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Preface

This book provides the reader with a comprehensive overview of the state of the 
art in vibration control and safety of structures, in the form of an easy-to-follow, 
article-based presentation that focuses on selected major developments in this 
critically important area.

Safety, reliability and long life of structures are the key points in engineering 
industries. Although many criteria for structural reliability exist, resistance to 
various types of dynamic loading is perhaps decisive among them. Thanks to 
progress in basic research in theoretical and experimental disciplines as well as 
in industrial development, protection against external dynamic influences need 
not only be passive, but can be applied through many active control systems. 
Consequently, the vibration control of structures is a crucial aspect of protection 
against sudden dynamic forces. Although the widespread introduction of digital 
control has meant phasing out of passive vibration diminution devices, both 
remain suitable and have a part to play in specific situations.

Structural vibration control is designed to suppress and control any unfavorable 
vibration due to dynamic forces that could alter the performance of the structure. 
Although many vibration control schemes have been investigated so far, questions 
involving their practical application, such as the use of advanced optimization 
techniques to control the vibration of structures, require further study. At the same 
time, it is necessary to realize that external environmental excitation processes are 
not only of a deterministic type, but are characterized by strong random processes. 
The two types of phenomena usually combine to form a complicated dynamic 
system, especially when the structure has to be considered in a nonlinear state. Such 
assignments require an analysis of the dynamic stability of the structure interacting 
with excitation sources.

In order to cover as much of the discipline as possible, the chapters of this book 
range from an enumeration of typical dynamic processes encountered in engineering 
practice to various styles of control in particular cases, highlighting the specific 
response processes of individual dynamic systems.

The field of vibration control of structures is, of course, much broader than the 
scope of presentation allowed for in this book. However, its contents represent a 
selection of typical topics discussed in this domain at the level of the basis of rational 
dynamics itself and applications in engineering practice, typified by the interaction 
of civil and mechanical engineering, with a possible overlap into theoretical and 
experimental physics.

In order to be successful in control and general management of the dynamic effects 
endangering civil engineering structures, it is necessary to evaluate statistics of 
the most serious events either of natural or operating origin. The first chapter, 
therefore, presents a balanced overview of structures and the causes of their failure 
due to disasters caused by the dynamic effects of wind, traffic, or earthquakes, due 
to insufficient knowledge of the dynamic behavior of structures, their complicated 
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long-term interaction with environmental processes or material reliability, and, last 
but not least, due to inadequacy of standards and codes. As a consequence of these 
incidents, there have been significant changes in the codes and design philosophy 
of bridge construction in recent decades. The chapter illustrates progress in bridge 
engineering due to scientific and technological advances concerning the influence 
of wind, seismicity and heavy traffic. As the author points out, further research is 
still needed to mitigate the long-term effects of vibration and material degradation 
on the performance and integrity of bridge structures.

Chapter 2 studies a fractional distributed optimal (or sub-optimal) control for a class 
of infinite-dimensional parabolic bilinear systems evolving in a spatial domain Ω by 
distributed controls depending on the control operator. The main efficiency of the 
operator follows from a fractional spatial derivative of the Riemann‒Liouville type. 
Using Fréchet differentiability, the existence of an optimal control depending on 
both time and space is emphasized. In principle, a quadratic function is minimized, 
which accounts for the deviation between the desired and the achieved state. Then, 
the characterizations of optimally distributed control for different admissible 
control sets are given. The chapter shows the importance of a strong theoretical 
background in dynamic models, particularly in the optimizing process, provided it is 
used in practice for reliable control. The authors developed and tested an algorithm 
materializing the above theoretical derivation. Subsequent simulations illustrate 
that the previous theoretical results are meaningful and can provide stable and 
practically applicable results.

A very interesting device that can serve to reduce structural vibrations due to 
various external shocks is based on the dry sliding phenomenon. Generally in 
physics and engineering, sliding represents both positive and negative effects with 
respect to the reliability and dynamic character of the system. For instance, bowed 
musical instruments are based on a complicated sliding force at the bow‒string 
contact, which decreases with the velocity of the bow. In engineering, on the other 
hand, it can be understood as a very effective principle of energy absorption over a 
very large range of frequencies and amplitudes of relevant oscillations. This makes 
it an excellent candidate for various damping devices applicable in environments 
where excitations are extremely unpredictable in the frequency spectrum and 
amplitude content, e.g., anti-seismic facilities. These factors led to the invention 
in the mid-20th century of the sliding mode controller as an effective nonlinear 
controller for structures in seismic engineering, piping vibration damping, etc. 
However, practical implementation revealed that the sliding-based controller 
suffers from low sensitivity to uncertainties and other system variations due to 
chattering effects. Chattering is a harmful phenomenon because it leads to low 
control accuracy, high wear of moving mechanical parts, and high thermal losses 
in power circuits. In the first phase of the development of sliding mode control 
theory, the chattering was the main obstacle to its implementation. Thanks to 
the law of adaptation, this shortcoming was overcome by dynamically adapting 
the controller parameters depending on the system changes. Chapter 3 describes 
relevant research, numerical simulations and experimental measurements.

Another area that has seen intensive testing of dynamic effects is the suspension 
systems of softly sprung vehicles. In Chapter 4, a low-cost, customized, and 
effective damper dynamometer is constructed using computer-aided design and 
finite element analysis to measure the properties of suspension dampers used in a 
racing car. The chapter presents an excellent example of the advanced engineering 
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process in the field, from construction design to race-track testing. Particularly 
inspiring is the description of the development of special equipment that had to 
meet strict requirements given the conditions in which it operates. The authors 
carefully follow the entire path of balanced design, manufacturing, testing and 
interpretation. Chapter 5 provides a typical example of complex nonlinear dynamic 
processes occurring in a non-conventional spherical absorber. Although passive 
absorbers have been investigated theoretically and experimentally many times and 
are commonly installed in practice, there are still many gaps in the information 
about new and progressive types. It is important to note that inappropriate 
configuration of a vibration absorber can not only reduce its efficiency but can 
even result in its negative influence. This is quite often the case, for example, with 
a passive or semi-active pendulum absorber when its spatial character is neglected. 
The system is strongly nonlinear and the interaction of the horizontal response 
components gives rise to complicated effects that can lead to various forms of 
stability loss.

A more sophisticated system, presented in the final chapter, is a ball-shaped 
absorber moving in a spherical cavity. This arrangement allows for many modifica-
tions. For instance, the cavity may be elliptical in shape, allowing the absorber to 
possess different eigen-frequencies in the principal directions, which is the usual 
disposition when the vibrations of a building require reduction. Another variant is 
a cylindrical absorber, as required for damping the horizontal vibration of a bridge 
deck. The spherical ball absorber is even more sensitive to dynamic nonlinear effects 
that cannot be avoided in the theoretical modeling of this system. Particularly 
interesting may also be the demonstration of Gibbs’ principle of constructing 
the governing dynamic differential system, which in certain configurations leads 
to a more efficient system than that resulting from the direct application of the 
Hamiltonian principle to obtain a Lagrangian system.

Jiří Náprstek and Cyril Fischer
Institute of Theoretical and Applied Mechanics  

of the Czech Academy of Sciences,
Prague, Czechia
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Chapter 1

Vibration Control in Bridges
Kenneth C. Crawford

Abstract

The purpose of this chapter is to examine methods to control induced 
 vibrations in steel and reinforced concrete (RC) highway bridges caused by three 
primary vibration forces, specifically wind, heavy traffic, and seismic events. 
These forces manifest their effects in bridge structural elements to different 
degrees, from small vibrations to large forces causing destruction of the bridge. 
This chapter examines bridge failures caused by induced vibrations, from wind 
loading, traffic loading, and seismic vibration loading and presents solutions 
developed to compensate for these vibrations. Bridge failures from seismic vibra-
tions are the most destructive and are described in two major earthquakes in 
California. A major bridge failure from induced wind vibrations is considered, and 
two bridge failures caused by vibrations from heavy traffic loading are described. 
With lessons learned from these and other bridge failures, new design criteria and 
methods have been established to reduce and mitigate the destructive forces of 
induced vibrations. Significant changes in bridge structural engineering codes and 
design philosophy were made. While bridge structural design improvements have 
reduced the effects of wind, seismic, and heavy traffic vibrations, further research 
is needed to mitigate the long-term effects of vibrations on bridge performance 
and structural integrity.

Keywords: bridges, wind, heavy traffic, seismic events, vibrations, failures

1. Introduction

A national highway system is a large and extensive infrastructure made up 
of roads, tunnels, bridges, interchanges, ramps, and embankments in a complex 
combination of designs and configurations. The continuous and uninterrupted flow 
of traffic in a highway system is vital to a nation’s economy and flow of goods and 
services. The efficient operation of a highway transportation system is dependent 
on its original construction and maintained condition of its key elements, in par-
ticular bridges. Steel and RC bridges are a critical component in a national highway 
system requiring sound design and high quality construction with an effective 
long-term inspection and maintenance program. The performance and survivability 
of bridges, under wind and heavy traffic loading, and in a natural disaster, such as 
a seismic event, is critical in a nation’s transportation network. The performance 
of RC highway and steel bridges under these induced forces is a function of their 
ability to withstand damaging forces and induced vibrations in critical structural 
members. Many bridges constructed before the 1970s, both in Europe and the USA, 
do not meet current seismic design standards and are potentially subject to possible 
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failure in the event of a major earthquake. Concrete and steel bridges constructed 
today are designed to perform to high standards under wind, heavy traffic, and 
seismic vibration loading.

1.1 Objective of chapter

Considering the impact of vibrational forces on bridge structures the objec-
tive of this chapter is to examine the nature of induced vibrations in bridges 
from natural and man-made forces and to gain an understanding on how these 
vibrations influence a bridge’s structural performance. Induced vibrations from 
wind, heavy traffic and seismic events can significantly degrade the structural 
integrity of a bridge and its ability to sustain its designed load performance. To 
consider and understand the effects of induced vibrations in bridges this chapter 
examines several cases of bridge failures that have resulted from wind and heavy 
traffic loading, and from seismic events that destroyed a large number of bridges 
in a highway interstate system. The goal is to learn from these bridge failures and 
what role the induced vibrations played in their failure. The lessons learned in 
studying bridge failures provide an opportunity to better understand the forces 
of nature and the types of vibrations they induce in bridge structures and to be 
better able to develop improved bridge design codes, criteria, methods, materials, 
and construction process. A bridge today should not fail from wind, heavy traffic, 
or seismic induced vibrations.

2. Bridge failures from induced vibrations

While bridge failures occur for a number of reasons, normally through the 
deterioration of materials in structural members, the study of vibrations in a 
bridge’s structural integrity provides an insight on how a bridge will perform under 
the stress of severe vibration loading. The effects of wind vibration are examined 
in two cases in which bridges failed from inadequate design. Two bridges are 
considered that failed from vibrations induced by heavy traffic loading. The third 
category of bridge failures is the result of destructive forces induced by the vibra-
tions from seismic events. Earthquakes, depending on the magnitude of vibrations, 
are a major factor in the disruption and destruction, of highway bridge networks. 
The point in studying bridge failure mechanisms from induced vibrations is to learn 
and to establish better designs to improve long-term bridge performance to mitigate 
destructive vibrations forces.

2.1 Bridge failures from wind vibrations

Since the early 1800s when the first suspension bridges were being designed and 
built in England and the United States little was understood about wind induced 
vibrations. Vibrations from seismic events and heavy and traffic loading were not 
an issue at the time. After a number of wind induced suspension bridge failures in 
the first half of the 1800s, Figure 1, it was not until 1840 and 1849 serious consid-
eration was given by bridge designer John Roebling (1806–1869) to design for wind 
loading in suspension bridges.

In the mid-1800s a number of the early suspension bridges collapsed for vari-
ous reasons, some with loss of life. Poor-quality iron, and shortfalls in design and 
constructions were identified as contributory causes. In the aftermath of the col-
lapses it was recommended structures should be periodically inspected and chains 
should be load-tested. Unfortunately these actions were not mandatory. Various 
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design schemes were adopted to limit vibrations but the single most important was 
to stiffen decks by the addition of truss-parapets [1].

One of the classic examples of the effect of wind induced vibrations on a suspen-
sion bridge is the failure of the new Tacoma Narrows Bridge in Nov 1940, as the 
result of a 40-mile an hour wind, Figure 2.

Based on Austrian civil engineering deflection theory the engineer firm 
Moisseiff and Lienhard, New York City, who produced the original design for 
the bridge, stated the main cables were stiff enough to absorb wind pressure and 
stablilize the bridge, and assumed the wind forces would only push the bridge 
sideways. From the beginning the bridge had large vertical deflections even from 
moderate winds.

The primary explanation of the bridge failure was described as “torsional 
flutter.” “Torsional flutter” is a complex mechanism. “Flutter” is a self-induced 
harmonic vibration pattern which can grow to very large vibrations. The external 
force of the wind alone was not sufficient to cause the severe twisting that led the 
Narrows Bridge to fail. It is noted the bridge deck’s twisting motion caused torsional 
oscillation which became self-generating causing the bridge to absorbed more wind 
energy in a condition called “self-excited” motion [2].

While vortex shedding may occur in low wind speeds around 25–35 mph, and 
torsional flutter occurs at higher wind speeds of 80–100 mph, the instability in the 
Tacoma Narrows bridge caused by vortex shedding and torsional flutter occurred at 

Figure 1. 
Bridge failures from wind vibration loading in 1800s.

Figure 2. 
Tacoma narrows bridge failure from a 40 mph wind.
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relatively low wind speeds, less than 25 mph. Because 0f the type of bridge design, 
and relatively weak resistance to torsional forces from the vortex shedding instabil-
ity the bridge went into self-amplifying “torsional flutter”, which is what destroyed 
the bridge [2].

2.2 Bridge failures from traffic load vibrations

It is rare that a bridge fails from the vibrations of heavy traffic loading but two 
cases stand out as examples of failure under heavy load vibrations. In each case the 
vibration loading exceeded the designed loading capacity of the bridge with the 
failures compounded by other factors, such as design flaws, construction deficien-
cies, inspection errors, and maintenance short falls.

2.2.1 I-35 W bridge collapse Minneapolis, MN

The 8-lane I-35 W bridge, known as bridge 9340, was constructed in 1967 and 
served over 140,000 vehicles per day. The bridge consisted of fourteen spans: 
nine spans were of steel multi-girder construction, two were of concrete slab 
construction, and the main three were of deck truss construction. The Minnesota 
Department of Transportation (MnDOT) was tasked with taking over annual 
bridge inspection beginning in 1993. Prior to this, it was federally inspected every 
other year. Inspection reports by MnDOT often indicated significant corrosion, 
rusting, warped plates, and other structural issues with the bridge. It was noted 
that the lack of redundancy in the main truss design meant that the bridge was 
vulnerable to a collapse if a single critical piece in the truss were to fail. Subsequent 
inspection reports expressed concern about the bridge’s structural integrity, but no 
motion to close or drastically reinforce it was ever made [3].

In 1 August 2007, at 6 pm, the I-35 W Mississippi river bridge collapsed suddenly 
taking with it 111 vehicles, killing 13 people, and injuring 145. The bridge, Figure 3, 
was non-redundant and fracture critical, meaning if one member failed the entire 
bridge would collapse. Although the iron frame bridge with riveted gusset plates 
had supported heavy traffic volume for over 40 years it was a single half inch gusset 
plate, in a badly corroded condition, that failed along a line of rivets that caused the 
entire 250 foot bridge to fail. It was the additional weight of construction equipment 
plus the vibrations of rush hour traffic at the time that actually triggered the failure 
of the gusset plate [3].

Figure 3. 
I-35 W Mississippi River Bridge collapse August 2007.
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The deterioration of the gusset plates in periodic annual inspections was not 
labeled as potentially critical. While the gussets were identified as the root cause of 
this devastating collapse, the investigation found a combination of separate factors 
coming together led to the disaster: design flaws, inadequate inspection, MnDot 
policies not being followed, poor information flow, the organizational structure 
not addressing bridge conditions and safety. All these factors combined caused the 
bridge to collapse [3].

2.2.2 Hyatt Regency Hotel, Kansas City, MO Skywalk Collapse

In 1981 the Hyatt Regency Hotel in Kansas City, Missouri, suffered a structural 
failure of two of its three skywalks above the hotel atrium (Figure 4). At 7:05, July 
17, with approximately 1600 people gathered in the hotel atrium for a tea dance, the 
fourth level walkway, suspended directly over the second-floor walkway, gave way 
and fell on the walkway below taking both walkways to the ground floor, killing 114 
and injuring 216. The primary cause of the failure was the induced vibrations from 
a large number of people on the skywalks (overloaded) dancing to the rhythm of 
the music on the ground floor. It was the worst civil engineering failure in US his-
tory, since the collapse of Pemberton Mill over 120 years earlier. Many lessons and 
reforms for this structural failure contributed to engineering ethics and safety and 
to emergency management.

The root cause of the structural collapse was the failure of a hangar bolt bracket 
in fourth floor skywalk. Contributing factors: failure in engineer review of shop 
drawings of a field change in the skywalk hangar bolts, inadequate design of 
skywalks, and lack of oversight responsibility. Kansas City society was affected for 
years, with the collapse resulting in billions of dollars of insurance claims, legal 
investigations and city government reforms.

2.3 Bridge failures from seismic vibrations

Vibrations from seismic events have devastating effects on bridges and struc-
tures. Earthquakes in California and the bridge failures that resulted from large 
seismic vibrations are examined. The highway system in southern California is a 
complex network of Interstates, bridges, and flyovers, and is subject to significant 
deteriorating impacts from earthquakes and seismic induced vibrations.

The Interstate 5 (I-5) is the main Interstate highway on the West coast of the 
United States running largely parallel to the Pacific coast of the continental U.S. and 

Figure 4. 
Collapsed skywalk bridge in Hyatt Regency Hotel.
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Route 99 from Mexico to Canada. The Golden State Freeway on I-5 begins one mile 
east of downtown Los Angeles and extends north through San Fernando Valley, 
across the Newhall Pass into the Santa Clarita Valley. I-5 then goes north from the 
Newhall Pass over the Grapevine Pass to eventually reach its second-highest point 
at Tejon Pass with an elevation of 1275 m, into the San Joaquin Valley, and further to 
Sacramento.

The Newhall Pass Interchange, Figure 5, is a major highway interchange 
north of Sylmar in Southern California, connecting Interstate 5 (Golden State 
Freeway) with State Route 14 (Antelope Valley Freeway) (SR 14). The interchange 
is extremely large, and consists of numerous flyover ramps and two tunnels. 
Portions of Interstate 5 in the pass reach up to 21 lanes wide. The complex inter-
change structure combines a directional T-interchange with a collector-distribu-
tor bypass.

2.4 Impact of seismic vibrations on California highway bridges

The failure of the Interstate 5 and SR14 at Newhall Pass interchange in southern 
California, along with other freeway overpasses, in the 1971 earthquake, and again 
in the Northridge earthquake in 1994, provide examples of the devastating impact 
seismic vibrations can have on the local economy and a critical state highway 
network in an urban area. The failure of highway bridges in these two earthquakes 
occurred because they did not meet the updated Caltrans bridge seismic design 
criteria and had not been retrofitted before the earthquakes occurred.

2.4.1 Sylmar earthquake bridge failures

The Sylmar earthquake (also known as San Fernando earthquake) took place 
near the San Fernando Valley in southern California on February 9, 1971. This 
earthquake was of magnitude 6.6 on the Richter scale and had an epicenter with 
coordinates of 34.41°N 118.40°W. The earthquake lasted 12 s and had a depth of 
13 km (8.1 miles). Thrust faulting ruptured a segment of the San Fernando fault 
zone with a total surface rupture of 19 km with a maximum slip of 2 m. 65 persons 
died, 49 in the collapse of a Veterans Administration Hospital. 200 people were 
injured. An estimated $505–553 million occurred in structural damage.

In the Sylmar earthquake twelve overpass bridges failed and fell onto the free-
ways below. Major bridge failures occurred at the Interstate 5 and State Road (SR) 
14 interchange, Figure 6. A total collapse of the southbound I-5 to northbound 

Figure 5. 
Interstate I-5 and State Road 14 interchange over the Newhall Pass.
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SR14 overpass occurred as a result of the earthquake. This collapse resulted in the 
additional collapse of the intersecting southbound SR 14 to southbound I-5 over-
pass (as this connector bridge was directly beneath the I5—SR 4 overpass) [4].

