3

Bie2
Bic cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8><
>:

9>=
>;
þ

Bic M2 þ Bi2e
� � þ 4MBi2cBie

� �
cosh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

þ M M2 þ Bi2e
� �� 2MBicBie

� �
sinh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8><
>:

9>=
>;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bic cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8>><
>>:

9>>=
>>;

�Bie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �q� �

�Bic sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �q� �

8>><
>>:

9>>=
>>;

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
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cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �q� �
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� �q� �
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cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

X

þ εBi2c
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bic M2 þ Bi2e

� �þ 4MBi2cBie
� �

cosh 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

þ M M2 þ Bi2e
� �� 2MBicBie

� �
sinh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �

8><
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9>=
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þ Bie3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�Bie sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �
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9>=
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �q� � Bic cosh
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� �q� �
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� �q� �
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� �q� �
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M2 þNrþHa
� �q� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
BB@

1
CCA

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

2

2
666666666666666666666666666664

3
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sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

X

� εBi2c
3

Bic M2 þ Bi2e
� �þ 4MBi2cBie

� �
cosh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

X

þ M M2 þ Bi2e
� �� 2MBicBie

� �
sinh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa

p� �
X

8><
>:

9>=
>;

Bic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�Bie sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
B@

1
CA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� � Bie cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þNrþHa
� �q� �

0
B@

1
CA

8><
>:

9>=
>;

2

2
66666666664

3
77777777775

(26)
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4. Example 2: homotopy perturbation method to analysis of squeezing
flow and heat transfer of Casson nanofluid between two parallel
plates embedded in a porous medium under the influences of slip,
Lorentz force, viscous dissipation and thermal radiation

Consider a Casson nanofluid flowing between two parallel plates placed at time-
variant distance and under the influence of magnetic field as shown in the Figure 2.
It is assumed that the flow of the nanofluid is laminar, stable, incompressible,
isothermal, non-reacting chemically, the nanoparticles and base fluid are in thermal
equilibrium and the physical properties are constant. The fluid conducts electrical
energy as it flows unsteadily under magnetic force field. The fluid structure is
everywhere in thermodynamic equilibrium and the plate is maintained at constant
temperature.

Following the assumptions, the governing equations for the flow are given as

∂u
∂x
þ ∂v

∂y
¼ 0 (27)

ρnf
∂u
∂t
þ u

∂u
∂x
þ v

∂u
∂y

� �
¼ � ∂p

∂x
þ μnf 1þ 1

β

� �
2
∂
2u
∂x2
þ ∂

2u
∂x∂y

þ ∂
2u
∂y2

� �
� σB2

ou�
μnf u
Kp

(28)

ρnf
∂v
∂t
þ u

∂v
∂x
þ v

∂v
∂y

� �
¼ � ∂p

∂y
þ μnf 1þ 1

β

� �
2
∂v
∂x2
þ ∂

2v
∂x∂y

þ ∂
2v
∂y2

� �
� μnf v

Kp
(29)

∂T
∂t
þ u

∂T
∂x
þ u

∂T
∂y
¼ knf

ρCp
� �

nf

∂
2T
∂x2
þ ∂

2T
∂y2

� �

þ μnf
ρCp
� �

nf

1þ 1
β

� � 2 ∂
2u
∂x2

� �2
þ ∂

2u
∂y2 þ ∂

2v
∂x2

� �2

þ2 ∂
2v
∂y2

� �2

0
BB@

1
CCA�

1
ρCp
� �

nf

∂qr
∂x

(30)

where

ρnf ¼ ρ f 1� ϕð Þ þ ρsϕ (31)

μnf ¼
μ f

1� ϕð Þ2:5 (32)

Figure 2.
Model diagram of MHD squeezing flow of nanofluid between two parallel plates embedded in a porous
medium.
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and the magnetic field parameter is given as

B tð Þ ¼ B0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt
p (33)

σnf ¼ σ f 1þ
3 σs

σ f
� 1

n o
ϕ

σs
σ f
þ 2

n o
ϕ� σs

σ f
� 1

n o
ϕ

2
4

3
5, (34)

knf ¼ k f
ks þ m� 1ð Þk f � m� 1ð Þ k f � ks

� �
ϕ

ks þ m� 1ð Þk f þ k f � ks
� �

ϕ

" #
, (35)

The Casson fluid parameter, β ¼ μB
ffiffiffiffiffiffiffiffiffiffiffiffi
2π=Py

p
and k is the permeability constant.

The radiation term is given as

∂qr
∂y
¼ � 4σ

3K
∂T4

∂y
ffi � 16σT3

s

3K
∂
2T
∂y2

using Rosseland’s approximationð Þ (36)

The appropriate boundary conditions are given as

u ¼ 0, v ¼ vw ¼ dh
dt

, T ¼ TH at y ¼ h tð Þ ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt
p

, (37)

∂u
∂y
¼ 0,

∂T
∂y
¼ 0, v ¼ 0, at y ¼ 0, (38)

On introducing the following dimensionless and similarity variables

u ¼ αH
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt
p f 0 η, tð Þ, v ¼ � αH

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt
p f η, tð Þ, η ¼ y

H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt
p , θ ¼ T � T0

TH � T0
, Ec ¼ 1

Cp

αH
2 1� αtð Þ
� �2

Re ¼ �SA 1� ϕð Þ2:5 ¼ ρnfHVw

μnf
, S ¼ αH2

2v f
, Da ¼ Kp

H2 , A1 ¼ 1� ϕð Þ þ ϕ
ρs
ρ f

, Pr ¼ μCp

k
, δ ¼ H

x
,

B1 ¼
σs þ m� 1ð Þσ f
� �þ m� 1ð Þ σs � σ f

� �
ϕ

σs þ m� 1ð Þσ f
� �� m� 1ð Þ σs � σ f

� �
ϕ

" #
, A2 ¼ 1� ϕð Þ þ ϕ

ρCp
� �

s

ρCp
� �

f

, A3 ¼
knf
k f

, R ¼ 4σT3
∞

3kK

(39)

One arrives at the dimensionless equations

1þ 1
β

� �
f iv � SA1 1� ϕð Þ2:5 η f ‴ þ 3 f 00 þ f f ‴ � f 0 f 00

� �
�Ha2 f 00 � 1

Da
f 00 ¼ 0

(40)

1þ 4
3
R

� �
θ00 þ PrS

A2

A3

� �
θ0f � ηθ0ð Þ þ PrEc

A3 1� ϕð Þ2:5 f 00
� �2 þ 4δ2 f 0

� �2� �
¼ 0

(41)

with the boundary conditions as follows

f ¼ 0, f 00 ¼ 0, θ0 ¼ 0, when η ¼ 0, (42)

f ¼ 1, f 0 ¼ 0, θ ¼ 1, when η ¼ 1, (43)

where m in the above Hamilton Crosser’s model in Eq. (35).

108

A Collection of Papers on Chaos Theory and Its Applications



5. Method of solution by homotopy perturbation method

The comparative advantages and the provision of acceptable analytical results
with convenient convergence and stability coupled with total analytic procedures of
homotopy perturbation method compel us to consider the method for solving the
system of nonlinear differential equations in Eqs. (40) and (41) with the boundary
conditions in Eq. (42).

5.1 The basic idea of homotopy perturbation method

In order to establish the basic idea behind homotopy perturbation method,
consider a system of nonlinear differential equations given as

A Uð Þ � f rð Þ ¼ 0, r∈Ω, (44)

with the boundary conditions

B u,
∂u
∂η

� �
¼ 0, r∈Γ, (45)

where A is a general differential operator, B is a boundary operator, f rð Þ a known
analytical function and Γ is the boundary of the domain Ω.

The operator A can be divided into two parts, which are L and N, where L is a
linear operator, N is a non-linear operator. Eq. (44) can be therefore rewritten as
follows

L uð Þ þN uð Þ � f rð Þ ¼ 0: (46)

By the homotopy technique, a homotopy U r, pð Þ : Ω� 0, 1½ � ! R can be
constructed, which satisfies

H U, pð Þ ¼ 1� pð Þ L Uð Þ � L Uοð Þ½ � þ p A Uð Þ � f rð Þ½ � ¼ 0, p∈ 0, 1½ �, (47)

or

H U, pð Þ ¼ L Uð Þ � L Uοð Þ þ pL Uοð Þ þ p N Uð Þ � f rð Þ½ � ¼ 0: (48)

In the above Eqs. (47) and (48), p∈ 0, 1½ � is an embedding parameter, uo is an
initial approximation of equation of Eq. (44), which satisfies the boundary
conditions.

Also, from Eq. (47) and Eq. (48), one has

H U, 0ð Þ ¼ L Uð Þ � L Uoð Þ ¼ 0, (49)

or

H U, 0ð Þ ¼ A Uð Þ � f rð Þ ¼ 0: (50)

The changing process of p from zero to unity is just that of U r, pð Þ from uo rð Þ to
u rð Þ. This is referred to homotopy in topology. Using the embedding parameter p as
a small parameter, the solution of Eqs. (47) and Eq. (48) can be assumed to be
written as a power series in p as given in Eq. (51)

U ¼ Uo þ pU1 þ p2U2 þ … (51)
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It should be pointed out that of all the values of p between 0 and 1, p = 1
produces the best result. Therefore, setting p ¼ 1, results in the approximation
solution of Eq. (42)

u ¼ lim
p!1

U ¼ Uo þU1 þU2 þ … (52)

The basic idea expressed above is a combination of homotopy and perturbation
method. Hence, the method is called homotopy perturbation method (HPM), which
has eliminated the limitations of the traditional perturbation methods. On the other
hand, this technique can have full advantages of the traditional perturbation tech-
niques. The series Eq. (29) is convergent for most cases.

5.2 Application of the homotopy perturbation method to the fluid flow
problem

According to homotopy perturbation method (HPM), one can construct an
homotopy for Eq. (36)–(39) as

H1 p, ηð Þ ¼ 1� pð Þ 1þ 1
β

� �
f iv

� �
þ p

1þ 1
β

� �
f iv � SA1 1� ϕð Þ2:5

η f ‴ þ 3 f 00

þf f ‴ � f 0 f 00

 !

�Ha2 f 00 � 1
Da

f 00

2
6664

3
7775

¼ 0,

(53)

H2 p, ηð Þ ¼ 1� pð Þ 1þ 4
3
R

� �
θ00

� �
þ p

1þ 4
3
R

� �
θ00 þ PrS

A2

A3

� �
θ0f � ηθ0ð Þ

þ PrEc

A3 1� ϕð Þ2:5 f 00
� �2 þ 4δ2 f 0

� �2� �

2
6664

3
7775 ¼ 0,

(54)

Taking power series of velocity, temperature and concentration fields, gives

f ¼ f 0 þ pf 1 þ p2 f 2 þ p3 f 3 þ … (55)

and

θ ¼ θ0 þ pθ1 þ p2θ2 þ p3θ3 þ … (56)

Substituting Eqs. (55) and (56) into Eq. (53) and (54) as well as the boundary
conditions in Eq. (42), and grouping like terms based on the power of p, the fluid
flow velocity equation is given as:

Zeroth-order equations

p0 : f iv0 ηð Þ þ 1
β
f iv0 ηð Þ ¼ 0, (57)

p0 : 1þ 4
3
R

� �
θ000 ¼ 0, (58)
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First-order equations

p1 :
1
β
f iv1 ηð Þ þ f iv1 ηð Þ � SA1 1� ϕð Þ2:5η f 0 ηð Þ � 1

Da
f 000 ηð Þ �Ha2 f 000 ηð Þ

�3SA1 1� ϕð Þ2:5 f 000 ηð Þ � SA1 1� ϕð Þ2:5 f 00 ηð Þ f 000 ηð Þ þ SA1 1� ϕð Þ2:5 f 0 ηð Þ f ‴0 ηð Þ ¼ 0,

(59)

p1 : 1þ 4
3
R

� �
θ001 þ PrS

A2

A3

� �
θ00 f 0 � ηθ00
� �þ PrEc

A3 1� ϕð Þ2:5 f 000
� �2 þ 4δ2 f 00

� �2� �
¼ 0

(60)

Second-order equations

p2 :
1
β
f iv2 ηð Þ þ f iv2 ηð Þ � SA1 1� ϕð Þ2:5η f 1 ηð Þ � 1

Da
f 001 ηð Þ �Ha2 f 001 ηð Þ � 3SA1 1� ϕð Þ2:5 f 200 ηð Þ

�SA1 1� ϕð Þ2:5 f 01 ηð Þ f 000 ηð Þ � SA1 1� ϕð Þ2:5 f 00 ηð Þ f 001 ηð Þ þ SA1 1� ϕð Þ2:5 f 1 ηð Þ f ‴0 ηð Þ
þSA1 1� ϕð Þ2:5 f 0 ηð Þ f ‴1 ηð Þ ¼ 0,

(61)

p2 : 1þ 4
3
R

� �
θ002 þ PrS

A2

A3

� �
θ01 f 0 þ θ00 f 1 � ηθ01
� �þ 2PrEc

A3 1� ϕð Þ2:5 f 000 f
00
1 þ 4δ2 f 0

0 f 01
� � ¼ 0

(62)

the boundary conditions are

f 0 ¼ f 1 ¼ f 2 ¼ 0, f 0
00 ¼ f 1

00 ¼ f 2
00 ¼ 0, θ0

0 ¼ θ1
0 ¼ θ2

0 ¼ 0, when η ¼ 0,

f 0 ¼ 1, f 1 ¼ f 2 ¼ 0, f 0
0 ¼ f 1

0 ¼ f 2
0 ¼ 0, θ0 ¼ 1, θ1 ¼ θ2 ¼ 0, when η ¼ 1,

(63)

In a similar way, the higher orders problems are obtained.
On solving Eqs. (57), (61) and (64) with their corresponding boundary

conditions, we arrived at

f 0 ηð Þ ¼ 1
2

3η� η3
� �

(64)

f 1 ηð Þ ¼ � 1
6720 1þ βð Þ

168
1
Da

� �
β þ 168Ha2β þ 419SA1 1� ϕð Þ2:5β

� �
η

� 336
1
Da

� �
β þ 336Ha2β þ 873SA1 1� ϕð Þ2:5β

� �
η3

þ 168
1
Da

� �
β þ 168Ha2β þ 504SA1 1� ϕð Þ2:5β

� �
η5

�28SA1 1� ϕð Þ2:5βη6 � 24SA1 1� ϕð Þ2:5βη7

þ2SA1 1� ϕð Þ2:5βη8

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

(65)
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f 2 ηð Þ ¼ � 1

9686476800 1þ βð Þ2

�12684672 1
Da

� �2
β2 � 25369344

1
Da

� �
Ha2β2 � 12684672Ha4β2 � 92692600

1
Da

� �
SA1 1� ϕð Þ2:5β2

�92692600Ha2A1 1� ϕð Þ2:5β2 � 154163807S2A2
1 1� ϕð Þ5β2

0
B@

1
CAη

þ
31135104 1

Da

� �2
β2 þ 62270208

1
Da

� �
Ha2β2 þ 31135104Ha4β2 þ 205741536

1
Da

� �
SA1 1� ϕð Þ2:5β2

þ205741536Ha2A1 1� ϕð Þ2:5β2 þ 324472661S2A2
1 1� ϕð Þ5β2

0
B@

1
CAη3

þ
�24216192 1

Da

� �2
β2 � 48432384

1
Da

� �
Ha2β2 � 24216192Ha4β2 � 135567432

1
Da

� �
SA1 1� ϕð Þ2:5β2

�135567432Ha2SA1 1� ϕð Þ2:5β2 � 188756568S2A2
1 1� ϕð Þ5β2

0
B@

1
CAη5

þ 672672
1
Da

� �
SA1 1� ϕð Þ2:5β2 þ 672672Ha2SA1 1� ϕð Þ2:5β2 þ 1677676S2A2

1 1� ϕð Þ5β2
� �

η6

þ
5765760 1

Da

� �2
β2 þ 11531520

1
Da

� �
Ha2β2 þ 5765760Ha4β2 þ 24216192

1
Da

� �
β2

þ24216192Ha2SA1 1� ϕð Þ2:5β2 þ 17976816S2A2
1 1� ϕð Þ5β2

0
B@

1
CAη7

� 1009008
1
Da

� �
SA1 1� ϕð Þ2:5β2 þ 1009008Ha2SA1 1� ϕð Þ2:5β2 � 332946S2A2

1 1� ϕð Þ5β2
� �

η8

� 1441440
1
Da

� �
SA1 1� ϕð Þ2:5β2 þ 1441440Ha2SA1 1� ϕð Þ2:5β2 þ 1441440S2A2

1 1� ϕð Þ5β2
� �

η9

þ 80080
1
Da

� �
SA1 1� ϕð Þ2:5β2 þ 80080Ha2SA1 1� ϕð Þ2:5β2β2

� �
η10 � 109928S2A2

1 1� ϕð Þ5β2η11

þ12376S2A2
1 1� ϕð Þ5β2η12 þ 168S2A2

1 1� ϕð Þ5β2η13

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

(66)

In the same manner, the energy equations are solved. Following the definition of
the homotopy perturbation method as presented in Eq. (52), one could write the
solution of the fluid flow equation as

f ηð Þ ¼ 1
2

3η� η3
� �� 1

6720 1þ βð Þ

168
1
Da

� �
β þ 168Ha2β þ 419SA1 1� ϕð Þ2:5β

� �
η� 336

1
Da

� �
β þ 336Ha2β þ 873SA1 1� ϕð Þ2:5β

� �
η3

þ 168
1
Da

� �
β þ 168Ha2β þ 504SA1 1� ϕð Þ2:5β

� �
η5 � 28SA1 1� ϕð Þ2:5βη6 � 24SA1 1� ϕð Þ2:5βη7 þ 2SA1 1� ϕð Þ2:5βη8

0
BBB@

1
CCCA

� 1

9686476800 1þ βð Þ2

�12684672 1
Da

� �2
β2 � 25369344

1
Da

� �
Ha2β2 � 12684672Ha4β2 � 92692600

1
Da

� �
SA1 1� ϕð Þ2:5β2�

92692600Ha2A1 1� ϕð Þ2:5β2 � 154163807S2A2
1 1� ϕð Þ5β2

0
BB@

1
CCAη

þ
31135104 1

Da

� �2
β2 þ 62270208

1
Da

� �
Ha2β2 þ 31135104Ha4β2 þ 205741536

1
Da

� �
SA1 1� ϕð Þ2:5β2

þ205741536Ha2A1 1� ϕð Þ2:5β2 þ 324472661S2A2
1 1� ϕð Þ5β2

0
BB@

1
CCAη3

þ
�24216192 1

Da

� �2
β2 � 48432384

1
Da

� �
Ha2β2 � 24216192Ha4β2 � 135567432

1
Da

� �
SA1 1� ϕð Þ2:5β2�

135567432Ha2SA1 1� ϕð Þ2:5β2 � 188756568S2A2
1 1� ϕð Þ5β2

0
BB@

1
CCAη5

þ 672672
1
Da

� �
SA1 1� ϕð Þ2:5β2 þ 672672Ha2SA1 1� ϕð Þ2:5β2 þ 1677676S2A2

1 1� ϕð Þ5β2
� �

η6

þ
5765760 1

Da

� �2
β2 þ 11531520

1
Da

� �
Ha2β2 þ 5765760Ha4β2 þ 24216192

1
Da

� �
β2þ

24216192Ha2SA1 1� ϕð Þ2:5β2 þ 17976816S2A2
1 1� ϕð Þ5β2

0
BB@

1
CCAη7

� 1009008
1
Da

� �
SA1 1� ϕð Þ2:5β2 þ 1009008Ha2SA1 1� ϕð Þ2:5β2 � 332946S2A2

1 1� ϕð Þ5β2
� �

η8

� 1441440
1
Da

� �
SA1 1� ϕð Þ2:5β2 þ 1441440Ha2SA1 1� ϕð Þ2:5β2 þ 1441440S2A2

1 1� ϕð Þ5β2
� �

η9

þ 80080
1
Da

� �
SA1 1� ϕð Þ2:5β2 þ 80080Ha2SA1 1� ϕð Þ2:5β2β2

� �
η10 � 109928S2A2

1 1� ϕð Þ5β2η11þ

12376S2A2
1 1� ϕð Þ5β2η12 þ 168S2A2

1 1� ϕð Þ5β2η13

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(67)

6. Example 3: homotopy perturbation method to dynamic behavior of
piezoelectric nanobeam embedded in linear and nonlinear elastic
Foundation in a thermal-magnetic environment

Consider a nanobeam embedded in linear and nonlinear elastic media as shown
in Figure 3. The nanobeam is subjected to stretching effects and resting onWinkler,
Pasternak and nonlinear elastic media in a thermo-magnetic environment as
depicted in the figure.
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Following the nonlocal theory and Euler-Bernoulli theorem, the governing
equation of the structure is developed as

EI
∂
4w
∂x4

� �
þ ρAc

∂
2

∂t2
w� e0að Þ2 ∂

2w
∂x2

� �
þ kw w� e0að Þ2 ∂

2w
∂x2

� �
� kp

∂
2

∂x2
w� e0að Þ2 ∂

2w
∂x2

� �

þk2 w2 � e0að Þ2 ∂
2 w2
� �

∂x2

� �
þ k3 w3 � e0að Þ2 ∂

2 w3
� �

∂x2

� �
� ηAcH2

x
∂
2

∂x2
w� e0að Þ2 ∂

2w
∂x2

� �

þ EAc
αxΔT
1� 2ν

� �
∂
2

∂x2
w� e0að Þ2 ∂

2w
∂x2

� �
� EAc

2L

ðL
0

∂w
∂x

� �2

dx

 !
∂
2w
∂x2
� e0að Þ2 ∂

4w
∂x4

� �" #
¼ 0

(68)

It is assumed that the midpoint of the nanobeam is subjected to the following
initial conditions

w x, 0ð Þ ¼ wo,
∂w x, 0ð Þ

∂t
¼ 0 (69)

The following boundary conditions for the multi-walled nanotubes for simply
supported nanotube is given,

w 0, tð Þ ¼ 0,
∂
2w 0, tð Þ
∂
2x

¼ 0, w L, tð Þ ¼ 0,
∂
2w L, tð Þ
∂
2x

¼ 0: (70)

Using the following adimensional constants and variables

x ¼ x
L
; w ¼ w

r
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

ρAcL4

s
; r ¼

ffiffiffiffiffi
I
Ac

r
; h ¼ e0a

L
; αdt ¼

NthermalL2

EI
; A ¼ wo

r

Kw ¼ kwL4

EI
; Kp ¼

kpL2
EI

; Ham ¼ ηAcH2
xL

2

EI
; Kd

2 ¼
k2rL4

EI
; Kd

3 ¼
k3r2L4

EI
:

(71)

The adimensional form of the governing equation of motion for the nanobeam is
given as

1þ Kph
2 þHamh

2 � αdt h
2 þ h2

2

ð1

0

∂w
∂x

� �2

dx

2
4

3
5 ∂

4w
∂x4
þ αdt � Kwh

2 � Kp �Ham � 1
2

ð1

0

∂w
∂x

� �2

dx

2
4

3
5 ∂2w
∂x2

þKwwþ ∂
2w
∂t2
� h2

∂
4w

∂x2∂t2
þ Kd

2 w2 � h2
∂
2 w2ð Þ
∂x2

� �
þ Kd

3 w3 � h2
∂
2 w3ð Þ
∂x2

� �
¼ 0

(72)

Figure 3.
A nanobeam embedded in linear and nonlinear elastic media (note: Only the bottom side of the elastic media is
shown).
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And the boundary conditions become

w 0, tð Þ ¼ 0,
∂
2w 0, tð Þ
∂
2x

¼ 0, w 1, tð Þ ¼ 0,
∂
2w 1, tð Þ
∂
2x

¼ 0: (73)

6.1 Solution methodology: Galerkin decomposition and homotopy
perturbation methods

The method of solution for the governing equation includes Galerkin decompo-
sition and homotopy perturbation methods. As the name implies the Galerkin
decomposition method is used to decompose the governing partial differential
equation of motion can be separated into spatial and temporal parts. The resulting
temporal equations are solved using homotopy perturbation method.

The procedures for the analysis of the equations are given in the proceeding
sections as follows:

6.1.1 Galerkin decomposition method

With the application of Galerkin decomposition procedure, the governing par-
tial differential equations of motion can be separated into spatial and temporal parts
of the lateral displacement function as

w x, tð Þ ¼ ϕ xð Þq tð Þ (74)

Using one-parameter Galerkin decomposition procedure, one arrives at

ð1

0

R x, tð Þϕ xð Þdx ¼ 0 (75)

where R x, tð Þ is the governing equation of motion for nanobeam i.e.

R x, tð Þ ¼ 1þ Kph
2 þHamh

2 � αdt h
2 þ h2

2

ð1

0

∂w
∂x

� �2

dx

2
4

3
5 ∂4w
∂x4
þ αdt � Kwh

2 � Kp �Ham � 1
2

ð1

0

∂w
∂x

� �2

dx

2
4

3
5 ∂

2w
∂x2

þKwwþ ∂
2w
∂t2
� h2

∂
4w

∂x2∂t2
þ Kd

2 w2 � h2
∂
2 w2ð Þ
∂x2

� �
þ Kd

3 w3 � h2
∂
2 w3ð Þ
∂x2

� �
¼ 0

(76)

where ϕ xð Þ is the basis or trial or comparison function or normal function, which
must satisfy the boundary conditions in Eq. (73), and q tð Þ is the temporal part
(time-dependent function).

Substituting Eqs. (75) into (74), then multiplying both sides of the resulting
equation by ϕ xð Þ and integrating it for the domain of (0,1), we have

d2q tð Þ
dt2

þ λ1q tð Þ þ λ2q2 tð Þ þ λ3q3 tð Þ ¼ 0 (77)

where

λ1 ¼ λ1
λ0

; λ2 ¼ λ2
λ0

; λ3 ¼ λ3
λ0

; (78)
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λ0 ¼
ð1

0

ϕ2 � h2ϕ
∂
2ϕ

∂x2

� �
dx (79)

λ1 ¼
ð1

0

Kwϕ
2 þ 1þ Kph

2 þHamh
2 � αdt h

2� �
ϕ
∂
4ϕ

∂x4
þ αdt � Kwh

2 � Kp �Ham
� �

ϕ
∂
2ϕ

∂x2

� �
dx

(80)

λ2 ¼
ð1

0

Kd
2 ϕ3 � h2ϕ

∂
2 ϕ2� �
∂x2

 !
dx (81)

λ3 ¼
ð1

0

Kd
3 ϕ4 � h2ϕ

∂
2 ϕ4� �
∂x2

 !
dxþ h2

2

ð1

0

∂ϕ

∂x

� �2

dx
ð1

0

ϕ
∂
2ϕ

∂x2
dx� 1

2

ð1

0

∂ϕ

∂x

� �2

dx
ð1

0

ϕ
∂
4ϕ

∂x4
dx

(82)

The initial conditions are given as

q 0ð Þ ¼ A,
dq 0ð Þ
dt
¼ 0 (83)

A is the maximum vibration amplitude of the structure.
From the initial conditions in Eq. (83), one can write the initial approximation,

uo as

uo ¼ Acos ωtð Þ (84)

Eq. (22) satisfies the initial conditions in Eq. (83).
The homotopy perturbation representation of Eq. (77) is

H q, pð Þ ¼ d2q
dt2
þ λ1q

" #
� d2uo

dt2
þ λ1uo

" #
þ p

d2uo
dt2
þ λ1uo

" #
þ p λ2q2 þ λ3q3
� � ¼ 0

(85)

From the procedure of homotopy perturbation method, assuming that the
solution of Eq. (77) takes the form of:

q ¼ q0 þ pq1 þ p2q2 þ p3q3 þ … , (86)

On substituting Eqs. (86) into the homotopy Eq. (85)

H q, pð Þ ¼ d2 q0 þ pq1 þ p2q2 þ p3q3 þ …
� �

dt2
þ λ1 q0 þ pq1 þ p2q2 þ p3q3 þ …

� �" #

� d2uo
dt2
þ λ1u0

" #
þ p

d2uo
dt2
þ λ1u0

" #
þ p

λ2 q0 þ pq1 þ p2q2 þ p3q3 þ …
� �2

þλ3 q0 þ pq1 þ p2q2 þ p3q3 þ …
� �3

0
B@

1
CA ¼ 0

(87)

rearranging the coefficients of the terms with identical powers of p, one obtains
series of linear differential equations as.
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Zero-order equation

p0 :
d2q0
dt2
þ λ1q0

" #
� d2uo

dt2
þ λ1uo

" #
¼ 0 (88)

with the conditions

q0 0ð Þ ¼ A and
dq0 0ð Þ

dt
¼ 0 (89)

First-order equation

p1 :
d2q1
dt2
þ λ1q0 þ

d2uo
dt2
þ λ1uo þ λ2q20 þ λ3q30 ¼ 0 (90)

with corresponding initial conditions

q1 0ð Þ ¼ 0 and
dq1 0ð Þ
dt

¼ 0 (91)

Second-order equation

p2 :
d2q2
dt2
þ λ1q2 þ 2λ2q0q1 þ 3λ3q20q1 ¼ 0 (92)

with corresponding initial conditions

q2 0ð Þ ¼ 0 and
dq2 0ð Þ
dt

¼ 0 (93)

The solution of the zero-order is given by.
From Eq. (27), we have

q0 ¼ Acos ωtð Þ (94)

On substituting Eq. (94) into Eq. (90) and using trigonometric identities, after
the colllection of like terms, one arrives at

d2q1
dt2
þ λ1q1 þ A λ1 � ω2 þ 3

4
A2λ

� �
cos ωtð Þ þ A2λ2

2
cos 2ωtð Þ þ A3λ3

4
cos 3ωtð Þ þ A2λ2

2
¼ 0

(95)

The solution of the above Eq. (95) provides

q1 tð Þ ¼
A λ1 � ω2 þ 3

4
A2λ

� �
λ1

ω2 � λ21

� �
cos ωtð Þ þ A2λ2

2
λ1

4ω2 � λ21

� �
cos 2ωtð Þ

þA3λ3
4

λ1
9ω2 � λ21

� �
cos 3ωtð Þ þ A2λ2

2

2
66664

3
77775

þ A λ1 � ω2 þ 3
4
A2λ

� �
λ1

λ21 � ω2

� �
þ A2λ2

2
λ1

λ21 � 4ω2

� �
þ A3λ3

4
λ1

λ21 � 9ω2

� �
þ A2λ2

2λ1

� �
cos αtð Þ

(96)
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Based on the procedure of HPM, setting p ¼ 1,

q tð Þ ¼ lim
p!1

q tð Þ ¼ lim
p!1

q0 þ pq1 þ p2q2 þ p3q3 þ …
� � ¼ q0 þ q1 þ q2 þ q3 þ …

(97)

On substituting Eqs. (94) and (96) into Eq. (97), the result is

q tð Þ ¼ Acos ωtð Þ þ
A λ1 � ω2 þ 3

4
A2λ

� �
λ1

ω2 � λ21

� �
cos ωtð Þ þ A2λ2

2
λ1

4ω2 � λ21

� �
cos 2ωtð Þ

þA3λ3
4

λ1
9ω2 � λ21

� �
cos 3ωtð Þ þ A2λ2

2

2
66664

3
77775

þ A λ1 � ω2 þ 3
4
A2λ

� �
λ1

λ21 � ω2

� �
þ A2λ2

2
λ1

λ21 � 4ω2

� �
þ A3λ3

4
λ1

λ21 � 9ω2

� �
þ A2λ2

2λ1

� �
cos λ1tð Þ þ …

(98)

In order to find the natural frequency, ω, the secular term must be eliminated. In
order to do this, set the coefficient of cos λ1tð Þ to zero.

