Environmental Sustainability
Preparing for Tomorrow

Edited by Syed Abdul Rehman Khan
Environmental Sustainability - Preparing for Tomorrow

Edited by Syed Abdul Rehman Khan

Published in London, United Kingdom
We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,400+
Open access books available

133,000+
International authors and editors

160M+
Downloads

156
Countries delivered to

Top 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Meet the editor

Syed Abdul Rehman Khan is a professor of Supply Chain and Logistics Management. Dr. Khan achieved his Certified Supply Chain Professional (CSCP) certificate from the United States and completed his postdoctoral fellowship at Tsinghua University, Beijing, China. Since 2020, Dr. Khan has been affiliated with Xuzhou University of Technology, China, as an associate professor. He has more than nine years of core experience in supply chain and logistics at industry and academic levels. He has attended several international conferences and has been invited as a keynote speaker in different countries. He has published more than 100 scientific research papers in well-renowned international journals and conferences. He is also a regular contributor to conferences and workshops worldwide.
Contents

Preface
15

Section 1
Introduction
1

Chapter 1
Poor Air Quality: A Dark Cloud of Filth Poisons
by Syed Abdul Rehman Khan, Adeel Shah and Zhang Yu
3

Chapter 2
Implication of Secondary Atmospheric Pollutants in the Air Quality: A Case-Study for Ozone
by David Galán Madruga
17

Chapter 3
Particle and Carbon Monoxide Atmospheric Pollution in the City of Tepic, Nayarit, Mexico
by Mario García, Héctor Ulloa, Omar García, Hermes Ramírez, Aida Fajardo, Claudia Saldaña, Sarah Messina and Yamilet Rodríguez
37

Section 2
Air Pollution
59

Chapter 4
Characterization of Atmospheric Mercury in the High-Altitude Background Station and Coastal Urban City in South Asia
by Manikanda Bharath Karuppasamy, Srinivasalu Seshachalam, Usha Natesan and Karthik Ramasamy
61

Chapter 5
Health Impacts of Air Pollution
by Muhammad Ikram Bin A Wahab
77
Chapter 6
Medellin Air Quality Initiative (MAUI)
by Andres Yarce Botero, Olga Lucia Quintero Montoya, Santiago Lopez-Restrepo, Nicolás Pinel, Jhon Edinson Hinestroza, Elias David Niño-Ruiz, Jimmy Anderson Flórez, Angela María Rendón, Monica Lucia Alvarez-Laínez, Andres Felipe Zapata-Gonzalez, Jose Fernando Duque Trujillo, Elena Montilla, Andres Pareja, Jean Paul Delgado, Jose Ignacio Marulanda Bernal, Jaime Andres Betancur, Alejandro Vélez, Arjo Segers, Arnold Heemink, Juan Ernesto Soto, Bibiana Esperanza Boada Sanabria and Sara Lorduy

Chapter 7
Data Assimilation as a Tool to Improve Chemical Transport Models Performance in Developing Countries
by Santiago Lopez-Restrepo, Andrés Yarce Botero, Olga Lucia Quintero, Nicolás Pinel, Jhon Edinson Hinestroza, Elias David Niño-Ruiz, Jimmy Anderson Flórez, Angela Maíra Rendón, Monica Lucia Alvarez-Laínez, Andres Felipe Zapata-Gonzalez, Jose Fernando Duque Trujillo, Elena Montilla, Andres Pareja, Jean Paul Delgado, Jose Ignacio Marulanda Bernal, Bibiana Boada, Juan Ernesto Soto, Sara Lorduy, Jaime Andres Betancur, Arjo Segers and Arnold Heemink

Chapter 8
A Synthesis of the Information Given by Temporal Data Series: The Representative Day
by Tiziano Tirabassi and Daniela Buske

Chapter 9
Why Airborne Pesticides Are So Dangerous
by Tomaz Langenbach, Tácio M. P. de Campos and Luiz Querino Caldas

Chapter 10
Air Pollution, Health and Perception
by Banwari Dandotiya

Section 3
Environmental Sustainability Practices

Chapter 11
Aerotechnogenic Pollution of Boreal Forests in Northern Europe
by Alexander Evdokimov

Chapter 12
Influence of Microenvironments and Personal Activities on Personal PM$_{2.5}$ Exposures among Children and Adults
by Mahima Habil, David D. Massey and Ajay Taneja

Chapter 13
Fossil Fuel Fires: A Forgotten Factor of Air Quality
by Łukasz Kruszewski
Chapter 14
Evaluation of Particulate Matter Pollution in Micro-Environments of Office Buildings—A Case Study of Delhi, India
by Saurabh Mendiratta, Sunil Gulia, Prachi Goyal and Sanjeev Kumar Goyal

Chapter 15
Correlation between Air Quality and Wastewater Pollution
by Karzan Mohammed Khalid
Due to the lack of environmental policies and unplanned industrialization, the world faces air pollution and climate change challenges. No doubt increasing air pollution is creating an alarming situation for the fauna and flora. In addition, manufacturing and logistical operations are heavily dependent on fossil fuels and energy consumption, fueling air pollution.

Air quality is measured through the Air Quality Index (AQI), based on the concentration of pollutants present in the air in a particular area. Poor air quality has adverse impacts on human, animal, and plant life. Further, air pollution is also a cause of acidic rain, which directly and/or indirectly affects the agricultural sector and converts into water pollution.

With the help of the Clean Air Act of the 1970s, the United States significantly controlled air pollution in their territories. However, 80% of the world’s energy budget comes from burning fossil fuels, thus the world needs collective efforts to reduce dependence on burning fossil fuels and recover environmental sustainability by adopting renewable energy sources and green practices.

We would like to thank the contributors of the book for their extraordinary hard work. We would also like to thank IntechOpen and Author Service Manager Ms. Iva Lipovć for her help in coordinating and facilitating this project. We also extend our thanks to IntechOpen publisher for all of their support.

Thank you,

Dr. Syed Abdul Rehman Khan, PhD
Xuzhou University of Technology,
Xuzhou, China

Beijing Key Laboratory of Urban Spatial Information Engineering,
Beijing, China
Preface

Due to the lack of environmental policies and unplanned industrialization, the world faces air pollution and climate change challenges. No doubt increasing air pollution is creating an alarming situation for the fauna and flora. In addition, manufacturing and logistical operations are heavily dependent on fossil fuels and energy consumption, fueling air pollution.

Air quality is measured through the Air Quality Index (AQI), based on the concentration of pollutants present in the air in a particular area. Poor air quality has adverse impacts on human, animal, and plant life. Further, air pollution is also a cause of acidic rain, which directly and/or indirectly affects the agricultural sector and converts into water pollution.

With the help of the Clean Air Act of the 1970s, the United States significantly controlled air pollution in their territories. However, 80% of the world's energy budget comes from burning fossil fuels, thus the world needs collective efforts to reduce dependence on burning fossil fuels and recover environmental sustainability by adopting renewable energy sources and green practices.

We would like to thank the contributors of the book for their extraordinary hard work. We would also like to thank IntechOpen and Author Service Manager Ms. Iva Lipovč for her help in coordinating and facilitating this project. We also extend our thanks to IntechOpen publisher for all of their support.

Thank you,

Dr. Syed Abdul Rehman Khan, PhD
Xuzhou University of Technology,
Xuzhou, China

Beijing Key Laboratory of Urban Spatial Information Engineering,
Beijing, China
Section 1

Introduction
Section 1

Introduction
Chapter 1
Poor Air Quality: A Dark Cloud of Filth Poisons
Syed Abdul Rehman Khan, Adeel Shah and Zhang Yu

Abstract
Our home, the Earth, is the rarest planet in universe the to sustain life. The thing which makes it unique amongst heavenly bodies is balance in the environment. This balance is the key to sustain life for millions of years. Air is one of the most critical components of mother nature; it provides oxygen for all species, both plant and animal, to live. Air not only provides oxygen but is also essential for keeping the human body cool. The advantages of air are countless, from the cloud, weather, humidity, dust, and pollen migration to burning fire; without it, life will not continue. Air is made up of chemical components, and if pollutants added, it would become harmful for all living beings. The chapter put forward is to highlight the importance of the quality of ambient air, standards to measure, and sources of pollution. Further in the chapter, the impacts of polluted air on human health and the countries' financial obstacles are discussed. The chapter concludes with a summary and recommendations for policymakers, NGOs, and affected people to better their lives and repair the damage caused to nature' s precious gift, the air.