Both bridges fell directly onto the southbound I-5 truck bypass. There was 
damage to all bridge structures involved, varying from minor cracking and splay-
ing, to the loss of complete sections of bridges. Most of the bridge damage in the 
Sylmar earthquake occurred on the I-5—SR14 interchange, Figure 6. Vibrations 
from this 6.6 magnitude earthquake caused the structure between two columns to 
separate from the actual supporting column which caused the highest overpass road 
(Newhall Pass) to collapse on top of the overpass below it, which then all collapsed 
onto the freeway below it. The rebuilt interchange was completed in 1973.

On the I-5—SR 14 interchange, it was noted the column that collapsed 
experienced damage at the ends, while the middle part of the column received 
little damage. Jennings noted, the small length of seating at the end of the fallen 
section, the lack of effective ties(steel reinforcing) to neighboring sections, and 
the general configuration of the inverted-pendulum structure were indicative of 
inadequate attention to the effects of strong earthquake motion. There are a vari-
ety of possible ways that the bridge structure might have failed, but two points are 
clear. First, the evidence strongly indicated a vibration failure. Permanent ground 
displacements (none were noted) were not thought to have played a significant 
role in the collapse [5].

2.4.2 1994 Northridge Earthquake Bridge Failures

The 1994 Earthquake (known as Northridge Earthquake) occurred on January 
17, 1994 near Reseda, California, a neighborhood in the north-central San Fernando 
Valley region of Los Angeles. The epicenter was 34.213°N 118.537°W. The mag-
nitude of the earthquake was 6.7 Mw (moment magnitude) and caused over $50 
billion in damage. 57 people died and over 8700 were injured. 40,000 buildings 
were damaged and 20,000 were left homeless. While about $2 billion occurred in 
damaged transportation infrastructure (roads and bridges), over $50 billion in 
damages occurred with severe impacts on the local economy over the following 3 
years. The lesson learned is that small damage to a transportation network can have 
a devastating impact on the local economy for years after [4].

The Northridge earthquake was the first earthquake since the 1933 Long Beach 
earthquake to strike beneath an urban area and occurred on a blind thrust fault 
producing the strongest ground motions ever recorded in urban areas in North 
America. Damage to freeways, office and apartment buildings, and parking struc-
tures was extensive. Structures were lifted of their foundations by high levels of 

Figure 6. 
1971 Sylmar Bridge Failures on I-5—State Road 14 interchange.
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vertical and horizontal accelerations. Bridge damage was substantial. Over 4000 
km2 of the earth’s crust deformed, forcing the land surface upward in the shape of 
an asymmetric dome [6].

The Northridge earthquake appears to be the result of a truncated fault that 
broke in the 1971 San Fernando earthquake at a depth of 8 km, resulting in a reverse 
skip of more than three meters along a 15-km long south-dipping thrust fault line. 
This fault raised the Santa Susana mountains by more than 70 cm. Because the fault 
was directly under the city the Northridge earthquake caused many time more 
damage. Of all the damage the biggest surprise was the fracture of welds in steel-
frame buildings. Concealed thrust faults remain the greatest potential for strong 
ground shaking for Los Angeles, even in moderate quakes [7].

The Northridge earthquake collapsed seven freeway overpass bridges and 
caused the disruption of a large portion of the northwest Los Angeles freeway 
system, Figures 7 and 8. The Northridge earthquake caused the southbound SR14 
to southbound I-5 connector to collapse, Figure 6, and a bridge crossing on the San 
Fernando Freeway.

2.4.2.1 Causes of Northridge seismic vibration structural failures

Over 350 square miles (900 square kilometers) received extensive damage to 
residential, commercial building, and regional lifelines from the main shock and 
aftershocks. Although the earthquake magnitude of 6.7 was moderate by earth-
quake standards, the neighboring communities of Sylmar, Burbank, Van Nuys, 

Figure 8. 
I-5 Newhall bridge failure near SR14.

Figure 7. 
Two bridge failures on I-5—State Road 14 interchange.
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Glendale, Santa Monica, Newhall, and San Fernando sustained damages. In looking 
at other earthquakes the 1971 San Fernando had a magnitude of 6.4, 1964 Alaska 
had 8.1, 1989 Loma Prieta 7.1, 1987 Whittier Narrows 5.9, and the 1991 Sierra Madre 
had a magnitude of 5.8.

There was also major bridge damage to the Golden State Freeway (I-5) and 
Foothill Freeway (I-210) Interchange, Figure 9. The westbound I-210 to south-
bound I-5, under construction and complete except for paving at the ramp section, 
collapsed over the I-5. Possible cause of failure was vibration that moved the over-
pass off its supports due to an inadequate column seat. Unlike the situation at the 
I-5—SR 14 Interchange, permanent ground movement (defined as several inches 
of left-lateral displacement with possibly an element of thrusting) was observed in 
the area.

Examination of the earthquake magnitude and epicenter and resulting bridge 
failure was made with consideration for the specific modes of bridge failure. Of 
the seven major freeway bridges that failed, two bridges on the SR 118 had flexure/
shear failure of short and stiff columns and a low transverse reinforcement ratio. 
The I-5 bridge failure was from skewed geometry and unseating of expansion joints. 
The I-10 bridge failures were caused by flexure/shear failure of short stiff columns 
and brittle shear failure of stiff columns. The I-5—SR 14 bridge failures were caused 
by short column brittle shear failure. Five of the failed bridges were scheduled for 
retrofit which had not been accomplished before the earthquake. The two other 
failed bridges had been identified as not requiring retrofit [6, 8].

Figure 9. 
Failure of I-210 overpass to I-5 south.

Figure 10. 
Failed highway bridge columns on Santa Monica Freeway.
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Figure 11. 
Failed bridge columns on Santa Monica Freeway and I-5.

2.4.2.2 Northridge bridge column failures

The Northridge earthquake caused extensive damage to bridge columns, par-
ticularly on the Santa Monica Freeway (I-10) from the I-5 to Santa Monica on the 
ocean and SR 118 further north, Figures 10–12. The column failures were caused by 
flexure and shear failures of short stiff columns and by the brittle shear failure of 
stiff columns, Figures 10 and 11.

The Northridge earthquake’s high vertical acceleration was the primary force 
causing the bridge column failures. The rate of vertical acceleration was the high-
est ever recorded in North America. In studying the ground wave motion there 
was evidence of surface wave amplification which increased structural damage. 
The resulting seismic induced vibrations were devastating to the bridge columns 
not designed for the magnitude of the vibrations, resulting in widespread column 
destruction.

3. Lessons in controlling bridge wind vibrations

The construction of a suspension bridge consists of main towers, main suspen-
sion cables, anchorages for the cables, trusses, and stiffening girders. After the 
main cables are suspended between the towers and connected to their anchorages, 

Figure 12. 
Column failure of I-210 overpass to I-5 south.



11

Vibration Control in Bridges
DOI: http://dx.doi.org/10.5772/intechopen.107501

vertical suspenders are connected to the deck which carries the traffic load. The 
main cables, made of high-strength steel, are the primary load carrying mem-
bers of the bridge and are efficient in reducing and mitigating wind vibrations. 
Because the bridge structure deadweight is reduced longer suspension bridge 
spans are possible.

In the early to mid-1800s suspension bridges were most often light spans with 
flexible decks and were vulnerable to the aerodynamic forces of cross winds. To 
counter these wind forces bridge engineers began moving to heavier and stiffer 
suspension bridges. An example is the Brooklyn Bridge designed in 1883 by John 
Roebling to which he added mass and stiffness to resist the strong winds on the 
East River (Figure 13). However by the early 20th century bridge engineers failed 
to learn from past bridge failures. David Billington, Gordon Y.S. Wu Professor of 
Civil Engineering at Princeton University, stated “Roebling’s historical perspective 
seemed to have been replaced by a visual preference unrelated to structural engi-
neering, as seen in the failure of the Tacoma Narrows bridge” [2].

John Roebling recognized the problem of wind loading on suspension bridges 
and designed a number of features in the bridge to reduce the effects of wind 
vibrations. This involved adding stays and trusses to counteract wind loading. 

Figure 13. 
Bridges designed and built by John Roebling.

Figure 14. 
822 ft Niagara railroad suspension bridge.
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These features were added to the 1849 Niagara railroad bridge and the 1855 Niagara 
suspension bridge.

The Niagara railroad bridge, Figure 14, opened in 1849, had a top deck for 
streetcars and a lower deck for pedestrians and wagons. Two tracks for streetcars 
were laid. Diagonal stays were added to increase load capacity, strengthen the floor, 
and check train and wind vibrations. Wrought iron trusses were added, running the 
length of the bridge.

With the design and construction of the Cincinnati river bridge, Figure 15, 
opened in 1867, additional features were added to mitigate the effects of wind. 
Roebling made further improvements for wind vibration stability by adding 
additional stays and trusses and increasing the mass of the bridge. These features 
were then used for the design of the Brooklyn Bridge in which stiffening girders and 
additional mass were added to provide a stable bridge deck for the high winds on the 
East River. With the design of the Brooklyn Bridge Roebling had a good understand-
ing of the relationship of suspension bridge span length and the forces of induced 
wind vibrations. This understanding would not extend to the suspension bridges 
designed and built in the next century.

After a series of suspension bridge failures in the 1800s and following the 
Tacoma Narrows Bridge failure, professor J.K. Finch, Columbia University, civil 
engineering, in an Engineering New-Record article, stated: “These long-forgotten 
difficulties with early suspension bridges clearly show that while to modern engi-
neers, the gyrations of the Tacoma bridge constituted something entirely new and 
strange, they were not new — they had simply been forgotten. An entire generation 
of suspension-bridge designer-engineers forgot the lessons of the 19th century.” 
Prior to the Tacoma Narrows bridge failure the last major suspension bridge failure 
was the Niagara-Clifton Bridge, constructed in 1847, which collapsed in a storm in 
1889. Well into the 1930s, aerodynamic forces on bridges were not well understood 
and researched, resulting in insufficient wind loading designs for suspension 
bridges [2].

4. Lessons controlling heavy load bridge vibrations

The bridge failure cases in Section 2.2 illustrate what the impact of uncontrolled 
vibrations can have on bridge structural integrity. Through extensive research new 
methods and devices have been developed to dampen and significantly reduce 
vehicle (truck, train) induced vibrations in bridges. One such device is the tuned 
mass damper (TMD), also known as a seismic damper of harmonic absorber. 

Figure 15. 
John A. Roebling Bridge Cincinnati OH.
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Consisting of a mass mounted on damping springs the TMD is mounted on bridges 
and buildings to reduce mechanical vibrations. The TMD’s oscillation frequency 
is tuned to synchronize with the resonant frequency of the object to which it is 
mounted.

Tuned mass dampers stabilize against violent motion caused by harmonic vibra-
tion. They use a comparatively lightweight component to reduce the vibration of a 
system so that its worst-case vibrations are less intense. TMDs can prevent damage 
and structural failure and are frequently used on highway and rail bridges to reduce 
harmonic vibrations [9].

Using the modal properties of a bridge structure in bridge engineering the TMD 
is designed to reduced vibrations in bridges. Depending on the design methodol-
ogy of the TMD, bridge vibrations in certain frequencies are reduced while other 
frequencies are amplified.

One application of the TMD is on railroad bridges. A moving mass model is used 
to consider the dynamic response of the bridge to the moving train load. Zhaowei 
Chen et al., introduce the design methodology of bridge-based designed TMD 
(BBD-TMD) in which a detailed train-track-bridge coupled dynamic model with 
attached BBD-TMD is established based on the multi-body dynamics theory and 
the finite element method. To evaluate the running performance of a train, three 
indicators are selected, namely wheel-axle lateral force (Fw), derailment coefficient 
(DC), and wheel unloading rate (WUR). The authors note the indicator WUR is 
aggravated in some cases by the BBD-TMD, indicating that the performance of a 
running train at different speeds should be seriously considered in designing TMDs 
based on the bridge modal property [10].

Using the train wheel and body for a 2-degree of freedom (DOF) system a 
high-speed train such as the TGV can be modeled. For a three-span bridge using the 
midpoint vertical displacements and the fast Fourier transform and comparing  
the results before and after installation, the efficiency of the TMD can be shown. 
The TMD has a variety of merits in that it has permanent service time, and only 
requires easy management and maintenance efforts and no external power supplying 
sources [10].

5. Lessons learned for controlling seismic vibrations in structures

No single earthquake like the 1994 Northridge earthquake had such an impact 
on the art and practice of structural engineering, causing an overall and widespread 
reevaluation of engineering practices so deeply rooted in structural engineering. 
Following 1994 the most significant changes by the Seismic Advisory Board (SAB) 
in the philosophy and design practice of structural engineering were in the follow-
ing areas:

a. Understanding the dire consequences of unjustified extrapolations.

b. Significant improvements in knowledge of design characteristics of strong 
ground motions.

c. Limits on the understanding of ultimate behavior of structures.

d. Value of seismic instrumentation and its widespread use.

e. Insufficiency of design practice targeted only to life-safety and collapse 
prevention.
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f. Development and application of performance based design methodologies.

g. Significant changes and additions to building codes and standards.

Prior to the 1994 Northridge earthquake welded steel moment resistant frames 
(WSMRF) in steel-frame buildings were considered the most reliable and sought 
after structural systems for earthquake-resistant construction. The poor perfor-
mance of WSMRFs in the Northridge earthquake, with failures in steel frame welds 
because of the ductility of steel with ground movement forces, revealed the limita-
tions on the valid bounds of experimental research on which the use of WSMFR was 
based [1]. The failures were in extrapolations of limited steel frame seismic tests 
on which designs were based and in the failure of the processes and quality of steel 
welding [8].

The lesson learned in the Northridge earthquake provided key lessons learned 
for earthquakes that occur beneath cities, indicating the concealed faults under 
Los Angeles are far more complex than previously thought. The one primary lesson 
learned shows urban areas can be subjected to ground motions with peak accelera-
tions approaching the force of gravity, exceeding the levels of shaking anticipated 
by building codes. It is essential building codes address the forces expected on 
buildings subject to earthquakes.

The US Geological Survey (USGS) has established national and regional maps 
of probabilistic earthquake ground shaking through the USGS (US Geological 
Survey). The National Seismic Hazard Mapping Project (NSHMP) integrates the 
results of research in historical seismicity, paleo-seismology, strong motion seis-
mology, and site response taking into account all the possible locations and magni-
tudes that are likely to happen in future hypothetical earthquakes. By the year 2000, 
all US model building codes incorporate ground motion hazard maps derived from 
the USGS studies to insure structures are engineered to have the appropriate level of 
resistance to earthquake ground motion [8, 9].

5.1 Improvements in highway bridge seismic design

The development of seismic design criteria and guidelines in the US, and 
particularly in California, has evolved in response to substantial earthquake dam-
ages to bridges and structures. Following the 1971 Sylmar earthquake near Los 
Angeles a major bridge retrofit program was started by the California Department 
of Transportation Caltrans). Following the devastating 1989 Loma Prieta earth-
quake in Oakland, CA, the Governor of California created, in 1990, the Seismic 
Advisory Board (SAB) under Caltrans. The SAB is an independent body whose 
role is to advise Caltrans on seismic policy and technical practices to enhance the 
seismic safety and functionality of California’s transportation structures. The SAB 
initiated significant changes in bridge and structural design philosophy and criteria, 
moving from established prescriptive criteria to developing performance-based 
seismic engineering (PBSE) concepts and methodologies. FEMA-273 guidelines 
(1997) made PBSE a reality for structural engineers by defining performance of 
components and systems in terms of a spectrum varying from continuous operation 
to collapse prevention [11].

5.2 Bridge seismic vibration response

The response of RC highway bridges under conditions of a natural disaster 
such as an earthquake is a function of its design and construction and its ability to 
withstand the vibrations and energy of local ground shaking without collapse. In 
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analyzing the ground motion of the 1994 Northridge earthquake, the strength of 
ground shaking was measured in the velocity of ground motion, the acceleration 
of ground motion, the frequency content of the shaking and duration of the shak-
ing. When assessing the potential shaking hazard at a site where frequent strong 
motion is expected to re-occur, consideration is made of the characteristics of waves 
produced by an earthquake rupture, also strongly influenced by the fault rupture 
orientation, its depth, and the details of how the slip spread across the ruptured fault 
patch. In the Northridge earthquake the rupture of a concealed fault beneath an 
urban area caused widespread and extensive damage to bridges and buildings [12].

5.3 Bridge seismic vibration design for critical components

The ability of a RC highway bridge to withstand damaging vibrations from an 
earthquake depends on seismic design guides available at the time of the bridge 
design and construction. Bridges designed and constructed before the 1971 Sylmar 
earthquake did not comply with the latest seismic design guides. Following three 
relatively moderate earthquakes between 1971 and 1994, two in southern California 
and one in Oakland, California, which resulted in significant infrastructure dam-
age, Caltrans, led by the Seismic Advisory Board, made a substantial effort to 
redefine and improve their seismic structural codes.

In their Seismic Design Criteria, Caltrans defines a ductile member in an RC 
bridge as any member that is intentionally designed to deform in elastically for 
several cycles without significant degradation of strength or stiffness under the 
demands generated by the Design Seismic Hazards. The Design Criteria states 
seismic-critical members may sustain damage during a seismic event without 
leading to structural collapse or loss of structural integrity. Bridge components are 
designated as seismic-critical if they will experience any seismic damage as deter-
mined by the project engineer and approved during type selection. Ductile and 
seismic-critical members are defined as columns, Type I shafts, pile/shaft groups 
and Type II shafts in soft or liquefiable soils, pier walls, and pile/pile-extensions in 
slab bridges (designed and detailed to behave in a ductile manner). Other bridge 
components such as dropped bent cap beams, outrigger bent cap beams, “C” bent 
cap beams, and abutment diaphragm walls are to be designed as seismic critical. 
All other components not seismic-critical shall be designed to remain elastic in a 
seismic event [13, 14].

5.4 Seismic vibration control in buildings and bridges

Seismic vibration control consists of technologies to reduce the seismic effects 
in structures (building and bridges), and thus minimize earthquake damage. When 
the seismic waves travel upwards through the base of buildings and bridges, reflec-
tions considerably reduce the wave energy.

To control residual energy in seismic waves, which are the source of major dam-
age in earthquakes, seismic vibration control technologies are used with dampers, 
which absorb energy over a wide range seismic wave frequencies. Seismic energy 
flow into buildings is also controlled by isolating the building with pads mounted 
in the base load carrying elements decoupling the building superstructure from the 
foundation substructure.

An excellent example of bridge engineering to control seismic and wind vibra-
tions is provided by the Rio Antirrio bridge, Figure 16, over the Gulf of Cornith 
in Greece.

To absorb the energy from earthquakes it was necessary to develop new design 
and construction techniques for the piers and pier footings. The pier footings were 
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not buried in the sea bed but mounted on top of a gravel bed allowing the piers 
to move laterally while the gavel bed absorbs the earthquake energy. To absorb 
movement in the bridge deck jacks and dampers were connected to the bridge 
pylons. Protection from the effect of high winds on the decking is provided by 
the use of aerodynamic spoiler-like fairing and on the cables by the use of spiral 
Scruton strakes.

The design of the pylon footings, not anchored in the seabed, but simply placed 
on a level bed of rock is unique in structural engineering for controlling seismic 
vibration (Figure 17). The bed of rock absorbs the energy of seismic vibrations 
without transmitting the energy through the pylons to the bridge structure. The 
bridge is designed to withstand an earthquake up to a 7.4 magnitude.

6. Role of FRP systems for bridge stability in seismic vibrations

Since the mid-1990s advanced composites were first used In the United States for 
seismic retrofit of buildings and bridges which have also seen a significant increase 
worldwide in the use of advanced composite materials for bridge rehabilitation to 
repair damaged structures, to strengthen structures for increased demand (vehicle 
loading), and to retrofit structures to control seismic vibrations. Referred to as 
fiber reinforced polymers (FRPs), these advanced composite materials consist of 
glass, carbon, or aramid fibers embedded in a polymer matrix. These FRP overlays 
successfully used to strengthen columns and girders for shear, reinforced concrete 
slabs in flexure, and on joints for external cap and column connections. During the 
Caltrans Phase I and Phase II Bridge Column Retrofit Program, early applications of 

Figure 16. 
2380 m Rio Antirrio fanned cable-stay bridge.

Figure 17. 
Rio Antirrio bridge with four pylons and five spans.
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FRPs were developed and implemented demonstrating significant benefits over the 
more conventional steel jacketing.