A λ1 � ω2 þ 3
4
A2λ

� �
λ1

λ21 � ω2

� �
þ A2λ2

2
λ1

λ21 � 4ω2

� �
þ A3λ3

4
λ1

λ21 � 9ω2

� �
þ A2λ2

2λ1
¼ 0

(99)

After simplification of Eq. (99), we have

Aλ2
2λ21
� 1

� �
ω6 þ A λ21 13� 49Aλ2

2

� �
� 36λ1 þ 9Aλ2

2
� 26λ3A

� �
ω4

A λ41 þ 13λ31 � 2Aλ2 � 11λ3A2� �
λ21

� �
ω2 þ λ41A λ1 þ λ3A2� � ¼ 0

(100)

The sextic equation can be written as

Aλ2
2λ21
� 1

� �
ω6 þ A λ21 13� 49Aλ2

2

� �
� 36λ1 þ 9Aλ2

2
� 26λ3A

� �
ω4

A λ41 þ 13λ31 � 2Aλ2 � 11λ3A2� �
λ21

� �
ω2 þ λ41A λ1 þ λ3A2� � ¼ 0

(101)

Eq. (101) can be written as

χ1ω
6 þ χ2ω

4 þ χ3ω
2 þ χ4 ¼ 0 (102)

where

χ1 ¼
Aλ2
2λ21
� 1

� �
, χ2 ¼ A λ21 13� 49Aλ2

2

� �
� 36λ1 þ 9Aλ2

2
� 26λ3A

� �

χ3 ¼ A λ41 þ 13λ31 � 2Aλ2 � 11λ3A2� �
λ21

� �
, χ4 ¼ λ41A λ1 þ λ3A2� � ¼ 0
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The roots of the sextic equation are

ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�χ32
27χ31

þ χ2χ3
6χ21
� χ4
2χ1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ3
3χ1
� λ22

9χ21

� �3
þ �χ32

27χ31
þ χ2χ3

6χ21
� χ4

2χ1

� �2r
3

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�χ32
27χ31

þ χ2χ3
6χ21
� χ4
2χ1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ3
3χ1
� λ22

9χ21

� �3
þ �χ32

27χ31
þ χ2χ3

6χ21
� χ4

2χ1

� �2r
3

s
� χ2
3χ1

vuuuuuuuut
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ω2 ¼ �


�χ32
27χ31

þ χ2χ3
6χ21
� χ4
2χ1

� �
þ
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� �
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ω3 ¼
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� �
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χ3
3χ1
� λ22

9χ21

� �3
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3
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ω4 ¼ �
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7. Conclusion

In this chapter, the applications of regular and homotopy perturbation methods
to thermal, fluid flow and dynamic behaviors of engineering systems have been
presented. Regular perturbation was used in the first example to developed
approximate analytical solutions for thermal behavior of convective-radiative fin
with end cooling and thermal contact resistance. In the second example, homotopy
perturbation method utilized to study squeezing flow and heat transfer of Casson
nanofluid between two parallel plates embedded in a porous medium under the
influences of slip, Lorentz force, viscous dissipation and thermal radiation. The
same method was used in the third example to analyze the dynamic behavior of
piezoelectric nanobeam embedded in linear and nonlinear elastic foundations oper-
ating in a thermal-magnetic environment. It is hoped that the vivid presentation
and applications of these perturbation methods in this chapter will advance better
understanding of methods especially for real world applications.
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Chapter 6

SIR Model with Homotopy to
Predict Corona Cases
Nahid Fatima

Abstract

In this chapter, we will discuss SIR model to study the spread of COVID-2019
pandemic of India. We will give the prediction of corona cases using homotopy
method. The HM is a method for solving the ordinary differential equations. The
SIR model consists of three ordinary differential equations. In this study, we have
used the data of COVID-2019 Outbreak of India on 20 Jan 2021. In this data,
Recovered is 102656163, Active cases are 189245 Susceptible persons are 189347782
for the experimental purpose. Data about a wide variety of infectious diseases has
been analyzed with the help of SIR model. Therefore, this model has been already
well tested for infectious diseases by various scientists and researchers.

Keywords: SIR model, homotopy, differential equation, corona, graph, table

1. Introduction

Novel Coronavirus, assigned as 2019-nCoV, emerged inWuhan, China, toward the
end of 2019. As of January 24, 2020, as many as 830 cases had been analyzed in nine
nations: China, Thailand, Japan, South Korea, Singapore, Vietnam, Taiwan, Nepal, and
the United States [1–3]. Twenty-six fatalities happened, chiefly in patients who had
genuine basic sickness. Albeit numerous subtleties of the rise of this infection.

In 2019, the Centers for Disease Control and Prevention (CDC) started moni-
toring the outbreak of a new coronavirus, SARS-CoV-2, which causes the respira-
tory illness now known as COVID-19. Authorities first identified the virus in
Wuhan, China. More than 74,000 people have contracted the virus in China. Health
authorities have identified many other people with COVID-19 around the world,
including many in the United States. On January 31, 2020, the virus passed from
one person to another in the U.S. The World Health Organization (WHO) have
declared a public health emergency relating to COVID-19. Since then, this strain has
been diagnosed in several U.S. residents. The CDC have advised that it is likely to
spread to more people. COVID-19 has started causing disruption in at least 25 other
countries.

All the adjoining nations of India have revealed positive COVID-19 cases. To
secure against the lethal infection, the Indian government have taken fundamental
and severe measures, including setting up wellbeing check posts between the public
lines to test whether individuals entering the nation have the infection. Various
nations have presented salvage endeavors and reconnaissance measures for resi-
dents wishing to get back from China. The exercise gained from the SARS episode
was first that the absence of lucidity and data about SARS debilitated China’s
worldwide standing and hampered its financial development. The episode of SARS
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in China was disastrous and has prompted changes in medical care and clinical
frameworks. Contrasted and China, the capacity of India to counter a pandemic is
by all accounts a lot of lower. A new report announced that influenced relatives had
not visit the Wuhan market in China, proposing that SARS-CoV-2 may spread
without showing side effects. Analysts accept that this wonder is typical for some
infections. India, with a populace of more than 1.34 billion—the second biggest
populace on the planet—will experience issues treating serious COVID-19 cases on
the grounds that the nation has just 49,000 ventilators, which is a negligible sum.
On the off chance that the quantity of COVID-19 cases increments in the country, it
would be a fiasco for India.

As the characteristics of a potential vaccine become better known, mathematical
models can be used to explore alternative scenarios about effectively distributing a
vaccine in order to limit transmission and protect the most vulnerable population
groups.

Coronaviruses can spread in the following ways:
Coughing and sneezing without covering the mouth can disperse droplets into

the air. Touching or shaking hands with a person who has the virus can pass the
virus between individuals. Making contact with a surface or object that has the virus
and then touching the nose, eyes, or mouth.

The National Institutes of Health (NIH) suggest that several groups of people
have the highest risk of developing complications due to COVID-19. These groups
include:

1. Young children

2. People aged 65 years or older

3. Pregnant women.

Coronaviruses will contaminate most individuals at a few time amid their life-
time. Coronaviruses can change viably, which makes them so infectious. To antici-
pate transmission, individuals ought to remain at domestic and rest whereas side
effects are dynamic. They ought to moreover maintain a strategic distance from
near contact with other individuals. They should also avoid close contact with other
people. Covering the mouth and nose with a tissue or handkerchief while coughing
or sneezing.

2. Analysis of SIR model

SIR model is first introduced by W.O. Kermach and A.G Mckendrick in 1927.
SIR model is a best model of an infectious disease. This model divided the
population into the three groups. The groups name is.

S (t) is the Susceptible people at the time.
I (t) is the infected people at the time.
R(t) is the recovered people at the time.
This model is constructing the ordinary differential equations in this model time

t is the independent variable and S, I, R is the dependent variables. These groups
have taken the number of people on every day. Yet, the data is transitions with
time, as human being act from one group to another group. Illustration, human
being in group S will act to the group I, that is the infected. Furthermore, infected
person, I will act to the recovered R group that is they are recover or die from the
disease. This method has been used successfully many times before in spreading
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disease like yellow fever, plague, fever, influenza, avian influenza, etc. Therefore,
we have made the differential equations of COVID 19 using this method. This
method is very helpful in giving a mathematical model to COVID.

ds
dt
¼ �gsi: (1)

di
dt
¼ gsi� fi (2)

dr
dt
¼ fi (3)

where t is the independent variable s, i, r is dependent variables i.e.
s is denote the susceptible person at the time t
i is denote the infected person at the time t
r is denote the recovered person at the time t
g is transmission coefficient
f is recovery
If s>0, i>0 then

ds
dt
¼ �gsi<0, ∀s>0, i>0 (4)

di
dt
¼ i gs� fð Þ (5)

gs� f ¼ 0

s ¼ f
g

s� f
g
¼ 0 (6)

So 
di
dt

<0 if  s<
f
g

(7)
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di
dt >0 if s> f

g is defined the direction diagram of trajectories
We find the trajectories

di
ds
¼

di
dt
ds
dt

¼ gsi� fi
�gsi

di
ds
¼ �1þ f

gs

di ¼ �1dsþ f
gs

ds

i ¼ �sþ f
g
log sþ c

Initial conditions

s 0ð Þ ¼ s0

i 0ð Þ ¼ i0

(If)

s! 0, i! �∞
s! ∞, i! �∞

1. It is impossible for the disease to infect all the susceptible person.

2. s0 >
f
g for an epidemic to occur.

3. s0 <
f
g disease dig out.

4. gs0
f > 1 then number of infected is increase.

5. sþ iþ r is the total population.

3. Mathematical modeling of COVID 19

3.1 Case study of India

In this research work we have discussed about the COVID 19 disease. also know
about how many people got sick in India due to pandemic disease COVID19. In this
article, we have given a mathematical model to COVID 19 with the help of SIR
model [4–6]. We have taken data of how many people had become ill in India by
COVID 19 on 20 January 2021 and using this data , we have created a mathematical
model of COVID 19 with the help of SIR model. We have created three differential
equations by taking the original data and solving those equations by the Homotopy
Perturbation method (HPM ).We got out the numerical solutions and made a table,
and with the help of that table, we tried to tell what is the position of COVID 19 in
India by making the graphs. There are a lot of methods which solves the differential
equations [7–9], but we have used the HPMmethod. This method solves the biggest
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and most difficult equations very easily and with less of calculations.We will solve
the Differential Equations of COVID 19, which is made with the help of SIR model.
In these equations, we took the data of 20 January 2021 COVID 19 people of India
who were caught by COVID 19 epidemics.

Total confirmed cases on 20 January 2021 in India is 10611728.
Death 152907
Recovered is 102656163
Active cases are 189245
Susceptible persons are 189347782
So, we take the

s 0ð Þ ¼ 18:9347782

i 0ð Þ ¼ 1:0611728

r 0ð Þ ¼ 10265163þ 152907 ¼ 1:0418070

g ¼ active cases of india on 20 january 2021 for COVID 19
susceptible people of india on 20 january 2021 for COVID 19

g ¼ 189245
18:9347782

¼ 0:00999457

f ¼ 1
14
¼ 0:0714

ds
dt
¼ �gsi (8)

di
dt
¼ gsi � fi (9)

dr
dt
¼ fi (10)

where t is the independent variable s, i, r is dependent variables i.e.
s is denote the susceptible person at the time t
i is denote the infected person at the time t
r is denote the recovered person at the time t
g is transmission coefficient
f is recovery
Now we will solve these equations with the help of HPM method.
By the homotopy method we get,
1� pð Þ dSdt þ p(dSdt þ siÞ

dS
dt
¼ p �0:00999457sið Þ

1� pð Þ di
dt
þ p

di
dt
� 0:00999457siþ 0:0714i

� �
(11)

di
dt
¼ pð 0:00999457si� 0:0714iÞ (12)

dr
dt
¼ p0:0714i
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s ¼ s0 þ p1s1 þ p2s2 þ … (13)

i ¼ i0 þ p1i1 þ p2i2 þ … (14)

r ¼ r0 þ p1r1 þ p2r2 þ … (15)

Putting value s, i, r we get,

ds
dt
¼ pð�0:00999457f s0 þ p1s1 þ p2s2 þ … gfi0 þ p1i1 þ p2i2 þ … gÞ (16)

di
dt
¼ pð 0:00999457½f s0 þ p1s1 þ p2s2 þ … gf i0 þ p1i1 þ p2i2 þ … g�
� 0:0714fi0 þ p1i1 þ p2i2 þ … gÞ (17)

dr
dt
¼ p 0:0714fi0 þ p1i1 þ p2i2 (18)

Both side comparing the coefficient of p we get

s0 ¼ 18:9347782

i0 ¼ 1:0611728

r0 ¼ 1:0418070

ds1
dt
¼ �0:00999457 18:9347782ð Þ 1:0611728ð Þ

s1 ¼ �0:2008216t
di1
dt
¼ 0:00999457 18:9347782ð Þ 1:0611728ð Þ � 0:0714 1:0611728ð Þ

i1 ¼ 0:1250538t

dr1
dt
¼ 0:0714f1:0611728g
r1 ¼ 0:0757677t

So, by the HPM we get the solution:

s tð Þ ¼ 18:9347782� 0:2008216tþ …

i tð Þ ¼ 1:0611728þ 0:1250538tþ …

r tð Þ ¼ 1:0418070þ 0:0757677tþ …

We have the table

S.NO. DATE S I R

1 20/01/2021 18.9347782 1.0611728 1:0418070

2 21 /01/2021 18.7339566 1.0662266 1.1175747

3 22/01/2021 18.533135 1.06128040 1.1933424

4 23/01/2021 18.3323134 1.06633424 1.2691101

5 24/01/2021 18.1314918 1.0613880 1.3448778
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S.NO. DATE S I R

6 25/01/2021 17.9306702 1.0664418 1.4206455

7 26/01/2021 17.7298486 1.0684956 1.4964132

8 27/01/2021 17.529027 1.0705494 1.5721809

9 28/01/2021 17.3282054 1.0716032 1.6479486

10 29/01/2021 17.1273838 1.0726657 1.7237163

11 30/01/2021 16.9265622 1.0747108 1.799484

12 31/01/2021 16.7257406 1.0767646 1.8752517

From the above table we can predict that infected cases of corona on 31 January
which is almost same as actual cases on 31 January. The current COVID-19 pan-
demic is unprecedented, but the global response draws on the lessons learned from
other disease outbreaks over the past several decades.

World scientists on COVID-19 then met at the World Health Organization’s
Geneva headquarters on 11–12 February 2020 to assess the current level of

Figure 1.
SIR chart depicting no of people susceptible, infected and recovered.

Figure 2.
SIR chart depicting no of people susceptible.
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knowledge about the new virus, agree on critical research questions that need to
be answered urgently, and to find ways to work together to accelerate and fund
priority research to curtail this outbreak and prepare for those in the future see
Figures 1–3 for reference.

4. Conclusion

In this chapter, we have taken data of people affected by coronavirus in India till
20 January (1). Then we converted this data into three differential equations with
the help of SIR model. We solved the equation made from SIR model with HPM.
From the result of solving, we estimated the people who got infected with corona
virus in the coming 5 days. We converted the result from HPM into a table and
graph and from the result we saw that in the coming days, corona cases are increas-
ing and recovering but the corona positive rate is very high, and the rate of recovery
is very short. We saw that the information about Corona-positive cases being given
by the Government of India was also that the rate of positive is increasing very fast,
but the rate of recovery is very low. From all these, we can now say that by solving
with HPM we get the result very close to the actual result. We have predicted cases
of corona till Jan 31 using SIR model, risk factors for the coronavirus disease. The
risk is especially high if two or three of the Cs come together.
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SIR chart depicting no of people infected.
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Chapter 7

Rare Event Simulation in a
Dynamical Model Describing the
Spread of Traffic Congestions in
Urban Network Systems
Getachew K. Befekadu

Abstract

In this chapter, we present a mathematical framework that provides a new insight
for understanding the spread of traffic congestions in an urban network system. In
particular, we consider a dynamical model, based on the well-known susceptible-
infected-recovered (SIR) model from mathematical epidemiology, with small random
perturbations, that describes the process of traffic congestion propagation and dissi-
pation in an urban network system. Here, we provide the asymptotic probability
estimate based on the Freidlin-Wentzell theory of large deviations for certain rare
events that are difficult to observe in the simulation of urban traffic network dynam-
ics. Moreover, the framework provides a computational algorithm for constructing
efficient importance sampling estimators for rare event simulations of certain events
associated with the spread of traffic congestions in the dynamics of the traffic network.

Keywords: diffusion processes, exit probability, HJB equations,
importance sampling, large deviations, rare-event simulation, SIR model,
traffic network dynamics

1. Introduction

In recent years, there have been a number of interesting studies related to
modeling the spread of traffic congestion propagation and traffic dissipation in
urban network systems (e.g., see [1–5] in the context of macroscopic traffic model
involving traffic flux and traffic density; see [6, 7] in the context of percolation
theory; see [8] for results based on machine-learning methods; and see [9, 10] for
studies based on queuing theory). In this paper, without attempting to give a
literature review, we consider a dynamical model, based on the well-known
susceptible-infected-recovered (SIR) model from mathematical epidemiology, with
small random perturbation, that describes the spread of traffic congestion propaga-
tion and dissipation in an urban network system, i.e.,

dcε tð Þ ¼ �μþ βk 1� rε tð Þ � cε tð Þð Þð Þcε tð Þdt
þ ffiffiffi

ε
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μþ βk 1þ rε tð Þ þ cε tð Þð Þð Þcε tð Þ
p

dW1 tð Þ (1)

drε tð Þ ¼ μrε tð Þ þ ffiffiffi
ε
p ffiffiffiffiffiffiffiffiffiffiffiffi

μrε tð Þ
p

dW2 tð Þ (2)
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df ε tð Þ ¼ �βk 1� rε tð Þ � cε tð Þð Þð Þcε tð Þdt

þ ffiffiffi
ε
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βk 1þ rε tð Þ þ cε tð Þð Þð Þcε tð Þ
p

dW3 tð Þ
(3)

where

• cε tð Þ represents the fraction of congested links in the network

• rε tð Þ represents the fraction of recovered links in the network

• f ε tð Þ represents the fraction of free flow links in the network

• the parameters β and μ represent respectively the propagation and recovery
rates considering that a certain fraction of congested links will eventually
recover as the demand for travel diminishes

• the quantity kβ=μ represents the average number of newly congested links
that, in a fully freely flowing traffic network, each already congested link can
potentially create,

• W1 tð Þ, W2 tð Þ and W3 tð Þ are three independent standard (one-dimensional)
Wiener processes, and

• ε is a small positive number that represents the level of random perturbation in
the network.

Notice that Eq. (1) describes the rate at which the fraction of congested links,
i.e., cε tð Þ, changes over time given the propagation rate β and recovery rate μ
considering that a fraction of congested links will eventually recover as the demand
for the travel volume diminishes. Moreover, Eq. (2) describes the rate at which
congested links normally recover given the recovery rate μ. Finally, Eq. (3) repre-
sents how the fraction of free flow links f ε tð Þ in the network changes over time
given cε tð Þ and rε tð Þ. Note that, for a normalized SIR based traffic network dynamic
model, the following mathematical condition cε tð Þ þ rε tð Þ þ f ε tð Þ ¼ 1 holds true for
all t>0, where f ε tð Þ represents links that have remained in a free flow state starting
from t ¼ 0 (e.g., see Saberi et al. [11] for detailed discussions related to determinis-
tic models).

In this chapter, we provide the asymptotic probability estimate based on the
Freidlin-Wentzell theory of large deviations for certain rare events that are difficult
to observe in the simulation of urban traffic network dynamics. The framework
considered in this study basically relies on the connection between the probability
theory of large deviations and that of the values functions for a family of stochastic
control problems, where such a connection also provides a desirable computational
algorithm for constructing an efficient importance sampling estimator for rare
event simulations of certain events associated with the spread of traffic congestions
in the dynamics of the traffic network. Here, it is worth mentioning that a number
of interesting studies based on various approximations techniques from the theory
of large deviations have provided a framework for constructing efficient impor-
tance sampling estimators for rare event simulation problems involving the behav-
ior of diffusion processes (e.g., [12–16] for additional discussions). The approach
followed in these studies is to construct exponentially-tilted biasing distributions,
which was originally introduced for proving Cramér’s theorem and its extension,
and later on it was found to be an efficient importance sampling distribution for
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certain problems with various approximations involving rare-events (e.g., see
[17–19] or [13] for detailed discussions). The rationale behind our framework fol-
lows in some sense the settings of these papers. However, to our knowledge, the
problem of rare event simulations involving the spread of traffic congestions in an
urban network system has not been addressed in the context of large deviations and
stochastic control arguments in the small noise limit; and it is important because it
provides a new insight for understanding the spread of traffic congestions in an
urban network system.

This chapter is organized as follows. In Section 2, we provide an asymptotic
estimate on the exit probability using the Freidlin-Wentzell theory of large devia-
tions [20] (see also [21], Chapter 4) and the stochastic control arguments from
Fleming [22] (see also [23]), where such an asymptotic estimate relies on the
interpretation of the exit probability function as a value function for a family of
stochastic control problems that can be associated with the underlying SIR based
traffic network dynamic model with small random perturbations. In Section 3, we
discuss importance sampling and the necessary background upon which our main
results rely. In Section 4, we provide our main results for an efficient importance
sampling estimator for rare event simulations of certain events associated with the
spread of traffic congestions in the dynamics of the traffic network. Finally, Section
5 provides some concluding remarks.

2. The Freidlin-Wentzell theory

In this section, we briefly review the classical Freidlin-Wentzell theory of large
deviations for the stochastic differential equations (SDEs) with small noise terms.
In what follows, let us denote the solution of the SDEs in Eqs. (1)–(3) by a bold face
letter xε

t

� �
t≥0 ¼ xε,1t , xε,2t , xε,3t

� �
t≥0≜ cε tð Þ, rε tð Þ, f ε tð Þð Þt≥0 as an 3-valued diffusion

process and rewrite the above equations as follows

dxε
t ¼ f xε

t

� �
dtþ ffiffiffi

ε
p

σ xε
t

� �
dWt, (4)

where f xε
t

� � ¼ f 1 xε
t

� �
, f 2 xε

t

� �
, f 3 xε

t

� �� �T with

f 1 xε,1t , xε,2t , xε,3t
� � ¼ �μþ βk 1� xε,2t � xε,1t

� �� �
xε,1t

f 2 xε,1t , xε,2t , xε,3t
� � ¼ μxε,2t

f 3 xε,1t , xε,2t , xε,3t
� � ¼ �βk 1� xε,2t � xε,1t

� �� �
xε,1t

(5)

and σ xε
t

� � ¼ σ1 xε
t

� �
, σ2 xε

t

� �
, σ3 xε

t

� �� �T with

σ1 xε,1t , xε,2t , xε,3t
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ βk 1þ xε,2t þ xε,1t

� �� �
xε,1t

q

σ2 xε,1t , xε,2t , xε,3t
� � ¼

ffiffiffiffiffiffiffiffiffiffi
μxε,2t

q

σ3 xε,1t , xε,2t , xε,3t
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βk 1þ xε,2t þ xε,1t
� �� �

xε,1t
q

:

(6)

Moreover, Wt is a standard three-dimensional Wiener process. Note that the
corresponding backward operator for the diffusion process xε

t , when applied to a
certain function υε t,xð Þ, is given by

135

Rare Event Simulation in a Dynamical Model Describing the Spread of Traffic Congestions…
DOI: http://dx.doi.org/10.5772/intechopen.95789



∂tυ
ε þ Lευ≜ ∂υε t,xð Þ

∂t
þ ε

2

X3
i, j¼1

ai,j xð Þ ∂
2υε t,xð Þ
∂xi∂x j þ f xð Þ � ∇xυ

ε t,xð Þ, (7)

where a xð Þ ¼ σ xð ÞσT xð Þ.
Let Ω∈3 be bounded open domains with smooth boundary (i.e., ∂Ω is a

manifold of class C2) and let ΩT be an open set defined by

ΩT ¼ 0,Tð Þ � Ω: (8)

Furthermore, let us denote by C∞ ΩT� �
the spaces of infinitely differentiable

functions on ΩT and by C∞
0 ΩT� �

the space of the functions ϕ∈C∞ ΩT� �
with

compact support in ΩT. A locally square integrable function υε t,xð Þ on ΩT is said to
be a distribution solution to the following equation

∂tυ
ε þ Lευε ¼ 0, (9)

if, for any test function ϕ∈C∞
0 ΩT� �

, the following holds true

ð

ΩT
�∂tϕþ Lε ∗ϕð ÞυεdΩT ¼ 0, (10)

where dΩT denotes the Lebesgue measure on 3 � þ and Lε ∗ is an adjoint
operator corresponding to the infinitesimal generator Lε of the process xε

t .
Moreover, we also assume that the following statements hold for the SDE in (4).
Assumption 1

a. The function f is a bounded C∞ 0,∞ð Þ �Ωð Þ-function, with bounded first
derivatives. Moreover, σ and σ�1 are bounded C∞ 0,∞ð Þ � 3� �

-functions,
with bounded first derivatives.

b. Let n xð Þ be the outer normal vector to ∂Ω and, further, let Γþ and Γ0 denote
the sets of points t,xð Þ, with x∈∂Ω, such that

f t,xð Þ, n xð Þh i (11)

is positive and zero, respectively.
Remark 1 Note that

ε
s,xεs

τε,xε
τε

� �
∈Γþ⋃Γ0, τε <∞

� � ¼ 1, ∀ s,xε
s

� �
∈Ω∞

0 : (12)

where τε ¼ inf t> s jxε
t ∈∂Ω

� �
. Moreover, if

ε
s,xεs

t,xε
t

� �
∈Γ0 for some t∈ s,T½ �� � ¼ 0, ∀ s,xε

s

� �
∈Ω∞

0 , (13)

and τε ≤T, then we have τε,xε
τε

� �
∈Γþ, almost surely (see [24], Section 7).

In what follows, let xε
t , for 0≤ t≤T, be the diffusion process associated with (4)

(or Eqs. (1)–(3)) and consider the following boundary value problem

∂sυε þ Lευε ¼ 0 in ΩT

υε s,xð Þ ¼ 1 on ΓþT
υε s,xð Þ ¼ 0 on Tf g �Ω

9>=
>;

(14)
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where Lε is the backward operator in (7) and

ΓþT ¼ s,xð Þ∈Γþ j0< s≤Tf g: (15)

Further, let Ω0T be the set consisting of ΩT ∪ Tf g �Ω, together with the bound-
ary points s,xð Þ∈Γþ, with 0< s<T. Then, the following proposition, whose proof is
given in [25], provides a solution to the exit probability ε

s,xεs
τε ≤Tf gwith which the

diffusion process xε
t exits from the domain Ω.

Proposition 1 Suppose that the statements in Assumption 1 hold true. Then, the
exit probability qε s,xεð Þ ¼ ε

s,xεs
τε ≤Tf g is a smooth solution to the boundary value

problem in (14) and, moreover, it is a continuous function on Ω0T.
Note that, from Proposition 1, the exit probability qε s,xεð Þ is a smooth solution

to the boundary value problem in (14). Further, if we introduce the following
logarithmic transformation (e.g., see [22, 26] or [23])

Iε s,xεð Þ ¼ �ε log qε s,xεð Þ: (16)

Then, using ideas from stochastic control theory (see [22] for similar argu-
ments), we present results useful for proving the following asymptotic property

Iε s,xεð Þ ! I0 s,xεð Þ as ε! 0: (17)

The starting point for such an analysis is to introduce a family of related sto-
chastic control problems whose dynamic programming equation, for ε>0, is given
below by (21). Then, this also allows us to reinterpret the exit probability function
as a value function for a family of stochastic control problems associated with the
underlying urban traffic network dynamics with small random perturbation. More-
over, as discussed later in Section 5, such a connection provides a computational
paradigm – based on an exponentially-tilted biasing distribution – for constructing
an efficient importance sampling estimators for rare-event simulations that further
improves the efficiency of Monte Carlo simulations.

Then, we consider the following boundary value problem

∂sgε þ ε

2
Lε ¼ 0 in ΩT

gε ¼ ε
s,x exp � 1

ε
Φε

� �� �
on ∂

∗ΩT

9>>=
>>;

(18)

where Φε s,xεð Þ is a bounded, nonnegative Lipschitz function such that

Φε s,xεð Þ ¼ 0, ∀ s,xεð Þ∈ΓþT : (19)

Observe that the function gε s,xεð Þ is a smooth solution in ΩT to the backward
operator in (9); and it is also continuous on ∂

∗ΩT . Moreover, if we introduce the
following logarithm transformation

Jε s,xεð Þ ¼ �ε log gε s,xεð Þ: (20)

Then, Jε s,xεð Þ satisfies the following dynamic programming equation (i.e., the
Hamilton-Jacobi-Bellman equation)

∂sJε þ ε

2

X3
i, j¼1

ai,j
∂
2Jε

∂xi∂x j þHε ¼ 0, in ΩT, (21)
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where Hε ¼ Hε s,xε,∇xJεð Þ is given by

Hε s,xε,∇xJεð Þ ¼ f xεð Þ � ∇xJε s,xεð Þ � 1
2

∇xJε s,xεð Þð ÞTa xεð Þ∇xJε s,xεð Þ: (22)

Note that the duality relation between Hε s,xε, �ð Þ and Lε s,xε, �ð Þ, i.e.,

Hε s,xε,∇xJεð Þ ¼ inf
û

Lε s,xε, ûð Þ þ ∇xJε � ûif g, (23)

with

Lε s,xε, ûð Þ ¼ 1
2

f xεð Þ � ûk k2a xεð Þ½ ��1 , (24)

where ∥ � ∥2a xεð Þ½ ��1 denotes the Riemannian norm of a tangent vector.

Then, it is easy to see that Jε s,xεð Þ is a solution in ΩT, with Jε ¼ Φε on ∂
∗ΩT, to

the dynamic programming in (21), where the latter is associated with the following
stochastic control problem

Jε s,xεð Þ ¼ inf
û∈ Û s,xε

sð Þ
s,xε

s

ðθ
s
Lε s,xε, ûð ÞdtþΦε θ,xεÞð g

�
(25)

that corresponds to the following system of SDEs

dxε
t ¼ û tð Þdtþ ffiffiffi

ε
p

σ xε
t

� �
dWt, (26)

with an initial condition xε
s ¼ xε and Û s,xεð Þ is a class of continuous functions

for which θ≤T and θ, xεθ
� �

∈ΓþT .
Next, we provide bounds, i.e., the asymptotic lower and upper bounds, on the

exit probability qε s,xεð Þ.
Define

IεΩ s,xεð Þ; ∂Ωð Þ ¼ � lim
ε!0

ε logε
s,xε

s
xε
θ ∈∂Ω

� �
,

≜� lim
ε!0

ε log qε s,xεð Þ,
(27)

where θ (or θ ¼ τε∧T) is the first exit-time of xε
t from the domain Ω. Further-

more, let us introduce the following supplementary minimization problem

~I
ε
Ω s,φ, θð Þ ¼ inf

φ∈CsT s,T½ �,3ð Þ, θ≥ s

ðθ
s
Lε t,φ tð Þ, _φ tð Þð Þdt, (28)

where the infimum is taken among all φ �ð Þ∈CsT s,T½ �,3� �
(i.e., from the space

of d-valued locally absolutely continuous functions, with
Ð T
s _φ tð Þj j2dt<∞ for each

T > s) and θ≥ s>0 such that φ sð Þ∈ΩT, for all t∈ s, θ½ Þ, and θ,φ θð Þð Þ∈ΓþT . Then, it is
easy to see that

~I
ε
Ω s,φ, θð Þ ¼ IεΩ s,xεð Þ; ∂Ωð Þ: (29)

Next, we state the following lemma that will be useful for proving Proposition 2
(cf. [22], Lemma 3.1).
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Lemma 1 If φ∈CsT s,T½ �,3� �
, for s>0, and φ sð Þ ¼ xε

s , t,φ tð Þð Þ∈ΩT, for all

t∈ s,T½ Þ, then lim T!∞
Ð T
s L

ε t,φ tð Þ, _φ tð Þð Þdt ¼ þ∞.
Consider again the stochastic control problem in (25) together with (26). Sup-

pose that Φε
M (with Φε

M ≥0) is class C2 such that Φε
M ! þ∞ asM! ∞ uniformly on

any compact subset of ΩTnΓþT and Φε
M on ΓþT . Further, if we let Jε ¼ JεΦM

, when
Φε ¼ Φε

M, then we have the following lemma.
Lemma 2 Suppose that Lemma 1 holds, then we have

liminf
M!∞

t,xε
tð Þ! s,xε

sð Þ

JεΦM
s,xεð Þð Þ≥ Iε s,xεð Þ: (30)

Then, we have the following result.
Proposition 2 [25, Proposition 2.8] Suppose that Lemma 1 holds, then we have

Iε s,xεð Þ ! I0 s,xεð Þ as ε! 0, (31)

uniformly for all s,xε
s

� �
in any compact subset ΩT.