Keywords: Air quality, pollutants, and AQI

1. Introduction
Human beings need combustion energy to survive and live their daily lives. The energy needs are constant in the everyday affair, from cooking to use electricity. Out of the most abundant of all fuels in an urban and rural setting in developing countries are coal, wood, methane gas, and cow dengue. The heat produced from the fuel is used for cooking, keeping warm, and boiling water for sanitation. The combustion fuels mainly categorize as gas, liquid, and solids [1]. Solid fuels need an air mixture to fully combust and provide energy [2]. Such fuels produce heat for our well-being and produce gases that affect the air around us. A good quality air constitutes seventy-eight percent nitrogen, twenty-one percent oxygen, one percent other gases (National Geographic) for human beings to survive. In the one percent of other gases, 0.1% of gases are CO2, methane, water, and neon gas [3]. The combustion of solid fuel results in carbon monoxide emissions, particulate matter (PM), and organic compounds [4]. The emitted gases badly affect air quality and thus are termed as pollution [5].

There are many other activities in the daily walk of human life which are adversely affecting air quality. The leading causes are the construction of megacities, manufacturing of goods, usage of pesticides, automobiles, and airplanes [6]. The polluted emission from solid fuels and biomass in domestic use has declined since 1990 [7] due to the availability of liquefied petroleum gas (LPG) and methane
Chapter 1
Poor Air Quality: A Dark Cloud of Filth Poisons

Syed Abdul Rehman Khan, Adeel Shah and Zhang Yu

Abstract

Our home, the Earth, is the rarest planet in-universe the to sustain life. The thing which makes it unique amongst heavenly bodies is balance in the environment. This balance is the key to sustain life for millions of years. Air is one of the most critical components of mother nature; it provides oxygen for all species, both plant and animal, to live. Air not only provides oxygen but is also essential for keeping the human body cool. The advantages of air are countless, from the cloud, weather, humidity, dust, and pollen migration to burning fire; without it, life will not continue. Air is made up of chemical components, and if pollutants added, it would become harmful for all living beings. The chapter put forward is to highlight the importance of the quality of ambient air, standards to measure, and sources of pollution. Further in the chapter, the impacts of polluted air on human health and the countries' financial obstacles are discussed. The chapter concludes with a summary and recommendations for policymakers, NGOs, and affected people to better their lives and repair the damage caused to nature’s precious gift, the air.

Keywords: Air quality, pollutants, and AQI

1. Introduction

Human beings need combustion energy to survive and live their daily lives. The energy needs are constant in the everyday affair, from cooking to use electricity. Out of the most abundant of all fuels in an urban and rural setting in developing countries are coal, wood, methane gas, and cow dengue. The heat produced from the fuel is used for cooking, keeping warm, and boiling water for sanitation. The combustion fuels mainly categorize as gas, liquid, and solids [1]. Solid fuels need an air mixture to fully combust and provide energy [2]. Such fuels produce heat for our well-being and produce gases that affect the air around us. A good quality air constitutes seventy-eight percent nitrogen, twenty-one percent oxygen, one percent other gases (National Geographic) for human beings to survive. In the one percent of other gases, 0.1% of gases are CO2, methane, water, and neon gas [3]. The combustion of solid fuel results in carbon monoxide emissions, particulate matter (PM), and organic compounds [4]. The emitted gases badly affect air quality and thus are termed as pollution [5].

There are many other activities in the daily walk of human life which are adversely affecting air quality. The leading causes are the construction of megacities, manufacturing of goods, usage of pesticides, automobiles, and airplanes [6]. The polluted emission from solid fuels and biomass in domestic use has declined since 1990 [7] due to the availability of liquefied petroleum gas (LPG) and methane...
gas. However, in developing countries, households in cities are still using solid fuel and biomass for heating and cooking [8]. The rural areas in developing countries are mainly using biomass and solid fuel for daily chores [9]. The pollution caused by domestic emission results in death, and it has increased since 1990 significantly in emerging economies [7, 10].

The natural sources are also affecting air quality in the atmosphere, and most significantly, they are volcanoes and wildfires. However, anthropogenic behaviors remain the most prominent [11]. The rapid deterioration of air quality started since oil discovery and byproducts due to rapid industrialization globally [12]. The consumption of fossil fuel has increased mammoth in the 21st century due to the human population explosion. It is a significant pollution source to negatively impact the ecosystem [13]. The air quality and pollution are not localized. However, a transboundary problem [14], the pollutant emitted in a country can transport through the wind in the atmosphere and thus need global attention and regional collaboration [15].

The air quality is measured through a numerical index is used know as the “Air Quality Index (AQI),” which gauges pollution concentration [5]. The AQI serves to identify air pollution levels impacting the health of the public. The assessment of air pollution by the measure helps policymakers strategize reduction by curbing activities serving as the source [16]. The data for the indexes gathers from worldwide city stations responsible for monitoring air quality. The AQI data is available online for the general public to use in studies and reports [17]. The “US Environmental Protection Agency (USEPA) “ is first to use AQI in the year 1999, and then the index modified to use six chemicals measurement in the air: “carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), coarse particulate matter (PM10), fine particulate matter (PM2.5), and sulfur dioxide (SO2)” [18]. The AQI unit ranges from “0 to 500,” and the values are directly proportional to the air’s chemical concentration; thus higher the value greater the effect on health [19, 20]. As the AQI value exceeds 100, the air quality becomes unhealthy for certain groups of people. The AQI’s values are color-coded to reflect the severity of pollutant concentration (see Figure 1) [22].

<table>
<thead>
<tr>
<th>AQI Category and Color</th>
<th>Index Value</th>
<th>Description of Air Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Green</td>
<td>0 to 50</td>
<td>Air quality is satisfactory, and air pollution poses little or no risk.</td>
</tr>
<tr>
<td>Moderate Yellow</td>
<td>51 to 100</td>
<td>Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.</td>
</tr>
<tr>
<td>Unhealthy for Sensitive Groups Orange</td>
<td>101 to 150</td>
<td>Members of sensitive groups may experience health effects. The general public is less likely to be affected.</td>
</tr>
<tr>
<td>Unhealthy Red</td>
<td>151 to 200</td>
<td>Some members of the general public may experience health effects. Members of sensitive groups may experience more serious health effects.</td>
</tr>
<tr>
<td>Very Unhealthy Purple</td>
<td>201 to 300</td>
<td>Health alert: The risk of health effects is increased for everyone.</td>
</tr>
<tr>
<td>Hazardous Maroon</td>
<td>301 and higher</td>
<td>Health warning of emergency conditions: everyone is more likely to be affected.</td>
</tr>
</tbody>
</table>

Figure 1. The EPA AQI [21].
4. Environmental Sustainability - Preparing for Tomorrow

However, in developing countries, households in cities are still using solid fuel and biomass for heating and cooking [8]. The rural areas in developing countries are mainly using biomass and solid fuel for daily chores [9]. The pollution caused by domestic emission results in death, and it has increased significantly in emerging economies [7, 10].