Other key benefits of FRPs are their high mechanical characteristics and their 
light weight (up to 5 times stronger and 5 times lighter than mild steel). Other issues 
the Seismic Advisory Board believes need to be better addressed for broad based 
FRP applications concern fire resistance and quality control/inspection measures 
during and after the retrofit installation. For FRP applications to be used on 
California bridges and to meet life safety codes Caltrans requires testing for proof of 
concept and performance validation testing of FRP technology for bridge retrofit. 
Although the retrofit concept was tested on scaled bridge components, final proof 
testing was done on full scale bridge elements [8].

6.1 Example of FRP bridge retrofitting

To accomplish stability in bridge structures from seismic vibrations it is neces-
sary to strengthen and stabilize bridge bents and foundations for seismic loading. 
Analysis considers types of retrofitting applications on bridge bents and the advan-
tages of FRP systems to increase structural member axial capacity and ductility in 
columns and beams. Retrofitting RC bridges by encasing and strengthening bridge 
bents with CFRP (carbon fiber-reinforced polymers) systems provides an effective 
method of mitigating the impacts of seismic vibration loading. The carbon fiber 
and epoxy resin composite for carbon-fiber reinforced polymer material (CFRP) 
has 28,000 unidirectional carbo fibers per tow with 6.5 tons per 25.4 mm, a modu-
lus of elasticity of 65 GPa, a tensile strength of 628 MPa, ultimate axial strain of 
10 mm/m, and a layer thickness of 1.32 mm.

For CFRP retrofitting of bridge bents, Figure 18, it is necessary to develop a 
higher base shear and moment capacity than the existing foundation and pile cap 
system. Performance-based design determines column CFRP jacket thickness 
for plastic hinge confinement, shear strengthening, and lap splice clamping. The 
design increases displacement ductility of the bridge bent developing a higher base 
shear and moment capacity. The RC beam connecting the pole cap completes the 
tension and compression load path, increasing shear and flexural capacity of the 
foundation [15, 16].

Many studies on the use of FRP jackets 0n reinforced concrete (RC) columns 
have shown the jackets are effective in increasing shear capacity and flexural 
durability in the columns. However the contribution of FRP jackets for flexural 
strength for small axial loads is minimal. While applying FRP sheets in the direction 
of a column is difficult because difficulties with base anchorage, a research project 

Figure 18. 
CFRP strengthening of bridge bents and columns.
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to upgrade the flexural capacity of RC piers used near-surface mounted (NSM) FRP 
rods. Flexural strengthening was achieved using NSM carbon FRP rods anchored 
into the footings. The piers were tested under static push/pull load cycles [17].

Another test was performed on RC piers in which three of the four piers were 
configured with different combinations of FRP rods and jackets. Using an ana-
lytical model with given load levels the net forces acting on the bridge pier were 
determined with strengthening techniques and modes of failure and confirming the 
effectiveness of the technology to strengthen RC piers [17].

The performance of highway bridges in earthquakes over the past several 
decades has been less than satisfactory because of poorly designed details and 
outdated design principles. In an effort to improve bridge performance in seismic 
events tests were conducted on the South Temple Bridge, built in 1963, during the 
I-15 reconstruction project in Salt Lake City. Five reinforced concrete bridge bents 
were tested, with three bents in as-is condition, two bents after a carbon fiber 
reinforced polymer (FRP) composite seismic retrofit, and one bent after a carbon 
FRP composite repair. The lessons learned from these tests were used in develop-
ing improved recommendations for the seismic retrofit design of bridge T-joints 
using FRP jackets. Using a nonlinear pushover static analysis of the as-is bent the 
performance-based design procedure includes determination of the column FRP 
jacket thickness for plastic hinge confinement, shear strengthening, and lap splice 
clamping. Using three elements the FRP jacket in the T-joints consists of diagonal 
FRP composite sheets for resisting diagonal tension, FRP composite sheets in the 
direction of the beam cap axis for shear strengthening and increased flexural capac-
ity, and U-straps clamped at the column faces that go over the beam cap. The in-situ 
tests demonstrated that application of an external FRP composite seismic retrofit to 
concrete bridges with inferior seismic design details provides adequate ductility and 
seismic performance [17].

In a 2001 project in the Republic of Macedonia 19 slab and girder highway 
bridges were strengthened with CFRP plates to strengthen the bridges to NATO 
military load class 100 to compensate for induced vibrations from heavy military 
transports. The CFRP strengthening increased the bending moment and load 
capacity of the bridges by 60%. In 2019, non-destructive testing (NDT) was 
conducted on 12 of the 19 bridges to determine the condition of the CFRP plate-
concrete bond. The results of the NDT field survey indicated 100% of the CFRP 
plates remain bonded to the bridge structural members 18 years after application. 
The use of CFRP material is a proven technology to reduce heavy traffic vibrations 
on RC highway bridges [18, 19].

7. Conclusion

The purpose of this chapter on vibration control is to examine the effects of 
wind, heavy traffic, and seismic vibrations on steel and RC highway bridges by 
providing an overview of bridge performance and failure under different types of 
induced vibration loading. Cases of bridge performance are presented for wind, 
heavy traffic, and seismic vibration loading. Bridge failures from induced vibrations 
are presented with analysis of why bridges failed. The effects of seismic vibra-
tions on RC highway bridges, in particular from earthquakes in California, with 
extensive destruction of highway bridge networks, led to changes in bridge design. 
The lessons learned following extensive bridge damages from the 1971 Sylmar, 
1989 Loma Prieta, and 1994 Northridge earthquakes, causing major damage and 
disruptions in the economy and highway systems in southern California, drove the 
California Seismic Advisory Board (SAB) to make significant changes in design 
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and constructing bridges. The major change was moving from established prescrip-
tive criteria to developing performance-based seismic engineering (PBSE) concepts 
and methodologies. These changes have become standard in national structural 
engineering practices. Lessons learned from bridge failures from wind and heavy 
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how a bridge’s structural configuration responds to the destructive forces of vibra-
tions. Bridge engineers have made significant progress in designing for these forces. 
Today’s highway and rail bridges meet high structural standards. The challenge 
going forward is to continue to improve bridge designs and construction to meet 
ever changing vibrational forces.
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Chapter 2

Fractional Optimal Control
Problem of Parabolic Bilinear
Systems with Bounded Controls
Abella El Kabouss and El Hassan Zerrik

Abstract

The purpose of this paper is to study a fractional distributed optimal control for
a class of infinite-dimensional parabolic bilinear systems evolving on a spatial
domain Ω by distributed controls depending on the control operator. Using the
Fréchet differentiability, we prove the existence of an optimal control depending on
both time and space, that minimizes a quadratic functional which leads into
account, the deviation between the desired state and the reached one. Then, we
show characterizations of an optimal distributed control for different admissible
controls set. Moreover, we developed an algorithm and give simulations that
successfully illustrate the theoretically obtained results.

Keywords: infinite-dimensional system, parabolic bilinear systems, fractional
derivative, optimal control

1. Introduction

In engineering and mathematics, control theory deals with the behavior of
dynamical systems. The desired output of a system is called the reference. When
one or more output variables of a system need to follow a certain reference over
time, a controller manipulates the inputs to a system to obtain the desired effect on
the output of the system, As an example: the control of vibration which is becoming
more and more important for many industries. This generally has to be achieved
without additional cost, and thus, detailed knowledge of structural dynamics is
required together with familiarity of standard vibration control techniques. We also
cited the following works on what concerns the vibration control [1–3].

The bilinear system involves the product of state and control, linear in state and
linear in control but not jointly linear in state and control. The interest of these
systems lies in the fact that many natural and industrial processes have intrinsically
bilinear structures, This is the case of furnaces for heating metal slabs or heat
exchangers, aircraft and robot arms, or energy transmission lines.

Let Ω be an open bounded domain of ℛn, n≥ 1, with regular boundary ∂Ω, and
consider a bilinear system described by the equation (see [4])

∂z
∂t

x, tð Þ ¼ Az x, tð Þ þ u x, tð ÞBz x, tð Þ Q ¼ Ω��0,T½,
z x, tð Þ ¼ 0 Γ ¼ ∂Ω��0,T , z x, 0ð Þ ¼ z0 xð ÞΩ,½

8<
: (1)
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where, A ¼ Δ of the domain D Að Þ ¼ H1
0 Ωð Þ∩H2 Ωð Þ, u is a control assumed to

belong to the set of controls

U ¼ u∈L2 Qð Þ=�m≤ u≤M
� �

with M≥m>0ð Þ: (2)

B is a bounded control operator on L2 Ωð Þ. For z0 ∈H1
0 Ωð Þ and u∈U, system (2)

has a unique solution z∈W ¼ z∈L2 0,T;H1
0 Ωð Þ� �j∂z

∂t ∈L2 0,T;L2 Ωð Þ� �� �
.

Let us consider the fractional quadratic control problem:

J u ∗ð Þ ¼ min
u∈U

J uð Þ, (3)

with

J uð Þ ¼ 1
2
∥Dα

xz� zd∥2L2 0,T;L2 Ωð Þð Þ þ
β

2
∥u∥2L2 0,T;L2 Ωð Þð Þ, (4)

where, Dα
x denotes the fractional spacial derivative of order α∈ �0, 1½, z is a

solution of system (2), zd ∈L2 Ωð Þ is a desired derivative and β is a positive constant.
Ractional calculus has emerged as a powerful and efficient mathematical instru-

ment during the past six decades, mainly due to its demonstrated applications in
numerous, seemingly diverse, and widespread fields of science and engineering. As
an example, The theory of fractional differential equations has received much
attention, as they are important for describing the natural models as in diffusion
processes, stochastic processes, economics, and hydrology. Moreover, the fractional
optimal control has been studied in many works, such as Frederico et al. have
studied a fractional optimal control problem in Caputo’s sense. Agrawal [5] have
presented an extended approach to a class of distributed system whose dynamics
are defined in the sense of Caputo. In [6], they considered the fractional optimal
control problem for variable inequalities. In [7], Bahaa studied the fractional opti-
mal control problem for different systems. When α ¼ 0, problem (2) was consid-
ered in many works.: Bradley and Lenhart [8] have shown the existence of such an
optimal control and given characterization of such control using necessary optimal-
ity conditions. Then, an optimal distributed control for a Kirchhoff plate equation
acting on the state position. Also, they collaborated with Yong [9] on the same
equation by temporal controls acting on the speed state and with special optimal
control in Bradley and Lenhart [10]. For parabolic systems, we have mentioned the
work in [11], which established an optimal control of a parabolic equation, model-
ing one-dimensional fluid through a soil-packed tube in which a contaminant is
initially distributed, taking a functional criterion as a combination of the final
amount of contaminant and the energy. In the same way, Addou and Benbrik [12]
studied a fourth-order parabolic distributed parameter system and derived the
existence and uniqueness of temporal bilinear optimal control. Then, Zerrik and El
Kabouss [13] extended this problem to a more general class of systems governed by
a fourth-order parabolic operator and excited by bounded and unbounded controls.
A wide literature has also been considered for infinite hyperbolic systems, espe-
cially, by Liang [14] who analyzed an optimal control problem for a wave equation
with internal bilinear control, and has given an optimal control that allows mini-
mizing a functional cost which contains the difference between the solution’s posi-
tion and a desired one. In the case of boundary bilinear controls: Lenhart and
Wilson [15] have studied the problem of controlling the solution of the heat equa-
tion with the convective boundary condition, such as, that the bilinear control
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represents a heat transfer coefficient. The used approach consists in finding a
unique optimal control in terms of the solution of an optimality system.

For a system evolving on a spatial domain Ω, regional controllability concerns
the extension of the classical notion of controllability (controllability on the whole
domain Ω) to the controllability only on a subregion ω of Ω. This notion is
interesting for many reasons: it is close to real applications. For instance, the phys-
ical problem that concerns a tunnel furnace where one has to maintain a prescribed
temperature only in a subregion of the furnace and may be of great help for systems
that are non-controllable on the whole domain but controllable on some subregions,
and controlling a system on a subregion ω⊂Ω is cheaper than controlling it in the
whole domain. Zerrik and El Kabouss [16] have studied a regional optimal bilinear
control of wave equation, taking a functional cost as the sum of the energy and the
difference between the solution of the wave equation and the desired state for
bounded and unbounded controls. Recently, Zerrik and El Kabouss [17] established
an output optimal control problem with a bounded control set. In other words, they
considered a problem of controlling only an output of the solution of a parabolic
system. In [18], they have studied an optimal control problem for the heat equation
in order to give control that leads to a state as the class as possible to the desired
state, only on a subregion of the domain of evolution, under constrained
controls sets.

In this paper, we consider 0< α< 1, which is very important for modeling many
real processes. We study a fractional optimal control problem of parabolic bilinear
systems. Using the Frechet differentiability, we prove the existence and give the
expression of an optimal control solution of (2). Then we discuss particular cases of
admissible controls set.

2. Existence of an optimal control

This section discusses the existence of a solution of the problem (2).
First, let us recall the notion of the weak solution of the system (2).
Definition 1.1.
Let T >0, a continuous function z∈ 0,T½ � ! L2 Ωð Þ is a weak solution of system

(3) on 0,T½ �, if it satisfies the following integral equation

zu tð Þ ¼ S tð Þz0 þ
ðT
0
S t� sð Þu :, sð Þz sð Þds, for all t∈ 0,T½ � (5)

where S tð Þ denotes the C0 semi-group generated by A in L2 Ωð Þ.
For fractional Riemann Louiville derivatives, we recall the following definition.
Definition 1.2.
Let 0< α< 1 and T >0, the fractional spatial Riemann Liouville derivatives of

order α is defined by:

Dα
x : H

1
0 Ωð Þ ! L2 Ωð Þ (6)

z ! Dα
xz ¼

d
dx

I1�α
0 z, (7)

where I1�α
0 is the Riemann-Liouville integral of 1� αð Þ order defined by:

I1�α
0 z x, tð Þ ¼ 1

Γ 1� αð Þ
ðx
0
x� τð Þ�αz τ, tð Þdτ (8)
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with Γ 1� αð Þ ¼ Ðþ∞
0 τ�αe�τdτ:

In the following, we show the existence of optimal control, solution of problem (3).
Theorem 1.3.
Problem (3) has at least one solution.
Proof: For u∈U, the associated solution of system (3) is one of the equation

zu x, tð Þ ¼ S tð Þz0 xð Þ þ
ðT
0
S t� sð Þu x, sð ÞBz x, sð Þds: (9)

Using the bound of the semi-group S tð Þð Þt≥0 over 0,T½ �, we have

∥zu tð Þ∥L2 Ωð Þ ≤C∥z0∥L2 Ωð Þ þ C∥B∥L2 Ωð Þ

ðT
0
∥u sð Þz sð Þ∥L2 Ωð Þds: (10)

It follows

∥zu tð Þ∥L2 Ωð Þ ≤C∥z0∥L2 Ωð Þ þ CM∥B∥L2 Ωð Þ

ðT
0
∥z sð Þ∥L2 Ωð Þds:

Using the Gronwal inequality, we get

∥zu tð Þ∥L2 Ωð Þ ≤C1 exp CM∥B∥L2 Ωð ÞT
� �

: (11)

with C1 ¼ C∥z0∥L2 Ωð Þ.
On the other hand, the set J uð Þju∈Uf g is non-empty and is bounded from below

by 0.
Let ukð Þk∈ be a minimizing sequence in U such that lim

k!∞
J ukð Þ ¼ inf

h∈U
J hð Þ:.

Then J ukð Þð Þk∈ is bounded. Since ∥uk∥L2 0,T;L2 Ωð Þð Þ ≤ 2
β J ukð Þ thus, ukð Þk∈ is

bounded.
Thus, there exists a subsequence still denoted ukð Þk∈ that weakly converges to a

limit u ∗ ∈L2 0,T;L2 Ωð Þ� �
.

Since U is closed and convex, u ∗ ∈U.
Let zuk , zu ∗ be the corresponding solutions of system (2) to uk and u ∗ , we have

zuk tð Þ � zu ∗ tð Þ ¼
ðT
0
S t� sð Þ uk sð ÞBzu ∗ sð Þ � u ∗ sð ÞBzu ∗ sð Þ½ �ds, (12)

¼
ðT
0
S t� sð Þ uk � u ∗ð Þ sð ÞBzu ∗ sð Þ � uk sð Þ Bzu ∗ � Bzuk

� �
sð Þ� �

ds, (13)

This implies,

∣zuk � zu ∗ ∣ ≤ ∣
ðT
0
S t� sð Þ uk � u ∗ð Þ sð ÞBzu ∗ sð Þds∣e

Ð t

0
∥S t�sð Þ∥∥uk∥∥B∥ds (14)

Using the boudness of semigroup we get

∣zuk � zu ∗ ∣ ≤C∣
ðT
0
S t� sð Þ uk � u ∗ð Þ sð ÞBzu ∗ sð Þds∣: (15)
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By theorem 3.9. in [4] the weak convergence uk * u ∗ gives ukBzu ∗ :ð Þ *
u ∗Bzu ∗ :ð Þ weakly in L2 0,T;L2 Ωð Þ� �

:.
Since S tð Þð Þt≥0 is compact, we have

lim
n!∞

sup
0≤ t≤T

∣S t� sð Þ uk sð Þ � u ∗ sð Þð ÞBz sð Þds∣ ¼ 0 (16)

It follows that zuk ! z ∗ strongly in L2 0,T;L2 Ωð Þ� �
:.

Since for α∈ �0, 1½, Dα
x is continuous from H1

0 Ωð Þ ! L2 Ωð Þ, then

lim
k!∞

ðT
0
∥Dα

xzuk tð Þ � zd∥L2 Ωð Þdt ¼
ðT
0
∥Dα

xzu ∗ tð Þ � zd∥L2 Ωð Þdt:

and as J is lower, semi-continuous with respect to weak convergence, we have

J u ∗ð Þ≤ lim
k!∞

inf J ukð Þ, (17)

leading to J u ∗ð Þ ¼ inf
u∈U

J ukð Þ:.
Remark 1.
If we consider the system (2) with a source termf ∈L2 0,T;L2 Ωð Þ� �

∂z
∂t

¼ Azþ u tð ÞBzþ f on Q (18)

the same well-posedness and regularity results as hold, but the constant C1 in
Eq. (7) takes the form as follows:

C1 ¼ C z0k kL2 Ωð Þ þ ∥f∥L2 0,T;L2 Ωð Þð Þ
� �

:

3. Characterization

We now derive necessary conditions that an optimal control must satisfy. To
derive these necessary conditions, we differentiate the cost functional. The differ-
entiation result provides a characterization of the unique optimal control in terms of
the optimality system.

In the next, we consider problem (2) and we discuses special cases of the set of
admissible controls U.

Proposition 1.4.
Let consider the adjoint system given by:

∂p
∂t

x, tð Þ ¼ �A ∗ p x, tð Þ þ B ∗ upð Þ x, tð Þ þ Dα
x

� � ∗ zd xð Þ � Dα
x

� � ∗Dα
xz x, tð Þ Q

p x, tð Þ ¼ 0 Γ,

p x,Tð Þ ¼ 0 Ω:

8>>>>><
>>>>>:

(19)

where zu solution of system (2) and Dα
x

� � ∗ is the adjoint operator of Dα
x.

Then the Frechet derivative of J at u∈U is given by:
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J0 uð Þ tð Þ ¼ p tð ÞBzu tð Þ þ εu tð Þ: (20)

Proof:
The system (12) has a weak solution p∈L2 O,T;L2 Ωð Þ� �

see [8], that satisfies:

p tð Þ ¼
ðT
t
S ∗ T � sð Þ B ∗ upð Þ sð Þ þ Dα

x

� � ∗ zd � Dα
x

� � ∗Dα
xzu sð Þ� �

ds, (21)

where S ∗ tð Þð Þt≥0 denotes the C0 semi-group of generator �A ∗ , and B ∗ the
adjoint operator of B.