Proof: It is suffices to show the following conditions

lim sup
ε!0

ε logε
s,xε

s
xε
θ ∈∂Ω

� �
≤ � IεΩ s,xεð Þ; ∂Ωð Þ (32)

and

lim inf
ε!0

ε logε
s,xε

s
xε
θ ∈∂Ω

� �
≥ � IεΩ s,xεð Þ; ∂Ωð Þ, (33)

uniformly for all s,xε
s

� �
in any compact subset ΩT. Note that IεΩ s,xεð Þ; ∂Ωð Þ ¼

Iε s,xεð Þ (cf. Eq. (29)), then the upper bound in (32) can be verified using the
Freidlin-Wentzell asymptotic estimates (e.g., see [27], pp. 332–334, [20] or [28]).

On the other hand, to prove the lower bound in (33), we introduce a penalty
function Φε

M (with Φε
M t,y
� � ¼ 0 for t, y

� �
∈ΓþT ); and write gε ¼ gεM

(� ε
s,xεs

exp � 1
εΦ

ε
M

� �� �
) and Jε ¼ JεΦM

, with Φε ¼ Φε
M. From the boundary condition

in (18), then, for each M, we have

gε s,xεð Þ≤ gεM s,xεð Þ: (34)

Using Lemma 2 and noting further the following

JεΦM
s,xεð Þ≥ IεΩ s,xεð Þ; ∂Ωð Þ: (35)

Then, the lower bound in (33) holds uniformly for all s,xε
s

� �
in any compact

subset ΩT . This completes the proof of Proposition 2. □

3. Importance sampling

In this paper, we are mainly concerned with estimating the following quantity

ε
s,xε

s
exp � 1

ε
Φε xεð Þ

� �� �
, (36)
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where Φε is an appropriate functional on C 0,T½ �;3� �
and xε is a solution of the

SDE in (4) and our analysis is in the situation where the level of the random
perturbation is small, i.e., ε≪ 1, and the functional ε

s,xεs
exp � 1

εΦ
ε xεð Þ� �� �

is rapidly
varying in xε. Note that the challenge presented by such an analysis of rare event
probabilities is well documented (see [12, 18, 29] for additional discussions). In the
following (and see also Section 4), we specifically consider the case when the
functional Φε is bounded and nonnegative Lipschitz, with Φε ¼ 0, if
xε
t ∈ΩT ⊂C 0,T½ � : 3� �

and Φε ¼ ∞ otherwise; and we further consider analysis on
the asymptotic estimates for exit probabilities from a given bounded open domain
in the small noise limit case.

Consider the following simple estimator for the quantity of interest in (36)

ρ εð Þ ¼ 1
N

XN
j¼1

exp � 1
ε
Φε xε jð Þ
� �� �

, (37)

where xε jð Þ� �N
j¼1 are N-copies of independent samples of xε. Here we remark

that such an estimator is unbiased in the sense that

ε
s,xε

s
ρ εð Þ½ � ¼ ε

s,xεs
exp � 1

ε
Φε xεð Þ

� �� �
, (38)

Moreover, its variance is given by

Var ρ εð Þð Þ ¼ 1
N

ε
s,xε

s
exp � 2

ε
Φε xεð Þ

� �� �
� ε

s,xεs
exp � 1

ε
Φε xεð Þ

� �� �2 !
: (39)

Then, we have the following for the relative estimation error

Rerr ρ εð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ρ εð Þð Þp
ε
s,xε

s
ρ εð Þ½ � (40)

which can be further rewritten as follows

Rerr ρ εð Þð Þ ¼ 1=
ffiffiffiffi
N
p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ ρ εð Þð Þ � 1
p

, (41)

where

Δ ρ εð Þð Þ ¼
ε
s,xε

s
exp � 2

εΦ
ε xεð Þ� �� �

ε
s,xεs

exp � 1
εΦ

ε xεð Þ� �� �2 : (42)

Note that, as we might expect, the relative estimation error may decrease with
increasing the number of the sample size N. However, from Varahhan’s lemma
(e.g., see [30]; see also [20, 28]), under suitable assumptions, we also have the
following conditions

lim sup
ε!0

ε logε
s,xε

s
exp � 1

ε
Φε xεð Þ

� �� �
¼ � inf

φ∈CsT s,T½ �,ndð Þ
φ sð Þ¼xs

I φð Þ þΦε φð Þf g (43)
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and

lim sup
ε!0

ε logε
s,xε

s
exp � 2

ε
Φε xεð Þ

� �� �
¼ � inf

φ∈CsT s,T½ �,ndð Þ
φ sð Þ¼xs

I φð Þ þ 2Φε φð Þf g (44)

where CsT s,T½ �,3� �
is the set of absolutely continuous functions from s,T½ � into

3, with 0≤ s≤ t≤T, and I φð Þ is the rate functional for the diffusion process xε
t .

From Jensen’s inequality, the above equations in (43) and (44) also imply the
following condition Δ ρ εð Þð Þ≥ 1.

4. Main results

In this section, we present our main result that asserts the relative error
decreases to zero as the small random perturbation tends to zero, which in turn
implies the uniform log-efficiency for the estimation problem in (36).

In what follows, let x̂ε
t be the solution to the following SDE

dx̂ε
t ¼ f t, x̂ε

t

� �
dtþ bσ t, x̂ε

t

� �
vε t, x̂ε

t

� �
dtþ ffiffiffi

ε
p

bσ t, x̂ε
t

� �
dWt,

with an initial condition x̂ε
s ¼ xε

s ,
(45)

where vε is an appropriate control function (which also depends on ε) to be
chosen so as to reduce the variance of the importance sampling estimator.

Let

zε ¼ exp � 1ffiffiffi
ε
p
ðT
s
hvε t, x̂ε

t

� �
, dWti � 1

2ε

ðT
s
vε t, x̂ε

t Þ
� ��2dt

���
�
:

�
(46)

Then, the corresponding importance sampling estimator is given by

ρ̂ εð Þ ¼ 1
N

XN
j¼1

exp � 1
ε
Φε x̂ε jð Þ� �� �

zε jð Þ, (47)

where x̂ε jð Þ
, zε jð Þ

� �n oN

j¼1
are N-copies of independent samples of x̂ε, zεð Þ. Note

that, for an appropriately chosen control function vε, the above importance sam-
pling estimator in (47) is an unbiased estimator for (37), i.e.,

ε
s,xε

s
ρ̂ εð Þ½ � ¼ ε

s,xεs
exp � 1

ε
Φε xεð Þ

� �� �

� ε
s,xε

s
ρ εð Þ½ �:

(48)

Moreover, the relative estimation error is given by

Rerr ρ̂ εð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ρ̂ εð Þð Þp
ε
s,xε

s
ρ̂ εð Þ½ � (49)

which can be rewritten as follows

Rerr ρ̂ εð Þð Þ ¼ 1=
ffiffiffiffi
N
p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ ρ̂ εð Þð Þ � 1
p

, (50)
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where

Δ ρ̂ εð Þð Þ ¼
ε
s,xεs

exp � 2
εΦ

ε x̂εð Þ� �� �
zεð Þ2

ε
s,xεs

exp � 1
εΦ

ε xεð Þ� �� �2 : (51)

Hence, in order to reduce the relative estimation error Rerr ρ̂ εð Þð Þ, we need to
control the term Δ ρ̂ εð Þð Þ in (50). Note that, from Jensen’s inequality, we have the
following condition

lim sup
ε!0

� ε logε
s,xε

s
exp � 2

ε
Φε x̂εð Þ

� �� �
≤ 2 lim

ε!0
� ε logε

s,xεs
exp � 1

ε
Φε x̂εð Þ

� �� �

(52)

which also implies Δ ρ̂ εð Þð Þ≥ 1 with lim ε!0Δ ρ̂ εð Þð Þ ¼ 1. Moreover, the statement
in (49) further implies the following

Rerr ρ̂ εð Þð Þ ¼ 1ffiffiffiffi
N
p exp o 1ð Þ=εð Þ as ε! 0, (53)

which is generally referred as asymptotic efficiency or optimality. In this paper, our
main objective is to choose appropriately the control function vε in (45), so that the
resulting importance sampling estimator achieves aminimum rate of error growth. For
this reason, we introduce the following standard definition from simulation theory
(e.g., see [29] or [12]) which is useful for interpreting our main result.

Definition 1 An importance sampling estimator of the form (47) is log-efficient
(i.e., asymptotic efficiency or optimal) if

lim
ε!0
� ε logΔ ρ̂ εð Þð Þ ¼ 0: (54)

Then, we state the following result as follows.
Proposition 3 Suppose that the importance sampling estimator ρ̂ εð Þ in (47),

with vε t,xð Þ ¼ �σT xð Þ∇xJε t,xð Þ, is uniformly log-efficient (i.e., asymptotic effi-
cient), where Jε t,xð Þ satisfies the corresponding dynamic programming equation in
ΩT with respect to the system in (45), with Jε ¼ Φε on ∂

∗ΩT. Then, there exits a set
⊂3 such that the Hausedorf dimension of c is zero and

lim
ε!0

Rerr ρ̂ εð Þð Þ ¼ 0, (55)

for all x∈.
Proof: The above proposition basically asserts that the relative error Rerr ρ̂ εð Þð Þ

decreases to zero as the small random perturbation level ε tends to zero. Note that,
if Jε s,xεð Þ satisfies the dynamic programming equation in (21), then, with
vε t,xð Þ ¼ �σT xð Þ∇xJε t,xð Þ, the importance sampling for the estimation problem in
(36), i.e., ε

s,xεs
exp � 1

εΦ
ε xεð Þ� �� �

, is uniformly log-efficient if the point s,xε
s

� �
is

contained in a region of sufficient regularity that encompasses almost all 3. As a
result of this, it only suffices to show that

lim
ε!0

ε
s,xε

s
exp � 2

εΦ
ε x̂εð Þ� �

zεð Þ2
h i

ε
s,xε

s
exp � 1

εΦ
ε xεð Þ� �� �2 ¼ 1 (56)

holds uniformly for all s,xε
s

� �
in any compact subset ΩT.
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Let us define following two functions

ψε
1 s,xε

s

� � ¼ �ε logε
s,xε

s
exp � 2

ε
Φε x̂εð Þ

� �� �
(57)

and

ψε
2 s,xε

s

� � ¼ �ε logε
s,xε

s
exp � 2

ε
Φε x̂εð Þ

� �
zεð Þ2

� �

¼ �ε logε
s,xεs

exp � 2
ε
Φε x̂εð Þ � 2ffiffiffi

ε
p
ðT
s
hvεðt, x̂ε

t Þ, dWti
��

� 1
ε

ðT
s
vε t, x̂ε

t

� ��� ��2dt
��

:

(58)

Note that, from the large deviations results for the diffusion process x̂ε
t (e.g., see

[21], Chapter 4, [30] or [27], pp.332–334; and see also the asymptotic estimates in
Proposition 2 of Section 3), then there exists a constant C, γ >0 and ε0, with
ε∈ 0, ε0ð Þ, such that

ε
0,xε0

exp � 1
ε
ðψε

2 τ̂ε, x̂ε
τ̂ε

� �� 2ψε
1ðτ̂ε, x̂ε

τ̂εÞÞ �
ð τ̂ε

0

X3
i, j¼1

ai,j xε
s

� � ∂2ψ1
ε s, x̂ε

s

� �
∂xi∂x j ds

 !" #

≤C exp �γ=2εð Þ,
(59)

where τ̂ε ¼ inf t> s j x̂ε
t ∈∂Ω

� �
∧T. Note that the above relation further implies

that

lim
ε!0

exp � 1
ε

ψε
2 0,x0ð Þ � 2ψ0

1 0,x0ÞÞð Þ ¼ exp
ðT
0

X3
i, j¼1

ai,j xε
s

� � ∂2ψ1
ε s, x̂ε

s

� �
∂xi∂x j ds

 !
:

  

(60)

Moreover, in the same way, we can also show the following relation

lim
ε!0

exp � 1
ε

ψε
1 0,x0ð Þ � ψ0

1 0,x0ÞÞð Þ ¼ exp
ðT
0

X3
i, j¼1

ai,j xε
s

� � ∂2ψ1
ε s, x̂ε

s

� �
∂xi∂x j ds

 !
:

  

(61)

Finally, if we combine the above two equations, then we have the condition
following

lim
ε!0

exp � 1
ε
ðψε

2 0,x0ð Þ � ψε
1ð0,x0ÞÞ

� �
¼ 1, (62)

which implies the uniform log-efficiency for the estimation problem in (36).
This completes the proof of Proposition 3.

Remark 2 The above proposition basically ensures a minimum relative estima-
tion error in the small noise limit case for the estimation problem in (36). Note that,
if Jε t,xεð Þ satisfies the dynamic programming equation in (21) (i.e., if it is the
solution for the family of stochastic control problems that are associated with the
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underlying distributed system with small random perturbation). Then, with
vε t,xð Þ ¼ �σT xð Þ∇xJε t,xð Þ, one can provide a numerical computational framework
for constructing efficient importance sampling estimators, with an exponential
variance decay rate � based on an exponentially-tilted biasing distribution – for
rare-event simulations involving the behavior of the diffusion process xε.

Remark 3 Here, our primary intent is to provide a theoretical framework, rather
than considering some specific numerical simulation results with respect to system
parameters (such as the propagation rate β and recovery rate μ of the network),
which is an ongoing research area.

5. Concluding remarks

In this chapter, we presented a mathematical framework that provides a new
insight for understanding the spread of traffic congestions in an urban network
system. In particular, we considered a dynamical model, based on the well-known
susceptible-infected-recovered (SIR) model from mathematical epidemiology, with
small random perturbations, that describes the process of traffic congestion propa-
gation and dissipation in an urban network system. Moreover, we also provided the
asymptotic probability estimate based on the Freidlin-Wentzell theory of large
deviations for certain rare events that are difficult to observe in the simulation of an
urban traffic network dynamic, where such a framework provides a computational
algorithm for constructing efficient importance sampling estimators for rare event
simulations of certain events associated with the spread of traffic congestions in the
traffic network.
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Chapter 8

Perturbation Expansion to the
Solution of Differential Equations
Jugal Mohapatra

Abstract

The main purpose of this chapter is to describe the application of perturbation
expansion techniques to the solution of differential equations. Approximate
expressions are generated in the form of asymptotic series. These may not and often
do not converge but in a truncated form of only two or three terms, provide a useful
approximation to the original problem. These analytical techniques provide an
alternative to the direct computer solution. Before attempting to solve these prob-
lems numerically, one should have an awareness of the perturbation approach.

Keywords: perturbation methods, asymptotic expansion, boundary layer,
principle of least degeneracy, inner and outer expansion

1. Introduction

The governing equations of physical, biological and economical models often
involve features which make it impossible to obtain their exact solution. For
instance, problems where we observe “a complicated algebraic equations”, “the
occurrence of a complicated integral”, in case of differential equations (DE), “a
varying coefficients or nonlinear term” sometimes problems with an awkwardly
shaped boundary are tough to solve with the limited methods for finding analytical
solutions. The main purpose of this chapter is to describe the application of pertur-
bation expansion techniques to the solution of DE. Approximate expressions are
generated in the form of asymptotic series. These may not and often do not con-
verge but in a truncated form of only two or three terms, provide a useful approx-
imation to the original problem. These analytical techniques provide an alternative
to the direct computer solution. Before attempting to solve these DE numerically,
one should have an awareness of the perturbation approach. An example of this
occurs in boundary layer problems where there are regions of rapid change of
quantities such as fluid velocity, temperature or concentration. Appropriate scaling
of the boundary layer dimension is required before a numerical solution can be
generated which will capture the behavior in the rapidly changing region.

When a large or small parameter occurs in a mathematical model of a process
there are various methods of constructing perturbation expansions for the solution
of the governing equations. Often the terms in the perturbation expansions are
governed by simpler equations for which the exact solution techniques are avail-
able. Even if exact solutions cannot be obtained, the numerical methods used to
solve the perturbation equations approximately are often easier to construct than
the numerical approximation for the original governing equation.
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First, we consider a model problem for which an exact solution is available
against which the perturbation expansion can be compared. A feature of the per-
turbation expansions is that they often form divergence series. The concept of an
asymptotic expansion will be introduced and the value of a truncated divergent
series will be demonstrated.

2. Projectile motion

This example studies the effect of small damping on the motion of a particle.
Consider a particle of mass M which is projected vertically upward with an initial
speed U0. Let U denote the speed at some general time T. If air resistance is
neglected then the only force acting on the particle is gravity, �Mg, where g is the
acceleration due to gravity and the minus sign occurs because the upward direction
is chosen to be the positive direction. Newton’s second law governs the motion of
the projectile, i.e.,

M
dU
dT
¼ �Mg: (1)

Integrating (1), we obtain the solution U ¼ C� gT. The constant of integration
is determined from the initial condition U 0ð Þ ¼ U0, so that

U ¼ U0 � gT: (2)

On defining the non-dimensional velocity v, and time t, by v ¼ U=U0 and
t ¼ gT=U0, the governing equation becomes

dv
dt
¼ �1, v 0ð Þ ¼ 1, (3)

with the solution v tð Þ ¼ 1� t.
Taking account of the air resistance, and is included in the Newton’s second law

as a force dependent on the velocity in a linear way, we obtain the following linear
equation

M
dU
dT
¼ �Mg � KU, (4)

where the drag constant K is the dimensions of masa/time. In the non-
dimensional variables, it becomes

dv
dt
¼ �1� KU0

Mg

� �
v: (5)

Let us denote the dimensionless drag constant by ε, then the governing
equation is

dv
dt
¼ �1� εv, v 0ð Þ ¼ 1, (6)

where ε>0 is a “small” parameter and the disturbances are very “small”. The
damping constant K in (4) is small, since K has the dimensions of mass/time and a
small quantity in units of kilograms per second.
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2.1 Perturbation expansion

It is possible to solve (6) exactly since it is of variables separable form. Here, we
solve by an iterative process, known as perturbation expansion for the solution.

Let v ið Þ denotes the ith iterate, which is obtained from the equation

dv ið Þ

dt
¼ �1� εv i�1ð Þ, v ið Þ 0ð Þ ¼ 1, (7)

The justification for this iterative scheme is that the term εv involves the small
multiplying coefficient ε, and so the term itself may be expected to be small. Thus,
the term εv ið Þ which should appear on the RHS of (7) to make it exact, may be
replaced by εv i�1ð Þ with an error which is expected to be small.

The first iterate is obtained by neglecting the perturbation, thus

dv 0ð Þ

dt
¼ �1, v 0ð Þ ¼ 1:

This is known as the unperturbed problem, and direct integration yields

v 0ð Þ ¼ 1� t:

The next iterate v 1ð Þ, satisfies

dv 1ð Þ

dt
¼ �1� ε 1� tð Þ, v 1ð Þ ¼ 1:

and integration yields

v 1ð Þ ¼ 1� t 1þ εð Þ þ 1
2
εt2

Similarly, v 2ð Þ satisfies

dv 2ð Þ

dt
¼ �1� ε 1� t 1þ εð Þ þ 1

2
εt2

� �
, v 2ð Þ ¼ 1:

Direct integration yields the solution

v 2ð Þ ¼ 1� t 1þ εð Þ þ ε 1þ εð Þ t
2

2
� 1
6
ε2t3:

Rearranging the terms in these iterates in ascending powers of ε, we obtain

v 0ð Þ ¼ 1� t,

v 1ð Þ ¼ 1� tþ ε
t2

2
� t

� �
,

v 2ð Þ ¼ 1� tþ ε
t2

2
� t

� �
þ ε2

t2

2
� t3

6

� �
:

(8)

Clearly as the iteration proceeds the expressions are refined by terms which
involve increasing powers of ε. These terms become progressively smaller since ε is
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a small parameter. This is an example of a perturbation expansion. It will often be
the case that perturbation expansions involve ascending integer powers of the small
parameter, i.e., ε0, ε1, ε2,⋯

� �
. Such a sequence is called an asymptotic sequence.

Although this is the most common sequence which we shall meet, it is by no means
unique. Examples of other asymptotic sequences are ε1=2, ε, ε3=2, ε2,⋯

� �
and

ε0, ε2, ε4,⋯
� �

. In each case the essential feature is that subsequent terms tend to
zero faster than previous terms as ε! 0.

An alternative procedure to that of developing the expansion by iteration is to
assume the form of the expansion at the outset. Thus, if we assume that the
perturbation expansion involves the standard asymptotic sequence ε0, ε1, ε2,⋯

� �
,

then the solution v, which depends on the variable t, and the parameter ε, is
expressed in the form

v t; εð Þ ¼ ε0v0 tð Þ þ ε1v1 tð Þ þ ε2v2 tð Þ þ⋯: (9)

The coefficients v0 tð Þ, v1 tð Þ,⋯ of powers of ε are functions of t only. Substituting
expansion (9) in the governing Eq. (6) yields the following

dv0
dt
þ ε

dv1
dt
þ ε2

dv2
dt
þ⋯ ¼ �1� εv0 � ε2v1 �⋯

v0 0ð Þ þ εv1 0ð Þ þ ε2v2 0ð Þ þ⋯ ¼ 1:

8<
: (10)

Thus, the coefficients of powers of ε can be equated on the left– and right–hand
sides of (10):

ε0 :
dv0
dt
¼ �1, v0 0ð Þ ¼ 1,

ε1 :
dv1
dt
¼ �v0, v1 0ð Þ ¼ 0

ε2 :
dv2
dt
¼ �v1, v2 0ð Þ ¼ 0, etc:

8>>>>>>><
>>>>>>>:

(11)

The proof of validity of this fundamental procedure can be developed by first
setting ε ¼ 0 in (10) which yields the first equation of (11). This result allows the
first member of the left– and right–hand side of Eq. (10) to be removed. Then, after
dividing the remaining terms by ε we obtain the equation

dv1
dt
þ ε

dv2
dt
þ⋯ ¼ �v0 � εv1 �⋯

This is valid for all nonzero values of ε so that on taking the limit as ε! 0 we
obtain the second equation of (11). Repeating the procedure, we obtain the other
equations.

Integrating the equations in (11), we obtain

v0 ¼ 1� t, v1 ¼ t2=2� t, v2 ¼ t2=2=� t3=6:

Using these values in (9), we obtain that

v t; εð Þ ¼ 1� tþ ε t2 � t
� �þ ε2 t2=2� t3=6

� �þ⋯ (12)

This is the same as the expansion (8) which is generated by iteration.
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The IVP (6) can be solved exactly as

v tð Þ ¼ 1þ εð Þe�εt � 1½ �ε�1:

The perturbation expansion can be obtained from (12) by replacing the expo-
nential function by its Maclaurin expansion, i.e.,

v tð Þ ¼ 1
ε

1� εtþ ε2t2

2
� ε3t3

6
þ⋯þ ε� ε2tþ ε3t2

2
þ⋯� 1

� �
(13)

¼ 1� tð Þ þ ε
t2

2
� t

� �
þ ε2

t2

2
� t3

6

� �
þ⋯ (14)

This is the same as the expansion (12). Thus, the perturbation expansion
approach is justified in this case. One can refer the books [1, 2].

3. Asymptotics

The letters O and o are order symbols. They are used to describe the rate at
which functions approach limit values. We will consider the types of limit values,
namely zero, a finite number but nonzero and infinite.

If a function f xð Þ approaches a limiting value at the same rate of another
function g xð Þ as x! x0, then we write

f xð Þ ¼ O g xð Þð Þ, as x! x0 (15)

The functions are said to be of the same order as x! x0. The test for this is the
limit of the ratio. Thus, if lim

x!x0

f xð Þ
g xð Þ ¼ C, where C is finite, then we say (15) holds.

For example, we have the following functions:

x2 ¼ O xð Þ, ∣x∣< 2,

sin xð Þ ¼ O
ffiffiffi
x
p� �

, x! 0,

sin xð Þ ¼ O xð Þ, �∞< x<∞:

The expression

f xð Þ ¼ o g xð Þð Þ, as x! x0 (16)

means that lim
x!x0

f xð Þ
g xð Þ ¼ 0: This is a stronger assertion that the corresponding O–

formula. The relation (16) implies the relation (15), as convergence implies bound-
edness from a certain point onwards.

We have the following functions satisfy the o–relation:

cos xð Þ ¼ 1þ o xð Þ, ∣x∣< 2,

ex ¼ 1þ o xð Þ, x! 0

n! ¼ e�n � nn
ffiffiffiffiffiffiffiffi
2πn
p

1þ o 1ð Þð Þ, n! ∞:

3.1 Asymptotic expansions

Consider the expansion
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f xð Þ ¼ a0 þ a1
x
þ a2
x2
þ⋯þ aN

xN
þ RN, (17)

is an asymptotic expansion as x! ∞, if, for any N,

RN ¼ O
1

xNþ1

� �
, as x! ∞ (18)

The following expansion is used when (17) and (18) hold,

f xð Þ �
X∞
n¼0

an
xn

, as x! ∞ (19)

Here, lim
n!∞

RN ¼ 0, for any value of N.

The sequence 1, 1=x, 1=x2,⋯
� �

is an asymptotic sequence as x! ∞. The charac-
teristic feature of such sequences is that each member is dominated by the previous
member. In constructing examples it is easier to deal with the limit zero than any
other. Thus, for the case x! ∞, we let ε ¼ 1=x, which for x! x0, we let ε ¼ x� x0
so that without loss of generality we may confirm our attention to the limit ε! 0.
The standard asymptotic sequence is 1, ε, ε2,⋯

� �
as ε! 0. If we let δn εð Þ represent

members of an asymptotic sequence δ0 εð Þ, δ1 εð Þ,⋯f g as ε! 0, then the following
condition must hold

δnþ1 εð Þ ¼ o δn εð Þð Þ, as ε! 0:

Some examples of asymptotic sequences are

i. 1, sin εð Þ, sin εð Þð Þ2, sin εð Þð Þ3,⋯
n o

, here we have

lim
ε!0

δnþ1
δn
¼ lim

ε!0
sin εð Þ ¼ 0:

ii. 1, ln 1þ εð Þ, ln 1þ ε2ð Þ, ln 1þ ε3ð Þ,⋯� �
, with δ0 ¼ 1, δn ¼ ln 1þ εnð Þn≥ 1,

we have

lim
ε!0

δ1
δ0
¼ lim

ε!0
ln 1þ εð Þ ¼ 0,

lim
ε!0

δnþ1
δn
¼ lim

ε!0

ln 1þ εnþ1ð Þ
ln 1þ εnð Þ ¼ lim

ε!0

εnþ1 þ O ε2nþ2ð Þ
εn þO ε2nð Þ ¼ 0:

The general expression for an asymptotic expansion of a function f εð Þ, in terms
of an asymptotic sequence δn εð Þ is

f xð Þ �
X∞
n¼0

anδn εð Þ, as ε! 0, (20)

where the coefficients an are independent of ε. The expression (20) involving
the symbol �, means that for all N,

f xð Þ ¼
XN
n¼0

anδn εð Þ þ RN, (21)
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where

RN ¼ O δNþ1 εð Þ½ �, as ε! 0, (22)

an ¼ lim
ε!0

f εð Þ �PN�1
n¼0anδn εð Þ

δN εð Þ

 !
: (23)

If a function possesses an asymptotic expansion involving the sequence
δ0 εð Þ, δ1 εð Þ,⋯f g then the coefficients an of the expansion (21) given by the expres-

sion (24) are unique. However, another function may share the same set of coeffi-
cients. Thus, while functions have unique expansions, an expansion does not
correspond to a unique function.

Consider a function f x; εð Þ, which depends on both an independent variable x,
and a small parameter ε. Suppose that f x; εð Þ is expanded using an asymptotic
sequence δn εð Þf g,

f x; εð Þ ¼
XN
n¼0

an xð Þδn εð Þ þ RN x; εð Þ: (24)

The coefficients of the gauge functions δn εð Þ are functions of x, and the remain-
der after N terms is a function of both x and ε. For this to be an asymptotic
expansion, we require

RN x; εð Þ ¼ O δNþ1 εð Þ½ �, as ε! 0: (25)

Refer [3, 4] for more details. For (24) to be a uniform asymptotic expansion the
ultimate proportionality between RN and δNþ1 must be bounded by a number
independent of x, i.e.,

∣RN x; εð Þ∣ ≤K∣δNþ1 εð Þ∣, (26)

for ε in the neighborhood near zero, where K is a fixed constant.
An example of a uniform asymptotic expansion is f x; εð Þ ¼ 1

1�ε sin xð Þ :
An example of a nonuniform expansion is

f x; εð Þ �
XN
n¼0

xnεn þ RN x; εð Þ, as ε! 0: (27)

Here, one cannot find a fixed K which satisfy ∣RN ∣ ≤K∣εNþ1∣, because for any
choice of K, x can be chosen so that xNþ1 exceeds this value.

3.2 Nonuniformity

The expansion (27) becomes nonuniform when subsequent terms are no longer
small corrections to previous terms. This occurs when subsequent terms are of the
same order or of dominant order than previous terms. Subsequent terms dominate
previous terms for larger x, for example, when x ¼ O 1=ε2ð Þ. The expansion is valid
for x ¼ O 1ð Þ since then subsequent terms decrease by a factor of ε. The expansion
remains valid for large x, provided x is not as large as 1=ε. For instance, the
expansion is valid for x ¼ O 1=

ffiffiffi
ε
pð Þ, as ε! 0.
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The critical case is such that subsequent terms are of the same order. This
determines the region of nonuniformity. In (27), the region of nonuniformity
occurs when εx ¼ O 1ð Þ, i.e., x ¼ O ε�1ð Þ, as ε! 0.

3.2.1 Sources of nonuniformity

There are two common reasons for nonuniformities in asymptotic expansions,
they are

1.Infinite domains which allow long-term effects of small perturbations to
accumulate.

2.Singularities in governing equations which lead to localized regions of rapid
change.

Consider the nonlinear Duffing equation

d2u
dt2
þ uþ εu3 ¼ 0, t∈ 0,∞½ Þ

u 0ð Þ ¼ a,
du
dt

0ð Þ ¼ 0:

8>><
>>:

(28)

Suppose the solution may be expanded using the standard asymptotic sequence

u t; εð Þ � u0 tð Þ þ εu1 tð Þ þ ε2u2 tð Þ þ⋯: (29)

On substituting this in (28) and in the initial conditions, we get

d2u0
dt2
þ ε

d2u1
dt2
þ⋯þ u0 þ εu1 þ⋯þ εu30 þ⋯ � 0,

u0 0ð Þ þ εu1 0ð Þ þ⋯ ¼ aþ 0 � εþ⋯,
du0
dt

0ð Þ þ ε
du1
dt

0ð Þ þ⋯ ¼ 0þ 0 � εþ⋯:

8>>>>><
>>>>>:

Equating like of powers of ε on both sides, we get

O 1ð Þ : d2u0
dt2
þ u0 ¼ 0,

u0 0ð Þ ¼ a,
du0
dt

0ð Þ ¼ 0,

9>>=
>>;

(30)

and

O εð Þ : d2u1
dt2
þ u1 ¼ �u30,

u1 0ð Þ ¼ 0,
du1
dt

0ð Þ ¼ 0:

9>>=
>>;

(31)

Solving Eqs. (30) and (31), we obtain

u � a cos tð Þ þ ε
a3

32
cos 3tð Þ � cos tð Þð Þ � 3a3

8
t sin tð Þ

� �
þ⋯: (32)
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The term t sin tð Þ in the expansion (32) is called a secular term. It is an oscillating
term of growing amplitude. All other terms are oscillating of fixed amplitude. The
secular term leads to a nonuniformity for large t. The region of nonuniformity is
obtained by equating the order of the first and second terms,

cos tð Þ ¼ O εt sin tð Þð Þ, as ε! 0:

The trigonometric functions are treated as O 1ð Þ terms. Thus, the region of
nonuniformity is t ¼ O 1=εð Þ, as ε! 0.