The natural sources are also affecting air quality in the atmosphere, and most significantly, they are volcanoes and wildfires. However, anthropogenic behaviors remain the most prominent [11]. The rapid deterioration of air quality started since oil discovery and byproducts due to rapid industrialization globally [12]. The consumption of fossil fuel has increased mammoth in the 21st century due to the human population explosion. It is a significant pollution source to negatively impact the ecosystem [13]. The air quality and pollution are not localized. However, a transboundary problem [14], the pollutant emitted in a country can transport through the wind in the atmosphere and thus need global attention and regional collaboration [15].

The air quality is measured through a numerical index is used know as the “Air Quality Index (AQI),” which gauges pollution concentration [5]. The AQI serves to identify air pollution levels impacting the health of the public. The assessment of air pollution by the measure helps policymakers strategize reduction by curbing activities serving as the source [16]. The data for the indexes gathers from worldwide city stations responsible for monitoring air quality. The AQI data is available online for the general public to use in studies and reports [17]. The “US Environmental Protection Agency (USEPA)” is first to use AQI in the year 1999, and then the index modified to use six chemicals measurement in the air: “carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), coarse particulate matter (PM10), fine particulate matter (PM2.5), and sulfur dioxide (SO2)” [18]. The AQI unit ranges from “0 to 500,” and the values are directly proportional to the air’s chemical concentration; thus higher the value greater the effect on health [19, 20]. As the AQI value exceeds 100, the air quality becomes unhealthy for certain groups of people. The AQI’s values are color-coded to reflect the severity of pollutant concentration (see Figure 1).

Figure 1. The EPA AQI [21].

The pollutant matter’s size defines the PM; there are two types of sizes used in AQI: 2.5 and 10 microns (see Figure 2 for size comparison) [23]. Many government agencies and NGOs like “IQAIR” collaborate with like-minded partners to report AQI to the public. The website also publishes reports yearly basis, and the result reflected are in PM2.5. There are many other websites which reflects air quality to view by tourists, policymakers, and certain groups with health conditions (see appendix 1 for websites).

2. Low air quality and society

The low air quality impacts plants, crops, aquatic water life, humans, and animals [24]. Globally, AQI standards protect the habitat; an example is the European Union’s standards to protect vegetation. The transportation sector is also a significant source causing degradation, adding “acidification, eutrophication, and ozone.” Acidification occurs due to the pH balance change of perception by the chemical reaction between “nitrogen dioxide, sulfur dioxide, nitric acid (HNO3), and sulfuric acid” to affect lake water, plants, and crops [24]. Carbon dioxide in the air reacts with water in the oceans to produce carbonic acid. The acid lowers the ocean’s pH to impact sea life and is the primary cause of coral reefs [25]. The ozone is also a significant cause that harms human health and damage plants and jungles. The smog caused by ozone causes respiratory problems in humans and animals. It also interrupts the photosynthesis process in plants weakening to fight diseases, insects, and weather impacts [26].

Air pollution is responsible for killing millions; according to [27], seven million people die worldwide each year. In 2015, 2.8 million and 4.2 million people died from household and environmental air pollution [7, 10]. According to Hanson et al. [28], the same year’s deaths categorize as “19% of all cardiovascular deaths worldwide, 24% of ischemic heart disease deaths, 21% of stroke deaths, and 23% of lung cancer deaths.” Kioumourtzoglou et al. [29] studied the impact of air pollution and found evidence of the risk factor for neurodevelopment conditions in kids and neurodegenerative conditions in grownups. The effects of air pollution on humans depend on exposure, age, immunity, and predisposing conditions [11], resulting in nausea, respiratory problems, skin inflammation, organ failures, and cancer [30].
epidemiological research on air pollution suggests that adverse effects primarily on cardiovascular and respiratory organs; however, the other organs may also damage [30–33]. WHO [27] published in their report below death percentages:

- “29% of all deaths and disease from lung cancer
- 17% of all deaths and disease from an acute lower respiratory infection
- 24% of all deaths from stroke
- 25% of all deaths and disease from ischemic heart disease
- 43% of all deaths and disease from chronic obstructive pulmonary disease.”

Many studies suggest that air pollution long-term exposure to high and low pollutant concentrations affects the respiratory system [34]. The usual symptoms are irritation of nose and throat followed by bronchoconstriction and acute dyspnoea in asthmatic patients by exposure of sulfur dioxide [35] and nitrogen oxides [36]. The PM in air pollution enters the lung (see Figure 3) to affect alveolar epithelium [38], ozone starts lung inflammation [39], and nitrogen oxides increase the chances of lung infections [40]. The more prolonged exposure to ozone reduces lung function [41, 42]. Exposure to heavy metals increases the risk of asthma, emphysema, and lung cancer [43, 44].

Air pollution also affects the cardiovascular system as carbon monoxide joins with hemoglobin to reduce its ability to transmit oxygen [45]. It reduces oxygen availability in body organs, impacting their functions (see Figure 4 for AQI chart and health recommendation). Blood coagulation is another problem that occurs due to PM presence in the body [47]. Similarly, air pollution may cause blood clotting, resulting in obstruction in cardiac blood vessels [48]. The nervous system in the human body exaggerates by inhalation of “heavy metals (lead, mercury, and arsenic) and dioxins” [11]. Researchers have found linkages of neurotoxicity and memory loss, sleep disorders, mood swings, emotional imbalance, impaired vision,
epidemiological research on air pollution suggests that adverse effects primarily on cardiovascular and respiratory organs; however, the other organs may also damage [30–33]. WHO [27] published in their report below death percentages:

- 29% of all deaths and disease from lung cancer
- 17% of all deaths and disease from an acute lower respiratory infection
- 24% of all deaths from stroke
- 25% of all deaths and disease from ischemic heart disease
- 43% of all deaths and disease from chronic obstructive pulmonary disease.

Many studies suggest that air pollution long-term exposure to high and low pollutant concentrations affects the respiratory system [34]. The usual symptoms are irritation of nose and throat followed by bronchoconstriction and acute dyspnoea in asthmatic patients by exposure of sulfur dioxide [35] and nitrogen oxides [36]. The PM in air pollution enters the lung (see Figure 3) to affect alveolar epithelium [38], ozone starts lung inflammation [39], and nitrogen oxides increase the chances of lung infections [40]. The more prolonged exposure to ozone reduces lung function [41, 42]. Exposure to heavy metals increases the risk of asthma, emphysema, and lung cancer [43, 44].

Air pollution also affects the cardiovascular system as carbon monoxide joins with hemoglobin to reduce its ability to transmit oxygen [45]. It reduces oxygen availability in body organs, impacting their functions (see Figure 4 for AQI chart and health recommendation). Blood coagulation is another problem that occurs due to PM presence in the body [47]. Similarly, air pollution may cause blood clotting, resulting in obstruction in cardiac blood vessels [48]. The nervous system in the human body exaggerates by inhalation of “heavy metals (lead, mercury, and arsenic) and dioxins” [11]. Researchers have found linkages of neurotoxicity and memory loss, sleep disorders, mood swings, emotional imbalance, impaired vision, and slur speech [45, 49]. Air pollution can increase the risk of pregnancy complications by impacting fetus development [50]. In the case of exposure to lead and heavy metal, it risks abortion [11].

3. Low air quality and financial obstacles

Air pollution also influences economic conditions in a country. According to McCarthy [51], air pollution in China is USD 900 billion, and in the USA, it estimates to cost USD 600 billion. The deaths by the burning of fossil fuel and coal are three times higher than road accidents. The estimated economic cost of air pollution is USD 2.9 trillion that equates to 3.3 percent GDP of the world [52]. According to the report, the disease and treatment due to air treatment cost disability from chronic diseases costing USD 200 billion in 2018. Sick leave of absence and premature birth cost around USD 100 and USD 90 billion, respectively [51].

Similarly, India’s air pollution cost a staggering yearly USD 150 billion (see Figure 5 for GDP comparisons). The labor hour lost due to illness and absences due to health-related issues caused by air pollution directly impacts the labor market. It results in less productivity and reduced labor contribution to GDP [54].