Let consider the following system:

∂y
∂t

x, tð Þ ¼ Ay x, tð Þ þ u x, tð ÞBy x, tð Þ þ h x, tð ÞBzu x, tð Þ Q,

y x, tð Þ ¼ 0 Γ,
y x, 0ð Þ ¼ 0 Ω,

8>><
>>:

(22)

Let show that the mapping Ψ : u ! z from U ! L2 0,T;L2 Ωð Þ� �
is Frechet

differentiable, and y ¼ Ψ0 uð Þ:h is solution of system (15).
The operator L : h ! y from U to W is linear.
Using remark (1) we have

∥y∥L2 0,T;L2 Ωð Þð Þ ≤C∥hBzu∥L2 0,T;L2 Ωð Þð Þ ≤C3∥zu∥L2 0,T;L2 Ωð Þð Þ,

It follows that L is continuous.
Now to show that Ψ is Frechet differentiable, it suffices to prove that

lim
∥h∥U!0

∥Ψ uþ hð Þ � Ψ uð Þ � L hð Þ∥L2 0,T;L2 Ωð Þð Þ
∥h∥L2 0,T;L2 Ωð Þð Þ

¼ 0:

Setting zh ¼ Θ uþ hð Þ, ψ ¼ zh � zu: and Φ ¼ ψ � y, then ψ and Φ are solutions of
the following systems

∂ψ

∂t
x, tð Þ ¼ Aψ x, tð Þ þ u x, tð ÞBψ x, tð Þ þ h x, tð ÞBzh x, tð Þ Q,

ψ ¼ 0 Γ,
ψ x, 0ð Þ ¼ 0 Ω,

8>><
>>:

(23)

and

∂Φ
∂t

x, tð Þ ¼ AΦ x, tð Þu x, tð ÞBΦ x, tð Þ þ h x, tð ÞBψ x, tð Þ Q,

Φ x, tð Þ ¼¼ 0 Γ,
Φ x, 0ð Þ ¼ 0 Ω,

8>><
>>:

(24)

It follows that

∥ψ∥L2 0,T;H1 Ωð Þð Þ ≤C∥h∥L2 0,T;L2 Ωð Þð Þ:

and

∥Φ∥L2 0,T;H1 Ωð Þð Þ ≤∥hBψ∥L2 Γð Þ ≤C∥h∥U∥ψ∥L2 0,T;H1 Ωð Þð Þ:
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Then ∥Φ∥L2 0,T;H1 Ωð Þð Þ ≤C∥h∥2U:
It means that

∥Θ uþ hð Þ � Θ uð Þ � Θ0 uð Þ:h∥L2 0,T;H1 Ωð Þð Þ ≤C∥h∥2U:

We conclude that Θ is Fréchet differentiable.
Let consider u, uþ h∈U, then

1
2
∥Dα

xzu � zd∥2L2 0,T;L2 Ωð Þð Þ �
1
2
∥Dα

xzuþh � zd∥2L2 0,T;L2 Ωð Þð Þ (25)

¼
ðT
0
<Dα

x zuþh tð Þ � zu tð Þð Þ,Dα
x zuþh tð Þ � zu tð Þð Þ � 2zd > L2 Ωð Þdt (26)

¼
ðT
0
< zuþh tð Þ � zu tð Þ, Dα

x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ � 2 Dα

x

� � ∗ zd > L2 Ωð Þdt (27)

¼
ðT
0
< yh tð Þ, Dα

x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ � Dα

x

� � ∗ zd > L2 Ωð Þdtþ o∥h∥, (28)

and

β

2
∥uþ h∥2L2 0,T;L2 Ωð Þð Þ � ∥u∥2L2 0,T;L2 Ωð Þð Þ

� �
¼ β< u, h> L2 0,T;L2 Ωð Þð Þ þ o∥h∥:

Then J is Fréchet differentiable, and its derivative is given by:

J0 uð Þ:h ¼
ðT
0
< yh tð Þ, Dα

x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ � Dα

x

� � ∗ zd > L2 Ωð Þdtþ β< u,

h> L2 0,T;L2 Ωð Þð Þ þ o hk k

Using the system (15), we have

yh tð Þ, Dα
x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ � Dα

x

� � ∗ zd
� �

L2 Ωð Þ (29)

¼
ðT
0
S t� sð Þ u sð ÞBy sð Þ þ h sð ÞBz sð Þð Þds, Dα

x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ � Dα

x

� � ∗ zd

� �

L2 Ωð Þ
(30)

Using the Gronwall lemma, we get

ðT
0

yh tð Þ Dα
x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ � Dα

x

� � ∗ zd
� �

L2 Ωð Þ

¼
ðT
0

ðT
s
S t� sð Þ u sð ÞBy sð Þ þ h sð ÞBz sð Þð Þdtds; Dα

x

� � ∗
�

�Dα
x zuþh tð Þ � zu tð Þð Þ � Dα

x

� � ∗ zd

�

L2 Ωð Þ

¼
�ðT

0
u sð ÞBy sð Þ þ h sð ÞBz sð Þð Þdt,

ðT
s
S ∗ t� sð Þ Dα

x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ

� Dα
x

� � ∗ zd dt
�

L2 Ωð Þ
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A variational formulation of system (12) leads to:

ðT
s
S ∗ t� sð Þ Dα

x

� � ∗ zd � Dα
x

� � ∗Dα
xzu sð Þ� �

ds ¼ p sð Þ �
ðT
s
S ∗ T � sð ÞB ∗ upð Þ tð Þdt, (31)

It means that

ðT
0

yh tð Þ, Dα
x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ � Dα

x

� � ∗ zd
� �

L2 Ωð Þ

¼
ðT
0

u sð ÞBy sð Þ þ h sð ÞBz sð Þð Þ, p sð Þ �
ðT
s
S ∗ t� sð ÞB ∗ upð Þ tð Þdt,

� �

L2 Ωð Þ
dsonumber

Using the Gronwall lemma once more gives

ðT
0

u sð ÞBy sð Þ þ h sð ÞBz sð Þð Þ,
ðT
s
S ∗ t� sð ÞB ∗ upð Þ sð Þdt

� �

L2 Ωð Þ

¼
ðT
0

ðt
0

u sð ÞBy sð Þ þ h sð ÞBz sð Þð Þ, S ∗ t� sð ÞB ∗ upð Þ sð Þh iL2 Ωð Þdsdt

¼
ðT
0

ðt
0
S t� sð Þ u sð ÞBy sð Þ þ h sð ÞBz sð Þð Þ,B ∗ upð Þ sð Þh iL2 Ωð Þdsdt

¼
ðT
0

ðt
0
S t� sð Þ u sð ÞBy sð Þ þ h sð ÞBz sð Þð Þds,B ∗ upð Þ tð Þ

� �

L2 Ωð Þ
dt

¼
ðT
0
y tð Þ,B ∗ upð Þ tð Þh iL2 Ωð Þdt ¼

ðT
0
u tð ÞBy tð Þ, p tð Þh iL2 Ωð Þdt

Then inequality (3) becomes

ðT
0

yh tð Þ, Dα
x

� � ∗Dα
x zuþh tð Þ � zu tð Þð Þ � Dα

x

� � ∗ zd
� �

L2 Ωð Þ ¼
ðT
0
h tð ÞBz tð Þ, p tð Þ,h iL2 Ωð Þdt

Then the Frechet derivative of J is given by:

J0 uð Þ:h ¼
ðT
0
h tð Þ,Bz tð Þp tð Þh iL2 Ωð Þ þ β u tð Þ, h tð Þh iL2 Ωð Þdt:

The following results characterize and give an expression of an optimal control
solution of problem (2) in several cases of admissible controls sets.

Proposition 1.5.
An optimal control solution of problem (2) is given by

u ∗ x, tð Þ ¼ max m, min � 1
β
Bz x, tð Þp xð , tÞ,M

� �� �
(32)

Proof:
The Frechet differential of J is given by

J0 uð Þ:h ¼
ðT
0
h tð ÞBz tð Þ, p tð Þh iL2 Ωð Þ þ β u tð Þ, h tð Þh iL2 Ωð Þdt:
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Since J achieves its minimum at u ∗ , we have

0≤
ðT
0
h tð ÞBz tð Þ, p tð Þh iL2 Ωð Þ þ β u tð Þ, h tð Þh iL2 Ωð Þdt:

Taking h ¼ max m, min � 1
βBz x, tð Þp xð , tÞ,M

� �� �
� u ∗ , we show that

h u ∗ þ 1
β Bzp

� �
is negative and then

max m, min � 1
β
Bz x, tð Þp xð , tÞ,M

� �� �
� u ∗

� �
u ∗ þ 1

β
Bzp

� �
¼ 0:

If M≤ � 1
β Bzp we have M� u ∗ð Þ u ∗ þ 1

βBzp
� �

¼ 0, thus u ∗ ¼ M.

If m≤ � 1
β Bzp≤M we have � 1

βBzp� u ∗
� �

u ∗ þ 1
βBzp

� �
¼ 0.

Therefore u ∗ ¼ � 1
βBzp:

Now, if m≥ � 1
β Bzp, we have m� u ∗ð Þ u ∗ þ 1

βBzp
� �

¼ 0 and then u ∗ ¼ m.

We conclude that,

u ∗ x, tð Þ ¼ max m, min � 1
β
Bz x, tð Þp xð , tÞ,M

� �� �
:

The next proposition shows a necessary optimality condition.
Proposition 1.6.
Let u ∗ ∈U be an optimal control, then:

∀v∈U, < J0 uð Þ, u ∗ � v> L2 O,T;L2 Ωð Þð Þ ≥0:

Proof:
If v ¼ u, we get the condition.
If v is different than u, and since U is convex we have

u ∗ þ λ v� u ∗ð Þ∈U, foranyλ∈ �0, 1½

It follows

J u ∗ð Þ≤ J u ∗ð Þ þ λ v� u ∗ð Þ

which gives

J u ∗ð Þ≤ J u ∗ð Þ þ λ< J0 u ∗ð Þ, v� u ∗ > L2 O,T;L2 Ωð Þð Þ þ o λ v� u ∗ð Þð Þ

Then,

< J0 u ∗ð Þ, v� u ∗ > L2 O,T;L2 Ωð Þð Þ ≥
1
λ

λ v� u ∗ð Þð Þ:

Since o λ v� u ∗ð Þð Þ ¼ ∥λ v� u ∗ð Þ∥φ λ v� u ∗ð Þð Þ, with lim
∥z∥!0

φ zð Þ ¼ 0. Then

lim
λ!0

1
λ
o λ v� u ∗ð Þð Þ ¼ lim

∥z∥!0
∥λ v� u ∗ð Þ∥φ λ v� u ∗ð Þð Þ ¼ ∥ v� u ∗ ∥ lim

λ!0
φ λ v� u ∗ð Þð Þ ¼ 0:
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we conclude that,

< J0 uð Þ, u ∗ � v> L2 O,T;L2 Ωð Þð Þ ≥ lim
λ!0

1
λ
o λ v� u ∗ð Þð Þ ¼ 0:

Corollary 1.
Let g∈L2 Ωð Þ, such that ∣g∣eq0 and assuming that U ¼ L2 0,Tð Þ:.
Then an optimal control is given by

u ∗ x, tð Þ ¼ v ∗ tð Þg xð Þ (33)

with v ∗ tð Þ ¼ � 1
β∥g∥L2 Ωð Þ

Ð
ΩBz x, tð Þp x, tð Þ

Particularly, if g xð Þ ¼ 1D xð Þ, with D⊂Ω is the actuator location and 1D is the
characteristic function such that its measure μ Dð Þ is non-zero, then an optimal
control v ∗ tð Þ is given by

v ∗ tð Þ ¼ max m, min � 1
βμ Dð Þ

ð

Ω
Bz x, tð Þp xð , tÞdx,M

� �� �
: (34)

Proof:
Let v∈L2 0,Tð Þ, such that w x, tð Þ ¼ v tð Þg xð Þ it follows from (1.6) that

J0 u ∗ð Þ,wh iL2 0,T;L2 Ωð Þð ÞÞ ¼ 0 which gives

ðT
0
v tð Þ

ð

Ω
g xð ÞJ0 u ∗ð Þ x, tð Þdxdt ¼ 0 ∀v∈L2 0,Tð Þ

Hence

ð

Ω
g xð ÞJ0 u ∗ð Þ x, tð Þdx ¼ 0 ∀t∈ �0,T½

Then J0 u ∗ð Þ tð Þ, gh iL2 Ωð Þ ¼ 0, it means

Bz tð Þp tð Þ, gh iL2 Ωð Þ þ βv ∗ tð Þ g, gh iL2 Ωð Þ, ∀t∈ �0,T½

which leads to formula (25).

4. Algorithm and simulations

In this section, we give an example to illustrate the usefulness of our main
results.

The optimality condition (25) shows that the optimal control u ∗ is a function of
z and p which themselves are functions of u ∗ : Then the control cannot be directly
computed. For this reason, we introduce the following algorithm.

• Step 1: Choose an initial control u0 ∈U a threshold accuracy ε>0, and
initialize with k ¼ 0;

• Step 2: Compute zk, solution of (2) and pk, solution of (12) relatively to vk.

32

Vibration Control of Structures



• Step 3: Compute

vkþ1 ¼ max m, min � 1
βμ Dð Þ

ð

Ω
Bzk x, tð Þpk xð , tÞdx,M

� �� �
: (35)

• Step 4: If ukþ1 � ukk k> ε, k ¼ kþ 1, go to step 2: Otherwise u ∗ ¼ uk

For simulations, we consider a bilinear system described by the equation:

∂z
∂t

x, tð Þ ¼ Δz x, tð Þ þ u x, tð Þz x, tð Þ Ω��0, 1½
z 0, tð Þ ¼ z 1, tð Þ ¼ 0 �0, 1½
z x, 0ð Þ ¼ x x� 1ð Þ Ω;

8>><
>>:

(36)

We consider problem (2) with α ¼ 0:2 and zd xð Þ ¼ 0:62x3 þ 1:7x2 þ 0:023.
Applying the above algorithm, we obtain the following figures (Figures 1 and 2):

Figure 1.
Final state.

Figure 2.
The evolution of an optimal control.
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The desired state is obtained with error ∥Dα
xz x,Tð Þ � zd xð Þ∥2L2 Ωð Þ ¼ 5:27:10�4 and

a cost J u ∗ð Þ ¼ 2:31:10�3.

5. Conclusion

In this work, we discuss the question of fractional optimal control problem of
parabolic bilinear systems with bounded controls, we obtain a distributed control
solution, that minimizes a quadratic functional. This work gives an opening to other
questions; this is the case of the fractional optimal control problem of hyperbolic
systems. This will be the purpose of a future research paper.
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Chapter 3

Adaptive Sliding Mode Control
Vibrations of Structures
Leyla Fali, Khaled Zizouni, Abdelkrim Saidi,
Ismail Khalil Bousserhane and Mohamed Djermane

Abstract

The sliding mode controller is one of the interesting classical nonlinear control-
lers in structural vibration control. From its apparition, in the middle of the twen-
tieth century, this controller was a subject of several studies and investigations. This
controller was widely used in the control of various semi-active or active devices in
the civil engineering area. Nevertheless, the sliding mode controller offered a low
sensitivity to the uncertainties or the system condition variations despite the pres-
ence of the Chattering defect. However, the adaptation law is one of the frequently
used solutions to overcome this phenomenon offering the possibility to adapt the
controller parameters according to the system variations and keeping the stability of
the whole system assured. The chapter provides a sliding mode controller design
reinforced by an adaptive law to control the desired state of an excited system. The
performance of the adaptive controller is proved by numerical simulation results of
a three-story excited structure.

Keywords: vibration control, sliding mode, adaptive law, earthquake excitation,
Lyapunov stability

1. Introduction

The sliding mode controller is known as a powerful tool to control high-order
complex nonlinear systems in presence of parametric uncertainty and external
disturbances. The idea was initiated in the Soviet Union early in the 1930s [1, 2]
after the Lyapunov stability theory apparition [3]. However, the peculiar evolution
point started from the famous Emel’yanov and Barbashin works [4, 5]. Since then,
the sliding mode control was a subject of several papers and works and been widely
used in the various area as civil engineering [6], aircraft [7], robotic [8], energy and
more other areas. After the contribution of the differential equations with discon-
tinuous right-hand side theory established by Filippov in 1960 the sliding mode
control received much more attention from researchers for wide dynamic system
processes as time-varying, large-scale, infinite-dimensional or stochastic [9].

The sliding mode control decouples the dynamic motion of the whole controlled
system into two components that do not depend on each other. In fact, this decom-
position offered lower dimension and design simplicity to the system especially in
feedback control conception. In addition to advantages presented by the sliding
mode control as the insensitivity to parameter variations, complete rejection dis-
turbances and depending on the sliding conditions the control can be combined
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easily to operational modes, approaches and controllers. Many interesting experi-
mental and theoretical results are presented by combining the sliding mode control
as adaptive sliding mode [10], fuzzy sliding mode [11], artificial neural network
sliding mode [12] and decentralized sliding mode [13].

2. The concept of the sliding mode

The sliding mode aspect may appear in dynamical systems where the motion is
presented using ordinary differential equations with discontinuous right-hand sides.
Thus, the concept uses a discontinuous control signal to reform the system motions
without depending on the system dynamic but the sliding parameters. This approach
reduces the order of the original system equation which simplifies the mathematical
modeling of the dynamic system motions. Therefore, the control output switched in
high frequency between two values �K and be subjected to discontinuities on the
sliding surface in the state plane of the system to track the desired system state [14].

The linearization possibility of any mechanical system is linked to the presence
of friction in the system. The force-velocity behavior depended essentially on the
friction type as dry friction or fluid friction. In such a problem, the critical zone is
which presented the maximum displacements. Nevertheless, in this zone the veloc-
ity value is in the neighborhood of zero with an opposite sign to the friction force.
Consider the mechanical problem presented in Figure 1 consisting of a Coulomb
friction mass-spring system.

The motion equation is presented as

m€xþ c _xþ kx ¼ 0 (1)

Where €x, _x and x are acceleration, velocity and displacement, m, c and k are the
mass, friction coefficient and the spring stiffness.

In this case, the system work depends little on velocity and even if slowly moved
the mass, a finite work is done in a displacement. So, even for the small velocity, the
friction force existed and was defined with a finite value. Thereby, near to the zero
velocity, the friction force switched to the finite limit in the two sides (positive or
negative) [15].

c _x ¼ c0 _x with _x>0

�c0 _x with _x<0

�
(2)

c0 is positive constant.

Figure 1.
Coulomb friction system.
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Thus, around the state plan origin, the discontinuity is presented and the solu-
tion is unknown on the right-hand side of the differential motion equation. This
situation is a frequent case in various control systems needing the differential
equations with discontinuous right-hand sides theory [9].

The principle of the sliding mode approach consists of forcing the system to
reach a fictive surface called the sliding surface to get the equilibrium state and
keeping it switching around this surface thereafter. Hence, the first step is called the
reaching phase and the second is called the sliding phase. Therefore, the trajectory
in the state plane is assured by three distinct modes. The first mode is the conver-
gence mode during which the variable to be adjusted gets the sliding surface from
any initial point in the phase plane. This mode depended on the equivalent control
law performance. The second mode is the smoothing mode in which the variable
state reached the sliding surface and tends towards the origin of the state plane. The
dynamic in this mode is characterized by the best choice of the sliding surface. The
third one is the permanent regime mode characterizing the system response around
the state plane origin depended on control law robustness. So, two steps to be
followed are the determination of the fictive sliding surface on which the objectives
of the controls are achieved then calculating the control law which ensures the state
trajectory surface achievement and maintains it on this surface until reaching the
state equilibrium [16].

3. Fundamental theory of the sliding mode control

The sliding mode control (SMC) is a two steps design controller in which the
system motion is composed of two phases. The former step is the design of a fictive
sliding surface to which the system motion must reach and hold the desired perfor-
mances on it. However, the latter step is the design of the control law which drives
the system motion to the sliding surface and maintains it on thereafter until
reaching the equilibrium point. The sliding mode controller is a quake reacting
controller. Whereas, the most advantage of this control that is insensitive to uncer-
tainties or disturbances present in the system because the control design forces the
system whatever to attain the surface prescriptions.

Let consider the general presentation of a nonlinear dynamic system as

_x ¼ f x, tð Þ þ g x, tð Þu (3)

where x is the state vector, u is the desired control, f xð Þ and g xð Þ are nonzero
smooth uncertain functions.