The second common source of nonuniformities is associated with the presence
of singularities. Consider, the following initial-value problem:

ε
dy
dx
þ y ¼ e�x, x>0

y 0ð Þ ¼ 2,

8><
>:

(33)

where ε>0 is a small parameter. Suppose y has the expansion

y � y0 xð Þ þ εy1 xð Þ þ ε2y2 xð Þ þ⋯: (34)

Substituting (34) in (33), we have

ε
dy0
dx
þ ε

dy1
dx
þ⋯

� �
þ y0 þ εy1 þ⋯
� � ¼ e�x,

y0 0ð Þ þ εy1 0ð Þ þ⋯ ¼ 2:

8><
>:

(35)

Equating coefficients of like powers of ε on both sides, we get

O 1ð Þ : y0 ¼ e�x, y0 0ð Þ ¼ 2,

O εð Þ : y1 ¼ �
dy0
dx
¼ e�x, y1 0ð Þ ¼ 0,

O ε2
� �

: y2 ¼ �
dy1
dx
¼ e�x, y2 0ð Þ ¼ 0:

Clearly, y0 cannot satisfy the boundary condition y0 0ð Þ ¼ 2 as no constant of
integration is available because the equation determining y0 is an algebraic equation
not a differential equation, and no additional conditions are required. Thus, we have
obtain the expression

y � e�x þ εe�x þ ε2e�x þ⋯, (36)

but the initial condition y 0ð Þ ¼ 2 has not been satisfied.
The unperturbed problem, obtained by setting ε ¼ 0 is not a DE, but an algebraic

equation y ¼ e�x. This cannot satisfy an arbitrarily imposed condition at x ¼ 0. For
any nonzero value of ε, (33) becomes a first-order DE which can satisfy an initial
condition. This is an example of a singular perturbation problem (SPP), where the
behavior of the perturbed problem is very different from that of the unperturbed
problem.

Thus, the perturbation expansion (36) is a good approximation of the exact
solution away from the region x ¼ 0. To see this, let us compare (36) with the
following exact solution:

157

Perturbation Expansion to the Solution of Differential Equations
DOI: http://dx.doi.org/10.5772/intechopen.94173



yex ¼
1� 2ε
1� ε

e�x=ε þ e�x

1� ε
¼ 1� ε� ε2 �⋯
� �

e�x=ε
h i

þ 1þ εþ ε2 þ⋯
� �

e�x
� �

:

(37)

The perturbation expansion (36) generates the second member of (37), but not
the first member. The coefficient e�x=εÞ is a rapidly varying function which takes the
value of unity at x ¼ 0, and rapidly decays to zero for x>0. Clearly, y0 provides a
good approximation away from the region x ¼ 0. The region near x ¼ 0 is called the
boundary layer. These regions usually occur when the highest order derivative of a
DE is multiplied by a small parameter. The unperturbed problem, obtained by
setting ε ¼ 0 is of lower order and consequently cannot satisfy all the boundary
conditions. This leads to boundary layer regions where the solution varies rapidly in
order to satisfy the boundary condition.

Boundary layers are regions of nonuniformity in perturbation expansions of the
form (36).

4. Boundary layer

Boundary layers are regions in which a rapid change occurs in the value of a
variable. Some physical examples include “the fluid velocity near a solid wall”, “the
velocity at the edge of a jet of fluid”, “the temperature of a fluid near a solid wall.”
Ludwig Prandtl pioneered the subject of boundary layer theory in his explanation of
how a quantity as small as the viscosity of common fluids such as water and air
could nevertheless play a crucial role in determining their flow. The viscosity of
many fluids is very small and yet taking account of this small quantity is vital. The
essential point is that the viscous term involves higher order derivatives so that its
omission necessitates the loss of a boundary condition. The ideal flow solution allow
slip to occur between a solid and fluid. In reality the tangential velocity of a fluid
relative to a solid is zero. The fluid is brought to rest by the action of a tangential
stress resulting from the viscous force.

Mathematically the occurrence of boundary layers is associated with the pres-
ence of a small parameter multiplying the highest derivative in the governing
equation of a process. A straightforward perturbation expansion using an asymp-
totic sequence in the small parameter leads to differential equations of lower order
than the original governing equation. In consequence not all of the boundary and
initial conditions can be satisfied by the perturbation expansion. This is an example
of what is commonly referred to as a singular perturbation problem. The technique
for overcoming the difficulty is to combine the straightforward expansion, which is
valid away from the layer adjacent to the boundary. The straightforward expansion
is referred to as the outer expansion. The inner expansion associated with the bound-
ary layer region is expressed in terms of a stretched variable, rather than the original
independent variable, which takes due account of the scale of certain derivative
terms. The inner and outer expansions are matched over a region located at the edge
of the boundary layer. The technique is called the method of matched asymptotic
expansions.

Consider the following two-point boundary value problem:

ε
d2u
dx2
þ du
dx
¼ 2xþ 1, x∈ 0, 1ð Þ

u 0ð Þ ¼ 1, u 1ð Þ ¼ 4,

8>><
>>:

(38)
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where ε>0 is a small parameter. If we assume that u possesses a straightforward
expansion in powers of ε,

u x; εð Þ � u0 xð Þ þ εu1 xð Þ þ ε2u2 xð Þ þ⋯, (39)

then the equations associated with powers of ε leads to

O 1ð Þ : du0
dx
¼ 2xþ 1, (40)

O εnð Þ : dun
dx
¼ � d2un�1

dx2
, for n ¼ 1, 2, 3,⋯: (41)

and the boundary conditions require

u0 0ð Þ þ εu1 0ð Þ þ⋯ � 1þ ε � 0þ⋯,

u0 1ð Þ þ εu1 1ð Þ þ⋯ � 4þ ε � 0þ⋯,

which leads to

u0 0ð Þ ¼ 1, u0 1ð Þ ¼ 4,

un 0ð Þ ¼ 0, un 1ð Þ ¼ 0, for n ¼ 1, 2,⋯:
(42)

Equation (42) require that each un xð Þ satisfy two boundary conditions. This is in
general impossible since Eqs. (41) and (42) governing each un are of first-order.
Now the question is which one of the boundary condition has to be taken into
account. We will find out that the boundary condition at x ¼ 0 must be abandoned
and consequently the expansion (39) is invalid near x ¼ 0.

The general solution of (42) is u0 xð Þ ¼ x2 þ xþ C, using the boundary condition
u0 1ð Þ ¼ 4, we obtain

u0 xð Þ ¼ x2 þ xþ 2:

From (42), we obtain the equations

du1
dx
¼ �2, u1 1ð Þ ¼ 0,

du2
dx
¼ 0, u2 1ð Þ ¼ 0,

and its solutions are

u1 xð Þ ¼ �2 x� 1ð Þ, un xð Þ ¼ 0, n≥ 2:

Therefore, the outer expansion is

uout x; εð Þ ¼ x2 þ xþ 2
� �þ ε2 1� xð Þ, (43)

where ‘out’ label is used to indicate that the solution is valid away from the
region near x ¼ 0. Clearly uout fails to satisfy the boundary condition at x ¼ 0. The
reason why the outer solution is of use is that it closely follows the exact solution of
the problem except in a narrow region near x ¼ 0, where the exact solution changes
rapidly in order to satisfy the boundary condition.
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The exact solution of the BVP (38) can be obtained as

u xð Þ ¼ Aþ Be�x=ε þ x2 þ x 1� 2εð Þ: (44)

The constants A and B are determined from the boundary conditions:

Aþ B ¼ 1,

Aþ Be�1=ε þ 2� 2ε ¼ 4

�
(45)

We know that e�1=ε ¼ o εN
� �

, as ε! 0, for all N. This means that the exponential
term tends to zero faster than any power of ε, as ε! 0. It is called a transcendentally
small term (T.S.T.) and can always be neglected since its contribution is asymptot-
ically always less than any power of ε. Thus, (45) gives

A ¼ 2 1þ εð Þ, B ¼ � 1þ 2εð Þ,

and the exact solution is

uex xð Þ ¼ 2 1þ εð Þ � 1þ 2εð Þe�x=ε þ x2 þ x 1� 2εð Þ, (46)

after rearranging the terms in asymptotic order, we obtain

uex xð Þ ¼ x2 þ xþ 2
� �� e�x=ε þ ε 2 1� xð Þ � 2e�x=ε

h i
: (47)

Comparing the exact solution with the outer expansion shows that the terms
involving e�x=ε are absent. The effect of these terms is negligible when x ¼ O 1ð Þ.
But, when x ¼ O εð Þ, then e�xε ¼ O 1ð Þ. It is clear that as ε! 0 the region in which
the outer solution departs from the exact solution becomes arbitrarily close to x ¼ 0
with a thickness O εð Þ. This region is called the boundary layer.

The behavior of the exact solution and the zeroth-order term of the outer
expansion are plotted in Figure 1 for various values of ε.

Figure 1.
Exact solution of (38) for various values of ε.
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By differentiating the leading order term uex0 , of the exact solution, we have

uex0 ¼ x2 þ xþ 2� e�x=ε

duex0
dx
¼ 2xþ 1þ 1

ε
e�x=ε

d2uex0
dx2

¼ 2� 1
ε2
e�x=ε

Outside the boundary layer, i.e., for x ¼ O 1ð Þ, we have e�x=ε ¼ o εN
� �

, ∀N, so
ε�1e�x=ε and ε�2e�x=ε are also transcendentally small. Within the boundary layer
when x ¼ O εð Þ, we have e�x=ε ¼ O 1ð Þ. The order of uex0 and its derivatives are
given below:

Outside BL Inside BL

uex0 O 1ð Þ O 1ð Þ

duex0
dx

O 1ð Þ O
1
ε

� �

d2uex0
dx2

O 1ð Þ O
1
ε2

� �

This indicates that x is the appropriate independent variable outside the
boundary layer where uex0 and its derivatives are of O 1ð Þ quantities. However,
within the boundary layer the appropriately scaled independent variable is
s ¼ x=ε, then

du
dx
¼ ε�1

dv
ds

,
d2u
dx2
¼ ε�2

d2v
ds2

,

so that within the boundary layer

du
dx
¼ O 1ð Þ, and

d2u
dx2
¼ O 1ð Þ:

The variable s ¼ x=ε is called a stretched variable. The differential equations
becomes

d2v
ds2
þ dv

ds
¼ εþ 2ε2s: (48)

We assume a boundary layer expansion, called the inner expansion of the form

v s; εð Þ � v0 sð Þ þ εv1 sð Þ þ⋯: (49)

The inner expansion will satisfy the boundary condition at x ¼ s ¼ 0 namely
v0 s ¼ 0ð Þ ¼ 1 giving v0 0ð Þ ¼ 1, and vn 0ð Þ ¼ 0, n ¼ 1, 2,⋯. Substituting (49) into
the DE (48), we obtain the following set of equations:
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O 1ð Þ : d2v0
ds2
þ dv0

ds
¼ 0, v0 0ð Þ ¼ 1

O εð Þ : d2v1
ds2
þ dv1

ds
¼ 1, v1 0ð Þ ¼ 0

O ε2ð Þ : d2v2
ds2
þ dv2

ds
¼ 2s, v1 0ð Þ ¼ 0

O εnð Þ : d2vn
ds2
þ dvn

ds
¼ 0, vn 0ð Þ ¼ 0, n ¼ 3, 4,⋯

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(50)

with solutions

v0 ¼ Aþ 1� Að Þe�s

v1 ¼ B� Be�s þ s

v2 ¼ C� Ce�s þ s2 � 2s

vn ¼ Dn �Dne�s, n ¼ 3, 4,⋯

8>>>>><
>>>>>:

(51)

The boundary condition at x ¼ 1 cannot be used to determine the constants
appearing in these solutions because the DEs (50) are only valid in the boundary
layer. The constants in (51) are determined by matching the inner and outer
expansions. We shall first restrict our attention to matching the leading order
expansions u0 and v0. The method which we shall apply is Prandtl’s matching
condition.

The leading order terms in the ‘inner’ and ‘outer’ expansions are to be matched
at the ‘edge of the boundary layer’. Of course there is no precise edge of the
boundary layer, we simply know that it has thickness of order O εð Þ. A plausible
matching procedure would be to equate u0 and v0 at a value of x such that the
region of rapid change has passed. We might choose to equate the terms at the point
x ¼ 5ε. The leading order expansions are

u0 ¼ x2 þ xþ 2 v0 ¼ Aþ 1� Að Þe�s:

Equating at x ¼ 5ε gives the following:

A ¼ 2þ 5εþ 25ε2 � e�5

1� e�5
:

If, instead we choose to match at x ¼ 6ε, then we obtain

A ¼ 2þ 6εþ 36ε2 � e�6

1� e�6
:

These two expressions differ in the argument of the exponential and differ
algebraically with 5ε replaced by 6ε. The exponential functions are approaching
transcendentally small values so that their contribution can be neglected. The alge-
braic difference is of O εð Þ. Thus, the arbitrariness in the decision of the point at
which we choose to equate the expansions leads to a difference of O εð Þ. But we are
only dealing with leading order expansions anyway. The difference between the
exact solution and the leading order expansions will of O εð Þ so that an arbitrariness
in v0 and u0 of O εð Þ is immaterial. Rather than choose between, for example, 5ε and
6ε as the value of x to evaluate u0 we may take the value at x ¼ 0, since
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u0 x ¼ O εð Þ½ � ¼ u0 0ð Þ þ O εð Þ,

where the remainder is uniformly O εð Þ since the gradient of u0 is O 1ð Þ. For the
inner expansion we are to ensure that the rapidly varying function has achieved its
asymptotic value at the edge of the boundary layer. This means that the term e�x=ε

should be replaced by zero. This can be achieved by taking the limit s! ∞. Thus,
rather than choosing a specific point to equate the inner and outer terms er are led
to the following Prandtl’s matching condition:

lim
x!0

u0 xð Þ ¼ lim
s!∞

v0 sð Þ: (52)

The limit s! ∞ may appear rather dangerous since although it certainly
removes the exponential term it could lead to an algebraically unbounded term. For
example, if v0 ¼ Asþ 1� Að Þe�s, then the first member would be unbounded as
s! ∞. This possibility can be eliminated since the inner expansion must be of a
form which varies rapidly for x ¼ O εð Þ but not for x ¼ O 1ð Þ, i.e., not for s! ∞. In
practice, if the boundary layer has been properly located and the correct inner
variable is used then Prandtl’s matching condition is valid and elegantly avoids the
need to choose an arbitrary ‘edge’ of the boundary layer.

Applying these conditions to the current example leads to

lim
x!0

x2 þ xþ 2
� � ¼ lim

s!∞
Aþ 1� Að Þe�s½ �,

which yields A ¼ 2. Thus the leading order terms in the expansion solutions are

Outer region : u0 ¼ x2 þ xþ 2, for x ¼ O 1ð Þ

Inner region : v0 ¼ 2� e�x=ε, for x ¼ O εð Þ

To prove that these are valid leading terms we consider uex:

If x ¼ O 1ð Þ, then uex0 ¼ x2 þ xþ 2þ T:S:T:

If x ¼ O εð Þ, then uex0 ¼ 2� e�x=ε þO εð Þ

We conclude that the matching condition has correctly predicted the leading
order terms.

4.1 Composite expansion

As single composite expression for these leading order terms can be constructed
using the combination

ucomp
0 ¼ u0 þ v0 � umatch

0 , (53)

where umatch
0 is given by (52). Then,

for x ¼ O 1ð Þ, v0 ¼ umatch
0 þ T:S:T:, so that ucomp

0 ¼ umatch
0 þ T:S:T:

for x ¼ O εð Þ, u0 ¼ umatch
0 þ O εð Þ, so that ucomp

0 ¼ v0 þ O εð Þ

For the current example, umatch
0 ¼ 2, so the composite expansion is
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umatch
0 ¼ x2 þ xþ 2� e�x=ε: (54)

Prandtl’s matching condition can only be used for the leading order terms in the
asymptotic expansions.

The outer, inner and composite expansions of the BVP (38) are presented in
Figures 2 and 3 for different values of ε. From these figures, one can easily identify
the need and efficiency of the composite expansion.

4.2 Boundary layer location

Consider the following linear DE

ε
d2u
dx2
þ a xð Þ du

dx
þ b xð Þu ¼ c xð Þ, x∈ x1, x2ð Þ: (55)

The following general statements can be made about the boundary layer location
and the nature of the inner expansion.

Case I. If a xð Þ>0 throughout x1, x2ð Þ, then the boundary layer will occur at
x ¼ x1. The stretching transformation will be s ¼ x� x1ð Þ=ε, and the one-term inner
expansion will satisfy

Figure 2.
Outer, inner and composite expansions. (a) For ε = 0.2; (b) For ε = 0.1.

Figure 3.
Outer, inner and composite expansions. (a) For ε = 0.05; (b) For ε = 0.025.
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d2v0
ds2
þ a x1ð Þ dv0ds ¼ 0:

The solution of this equation is

v0 ¼ Aþ Bea x1ð Þ x�x1ð Þ=ε,

where Aþ B ¼ u x ¼ x1ð Þ. The other condition to determine the constants A and
B is obtained by matching with the value of the outer expansion at x ¼ x1.

Case II. If a xð Þ<0 throughout x1, x2ð Þ, then the boundary layer will occur at
x ¼ x2. The stretching transformation will be s ¼ x2 � xð Þ=ε, and the one-term inner
expansion will involve the rapidly decaying function ea x2ð Þ x2�xð Þ=ε.

Case III. If a xð Þ changes sign in the interval x1 < x< x2, then a boundary layer
occurs at an interior point x0, where a x0ð Þ ¼ 0 and boundary layers may also occur
at both ends x1 and x2.

4.3 Boundary layer thickness and the principle of least degeneracy

The boundary layers which we have met so far have all had thickness O εð Þ. By
this we mean that a variation of O εð Þ in the independent variable will encompass the
region of rapid change in the dependent variable. The associated stretched inde-
pendent variable s, appropriate for the boundary layer is related to x by a linear
transformation involving division by ε.

There are practical situations where the boundary layer thickness will be of
O εpð Þ. This means that if the boundary layer is located at x ¼ x0, then the appro-
priate stretching transformation is s ¼ x� x0ð Þ=εp. More generally, the choice of the
function δ εð Þ to use in the stretching transformation s ¼ x� x0ð Þ=δ εð Þ is determined
by the need to represent the region of rapid change correctly. We must ensure that
the boundary layer solution contains rapidly varying functions. The form of the
governing equation in the boundary layer region must have sufficient structure to
allow such solutions.

Consider the example

ε
d2u
dx2
þ du
dx
þ u ¼ x, 0, 1ð Þ

u 0ð Þ ¼ 1, u 1ð Þ ¼ 2:

8><
>:

(56)

Since the signs of the first and second derivatives are the same, and the bound-
ary layer will occur at x ¼ 0. We are not going to assume at the outset that the
boundary layer thickness is O εð Þ. Our intension is to deduce that the appropriate
stretching variable is s ¼ x=ε.

The one-term outer expansion u0 satisfies du0
dx þ u0 ¼ x, u0 1ð Þ ¼ 2 The solution is

u0 xð Þ ¼ 2e1�x þ x� 1: (57)

To determine the inner expansion we first wrongly assume that the boundary
layer thickness is O ε1=2

� �
. The stretching transformation s ¼ x=ε1=2 changes the

original DE (56) into the following one:

d2v
ds2
þ 1
ε1=2

dv
ds
þ v ¼ ε1=2s (58)
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If the appropriate stretching transformation has been used for the boundary
layer then dv=ds and d2v=ds2 will be of O 1ð Þ within it. The leading order expansion
v0 will satisfy the dominant part of (58), i.e., the component of O ε�1=2

� �

dv0
ds
¼ 0, v0 0ð Þ ¼ 1: (59)

The solution is v0 sð Þ ¼ 1. This of course does not have the rapidly varying
behavior which we anticipate in the boundary layer. Prandtl’s matching condition
cannot be satisfied since

lim
x!0

2e1�x þ x� 1
� � ¼ 2e� 1 6¼ lim

s!∞
v0 sð Þ ¼ 1:

Thus, we reject the assumption of a boundary layer of thickness O ε1=2
� �

.
Next, suppose that the boundary layer thickness is O ε2ð Þ and again we will

discover that this is incorrect because the corresponding inner expansion cannot be
matched to the outer expansion. Proceeding with the analysis we introduce the
stretching transformation s ¼ x=ε2 which leads to the equation

1
ε3
d2v
ds2
þ 1
ε2
dv
ds
þ v ¼ ε2s:

Again we argue that if the appropriate stretching has been used then all derivatives
are of O 1ð Þ so that the governing equation for the leading term in O ε�3ð Þ, namely

d2v0
ds2
¼ 0, v0 0ð Þ ¼ 1: (60)

The solution is v0 sð Þ ¼ 1þ As, where the constant A is to be determined from
matching. This solution is rapidly varying but the rapidity does not decay at the
edge of the boundary layer (i.e., as s! ∞). Indeed, we cannot match v0 to the outer
expansion because the term As becomes arbitrarily large as s! ∞.

The correct choice of stretching transformation is s ¼ x=ε showing that the
boundary layer thickness is O εð Þ. The boundary layer equation becomes

1
ε

d2v
ds2
þ 1

ε

dv
ds
þ v ¼ εs:

The dominant equation satisfied by v0 is O 1=εð Þ, namely

d2v0
ds2
þ dv0

ds
¼ 0, v0 0ð Þ ¼ 1: (61)

The solution is v0 sð Þ ¼ 1� Aþ Ae�s. The last member provides the necessary
rapid decay away from the point x ¼ s ¼ 0. Prandtl’s matching condition requirest

lim
x!0

2e1�x þ x� 1
� � ¼ lim

s!∞
1� Aþ Ae�sð Þ,

which leads to A ¼ 2� 2e, and

v0 xð Þ ¼ 2e� 1þ 2 1� eð Þe�x=ε:
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The one-term composite expansion is

ucomp ¼ 2e1�x þ x� 1
� �þ 2e� 1ð Þ þ 2 1� eð Þe�x=ε � 2e� 1ð Þ: (62)

The leading order boundary layer equation associated with the stretching trans-
formation s ¼ x=ε, (61) involves more terms than (59), associated with s ¼ x=ε1=2,
and (60) associated with s ¼ x=ε2. The extra term in (61) allows sufficient structure
in the solution to produce the required boundary layer behavior. An aid for choos-
ing the boundary layer thickness is to seek a stretching transformation which
retains the largest number of terms in the dominant equation governing v0. This
referred to as the principle of least degeneracy by Van Dyke.

The composite expansion (62) can be verified by comparing with the exact
solution of (56). The general solution of (56) is

uex ¼ C1em1x þ C2em2x þ x� 1ð Þ,

where

m1 ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ε
p

2ε
, m2 ¼ �1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ε
p

2ε
:

We expand
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ε
p

using the binomial series,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ε
p ¼ 1� 2εþO ε2ð Þ, then

m1 ¼ �1þO εð Þ, and m2 ¼ � 1
ε
þ 1þO εð Þ,

so that

uex ¼ C1e�x þ C2e�x=ε � ex þ x� 1ð Þ þO εð Þ: (63)

Using the boundary conditions and by neglecting the transcendentally small
term e�1=ε, we have C1 ¼ 2e,C2 ¼ 2 1� eð Þ. Then, (63) becomes

uex ¼ 2e1�x þ 2 1� eð Þe�x=ε � ex þ x� 1ð Þ þO εð Þ: (64)

There is an apparent discrepancy between (64) and the composite expansion
(62) in the coefficient of the e�x=ε term. There is an extra term only contributes in
the boundary layer where x ¼ O εð Þ so that the coefficient ex may to leading order,
be replaced by unity. Thus, the leading order composite expansion and the leading
order term in the exact solution are in complete agreement.

4.4 Boundary layer of thickness of O
ffiffiffi
ε
pð Þ

Consider the following two-point BVP:

ε
d2u
dx2
þ x2

du
dx
� u ¼ 0, 0, 1ð Þ

u 0ð Þ ¼ 1, u 1ð Þ ¼ 2:

8><
>:

(65)

We seek a one-term composite expansion for the above BVP. We will tentatively
assume that a boundary layer occurs at x ¼ 0 although the vanishing of the coeffi-
cient of the first derivative suggests the possibility of nonstandard behavior.
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The one term outer expansion satisfies

x2
du0
dx
� u0 ¼ 0, u0 1ð Þ ¼ 2:

Its exact solution is u0 xð Þ ¼ 2e 1�1=xð Þ.
Let us assume that the boundary layer thickness is of O εpð Þ, where p is to be

determined from the principle of least degeneracy. The stretched variable is
s ¼ x=εp, and (65) becomes

ε1�2p
d2v
ds2
þ εps2

dv
ds
� v ¼ 0:

The second-term is always dominated by the third, so the principle of degener-
acy requires the first term to be of the same order as the third term (i.e., O 1ð Þ).
Thus, p ¼ 1=2, and the one-term inner expansion satisfies

d2v0
ds2
þ dv0

ds
¼ 0, v0 0ð Þ ¼ 1:

The solution of the above problem is v0 sð Þ ¼ Aes þ 1� Að Þe�s. Prandtl’s
matching condition requires

lim
x!0

2e 1�1=xð Þ ¼ lim
s!∞

Aes þ 1� Að Þe�s½ �

which yields A ¼ 0. This example is rather special in that A will be zero for all
boundary conditions.

The on-term composite expansion is

ucomp
0 ¼ 2e 1�xð Þ þ e�x=

ffiffi
ε
p
:

We conclude this example with the observation that a choice for the value of the
index p other than p ¼ 1=2 leads to boundary layer equations with insufficient
structure to generate the required rapidly decaying behavior.

Thus, if p> 1=2, the dominant equation becomes

d2v0
ds2
¼ 0, v0 0ð Þ ¼ 1,

which gives v0 sð Þ ¼ 1þ As. It is obvious that Prandtl’s matching condition can-
not be used to determine A. Whereas, if p< 1=2 the dominant equation degenerates
to v0 sð Þ ¼ 0 which does not satisfy the boundary condition at s ¼ 0.

4.5 Interior layer

Consider the BVP:

ε
d2u
dx2
þ x

du
dx
þ xu ¼ 0, �1, 1ð Þ

u �1ð Þ ¼ e, u 1ð Þ ¼ 2e�1:

8<
: (66)

The coefficient of the first derivative (convective term) is positive in 0, 1ð Þ
which indicates the occurrence of a boundary layer at the left hand limit x ¼ 0.
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While the corresponding coefficient is negative in the range �1< x<0 indicates a
boundary layer located at the right-hand limit which is again is x ¼ 0. Thus, we are
led to expr = ect two outer expansions for positive and negative x respectively and
an inner expansion in the interior layer located at x ¼ 0. We denote the leading
term in the outer expansion for positive x by uþ0 , it satisfies

duþ0
dx
þ uþ0 ¼ 0, uþ0 1ð Þ ¼ 2e�1 (67)

with the solution uþ0 xð Þ ¼ 2e�x.
The outer expansion for negative x, u�0 satisfies

du�0
dx
þ u�0 ¼ 0, uþ0 �1ð Þ ¼ e (68)

with the solution u�0 xð Þ ¼ e�x.
We suppose the boundary layer at x ¼ 0 has thickness O εpð Þ and determine the

index p using the principle of least degeneracy. Let s ¼ x=εp so that the DE becomes

ε1�2p
d2v
ds2
þ s

dv
ds
þ εpsv ¼ 0:

The third term is dominated by the second term. The first term has the same
order as the second term if p ¼ 1=2. For this choice of p the leading term of the inner
expansion v0 satisfies

d2v0
ds2
þ s

dv0
ds
¼ 0:

Its solution can be given by

v0 sð Þ ¼ B erf s=
ffiffiffi
2
p� �

þ v0 0ð Þ,

Prandtl;s matching condition applied to the region x>0 is

lim
s!þ∞v0 sð Þ ¼ lim

x!0þ
uþ0 xð Þ

and corresponding for x<0, we have

lim
s!�∞v0 sð Þ ¼ lim

x!0�
u�0 xð Þ

Using the limiting values erf �∞ð Þ ¼ �1 yields v0 0ð Þ ¼ 1:5 and B ¼ 0:5. The
leading order terms over the whole region are

uþ0 xð Þ ¼ 2e�x, x>O
ffiffiffi
ε
p� �

v0 ¼ 0:5 erf x=
ffiffiffiffiffi
2ε
p� �

þ 1:5, x ¼ O
ffiffiffi
ε
p� �

u�0 xð Þ ¼ e�x, x< � O
ffiffiffi
ε
p� �

A composite expansion cannot be formed in the standard way when there is
more than one outer solution. However, the behavior of v0 for ∣x∣>O

ffiffiffi
ε
pð Þ is as

follows:

169

Perturbation Expansion to the Solution of Differential Equations
DOI: http://dx.doi.org/10.5772/intechopen.94173



v0 x>O
ffiffiffi
ε
p� �� � ¼ 0:5þ 1:5þ T:S:T

v0 x< � O
ffiffiffi
ε
p� �� � ¼ �0:5þ 1:5þ T:S:T

Utilizing this enables a uniformly valid one-term composite expansion to be
constructed which yields the correct coefficient of e�x outside the boundary layer
and the correct leading order behavior within the boundary layer. It is

ucomp
0 ¼ 0:5 erf x=

ffiffiffiffiffi
2ε
p� �

þ 1:5
h i

e�x:

4.6 Nonlinear differential equation

Consider the following semilinear

ε
d2u
dx2
þ du
dx
þ u2 ¼ 0, 0, 1ð Þ

u 0ð Þ ¼ 2, u 1ð Þ ¼ 1=2:

8<
: (69)

The coefficient of the first and second order derivatives have the same sign, so
the boundary layer will occur at the left boundary x ¼ 0. The one-term outer
expansion satisfies

du0
dx
þ u20 ¼ 0, u0 1ð Þ ¼ 1=2,

and the solution is u0 xð Þ ¼ 1= 1þ xð Þ. The stretching transformation for the
inner region will be s ¼ x=ε and therefore, the inner expansion satisfies

d2v
ds2
þ dv

ds
þ εv2 ¼ 0, v 0ð Þ ¼ 2:

The one-term inner expansion v0 satisfies the dominant part of this equation, i.e.,

d2v0
ds2
þ dv0

ds
¼ 0, v0 0ð Þ ¼ 2,

which gives v0 sð Þ ¼ Aþ 2� Að Þe�s. Prandtl’s matching condition yields A ¼ 1,
and the composite one-term uniformly valid expansion is

ucomp
0 ¼ 1

1þ x
þ e�x=ε:

Next, consider the quasilinear problem

ε
d2u
dx2
þ 2u

du
dx
� 4u ¼ 0, 0, 1ð Þ

u 0ð Þ ¼ 0, u 1ð Þ ¼ 4:

8><
>:

(70)

The nonlinearity is associated with the first derivative term. The location of the
boundary layer depends on the relative sign of the first and second derivative
coefficients. If we assume that the dependent variable is nonnegative throughout
the interval 0< x< 1, then the boundary layer will occur at x ¼ 0. The one-term
outer expansion satisfies
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2u0
du0
dx
� 4u0 ¼ 0, u0 1ð Þ ¼ 4,

with the solution u0 xð Þ ¼ 2xþ 2.
Assuming that the boundary layer thickness is O εð Þ, therefore, the dominant-

order equation for the one-term inner expansion becomes

d2v0
ds2
þ 2v0

dv0
ds
¼ 0, v0 0ð Þ ¼ 0:

Its solution is v0 sð Þ ¼ a tanh asð Þ. Prandtl’s matching condition yields a ¼ 2.
Thus, v0 sð Þ ¼ 2 tanh 2sð Þ, and the uniformly valid one-term composite expansion is

ucomp
0 ¼ 2xþ 2þ 2 tanh 2sð Þ � 2:

Application of perturbation techniques to partial differential equations, and
other types of problems can be seen in the books [5, 6].
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Chapter 9

Application of Perturbation
Theory in Heat Flow Analysis
Neelam Gupta and Neel Kanth

Abstract

Many physical and engineering problems can be modeled using partial differen-
tial equations such as heat transfer through conduction process in steady and
unsteady state. Perturbation methods are analytical approximation method to
understand physical phenomena which depends on perturbation quantity.
Homotopy perturbation method (HPM) was proposed by Ji Huan He. HPM is
considered as effective method in solving partial differential equations. The solution
obtained by HPM converges to exact solution, which are in the form of an infinite
function series. Biazar and Eslami proposed new homotopy perturbation method
(NHPM) in which construction of an appropriate homotopy equation and selection
of appropriate initial approximation guess are two important steps. In present work,
heat flow analysis has been done on a rod of length L and diffusivity α using HPM
and NHPM. The solution obtained using different perturbation methods are com-
pared with the solution obtained from most common analytical method separation
of variables.