The above are direct economic cost implications of air pollution; however, indirect costs also impact the country’s economy (see Figure 6 for direct and indirect cost) [55]. According to OECD [56], air pollution is “The indirect economic effects come from reallocation of the factors of production across the economy, changes in international trade and changes in savings, as changes in relative prices induce them.” The report further explains that unlike direct cost, which affects GDP, indirect cost increases gradually. Consumers and environment watchdogs globally aware of air pollution on the environment and remain concerned for ethical and sustainable manufacturing practices. According to Qiu et al. [57], air pollution and consumers’ negative sentiment correlate and impact buying behavior. The textile and apparel exporting sector in developing countries exports goods, which significantly impacts GDP. The industry is also responsible for air pollution in manufacturing countries.
In the textile and apparel sector, in which many processes use chemicals for treatment. Other than chemicals, the loss of short fiber called lint is air pollution hazardous to labor and people living near the factories [58]. According to Karthik and Gopalakrishnan [58], the following are the source of air pollution in the textile and garment industry (see Table 1): Similar studies by Haseeb et al. [59] and Heydebreck et al. [60] confirm the positive contribution of carbon dioxide CO2 and poly-fluoroalkyl substances (PFAS) in the textile and clothing industry.

An example of cotton fiber is relevant to the indirect cost of air pollution socioeconomically. An estimate of 25% of the pesticides used globally is the direct cause of cotton production. Further organic cotton is another demanded product in the west, used in fabric and garments label as “ECO” [61]. The water uses for irrigation is natural and rainwater. In air pollution, the rains will become a source of acid rain and damage the crop, resulting in economic loss to the country’s farmers and exports [62].

The other primary air pollutant of the textile and garment industry is “toxic heavy metals, biochemical oxygen demand (BOD), chemical oxygen demand (COD), residual chlorine, dissolved solids, color, sludge, used oil, dyes, and non-biodegradable organics” [63]. Air pollution is a CSR activity in which organizations and governments are very conscious. Sri Lankas government in 2015 voluntarily designed and produce products that come under “ethical manufacturing” and to certify its industry to a complaint of “Garments without Guilt Certification” and
In the textile and apparel sector, in which many processes use chemicals for treatment. Other than chemicals, the loss of short fiber called lint is air pollution hazardous to labor and people living near the factories [58]. According to Karthik and Gopalakrishnan [58], the following are the source of air pollution in the textile and garment industry (see Table 1): Similar studies by Haseeb et al. [59] and Heydebreck et al. [60] confirm the positive contribution of carbon dioxide CO2 and poly-fluoroalkyl substances (PFAS) in the textile and clothing industry.

An example of cotton fiber is relevant to the indirect cost of air pollution socioeconomically. An estimate of 25% of the pesticides used globally is the direct cause of cotton production. Further organic cotton is another demanded product in the west, used in fabric and garments label as “ECO” [61]. The water uses for irrigation is natural and rainwater. In air pollution, the rains will become a source of acid rain and damage the crop, resulting in economic loss to the country’s farmers and exports [62].

The other primary air pollutant of the textile and garment industry is “toxic heavy metals, biochemical oxygen demand (BOD), chemical oxygen demand (COD), residual chlorine, dissolved solids, color, sludge, used oil, dyes, and non-biodegradable organics” [63]. Air pollution is a CSR activity in which organizations and governments are very conscious. Siri Lankas government in 2015 voluntarily designed and produce products that come under “ethical manufacturing” and to certify its industry to a complaint of “Garments without Guilt Certification” and Figure 6.

Table 1.
Sources of air pollution in the textile and garment industry [58].

<table>
<thead>
<tr>
<th>Due to manufacturing</th>
<th>Due to diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Boilers”</td>
<td>“Solvent-based”</td>
</tr>
<tr>
<td>“Ovens”</td>
<td>“Wastewater treatment.”</td>
</tr>
<tr>
<td>“Storage tanks.”</td>
<td>“Warehouses”</td>
</tr>
<tr>
<td></td>
<td>“Spills”</td>
</tr>
</tbody>
</table>

“Sustainable Environmental Friendly Manufacturing” to target EU markets and consumers [64].

4. Conclusion and recommendations

Low air quality is now a global phenomenon in which all countries are giving due consideration to improvement. Developing countries are the worst affected; according to [65] 21 out of 30 worst air polluted cities belong to India. New Dehli ranks at number 1 most air polluted city in the world (see Figure 7). Incontinent, Asia ranks no. 1 as most countries are developing economies and rely heavily on fossil fuel and coal to fulfill energy demands. Air pollution impacting on labor productivity and health care systems. China has turned around and is investing heavily to reduce air pollution [66]. The air transportation emission standards in China are at par with European standards [67]. Mainly china is investing in solar energy, and by 2024 it will be generating twice in comparison to the USA [68]. The world has to unite in the effort as air pollution is a transborder phenomenon and needs to combine effort from regional countries. By acting together, the world can safeguard the habitats that are getting toxic and affect billions of human lives, plants and trees, and aquatic life, essential for the ecosystem’s substance.

The air pollution can reduce to a level if collective efforts are in the right direction. The awareness programs should start in developing countries, educating the masses about the effects of air pollution on human health and the environment. The primary cause of air pollution is due to transportation. The developing countries should invest in upgrade the transportation system in the cities. Local bodies and city policymakers should provide facilities to reduce traffics on the road. Mobile Applications should introduce in for pooling resources and transportation for passengers going to the same destination. Air pollution is because of the high usage of pesticides.

and stubble burning to vacate lands for the next harvest in rural areas. The government should make laws to restrict and educate the masses in this regard. The farmers should use the right amount of pesticides to avoid excess chemicals in the air.

People should avoid trash burning, and the government should implement a trash disposal system. Countries should invest in alternate energy, and countries with prolonged exposure to sunlight and coastal areas with wind should identify to generate energy from solar and wind. These are clean energy and can generate energy with long term wait, unlike hydraulic power. Hydral power generation is not possible everywhere. Tree plantation is also essential to reduce the greenhouse effect and decrease CO2 in the atmosphere. The government should invest and enact laws for the purpose. All fuels containing lead and heavy metal must put to a legal stop. Euro 5 standard fuels are the best examples; the compliant fuel has
shallow content polycyclic aromatic hydrocarbons and sulfur to reduce unsafe environmental discharges. Education is the best weapon to use in the fight against air pollution, and it needs government and joint public effort, but once achieved, the whole community will enjoy the fruits and generations to come. Earth is unique and the only home which could sustain living beings. It is human beings’ moral obligation to protect them from degradation, only possible by stopping all types of activities that cause air pollution.

A. Appendix 1

<table>
<thead>
<tr>
<th>Website</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Now</td>
<td>https://www.airnow.gov/</td>
</tr>
<tr>
<td>World's Air Pollution</td>
<td>https://waqi.info/</td>
</tr>
<tr>
<td>Purple Air</td>
<td>www.purpleair.com</td>
</tr>
<tr>
<td>EPA United States Environmental Protection Agency</td>
<td>www.epa.gov/outdoor-air-quality-data</td>
</tr>
<tr>
<td>Air Pollution in the world</td>
<td>www.aqicn.org/map/world/</td>
</tr>
</tbody>
</table>
Environmental Sustainability - Preparing for Tomorrow

Shallow content: Polycyclic aromatic hydrocarbons and sulfur to reduce unsafe environmental discharges. Education is the best weapon to use in the fight against air pollution, and it needs government and joint public effort, but once achieved, the whole community will enjoy the fruits and generations to come. Earth is unique and the only home which could sustain living beings. It is human beings' moral obligation to protect them from degradation, only possible by stopping all types of activities that cause air pollution.