The sliding surface is presented as

σ ¼ G � e (4)

Where G is the sliding surface matrix and e is the tracking error of the system
state defined as

e ¼ x� x0 (5)

x0 is the desired state response.
Furthermore, to push the dynamic motion to the sliding surface the following

conditions must be satisfied
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σ xð Þ ¼ 0

_σ ¼ ∂σ

∂x
_x ¼ ∂σ

∂x
f x, tð Þ þ g x, tð Þð Þ ¼ 0

8<
: (6)

The solution of the equation is the equivalent control of the sliding mode given
by

ueq x, tð Þ ¼ � σ xð Þg x, tð Þð Þ�1σ xð Þf x, tð Þ (7)

To assure the sliding mode existence (σ = 0) the second component of the
control law have to satisfy the attractively condition verified by

_σ xð Þ � σ xð Þ<0 (8)

Because of the discontinuity presented on the sliding surface when the system
reaches it and the Cauchy-Lipschitz theorem of the ordinary differential equations
cannot be used [17]. The solution describing the dynamic behavior in this zone is
using several approaches as the Filippov approach [18] or the Utkin approach [19]
or more others as [20]. The above condition results

u ¼ uþ x, tð Þ if σ >0

u� x, tð Þ if σ <0

�
(9)

From Eqs. (8) and (9) the sliding surface function and its derivative are of
reverse sign and the second part of the sliding mode controller is given by

us ¼ K � sgn σð Þ (10)

Where K is the switching control gain and sgn (σ) is the sliding surface signum
function expressed by

sgn σð Þ ¼
1 if σ >0

0 if σ ¼ 0

�1 if σ <0

8><
>:

(11)

Finally the sliding mode control law is presented as

uSMC ¼ ueq þ us (12)

4. Sliding mode adaptation

Despite the claimed robustness properties of the sliding mode control,
chattering is the harmful phenomenon affecting the control stability. This phe-
nomenon is caused by the finite frequency oscillation of the switching part of the
sliding controller. The presence of chattering in sliding mode control degrades the
system accuracy and leads to the stability breaking and pushing the control to the
divergence. Therefore, several researches and investigations focused on the
chattering suppress methods and analysis. However, most of the chattering sup-
press methods consist of a continuous approximation of the discontinuous in the
sliding surface neighborhood. The saturation is one of the main methods used in
the chattering elimination in which a thin boundary layer around the surface is
introduced defined as
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sat σð Þ ¼
σ

ϕ
if ∣σ∣<ϕ

sgn σð Þ otherwise

8<
: (13)

The boundary layer attributes the solution continuity and pushes the system to
converge to this bound. The size of this layer depended on the system precision and
the control accuracy. Another way to overcome chattering consists of the switching
gain adaptation depending on the performance control maintain.

The adaptation is the ability of the system to adjust itself to its environment.
Being processed, the adaptive system compensates the performance by changing its
parameters depending on the plant environment evolution. Although, all the auto-
matic adjustments in real-time approaches are considered as adaptive approaches
with which the desired performance is maintained despite the system changes in
time. Nevertheless, the adaptation of the sliding mode controller attenuates both
the discontinuity and the chattering problem effect by adjusting the adapted gain
depending on the plant environment. Thus, the adaptive approach is proposed to
the switching part of the sliding mode controller of Eq. (10) and the equivalent part
of Eq. (7) is maintained.

The adaptation of the controller in sliding mode consists of modifying in real-
time the limit of the sliding boundary layer. While, a large band allows the system to
regain the sliding surface easily but it destabilizes the controller by the length jump
of its excessive gain. On the other hand, a small band causes a difficulty for the
system to regain the sliding surface but it stabilizes the controller by the short jump
of its low gain. Therefore, the proposed adaptive part is written as

uas ¼ K̂ � sgn σð Þ (14)

Consequently, the Eq. (12) becomes

uASMC ¼ ueq þ uas (15)

Where uASMC is the adapted sliding mode control law, uas is the adapted
switching part of the adaptive control, K̂ is the new gain of the adaptive control
proposed as

K̂ ¼ K � K � K
� � � e�α∣σ∣ (16)

K ¼ λ � K (17)

Where K the amplified control gain, K is the original control gain of the
Eq. (10), α is the convergence constant and λ is the amplification constant.

5. Lyapunov stability analysis

The convergence of the proposed adaptation law is evaluated and proved using
the mathematical stability analysis of Lyapunov. Wherefore, The Lyapunov candi-
date function is chosen as [16].

V ¼ 1
2
σ2 þ 1

2
ê2 (18)

Where ê is the adaptation error given by
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ê ¼ K̂ � Kd (19)

Where Kd is the maximum value of K̂ given by Eq. (16) with Kd > d and d is the
localized uncertainty related to the switching motion.

The first derivation of the candidate function can be presented as

_V ¼ σ _σ þ ê _̂e (20)

From Eqs. (17), (18) and (20) the above equation becomes

_V ¼ σ e_eð Þ þ K̂ � Kd
� �

σ � sgn σð Þ (21)

e ¼ K � K̂ ¼ λ� 1ð ÞK � e�α∣σ∣ (22)

_e ¼ �α λ� 1ð ÞK � e�α∣σ∣ (23)

Thus, the Eq. (21) becomes

_V ¼ σ �α λ� 1ð Þ2K2 � e�2α∣σ∣
� �

þ λ K̂ � Kd
� �

σ � sgn σð Þ (24)

_V ¼ �α λ� 1ð Þ2K2 � e�2α∣σ∣ � σ � Kd � ∣σ∣ (25)

With λ≥ 1 and 0< α< 1 the condition stability V � _V is verified.

6. Numerical examples

6.1 Single degree of freedom system

In order to evaluate the proposed adaptive sliding mode controller, we consid-
ered a single degree of freedom system composed of a spring-mass-damper system
presented in Figure 2. Moreover, the system can move in the horizontal direction
only and the influence of the adaptive nonlinear control responses of the vibrating
system is evaluated [21]. In this example, the response of the system to a constant
reference with an initial condition is presented (i.e. x 0ð Þ ¼ 0:11). The parameters
arbitrarily chosen of the spring-mass-damper system are: m ¼ 2, k ¼ 1 and c ¼ 0:5.

The equilibrium force of the time-varying system is given by

f I tð Þ þ f D tð Þ þ f S tð Þ ¼ f E tð Þ (26)

Figure 2.
Single degree of freedom example.
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Where f I tð Þ, f D tð Þ, f S tð Þ and f E tð Þ are respectively the force of inertial,
damping, spring and the external applied force given by

f I tð Þ ¼ m � €x tð Þ (27)

f D tð Þ ¼ c � _x tð Þ (28)

f S tð Þ ¼ k � x tð Þ (29)

f E tð Þ ¼ k � x 0ð Þ þ f c (30)

Introducing Eqs. (27)-(30) in Eq. (26) yields

m � €x tð Þ þ c � _x tð Þ þ k � x tð Þ ¼ k � x 0ð Þ þ f c (31)

Where m, c and k are the mass, damping and stiffness, €x, _x and x are
acceleration, velocity and displacement, x 0ð Þ and f c are the initial displacement and
the control required force.

Using Eqs. (12) and (15) to calculate respectively the classical sliding mode
control and the adaptive sliding mode control forces. Thus, the two cases are
simulated and compared to evaluate the robustness of the two controllers. Thereby,
the numerical simulation result presented in Figure 3 clearly shown the chattering
reduction in the state plan response. This phenomenon is visibly reduced by using
adaptive sliding mode control compared to the use of the classical sliding mode
controller. Also, the adapted switching is clearly shown in the state plan presenta-
tion where the boundary layer thickness varied by the adaptation law depending on

Figure 3.
Numerical simulation result of the mass-spring example.

43

Adaptive Sliding Mode Control Vibrations of Structures
DOI: http://dx.doi.org/10.5772/intechopen.98193



the required performance of the plant. Besides, the Figure 4 presented the com-
pared numerical simulation results of the displacement responses function of time
under the classical sliding mode control and the adaptive sliding mode control.
Nonetheless, the displacement response of the system proves the performance of
the adaptive nonlinear controller compared to the classical controller.

6.2 Multiple degree of freedom system

The previous example proved the efficiency of the used adaptive law to rein-
force the control robustness. Otherwise, the applied load is a simple periodic load
and the system is a simple system in which the switching output can be clearly
shown in the state plan. In the present example, the three degrees of freedom
system is considered under base excitation using earthquake records. This system is
presented in Figure 5 and the dynamic motion is governed by the following
equation [22].

M½ � €xf g þ C½ � _xf g þ K½ � xf g ¼ M½ �Λ€xg þ f c
� �

(32)

Where M½ �, C½ � and K½ � are the mass, damping and stiffness matrices of the
system, €xf g, _xf g and xf g are the acceleration, velocity and displacement vectors, Λ,
€xg and f c

� �
are the load position vector, the one-dimensional earthquake vector

and the control force vector. The example matrices of mass, damping and stiffness
defined as [6, 23] are given respectively by

M½ � ¼
m1 0 0

0 m2 0

0 0 m3

2
64

3
75 ¼

98:3 0 0

0 98:3 0

0 0 98:3

2
64

3
75 kgð Þ (33)

Figure 4.
Displacement responses of the mass-spring example.
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C½ � ¼
c1 þ c2 �c2 0

�c2 c2 þ c3 �c3
0 �c3 c3

2
64

3
75 ¼

175 �50 0

�50 100 �50

0 �50 50

2
64

3
75 N � s=mð Þ (34)

K½ � ¼
k1 þ k2 �k2 0

�k2 k2 þ k3 �k3
0 �k3 k3

2
64

3
75 ¼ 105

12 �6:84 0

�6:84 13:7 �6:84

0 �6:84 6:84

2
64

3
75 N=mð Þ (35)

Figure 6.
Block diagram of the control system example.

Figure 5.
Multiple degree of freedom example.
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Accordingly, the control example is achieved as presented in Figure 6 and the
required control force is calculated in a closed-loop forcing the system to reach the
equilibrium state.

The system is excited using the scaled time of the Tōhoku 2011 earthquake
record illustrated in Figure 7.

Although, to prove the effectiveness of the proposed adaptive sliding mode
controller to suppress the structural vibrations of the excited system the numerical
simulation results of the controlled and the uncontrolled system are compared. The
displacement responses of the first mass of the structure of the two cases controlled
and uncontrolled are shown in Figure 8. However, the second and the third mass
displacement responses of the compared cases of numerical simulation are
presented respectively in Figures 9 and 10. In addition, the inter-mass drift
responses of the three masses are depicted in Figure 11 in which the numerical
simulation results of the uncontrolled system are compared to those of the adaptive
controlled system. The adaptation of the switching gain value function of time
under the 2011 Tōhoku earthquake excitation is presented in Figure 12.

From Figures 8–10 the displacement responses are clearly reduced under the
earthquake excitation. The inter-mass drift responses depicted in Figure 11 show a
remarkable reduction between the two cases controlled and uncontrolled systems.
Moreover, the responses of the switching gain of the proposed adaptive law illus-
trated in Figure 12 show the dependence on the excitation. For example, in

Figure 7.
The time scaled record of the 2011 Tōhoku earthquake.
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Figure 8.
The time displacement responses of the first mass under the 2011 Tōhoku earthquake.

Figure 9.
The time displacement responses of the second mass under the 2011 Tōhoku earthquake.

Figure 10.
The time displacement responses of the third mass under the 2011 Tōhoku earthquake.
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Figure 12 between 4 and 5s where the peak seismic acceleration is located the law
augmented the gain to the maximum value to track the system state better.

Over and above, the proposed adaptive control is evaluated by the result values
of the system control application in the above-mentioned example. Some indexes
are calculated and regrouped in Table 1 to prove the robustness of the adaptive

Figure 11.
The inter-mass drift responses under the 2011 Tōhoku earthquake.

Figure 12.
The time adaptive gain variations under the 2011 Tōhoku earthquake.
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control to attenuate the excited system vibrations. The peak displacement reduction
and the peak acceleration reduction of each mass are calculated and inserted in
Table 1. Thereby, the peak inter-mass drift reduction is also needful to evaluate the
proposed adaptive controller performance.

Where the index i designed the mass number, xmax
i is the maximum

uncontrolled mass displacement, xi the controlled mass displacement, €xmax
i is the

maximum uncontrolled mass acceleration, €xi the controlled mass acceleration, dmax
i

is the maximum uncontrolled inter-mass drift and di the controlled inter mass drift.

7. Conclusions

The proposed adaptive sliding mode controller robustness had been proved in
the present chapter using two numerical examples. Although, the single degree of
freedom example excited by a simple periodic load shown clearly the Chattering
reduction as a result of the adaptive law effect. The numerical simulation results of
the state plan presentation shown the switching gain adaptation value depending on
the excitation effect. Moreover, the second example is a three degree of freedom
system excited using an earthquake excitation to assure the presence of multiple
frequencies and amplitudes. As expected, the numerical simulation results of the
example prove the efficiency of the proposed adaptive controller. The peak mass
displacement ratio attained 65.33%, consequently, the peak inter-mass drift is
reduced by 56.63%. The peak acceleration is sparsely reduced because the adaptive
control is designed to track the displacement only. In this stage, the nonlinear
adaptive controller proves its effectiveness and performance in addition to the
insensitivity to uncertainties or disturbances and system stability.

Nomenclature

C Damping matrix
c Damping or friction coefficient
c0 Positive constant
d Localized Uncertainty
di Controlled inter-mass drift
dmax
i Maximum uncontrolled inter-mass drift

e Tracking error
ê Adaptive error
f Function
fE External force
fD Damping force

Index Formula Mass number Value (%)

Peak 1 65.33
Displacement ∣xmax

i ∣� max ∣xi∣=∣xmax
i ∣ 2 58.78

Reduction 3 62.98

Peak 1 00.92
Acceleration ∣€xmax

i ∣� max ∣€xi∣=∣€xmax
i ∣ 2 02.79

Reduction 3 01.14

Peak drift ∣dmax
i ∣� max ∣di∣=∣dmax

i ∣ 1–2 56.63
Reduction 2–3 54.17

Table 1.
Calculated control indexes of the adaptive sliding mode control under the 2011 Tōhoku earthquake excitation.
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f I Inertial force
fS Spring force
f c Control force
G Sliding surface matrix
g Function
i Mass number index
K Switching gain, Stiffness matrix
K̂ Adaptive switching gain

K Amplified switching gain
Kd Maximum value of the adaptive switching gain
k Stiffness
M Mass matrix
m Mass
u The system output
uASMC Adaptive sliding mode controller output
uSMC Sliding mode controller output
ueq Equivalent output
us Switching output
uas Adaptive switching output
V Lyapunov candidate function
x Displacement
xi Controlled mass displacement
x0 Desired response
_x Velocity
€x Acceleration
€xi Controlled mass acceleration
€xmax
i Maximum uncontrolled mass acceleration

σ Sliding surface
ϕ Boundary layer thickness
∂ Partial derivative
λ Constant amplification
α Convergence constant

Abbreviations

ASMC Adaptive Sliding Mode Control
SMC Sliding Mode Control
sat Saturation function
sgn Signum function
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Chapter 4

Development of a Low-Cost 
Vibration Damper Dynamometer 
for Suspension Damper Testing
Yucheng Liu and Ge He

Abstract

On performance vehicles, suspension dampers are used to reduce the vibration 
produced by variations in the driving surface, while simultaneously controlling 
the rate of load transfer between tires during lateral and longitudinal acceleration. 
To measure the characteristics of suspension dampers, a damper dynamometer is 
typically used to compress and elongate the dampers at a known speed, and then 
measure the force output. However, a commercial damper dynamometer is usu-
ally expensive and not always suitable for the dampers specifically designed for 
a customized vehicle. In this chapter, a cheap, customized, and effective damper 
dynamometer is constructed through computer-aided design, finite element 
analysis, and manufacture to measure the properties of suspension dampers used 
in a racecar. It was demonstrated through data analysis that this designed damper 
dynamometer can produce usable measurement data for a far lower cost than other 
methods.

Keywords: suspension damper, damper dynamometer, computer-aided design,  
finite element analysis

1. Introduction

Dampers are being successfully and widely used to reduce vibrations in most 
applications, such as civil engineering structures and automotive components. In 
civil engineering [1–4], for example, adding fluid viscous dampers to buildings can 
help protect buildings, bridges, and other structures in a variety of scenarios includ-
ing seismic events, strong winds, and pedestrian energy. For automotive engineer-
ing, proper suspension damping reduces the vibration produced by variations in the 
driving surface, while simultaneously controlling the rate of load transfer between 
tires during lateral and longitudinal acceleration. Because these damping modes 
occur at different speeds of compression and rebound (elongation), the best racing 
dampers offer damping rate adjustments at both high and low speeds.

For at least the past 4 years, our team has used Öhlins TTX25 MkII dampers on 
its racecars, seen in Figure 1. These dampers retail at $650 each, but they include 
the high- and low-speed damping rate adjustments necessary for optimal damper 
performance. For an independent suspension vehicle, this comes to a total cost of 
$2600, offering the team a significant financial incentive to reuse them between 
design cycles. Luckily, the manufacturer offers detailed documentation on how 
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to perform proper maintenance, so the team performs full damper rebuilds when 
reusing the dampers on a new car.

One drawback of rebuilding dampers is the inability to easily tell whether their 
performance will remain unchanged after the rebuild. This can lead to different 
damping rates on each corner of the car, resulting in less than ideal performance of 
the car’s suspension. To prevent this, it is important to measure the characteristics of 
each damper after rebuilding it. However, unlike springs, the damping characteristics 
cannot be determined from simple static measurements and sophisticated devices, 

Figure 2. 
Intercomp 3HP shock dyno 1.0–55 in/s ($8895.00).

Figure 1. 
Öhlins TTX25 MkII dampers.
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such as damper dynamometers are required to correctly measure them [5–7]. A 
damper dynamometer is a specialized machine that compresses and elongates the 
dampers at a known speed and then measures the force output. Market offerings for 
damper dynamometers are well outside the team’s price range, with all viable options 
costing thousands of dollars, such as the Intercomp model shown in Figure 2.

These devices facilitate easy and straightforward measurement and data 
processing, but the trade-off in price is too high for the team to justify for such a 
specialty tool. An alternative option offered online is mailing the rebuilt damp-
ers to a company specializing in damping rate measurement. Priced at around 
$600 total, this route represents a significant decrease in cost, but still a relatively 
high yearly expense for the team. In addition, this would only enable the team to 
measure their dampers in a single setting, eliminating much of the team’s ability 
to accurately compare the effects of different damping rates on the car. In light of 
the limitations and costs associated with the commercial damper measurement 
options available to the team, it was determined that the best course of action 
would be to design and manufacture a custom damper dynamometer catered to 
the specific needs of the team. Three primary requirements were established, in 
order of importance. While the custom damper dynamometer is temporarily used 
for characterizing the vehicle dampers, it is expected that the same design method 
can also be adopted for designing a custom dynamometer measuring damping 
rates of civil engineering structures. The design method described in this paper 
can also help increase the efficiency in designing dampers that are used for vibra-
tion control.

2. Design requirements

The most important requirement was that the dynamometer must produce 
usable measurement data. This was the primary purpose of the project and so takes 
priority over all other goals. The desired output of the dynamometer is a relation-
ship between the compression/rebound rate and the resistive force output by the 
damper. Data should be measured at a rate of approximately 100 Hz for each sensor, 
comparable to the typical rate of data measurement the team uses when logging 
track data. The range of necessary compression and rebound speeds varies by 
damper; however, the FSAE team is primarily concerned with speeds up to 10 in/s. 
This corresponds with the maximum tested speed in the available force-velocity 
data for the Öhlins TTX25 MkII. The measurement device should maintain linearity 
up to at least 250 lbf of damper resistive force, which is the maximum force output 
achieved in the available force-velocity data for the dampers.

The second requirement was that the design would utilize wherever possible 
components that the team already owned. This was to reduce the cost of the proj-
ect as much as possible, important for keeping it a viable financial alternative to 
purchasing a dynamometer or sending off the team’s dampers for measurement.

The third requirement was that all parts of the project were able to be com-
pleted within a single semester. As a single-semester-directed individual study, 
it was imperative that the project was approached in such a way that it would be 
completed before the deadline. This requirement was changed out of necessity due 
to the COVID-19 pandemic and resultant changes to the accessibility of univer-
sity purchasing and machining resources. Though the timeframe of completion 
shifted, there was still only around a semester of available time to work on this 
project. Due to this, the design was required to be simple enough that almost 
everything could be made in-house, reducing the lead time that would result from 
having to order components.
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3. Design

The design of the dynamometer, as seen in Figure 3, was obtained following an 
existing system engineering design process [8–14] and a combined experimental-
computational approach [11, 12]. A crank-slider mechanism imparts a forced 
displacement to one end of the damper, while the other end is mounted to a canti-
levered bar. A welded frame constructed from low-carbon steel angle stock holds 
the crank-slider mechanism together. In Figure 3a, some sections of the frame have 
been made transparent for ease of viewing other components, and the model does 
not include fastening hardware. Figure 3b shows the fabricated and setup dyna-
mometer. Parallel alongside the damper is a linear potentiometer used on the team’s 
racecars for the exact purpose of measuring damper displacement. Attached at the 
base of the cantilevered bar are two strain gauges to measure the strain in the bar, 
and indirectly, the resistive force of the damper. This is similar to the design of the 
Intercomp dynamometer, with several key changes to reduce the price.