Keywords: heat conduction equation, homotopy perturbation method,
new homotopy perturbation method, specific heat, diffusivity

1. Introduction

Partial differential equations play a dominant role in applied mathematics. The
classical heat conduction equation is second order linear partial differential equa-
tion. The solutions of which are obtained by using various analytical and numerical
methods [1–3]. This equation describes the heat distribution in each domain over
some time. Jean-Joseph Fourier was the first to formulate and describe the heat
conduction process [1, 4]. Perturbation methods depending upon small/large
parameters have been encountered from past few years. Perturbation methods are
analytical approximation method to understand physical phenomena which
depends on perturbation quantity. But these methods do not provide an easy way to
find out the rapid convergence of approximate series. Therefore, this method is
simple, suitable and appropriate method to provide the rapid convergence of series
[5–7]. The perturbation method along with the homotopy method has been
employed to develop a hybrid method known as homotopy perturbation method
(HPM) [1–4]. Ji-Huan was the first to introduce HPM. Homotopy perturbation
method provides analytical approximation to linear/nonlinear problems without
linearization or discretization. It helps in formulating simpler equations by breaking
down the complex problems, which can be solved easily. Since HPM does not
depend on small parameters, therefore drawbacks of the existing perturbation
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methods can be abolished [8–11]. The solution obtained by HPM converges to exact
solution, which are in the form of an infinite function series. Various problems are
modeled by linear and non-linear partial differential equations problems in the
fields of physics, engineering etc. To solve such kind of partial differential equations
(PDE), many methods are used to find the numerical or exact solutions. Homotopy
perturbation method (HPM) is one of the methods used in recent years to solve
various linear and non-linear PDE [12–15]. Initial and boundary value problems can
be solved using HPM extensively. Many researchers and scientists show great
interest in homotopy perturbation method. Huan was the first who described
homotopy perturbation method. He showed that this method is a one of the
powerful tools used to investigate various problems which are arising nowadays.
HPM is used for solving linear and non-linear ordinary and partial differential
equations [16].

In HPM, complex linear or non-linear problem can be continuously distorted
into simpler ones. Perturbation theory and homotopy theory in topology is com-
bined to develop homotopy perturbation method [1]. HPM is applicable to linear
and non-linear boundary value problems. The solution obtained by HPM gives the
solution approximately near to the universally accepted method of separation of
variable [17–19].

Recently, Biazar and Eslami proposed the new homotopy perturbation method
(NHPM). Construction of an appropriate homotopy equation and selection of
appropriate initial approximation guess are two important steps of NHPM [19, 20].
The study reveals that with less computational work, we can construct proper
homotopy by decomposition of source function in a correct way. New homotopy
perturbation method is the most powerful tool which can be used to obtain analyt-
ical solution of various kinds of linear and nonlinear PDE’s. This method is widely
used by researchers to obtain solution of various functional Equations [20–22].

To develop this new technique, HPM is combined with the decomposition of
source function. The decomposition of a source function is the basis of homotopy
used in this method because convergence of a solution is affected by the decompo-
sition of source functions [23]. Different kind of homotopy can be formed using
various decomposition of a source functions. This study is aimed at constructing
suitable homotopy by decomposition of a source function which requires less com-
putational efforts and made calculations in simpler form unlike other perturbation
methods. The obtained results directly imply the fact that NHPM is very influential
as compared to HPM or any other perturbation technique. To establish exact solu-
tion of linear and non-linear problem with boundary and initial condition, new
homotopy method is most appropriate method to apply [23].

The two most important steps in application of new homotopy perturbation
method to construct a suitable homotopy equation and choose a suitable initial
guess, we aim in this work to effectively employ the (NHPM) to establish exact
solution for two-dimensional Laplace equation with Dirichlet and Neumann
boundary condition, the difference between (NHPM) and standard (HPM) is starts
from the form of initial approximation of the solution.

In this chapter, the semi analytic solution of one-dimensional heat conduction
equation is obtained by means of homotopy perturbation method and new
homotopy perturbation method. These methods are effectively applied to obtain the
exact solution for the problem in hand which reveals the effectiveness and simplic-
ity of the method. Numerical results have also been analyzed graphically to show
the rapid convergence of infinite series expansion. The obtained analytic solution
for one dimensional heat conduction equation with boundary and initial conditions
using NHPM is same as the universally accepted exact solution. This tells us about
the capability and reliability of this method. The solution obtained using NHPM is
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considered in the form of an infinite series. The convergence of solution to the exact
solution is very rapid.

2. Heat conduction equation

The one-dimensional heat equation

∂U
∂θ
¼ β

∂
2U
∂z2

(1)

with boundary conditions

U 0, θð Þ ¼ 0,U 1, θð Þ ¼ 0, (2)

and initial condition

U z, 0ð Þ ¼ h zð Þ, 0≤ z≤ 1: (3)

3. Basic idea of Homotopy perturbation method

First, we outline the general procedure of the homotopy perturbation method
developed and advanced by He. We consider the differential Eq. [2]

A uð Þ � f rð Þ ¼ 0, r∈Ω (4)

B u,
∂u
∂x

� �
¼ 0, r∈Γ (5)

where A is a general differential operator, linear or nonlinear, f rð Þ is a known
analytic function, B is a boundary operator and Γ is the boundary of the domain Ω.
The operator A can be generally divided into two operators, L and N, where L is
linear and N is a nonlinear operator. Eq. (4) can be written as

L uð Þ þN uð Þ � f rð Þ ¼ 0 (6)

Using the homotopy technique, we can construct a homotopy [1,2]

v r, pð Þ : Ω� 0, 1½ � ! R which satisfies the relation

H v, pð Þ ¼ 1� pð Þ L vð Þ � L u0ð Þ½ � þ p A vð Þ � f rð Þ½ � ¼ 0, r∈Ω (7)

Here p∈ 0, 1½ � is called the homotopy parameter and u0 is an initial approxima-
tion for the solution of Eq. (4), which satisfies the boundary conditions. Clearly,
from Eq. (7), we have

H v, 0ð Þ ¼ L vð Þ � L u0ð Þ (8)

H v, 1ð Þ ¼ A vð Þ � f rð Þ (9)

We assume that the solution of Eq. (7) can be expressed as a series in p as
follows:

v ¼ v0 þ pv0 þ p2v2 þ p3v3 þ⋯ (10)
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On setting p ¼ 1, we obtain the approximate solution of Eq. (10) as

u ¼ lim
p!1

v ¼ v0 þ v0 þ v2 þ v3 þ⋯ (11)

4. Basic idea of new Homotopy perturbation method

First, following homotopy is constructed for solving heat conduction equation
using NHPM

1� pð Þ ∂T
∂θ
�U0

� �
þ p

∂T
∂θ
� β

∂
2T
∂z2

� �
¼ 0 (12)

Taking L�1 ¼ Ð θθ0 :ð Þdθ i.e. inverse operator on Eq. (12), then

T z, θð Þ ¼
ðθ
θ0

U0 z, θð Þdθ � p
ðθ
θ0

U0 � β
∂
2T
∂z2

� �
dθ þ T z, θ0ð Þ (13)

Where T z, θ0ð Þ ¼ U z, θ0ð Þ

Let the solution of Eq. (13) is given by

T ¼ T0 þ pT1 þ p2T2 þ p3T3 þ … (14)

where T0,T1,T2,T3, … are to be determined.
Suppose solution given by Eq. (14) is the solution of Eq. (13). On comparing the

coefficients of powers of p and equating to zero and using Eq. (14) in Eq. (13),
following are obtained:

p0 : T0 z, θð Þ ¼
ðθ
θ0

U0 z, θð Þdθ þ T z, θ0ð Þ

p1 : T1 z, θð Þ ¼ �
ðθ
θ0

U0 z, θð Þ � β
∂
2T0

∂z2

� �
dθ

p2 : T2 z, θð Þ ¼
ðθ
θ0

β
∂
2T1

∂z2

� �
dθ

p3 : T3 z, θð Þ ¼
ðθ
θ0

β
∂
2T2

∂z2

� �
dθ

and so on… (15)

Consider the initial approximation of Eq. (1) as

U0 z, θð Þ ¼
X∞
n¼0

cn zð ÞPn θð Þ,T z, 0ð Þ ¼ U z, 0ð Þ,Pk θð Þ ¼ θk, (16)

where, P1 θð Þ,P2 θð Þ,P3 θð Þ, … and c0 zð Þ, c1 zð Þ, c2 zð Þ, … are specified functions
and unknown coefficients respectively, depending on the problem.

Using Eq. (16) in (15), following are obtained:

T0 z, θð Þ ¼ c0 zð Þθ þ c1 zð Þ θ
2

2
þ c2 zð Þ θ

3

3
þ c3 zð Þ θ

4

4
þ …

� �
þ U z, 0ð Þ
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T1 z, θð Þ ¼ �c0 zð Þ � βπ2 sin πz
� �

θ þ � 1
2
c1 zð Þ þ 1

2
βc000 zð Þ

� �
θ2

þ � 1
3
c2 zð Þ þ 1

3
c100 zð Þ

� �
θ3 þ …

and so on… (17)

Now solving the above equations in such a manner that, T1 z, θð Þ ¼ 0 .
Therefore Eq. (17) reduces to

T1 z, θð Þ ¼ T2 z, θð Þ ¼ … ¼ 0:

So U z, θð Þ ¼ T0 z, θð Þ ¼P∞
n¼0cn zð ÞPn θð Þ is obtained solution which is found to be

exactly same as the exact solution obtained through method of separation of
variable.

If U0 z, θð Þ is analytic at θ ¼ θ0,
U0 z, θð Þ ¼P∞

n¼0cn zð Þ θ � θ0ð Þn is the taylor series expansion which can be used
in Eq. (9).

5. Applications of Homotopy perturbation method and new Homotopy
perturbation method

For understanding the application of HPM and NHPM, we will solve the
one-dimensional heat equation given by

∂U
∂θ
¼ β

∂
2U
∂z2

(18)

with boundary conditions

U 0, θð Þ ¼ 0,U 1, θð Þ ¼ 0, (19)

and initial condition

U z, 0ð Þ ¼ sin
2πz
L

, 0≤ z≤L: (20)

The homotopy for the diffusion equation given by (18) is obtained as follows [2].

∂v
∂θ
� ∂u0

∂θ

� �
þ ƥ

∂u0
∂θ
� β

∂
2v
∂z2

� �
¼ 0 (21)

Let u0 ¼ sin 2πz
L cos π2θ be the initial approximation, which satisfies boundary

conditions given by (19).
Let solution of (18) has the following form

v ¼ v0 þ ƥv1 þ ƥ2v2 þ ƥ3v3 þ ƥ4v4 þ … (22)

On substituting the value of v in Eq. (21) and comparing the coefficients of like
powers of ƥ we obtain

ƥ0 :
∂v0
∂θ
¼ ∂u0

∂θ
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ƥ1 :
∂v1
∂θ
¼ β

∂
2v0
∂z2

, v1 0, θð Þ ¼ 0 ¼ v1 L, θð Þ

ƥ2 :
∂v2
∂θ
¼ β

∂
2v1
∂z2

, v2 0, θð Þ ¼ 0 ¼ v2 L, θð Þ

ƥ3 :
∂v3
∂θ
¼ β

∂
2v2
∂z2

, v3 0, θð Þ ¼ 0 ¼ v3 L, θð Þ

ƥn :
∂vn
∂θ
¼ β

∂
2vn�1
∂z2

, vn 0, θð Þ ¼ 0 ¼ vn L, θð Þ (23)

On solving the system of Eq. (23) using Mathematica 5.2

v0 ¼ u0 ¼ sin
2πz
L

cos π2θ

∂v1
∂θ
¼ � 4βπ2

L2 v0 ) v1 ¼ �
βsin

2πz
L

� �
sin π2θ½ �

L2 þ sin
πz
L

h i

∂v2
∂θ
¼ � 4βπ2

L2 v1 ) v2 ¼ �
β L2π2θ þ αcos π2θ½ �� �

sin
2πz
L

� �

L4 þ
L4 sin

2πz
L

� �
þ β2 sin

2πz
L

� �

L4

∂v3
∂θ
¼ � 4βπ2

L2 v2 ) v3 ¼
β π2θ �2L4 þ L2π2βθ � 2β2

� �þ 2β2 sin π2θ½ �� �
sin

2πz
L

� �

2L6 þ sin
2πz
L

� �

∂v4
∂θ
¼ � 4βπ2

L2 v3 ) v4

¼ 1
6L8 β π2θ �6L6 þ 3L4π2βθ � L2π4θ2β2 þ 3β3π2θ

� �
6β3 cos π2θ

� �� �
sin

2πz
L

� �� �

þ L8 sin 2πz
L

� �� β4 sin 2πz
L

� �

L8

∂v5
∂θ
¼ � 4βπ2

L2 v4 ) v5

¼ �1
24L10 β π2θ 24L8 � 12L6π2βθ þ 4L4π4θ2β2

�� � L2π6θ3β3 þ 4 �6þ π4θ2
� �

β4
� �

þ 24β4 sin π2θ
� �Þ sin 2πz

L

� �!
þ sin

2πz
L

� �

∂v6
∂θ
¼ � βπ2

L2 v5 ) v6 ¼ �1
120L12 β π2θ 120L10 � 60L8π2βθ þ 20L6π4θ2β2

���

�5L4π6θ3β3 þ L2π8θ4β4 � 5π2θ �12þ π4θ2
� �

β5Þ

þ120β5 cos π2θ
� �Þ sin 2πz

L

� �
Þ

þL12 sin 2πz
L

� �þ β6 sin 2πz
L

� �

L12

and so on… (24)

The approximate solution of (1) by setting ƥ ¼ 1 in (23) is given by

u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ v3 þ v3 þ … (25)
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On substituting values of vi0s in Eq. (25), solution is obtained in terms of a
summation of infinite series which gives results near to the exact solution.

Now we will solve the Eq. (18) using NHPM. First of all, following homotopy is
constructed for solving heat conduction equation using NHPM

1� pð Þ ∂T
∂θ
�U0

� �
þ p

∂T
∂θ
� β

∂
2T
∂z2

� �
¼ 0 (26)

Taking L�1 ¼ Ð θθ0 :ð Þdθ i.e. inverse operator on Eq. (26), then

T z, θð Þ ¼
ðθ
0
U0 z, θð Þdθ � p

ðθ
0

U0 � β
∂
2T
∂z2

� �
dθ þ T z, 0ð Þ: (27)

Let the solution of the (27) is

T ¼ T0 þ pT1 þ p2T2 þ p3T3 þ … , (28)

where, T0,T1,T2, … are to be determined.
Suppose Eq. (25) is the solution of Eq. (24). Comparing the coefficients of

powers of p and equating to zero and using Eq. (25) in Eq. (24), following are
obtained:

p0 : T0 z, θð Þ ¼
ðθ
0
U0 z, θð Þdθ þ T z, 0ð Þ

p1 : T1 z, θð Þ ¼ �
ðθ
0

U0 z, θð Þ � β
∂
2T0

∂z2

� �
dθ

p2 : T2 z, θð Þ ¼
ðθ
0

β
∂
2T1

∂z2

� �
dθ

p3 : T3 z, θð Þ ¼
ðθ
0

β
∂
2T2

∂z2

� �
dθ

and so on: (29)

Consider initial approximation of Eq. (18) as

U0 z, θð Þ ¼
X∞
n¼0

cn zð ÞPn θð Þ,T z, 0ð Þ ¼ U z, 0ð Þ,Pk θð Þ ¼ θk, (30)

where, P1 θð Þ,P2 θð Þ,P3 θð Þ, … and c0 zð Þ, c1 zð Þ, c2 zð Þ, … are specified functions
and unknown coefficients respectively, depending on the problem.

Using Eq. (30) in (29), following are obtained:

T0 z, θð Þ ¼ c0 zð Þθ þ c1 zð Þ θ
2

2
þ c2 zð Þ θ

3

3
þ c3 zð Þ θ

4

4
þ …

� �
þ sin

2πz
L

T1 z, θð Þ ¼ �c0 zð Þ � 4βπ2

L
sin

2πz
L

� �
θ þ � 1

2
c1 zð Þ þ 1

2
βc000 zð Þ

� �
θ2

þ � 1
3
c2 zð Þ þ 1

3
c100 zð Þ

� �
θ3 þ …

and so on… (31)
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Now solving the above equations in such a manner that, T1 z, θð Þ ¼ 0.
Therefore Eq. (31) reduces to

c0 zð Þ ¼ � 22βπ2

L
sin

2πz
L

c1 zð Þ ¼ 24β2π4

L2 sin
2πz
L

c2 zð Þ ¼ � 26β3π6

L3 sin
2πz
L

U z, θð Þ ¼ T0 z, θð Þ ¼ sin
2πz
L
þ c0 zð Þθ þ c1 zð Þ θ

2

2
þ c2 zð Þ θ

3

3
þ c3 zð Þ θ

4

4
þ …

¼ sin
2πz
L

1� 22βπ2

L
θ þ 24β2π4

L2
θ2

2
� 26β3π6

L3
θ3

3
þ …

� �
¼ sin

2πz
L

e�
4βπ2

L θ

(32)

which is same as the universally accepted exact solution for the problem which is
shown in Figure 1.

The solution of one-dimensional heat conduction equation is solved using HPM
and NHPM and then compared with the universally accepted exact solution
obtained frommethod of separation of variable. Figure 2 represents the comparison
of solution of heat equation using HPM, NHPM and method of separation of
variable. It is found that the solution obtained using HPM gives result near to the
exact solution whereas solution using NHPM gives same results as the exact
solution.

Figure 1.
Solution using NHPM.
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6. Conclusion

The analytical approximate solutions of one-dimensional heat conduction equa-
tion are obtained by applying new homotopy perturbation method and new
homotopy perturbation method. It is found that new homotopy perturbation
method (NHPM) converges very rapidly as compared to homotopy perturbation
method (HPM) and other traditional methods. The exact solutions are obtained up
to more accuracy using NHPM. An infinite convergent series solution for particular
initial conditions are obtained using these methods which shows the effectiveness
and efficiency of NHPM and HPM. The convergence rate of NHPM is much faster
than traditional methods which directly indicates that this method is better than
other methods. The solution of heat equation obtained by homotopy perturbation
method and new homotopy perturbation method are exactly same and very close to
the solution obtained by universally accepted and tested analytical method of sepa-
ration of variables. If the initial guess in homotopy perturbation method is effective
and properly chosen which satisfy boundary and initial condition, homotopy per-
turbation method provides solution with rapid convergence. It is illustrated that
NHPM is very prominent, when accuracy has a vital role to play. The numerical
results also reflect the remarkable applicability of NHPM to linear and non-linear
initial and boundary value problems. NHPM provides the rapid convergence of the
series solution for linear as well as non-linear problems with less computational
work.

Figure 2.
Comparison of HPM, NHPM and the exact solution.
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Chapter 10

Chaos and Complexity Dynamics
of Evolutionary Systems
Lal Mohan Saha

Abstract

Chaotic phenomena and presence of complexity in various nonlinear dynamical
systems extensively discussed in the context of recent researches. Discrete as well as
continuous dynamical systems both considered here. Visualization of regularity and
chaotic motion presented through bifurcation diagrams by varying a parameter of
the system while keeping other parameters constant. In the processes, some perfect
indicator of regularity and chaos discussed with appropriate examples. Measure of
chaos in terms of Lyapunov exponents and that of complexity as increase in topo-
logical entropies discussed. The methodology to calculate these explained in details
with exciting examples. Regular and chaotic attractors emerging during the study
are drawn and analyzed. Correlation dimension, which provides the dimensionality
of a chaotic attractor discussed in detail and calculated for different systems. Results
obtained presented through graphics and in tabular form. Two techniques of chaos
control, pulsive feedback control and asymptotic stability analysis, discussed and
applied to control chaotic motion for certain cases. Finally, a brief discussion held
for the concluded investigation.

Keywords: chaos, Lyapunov exponents, chaos indicator, bifurcation,
topological entropy, correlation dimension

1. Introduction

Henri Poincaré, (1892–1908), [1], was first to acknowledge the possible exis-
tence of chaos in nonlinear systems while studying a 3-body problem comprising
Sun, Moon and Earth. He noticed the dynamics of the system turned to be sensitive
towards initial conditions, which was later termed as chaos. His results based on
theoretical analysis and he could not demonstrate it because computers were not
available at that time. Lorenz, a weather scientist, demonstrated existence of chaos
by using a computer in 1963, [2], and in this way supported chaos theory of
Poincaré. Thus, Lorenz provided the foundation of chaos theory and inspired a
fundamental reappraisal of systems of nonlinearity in many disciplines of science,
engineering, biological and medical sciences, atmospheric science, economics,
social sciences and where not? In our everyday life, chaos happened frequently in
various form like cyclone, tsunami, tornado, epidemics/pandemics etc. Spread of
any uncontrollable form of disease in medical science is nothing but a chaotic and
contagious nature of disease. Systematic studies in various areas resulting in
numerous articles on chaos and nonlinear dynamics appeared in many well-reputed
scientific journals, [3–19].
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Most biological systems exhibit enormous diversity and structurally
multicomponent resulting in ecological imbalance and disorder/disharmony in
environment. Inspired by articles of Lotka, Volterra, and Allee, numerous articles
appeared with diversity in assumptions depending of species and their living envi-
ronmental conditions in predator-prey models, [20–44].

Real systems are mostly nonlinear and many of them are with multicomponent
structure. Their individual elements possess individual properties. Such systems are
termed as the complex system.

During evolution, a complex system exhibits chaos in some parameter space but
also some other phenomena called complexity. This complexity is due to the inter-
action among multiple agents within the system displayed in the form of coexis-
tence of multiple attractors, bistability, intermittency, cascading effects, exhibit of
hysteresis properties etc. Thus, complexity can viewed as its systematic nonlinear
properties and it is due to the interaction among multiple agents within the system.
Foundation work and elaborate descriptions on complexity can viewed from some
pioneer articles on complexity in nonlinear dynamics presented in [45–51]. Study
of complexity means to know the results that emerging from a collection of
interacting parts.

A dynamical system be chaotic then it must be (i) sensitive to initial
conditions, (ii) topologically mixing and (iii) its periodic orbits must be dense.
In chaotic systems, there exists a strange attractor, a chaotic set, which has fractal
structure. Complex systems are also sensitive to their initial conditions and two
complex systems that are initially very close together in terms of their various
elements and dimensions can end up in distinctly different places. Wide
discussions on complex system may found in some pioneer literatures,
[14, 18, 45, 46, 48, 50, 51].

Chaos measured by Lyapunov exponents, (also called Lyapunov characteristic
components or LCEs); LCE > 0 indicates existence of chaos and LCE < 0 indicates
regularity, [52–62]. A complex system can better understood by measuring (i)
chaos, (ii) Topological entropies and (iii) correlation dimension. Topological
entropy, a non-negative number, provides a perfect way to measure complexity of a
system. More topological entropy in any system signifies more complexity in it.
Actually, it measures the evolution of distinguishable orbits over time, thereby
providing an idea of how complex the orbit structure of a system is, [48–50, 61–69].
A system may be chaotic with zero topological entropy. In addition, a significant
increase in topological entropy does not justify that it is chaotic. The book by
Nagashima and Baba, [62], gives a very clear definition of topological entropy.
The correlation dimension provides the dimensionality of the chaotic attractor.
Correlation dimensions are non-integers and this is one reasons besides self-
similarity that chaotic sets have fractal structure, [60, 68–73].

It emerges from a good number of recent researches that chaos appearing in
dynamical system be controlled and suggested number techniques to control chaos,
[74–88]. These techniques have some limitations depending on the models and
nature of nonlinearity.

Objective of this article is to investigate the emergence of chaos and complexity
in nonlinear dynamical systems through examples of nonlinear models.
Numerical simulations carried out for bifurcation analysis, plotting of LCEs
and topological entropies for different systems. Numerical calculations extended
to obtain correlation dimensions for certain chaotic attractors emerging in
different systems. The study further extended to explain different types of
chaos controlling technique. Studies confined to one, two and three-dimensional
systems only.
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2. Dynamic models with chaos and complexity

2.1 One dimensional discrete models

2.1.1 Dynamics of laser map

A highly simplified type discrete nonlinear model for laser system, arising from
Laser Physics, described in articles, [12, 50, 89–91]. The model describes evolution
of certain Fabry-Perot cavity containing a saturable absorber and driven by an
external laser represented by

xnþ1 ¼ Q � A xn
1þ xn2

, ∀∈R, n∈N (1)

Here Q is the normalized input field and A is a parameter depends on the
specifics of the parameters and A > 0. The fixed points of the map are the real root
of equation

x3 � Qx2 þ 1þ Að Þx�Q ¼ 0 (2)

This equation has either three real roots or one real and a pair of complex
conjugate roots depending on parameter space A,Qð Þ. Stability occur in the form of
stability and bistability, [89].

Fixed Points and Bifurcations:
ForQ fixed,Q ¼ 2:76, andA<4:3793, only one stable steady state solution exits and

stable two cycle starts whenA exceeds this value. Thus, approximately,A ¼ 4:3793, is
the bifurcation point. At valueA ¼ 4:3, the stable steady state solution is x* = 0.720533.

Keeping Q ¼ 2:76 and varying parameter A, bifurcation diagrams are drawn,
Figure 1, for four different ranges of values of A. Similarly, keeping A fixed,

Figure 1.
Bifurcation diagrams of map (1) for four cases: when Q = 2.76 and parameter A varies.
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A ¼ 5:4 and varying Q in four different ranges, bifurcation diagrams are drawn,
Figure 2. One observe clearly the appearance of periodic windows within chaotic
region of bifurcations as an indication of intermittency and other complex phe-
nomena. Periodic windows become gradually shorter and appearance become more
frequent while moving forward in parameter space.

Both time series plots shown in Figure 3 are for chaotic evolution of system (1)
and correspond to parameters (a) A,Qð Þ = (5.3, 2.76), due to which an unstable
fixed point obtained as x� ¼ 0:58531, and parameters (b) ) A,Qð Þ = (5.4, 2.9), due
to which an unstable fixed point obtained as x� ¼ 0:572218. For both cases, initial
point taken is x0 ¼ 0:5 which lies nearby these points and so, also, unstable.

Calculations of Lyapunov Exponents, (LCEs):
Lyapunov exponents, LCEs, for map (1), calculated for four cases, Figure 4,

positive LCEs appearing above zero line clearly indicate chaotic motion and those
below this line indicate regular motion.

Figure 2.
Bifurcation diagrams of map (1) for four cases: when A = 5.4 and parameter Q varies.

Figure 3.
Chaotic time series plots with initial value x0 = 0.5: (a) A = 5.3, Q = 2.76 and (b) A = 5.4, Q = 2.9.
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Topological Entropies:
Numerical calculations further proceeded to calculate topological entropies for

system (1) and shown in Figure 5; where figures of upper row obtained by varying
parameter A while keeping parameter Q = 2.76 and those of lower row obtained by
varying parameter Q while keeping parameter A = 5.4.

Figure 4.
Plots of LCEs: (a) for the upper row Q = 2.76, 4.0 ≤ A ≤ 5.5 and 5.0 ≤ A ≤ 7.0; (b) for the lower row A = 5.4,
0.5 ≤ Q ≤ 3.5 and 1.4 ≤ Q ≤ 1.8.

Figure 5.
Topological entropy plots: (a) for upper row Q = 2.76 and 4.0 ≤ A ≤ 5.5& 4.7 ≤ A ≤ 5.3; (b) for lower row A
= 5.4 and 0.4 ≤ Q ≤ 2.5 & 1.4 ≤ Q ≤ 1.9.
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Correlation Dimension:
Extending further the numerical study, correlation dimensions of system (1)

calculated for a chaotic attractor by using Mathematica codes, [73].
Consider an orbit O x1ð Þ = x1, x2, x3, x4 … …f g, of a map f : U ! U, where Us an

open bounded set in Rn. To compute correlation dimension of O x1ð Þ, for a given
positive real number r, we form the correlation integral,

C rð Þ ¼ lim
n!∞

1
n nþ 1ð Þ

Xn

i 6¼j
H r� ∥xi � xj∥
� �

(3)

Where,

H xð Þ ¼ 0, x<0

1, x≥0

�

is the unit-step function, (Heaviside function). The summation indicates num-
ber of pairs of vectors closer to rwhen1≤ i, j≤n and i 6¼ j. C rð Þmeasures the density
of pair of distinct vectors xi and xj that are closer to r.

The correlation dimension Dc of O x1ð Þ is then defined as

Dc ¼ lim
r!0

logC rð Þ
log r

(4)

To obtain Dc, logC rð Þ is plotted against log r, Figure 6, and then we find a
straight line fitted to this curve. The intercept of this straight line on y-axis provides
the value of the correlation dimension DC. Correlation dimensions of time series
attractors, Figure 3, obtained as:

a. For first attractor, Q = 2.76, A = 5.3, a plot of the correlation integral curve is
shown in Figure 6. Then, the linear fit of the correlation data used in this
figure obtained as

y ¼ 0:95661xþ 0:687605

Figure 6.
Plot of correlation integral curve for A = 5.3, Q = 2.76 and x0 = 0.5.

190

A Collection of Papers on Chaos Theory and Its Applications

The y-intercept of this straight line is 0:687605. Therefore the correlation
dimension of the attractor in this case is DC ¼ 0:69 .

b. In a similar way, correlation dimension for second attractor of Figure 3,
A = 5.4 and Q = 2.9, as Dc ¼ 0:56. Plots of correlation dimensions against
parameters A, Q shown in Figure 7.

2.1.2 Dynamics of biological red cells model

The population of red blood cells in a healthy human being oscillates within a
certain tolerance interval in normal circumstances. But, sometimes, in presence of a
disease such as anemia, this behavior fluctuate dramatically. A discrete model of
blood cell populations, Martelli, ([73], p: 35), presented here.

Let xn, xnþ1 representing quantities of cells per unit volume (in millions) at time
n and nþ 1, respectively and pn, dn are, respectively, the number of cells produced
and destroyed during the nth generation then

xnþ1 ¼ xn þ pn � dn (5)

Then, assuming that

dn ¼ a xn, a∈ 0, 1½ �
pn ¼ b xnð Þre�sxn ,

where b, r, s all positive parameters. With these our one-dimensional discrete
model for blood cells populations comes as

xnþ1 ¼ 1� að Þ xn þ b xnð Þre�s xn (6)

The case a ¼ 1 , means that during the time interval under consideration all cells
that were alive at time n are destroyed. In such a case, above models simply comes as

xnþ1 ¼ b xnð Þre�s xn (7)

For a ¼ 0:8, b ¼ 10 , r ¼ 6 and s ¼ 2:5 , three fixed points x ∗
0 ¼ 0, x ∗

1 ¼
0:989813, x ∗

2 ¼ 3:53665 obtained for system (6) of which only x ∗
0 ¼ 0 is stable

and other two are unstable. Chaotic motion observed for values of parameter a ¼
0:8, b ¼ 10, r ¼ 6, s ¼ 2:5, as shown in the time series plot, Figure 8, with initial
condition x0 ¼ 1:5.