A. Appendix 1

<table>
<thead>
<tr>
<th>Website</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Now</td>
<td>https://www.airnow.gov/</td>
</tr>
<tr>
<td>World’s Air Pollution</td>
<td>https://waqi.info/</td>
</tr>
<tr>
<td>Purple Air</td>
<td>www.purpleair.com</td>
</tr>
<tr>
<td>EPA United States Environmental Protection Agency</td>
<td>www.epa.gov/outdoor-air-quality-data</td>
</tr>
<tr>
<td>Air Pollution in the world</td>
<td>www.aqicn.org/map/world/</td>
</tr>
</tbody>
</table>

Figure 7. Ten air polluted city in the world [46].

Author details

Syed Abdul Rehman Khan¹,²*, Adeel Shah³ and Zhang Yu²

1 School of Management, Xuzhou University of Technology, Xuzhou, China
2 School of Economics and Management, Chang’an University, Xi’an, China
3 Institute of Business Management (IOBM), Karachi, Pakistan

*Address all correspondence to: sarehman_cscp@yahoo.com

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

WHO. (2020). Air pollution. https://www.who.int/health-topics/air-pollution#tab=tab_1

the immune response. Nature Immunology, 1-10.

[47] Altemose, B., Robson, M. G., Kipe, H. M., Strickland, P. O., Meng, Q., Gong, J., Huang, W., Wang, G., Rich,

Chapter 2

Implication of Secondary Atmospheric Pollutants in the Air Quality: A Case-Study for Ozone

David Galán Madruga

Abstract

Air quality and Public Health are concepts linked to each other. Within the frame of Public Health, a wide range of external factors, derived from rising wastes towards all environmental compartments, may generate harmful effects on human health. In particular, the release of polluting compounds into the ambient air coming from emission sources is a paramount concern, given that atmospheric pollution is considered the most significant environmental risk for human beings. In this context, while this chapter to provide an overview of the most critical air pollutants that can depict air quality status in terms of exposure, potential effects, emission sources, and types of pollutants, the principal purpose is focused on secondary atmospheric pollutants, emphasizing to tropospheric ozone as a significant pollutant within this group. In this sense, aspects such as the atmospheric ozone chemistry responsible for its formation and its spatial distribution into vast territories, including urban, suburban, and rural environments, were conveniently explained. Based on displayed evidence, primaries air pollutants, mainly nitrogen oxides, volatile organic compounds, and carbon monoxide, are responsible for the tropospheric ozone’s formation; therefore, reducing their levels could be translated into a decrease of ozone concentrations at the ground-level. Attending to the ozone distribution, the revealed findings lead to the next concentration gradient: higher ozone levels in rural, followed by suburban and urban sites, respectively. Finally, it can be concluded that the importance of tropospheric ozone within air quality lies in the possibility of producing harmful effects on human health and generating climate changes, either directly or indirectly.

Keywords: air quality, atmospheric pollution, emission sources, secondary polluting compounds, tropospheric ozone’s chemistry, and importance of ozone within air quality frame

1. Introduction

The human being’s health is regulated by different agents, such as adequate alimentation, appropriate sanitation and hygiene, safe workplaces, and sustainable cities, among others. In this sense, environmental health points to be one of the most relevant factors influencing human beings’ well-being, given the existing direct relationship between human beings and the surrounding environment. Therefore, both variables (environment and human being) should keep an equilibrium.
Nevertheless, within that binomial, human activities can negatively affect the whole environment generating environmental variations at the contamination level, or climate change, at the global level [1–3]. As a consequence, a deteriorated environment can seriously affect the human being’s health.

In this sense, the population growth featured over the last decades has been translated into a fast industrial grown, an increment of transportation networks and energy demands, generating a negative effect on the different environmental departments due to rising wastes [4]. In particular, the rise of polluting emissions into the atmosphere leads to a decrease in air quality, thereby becoming a public health issue. In fact, atmospheric pollution is considered the major environmental risk to human being’s health worldwide [5].

According to Landy (see [6]), atmospheric pollution is defined as the presence in the air of one or more contaminants in such a concentration and of such duration as causing a nuisance or being injurious to human life, animal life, or vegetation. Therefore, atmospheric pollution and air quality are intimately linked, so a lower level of atmospheric pollution carries a higher air quality and vice versa.

Atmospheric pollution covers a wide variety of pollutants, such as gaseous compounds (organic and inorganic chemicals) and airborne particulate matter. The pollutants used as air quality indicators are defined as “criteria air pollutants” [see https://www.environment.gov.au/protection/air-quality/air-pollutants, accessed October 28, 2020], and they are described as coming. SO2, polluting species as nitrogen oxides (NOx), sulfur oxides (SO2), carbon monoxide (CO), ozone (O3), particulate matter (PM), and lead (Pb) are air pollutants commonly found in urban environments. In the case of nitrogen oxides, the most paramount compounds at the atmospheric level point to nitrogen monoxide (NO) and nitrogen dioxide (NO2). In ambient air, NO is a highly unstable molecule rapidly oxidizing in the presence of oxygen, yielding nitrogen dioxide; therefore, they sustain a direct chemistry relationship. For this motive, NO is also considered a free radical [7]. NO2 is a gaseous reddish-brown compound, toxic and irritating. It has a characteristic pungent odor and is a strong oxidant, and reacts with water to produce nitric acid (HNO3). While at the high ambient NO concentrations, this oxidation reaction is based on the oxygen (O2) presence [8], at the low levels, the molecular O3 is responsible for oxidizing, within minutes, NO molecule [9]. SO2 is a dense and colorless gas with a suffocating odor that readily soluble in water. Its oxidation generates the formation of sulfuric acid (H2SO4) by reacting with the surface of particles in the presence of metallic catalysts [10]. CO is a colorless, odorless, and tasteless gas, poorly soluble in water, and it has a slightly lower density than air [11]. O3 is one of the most potent oxidizing agents due to its high redox potential. It is an essential constituent of the upper atmosphere [12]. Relative to the PM, it is needed to indicate that these pollutants are characterized in function on its equivalent aerodynamic diameter (EAD). It is a method for classifying PM [13]. At the atmospheric level, the most studied particles aimed at PM2.5 (EAD of 2.5 μm or less) and PM10 particles (EAD ≤ 10 μm). As a general concept, atmospheric particulate matter consists of a complex mixture formed by solid and liquid organic and inorganic origin substances suspended in the air. Therefore, the particle composition can differ in distinct variables, such as emission sources and meteorological features affecting a specific location. Finally, Pb is a toxic metal, and it is associated with particulate matter in ambient air [14].

At the atmospheric level, a broad and important group of polluting agents are included within the volatile organic compounds’ family (VOC’s). Benzene (C6H6) is considered the major COV’s with particular attention to urban environments. It is a highly volatile compound, and it is degraded rapidly in the upper atmosphere. Given its solubility in water, the atmospheric benzene can be deposited on surface
waters and soil due to rain action, removing a minor amount of air benzene [https://www.who.int/ipcs/features/benzene.pdf, accessed November 9, 2020].

The ambient air’s target pollutant levels will depend on geographic area, topographic, emission sources, and meteorological variables. Air pollutants’ occurrence is directly related to release processes from emission sources and their formation through chemical reactions between several pollutants under specific meteorological conditions.

Firstly, this work pretends to introduce an overview concerning air quality in terms of exposure to air pollutants, types of contaminants, and emission sources. Within this frame, an essential aspect of the air quality is supported by the secondary atmospheric pollutants. In this sense, on the other hand, this work aims to display the importance of this type of compounds, focused mainly on ozone.

2. Exposure to air pollutants on human being and potential effects on health

Numerous scientific studies have revealed a direct relationship between exposure to poor air quality and the appearance of harmful effects on human health [15–17]. Broadly, long and short-term exposures to toxicant compounds suspended into the air may yield different toxicological impacts on humans, such as cardiovascular and respiratory diseases, eyes and skin irritation, and chronic illness, among others.