For the crank mechanism, a section of a retired crankshaft from one of the 
team’s old engines was utilized. The CBR600 engine it came from has a cylinder 
stroke of 42.5 mm, approximately 75% of the usable stroke of the damper, provid-
ing the necessary leeway for setup adjustment. This crankshaft was modified to fit 
inside one of the milling machine’s R8 collets. A steel rod was tapered and threaded 
to match an existing threaded hole in the crankshaft, in order to ensure collinearity 
during welding. Also utilized was the connecting rod, along with its big end bearing 
inserts and a section of the wrist pin. Since these parts already have tight tolerances 
on their interfacing surfaces, they offered a perfect opportunity to eliminate free 
play in the system while also cutting the cost and machining time.

The slider portion of the crank-slider mechanism consists of a smooth-surfaced 
rod with clevises on each end, constrained to a single degree of freedom with a 
custom aluminum bushing block. Careful surface preparation and lubrication 
allowed for the use of a bushing rather than a more expensive linear ball bearing 
while preventing mechanism binding, which would result in extra stresses in the 
frame and torque applied to the mill.

The welded frame was subjected to finite element analysis in SolidWorks to 
determine its adequacy for the maximum expected forces. The forces applied in the 
finite element model included the 250 lbf maximum damper output force, reacted 
by the bolt holes of the bearing which supports the crank. Conservatively, it was 
assumed that the entirety of the force was reacted by the frame, when in actuality, 
the mill will resist a portion of the force. In addition, the transverse component of 
the force in the connecting rod was calculated at its most extreme angle. This force 
(58 lbf), and its associated moment about the Z-axis (143 lbf-in), was applied to the 

Figure 3. 
(a) Damper dynamometer CAD model, (b) completed dynamometer setup.
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aluminum bushing block that houses the slide rod. The finite element simulation 
result for this combined load case is shown in Figure 4.

As shown in Figure 4, the maximum stress experienced by the frame is 14.7 ksi. 
This corresponds to a factor of safety of approximately 3.7. At this point, further 
iteration could have reduced the weight of the frame. However, since weight was not 
a primary concern, it was decided that maintaining the thicker frame angles would 
result in easier welding operations. This will also allow the frame to potentially be 
used for testing larger dampers without modification.

The size of the cantilevered strain bar was chosen based on the expected output 
force of the dynamometer. For a set of available materials, the material thickness 
and width, as well as the magnitude and location of the applied force from the 
damper, were used to calculate the bending stress at the point where the strain 
bar was supported by its base. The chosen bar’s thickness and width allow for a 
bending stress that is just below the yield stress for the material. At an applied 
force of 250 lbf and the designed cantilever moment arm of 2.375″, a bending 
moment of 625 lbf-in is generated. The selected bar is composed of 1018 steel (yield 
strength = 53.7 ksi), with a rectangular cross-section of 2″ width by 3/16″ thickness. 
At the supported point where the bending stress is highest, this corresponds to 
an applied bending stress of approximately 50.7 ksi, or approximately 94% of the 
material’s yield strength. This allows the bar to fully react the maximum expected 
force without yielding while maximizing the detectable elastic strain in the beam 
at lower force outputs. For higher damper force output applications in the future, a 
different cantilevered bar may be needed.

Used to measure the strain in the bar from the resistive force in the damper are 
two foil resistance strain gauges, nominally 350 ohm. Near the supported end of 
the strain bar, as close as possible to the point of maximum strain, the surface was 
prepared using progressively finer sandpaper. Strain gauges were attached to either 
face of the strain bar using a cyanoacrylate adhesive. The strain gauges (STRG1 and 
STRG2) were wired in a Wheatstone half-bridge configuration, according to the 
circuit diagram shown in Figure 5.

Originally, the bridge was completed using 350 ohm resistors, but these were 
swapped for 47 kohm resistors to limit the excessive noise seen in that half of 
the bridge, and to allow for the use of an available rotary potentiometer (POT 1) 
to effectively balance the bridge. The result is a steadier measurement of bridge 
imbalance, and the ability to center the measurement circuit output within the 

Figure 4. 
Finite element simulation of dynamometer frame.
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measurable range of a Genuino Mega 2560 used for data capture. Using the Genuino 
as a 5 V supply voltage, the bridge imbalance is adjusted via the rotary potentiom-
eter to account for imperfections in the manufacture and connection of the strain 
gauges. The voltage difference created by the bridge circuit under load is amplified 
using an LM358 op-amp chip in a differential amplifier configuration, also shown 
in Figure 5. The gain of the amplifier circuit is set at 2000 using a combination of 
2 Mohm and 1 kohm resistors, so that the output is within the readable range of the 
Genuino and provides a large enough measurable range.

The linear potentiometer that measures the instantaneous length of the damper 
is represented on the far-right side of Figure 5 as two variable resistors (POT 2 
and POT 3), one of which increases resistance with increasing length and one of 
which decreases. The potentiometer uses a 5 V supply from the Genuino to output a 
maximum signal at full extension and a minimum signal at full compression.

Two input pins on the Genuino board (V0 and V1) are used to measure the 
op-amp output and the linear potentiometer output. The program loaded onto the 
board runs in a loop, conveying with each iteration the timestamp in milliseconds 
as well as a value between 0 and 1023 for each input pin. These values correspond to 
the voltage at each input pin, with the 0−5 V measurement range broken up evenly 
into 1024 subdivisions. A delay written into the program is adjusted to provide data 
points at a rate of 100 Hz, satisfying the data capture requirement outlined earlier.

These values are transmitted as comma-delimited serial data to the user’s 
computer via USB, and the program RealTerm Serial/TCP Terminal is used to 
capture the data. After identifying the correct computer port for the incoming data 
transmission, RealTerm allows the dynamometer user to write all captured data to a 
text file, which is then parsed into Microsoft Excel for further analysis.

4. Data analysis

The data is parsed into Microsoft Excel as a 4-column dataset. The data includes 
iteration number since the Genuino program began executing, timestamp in mil-
liseconds since the program began executing, instantaneous voltage reading at input 
pin V0, and instantaneous voltage reading at pin V1. It should be noted that the raw 
data does not contain the initialization of the Genuino program, and thus the data 
does not begin at an iteration and timestamp of zero. This is acceptable because the 

Figure 5. 
Diagram of measurement circuit.
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iteration number is only included to ensure that no steps have been skipped and the 
program is running properly.

The first step in analyzing the data is to establish a baseline for the strain gauge 
circuit output. Before turning on the milling machine to drive the dynamometer, 
several seconds of data are captured to establish an accurate baseline. In addition, 
the machine is turned off and allowed to rest for several more seconds before the 
capture program is terminated, in order to determine if the baseline changed during 
operation. This is possible if some components of the circuitry shift during the use 
of the dynamometer and warrant further attention and possibly recapture of the 
dataset.

The circuit used to measure the applied damper force was calibrated by mount-
ing the cantilevered strain bar onto a vertical surface and applying known loads 
up to 200 lbs. at the location of the damper attachment, in intervals of 50 lbs. The 
linear potentiometer was calibrated by measuring the voltage output and compar-
ing it to a measurement of displacement, in intervals of approximately 0.25 in. The 
results of these calibrations are shown in Figures 6 and 7.

Fitting a trend line to the calibration data shows that a high degree of linearity 
is maintained over the measured range. Because of the difficulty associated with 
accurately applying large known loads during calibration, it is necessary to assume 
that the linearity will hold true up to a load of 250 lbf. The high degree of linearity 

Figure 6. 
Strain gauge calibration plot.

Figure 7. 
Linear potentiometer calibration plot.
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seen in the calibration data justifies this assumption. From this data, the user can 
interpolate or extrapolate the applied load or displacement for a given Genuino 
voltage measurement.

After the sensors have been calibrated, it is possible to accurately plot the 
displacement of the driven end of the damper as a function of time. It is assumed 
that the strain bar contributes a negligible amount of displacement to the nondriven 
end of the damper. However, because the distance between the damper connection 
points is measured directly by the linear potentiometer, even without this assump-
tion the measurement should be accurate. By taking the derivative of the displace-
ment with respect to time, the compression or rebound velocity of the damper is 
obtained for each timestamp.

Because of noise in the measurement circuit, larger datasets are required to 
produce a smooth force-velocity curve for the damper. To analyze these large quan-
tities of data, the method that was chosen is to take the average force-displacement 
over a range of input velocities. For example, the force and velocity data at all 
points which indicate a compression velocity of between −0.25 in/s and 0.25 in/s 
is averaged to produce a single data point. The same is done for all points which 
indicate a compression velocity of between 0.25 in/s and 0.75 in/s, and so on, until 
the entire data set is accounted for. The same process is performed for rebound 
velocities.

Force-velocity graphs were generated for the range of adjustments listed in 
the available data from the manufacturer. The graphs sweep through a range of 
low-speed settings at the maximum high-speed setting, and a range of high-speed 
settings at the maximum low-speed setting. The naming convention of the graphs 
is chosen as LS-HS, where LS is low speed and HS is high speed. Low-speed settings 
are counted in clicks from fully closed, whereas high-speed settings are counted 
in revolutions from fully open. Thus, a graph labeled 0-3 shows the data for fully 
closed low-speed adjustments and 3 rotations on each high-speed adjustment. All 
graphs are included in Figure 8. It should be noted that a graph was not generated 
for the setting 0-4.3, because the miniature mill was unable to maintain the neces-
sary velocity profile under high load. This is discussed further in the Issues and 
Future Improvements section of this paper. All settings were adjusted symmetri-
cally to match the format of the published data accessible in [13].

The manufacturer-supplied curves published in [13] show the compression and 
rebound responses above and below the x-axis, respectively. After all measured data 
has been analyzed and plotted, it is possible to compare the measurements from the 
damper dynamometer to the manufacturer’s published data. The graphs are first 
compared qualitatively, and it can be seen that there are certain observable similari-
ties and differences between the plots. Like the manufacturer graphs, the measured 
force increases with higher settings, showing that the constructed dynamometer can 
clearly illustrate the difference between damper settings, and was able to measure 
the expected data trends. The measured data is visually different in the graphs of the 
15-4.3, 25-4.3, and 0-0, in that there is a small velocity domain within the rebound 
response where the damping force decreases as the velocity increases. This is not 
seen in any of the manufacturer graphs and possibly suggests that the tests should 
be rerun. In addition, the quality of the different dynamometer systems can be seen 
in the graphed data. Because of noise in the measurement system of the constructed 
dynamometer, inconsistencies and discontinuities are common in the measured 
data, contrasted with the smoothly generated curves of the manufacturer data.

Quantitative analysis of the graphs allows for calculation and discussion of the 
error between the measured force output and that which is expected from the manu-
facturer data. For each run, the force output values are obtained from the measured 



63

Development of a Low-Cost Vibration Damper Dynamometer for Suspension Damper Testing
DOI: http://dx.doi.org/10.5772/intechopen.101510

data at velocities of 5 in/s and 10 in/s, and these are compared to graphically obtained 
values at the same velocities from the published data [13]. These values and the 
associated error calculations are shown below in Table 1.

From Table 1, it can first be noted that the error values are overwhelmingly 
positive. This clear trend suggests that either a difference exists between the team’s 
damper and a new one from the manufacturer, or that the dynamometer was 
improperly calibrated. Further investigation is necessary to determine which of 
these factors is the cause of this discrepancy.

Figure 8. 
Force-Velocity Curves from Measured Data. (a) 2-4.3, (b) 4-4.3, (c) 6-4.3, (d) 10-4.3, (e) 15-4.3, (f) 25-4.3, 
(g) 0-0, (h) 0-1, (i) 0-2, (j) 0-3.
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Comparison between the average percent errors for certain segments of data 
gives insight into the areas where the constructed dynamometer is most accurate. 
These average values are listed in Table 2 for easy comparison.

From this table, it should be noted that the measured data conforms more 
accurately to the published manufacturer data, in compression, than in rebound 
and shows much higher variation at higher loads and during low-speed sweep test 

Cases averaged Avg. error

Rebound 0.42

Compression 0.22

High-Speed sweep 0.14

Low-Speed sweep 0.44

Force <100 lbf 0.16

Force >100 lbf 0.51

Table 2. 
Average error for comparison between case sets.

Dataset Measured @ 
5 in/s (lbf)

Measured @ 
10 in/s (lbf)

Manuf. @ 
5 in/s (lbf)

Manuf. @ 
10 in/s (lbf)

Error @ 
5 in/s

Error @ 
10 in/s

0-0 C 20 26 18 24 0.11 0.08

0-0 R 11 15 13 16 −0.15 −0.06

0-1 C 42 52 44 49 −0.05 0.06

0-1 R 35 40 31 37 0.13 0.08

0-2 C 75 100 75 92 0.00 0.09

0-2 R 80 85 58 63 0.38 0.35

0-3 C 115 125 107 125 0.07 0.00

0-3 R 135 145 80 103 0.69 0.41

2-4.3 C 145 190 115 150 0.26 0.27

2-4.3 R 210 250 94 130 1.23 0.92

4-4.3 C 125 180 96 140 0.30 0.29

4-4.3 R 165 190 73 115 1.26 0.65

6-4.3 C 140 190 70 130 1.00 0.46

6-4.3 R 75 110 57 105 0.32 0.05

10-4.3 C 60 150 38 100 0.58 0.50

10-4.3 R 50 90 30 75 0.67 0.20

15-4.3 C 25 60 25 65 0.00 −0.08

15-4.3 R 23 55 15 42 0.53 0.31

25-4.3 C 17 40 13 35 0.31 0.14

25-4.3 R 15 23 10 23 0.50 0.00

Table 1. 
Measured and manufacturer data and calculated error.
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cases. Assuming the measured damper does have the performance characteristics of 
a new damper from the manufacturer, this variability between the datasets shows 
where the dynamometer is least accurate.

5. Issues and future improvements

The primary challenge associated with building this dynamometer at the lowest 
possible price point was integrating parts the team already owned rather than 
purchasing them, while at the same time creating a dynamometer that produces 
accurate measurements. Certain issues with the design could be solved with more 
work, and likely will be as the team continues to use the dynamometer, thus are 
discussed here.

Firstly, the measurement circuit should be improved to limit electronic noise 
in the measurements. As designed, all the circuitry between the sensors and the 
Genuino is constructed on a breadboard, which has the drawback of loose connec-
tions causing changes in the resistance of some circuit components during dyna-
mometer operation. This was reduced where possible by using higher-resistance 
components, but a small movement in the connection of either of the nominal 
350-ohm strain gauges can change their effective resistance by a significant per-
centage. This should be easily achievable by soldering resistors instead of using a 
breadboard. Limiting noise should provide better data for easier processing and 
would allow for more accurate determination of hysteresis present in the system, 
that may otherwise be overlooked.

The second primary issue with the dynamometer is that the miniature milling 
machine which provides the driving torque to the crank is unable to maintain a 
constant angular velocity under the load applied by the damper. In practice, this 
means the crank slows down when the connecting rod is at its most extreme angle 
to the damper and speeds up dramatically when the two are aligned. It is likely 
that this is the reason for the large percent error in higher-force tests. It is also 
hypothesized that this is one of the reasons for the large difference in error between 
rebound and compression cases. To address this issue, the team should consider 
obtaining permission to set up the damper dynamometer on a larger university 
milling machine. Not only would it likely be able to supply more torque and a more 
constant angular velocity, but it should also provide an overall stiffer framework for 
the dynamometer to operate within.

The present study can be converted into a course project for mechanical engi-
neering students who take the vibrations and controls class to develop their hands-
on experience and strengthen their understanding of the concepts of the dynamic 
behavior of vibration systems delivered in that class (Table 3) [14, 15].

Component Price

Steel angles for frame 64.92

LM358 op-amp chips 6.99

Foil strain gauge sensors 13.99

Total 86.90

Table 3. 
Price breakdown.



Vibration Control of Structures

66

Author details

Yucheng Liu1 and Ge He2*

1 South Dakota State University, Brookings, USA

2 University of Maryland, Baltimore, USA

*Address all correspondence to: gh663@shu.edu.cn

6. Conclusion

To improve the performance of the FSAE car’s suspension, the goal of this 
project was to design and build a low-cost dynamometer capable of producing 
a force-velocity curve for the car’s dampers. Through the use of primarily pre-
owned components, this dynamometer was constructed for less than 1/100 the 
price of market alternatives. Primary differences include the use of the team’s 
milling machine to drive the dynamometer crank rather than a dedicated motor, 
and a cantilevered strain bar with strain gauges, custom wiring, and a Genuino to 
measure the force, rather than a dedicated load cell and computer system. While 
these changes offer great financial savings, this project has shown that they are not 
without their drawbacks. The graphs require calibration and data processing to pro-
duce and do not exactly replicate the manufacturer published values for the damper 
characteristics. This project, however, was still successful. It provided a completed 
and usable damper dynamometer, which through further testing and refinement 
will be able to accurately determine the characteristics of the team’s dampers for a 
far lower cost than other methods.
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Chapter 5

A Ball-Type Passive Tuned Mass
Vibration Absorber for Response
Control of Structures under
Harmonic Loading
Jiří Náprstek and Cyril Fischer

Abstract

Ball-type tuned mass absorbers are growing in popularity. They combine a
multi-directional effect with compact dimensions, properties that make them
attractive for use at slender structures prone to wind excitation. Their main draw-
back lies in limited adjustability of damping level to a prescribed value. Insufficient
damping makes ball-type absorbers more prone than pendula to objectionable
effects stemming from the non-linear character of the system. Thus, the structure
and design of the damping device have to be made so that the autoparametric
resonance states, occurrence of which depends on system parameters and proper-
ties of possible excitation, are avoided for safety reasons. This chapter summarises
available 3D mathematical models of a ball-pendulum and introduces the non-linear
approach based on the Appell–Gibbs function. Efficiency of the models is then
illustrated for the case of kinematic and random excitation. Interaction of the
absorber and the harmonically forced simple linear structure is numerically
analysed. Finally, the chapter provides examples of typical patterns of the
autoparametric response and outlines possibilities of applications in practical
engineering.

Keywords: passive vibration damping, non-linear dynamics, autoparametric
systems, semi-trivial solution, dynamic stability

1. Introduction

Design of contemporary structures is often distinguished by their slenderness,
which is either functionally, economically or aesthetically motivated. Consequently,
the structure lacks required stiffness and vibration absorbers are thus required to be
incorporated into the structure design. The generally accepted family of passive
tuned mass vibration absorbers is well established in the engineering literature; see
the exhaustive review paper [1], which reflects the situation until 2017. The history
of tuned vibration absorbers dates back to the beginning of the twentieth century
[2]. However, the history of the analysis of non-linear effects connected with these
devices is much younger. A tuned mass absorber represents a non-linear system,
which, in connection with the supporting structure, has an autoparametric charac-
ter (for general description of the topic, see [3]). As such, the system is prone to an
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autoparametric stability loss. This kind of problem was initially investigated in [4]
and later elaborated in works by Tondl and others [5]. A new layer of complexity
must be taken into account when both spatial components of the absorber are
considered because the autoparametric interaction occurs between the two direc-
tions as well. This effect has been known for a long time (see the classical analysis of
the chaotic behaviour of a spherical pendulum [6]), however, its relation to
pendulum-based tuned mass absorbers was neglected until recently [3].

There are structures where installation of a classical pendulum-based absorber is
not possible for spatial, aesthetic, or other reasons. Ball-type passive tuned mass
absorbers, which are based on free movement of a heavy ball rolling in a spherical
cavity, represent an alternative solution. They combine a multi-directional effect
with compact dimensions and thus are convenient for use at towers, mast, foot-
bridges, and other slender structures. For example, ball-type absorbers are increas-
ingly popular in connection with wind turbines [7], namely, for offshore
installations where the simultaneous influence of wind and wave loads makes the
dynamic response of the turbines more complex. Moreover, such devices are almost
maintenance-free; the importance of this property naturally increases with the
number of installations [8]. Despite many advantages of ball-type absorbers, they
have limited damping level adjustability. There are various techniques that imple-
ment additional damping into the absorber as a rubber coating or liquid introduced
in the cavity. It also seems that the usage of several balls in one container may
improve effectiveness of the absorber due to the impact effect and the rolling
friction [7]. These modifications, however, entail significant maintenance costs
with uncertain results. In any case, insufficient damping makes ball-type absorbers
substantially more prone to objectionable effects stemming from the non-linear
character of the system compared to pendula, namely, to an autoparametric-based
energy transfer between individual components of the system. This effect can result
in, for example, an increasing amplitude of the transverse motion of the absorber
when only mild excitation takes place.