Figure 7.
Plots of correlation dimensions: (a) with Q = 2.76 and varying A, (b) with A = 5.4 and varying Q.
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Interesting bifurcations observed for this map: For b = 1.1 � 106, r = 8, two
bifurcation diagrams are drawn; (a) in one for s =16 and 0≤ a≤ 1, and (b) in
another for a ¼ 0:8 and 3:5≤ s≤ 16:0 and shown in Figure 9. In former case one
finds initially period doubling bifurcation followed by loops before emergence of
chaos. In later case, one finds some typical type of bifurcation showing chaos
adding, folding and the bistability like phenomena. A magnification of right figure,
Figure 10, for smaller range, 4:5≤ s≤ 8:5, justifying chaos adding behavior.

Regular and chaotic motion experienced through bifurcation diagrams,
Figures 9 and 10, again confirmed by plots of Lyapunov exponents, Figure 11. This
system, bears enough complexity and, as its measure, plot of topological entropies,
Figure 12, obtained for values r ¼ 6, s ¼ 16 and b = 1.1 � 106 and 0≤ a≤ 1.
Fluctuations in increase of topological entropies appear, approximately, in the
region 0:25≤ a≤0:95 indicate existence of complexity.

The correlation dimension of its chaotic attractor for values a ¼ 0:78, when
r ¼ 6, s ¼ 16 and b = 1.1 � 106 is obtained as Dc ffi 0:253.

2.2 Two-dimensional models

2.2.1 Two-Gene Andrecut-Kauffman System

Chaos and complexity study of a discrete two-dimensional map for two-gene
system, proposed by Andrecut and Kaufmann, investigated recently, [35, 71, 92].
The map used to investigate the dynamics of two-gene system for chemical

Figure 8.
Chaotic time series plot of map (6) for a = 0.8, b = 10, r = 6, s = 2.5 and x0 ¼ 1:5.

Figure 9.
Bifurcation plots of Blood Cell model for ¼ 8 , b = 1.1 � 106 then for (a) s= 16 and 0 ≤ a ≤ 1 and for
(b) a = 0.1 and 3:5≤ s≤ 16:
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Figure 10.
Bifurcation of Blood Cell model when 3:0≤ s≤ 7:5 and a ¼ 0:8, r ¼ 8, b = 1.1 � 106.

Figure 11.
LCE Plots for ¼ 6 , s ¼ 16 and b = 1.1 � 106 , negative and positive values of LCEs, respectively, below and
above the zero line show the regular and chaotic zones of parameter space.

Figure 12.
Topological entropy plot for r ¼ 6, s ¼ 16 and b = 1.1 � 106 and 0≤ a≤1.
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reactions corresponding to gene expression and regulation. The discrete dynamic
variables xn and yn describe the evolutions of the concentration levels of transcrip-
tion factor proteins. The map represented by following pair of difference equations:

xnþ1 ¼ a
1þ 1� bð Þ xtn þ b ytn

þ c xn

ynþ1 ¼
a

1þ 1� bð Þ ytn þ b xtn
þ dyn (8)

With parameter values a ¼ 25, b ¼ 0:1, c ¼ d ¼ 0:18 and t ¼ 3, one obtains four
different fixed points with coordinates (2.30409, 2.30409), (�2.52688, 2.44162),
(2.44162, �2.52866), (�2.39464, �2.39464 ) and all are unstable.

For c 6¼ d and when a ¼ 25, b ¼ 0:1, c ¼ 0:18, d ¼ 0:42, and t ¼ 3, again, four
unstable fixed points exists as (2.2832, 2.5413), (�2.5458, 2.6566), (2.4613,
�2.7288), (�2.3744, �2.61705).Therefore, for all these the cases, orbit with initial
point taken nearby any of the fixed points be unstable and may be chaotic also.

We intend to investigate certain dynamic behavior of system (8) for cases when
c ¼ d and when c 6¼ d of evolutions showing irregularities due to presence of chaos
and complexity.

Numerical Simulations:
Drawing bifurcation diagrams and calculating Lyapunov exponents, topological

entropy and correlation dimensions of the system for different cases have
investigated performing numerical simulations. For values of the control
parameters following ranges proposed: a∈ 0, 50½ � , c∈ �0:4, 0:4½ �, b ¼ 0:1,
d ¼ 0:5, t ¼ 3, 4, 5.

Case 1: Taking c ¼ d, bifurcation diagrams are drawn along the directions x and y,
by varying c for cases t = 3, 4, 5 and certain fixed values of other parameters as shown
in Figure 13. Then, plots of attractors have been obtained for parameters a ¼ 25, b ¼
0:1, t ¼ 3 and (i) for regular case c ¼ d ¼ 0:32 and (ii) for chaotic case c ¼ d ¼ 0:18
and shown in Figure 14. In each case when t = 3, 4, 5, bifurcations show period
doubling leading to chaos and then to regularity. Also, bistability and folding nature
of phenomena are appearing here.

Lyapunov Exponents & Topological Entropies:
For chaotic evolution, when a ¼ 25, b ¼ 0:1, t ¼ 3, c ¼ d ¼ 0:18, Lyapunov expo-

nents are obtained shown in Figure 15. Numerical investigations further proceeded
for calculation of topological entropies. In Figure 16, plots of topological entropies are
presented for t = 3, 4, 5 and for different ranges of parameter c: Analysis of these
plots, gives an impression that for the case t = 3, system shows enough complexity in
the range 0.05 ≤ c ≤ 0.23. For the case t = 4, the system shows high complexity in the
range 0 ≤ c ≤ 0.22 and in case t = 5, high complexity appears in 0 ≤ c ≤ 0.44.

Case II:When c and d are different, bifurcation diagrams, Figure 17, shows clear
picture of complex nature of the system.

In Figure 18, plots of Lyapunov exponents, (LCE’s), for chaotic evolution for
different cases discussed above are shown in the upper row and plots of topological
entropies are shown in the lower row for these cases. For all the plots, parameters
a = 25 and b = 0.1 are common. Here, topological entropy plots are drawn for
different ranges of parameter c.

When parameters c and d both were allowed to vary, one gets 3D plots for
topological entropies as shown here in Figure 19.

Correlation dimensions:
Being one of the characteristic invariants of nonlinear system dynamics, the

correlation dimension provides measure of dimensionality for the underlying attrac-
tor of the system. A statistical method used to determine correlation dimension. It is
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an efficient and practical method in comparison to others, like box counting etc. The
procedure to obtain correlation dimension follows from steps of calculations in [73]:

For case t = 3 and a = 25, b = 0.1, c = 0.28, d = 0.12, correlation integral data
calculated and its plot is obtained, Figure 20. The linear fit of correlation integral
data obtained as

Y ¼ 0:0581323x� 0:580866

The y-intercept of this straight line is 0.580866. Therefore the correlation
dimension of the attractor in this case is, approximately, Dc = 0.581.

Computation of correlation dimension carried out for more cases for different
set of values of parameters as shown in Table 1.

2.2.2 Complexities in micro-economic Behrens Feichtinger model

Investigation on microeconomic chaotic disturbances and certain measure to
control chaos appeared in some recent articles, [72, 93–95], extended here for

Figure 13.
Three cases of bifurcation scenarios of map (8) for parameters c ¼ d: (a) t= 3, a ¼ 25, b ¼ 0:1 and 0 ≤ c ≤
0.5; (b) t = 4, a ¼ 35, b ¼ 0:1 and 0 ≤ c ≤ 0.65; (c) t = 5, a ¼ 25, b ¼ 0:1 and 0 ≤ c ≤ 0.5.
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a
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complexity analysis. The problem proposed as an micro economic model of two
firms X and Y competing on the same market of goods having asymmetric
strategies. The sales xn and yn of both firms are evolving in discrete time steps.

xnþ1 ¼ 1� αð Þ xn þ a

1þ e �c xn�ynð Þ½ �

ynþ1 ¼ 1� βð Þ yn þ
b

1þ e �c Xn�Ynð Þ½ � (9)

Figure 15.
Plots of Lyapunov exponents for chaotic evolution of map (8). Parameters are a ¼ 25, b ¼ 0:1, t ¼ 3, c ¼ d ¼
0:18 and when evolving from initial point (2.1, 2.1).

Figure 16.
Plots of topological entropy for map (8) when parameter c ¼ d. From left: (i) t = 3, a ¼ 25, b ¼ 0:1 and 0 ≤ c
≤ 0.5; (ii) t = 4, a ¼ 35, b ¼ 0:1 and 0 ≤ c ≤ 0.65; (iii) t = 5, a ¼ 25, b ¼ 0:1 and 0 ≤ c ≤ 0.8.

Figure 14.
Figures (a), (b), (c) correspond to time series, phase plane attractors and Lyapunov exponents; upper
row is for regular case and the lower row is for chaotic case of map (8). Parameters values are taken as
a ¼ 25, b ¼ 0:1, t ¼ 3 and (i) for regular case c ¼ d ¼ 0:32 and (ii) for chaotic case c ¼ d ¼ 0:18.
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where α, β (0< α, β< 1) are the time rates at which the sales of both firm decays
in the absence of investments. Parameters a, b describe the investment effectiveness
of both the firms. Parameter c is an “elasticity” measure of the investment strate-
gies. For parameter values α = 0.46¸ β = 0.7, a = 0.16, b = 0.9, c = 105, we have
observed the chaotic attractor of this model.

Bifurcation Diagram:
Bifurcation diagrams for system (9) obtained for α = 0.46¸ β = 0.7, a = 0.16,

b = 0.9 and by varying parameter c, 8 ≤ c ≤ 160 and in close range, 6 ≤ c ≤ 8,
Figure 21. Then, again it obtained for values α = 0.46¸ β = 0.7, a = 0.16, b = 0.6, c =
110 and 0 ≤ a ≤ 0.4, Figure 22. Appearance of period doubling followed by chaos
visible from these figures.

Attractors:
Time series plots and a plot of chaotic attractor obtained for values a = 0.16,

b = 0.9, c = 105, α = 0.46, β = 0.7 of system (9) shown in Figure 23. Plots shown in
Figure 24 are of LCEs for the chaotic motion.

Topological Entropies: Topological entropies calculated numerically and plot-
ted. These are shown in Figure 25. One finds significant increase topological

Figure 17.
Bifurcation plots when c 6¼ d for different ranges of parameter c. Cases (a), (b), (c), corresponds to t = 3, t = 4,
t = 5. Parameters are a ¼ 25, b ¼ 0:1 and d ¼ 0:20 for plots (a) & (c) and d = 0.30 for plot (b).
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entropy where the system shows regularity, (e.g., 20 ≤ c ≤ 75), and for values α =
0.46, β = 0.7, a = 0.16 and b = 0.9. This shows presence of complexities though there
is no chaos.

Figure 19.
3D plots for topological entropy variations. Parameters values are taken as a = 25, b = 0.1 and then 0 ≤ c ≤ 0.5
& 0 ≤ d ≤ 0.5.

Figure 20.
Plot of correlation integral curve for t = 3 and a = 25, b = 0.1, c = 0.28, d = 0.12.

Figure 18.
Upper row plots are for LCE’s and lower row plots are for topological entropies. Plots with (a), (b), (c) are
respectively corresponds to the cases t = 3, 4, 5. Parameters a = 25, b = 0.1 are common for all the plots. Then,
for (b)& (c) LCE’s plots, c = 0.2, d = 0.15 and that for plot (c) , c = 0.28, d = 0.12. For lower row topological
entropy plots, except parameter t, parameters a = 25, b = 0.1, d = 0.15 are common for all.
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Cases (t)/Parameters a b c d Approximate Dc

t = 3 25 0.1 0.28 0.12 0.581

t = 4 25 0.1 0.18 0.18 0.645

t = 5 25 0.1 0.18 0.18 0.703

t = 4 25 0.1 0.28 0.12 0.676

t = 5 25 0.1 0.28 0.12 0.772

t = 3 35 0.1 0.2 0.2 0.877

t = 4 35 0.1 0.2 0.2 0.618

t = 5 35 0.1 0.2 0.2 1.264

Table 1.
Correlation Dimensions for different sets of parameters.

Figure 21.
Bifurcation diagrams of system (9) with respect to coordinates x and y. Lower plots are correspond to
bifurcations in close range to indicate the appearance of periodic windows within bifurcation. α = 0.46¸ β = 0.7,
a = 0.16, b = 0.9, 8 ≤ c ≤ 160 & 6 ≤ c ≤ 8.

Figure 22.
Bifurcation of map (9) α = 0.46¸ β = 0.7, a = 0.16, b = 0.6, c = 110 and 0 ≤ a ≤ 0.4
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Correlation dimension:
Following steps used for map (8), correlation dimension of chaotic the attractor

for values α = 0.46, β = 0.7, a = 0.16, b = 0.9, c = 105, obtained as Dc = 0.064

2.2.3 Continuous Volterra-Petzoldt Model

A continuous 2-dimensional Lotka – Volterra type predator� prey model of
constant period chaotic amplitude, (UPCA model), proposed by Petzoldt, [96]
based on works, [97, 98], written as

dx
dt
¼ a x� α1

x y
1þ k1x

Figure 23.
Time series plots and chaotic attractor of the system (9) for a = 0.16, b = 0.9, c = 105, α = 0.46, β = 0.7 and
initial condition (0.1, 0.1).

Figure 24.
Plots of Lyapunov exponents for chaotic evolution of the system (9) for a = 0.16, b = 0.9, c = 105, α = 0.46,
β = 0.7.

Figure 25.
Plots of topological entropies: (a) left 2D plot is obtained for 12 ≤ c ≤ 170 and values of a = 0.16, b = 0.9, α =
0.46 and β = 0.7 and (b) right 3D plot is for 120 ≤ c ≤ 150 and 0 ≤ a ≤ 0.4 keeping same values for α and β.

200

A Collection of Papers on Chaos Theory and Its Applications

dy
dt
¼ �b yþ α1

x y
1þ k1x

� α2
y z

1þ k2y

dz
dt
¼ �c z�wð Þ þ α2

y z
1þ k2y

(10)

Bifurcation diagram for predator z while varying prey parameter b shown there,
Petzoldt [86], is interesting. Periodic bifurcations and chaotic attractor of this
model for different parameter space are presented in the figure, Figure 26.

Plots of time series for x(t), for cases of chaos, are given in Figure 27 and that
of Lyapunov exponents, (LCEs), of chaotic attractors shown in last two plots in
Figure 28.

In conclusion, one observes that the system (10) evolve into chaos after period
doubling phenomena.

Figure 26.
Periodic bifurcations and chaotic attractor formations of Volterra – Petzoldt model for different values of c fixed
parameters a = 1, b = 1, α 1 = 0.205, α 2 = 1, k1 = 0.05, k2 = 0, w = 0.006.

Figure 27.
Plots of time series curves for x(t) for chaotic evolutions for values of c. Other parameters are same as in
Figure 26.
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3. Chaos control technique

As nonlinear systems are hardly comparable in the sense that behavior of one
nonlinear system hardly match with another nonlinear system so the chaotic evolu-
tions. So controlling chaos to bring any chaotic system to regularity may differ from
one nonlinear system to another nonlinear system. Different types of controlling
chaos technique discussed in recent literatures, [75–88].

Following two chaos controlling technique discussed here:

3.1 Asymptotic Stability Method

Asymptotic stability analysis to stabilize unstable fixed point and to control
chaotic motion appeared in some recent researches, [83–85]. Though this method
has some limitations, it is perfect way to control chaos in models where it can be
applicable.

Description of the Method:
Dynamics of the actual map Xn + 1 and that of the desired map Yn + 1 can be

explained by following mapping:

Xnþ1 ¼ F xn,pð Þ (11)

Ynþ1 ¼ F yn,p∗
� �

(12)

Also, the neighborhood dynamics of Xn + 1 and Yn + 1 can be represented by the
relation:

Xnþ1 ¼ ARXn þ BR p

Ynþ1 ¼ ADYn þ BD p∗

Matrices AR, AD, BR, BD can be obtained from the following:

AR ¼ DXn F Xn,pð Þ,AD ¼ DYn F Yn,p∗ð Þ
BR ¼ Dp F Xn,pð Þ,BD ¼ Dp∗F Yn,p∗ð Þ

Here,

Xnþ1 ¼
xnþ1
ynþ1

 !
Ynþ1 ¼

x ∗
nþ1

y ∗
nþ1

 !

Figure 28.
Plots of LCEs of chaotic attractors of model (1) for values of c. Other parameters are same as in Figure 26.
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Let a, b are two parameters of the system and (xn, yn ) be any unstable fixed
point of above system for given values of a and b. Then, our objective is to obtain
two new values for a and b so that this unstable point becomes stable. For this, we
need the Jacobian matrices defined by

J ¼
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

0
BB@

1
CCA , J∗ ¼

∂f
∂a

∂f
∂b

∂g
∂a

∂g
∂b

0
BB@

1
CCA

The control input parameter matrix p*can be given by

P∗ ¼ CR Xn þ CM p–CDYn (13)

Then, using (11)-(13), one obtains the following error equation:

enþ1 ¼ AR–BD CRð Þ en þ AR–AD þ BD CD–CRð Þf gYn þ BR–BDCMð Þp (14)

And en = Xn-Yn.

Note that in equation (13) and (14) the coefficient matrices CR, CD and CM are
to be determined so that if the error vector en = Xn-Yn is initialized as e0 = 0, then it
will be zero for all n future times. For asymptotic stability, we must have en! 0 as
n!∞, then equation (14) implies

AR–AD þ BD CD–CRð Þ ¼ 0 ¼ >BD CD–CRð Þ ¼ AD �AR (15)

And BR–BD CM ¼ 0 ¼ >BDCM ¼ BR (16)

The necessary and sufficient condition for en!0 as n!∞ is

AR–BD CR ¼ �I (17)

From these, one can obtain matrices CM, CD, CR and then control parameter
matrix P* from (13).

A necessary and sufficient condition for the existence of matrices CM, CD, CR,

given by:

Rank BDð Þ ¼ Rank BD,AD–ARð Þ ¼ Rank BD,BRð Þ

3.2 Applications

3.2.1 Chaos Control in a 2–Dimensional Prey-Predator map

Considered a prey-predator model where both species evolve with logistic rule
and also influencing each other, [30], written as

xnþ1 ¼ a xn 1� xnð Þ � b xn yn

ynþ1 ¼ c yn 1� yn
� �þ b xn yn (18)

For a = 3.7, b = 3.5, c = 0.2, one obtains four fixed points obtained as: (0, 0),
(0, �4.0), (0.72973, 0) & (0.25712, 0.49961) of which (0.25712, 0.49961) is unsta-
ble. So, the orbits originating nearby it would also be unstable and unpredictable &
may be chaotic. Nearby this unstable fixed point, we assume a desired initial point
as (0.3, 0.5). With this as initial point together with parameters a = 3.7, b = 3.5,

203

Chaos and Complexity Dynamics of Evolutionary Systems
DOI: http://dx.doi.org/10.5772/intechopen.94295



3. Chaos control technique

As nonlinear systems are hardly comparable in the sense that behavior of one
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tions. So controlling chaos to bring any chaotic system to regularity may differ from
one nonlinear system to another nonlinear system. Different types of controlling
chaos technique discussed in recent literatures, [75–88].
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� �
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AR ¼ DXn F Xn,pð Þ,AD ¼ DYn F Yn,p∗ð Þ
BR ¼ Dp F Xn,pð Þ,BD ¼ Dp∗F Yn,p∗ð Þ

Here,

Xnþ1 ¼
xnþ1
ynþ1

 !
Ynþ1 ¼

x ∗
nþ1

y ∗
nþ1

 !

Figure 28.
Plots of LCEs of chaotic attractors of model (1) for values of c. Other parameters are same as in Figure 26.
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Let a, b are two parameters of the system and (xn, yn ) be any unstable fixed
point of above system for given values of a and b. Then, our objective is to obtain
two new values for a and b so that this unstable point becomes stable. For this, we
need the Jacobian matrices defined by

J ¼
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

0
BB@

1
CCA , J∗ ¼

∂f
∂a

∂f
∂b

∂g
∂a

∂g
∂b

0
BB@

1
CCA

The control input parameter matrix p*can be given by

P∗ ¼ CR Xn þ CM p–CDYn (13)

Then, using (11)-(13), one obtains the following error equation:

enþ1 ¼ AR–BD CRð Þ en þ AR–AD þ BD CD–CRð Þf gYn þ BR–BDCMð Þp (14)

And en = Xn-Yn.
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n!∞, then equation (14) implies

AR–AD þ BD CD–CRð Þ ¼ 0 ¼ >BD CD–CRð Þ ¼ AD �AR (15)

And BR–BD CM ¼ 0 ¼ >BDCM ¼ BR (16)

The necessary and sufficient condition for en!0 as n!∞ is

AR–BD CR ¼ �I (17)

From these, one can obtain matrices CM, CD, CR and then control parameter
matrix P* from (13).

A necessary and sufficient condition for the existence of matrices CM, CD, CR,

given by:

Rank BDð Þ ¼ Rank BD,AD–ARð Þ ¼ Rank BD,BRð Þ
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(0, �4.0), (0.72973, 0) & (0.25712, 0.49961) of which (0.25712, 0.49961) is unsta-
ble. So, the orbits originating nearby it would also be unstable and unpredictable &
may be chaotic. Nearby this unstable fixed point, we assume a desired initial point
as (0.3, 0.5). With this as initial point together with parameters a = 3.7, b = 3.5,
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c = 0.2, time series, attractor and LCE plots are obtained and shown by Figure 29.
Clearly the system (18) is showing chaos at (0.3, 0.5) with a = 3.7, b = 3.5, c = 0.2.

Then, applying asymptotic stability discussed above for the map (18). For fixed
value c = 0.2, unstable fixed point obtained as (0.25712, 0.49961). Nearby this point

take initial point (0.3, 0.5) and p ∗ ¼ a
b

� �
¼ 3:7

3:5

� �
. When above-mentioned

method applied, one obtains matrices:

AR ¼
0:048652 �0:899924
1:74865 0:900078

� �
AD ¼

�0:27 �1:05
1:75 1:05

� �

BR ¼
0:19101 �0:128462

0 0:128462

� �
BD ¼

0:21 �0:15
0 0:15

� �

CM ¼
0:90957 0

0 0:85641

� �
CR ¼

3:79669 �4:76117
11:6577 �0:66615

� �

CD ¼
2:28571 �4:7619
11:6667 0:333333

� �
p∗ ¼ 3:91525

2:99538

� �

For the case when c = 0.2; new values of a and b; a = 3.91525, b = 2.99538 along
with initial point (0.3, 0.5)a phase plot and a plot of Lyapunov exponents (LEC),
are given in Figure 30.

3.2.2 Food chain model

Next, we have considered three dimensional food chain model, [23], written as

xnþ1 ¼ a xn 1� xnð Þ � b xnyn
ynþ1 ¼ c xn yn � d yn zn

Figure 29.
Time series graphs, attractor and LCE plots of the unstable system.
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znþ1 ¼ r ynzn (19)

For values a = 4.1, b = 3.7, c = 3, d = 3.5, r = 3.8 five fixed points exist for system
(19) given by: P0(0, 0, 0), P1(0, 0.2632, 0.2857), P2(0.518614, 0.263158, 0.158812),
P3(0.7561, 0, 0) and P4(0.3333, 0.4685, 0). Then, by stability analysis it has
obtained that the fixed points P2(0.518614, 0.263158, 0.158812) and
P4(0.3333, 0.4685, 0) are unstable. Then, taking nearby P2, a desired initial point P*
(0.5, 0.3, 0.2), chaotic attractors drawn, Figure 31.

In the process of stabilizing the desired point (0.5, 0.3, 0.2), calculations
performed to replace parameters a = 4.1, d = 3.5 and r = 3.8 to earlier case of map
(18). After obtaining all concerned matrices, replacement matrix obtained as

p ∗ ¼
a
d
r

0
B@

1
CA ¼

4:1035

1:05194

1:02707

0
B@

1
CA

Figure 31.
Time series and attractors of unstable system.

Figure 30.
Phase plot and LCE plot of controlled system when c = 0.2, a = 3.91525, b = 2.99538.
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For values a = 4.1, b = 3.7, c = 3, d = 3.5, r = 3.8 five fixed points exist for system
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P4(0.3333, 0.4685, 0) are unstable. Then, taking nearby P2, a desired initial point P*
(0.5, 0.3, 0.2), chaotic attractors drawn, Figure 31.

In the process of stabilizing the desired point (0.5, 0.3, 0.2), calculations
performed to replace parameters a = 4.1, d = 3.5 and r = 3.8 to earlier case of map
(18). After obtaining all concerned matrices, replacement matrix obtained as
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0
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CA

Figure 31.
Time series and attractors of unstable system.

Figure 30.
Phase plot and LCE plot of controlled system when c = 0.2, a = 3.91525, b = 2.99538.
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At these new parameter values of a, d and r, the phase plot and the plot of
Lyapunov exponents of map (19) obtained, Figure 32. These show chaotic motion
controlled and the system returns to regularity.

3.2.2.1 Pulsive Feedback Technique to Chaos Control

Pulsive chaos control technique is discussed in detail in recent articles, [86–88].
As an application of this technique let us consider a simple 2 – dimension discrete
time Burger’s map

3.2.3 Controlling Chaos in 2-D Burger’s Map

xnþ1 ¼ 1� að Þ xn � y2n
ynþ1 ¼ 1þ bð Þ yn þ xn yn (20)

where a and b are non-zero parameters . This map evolve chaotically when
a= 0.9, b=0.856. To control chaotic motion we have used pulsive feedback control
technique, Litak et al. [86] by

Here (�0.9, 0.948683) is an unstable fixed point of the original Burger's map.
It has been observed that above chaotic motion is controlled and display regular
behavior after re-writing equations (1) as follows:

xnþ1 ¼ 1� að Þ xn � y2n þ ∈ xþ 0:9ð Þ
ynþ1 ¼ 1þ bð Þ yn þ xn yn þ ∈ y� 0:948683

� �
(21)

Repeating stability analysis for system (2) with the fixed point (�0.9,
0.948683), one finds this point be stable if ε < 0.45. So, taking ε = 0.435, phase plot
obtained as shown in Figure 34, indicates chaotic motion, Figure 33, is now
controlled.

3.2.4 Controlling Chaos in Volterra-Petzoldt Map

Evolution of Volterra-Petzoldt map already discussed in Section 2, Eq. (10). For
parameters a = 1, b = 1, c = 9.7, α1 = 0.205, α2 = 1, k1 = 0.05, k2 = 0 , w = 0.006, this
map shows chaotic motion. An unstable equilibrium solution P* (19.5374, 9.64328,
1.02602) exists in this case.

Figure 32.
Phase plot and LCE plot of map (19) showing regular motion and chaos is controlled.
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Applying the method of pulsive feedback, and re-writing eq. (10) as

dx
dt
¼ a x� α1

x y
1þ k1x

þ ∈ x� 19:5374ð Þ

dy
dt
¼ �b yþ α1

x y
1þ k1x

� α2
y z

1þ k2y
þ ∈ y� 9:64328

� �

dz
dt
¼ �c z�wð Þ þ α2

y z
1þ k2y

þ ∈ z� 1:02602ð Þ (22)

Then, using stability analysis, for stabilize the above unstable point P*, one
obtains the parameter ε = �0.45.

4. Discussions

Regular and chaotic evolutions observed in some 1-3 dimensional discrete and
continuous nonlinear models, which have applications in different areas of science.
Presence of complexity in these systems viewed by indications of significant
increase in topological entropies in certain parameter spaces. More increase in
topological entropy in a system signified the system is more complex. Bifurcation
phenomena for different systems show interesting properties like bistability, fold-
ing, intermittency, chaos adding etc. which are not common to all nonlinear sys-
tems. Proper numerical simulations performed for each system to obtain regular
and chaotic attractors, Lyapunov exponents (LCEs) as a measure of chaos, (evolu-
tion is regular if LCE < 0 and chaotic if LCE > 0), topological entropies and
correlation dimensions for chaotic attractors. It appears from the plots of topologi-
cal entropies that obtained for discrete models that complexity exists even in
absence of chaos. Correlation dimensions obtained for chaotic attractors are non-
integers because these attractors bear fractal properties. A chaotic attractor is com-
posed of complex pattern and so, in a variety of nonlinear evolving systems mea-
surement of topological entropy is equally important, [63–67].

To control chaotic motion, techniques of asymptotic stability analysis and that of
pulsive feedback control applied here. Pulsive control technique applied to
Volterra-Petzoldt map (10) and to Burger’s map (20), show chaos successfully
controlled and systems returned to regularity, Figures 34 and 35. Application of
Pulsive control method perfectly controlled chaotic motions in systems (10), (20)
shown here. Chaos is also controlled by this method for system (10), [72]. Asymp-
totic stability analysis method applied to a prey-predator system and to a food chain
model, respectively, to maps (18) and (19), and chaos effectively controlled shown,

Figure 33.
Chaos in Burgerger’s map for a = 1, b = 0.9.
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Lyapunov exponents of map (19) obtained, Figure 32. These show chaotic motion
controlled and the system returns to regularity.
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Evolution of Volterra-Petzoldt map already discussed in Section 2, Eq. (10). For
parameters a = 1, b = 1, c = 9.7, α1 = 0.205, α2 = 1, k1 = 0.05, k2 = 0 , w = 0.006, this
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1.02602) exists in this case.
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Phase plot and LCE plot of map (19) showing regular motion and chaos is controlled.

206

A Collection of Papers on Chaos Theory and Its Applications

Applying the method of pulsive feedback, and re-writing eq. (10) as
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obtains the parameter ε = �0.45.
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tems. Proper numerical simulations performed for each system to obtain regular
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Pulsive control method perfectly controlled chaotic motions in systems (10), (20)
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respectively, through figures, Figures 30 and 32. Asymptotic stability analysis
technique has some limitations explained in the articles where this method pro-
posed, [83, 84]. Though there are many ways to control chaos in dynamical sys-
tems, [74], both the techniques applied here are perfect and very effective in
controlling chaos, especially in real systems.

Acknowledgements

The author wishes to present his sincere gratitude to Professor M.K. Das of
Institute of Informatics & Communication, University of Delhi South Campus, for
his all support and help in preparation of this article.

Figure 35.
Plots of chaotic attractor changing into regular attractor by application of pulsive feedback technique.

Figure 34.
Plot of regular attractor for a = 1, b = 0.9 and ε = 0.435.
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Figure 35.
Plots of chaotic attractor changing into regular attractor by application of pulsive feedback technique.

Figure 34.
Plot of regular attractor for a = 1, b = 0.9 and ε = 0.435.
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Chapter 11

Green’s Function Method for
Electromagnetic and Acoustic
Fields in Arbitrarily
Inhomogeneous Media
Vladimir P. Dzyuba and Roman Romashko

Abstract

An analytical method based on the Green’s function for describing the
electromagnetic field, scalar-vector and phase characteristics of the acoustic field in
a stationary isotropic and arbitrarily inhomogeneous medium is proposed. The
method uses, in the case of an electromagnetic field, the wave equation proposed by
the author for the electric vector of the electromagnetic field, which is valid for
dielectric and magnetic inhomogeneous media with conductivity. In the case of an
acoustic field, the author uses the wave equation proposed by the author for the
particle velocity vector and the well-known equation for acoustic pressure in an
inhomogeneous stationary medium. The approach used allows one to reduce the
problem of solving differential wave equations in an arbitrarily inhomogeneous
medium to the problem of taking an integral.