Exposure to air pollutants on the human being depends on both the target air pollutant’s concentration, usually expressed in μg/m³ and the exposure time to that polluting level with a unit in minutes. There are different air pollutant exposure models (APEX). The scientific community has widely described APEX [18–20]. They are based on probabilistic analysis simulating different exposure environments using several study variables, such as population data, activities developed by people, traffic density, meteorological features, emission air pollutant data, potential fixed and mobile emission sources [https://www.epa.gov/sites/production/files/2019-11/documents/apex5_introduction_document.pdf, accessed November 13, 2020].

Given the considerable number of polluting compounds existing in the atmosphere, a brief review relative to potential effects of criteria air pollutants (further COV’s) on human being’s health is addressed.

2.1 Nitrogen oxides

Exposure to nitrogen oxides may raise the risk of respiratory infections [21], such as burning eyes, sore throat, or cough [22]. Exposure to levels ranged between 1300 and 3800 μg/m³ (0.7–2.0 ppm, parts of million) for 10 min may increase the inspiratory and expiratory flow resistance [8].

2.2 Sulfur oxide

Sulfur dioxide produces an extensive glossary of harmful effects on human health. The most likely results point to wheezing, shortness of breath, and chest tightness, which are intensified during physical activity development. According to the American Environmental Pollution Agency [23], an increase in respiratory symptoms and a lung ability reduction due to durable exposures at high sulfur dioxide levels may be produced. Similarly, it has been linked to cardiovascular disease [24].
2.3 Carbon monoxide

The symptoms derived from carbon monoxide exposure are not always obvious. Once inhaled, CO readily reacts with existing hemoglobin in the blood, which is the protein responsible for the transport of O₂ in blood [25], reducing the blood’s oxygen-carrying capacity [26]. Carbon monoxide has a greater affinity for hemoglobin than oxygen (>200 times, approximately) [27]. The amount of hemoglobin that has been reacted with CO is named carboxyhemoglobin [28].

At low concentrations, the most common symptom results in a headache. However, other effects, like dizziness, feeling and being sick, tiredness and confusion, stomach pain, shortness of breath, and difficulty breathing, are willing to appear [29]. Finally, the inhalation of carbon monoxide at high concentrations is lethal [30].

2.4 Ozone

In the function of the exposure concentration, the effects occasioned by ozone inhalation can be classified as acute and chronic. The first group embraces inflammatory mediators’ alterations, morbidity, and mortality, while the second points to lung function reduction, atherosclerosis and asthma development, and reduction in life expectancy [31].

2.5 Airborne particulate matter

The major effects of atmospheric particles on human being’s health appear in the cardiovascular system due to the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into the systemic circulation [32]. Similarly, scientific evidence shows that ozone exposure exacerbates respiratory diseases. The inhalation of particulate matter produces oxidative stress and inflammation, leading to pulmonary anatomic and physiologic remodeling [33].

2.6 Lead

Exposure to Pb may affect adults, children, and unborn babies’ health. It is stored in bones and teeth, even damaging different body parts like the liver, kidneys, and brain. Pb circulates in blood once into the body. The levels of Pb in blood express micrograms of Pb per deciliter of blood [34]. Pb’s intoxication may drive to the next symptoms: abdominal pain, anemia, constipation, headaches, irritability, loss of concentration and memory, and sleep disorders [35].

2.7 Volatile organic compounds

Broadly, inhaled volatile organic compounds are associated with oxidative stress and decreased lung function [36]. In the case of benzene, since 1987, it has been included in group 1 of the IARC carcinogenic classification system [37].

Through the International Programme on Chemical Safety, World Health Organization has developed a series of documents concerning “Environmental Health Criteria, EHC” (more than 200 issues). While these EHC encompass for each studied air pollutant different aspects relative to emission sources, atmospheric levels, among others, any reader interested in delving into subjects regarding the effects of air pollutants on human health can access the next link: https://www.who.int/ipcs/publications/ehc/ehc_numerical/en/, accessed November 13, 2020.
Finally, it is relevant to highlight Public Administrations’s growing interest in controlling and assessing toxicant compounds in ambient air to protect human being’s health. Within this frame, the European Union has developed Air Quality Standards for setting limit or target values for several air pollutants. Directive 2008/50/EC (see [38]) lays down the following limit values: 40 μg/m³ for NO₂ and PM₁₀, 5 μg/m³ for C₆H₆, 0.5 μg/m³ for Pb as calendar year averages, 10 mg/m³ for CO as maximum daily eight-hour mean and 125 μg/m³ as one-day average (not to be exceeded more than three times a calendar year).

3. Emission sources of air pollutants

3.1 Natural sources

Firstly, natural emission sources of air pollutants do not depend on human activity. They mainly characterize the occurrence of polluting agents into the atmosphere at the local scope. Among others, it is worth mentioning as natural origins of air pollutants, forest fires, dust storms, volcanos, emissions from the water surface, microbial activity, and anaerobic degradation of organic material in terrestrial environments.

Natural sources’ contribution to air pollutants’ presence in ambient air is lower quantitatively than that produced by anthropogenic sources.

3.2 Anthropogenic sources

Anthropogenic emission sources result from human activity. Therefore, large urban areas support highly-polluting emissions into the ambient air due to many emission focus (road traffic, heating house, and industry, mainly), which generates relevant health issues.

Dominant emission air pollutant sources derived from human activity are:

- Fuel combustion from motor vehicles
- Power generation
- Industrial activities
- Municipal and agricultural waste sites as well as its incineration/burning

4. Types of pollutants

At the scientific level, there are several categories of classifying air pollutants. So, they can be ranked in terms of the type of emission source (primary or secondary pollutant), chemical composition (gaseous agents or particulate matter), place of release into the atmosphere (indoor or outdoor site) [39]. This section will encompass their possible origin in emission sources’ function within this work’s common thread.
4.1 Primary pollutants

Primary polluting compounds involve those pollutants that are directly emitted into the atmosphere. Their origin can be natural (for example, volcanos or grassland fires) and anthropogenic (industrial and vehicular emissions).

4.2 Secondary pollutants

Secondary air pollutants are not generated from emission sources, but they need at least two primary pollutants to react with each other to yield a secondary agent [40].

Based on the previous description, NO\textsubscript{x}, SO\textsubscript{x}, CO, PM are examples of primary air pollutants, whereas O\textsubscript{3} and peroxyacylnitrates (such as peroxyacetyl nitrate, peroxy-propionyl nitrate, and peroxybenzoylnitrate) are secondary pollutants.

5. Ozone

5.1 Description

The ozone is a powerful oxidant agent capable of oxidizing organic compounds and a precursor to yield hydroxyl radicals [41]. Only fluorine, oxygen fluoride, and atomic oxygen have a higher redox potential than O\textsubscript{3}. It is formed by three oxygen atoms and is a greenhouse gas [42]. While ozone is a constituent of the Earth’s upper atmosphere (stratosphere) [43], exceeding 1000 parts per billion (ppb) concentrations [44], it also occurs at ground-level (troposphere) [45]. Ground-level O\textsubscript{3} concentrations rise with the height from 20 to 200 ppb depending on proximity to primary air pollutants emission sources [46].

On the one hand, O\textsubscript{3} is beneficial when it is found in the atmosphere’s upper layer, given that it forms a protective coating for human beings against ultraviolet solar radiation [47]. Nevertheless, high levels of tropospheric O\textsubscript{3} (at the ground-level) may produce human health’s harmful effects due to its high oxidant capacity [48], which appoints this compound as the most significant photochemical pollutant [49].

5.2 Ozone atmospheric chemical: formation at the tropospheric level

Given that the ozone is cataloged as a secondary air pollutant, its occurrence into the ambient air is due to chemical reactions among primary polluting compounds emitted directly from emission sources. Therefore, its tropospheric formation is associated with anthropogenic and biogenic emissions [50]. Reactions ruling ground-level ozone generation have been vehemently studied over past decades [51].