Mathematical modelling of the movement of a homogeneous sphere rolling on
a perfectly rough surface has a long tradition in classical mechanics. The system is
non-holonomic with linear constraints in the first derivatives with respect to
time. The classical setting of several particular cases including rolling of a sphere
on a spherical surface are considered in a classical monograph by Routh [9]. A
similar Lagrangian approach was used in popular monographs [10] and is still
used regularly [11]. As an alternative, the Appell–Gibbs approach, being based on
an energy acceleration function, appears to be more effective in some cases, pro-
viding governing systems that are more transparent for further elaboration [12].
Abstract solutions using Lie group theoretical methods were derived recently
[13]. This approach allows for generalisation of the cavity shape to non-
symmetrical surfaces of the second order, however, it is less convenient for
practical use.

The first papers dealing with theoretical, experimental and practical aspects of
ball-type absorbers were published by Pirner [14]. His design procedure was based
on a simplified planar approach. In a follow-up paper [15], the authors of this
chapter modelled an absorber and a supporting structure as a non-linear planar
structure. The detailed stability analysis of the complete system revealed the typical
autoparametric behaviour exhibiting harmonic, chaotic or multi-valued response
intervals, which can represent a dangerous state for the structure.

The spatial version of the absorber model is an autoparametric system where the
longitudinal direction (parallel with the excitation movement) is supposed as the
primary component and the lateral direction plays the role of a secondary compo-
nent. If the system enters autoparametric resonance, vibration of the primary
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coordinate acts as parametric excitation of the secondary coordinate due to mutual
non-linear relations. If the secondary component remains in rest and the primary
one vibrates, the so-called semi-trivial state occurs. The interaction of an absorber
with a structure adds a new degree of complexity to the system. The structure,
being driven by an external forcing, adopts the role of the primary component;
however, both coordinates of the absorber maintain their mutual relations. The
particular states of such an autoparametric system are characterised by the exis-
tence of bifurcation points that delimit stable and unstable solution branches.

The authors of this chapter put forth significant effort in describing the
autoparametric character of pendulum- and ball-type absorbers. For the ball-
pendulum, the 2D approach based on the Lagrangian formalism [15] offered a
possibility of a detailed analytic description of the reduced problem, where the
stable and unstable response domains were clearly identified. The numerical eval-
uation of the 3D model derived using the Appell–Gibbs function according to [16]
revealed important physical properties of the system and many particular trajec-
tory types in forced and free movement cases [17, 18]. It was also found that the
resonance properties of the 3D model are similar to those obtained analytically
and experimentally for the spherical pendulum [19, 20]. These results support
validity of the mathematical model and numerical analyses presented and used in
this chapter.

The idea of the ball-pendulum serving as a vibration absorber offers wide possi-
ble generalisations. Apart from the aforementioned usage of multiple balls in a
cavity or multiple stacked devices for damping multiple frequencies, usage of non-
homogeneous spheres, nested spheres, hemishperes or semielliptic spheres would
allow the absorber to be fine-tuned for a precisely limited non-linear damping effect
or multidirectional damping. For example, an analysis of a Chaplygin ball on a
spherical surface is presented in [21]; the bidirectional damping based on a rolling-
pendulum is introduced in [22]. A significant disadvantage of nonhomogeneous
systems is their weaker stability when compared to traditional symmetric devices.
Alternatively, usage of cavities with a general shape may represent a more conve-
nient alternative; see, for example, a case with a semielliptic cavity analysed by
Legeza [23]. It is worth noting that survey [1] does not mention any paper regarding
dynamic stability analysis of the vibration absorber-equipped structures, although
this topic is mentioned as one requiring significant attention. It seems that the
research work being conducted on this topic is currently aimed at non-linear
dynamic absorbers with different non-linearities in damping, as those involving
friction elements [24] or different kinds of non-linear springs [25].

The chapter is organised as follows. After this introduction, the chapter
describes the governing differential system based on the Appell–Gibbs approach.
Next, the chapter discusses the autoparametric behaviour of the absorber itself for
harmonic and random kinematical excitation. Then, the chapter presents results
from numerical simulation of the simplified structure equipped with the absorber.
The last section of the chapter concludes.

2. Mathematical model

2.1 Appell–Gibbs function of the system

The mathematical model of a simplified structure equipped with a ball-type
vibration absorber (see Figure 1) consists of two main components: the simplified
dynamical model of the supporting structure and the absorber (i.e., the cavity with
a ball of mass m). The absorber is connected to the structure at point A, which is
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supposed to move horizontally with respect to coordinates x, y; leaning of the
structure and rotation around axis z are neglected.

Thus, the complete system includes eight degrees of freedom: two describing the
movement of the top of the structure and six for the absorber, three of which are
related by three non-holonomic constraints of the first order expressed in velocities.
The detailed derivation of the model of the ball-type absorber was already
published and thus we will only briefly summarise it here. For further information
on the derivation, the reader is kindly referred to [26].

The system behaviour can be characterised by the Appell–Gibbs function where
uG ¼ uGx, uGy, uGz

� �
and w ¼ ωx,ωy,ωz

� �
describes the translational and rotational

movement of the ball in the cavity. Symbols uA ¼ uAx, uAy, uAz
� �

denote the dis-
placement of the top of the structure, which is modelled as two SDOF linear
damped oscillators representing movement of concentrated mass M independently
in horizontal directions x, y:

S ¼ 1
2
m €u2Gx þ €u2Gy þ €u2Gz
� �

þ 1
2
J _ω2

x þ _ω2
y þ _ω2

z

� �
þ 1
2
M €u2Ax þ €u2Ay
� �

, (1)

M€uAx þ bx _uAx þ CxuAx ¼ Φx,

M€uAy þ by _uAy þ CyuAy ¼ Φy,
(2)

uAz ¼ 0, where forces Φx and Φy comprise effect of loading and interaction with
the absorber.

In function S, the first and second parts m, Jð Þ represent dynamics of the ball
moving within the cavity of the absorber, while the third term Mð Þ refers to the
structure together with the case of the absorber (without the ball), as shown in
Figure 1.

Figure 1.
The structure modelled as two SDOF subsystems together with a 3D ball vibration absorber.
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The following notation was adopted in Eq. (1):
R, r—radius of the cavity or the ball, respectively, [m],
M, m—mass representing the structure including mass of the static part of the

absorber, mass of the ball moving inside the cavity, respectively, [kg],
J—central inertia moment of the ball with respect to point G; parameter J allows

to consider whatever type of spherical body with central symmetry, the mass of
which is either concentrated in the centre J ¼ 0ð Þ, uniformly distributed within the
body J ¼ 2=5mr2ð Þ, or evenly dispersed mass over the outer envelope of the ball
J ¼ mr2ð Þ, [kg m2],

ω—angular velocity vector of the ball with respect to its centre G, [rad s�1],
A—moving origin related with the cavity in its bottom point,
uA—displacement of the contact between the structure and the cavity,
uG—displacement of the ball centre with respect to the moving origin A, [m],
C—contact point of the ball and cavity,
uC ¼ uCx, uCy, uCz

� �
—displacement of the ball contact point with respect to the

moving origin A, [m],
x ¼ x, y, z—Cartesian coordinates with origin in the point O,
Cx, bx,Cy, by—structure stiffness and linear viscous damping in x, y horizontal

directions, [N m�1, Ns m�1].

2.2 Ball movement inside the cavity

From the supposition of a non-sliding contact between the ball and cavity, the
velocities of the ball centre with respect to origin can be deduced providing the
respective non-holonomic constraints of “perfect” rolling. Thus, the conditions for
displacement vectors uC and uG can be written as:

_uCx ¼ ωy uCz � Rð Þ � ωzuCy, _uGx ¼ _uAx þ ρ ωy uCz � Rð Þ � ωzuCy
� �

,
_uCy ¼ ωzuCx � ωx uCz � Rð Þ, _uGy ¼ _uAy þ ρ ωzuCx � ωx uCz � Rð Þð Þ,
_uCz ¼ ωxuCy � ωyuCx, _uGz ¼ _uAz þ ρ ωxuCy � ωyuCx

� �
,

where : ρ ¼ 1� r=R and _uAz ¼ 0:

(3)

The ball centre acceleration €uG ¼ €uGx, €uGy, €uGz
� �

consists of two parts: (i) accel-
eration of the moving origin A, denoted as €uA ¼ €uAx, €uAy, €uAz

� �
, which represents

kinematic excitation of the absorber by the movement of the structure, and (ii)
acceleration of the ball centre G with respect to the point A being given by ρ€uC.
Components of acceleration €uC can be deduced when relations Eq. (3) are
differentiated:

€uGx ¼ €uAx þ ρ
d
dt

ωy uCz � Rð Þ � ωzuCy
� �

,

€uGy ¼ €uAy þ ρ
d
dt

ωzuCx � ωx uCz � Rð Þð Þ,

€uGz ¼ €uAz þ ρ
d
dt

ωxuCy � ωyuCx
� �

, €uAz ¼ 0:

(4)

After substituting Eq. (4) into Eq. (1), the Appell–Gibbs function gets a form
S ¼ S2 þ S1 þ S0, where S2, S1 and S0 are polynomials of the second, first and zero
degree of w and €uA components. The reduced Appell–Gibbs function is defined as
Sr ¼ S2 þ S1. The term S0 can be omitted because it disappears during differentia-
tion with respect to w or €uA components.
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The function Sr enables to formally write the Appell–Gibbs differential system:

∂Sr=∂ _ωx ¼ FGx, ∂Sr=∂€uAx ¼ FAx,

∂Sr=∂ _ωy ¼ FGy, ∂Sr=∂€uAy ¼ FAy,

∂Sr=∂ _ωz ¼ FGz,

(5)

where FG ¼ FGx, FGy,FGz
� �

and Fh ¼ FAx, FAy, FAz
� �

are the external forces or
moments acting in points G and A, respectively.

2.3 External forces

The right sides of Eq. (5) can be determined using the virtual displacements
principle. In the discussed case, they include: (i) gravity forces acting in point G,
(ii) external excitation in point A, (iii) influence of the lower part of the structure
below point A, and (iv) dissipation forces in contact point C.

i. Gravity forces: Forces FGg originate from the vector of gravity 0, 0,�mgð Þ.
The elementary work performed by force FGg ¼ FGgx,FGgy, FGgz

� �
along

displacement δuG δuGx, δuGy, δuGz
� �

can be expressed as

δWGg ¼ 0 � δuGx þ 0 � δuGy �mg � δuGz (6)

Virtual displacement δuGz can be determined using the third non-
holonomic constraint in Eq. (3). Denoting by δφ_ the virtual increments of
individual components ω_, it holds that

δuGz ¼ ρ uCyδφx � uCxδφy

� �
(7)

and therefore

δWGg ¼ �mgρ uCyδφx � uCxδφy

� �
: (8)

At the same time, the elementary work can be expressed in terms of virtual
increments:

δWGg ¼ FGgxδφx þ FGgyδφy þ FGgzδφz: (9)

Comparison of coefficients at respective virtual components δφ_ for x, y, z
gives

FGgx ¼ �ρmg � uCy, FGgy ¼ ρmg � uCx, FGgz ¼ 0: (10)

ii. External excitation in the point A: Excitation force ΦA is considered in the
horizontal direction. In the meaning of the virtual work, it acts along the
displacement: δuA ¼ δuAx, δuAy, δuAz

� �
. Elementary works performed by

excitation forces acting in point A can be written as follows:

δWAh ¼ ΦAx � δuAx þΦAy � δuAy þ 0 � δuAz, (11)

where ΦAx,ΦAy are components of the horizontal excitation force. When
comparing the relevant components of the elementary works the following
relation arises:
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FAhx ¼ ΦAx, FAhy ¼ ΦAy, FAhz ¼ 0: (12)

iii. Influence of the lower part of the structure: The force acting in point A consists
of the stiffness and damping parts. Both are working on the identical virtual
displacements δuA as in the previous paragraph. Therefore, the relevant
force components can be written as:

FAlx ¼ �CxuAx � 2bx _uAx, FAly ¼ �CxuAy � 2by _uAy, FAlz ¼ 0: (13)

iv. Dissipation forces in the contact point C: The influence of damping in this case
is rather complicated having a character between viscose force and dry
friction. However, it can be modelled on a qualitative basis to prevent any
non-pervious formulation of the model. With respect to real configuration
of a structure, the damping effects are evidently sub-critical and, therefore,
simplifications of its internal mechanism can be adopted. Supposing that no
slipping arises in the contact, the dissipation process can be approximated
as proportional to relevant components of the angular velocity vector w
and the quality of the cavity/ball contact. The material coefficients
characterising the rolling movement of the ball can be considered constant
regardless of the direction in the tangential plane to the cavity in point C.
The spin of the ball is related rather with a dry friction. Nevertheless, the
influence of this damping force is even smaller than those acting in
tangential directions and, therefore, such an approximation is acceptable.

Consequently, with reference to [26], the resistance force can be assumed pro-
portional to components of the respective angular speeds. Thus, the damping forces
in directions x, y, z can be defined as

DGx,DGy,DGz
� �T ¼ Tc �A � TT

c � ωx,ωy,ωz
� �T, (14)

where Tc is the transformation matrix from the local coordinate system of the
ball to the moving coordinates and matrix A reflects the damping coefficients for
rolling (α) and spinning (β):

Tc ¼

uCx R� uCzð Þ
Rν

,
uCy R� uCzð Þ

Rν
,

ν

R
�uCy
ν

,
uCx
ν

, 0

�uCx
R

,
�uCy
R

,
R� uCz

R

0
BBBBBBB@

1
CCCCCCCA
,

A ¼ diag α, α, βð Þ,
ν2 ¼ u2Cx þ u2Cy:

(15)

Finally, the external forces can be summarised as follows:

FGx ¼ �ρmg � uCy þDGx

FGy ¼ ρmg � uCx þDGy

FGz ¼ DGz

FAx ¼ FAhx þ FAlx ¼ ΦAx � CxuAx � 2bx _uAx

FAy ¼ FAhy þ FAly ¼ ΦAy � CyuAy � 2by _uAy

(16)
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2.4 Governing differential system

When the derived quantities are introduced into Eq. (5), the resulting system,
together with the left part of Eq. (3), includes eight differential equations for eight
unknowns uCx, uCy, uCz,ωx,ωy,ωz, uAx, uAy. Using the geometric relations

uCx _ωx þ uCy _ωy þ uCz � Rð Þ _ωz ¼ 0 and u2Cx þ u2Cy þ R� uCzð Þ2 ¼ R2, (17)

which reflect the orthogonality of vectors uC and _ω and geometric properties of
the cavity, the final system reads:

Js _ωx ¼ ρ2 �uCyωz � ωy R� uCzð Þ� �
Ω1 � 1

ρ
R� uCzð Þ€uAy þ guCy

� �
�DGx

m

� �
,

Js _ωy ¼ ρ2 uCxωz þ ωx R� uCzð Þð ÞΩ1 þ 1
ρ

R� uCzð Þ€uAx þ guCx
� ��DGy

m

� �
,

Js _ωz ¼ ρ2 uCyωx � uCxωy
� �

Ω1 þ 1
ρ

uCy€uAx � uCx€uAy
� ��DGz

m

� �
,

(18)

ms€uAx ¼ ΦAx � 2bx _uAx � CxuAx þmρ
d
dt

ωy R� uCzð Þ þ uCyωz
� �

,

ms€uAy ¼ ΦAy � 2by _uAy � CyuAy �mρ
d
dt

ωx R� uCzð Þ þ uCxωzð Þ,
(19)

where it has been denoted:

Ω1 ¼ uCxωx þ uCyωy � R� uCzð Þωz, Js ¼ J þmρ2R2, ms ¼ mρþM: (20)

The damping forces enable to be simplified in the following way

DGx ¼ αωx þ β � αð ÞuCxΩ1=R2,

DGy ¼ αωy þ β � αð ÞuCyΩ1=R2,

DGz ¼ αωz � β � αð Þ R� uCzð ÞΩ1=R2:

(21)

The quantities given by a solution to system Eqs. (3) and (18) describe behav-
iour of the structure with the absorber. Vector uC depicts displacements of the
contact point C of the ball and can be used to study its trajectories within the cavity.
Vector uA characterises horizontal movement of the point A, where the absorber is
fixed to the structure. The detailed behaviour of the ball as a rotating body is given
by angular velocities w . The time history of the ball rotation can be enumerated, if
necessary, by means of the Euler angles.

It is worth emphasising that the system Eqs. (3) and (18) have a significantly
expressed autoparametric character. Hence, the existence of semi-trivial solutions
(STS) should be expected outside the resonance zone. However, it emerged that the
STS can have a more general character than that defined, for example, in [3]. In
other words, for values of bifurcation parameter ω, which produce the STS either in
the sub- or super-resonance zone, other solutions can also exist. It depends on a
character of related bifurcation points, if the newly emerging solution branch
reaches outside the autoparametric resonance zone, possibly involving more or all
response components. These solutions, however, are generally not accessible from
homogeneous initial conditions and should be looked for from relevant bifurcation
points. We provide some details in the next section.
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3. Autoparametric behaviour of the absorber

Behaviour of the ball absorber, when it is excited in one direction only, has a
strong autoparametric character. It is characterised by a non-linear interaction
between both components (longitudinal and lateral), when an enforced movement
in one (longitudinal) direction destabilises the resting state of the other component.
Depending on parameters of the system and excitation, the response may attain a
periodic, quasi-periodic or chaotic character, which generally prevents the device
from working properly. Alternatively, a similar autoparametric effect is used for the
sake of a structure when an autoparametric absorber is installed. Designers often
overlook the former effect because it involves non-linear relations between indi-
vidual components. In the case of pendulum-type absorbers, this unwanted effect
can be mitigated efficiently when a sufficiently large damping is applied [20].
However, due to small damping, ball-type absorbers are much more prone to this
type of response.

The authors of this chapter thoroughly studied the effect of the autoparametric
resonance of the ball-type vibration absorber. A number of distinctive solutions of
the homogeneous system (no external excitation, various settings of the non-
homogeneous initial conditions) were presented in [18]. Despite visually attractive
shapes of certain solutions, the most important ones were used as limits separating
solution groups of a certain character. Particular effects of a harmonic external
excitation were studied in [17], namely different regimes of periodic or aperiodic
responses and their stability, together with the effect of different values of
damping. The most relevant results are summarised in this section. Table 1 lists the
numerical parameters used in figures and simulations.

The design procedure of a ball-type vibration absorber generally involves an
assumption of small horizontal amplitudes of the ball [14]. Depending on the
moment of inertia of the ball, the rotation inertia of the rolling sphere reduces the
natural frequency of the ball-type vibration absorber as compared with the
pendulum-type absorber of an equivalent length R� rð Þ. Similarly, the rolling
motion of the spherical absorber reduces the efficiency of the device according to
the value of the moment of inertia of the ball. For example, if a homogeneous
sphere in the ball-type absorber should have the same effect as the pendulum
absorber, its mass would have to be increased by a factor of 7=5 with respect to the
mass of the pendulum [14].

It appears, however, that an assumption of small horizontal vibrations can be
violated easily in the resonance. Due to a limited damping there exists a significant
probability that a movement of the ball within the cavity exceeds “small” values. It
also appears that small damping enables various limit cycles to exist—at least for a
limited time (see Figure 2). Such regular limit cycles are, of course, very sensitive to
carefully selected initial conditions. Their existence, however even theoretical,
emphasises the importance of sufficient damping in tuned mass absorbers. In con-
junction with a spatial resonance movement, which can be induced by

Absorber Structure

Parameter R r m α, β M Cx, Cy bx, by g

[m] [m] [kg] [Ns m�1] [kg] [N m�1] [Ns m�1] [m s�2]

Value 1 3/4a 1 0.1 10 90 0.1 9.81
aValue 1/4 is used in Figure 2.

Table 1.
Model parameters used in figures and simulations.
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uni-directional excitation, the movement of the ball in a limit cycle negatively
affects the structure. It seems that the difficulty in introducing the appropriate
damping is the main weakness of the ball-based absorbers and, therefore,
geometrical measures should be adopted to tune the absorber.

3.1 Harmonic excitation of the cavity

In this section, we present the numerically evaluated frequency response curves
for a ball-type absorber. The ball moves in a vertical plane that passes the cavity
centre if an in-plane non-zero initial condition is prescribed and/or an uni-
directional excitation component is applied. However, due to the non-linear char-
acter of the mathematical model, the in-plane movement is susceptible to a loss of
the stability of the semi-trivial planar state for certain parameters of excitation.