Keywords: inhomogeneous media, Green’s function, electromagnetic field,
acoustic field, analytical method

1. Introduction

The chapter discusses the procedure for using the Green’s function for the
analytical description of electromagnetic and acoustic fields in a stationary isotropic
and arbitrarily inhomogeneous medium. In the case of the electromagnetic field, the
wave equation for the electric vector of the electromagnetic field in the inhomoge-
neous medium with conductivity, dielectric and magnetic permeability is used. In
the case of the acoustic field, the wave equation proposed by the author for the
vector of particle velocity and the well-known equation for acoustic pressure in an
inhomogeneous stationary medium are used. Using the Green’s function and the
method of successive approximations makes it possible to achieve the required
accuracy of calculating the electric and magnetic vectors of the electromagnetic
field, as well as to calculate the vectors of complex intensity and intensity, density
of energy, acoustic pressure and the particle velocity vector of the acoustic field in
media with arbitrary spatial variability of the parameters. The approach used allows
one to reduce the problem of solving differential wave equations in an arbitrarily
inhomogeneous medium to integration. The chapter is divided into two parts.
At the beginning of each part, the corresponding wave equations are derived and
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next, a method of using the Green’s function is described and analytical expressions
describing the fields are formulated. At the beginning we will describe the method
as applied to the electromagnetic field, and then as applied to the acoustic field.

Research and modeling of the electromagnetic field in spatially inhomogeneous
natural and composite media are actively developing in various fields of science and
technology, ranging from systems of underground and underwater electromagnetic
communication to photonics, metamaterials and metasurfaces [1]. Such a wide field
of scientific research requires methods of mathematical modeling of the properties
of the electromagnetic field in media with different spatial scales of conductivity,
magnetic and dielectric permittivity. At present, analytical methods are applicable
in a very limited range of environments. Among the methods of mathematical
modeling of the electromagnetic field in the frequency range from fractions of the
hertz to optical, various numerical methods and technologies are used [2, 3].
Numerical modeling uses a variety of methods and technologies, for example,
parallel computing which are used in electrodynamic modeling programs. Among
them, there are also direct and universal methods for solving boundary problems.
The drawback of these methods is a large expenditure of computer resources, which
leads to a significant simplification of physical models of the environment and
mathematical approximations. There is a third class of methods, in which, at the
initial stage, analytical methods are used, for example, the Green’s function method,
which brings the problem to a form that can be solved by fairly simple numerical
methods. Below we will use exactly this approach using the Green’s function.
Green’s function is actively used in a wide range of problems [4–6] of describing
electromagnetic and other physical fields in various multilayer, chiral and aniso-
tropic media, including inhomogeneous ones. The proposed procedure is also
applicable to media with boundaries and arbitrary dependence on the coordinates of
conductivity, magnetic and dielectric permittivity. The source of the field in the
environment can be the electric current or an external field. The electric current can
be located also inside the medium and outside it. The problem of descriptions the
electric vector in an inhomogeneous medium by using the Green’s function is
formulated as the integral equation with its subsequent solution by the method of
successive approximations. This procedure uses the equation for the vector of
electric field strength in an inhomogeneous medium, with a certain conductivity,
magnetic permeability, and dielectric constant.

The acoustic energy flux density vector (intensity vector), basically, until the
beginning of the second half of the 20th century was only of theoretical interest.
The second half of the 20th century brought about reliable means of synchronous
measurement, practically at a single point, of the acoustic pressure and the compo-
nents of particle velocity vector necessary to determine the intensity vector of
acoustic field [7–14]. However, this did not lead to a significant increase in the
number and quality of theoretical research methods and modeling of the intensity
vector in an inhomogeneous medium. For the complete theoretical description of
the acoustic field, knowledge of its acoustic pressure and the particle velocity vector
is required. These two quantities make it possible to find the field of the acoustic
intensity vector, to describe the energy and phase structure of the acoustic field.
Knowledge of these quantities is useful for solving fundamental and applied prob-
lems of acoustic tomography and sounding of the geosphere, applied and funda-
mental hydroacoustics, creation of acoustic metamaterials, technical and

architectural acoustics, noise control, etc. [15–17]. The acoustic pressure P
!
a r!, t
� �

and the particle velocity vector V
!

r!, t
� �

are interrelated. This connection is obvious

for a plane wave and, in the approximation of a continuous medium, has the
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following form: V
!

r!, t
� �

¼ � 1
ρ0 r!ð Þ

Ð
P
!
a r!, t
� �

dt , where ρ0 r!
� �

is the density of the

medium unperturbed by the acoustic field at the point r! and t is time, and ∇ is the
Nabla operator. This relationship largely determined the development of the theory
of sound as a scalar field of acoustic pressure. Currently, there are several directions
for the development of methods of calculation and theoretical analysis of the char-
acteristics of the intensity vector. In the first direction, the relationship between the
acoustic pressure and the particle velocity vector is used. This approach is applicable
when there are mathematical expressions for the acoustic pressure field. As a rule,
this is only possible in a homogeneous medium or for simple waveguides [18]. The
second direction requires the use of the continuity equation and the equation of
state of the inhomogeneous medium, as well as dynamic equations of motion of
elementary volumes or particles of the inhomogeneous medium, for example: the
Euler or Navier-Stokes equations. These equations are viewed as a system of equa-
tions for determining the pressure and the particle velocity vector. This approach is
used to model the propagation of waves in various environments, including plasma
and stellar atmospheres [19–22]. These equations are widely known, but to find
analytical wave solutions of such systems given an arbitrary dependence of the
density and speed of sound on the coordinates is a very difficult task. The use of the
acoustic energy transfer equation is the third approach [9]. This approach allows
one to describe the energy structure of the acoustic field which makes it possible to
study the statistical characteristics of the complex intensity vector in a Gaussian
delta-correlated inhomogeneous medium with refraction [9]. It is a very difficult
task to find solutions to the transport equation in an inhomogeneous media. In turn,
numerical methods for modeling metamaterials and propagation of acoustic waves
in a medium are usually limited to specific problems [23–25]. None of the listed
approaches, including numerical ones, provides the possibility of a complete theo-
retical description of the characteristics of the acoustic field and their evolution
during field propagation in an arbitrary inhomogeneous medium. One of the prom-
ising directions is to use two wave equations in an inhomogeneous medium: equa-
tions for the acoustic pressure and equations for the particle velocity vector. We use
this very approach. It is based on the proposed by authors wave equation for the
particle velocity vector and the well-known equation for acoustic pressure in an
inhomogeneous stationary medium. The proposed wave equation for the vector of
the particle velocity of the acoustic field in a stationary inhomogeneous and isotro-
pic medium is much more complicated than for the acoustic pressure. This makes it
difficult to find the analytical solution for inhomogeneous media with an arbitrary
spatial dependence of the density of the medium and the speed of sound in it.
However, in an inhomogeneous medium, in which the field of the acoustic intensity
vector is weakly vortex, the use of the Green’s tensor together with the method of
successive approximations makes it possible to find analytical solutions for an
arbitrary spatial dependence of the speed of sound and density of the inhomoge-
neous medium.

2. Electromagnetic field

By an inhomogeneous medium, we mean a medium in which the conductivity

σ r!
� �

, dielectric ε r!
� �

and magnetic μ r!
� �

permittivity, and the current density

J
!

r!
� �

have an arbitrary, but differentiable, in the ordinary and in the generalized

sense, dependence on coordinates points of the medium. Below we will not point
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out the explicit dependence of these and other quantities on time and coordinates,
where this will not lead to misunderstanding. In an isotropic inhomogeneous
medium, ε, μ, σ are scalar functions of coordinates. To derive the wave equation of
the electromagnetic field in such a medium, we use the following well known
fundamental and material Maxwell equations in a continuous isotropic and station-
ary medium:

1: ∇�H
! ¼ J

! þ ∂D
!

∂t
; 2: ∇� E

! ¼ �þ ∂B
!

∂t
; 3:  J

! ¼ σE
!
;

4: ∇ J
! ¼ � ∂

∂t
ρf þ ρextð Þ; 5:  J

! ¼ J
!
f þ J

!
ext; 6: D

! ¼ εE
!
;

7: B
! ¼ uH

!
; 8: ε ¼ ε0εr; 9: μ ¼ μ0μr,

(1)

where ρ f is the density of free charges of the medium, and ρext is the density of
external charges introduced into the medium, εr and μr are the relative dielectric

and magnetic permeability of the medium, and J
!
ext is the current density created by

free and external charges. The wave equation for the electric vector in an inhomo-
geneous medium can be obtained, as for a homogeneous medium, excluding the
vector of magnetic field strength from the system of Maxwell’s equations. For this,
we use the well-known vector analysis formulas [26] and take the rotor from the
2nd equation in system (Eq. (1)):

∇� ∇� E
! ¼ ∇ � ∇ � E!

� �
� Δ � E! ¼ � ∂

∂t
∇� B

!
(2)

In this case, the source of electromagnetic field is the electric current density J
!
,

so the divergence of the vector ∇ � E! , we need to associate with a current density in
the medium. For this, we use (Eq. (5)) of the Maxwell system of equations (Eq. (1))

and obtain ∇ � E! ¼ 1
σ ∇ � J! � E

!
∇ � σð Þ

� �h i
. Using the vector analysis formulas, we

find the following expression:

∇ ∇ � E!
� �

¼  E
! ∇ � σð Þ2

σ2
� ∇ � ln σð Þ∇½ �E! � E

! � ∇
� �

∇ � ln σð Þ � ∇ � ln σð Þ � ∇� E
!þ

þ ∇ � J!
� �

∇ � 1
σ

� �
þ 1
σ
∇ ∇ � J!
� �

�

(3)

The expression for the rotor of the magnetic field induction vector has the form

∇� B
! ¼ ∇� μH

!� �
¼ μ ∇�H

!� �
þ ∇ � μð Þ �H

!
(4)

Using equations 1 and 2 of the system of Maxwell equations and expressions

(Eq. (2)) and (Eq. (3)), we find that � ∂

∂t ∇� B
!� �
¼ �μσ ∂

∂t E
! � μ ∂

∂t J
! � εμ ∂

2

∂t2 E
! þ

∇ � ln μð Þ � ∇� E
!� �

, and the desired equation for an electric vector with a field

source, in which the charge flux from the volume occupied by the current is not
equal to zero, has the following form:
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εμ
∂
2

∂t2
E
! þ μσ

∂

∂t
E
! � ΔE

! � ∇ � ln μσð Þ � ∇� E
!� �
þ E
! ∇ � σ

σ

� �2

� ∇ � ln σð Þ∇½ �E! � E
! �∇
� �

∇ � ln σð Þ ¼

¼ �μ ∂

∂t
J
! � ∇ � J!

� �
∇ � 1

σ

� �
� 1
σ
∇ ∇ � J!
� �

(5)

If there is no injection of external charges into the medium, the value ∇ � J! is

equal to zero and ∇ J
! ¼ ∇ J

!
ext ¼ � ∂

∂t ρext otherwise. When deriving (Eq. (5)), no
conditions on the field frequency were used. Therefore, the equation is valid up to
frequencies that correspond to wavelengths λ larger than the sizes of atoms or
molecules. The smallness of the ratio of the first and second terms of equation
(Eq. (5)) corresponds to the condition of quasi-stationarity of the electromagnetic
field. For a monochromatic field with the angular frequency ω, the modulus of their
ratio is equal εσ ω and small under conditions of high conductivity, low dielectric
constant, or low the angular frequency. In this case, the propagation of the field in
the medium will have a predominantly diffusion character and will be described by
the following equation:

μσ
∂

∂t
E
! � ΔE

! � ∇ � ln μσð Þ � ∇� E
!� �
þ E

∇ � σ
σ

� �2

� ∇ � ln σð Þ∇½ �E! � E
! � ∇
� �

∇ � ln σð Þ ¼

¼ �μ ∂

∂t
J
! � ∇ � J!

� �
∇ � 1

σ

� �
� 1
σ
∇ ∇ � J!
� �

(6)

When ε
σ ω> > 1 the field propagation in the media is of the wave-type mainly. At

the present time, there are no methods for finding exact solutions of equations of
the type (Eq. (5)) and (Eq. (6)). Solutions satisfying a given accuracy can be
obtained in two ways. The first is to use numerical methods. The second, which we
will follow, consists in passing from the differential equation (5) to the integral
equation using the tensor Green’s function of the Helmholtz equation for the Fou-
rier - the spectrum of the vector of the electric field strength. The solution to an
integral equation can be written in the form of a sequence of approximate solutions,
in which each subsequent term is more accurate. It is important that such a proce-
dure for finding a solution is applicable for arbitrary differentiable, both in the usual
and in the generalized sense, dependences of σ, ε, and μ on coordinates. For this, we

express the vector of the electric field E
!

r!, t
� �

and the current density J
!

r!, t
� �

through their Fourier spectra E
!

r!,ω
� �

and J
!

r!,ω
� �

E
!

r!, t
� �

¼ 1
2π

ðþ∞

�∞
E
!

r!,ω
� �

eiωtdω, J
!

r, tð Þ ¼ 1
2π

ðþ∞

�∞
J
!

r!,ω
� �

eiωtdω: (7)

For high frequencies, when the dependence of ε and μ from the field frequency
cannot be neglected, but spatial dispersion and nonlinear effects can be neglected,

J
!

r!,ω
� �

¼ σ ω, r!
� �

E
!

ω, r!
� �

, D
!

ω, r!
� �

¼ ε ω, r!
� �

E
!

ω, r!
� �

и B
!

ω, r!
� �

¼
μ ω, r!
� �

H
!

ω, r!
� �

. Spatial dispersion plays a minor role in comparison with temporal

dispersion and is significant in media with the mean free path of the charge or its
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diffusion much longer than the field wavelength. Below we will not indicate the
dependence of the conductivity and permeability on frequency. Let’s consider con-
ductivity and permittivity as a sum of a constant and a space-dependent variable:

σ r!
� �

¼ σc þ σ1 r!
� �

, μ r!
� �

¼ μc þ μ1 r!
� �

, ε r!
� �

¼ εc þ ε1 r!
� �

(8)

Let’s introduce the following notations:

ω2ε r!
� �

μ r!
� �

� iωμ r!
� �

σ r!
� �

�
∇ � σ r!

� �

σ r!
� �

0
@

1
A

20
B@

1
CA ¼ k2 r!,ω

� �
,

f
!
ext ω, r!
� �

¼ iωμ r!
� �

J
!

r!,ω
� �

þ ∇ J
!

r!,ω
� �� � ∇σ1 r!

� �

σ2 r!
� �

0
@

1
Aþ 1

σ r!
� �∇ ∇ � J! r!,ω

� �� �
,

(9)

f
!!

ω, r!
� �

¼ � ∇μ1 r!ð Þ
μ r!ð Þ þ

∇σ1 r!ð Þ
σ r!ð Þ

� �
� ∇� E

!
r!,ω
� �� �

� ∇σ1 r!ð Þ
σ r!ð Þ ∇

� �
E
!

r!,ω
� �

�

E
!

r!,ω
� �

� ∇
� �

∇σ1 r!ð Þ
σ r!ð Þ

� �
. Substituting expressions (Eq. (8)) and (Eq. (9)) into

equation (Eq. (5)), we arrive at the following equation:

ΔE
!

r!,ω
� �

þ k2 r!,ω
� �

E
!

r!,ω
� �

¼ f
!

r!,ω
� �

þ f
!
ext r!,ω
� �

(10)

Eq. (10) must be supplemented with boundary conditions. In an inhomogeneous
medium, the interface between the media can be considered as an inhomogeneity
with its dependence on coordinates, described by the corresponding functions, for
example: Heaviside step function, etc. Therefore, the boundary conditions will be
the conditions at infinity, where the field and its divergence must be equal to zero.

In Eq. (10) the field source is not only the external currents (term f
!
ext ω, r!
� �

but

also the heterogeneity of the environment). These sources are described by f
!

ω, r!
� �

.

At present, there are no methods for the analytical solution of equations similar to

(10) with an arbitrary dependence of the term f
!

ω, r!
� �

on coordinates. Neverthe-

less, using the Green’s functions of the vector Helmholtz equation in a homoge-
neous isotropic medium we can reformulate (10) into the integral with respect to

the vector E
!

r!,ω
� �

, the solution of which can be found in an iterative way, for

example, by the method of successive approximations.

Using (Eq. (8)) one can formulate k2 r!,ω
� �

as the sum of independent on

coordinates k2
c function on coordinates and k2

1 r!,ω
� �

k2 r!
� �

¼ ω2εcμc � iωμcσc
� �þ ω2 εcμ1 r!

� �
þ ε1 r!

� �
μc þ ε1 r!

� �
μ r!
� �� �

�iω σcμ1 r!
� �

þ σ1 r!
� �

μc þ σ1 r!
� �

μ r!
� �� �

‐
∇ � σ1 r!

� �

σ r!
� �

0
@

1
A

2

¼ k2c þ k21 rð Þ
(11)
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Thus equation (Eq. (10)) can be written as:

ΔE
!

r!,ω
� �

þ k2cE
!

r!,ω
� �

¼ f
!
l ω, r!
� �

þ f
!
ext ω, r!
� �

, (12)

where f
!
1 ω, r!
� �

¼ f
!

ω, r!
� �

� k21 r!,ω
� �

E
!

r!,ω
� �

.

Formally, we can consider Eq. (12) as an inhomogeneous Helmholtz equation
and using the Green’s function for it, we can rewrite Eq. (12) in the form of an
integral equation. For vector fields, the Green’s function [7–10] is a tensor of the
second rank. In an orthogonal coordinate system, Eq. (5) decomposes into a system
of three scalar equations for the projections of the field E (r, ω) on the coordinate
axis. This simplifies the form of the Green’s tensor and it has only diagonal elements
that are not equal to zero. It can be represented as the vector

G
!

r! � r!1

� �
¼P3

i¼1n
!
iGi r! � r!1

� �
, where Gi r! � r!1

� �
is the components of

which are the Green’s functions of the one-dimensional Helmholtz equation and ni
are the unit vectors of the coordinate axes. Let the area Ω in which we describe the
field be large enough so that on its borders the field and its derivatives can be
equated to zero. Using the Green tensor, we can rewrite Eq. (5) for the electric
vector at the point r!∈Ω of the in the form of the following integral equation

E
!

r!,ω
� �

¼
X3
i¼1

ni

ð

Ω

Gi r! � r!1

� �
f iext ω, r!1

� �
þ f i1 ω, r!1

� �h i
d r!1 (13)

where r!, r!1

� �
∈Ω, f iext ω, r1ð Þ and f i1 ω, r1ð Þ are the projections of vectors

f
!
ext ω, r!
� �

and f
!
1 ω, r!
� �

on to the coordinate axes. Integration is performed over

the volume occupied by inhomogeneities, which are secondary sources of the field.
In practice, the volume should be chosen such that secondary and higher order
sources make a noticeable contribution to the field. Due to the rapid decrease in the
amplitude of the Green’s function and, especially with a strong absorption of the
electromagnetic field by the medium, the region of integration can be about 1/α
where α is the absorption coefficient of the field.

The steps for finding E
!

r!,ω
� �

by the method of successive approximations can

be as follows. We find the zeroth approximation E
!
0 r!,ω
� �

for the field, which is

valid in a homogeneous medium with parameters σc, μc, εc

E
!
0 r!,ω
� �

¼
X3
i�1

n!i

ð

Ω1

G r! � r!1

� �
n!i � f

!
ext ω, r!1

� �� �h i
dr!1: (14)

Integration is performed over the volume Ω1 occupied by the external current
(primary source of the field). This solution describes the primary field created by an

external current. Using obtained by Eq. (14) expression E
!
0 r!,ω
� �

and expression

(9), we find f i1 ω, r!1

� �
. Using (Eq. (13)) and integrating, we obtain a more accurate

first E
!
1 r!,ω
� �

approximation for E
!

r!,ω
� �

, which takes into account the influence

of medium inhomogeneities on the field. To find the second approximation, it is

necessary to substitute E
!
1 r!,ω
� �

into f i1 ω, r!1

� �
and using (Eq. (13)) to obtain the

221

Green’s Function Method for Electromagnetic and Acoustic Fields in Arbitrarily…
DOI: http://dx.doi.org/10.5772/intechopen.94852



second more accurate approximation. Similarly, more accurate solutions are
obtained that take into account multiple field scattering by medium inhomogenei-
ties. At these stages, the integration is performed over the volume occupied by
inhomogeneities, which are secondary sources of the field. If the source of the field

in an inhomogeneous medium is an external field with an electric vector E
!
ext r!,ω
� �

it should be used as the vector E
!
0 r!,ω
� �

.

For determining the magnetic field component one uses Maxwell’s equations and

writes them in terms of magnetic and electric fields Fourier spectrums: ∇�
E
!

r!,ω
� �

¼ �ωB! r!,ω
� �

. Substituting (Eq. (13)) in this equation one obtains

H
!

r!,ω
� �

¼ i
1

ωμ r!
� �

ð

Ω

X3
i¼1

n!i � ∇G r! � r!1

� �
f iext ω, r!1

� �
þ f i1 ω, r!1

� �h i
d r!1: (14a)

Using the Green’s function, as the experience of its use shows (e.g. [7]) in such
tasks, significantly reduces the requirements for computing resources and reduces
the computation time. Note that the proposed procedure can be effective in simu-
lating the optical properties of metamaterials, nanocomposites, and nanostructures.

3. Acoustic field

The wave equation for acoustic pressure Pa r!, t
� �

in a continuous inhomoge-

neous motionless and stationary medium is well known [16, 17]

1

c2 r!
� � ∂

2

∂t2
Pa r!, t
� �

þ ΔPa r!, t
� �

þ ∇Pa r!, t
� �

þ f
!

r!, t
� �h i

∇ ln ρ0 r!
� �

¼ ∇ f
!

r!, t
� �

:

(15)

where f
!

r!, t
� �

is the density of volumetric external forces that are the source of

the acoustic field.
Eq. (1) is obtained by excluding the particle velocity vector from the linearized

Euler equations, continuity and state of the medium. If we exclude acoustic pres-
sure from these equations, then we get the equation for the vector of the particle
velocity of the acoustic field. For this, we differentiate the equation of state in
taking into account the smallness of the acoustic pressure, perturbation of the

density of the medium by the ρa r!, t
� �

in comparison with the background values

ρ0 r!
� �

and P0 r!
� �

the medium. In the inhomogeneous medium, the equation of

state Pc ρ r!, t
� �h i

describes the relationship of the instantaneous local value of

pressure and density of the medium. Therefore, it is necessary to use the total time
derivative when differentiating the equation of state. Using it, we find in the linear
approximation

d
dt

Pc ρ r!, t
� �h i

¼ c2 r!,
� �

∂

∂t
ρa r!, t
� �

þ ∇ρ0 r!,
� �

V
!

r!, t
� �� �

, (16)
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where C r!,
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂Pc ρ r!, tð Þ½ �
∂ρ r!, tð Þ

r
is the local phase speed of sound for the acoustic

pressure wave. We used the expansion ρ r!, t
� �

¼ ρ0 r!, t
� �

þ ρa r!, t
� �

and the con-

dition ∇ρa r!, t
� �

V r!, t
� �

< <∇ρ0 r!
� �

V r!, t
� �

. With the help of expression (2) and

representation, Pc ρ r!, t
� �h i

¼ P0 r!
� �

þ Pa r!, t
� �

the equation of

continuity ∂

∂t ρ r!, t
� �

þ ∇ ρ r!, t
� �

V
!

r!, t
� �h i

¼ 0 is reduced to a linearized form

1

ρ0 r!
� �

c2 r!
� � ∂

∂t
P r!, t
� �

þ ∇V r!, t
� �

¼ 0 (17)

In the inhomogeneity of the medium ∇V
!

r!, t
� �

6¼ 0 , even in the approximation

of an incompressible medium. Let us Take the time derivative on the linearized

Euler equation ρ0 r!
� �

∂

∂tV
!

r!, t
� �

þ ∇P r!, t
� �

þ f
!

r!, t
� �

¼ 0 and take the gradient of

the equation of continuity (Eq. (17)). We exclude the acoustic pressure from the
obtained expressions and find the equation for the particle velocity vector

1

c2 r!
� � ∂

2

∂t2
V
!

r!, t
� �

� ΔV
!

r!, t
� �

� ∇ ln ½ρ0 r!
� �

c2 r!
� �
�∇V! r!, t

� �
� ∇� ∇� V

!
r!, t
� �

¼

¼ � 1

ρ0 r!
� �

c2 r!
� � ∂

∂t
f
!

r!, t
� �

(18)

When f
!

r!, t
� �

¼ 0 then ∇� ∇� V
!

r!, t
� �

¼ �∇� ∇ ln ρ0 r!
� �� �

� V
!

r!, t
� �� �

and can transformed equation (Eq. (18)) to the following form, which is valid in the
absence of external forces

1

c2 r!
� � ∂

2

∂t2
V
!

r!, t
� �

� ΔV
!

r!, t
� �

� ∇ ln ρ0 r!
� �

c2 r!
� �h i

∇V
!

r!, t
� �

þ

þ∇� ∇ ln ρ0 r!
� �� �

� V
!

r!, t
� �� �

¼ 0

(19)

Eqs. (18) and (19) are much more complicated than equation (Eq. (15)) due to
the third and fourth vortex term. The estimate of their ratio is

∇ ln ρ0 r!
� �

c2 r!
� �� �

∇V
!

r!, t
� �

∇� ∇ ln ρ0 r!
� �� �

� V
!

r!, t
� �� �

�������

�������
�

∇ ln ρ0 r!
� �

c2 r!
� �� �

∇ ln ρ0 r!
� �

������

������ (20)

In areas of the medium where this ratio is greater than unity, the fourth term in
equations (Eqs. (18) and (19)) can be neglected. As a rule, these are media with a
large relative gradient of the speed of sound. One of the examples of such media can
be the marine environment, in which the local gradient of the speed of sound is
determined less by the change in water density than salinity and temperature
[12, 24]. Directly near the surface and the ocean floor or the interface between the
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media, the relative density gradient of the medium can be large. In these regions,
the field of the particle velocity vector and acoustic intensity can have a significant
rotational (vortex) component.

At present, the solution of these equations is possible only by numerical
methods. If the fourth term in the equations is small, the equations for the vector of
particle velocity and acoustic pressure allows one to find analytical expressions
connecting the phases and moduli of vector of complex intensity and particle
velocity vector, pressure, density of acoustic energy with the density of the medium
and the speed of sound in it. Let us do it for equation 19. Using both scalar function

Ψ r!, t
� �

and vector U
!

r!, t
� �

P r!, t
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zp r!
� �

Z0
p

vuuut Ψ r!, t
� �

V
!

r!, t
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zv r!
� �

Z0
v

vuut
U
!

r0
!
, t

� �
, (21)

we rewrite equations (Eqs. (15) and (19)) in the following form:

1
c2 rð Þ

∂
2

∂t2
Ψ r!, t
� �

� ΔΨ r!, t
� �

þ
3∇Zp r!

� �
∇Zp r!

� �

4Z2
p r!
� � �

ΔZp r!
� �

2Zp r!
� �

2
4

3
5Ψ r!, t
� �

¼ 0 (22)

1
c2 rð Þ

∂
2

∂t2
U
!

r!, t
� �

� ΔU
!

r!, t
� �

þ
3∇Zv r!

� �
∇Zv r!

� �

4Z2
v r!
� � �

ΔZv r!
� �

2Zv r!
� �

2
4

3
5U! r!, t
� �

¼ 0, (23)

where Zp r!
� �

¼ ρ0 r!
� �

and Zv r!
� �

¼ 1
ρ0 r!ð Þc2 r!ð Þ, and Z0

p ¼ ρ0 r!0

� �
, Z0

v ¼
1

ρ0 r!0ð Þc2 r!0ð Þ are values Zp r!
� �

and Zv r!
� �

at some point in space r!0. For the spectral

components Ψ r!,ω
� �

and U
!

r!,ω
� �

using the Fourier transform of equations

(Eqs. (22) and (23)) with respect to the time variable, we obtain the following
equations

ΔΨ r!,ω
� �

þ k2ψ r!
� �

Ψ r!,ω
� �

¼ 0, (24)

ΔU
!

r!,ω
� �

þ k2U r!
� �

U
!

r!,ω
� �

¼ 0, (25)

where k2ψ r!
� �

¼ ω2

c2 r!ð Þ �
3
4

∇ρ0 r!ð Þ
ρ0 r!ð Þ
� �2

þ Δρ0 r!ð Þ
2ρ0 r!ð Þ

k2U r!
� �

¼ ω2

c2 r!
� �þ 5

4

∇ρ0 r!
� �

ρ0 r!
� �

2
4

3
5
2

þ
∇ρ0 r!

� �
∇c r!
� �

ρ0 r!
� �

c r!
� �

þ3
∇c r!
� �

c r!
� �

2
4

3
5
2

�
Δρ0 r!

� �

ρ0 r!
� � � 2

Δc r!
� �

c r!
� �

(26)

From expressions (Eq. (26)) it follows that the gradient of the speed of sound
affects only the vibrational speed in a medium with a small swirl of the particle
velocity field. The acoustic pressure depends only on the gradient of the density of
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the medium and does not depend on the gradient of the speed of sound. This
situation is valid for media in which the density gradient of the medium is less than
the gradient of the speed of sound. These differences form the phase difference
between the acoustic pressure and the vibrational velocity vector during the prop-
agation of an acoustic wave in an inhomogeneous medium. Different field reactions

V
!

r!, t
� �

and P r!, t
� �

to the density gradient of the medium and the gradient of the

sound speed form the phase difference between the acoustic pressure Φp r!, t
� �

and

the particle velocity Φv r!, t
� �

vector during the propagation of an acoustic wave in

an inhomogeneous medium. Solutions to equations (Eqs. (24) and (25)) can be
found using the method of successive approximations. For this, we represent these
equations in the following form:

ΔΨ r!,ω
� �

þ k20Ψ r!,ω
� �

¼ k1
2
Ψ r!
� �

Ψ r!,ω
� �

(27)

ΔU
!

r!,ω
� �

þ k20U
!

r!,ω
� �

¼ k1
2
v r!
� �

U
 

r!,ω
� �

(28)

where k20 ¼ ω2

c2 r!0ð Þ, k
2
1Ψ r!
� �

¼ k20 � k2ψ r!
� �

and k21U r!
� �

¼ k20 � k2U r!
� �

Similarly to the case of an electromagnetic field in the inhomogeneous medium,

using the scalar G r! � r!1

� �
and vector G

!
r! � r!1

� �
Green’s functions of the Helm-

holtz equation for a homogeneous unbounded medium. Eqs. (2) and (13) and
Eq. (2.14) can be rewritten in the form of the following integral equations:

Ψ r!,ω
� �

¼ Ψ0 r!,ω
� �

þ
ð

Ω

G r! � r!1

� �
k21Ψ r!1

� �
Ψ r!1,ω
� �

d r!1 (29)

Ui r!,ω
� �

¼ U0i r!,ω
� �

þ
ð

Ω

Gi r! � r!1

� �
k21U r!1

� �
Ui r!1,ω
� �

d r!1 (30)

Here Ui r!1,ω
� �

is the projections of the vector onto the coordinate axes and

Ψ0 r!,ω
� �

and U0i r!,ω
� �

are the solutions of equations (Eq. (27)) and (Eq. (28))

with the right-hand side equal to zero, and Gi r! � r!1

� �
are the components of the

vector Green’s function. The steps for finding a solution to equations (2.15) and
(2.16) by the method of successive refinements can be as follows:

1.We find Ψ0 r!,ω
� �

and U0i r!,ω
� �

which are the zeroth approximation for the

field, valid in a homogeneous medium

2.We find an explicit form of dependence k21Ψ r!
� �

¼ k20 � k2ψ r!
� �

and

k21U r!
� �

¼ k20 � k2U r!
� �

on coordinates

3.Using Ψ0 r!,ω
� �

and U0i r!,ω
� �

and expressions for k21Ψ r!
� �

and k21U r!
� �

with

the help of (Eqs. (29) and (30)), we obtain more accurate first approximations
that take into account single scattering of the primary field.
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4.To obtain the second more accurate approximation, it is necessary to substitute
the first approximations in expressions (Eqs. (29) and (30)) and obtain the
second more accurate approximation of the solution.