The essential primaries pollutants involved in yielding tropospheric ozone are NO\textsubscript{x} (NO and NO\textsubscript{2}), COVs and CO. Solar radiation is a primordial agent for ground-level ozone formation.

In the case of NO\textsubscript{x}, once NO is released from emission sources into the atmosphere, this is oxidized to generate NO\textsubscript{2}. The formation rate of this reaction is highly dependent on the ambient NO concentration. While high NO levels lead to a fast conversion to NO\textsubscript{2}, low levels slow down its production rate.

Although the oxidative NO reaction’s predominant oxidant agent is O\textsubscript{3}, molecular oxygen can also ease its conversion to NO\textsubscript{2}.

22
A fraction of the generated NO\textsubscript{2} undergoes conversion to NO during diurnal hours due to a photolysis process. This re-conversion is translated into yielding tropospheric O\textsubscript{3}, according to Eqs. (1) and (2) [52].

\begin{align}
\text{290 nm} &< \text{solar radiation} < \text{430 nm} \\
\text{NO}_2 &\rightarrow \text{NO} + O^* \text{(atomic oxygen)} \\
\text{O}^* + \text{O}_2 &\rightarrow \text{O}_3 \text{(molecular oxygen)} \\
\end{align}

A minimum ambient air NO\textsubscript{2} concentration (0.02–0.03 ppb) is required for generating O\textsubscript{3}.

Relative to VOCs, the oxidation of these polluting compounds yields ground-level O\textsubscript{3}. At the atmospheric level, this oxidative reaction is carried out in the presence of NO\textsubscript{2} and sunlight [53]. The chemistry reactions responsible for the tropospheric O\textsubscript{3} generation from VOC’s are shown in Equations from 3 to 6 [54].

\begin{align}
\text{VOCs} + \text{OH} + \text{O}_2 &\rightarrow \text{RO}_2 + \text{H}_2\text{O} \\
\text{RO}_2 + \text{NO} + \text{O}_2 &\rightarrow \text{NO}_2 + \text{H}_2\text{O} \\
\text{H}_2\text{O} + \text{NO} &\rightarrow \text{NO}_2 + \text{OH} \\
\text{NO}_2 + \text{sunlight} + \text{O}_2 &\rightarrow \text{NO} + \text{O}_3
\end{align}

Therefore, the VOCs oxidation is regulated by hydroxyl radicals (OH), oxygen, and NO\textsubscript{2}.

Finally, the oxidative CO process drives the formation of hydroperoxyl radical (HO\textsubscript{2}), which reacts with atmospheric NO for yielding NO\textsubscript{2}, according to Eqs. (7) and (8) [55]. The generation of ground-level O\textsubscript{3} from NO\textsubscript{2} oxidation has already been explained previously.

\begin{align}
\text{CO} + \text{OH} &\rightarrow \text{CO}_2 + \text{HO}_2 \\
\text{HO}_2 + \text{NO} &\rightarrow \text{NO}_2 + \text{OH}
\end{align}

At the European level, the highest tropospheric ozone is located on the Mediterranean coast (see Figure 1). According to the chemical formation of ground-level O\textsubscript{3}, preventive measures driving toward abatement of NO\textsubscript{x}, VOCs, and CO concentrations in ambient air would assist control of tropospheric O\textsubscript{3} levels.

It is relevant to highlight that the participation of ground-level O\textsubscript{3} in the atmospheric chemistry generates free radicals, such as hydroxyl radical (OH−) [56], which governs the atmospheric lifetime of many species and their potential to contribute to climate change.
5.3 Measurement techniques

Currently, there are several methodologies for measuring tropospheric O3. Broadly, they can be classified into two clusters: (i) Those methods needing a sampling process and an ulterior analysis into the laboratory, and (ii) those methods measuring in real-time, collecting and determining the tropospheric O3 levels in situ (at the target sampling point). Whereas in the first case, they are defined as passive methodology, in the second case, active methods.

5.3.1 Passive methodology

Passive sampling methods are valuable instruments for air pollution monitoring. They support ground-level O3 measures’ simultaneous performance at numerous sampling points, which results in remarkable relevance. Their implementation on an extensive study surface would picture spatial distribution concerning O3 levels within that domain. Characteristics such as small, simple, lightweight instrumentation, low-cost, and minimum maintenance give it advantageous features against active methodology.

Fick’s First Law, which postulates a mass transfer phenomenon through a layer of gas or a membrane, can explain the sampling process. It is based on a concentration gradient process, relating the flow of target gas that diffuses from regions of high...
concentration to regions of low concentration with the exposure time and the area of the passive sampler [57].

The gas collection is based on ozone's chemical reactions with a specific reagent for generating a final product, which is determined in the laboratory using appropriate analytical techniques [58].

Within this methodology, two types of samplers are available commercially: Radiello and Ogawa sampler, respectively. Radiello type sampler sustains a radial diffusion (the diffusive process occurs in all space directions), whereas Ogawa only supports an axial diffusion.

Suppose any reader needs more information about Radiello or Ogawa sampler. In this case, this one can be satisfied in the following links: https://www.restek.com/pdfs/radiello-manual.pdf for Radiello sampler and http://ogawausa.com/wp-content/uploads/2014/04/proozone.pdf for Ogawa sampler (both they were accessed November 19, 2020).

The spectrophotometric analysis is usually used for determining the formation of products generated by collecting ozone using passive samplers. This technique is based on colorimetric processes.

5.3.2 Active methodology

The traditional methods for monitoring ground-level ozone have been the automatic methods in continuous. Those methods are based on the direct measure of a pollutant in the air matrix. In the case particular of O₃, there are two specific methods:

- **Chemiluminescence in the gas phase.** It is based on photons’ detection produced in the exothermic reaction between O₃ and ethene or nitrogen oxide [59].

 The chemiluminescent light emission’s intensity (from 350 to 550 nm) is proportional to the ozone concentration in ambient air. This method is appropriate for O₃ measures into the concentration range from 0.001 to 100 ppm, obtaining a linear response. It does not have known interferences, and its response time is 1 sec, reaching up to 2% accuracy at 50 ppb ozone [60].

- **Ultraviolet photometric.** It is based on absorption that the molecular O₃ presents in the spectrum’s ultraviolet region, whose maximum is situated highly close to the mercury emission line at 254 nm [61]. The instruments based on that technique evaluate O₃ levels from the existing relationship between the sequentially transmitted light intensities at 253.7 nm. The ultraviolet photometric is a more stable method than the chemiluminescence. However, it has a response time significantly higher (30 sec). Similarly, it can present interferences with carbonyl or aromatic compounds that absorb in the same UV region.

5.4 Ozone levels in the ambient air

The tropospheric O₃ concentrations are usually expressed at ppb or μg/m³ (mass per unit volume). The conversion factor between both units depends on pollutant type (in this case, molecular O₃), ambient air temperature, and pressure, according to Eq. (9).

\[
\text{μg/m}^3 = \text{ppb} * \frac{\text{molecular weight}}{\text{molecular volume (liters)}}
\] (9)
Where

\[
\text{molecular volume} = 22.4 \text{L} \cdot \frac{\text{absolute temperature(k)}}{273.15 \text{k}} \cdot \frac{1013.25 \text{hPa}}{\text{atmospheric pressure(hPa)}}
\]

For tropospheric \(O_3\), in order to transform \(\text{ppb}\) to \(\mu g/m^3\), a conversion factor of 2.142, 2.066, and 1.962 should be used (conversion make to 0, 10, and 25°C, respectively) (http://www.apis.ac.uk/unit-conversion, accessed November 23, 2020).