Harmonic kinematic excitation (i.e., the sinusoidal form of a prescribed move-
ment of the cavity), represents an easily understandable case, which is very conve-
nient for both analytical and numerical treatment. It is also very popular for an
assessment of dynamical properties of linear engineering structures or systems
because a simple composition of the response components for individual excitation
frequencies gives a realistic image of the complex response. In a non-linear case,
however, this approach is not generally feasible and the frequency response curves
have to be interpreted with sufficient care. Nevertheless, harmonic excitation in x
direction is assumed in the following text:

€uAx ¼ u0ω2 sin ωtð Þ, €uAy ¼ 0: (22)

The initial conditions are prescribed as very small, but non-zero values in both
components and the excitation amplitude are assumed as u0 ¼ 0:025. For certain
excitation frequencies and amplitudes the planar response movement loses stability
and lateral movement emerges. Figure 3 shows the corresponding plots for an
undamped case. The graph on the left shows the resonance curves for the longitu-
dinal (top plot, solid curve) and lateral (bottom plot, dashed) components, obtained
using a bunch of mutually independent simulation runs. The figure shows that for
the selected excitation amplitude in the resonance (i) the response in the longitudi-
nal direction increases dramatically and (ii) the zero position of the lateral compo-
nent loses stability. The response in y direction attains values comparable to the
longitudinal component, which represents spatial movement of the ball.

The non-linear resonance curves given by Figure 3 have only an illustrative
meaning, especially in the resonance interval ω∈ 2:8, 3:1ð Þ. Due to lack of damping,

Figure 2.
Free movement of the ball for prescribed initial conditions uCx ¼ 0:75R, uCy ¼ 0:,ωx ¼ �298:942,ωy ¼ 0,
ωz ¼ 265:757, r ¼ 1=4R, no damping assumed. Left: Time history of three displacement components for two
periods T ¼ 2:6. Right: Trajectory of the centre of the ball in the xy plane.
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the largest values represent only the covered integration interval. Increasing the
integration time could cause a physically meaningless response.

Introduction of moderate damping between the ball and the cavity changes the
resonance plots, as shown in Figure 4. The recorded maximal amplitudes of the
stabilised response for the same excitation amplitude u0 ¼ 0:025R are slightly lower
and the resonance interval is narrower, however, the most significant change is the
emergence of the stable circular or elliptic limit cycle in ω∈ 2:94, 3:03ð Þ.

The response remains planar outside the resonance zone in both damped and
undamped cases; the lateral component vanishes. The STS is stable in the sense that
for general initial conditions the trajectory stabilises in the planar state. For excita-
tion frequencies ω∈ 2:82, 3:03ð Þ the semi-trivial behaviour is unstable and the
lateral movement suddenly emerges. General initial conditions for an excitation
frequency in this resonance area produce a spatial response when transitional
effects subside. The shape of the spatial trajectory is visible from both parts of
Figure 4. On the left, the upper (blue, ) and lower (yellow ) curves in each plot
correspond to maximal and minimal amplitudes of the settled response, obtained
for the respective frequency ω. If both curves coincide, the response is harmonic
and stationary (planar or spatial). For the non-stationary response, both curves
differ, and their vertical difference indicates a width of a strip where the response
takes place. If the lower curve approaches the zero value in one or both coordinates,
the response at least temporarily vanishes in that coordinate (see point (a) in
Figure 4). A positive value of the lower amplitude indicates movement in a circular
strip around the vertical axis (see points (b) and (d) in Figure 4).

Figure 3.
Left: The frequency response curve for longitudinal uCx (top plot, solid) and lateral uCy (bottom plot, dashed)
components. Right: Projection of the contact point to the horizontal plane xy for a stabilised motion. The four
plots correspond to excitation frequencies indicated by verticals in the left-hand plot. The absorber parameters
are given in Table 1; u0 ¼ 0:05R, no damping assumed, α ¼ 0, β ¼ 0.

Figure 4.
Left: Maximum ( , blue) and minimum ( , yellow) amplitudes of horizontal displacements. Top:
Longitudinal uCx component—Solid curves; bottom: Lateral uCy component—Dashed curves. Right: Projections
of the contact point of the ball to the horizontal plane xy for a stabilised motion; pictures a–d represent
trajectories for frequencies indicated on the left. The absorber parameters are given in Table 1, u0 ¼ 0:05R.
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The corresponding vertical projections into the plane (uCx, uCy) of the ball
trajectories are shown in the right-hand part of Figure 4 for frequencies marked on
the left by verticals (a–d). The plots (a–b) show a multi-harmonic or quasi-periodic
response, where the length of the quasi-period decreases for an increasing excita-
tion frequency. The relevant Lyapunov exponent is positive but small in this area.
The very stable periodic trajectory shows plot (d) in ω∈ 2:94, 3:03ð Þ, with a narrow
exceptional interval, plot (c).

It appears that from a certain threshold value of the excitation amplitude, the
overall face of the resonance plot remains the same with the non-stationary area
in the left-hand part of the resonance interval and increasing ramp representing
periodic response on the right. Naturally, an increased excitation amplitude or
decreased value of damping causes broadening of the resonance interval and
enlargement of the response amplitude or vice versa. Changes in other parameters
(m, r) influence the face of the plot more significantly, yet the overall character of
the graph remains the same.

Similarly to multiple settled solutions in the resonance interval, there exist
multiple solution branches also outside the resonance. They differ in stability. The
best approach to their identification is an analytical way, if possible (see [15] for the
case of the 2D model or [19] for a spherical pendulum). Although the unstable
solutions are usually difficult to identify numerically, there are certain exceptions.
Figure 5 shows the resonance curves and from Figure 4 enriched by two
additional branches, which were obtained when the numerical simulation followed
the frequency sweeping from low to high and vice versa. The sweeping process
means that in every new step performed for ω� Δω the simulation starts from
initial conditions corresponding to the final state of the previous run. This way, in
fact, a small change in the driving frequency can be accommodated by the stable
solution, which would be otherwise hardly accessible from random initial condi-
tions.

The result is demonstrated in Figure 5. The planar response branch ①,② was
obtained when the sweeping was performed from high to low, starting above the
resonance interval with small but non-zero initial conditions. During continuing on
the stable part of this branch above ω ¼ 3:3, curve ②, the lateral component value
decreased below the machine epsilon before the resonance interval was entered and
the numerical round-off then ensured continuance also on the unstable part of
planar branch below ω ¼ 3:3. Here the movement remains stable with respect to
perturbations the in uCx variable within the resonance interval and even further for
ω< 2:82, curve ①. The response is formed by a planar movement with large ampli-
tudes. Any perturbation in the lateral direction causes a switch from ① to a generally
stable planar solution ③ in ω∈ 2:44, 2:82ð Þ or to a non-stationary behaviour

Figure 5.
Amplitudes of uCx (upper plot, solid) and uCy (bottom plot, dashed) component. Sweeping from high to low in
green, ②,①; from low to high in red ③,④. The branches ①-③ exhibit the planar response; the branch ④ is spatial.
The absorber parameters are as in Figure 4.
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represented by curves and in the resonance interval ω∈ 2:82, 3:03ð Þ. Although
the existence of this unstable type solution sounds theoretically, it was actually
measured during the experimental examination of the spherical pendulum, see [27].

The spatial response branch ④ in Figure 5 can be identified when starting
simulation in the resonance interval, for example at ω ¼ 2:85, from small but non-
zero initial conditions; sweeping the excitation frequency upwards enables the
response to continue with the circular type response outside the resonance interval.
The stability of the periodic trajectory gradually decreases in term of a sensitivity to
perturbations, cf. [17] for details, however, the sweeping process itself is able to
continue up to physically meaningless frequency values. This effect is indicated by
an arrow on the right in Figure 5. The maximal approach of the circular trajectory
to the equator of the cavity occurred for ω ¼ 9:7; for ω increased further the
amplitudes start to very slowly decrease.

It is worth noting that such a periodic high-energy trajectory may represent a
serious danger to the structure. Although this regime is not accessible easily, the
numerical experiments show that it is unfavourably stable against perturbations in
the excitation frequency and amplitude—at least for lower excitation frequencies.
The spatial response in the resonance area attains also large amplitudes, however,
they are not synchronised and so this case could even help to dissipate the vibra-
tional energy to modes that are not excited by the primary loading. The planar
periodic motion exhibiting high in-plane amplitudes synchronised with excitation
in the sub-resonance zone may also represent a possibly dangerous state, but this
effect quickly attenuates whenever the lateral component gains a non-zero value.

3.2 Random excitation of the cavity

If the harmonic excitation can be regraded as the most simple excitation case,
the opposite extreme is a completely random case. For this purpose, a stationary
random process is generally used, which is described by a spectral density matrix
and an underlining—preferably Gaussian—probability distribution. For the sake of
simplicity, only the white noise excitation will be assumed in this section. For
details and more complex examples, see [28]. This simplified case of random exci-
tation was used to assess the possibility of emergence of the high-energy spatial
response due to an ambient broadband noise.

When dealing with non-linear models, the results of simulation are generally not
Gaussian even for normally distributed inputs. This applies also to this case and,
consequently, the results have to be represented by an estimate of a (time-
dependent) probability distribution. Histograms are used for this purpose in this
work.

The spatial response of the upper part of branch ④ in Figure 5 for deterministic
harmonic excitation is periodic and the relevant trajectory intersects the coordinate
axes always in the same points. When random excitation is assumed, solution
trajectories deviate from an ideal ellipse depending on a variance of the random
process. Positions of intersections of trajectories with the coordinate axes then
represent a random variable, distribution of which characterises the stochastic
response. For deterministic excitation, the histograms would be concentrated in
values corresponding to intersection points of the elliptic trajectory and both axes.
When random perturbation of a harmonic input increases, the centre of gravity of
the histogram becomes blurred. A further increase in the random perturbation
intensity may cause a change of the type of the response and a switch to the lower
solution branch, which is characterised by a negligible value of the lateral compo-
nent and a non-zero value of the longitudinal component that reflects the relevant
amplitude.
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From the simulation, it can be concluded that the spatial response may emerge
depending on the variance of the input random process. This result follows from
Figure 6, which shows probability density estimates for components uCxjy¼0 and

uCy
��
x¼0 for an increasing white noise intensity; each simulation begins from “small”

initial conditions uCx 0ð Þ ¼ uCy 0ð Þ ¼ 0:01 and counts axes crossings for the both
components. In order to neglect the transient effects, the initial part of each simu-
lation is not taken into account and only the time interval t∈ 400, 600ð Þ is consid-
ered. Figure 6 shows that starting from the white noise intensity σ ¼ 0:15, the
lateral component becomes positive and for σ ≥0:35 is the random response almost
symmetric in the both components. However, the elliptic periodic response, which
is typical for the spatial branch for ω> 2:94, does not appear dominant in any
histogram.

The random simulation was performed using the Itô version of the modified
stochastic Euler method, [29], with Δt ¼ 2�6. The computation was restarted 240
times. Approximately 100 axes crossings were counted in each simulation for
t∈ 400, 600ð Þ, which number gives in total ca. 2:4� 105 samples for each
histogram.

4. Interaction of the structure and the absorber

Frequency response curves serve as a main evaluation tool when regards an
efficiency estimate of the absorber. It was already shown using the analytical tools
—which are available for the 2D simplified case—that the shape of such non-linear
frequency response curves may be fairly complicated, see [15]. The illustrative
simulation results regarding the complete equation system Eqs. (3) and (18) will be
presented in this section.

The non-linear frequency response curves are shown in Figure 7 for multiple
settings of the absorber and excitation frequency. The reference data of the sample

Figure 6.
The probability density estimates for components uCxjy¼0 and uCy

��
x¼0 for t∈ 400, 600ð Þ and increasing white

noise intensity σ. The absorber parameters are given in Table 1.
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structure and the absorber used during simulation are given in Table 1, which
setting correspond the natural frequency of the structure ω0 ¼ 3 and an appropriate
choice of the ball size r ¼ 3=4. For simplicity, the damping coefficients are set equal
for the absorber, α ¼ 0:1, β ¼ 0:1, and also for the structure, bx ¼ 0:1, by ¼ 0:1. The
harmonic forcing is supposed in the form

ΦAx ¼ F0 sinωt, ΦAy ¼ 0, (23)

where the forcing amplitude F0 varies between 0.1 and 0.7.
The resonance curve of the linear model of the supporting structure without an

absorber is shown in each plot in Figure 7 as the black dashed curve. For cases with
the absorber, the blue solid line indicates the amplitude of the structure response in

Figure 7.
Frequency response curves of the structure equipped with the ball-type absorber. In columns—Left: r ¼ 0:7R;
middle: r ¼ 0:75R—The optimal value; right: r ¼ 0:8R. In rows: From top to bottom, the excitation amplitude
F0 ¼ 0:1, … , 0:7. Black dashed: Frequency response of the linear structure without an absorber, blue solid and
red dotted curves denote frequency response of the structure with the absorber in longitudinal and lateral
components, respectively. Model parameter of the absorber and structure are given in Table 1.
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the longitudinal direction, uAx, the red dotted curve corresponds to the lateral
direction, uAy. Three columns show the response properties of three radii of the ball:
r ¼ 0:7R, 0:75R, 0:8R for the left, the middle and the right column, respectively.
Finally, each row shows the response for a particular value of the excitation ampli-
tude: F0 ¼ 0:1, … , 0:7.

The plots in Figure 7 show that in the depicted case the non-zero amplitude of
the lateral component arises even for the lowest forcing amplitude, namely for the
case of a maximal efficiency of the absorber (r ¼ 0:75R). This effect is naturally
dependent on the physical properties of the structure, namely on its rigidity. In
most cases are the maximal amplitudes of the both components comparable and the
originally unidirectional vibration transforms into a spatial movement of the struc-
ture. See [18] for details. As the excitation amplitude increases, an additional peak
emerges in the resonance frequency of the structure besides the both side extremes.
This peak is significantly lower than that originating in the linear resonance, how-
ever, it appears in the both directions. Comparison of all three columns illustrates
the fact that the efficiency as a function of the tuning of the absorber in terms of the
radius of the ball deteriorates for r>0:75R faster than for r<0:75R. Although this
effect becomes less noticeable when the ratio r=R is getting smaller, in real cases it
would be safer to underestimate the radius of the ball than the opposite.

Character of the responses of both the ball and the structure in the auto-
parametric-resonance regions is mostly quasi-periodic or chaotic. Some basic prop-
erties are evident from Figure 8. For a single forcing amplitude F0 ¼ 0:5 are shown
the frequency response curves of components uCx, uCy, uAx, uAy (four rows) in three
columns for three radii of the ball: r ¼ 0:70R, 0:75R, 0:80R. There are two curves in
each plot which indicate (non-)stationarity of the response; the upper (blue) shows
maximal amplitudes for a given forcing frequency, the lower (yellow) corresponds
to minimal ones, cf. description of Figure 4. The plots are grouped to vertically
stacked pairs. The response of the structure is shown in the second row, i.e., vari-
ables uAx, uAy and, for the sake of comparison, the response of the ball, uCx, uCy, is in

Figure 8.
Detailed frequency analysis of the response of the ball (top row) and the structure (bottom row) for three radii
r ¼ 0:7R, 0:75R, 0:8R in three columns. Plots for lateral and longitudinal components are vertically stacked.
Model parameters as in Figure 7.
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the first row. Part of the relevant linear resonance curve is shown in the row for uAx
as the dashed black curve.

It can be seen that the spatial response is mostly non-stationary. The most
noticeable exception is a hardly visible interval ω∈ 2:78, 2:80ð Þ for r ¼ 0:75R, where
the minimal and maximal response curves are non-zero and coincide for all four
variables; it means that the ball and the structure move in elliptic curves. It is,
however, interesting that whereas in the ball movement is dominant the lateral
direction (uCy > uCx), for the structure is the dominant component the longitudinal
one (uAy < uAx). Another example of such a behaviour is for ω∈ 3:22, 3:24ð Þ. There is
one such interval for r ¼ 0:70R in frequencies above resonance ω∈ 3:44, 3:48ð Þ and
for r ¼ 0:80R in frequencies below resonance: ω∈ 2:55, 2:58ð Þ.

It is also worth noting that the movement of the ball for the depicted case F0 ¼
0:5 reach the equator of the cavity when the radius of the ball is not optimal
(r ¼ 0:7, 0:8). This case should be considered as unacceptable in a real device.
However, it appears that even in this case the absorber is able to work for the sake
of the structure.

The colour map plots in Figure 9 show the sensitivity of the maximal response
of the structure on the radius of the ball (vertical axis) and the loading frequency
(horizontal axis). The coloured spots in both plots correspond to positions of
extremes of frequency response curves in Figure 8 for different values of the radius
r. The value r ¼ 0:75R, which corresponds to cases shown in the middle column of
Figure 8, is indicated by the horizontal dashed line. Two observations are worth
mentioning. The first regards position of one or both extremes when the tuning of
the absorber is changing (variable r). Whereas the upper (right) extreme of the
longitudinal variable decreases in magnitude and moves to higher frequencies for r
decreasing from 0:75R, the position of the lower one remains stable and its value
increases. For r increasing from 0:75R, the lower (left) extreme vanishes and the
position of the upper one increasingly coincides with the resonance frequency of the
structure. This behaviour is natural because for r ! R the absorber ceases to work.
The amplitude of the structure is maximal. Similar behaviour is visible also for the
lateral component in the right-hand plot.

The other observation supports the previously mentioned remark regarding
sensitivity of the absorber efficiency to the radius of the ball. The gradient of the
response amplitudes is significantly steeper when moving up from the level r ¼
0:75R.

Figure 9.
Dependence of the maximal response of the structure on the radius of the ball r and the loading frequency. Left:
Longitudinal component uAx. Right: Lateral component uAy. Model parameters as in Figure 7, F0 ¼ 0:5.
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Similar information is provided by Figure 10. The ball radius (i.e., the natural
frequency of the absorber) is fixed in this case to r ¼ 0:75R and the natural fre-
quency of the structure is changing in the interval ω0 ∈ 2:3, 3:8ð Þ. The frequency
ω0 ¼ 3 used in Figures 7–9 is indicated by the horizontal dashed line. It passes both
extreme areas in places where the amplitudes are relatively small, a situation that
corresponds to the setting shown in the middle column of plots in Figure 7, row for
F0 ¼ 0:5.

5. Conclusions

The tuned mass absorbers are supposed to work in semi-trivial mode, avoiding
any type of the autoparametric resonance effects described in this chapter. They are
traditionally designed using a simplified linear, or non-linear but planar, approach,
which is adequate to such an expected behaviour. However, the lack of sufficient
damping makes the ball-type vibration absorbers prone to unwanted
autoparametric effects, which stem from the non-linear character of the system.
Thus correct and safe design has to consider possible occurrence of the
autoparametric resonance. To facilitate this procedure, the non-linear mathematical
model of the ball-type absorber was presented and analysed in connection to a
linear model of an elastic supporting structure. The model of the absorber consists
of six degrees of freedom constrained by three non-holonomic relations. The com-
plete system with the structure comprises ten first-order ordinary differential
equations.

It was shown that in systems with small damping, the desired planar STS is
prone to loss of stability even for small excitation amplitudes. This danger increases
with increasing excitation amplitude. Although the resonance interval is relatively
narrow, the spatial response of the absorber can emerge also due to a broadband
random excitation, provided that the intensity of the random noise exceeds a
certain limit. The spatial movement of the ball within the absorber is unfavourably
stable with respect to random perturbations that correlate with the resonance fre-
quency of the structure.

The efficiency of the absorber is obviously dependent on a proper tuning. It was
shown that the absorber efficiency deteriorates faster if the ratio between radii of
the ball and the cavity is greater than the optimal one, rather than in the opposite

Figure 10.
Dependence of the maximal response of the structure on the natural frequency of the structure and the loading
frequency. Left: Longitudinal component uAx. Right: Lateral component uAy. Model parameters as in Figure 7,
F0 ¼ 0:5.
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case. Although this effect becomes less noticeable when the ratio r=R is getting
smaller, in real cases it would be safer to underestimate the radius of the ball with
respect to the cavity, rather than the opposite.

Although the described resonance state should be preferably avoided, it appears,
however, that a limited induced lateral movement of the ball may help to dissipate
the harmonic loading energy and stabilise the structure. However, this mechanism
should not be relied upon in the design procedure as it can set off movement in
dangerous non-linear high-energy limit cycles.

Both cases of harmonic and random excitation indicate a need for further inves-
tigation of the topic. A more thorough parametric study should comprise different
system parameters and structure types in the case of harmonic loading. A deeper
stochastic analysis is also necessary, which should comprise the effect of a
supporting structure. Nevertheless, it can be concluded that autoparametric reso-
nance effects may be encountered in practice more often than expected. This can be
dangerous for structures if adequate countermeasures are not applied.
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