Similarly, you can get solutions that are more accurate. Integration is performed
over the volume of the inhomogeneous medium, the inhomogeneities of which will
be secondary, etc. field sources. In a real situation, the volume should be chosen
such that its secondary sources make a noticeable contribution to the field.

Let us consider an example that shows how the parameters of an inhomogeneous
medium affect the characteristics of the acoustic field. We represent the acoustic
pressure, and the vector of the particle velocity of the monochromatic acoustic field
by the frequency ω in the following form

P r!, t
� �

¼ P0 r!
� �

exp i ωt�Φp r!
� �h i

and V
!

r!, t
� �

¼ V
!

0 r!
� �

exp i ωt�Φv r!
� �h i

.

Complex intensity vector will be written as I
!

r!
� �

¼ P r!, t
� �

V
! ∗

r!, t
� �

¼
I
!
0 r!
� �

exp i Φv r!
� �

�Φp r!
� �h i

. In a medium without absorption of the acoustic

energy, the phases Φp r!
� �

and Φv r!
� �

, respectively are equal to the phases Ψ r!, t
� �

and U
!

r!, t
� �

. The wave vector of a wave is normal to its phase surface and is

determined by the wave phase gradient and the wave number by the modulus of

this gradient. For the wavenumbers of the pressure kp r!
� �

and the particle velocity

vector kv r!
� �

, we can take, respectively, the quantities kψ r!
� �

and kU r!
� �

if the

inequalities
Δψ0 r!ð Þ
ψ0 r!ð Þ
����

����< < k2ψ r!
� �

� ∇Φp r!
� �� �2����

���� and
ΔU
!

0 r!ð Þ
U0 r!ð Þ
����

����< < k2U r!
� �

� ∇Φv r!
� �� �2����

����. The refractive indices of the medium for the

acoustic pressure and the particle velocity relative to the point r!0 are different and

accordingly, equal np r!
� �

¼ kp r!ð Þ
k0

and nv r!
� �

¼ kv r!ð Þ
k0

, where k0 ¼ ω
c r!0ð Þ and C r!0

� �
is

the phase velocity of sound for the acoustic pressure wave at the point r!0. The
phase velocities of the acoustic pressure wave and the particle velocity vector
become different, which leads to the inequality of the phases of the acoustic pres-
sure and the particle velocity vector when the acoustic wave propagates in an
inhomogeneous medium. The absorption of acoustic energy by the medium is taken
into account by assuming the speed of sound and the density of the medium to be
complex quantities, in which the imaginary part is responsible for the absorption of
the energy of the acoustic field. In this case, the phases and acquire an additive

equal to the phases of the values
ffiffiffiffiffiffiffiffiffiffi
Zp r!ð Þ
Z0
p

r
and

ffiffiffiffiffiffiffiffiffiffi
Zv r!ð Þ
Z0
v

r
. To avoid cumbersome expres-

sions, we restrict ourselves to the first approximation. The proposed example is
often implemented in real measurements of the characteristics of the acoustic field.
In practice, as a rule, the projections of the vibrational velocity vector and, accord-
ingly, the intensity vector are measured in an orthogonal coordinate system, for

example, in a Cartesian one. Consider the projection of a vector U
!

r!,ω
� �

on the OX

axis. In this case, the projection will be a function of only the x coordinate, and the
Y and Z coordinates will act as parameters and determine the straight line parallel to
the OX axis, along which the observation point x changes. The wave numbers

k2
1Ψ

r!
� �

and k1
2
U r!
� �

, accordingly, the solutions of equations (Eqs. (29) and (30))
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depend on the values of these parameters. In fact, we turn to the case of one-
dimensional propagation of acoustic radiation along the OX axis passing through

the point r0 X0,Y0 ,Z0ð Þ. Let us choose Ψ0 r!,ω
� �

and U
!

0 r!,ω
� �

both in the form

of plane waves and propagating along the X axis. We can put the moduli of these

plane waves Ψ0 ωð Þ and U
!

0 ωð Þ equal to the moduli of the acoustic pressure P0 and
the component v!x of the particle velocity vector on the OX axis. In this case, the
component of the vector Green’s function will be equal to the one-dimensional
Green’s function

G x� x1ð Þ ¼ 1
2ik0

exp ik0jx� x1j½ � we find the solution corresponding to the first
approximation at the point X

Ψ x, y0, z0,ω
� � ¼ P0 exp ik0xþ

ðx

�∞
k21Ψ x1, y0, z0
� � P0

2ik0
exp ik0xð Þdx1þ

þ
ð∞

x

k21Ψ x1, y0, z0
� � P0

2ik0
exp �ik0xþ 2ik0x1ð Þdx1 ¼ P0 exp ik0xþ Ψ1 xð Þ þ Ψ2 xð Þ

(31)

U
!

x x, y0, z0,ω
� � ¼ V

!
x exp ik0xþ

ðx

�∞
k21U x, y0, z0
� �V!x exp ik0xð Þ

2ik0
dx1þ

þ
ð∞

x

k21U x1, y0, z0
� � V

!
x

2ik0
exp �ik0xþ 2ik0x1ð Þdx1 ¼ V

!
x exp ik0xþ U

!
1 xð Þ þU

!
2 xð Þ

(32)

Here P0 exp ik0x и U
!

0 exp ik0x represent the primary radiation, the second terms
are the radiation scattered forward in the region �∞≤ x1 ≤ x, and the third terms
are the radiation scattered back. Solutions (Eqs. (31) and (32)) and the relations
(Eq. (21)) allow us, in the first approximation, to find an expression for the projec-
tion of the complex intensity vector on the on the OX axis

I
!

x x, y0, z0,ω
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zp x, y0, z0
� �

Zv x, y0, z0
� �

Z0
pZ

0
v

s P0V
!

x þþP0U
! ∗

1 xð Þ þ P0U
! ∗

2 xð Þ þ Ψ1 xð ÞV!xþ
þΨ1 xð ÞU!

∗

1 xð Þ þ Ψ1 xð ÞU!
∗

2 xð Þ þ Ψ2 xð ÞV!xþ
þΨ2 xð ÞU!

∗

1 xð Þ þ Ψ2 xð ÞU!
∗

2 xð Þ

0
BBB@

1
CCCA

(33)

In this expression, the first term describes the complex intensity vector of the
primary radiation, the fifth term corresponds to the forward propagating secondary
radiation, and the ninth term corresponds to the backscattered radiation. The other
terms describe the mutual energy of the primary and scattered radiation. If the field
is measured arriving at a point x only from the region, x1 ≤ x then the dependence of
the projection of the complex intensity vector on the OX axis takes the following
form:

I
!
x x, y0, z0ω
� �

exp iΦ x, y0, z0
� � ¼ C0 x0, y0, z0

� �

C x, y0, z0
� � P0V

!
x

1þ i
2k0

αv x0, y0, z0
� �� αp x, y0, z0

� �� �þ

þ 1
4k20

αv x, y0, z0
� �

αp x, y0, z0
� �

2
6664

3
7775:

(34)

227

Green’s Function Method for Electromagnetic and Acoustic Fields in Arbitrarily…
DOI: http://dx.doi.org/10.5772/intechopen.94852



In this expression αp xð Þ ¼ Ðx
�∞

k21Ψ x1ð Þdx1 and αv xð Þ ¼ Ðx
�∞

k21U x1ð Þdx1. The
modulus I0 x, y0, z0,ω

� �
and phase Ф x, y0, z0,ω

� �
of the complex of acoustic

intensity vector are respectively equal:

I0 x,ωð Þ ¼ C0P0 Vxj j
4k20C x, y0, z0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k20 þ αp x, y0, z0

� �2� �
4k20 þ αv x, y0, z0

� �2� �r
,Φ x, y0, z0,ω
� �

¼ arctg
2k0 αv x, y0, z0

� �� αp x, y0, z0
� �� �

4k20 þ αv x, y0, z0
� �

αp x, y0, z0
� � :

(35)

The field intensity vector is

Re
1
2
I
!
x x, y0, z0,ω
� � ¼ 1

2
C0

C x, y0, z0
� �P0V

!
x 1þ 1

4k20
αv x, y0, z0
� �

αp x, y0, z0
� �

" #
,

(36)

and for the average field energy density we have the following expression:

ε x, y0, z0ω
� � ¼ P x, y0, z0ω

� �
P ∗ x, y0, z0ω
� �

ρ x, y0, z0
� �

C2 x, y0, z0
� � ¼

¼ P2
0

ρ0C
2 x, y0, z0
� � 1þ 1

4k20
αp x, y0, z0
� �

αp x, y0, z0
� �" #

:

(37)

From expressions (Eqs. (22) and (23)) it is seen that the inhomogeneous nature
of the speed of sound will have a more significant effect on the particle velocity
vector than on the acoustic pressure. This makes it possible in principle to create
methods for separately measuring the contribution to the acoustic field in an inho-
mogeneous medium of the density of the medium and the speed of sound in it.

In conclusion, we note that the proposed method makes it possible to analyti-
cally and numerically solve the problems of mathematical modeling of a shallow
sea, remote sensing of natural media, problems of acoustics of a shallow sea,
modeling acoustic and optical metamaterials, etc. Note that for applied problems of
acoustics, both fields of the particle velocity vector and the intensity vector in any
inhomogeneous medium have a vortex character. Therefore, the algorithms for
solving applied problems of ocean and especially shallow sea acoustics, problems of
modeling the propagation of acoustic energy in composite media and metamaterials
should take into account the vortex component of the vector acoustic field intensity
and curvature of the streamlines of the acoustic field.
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Chapter 12

Chaotic Systems with Hyperbolic
Sine Nonlinearity
Jizhao Liu, Yide Ma, Jing Lian and Xinguo Zhang

Abstract

In recent years, exploring and investigating chaotic systems with hyperbolic sine
nonlinearity has gained the interest of many researchers. With two back-to-back
diodes to approximate the hyperbolic sine nonlinearity, these chaotic systems can
achieve simplicity of the electrical circuit without any multiplier or sub-circuits. In
this chapter, the genesis of chaotic systems with hyperbolic sine nonlinearity is
introduced, followed by the general method of generating nth-order (n > 3) chaotic
systems. Then some derived chaotic systems/torus-chaotic system with hyperbolic
sine nonlinearity is discussed. Finally, the applications such as random number
generator algorithm, spread spectrum communication and image encryption
schemes are introduced. The contribution of this chapter is that it systematically
summarizes the design methods, the dynamic behavior and typical engineering
applications of chaotic systems with hyperbolic sine nonlinearity, which may widen
the current knowledge of chaos theory and engineering applications based on
chaotic systems.

Keywords: chaotic systems, torus chaos, hyperbolic sine nonlinearity,
spread spectrum communication, image encryption

1. Introduction

Since Lorenz discovered chaos in a third-order ordinary differential
equations, a new field of science has been launched [1]. The fact that simple
equations can exhibit incredible complex behavior continues enthrall engineers to
apply chaotic systems to cryptosystem, secure communication, spread spectrum
communication, etc. [2].

There is no doubt that nonlinear term is very important to design chaotic
systems, which has peculiar complex properties such as ergodicity, highly initial
value sensitivity, non-periodicity and long-term unpredictability. According to the
literature, the nonlinearities can be piecewise nonlinear function [3], trigonometric
function [4], absolute value function [5], or power function [6]. With different
nonlinearities, the chaotic system can have various strange attractors as single-scroll
[7], double-scroll [8], multi-scroll [9], etc. The majority of such chaotic systems are
known for many years, and some chaotic systems with hidden attractors are derived
from them [10–12].

In recent years, chaotic systems with hyperbolic sine nonlinearities have gained
the interest of many researchers. With two back-to-back diodes to approximate the
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hyperbolic sine nonlinearity, these chaotic systems can achieve simplicity of the
electrical circuit without any multiplier or sub-circuits. Compared to single-scroll
chaotic systems, the chaotic system with hyperbolic sine nonlinearity has richer
dynamic behavior because it is symmetrical and can exhibit symmetry breaking,
and offers the possibility that attractors will split or merge as some bifurcation
parameter is changed [13].

In this chapter, we will systematically summarize the design method, the
dynamic behavior and typical engineering applications of chaotic systems with
hyperbolic sine nonlinearity. The genesis and general method of generating nth-
order (n > 3) chaotic systems with hyperbolic sine nonlinearity are introduced in
Section II. Some derived chaotic systems/torus-chaotic system with hyperbolic sine
nonlinearity is discussed in Section III. The application such as random number
generator algorithm, spread spectrum communication and image encryption
schemes are introduced in Section IV. Conclusions are finally drawn in Section V.

2. General chaotic systems with hyperbolic sine nonlinearity

2.1 The genesis of chaotic systems with hyperbolic sine nonlinearity

In 2011, Sprott and Munmuangsaen proposed an exponential chaotic system
[14], which happens to be an example of the simplest chaotic system [15]. In the
same year, Sprott used common resistors, capacitors, operational amplifiers, and a
diode to successfully implement this system in a circuit [16]. Few years later, the
simplest hyperbolic sine chaotic system is proposed [17]. Compared to the expo-
nential chaotic system, the hyperbolic sine chaotic system changed the nonlinearity
from exponential function (asymmetric function) to hyperbolic sine function
(symmetric function), which can exhibit symmetry breaking, and offers the
possibility that attractors will split or merge as some bifurcation parameter is
changed [18].

The simplest chaotic system with a hyperbolic sine is described as follows:

x⃛þ c€x þ xþ ρ ∗ sinh φ _xð Þ ¼ 0 (1)

Figure 1.
The corresponding circuit schematic diagram of Eq. (1).
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Where c is considered as the bifurcation parameter, sinh φ _xð Þ ¼ eφ _x�e�φ _x
2 ,

ρ ¼ 1:2 ∗ 10�6 and φ ¼ 1
0:026, which have been chosen to facilitate circuit implemen-

tation using diodes. The corresponding circuit schematic diagram of Eq. (1) is
shown as Figure 1.

When c ¼ 0:75, the Eq. (1) can exhibit chaotic behavior, which is shown as
Figure 2.

2.2 The general equations of generating chaotic systems with hyperbolic sine
nonlinearity

It is obvious that Eq. (1) can be written in the form with jerk equations:

_x1 ¼ x2
_x2 ¼ x3
_x3 ¼ �cx3 � f x2ð Þ � x1

8><
>:

(2)

where f x2ð Þ ¼ ρ ∗ sinh φx2ð Þ. Therefore, the higher order chaotic systems with
hyperbolic sine nonlinearity can be generated by adding jerk cabins, which is
described by:

_x1 ¼ x2 � x1

_x2 ¼ x3 � x2

⋯

_xn�3 ¼ xn�2 � xn�3

_xn�2 ¼ xn�1

_xn�1 ¼ xn

_xn ¼ �cxn � f xn�1ð Þ � nxn�2 � nxn�3 �⋯� 1
2n

x1

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(3)

where _xk�1 ¼ xk � xk�1 is the jerk cabin. With Eq. (3), we can construct
nth-order (n > 3) chaotic systems with hyperbolic sine nonlinearity.

When n = 4, the equations of fourth-order chaotic systems will be:

Figure 2.
Numerical and actual circuit state space plot in x� €x plane.
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_x1 ¼ x2 � x1

_x2 ¼ x3

_x3 ¼ x4

_x4 ¼ �x4 � f x3ð Þ � 5x2 � 0:125x1

8>>>>><
>>>>>:

(4)

Figure 3.
The corresponding circuit schematic diagram of Eq. (4).

Figure 4.
Numerical and actual circuit state space plot in x2 � x3 plane and x3 � x4 plane.
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The corresponding circuit schematic diagram of Eq. (4) is shown as Figure 3.
Its numerical and actual circuit state space plot is shown as Figure 4.
When n = 5, the equations of fifth-order chaotic systems will be:

Figure 5.
The corresponding circuit schematic diagram of Eq. (5).

Figure 6.
Numerical and actual circuit state space plot in x1 � x5 plane and x2 � x3 plane.
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_x1 ¼ x2 � x1

_x2 ¼ x3 � x2

_x3 ¼ x4

_x4 ¼ x5

_x5 ¼ �x5 � f x4ð Þ � 5x3 � 5x2 � 0:1x1

8>>>>>>>>><
>>>>>>>>>:

(5)

The corresponding circuit schematic diagram of Eq. (5) is shown as Figure 5.
Its numerical and actual circuit state space plot is shown as Figure 6.

3. Derived chaotic systems/torus-chaotic system with hyperbolic sine
nonlinearity

3.1 Multi-nonlinearities hyperbolic sine chaotic system

One way to construct the derived chaotic systems is to add more nonlinear terms
of the equations. For example, the new chaotic system can be constructed by
Eq. (4), which is described as follows:

_x1 ¼ x2 � ρsinh φx1ð Þ

_x2 ¼ x3 � 0:3x2 � ρsinh φx2ð Þ

_x3 ¼ x4

_x4 ¼ �0:25x4 � ρsinh φx3ð Þ � 0:5x2 � 4x1

8>>>>>>><
>>>>>>>:

(6)

Where ρ ¼ 1:2 ∗ 10�6, φ ¼ 1
0:026 . These equations can exhibit chaotic behavior as

shown in Figure 7.

Figure 7.
Numerical phase space plot of Eq. (6).
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3.2 Simple chaotic system with hyperbolic sine nonlinearity

The other way to construct the derived chaotic systems is to simplify the known
chaotic systems. For example, if we remove the parameter ρ and φ, search the
parameter space, we will have the following chaotic system:

_x1 ¼ 6x2 � x1

_x2 ¼ x3

_x3 ¼ x4

_x4 ¼ �x4 � sinh x3ð Þ � x1

8>>>>>>><
>>>>>>>:

(7)

When initial conditions are set to be x1, x2, x3, x4ð Þ ¼ 0:7, 0:9, 1:0, 1:3ð Þ,
or x1, x2, x3, x4ð Þ ¼ �0:7,�0:9,�1:0,�1:3ð Þ, the system exhibits period
behavior. When the initial conditions are set to be x1, x2, x3, x4ð Þ ¼ 7, 9, 10, 13ð Þ
and x1, x2, x3, x4ð Þ ¼ �7,�9,�10,�13ð Þ, the system exhibits chaotic behavior.
Therefore, this system has four coexistence attractors [19], as shown in Figure 8.

3.3 Torus-chaotic system with hyperbolic sine nonlinearity

By introducing a nonlinear feedback controller to system Eq. (5), the following
system is obtained:

_x1 ¼ x2 � ρ sinh φx3ð Þ
_x2 ¼ x3 � x2
_x3 ¼ x4
_x4 ¼ x5
_x5 ¼ �cx5 � ρ sinh φx4ð Þ � 5x3 � 5x2 � 0:1x1

8>>>>>><
>>>>>>:

(8)

When c = 1, the Lyapunov exponents are λ1, λ2, λ3, λ4, λ5ð Þ ¼ 0:47, 0, 0,�1:10,�1:37ð Þ,
which suggests Eq. (8) is exhibiting torus-chaos behavior [20].

When c = 1.55 and the initial conditions are set to be x1, x2, x3, x4, x5ð Þ ¼
�0:1,�0:1,�0:1,�0:1,�0:1ð Þ and x1, x2, x3, x4, x5ð Þ ¼ 0:1, 0:1, 0:1, 0:1, 0:1ð Þ, the
system has two coexisting attractors as shown in Figure 9.

Figure 10 shows the Lyapunov exponent spectrum, Kaplan–Yorke dimension
spectrum and bifurcations of Eq. (8) as the coefficient c is varied over the range
c ∈ [0.3, 2]. Those figures suggest there is an interesting route leading to chaos [21].

1.When c ∈ [0.3, 0.4639], there exists a period-doubling behavior along with _x2
and _x3 subspace. However, the system shows torus behavior along with _x2 and
_x3 subspace. It is like saddle point: the system is stable in one direction but
unstable in the other direction.

2.When c ∈ [0.4640, 0.5574], the system exhibits two-torus-chaos behavior
except for some 2-torus windows. When the parameter passed c = 0.4639
to c = 0.4640, two-torus-chaos is born by replacing the 2-torus behavior.
The Lyapunov exponents at these two critical values are λ1, λ2, λ3, λ4, λ5ð Þ ¼
0, 0,�0:01,�0:57,�0:88ð Þ for c = 0.4639 and λ1, λ2, λ3, λ4, λ5ð Þ ¼
0:02, 0, 0,�0:60,�0:88ð Þ for c = 0.4640. This may cause by the
period-doubling route along with _x2 and _x3 subspace.
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Figure 9.
Coexistence attractors of Eq. (8).

Figure 8.
Coexistence attractors of Eq. (7).
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3.When c ∈ [0.5575, 0.5901], the system exhibits 2-torus behavior.

4.When c ∈ [0.5902, 1.5575], the system exhibits 2-torus-chaos behavior except
for 2-torus windows. The route leading to chaos is same to point 3.

5.When c ∈ [1.5575, 2] the system exhibits 2-torus behavior, except for some
3-torus windows like c = 1.6157.

Figure 10.
LEs spectrum, Kaplan–Yorke dimension spectrum and bifurcations of Eq. (8) as the coefficient c is varied over
the range c ∈ [0.3, 2].
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4. Engineering applications with chaotic systems with hyperbolic sine
nonlinearity

4.1 Random number generator

Sensitivity to initial conditions is one of the most important property of chaotic
systems. Therefore, chaotic systems are very suitable for the cryptography purpose.
But before that, it should be noticed that the probability density distributions
(PDD) of chaotic systems are not uniform distribution. Figure 11(a) and 11(b) are
the waveform and PDD of x4 of Eq. (4). It shows that PDD of the output sequences
has physical characteristic. The cryptosystem with these sequences cannot resist
side channel attack.

To remove physical characteristic, one can use the following de-correlation
operation:

Sout ¼ Sin ∗ 106 � floor Sin ∗ 106� �
(9)

In fact, Eq. (9) can be applied in all chaotic/torus-chaotic/hyperchaotic systems.
The output sequences can pass fifteen random tests of NIST 800-22, as shown as in
Table 1, which indicated the proposed method can provide high security Level. This
proposed method can be used as a part of some cyber security systems such as the
verification code, secure QR code and some secure communication protocols.

Figure 11.
Waveform and PDD before and after de-correlation operation of x4 of Eq. (4): (a) is the waveform of x4 before
de-correlation operation; (b) is the PDD of x4 before de-correlation operation; (c) is the waveform of x4 after
de-correlation operation; (b) is the PDD of x4 after de-correlation operation.
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4.2 Image encryption

Image encryption is another widely used engineering application of chaotic
system. In this section, we will use Eq. (7) for image encryption purpose.

A flowchart of the encryption scheme is shown in Figure 12.
The detailed encryption process includes the following steps.
Input: Plain image; Initial conditions for the chaotic system; Control parameters

of the chaotic system.
Output: Ciphered image.
Step 1: Calculate the average pixel value of the plain image and generate the

pseudorandom sequence.
Step 2: Transform the pseudorandom sequence and change pixel value of the

image via XOR.
Step 3: Sort the pseudorandom sequence for permutation.
Step 4: Shift the pixel positions by column using the sorted elements.
Step 5: Shift the pixel positions by row using the sorted elements.
To provide a better understanding of this scheme, the pseudocode is provided in

Table 2.

Test P-value Result

Frequency 0.841481 Success

Block frequency 0.900704 Success

Runs 0.744455 Success

Longest run 0.172897 Success

Rank 0.368065 Success

FFT 0.762020 Success

Non-overlapping template 0.813121 Success

Overlapping template 0.532736 Success

Universal 0.856573 Success

Linear complexity 0.408679 Success

Serial 0.967366 Success

Approximate entropy 0.433157 Success

Cumulative sums 0.688582 Success

Random excursions 0.075229 Success

Random excursions variant 0.102049 Success

Table 1.
Pseudo-random properties of x3 of Eq. (8) after de-correlation operation.

Figure 12.
A flowchart of the encryption scheme.
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The decryption process of the proposed algorithm is the reverse process of the
encryption algorithm. A flowchart of the decryption process is shown in Figure 13.

The detailed decryption process includes the following steps.
Input: Plain image; Initial conditions for the chaotic system; Control parameter

of the chaotic system; Average pixel value of the plain image
Output: Decrypted image
Step 1: Generate the pseudorandom sequence via the initial conditions and the

average pixel values of the plain image
Step 2: Sort the pseudorandom sequence for row and column recovery.

Input: Plain image Org_Img, Initial conditions for the chaotic system, Control parameter for the chaotic
system,
Output: Ciphered Image En_Img

[m,n] size(Org_Img);

Avg_pixel_value mean2(Org_Img)*10^(-5) % mean2 is a function that
returns the

% average value of a matrix

x(1) x(1) + Avg_pixel_value
y(1) y(1)
z(1) z(1)
u(1) u(1)
s(1) u(1)*10^4 – floor(u(1)*10^4)

For i=1:1:m*n % Generate pseudorandom sequence that will
% be used for diffusion and permutation

[dx, dy, dz, du] Runge-Kutta (x(i), y(i), z(i), u(i))
x(i+1) x(i) +dx
y(i+1) y(i) +dy
z(i+1) z(i) +dz
u(i+1) u(i) +du

s(i+1) u(i+1)*10^4 – floor(u(i+1)*10^4)
End

Count=1 % Count flag
For i=1:m % Diffusion Operation

For j=i:n
diff(Count) mod (s(Count)*10^14, 256) % transform s, which could be used for XOR
En_Dif(i,j)=bitxor(Org_Img(i,j), diff (Count)); % Bitwise exclusive OR

Count= Count+1;
End

End

S_index Sort(s)
For i=1:n % Column-wise permutation
For j=1:m
En_per_col (i,j) Sort (En_Dif, S_index)
End

End
For i=1:m % Row-wise permutation
For j=1:n
En_Img (i,j) Sort (En_per_col, S_index)
End

End

Table 2.
Image encryption scheme.
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Figure 13.
A flowchart of the decryption scheme.

Input: Ciphered image En_Img, Initial conditions for the chaotic system, control parameter for the
chaotic system, Avg_pixel_value of Org_Img

Output: Plain Image Org_Img

[m,n] size(En_Img);
x(1) x(1) + Avg_pixel_value
y(1) y(1)
z(1) z(1)
u(1) u(1)
s(1) u(1)*10^4 – floor(u(1)*10^4)

For i=1:1:m*n % Generate a pseudorandom sequence that will
% be used for decryption
[dx, dy, dz, du] Runge-Kutta (x(i), y(i), z(i), u(i))
x(i+1) x(i) +dx
y(i+1) y(i) +dy
z(i+1) z(i) +dz
u(i+1) u(i) +du

s(i+1) u(i+1)*10^4 – floor(u(i+1)*10^4)
End

S_index Sort(s)
For i=1:m % Row-wise permutation recovery
For j=1:n
De_per_row (i,j) Sort (En_Img, S_index)
End

End

For i=1:n % Column-wise permutation recovery
For j=1:m
De_per_col (i,j) Sort (De_per_row, S_index)
End

End

Count=1 % Count flag
For i=1:m % Diffusion recovery

For j=i:n
diff(Count) mod (s(Count)*10^14, 256) % transform s, which could be used for XOR
Org_Img (i,j)=bitxor(De_per_col (i,j), diff (Count)); % Bitwise exclusive OR

Count= Count+1;
End

End

Table 3.
Image decryption scheme.
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Step 3: Shift the pixel positions by row
Step 4: Shift the pixel positions by column
Step 5: Transform the pseudorandom sequence and recover the pixel values of

the image via XOR
To provide a better understanding of this scheme, the pseudo-code is provided

in Table 3
The testing results of encryption and decryption are shown in Figure 14.
In this system, all the initial conditions and control parameters can be considered

as secret keys. Because the basin of attraction of each initial condition is greater than
1, it could have more than 1015∗4 =1060 choices via a resolution of 10�15, in terms of
a numeric calculation. Moreover, if a range of control parameters are considered for
the key space, the key space of this system would far exceed 1090. Such a large key
space provides sufficient security against brute-force attacks.

Figure 14.
The testing results of encryption and decryption: (a) is the plain image of cameraman; (b) is the encrypted
image of cameraman; (c) is the decrypted image of cameraman; (d) is the plain image of breast CT image;
(e) is the encrypted image of breast CT image; (f) is the decrypted image of breast CT image; (g) is the plain
image of thorax CT image; (h) is the encrypted image of thorax CT image; (i) is the decrypted image of thorax
CT image.
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Correlation coefficients of adjacent pixels in the plain and encrypted image are
shown in Table 4.

The NPCR and UACI score of CT image are 99.5804% and 33.3227%.
From the above security analysis, the proposed scheme can provide high

security for cryptographic applications.

4.3. Spread spectrum communication

Chaotic systems can also use for spread spectrum communication propose. Dif-
ferent chaos shift keying (DCSK) technology employs nonperiodic and wideband
chaotic signals as carriers so as to achieve the effect of spectrum spreading in the
process of digital modulation. Figure 15 shows the scheme of modulation for DCSK.

In this scheme, every bit has two time slots. The first time slot is used for
transmission of a chaotic sequence for the reference signal. The second time slot is
used for transmission of another chaotic sequence for the reference signal which has
the same length as the first time slot. If the information bit is +1, then the informa-
tion signal is exactly the same as the reference signal. If the information signal bit is
�1, then the information signal is the negative of the reference signal. For bits bk,
the signal at time k is:

si ¼
xi 2kβ< i≤ 2kþ 1ð Þβ
bkxi�β 2kþ 1ð Þβ< i≤ 2 kþ 1ð Þβ

�
(10)

Where β is the number of sampling points. The spreading factor (SF) in the
DCSK system is SF ¼ 2β .

Figure name Direction Plain-image Ciphered image

Cameraman Image Horizontal 0.983146 0.001731

Cameraman Image Vertical 0.990025 0.004141

Cameraman Image Diagonal 0.973249 0.000324

Breast CT image Horizontal 0.978292 0.002500

Breast CT image Vertical 0.955481 0.006207

Breast CT image Diagonal 0.940737 0.003071

Thorax CT image Horizontal 0.994585 0.001267

Thorax CT image Vertical 0.994761 0.001267

Thorax CT image Diagonal 0.991973 0.001558

Table 4.
Correlation coefficients of adjacent pixels in the plain and encrypted image.

Figure 15.
Scheme of DCSK modulation.
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For demodulation as shown in Figure 16, the receiver calculates the correlation
between the received signal ri and the signal ri�β, which is ri delayed by β . After a
time k, the output of the correlator is:

Zk ¼
Xi¼ 2kþ1ð Þβþ1

2 kþ1ð Þβ
riri�β (11)

Thus, the information bit bk can be restored by the sign of the decision variable:

b̂k ¼ sgn Zk½ � (12)

The obtained BER performance under additive white Gaussian noise (AWGN)
channels for spreading factor 2β ¼ 200 is shown in Figure 17. From the comparison
results, DCSK can have a lower BER when using this system as a carrier signal in the
presence of noise.

5. Conclusions

In this chapter, we first described a third order chaotic system with hyperbolic
sine nonlinearity, then we introduced the method to expend this chaotic system to
high order chaotic systems. After that, we introduced the method to construct the
derived chaotic torus-chaotic systems. Finally, we introduced some applications
such as random number generator algorithm, spread spectrum communication and
image encryption schemes. The contribution of this chapter is that it systematically
summarizes the design method, the dynamic behavior and typical engineering
application of chaotic systems with hyperbolic sine nonlinearity, which may widen
the current knowledge of chaos theory and engineering applications based on cha-
otic systems.

Figure 16.
Scheme of the DCSK demodulation.

Figure 17.
Comparison of the bit error rate for a Chebyshev sequence and the hyperbolic sine system with DCSK.
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