A relevant research study used data monitored by several countries’ air quality monitoring networks for reporting tropospheric \(O_3\) patterns [62]. Those \(O_3\) data grouped 808 urban and 300 rural fixed stations. In the urban environments, the reached findings reported annual mean values of daily \(O_3\) concentrations ranged from 19.5 ppb in the United Kingdom to 27.2 ppb in the United States during the studied period, while in South Europe Region (Italy, France, and Spain), the levels were next to 24 ppb. The lowest \(O_3\) concentrations occurred on weekdays, whereas
those highest ones were found during weekends. On Monday, the daily mean O3 concentrations were 1.4–3.8% higher than on other weekdays.

In rural environments, higher tropospheric O3 concentrations than at urban sites were exhibited. The annual daily mean O3 concentrations ranged between 28.5 ppb in the United Kingdom to 36.8 ppb in Japan over the investigated time. The O3 concentrations between weekdays and weekends showed high stability (differences lower than 1 ppb).

While the highest levels of primary air pollutants are found in urban areas, given that their dominant emission sources are within these zones, the highest O3 concentrations are pointed in semi-urban and rural environments, according to its tropospheric chemistry. The major reason sustaining this behavior is that tropospheric O3 acts secondary pollutant, which needs a particular time for its formation in ambient air, displaced an absolute distance during that time concerning the prevalent emission primary source.

Ground-level O3 data monitoring at 23 fixed stations from the Community of Madrid's air quality monitoring network during 2018 was used for picturing concentration gradient along all studied surface in order to knowledge the spatial distribution of tropospheric ozone into a typical South Europe Region. Community of Madrid is located in the center of Iberian Peninsula, it has a population of over 6,500,000 inhabitants, and it consists of 179 municipalities. The iso-concentration map of annual average O3 levels in the Community of Madrid in 2018 was built by using a Geographic Information System. The concentrations at the not measured monitoring points were extrapolated from measurement points using the Kriging method as a geostatistical estimation tool [63].

Figure 2 shows spatial variation within the Community of Madrid's territory. As can be seen, higher annual O3 concentrations at rural sites than suburban and urban areas were averaged during 2018, reaching a value of 70.8, 60.5, and 57.5 μg/m3 at rural, suburban, and urban sites, respectively; therefore, higher levels were represented away from the emission sources for primary air pollutants, such as NO, NO2, CO, C6H6, SO2, and particulate matter.

It is necessary to highlight that the annual O3 typical average in cities reaches values between 20 and 30 ppb [64]. In the previous case study, the annual average concentration of O3 in urban areas fell into the indicated range (29.31 ppb, it expressed to 25°C temperature and 1013.25 hPa pressure).

5.5 Current legislation

Over the last decades, the Public Administrations have shown a growing interest in environmental issues, particularly toward the air quality, rising the air pollutants

<table>
<thead>
<tr>
<th>Objective</th>
<th>Averaging time</th>
<th>Target Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human health's protection</td>
<td>Maximum daily eight-hour mean</td>
<td>120 μg/m3 not to be exceeded on more than 25 days per civil year averaged over three years</td>
</tr>
<tr>
<td>Vegetation's protection</td>
<td>From May to July</td>
<td>AOT40 (calculated from 1 h values) 18 000 μg/m3 • h averaged over five years</td>
</tr>
</tbody>
</table>

AOT40 indicates the sum of the difference between hourly concentrations greater than 80 μg/m³ and 80 μg/m³ over a given period using one-hour values monitored from 8.00 a.m. to 20.00 p.m.

Table 1. Target values relative to ground-level O3.
control by implementing Air Quality Standards to reduce human beings’ exposure to atmospheric polluting.

In this sense, European Union developed Directive 2008/50/CE [38] for setting air quality objectives in order to reduce harmful effects on human health and the environment. In the case of tropospheric O₃, the Directive lays down data quality objectives for measurements ambient air ground-level O₃ (it sets a measurement uncertainty of 15% for fixed measurements, with a minimum capture of data of 90% (during summer) and 75% (winter), as well as target values (see Table 1).

In this context, the Member States establish air quality monitoring networks (AQMN) in their territories for testing compliance with those air quality objectives. In order to constitute an AQMN, the Directive 2008/50/EC sets criteria concerning classification, location, and a minimum number of sampling points. Nevertheless, aspects relative to each fixed station’s representativeness within AQMN in a concrete area are not evaluated, which can be considered a limitation of the Air Quality Standard. As a consequence, it does not exist a harmonized methodology allowing assess the fixed stations’ representativeness. Therefore, this issue should be addressed in terms of air quality management.

6. Consultation sites

In order to further deeper in Sections exhibiting formation and levels of ozone, the next links are displayed:
- Chemistry formation of ozone.
- Levels of tropospheric ozone.

In the two last databases, the Keywords for searching scientific documents involving O₃ levels are: (O₃ or ozone) & (ground-level or tropospheric) & (ambient air).

7. Importance of presence of ground-level ozone in air quality

Based on the previously reported information, tropospheric ozone is a highly reactive air pollutant. For this reason, it plays a crucial role in the ground-level atmospheric chemistry, given that its participation generates free radicals. At the health level, these last compounds are responsible for forming other ones that can induce potential human health’s adverse effects, for example, pollutants driving acid rain or those implicated in deposition processes.

Therefore, tropospheric ozone is responsible for the emergence of harmful effects on human health in direct (by itself) and indirect ways (through the generation of other toxic compounds).

On the other hand, at the climate level, the tropospheric O₃ is a greenhouse gas that may produce climate changes by itself or by forming other air pollutants.

Given that its occurrence in ambient air depends on both the presence of other primaries atmospheric pollutants and meteorological conditions, Public Health’s preventive measures focused on human health’s protection and climate change...
should be implemented in terms of assessing air quality and executing air quality plans in order to reduce primaries atmospheric pollutant levels.

8. Conclusions

Air quality and human health are concepts associated with each other, given that good air quality influences adequate life quality in terms of health and well-being, and vice-versa.

Nevertheless, an increase of polluting emissions into the atmosphere due to growing industrial activities and rising private and public transport networks, among others, threatens clean air quality.

In this sense, responsibility administrations set criteria for evaluating the air quality in order to reduce human exposure to airborne pollutants. Within this context, the European Union lays down Air Quality Standards involving air quality objectives, such as limit and target values. According to these guidelines, Member States sustain air quality monitoring networks into their territories to assess the air quality and test the compliance with those air quality objectives.

The presence and pollutants’ chemical composition scattered into the ambient air is tremendously heterogeneous, which difficulties the air quality assessment. Among pollutants compendium presents in the air, primaries and secondary compounds are found.

Knowledge of secondary’s air pollutants is fundamental to elucidate their importance within the air quality frame. In particular, the ozone encompasses relevant aspects, given its high reactivity, in terms of (i) health and (ii) climate.

Tropospheric ozone plays a critical role within both items, either directly or indirectly. It is able to induce adverse effects on humans at the health level, as changes in climate. Both effects could be generated by ground-level ozone itself or by participating in the formation of other air pollutants with the capability of producing these effects.

It is generated from primary air pollutants, for what is displaced to zones where there are not prevailing emission sources for primary air pollutants. In this sense, the highest tropospheric O₃ levels are found in rural environments instead of suburban and urban zones (typical of primary air pollutants).

As a remark conclusion, attending to the ambient O₃ formation, control measures on emission sources of primaries air pollutants should be implemented in order to abate the potential tropospheric O₃ effects on health and climate.

Conflict of interest

The author declares no conflict of interest. This work does not have commercial purposes, only scientific ones.

Other declarations

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author details

David Galán Madruga
Atmospheric Pollution Area, National Center for Environment Health, Carlos III Health Institute, Madrid, Spain

*Address all correspondence to: david.galan@isciii.es

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

Fs, PCBs and metals in the ambient air of an industrial area of Catalonia, Spain. Chemosphere. 2008;73(6):990-998. DOI: 10.1016/j.chemosphere.2008.06.025

Implication of Secondary Atmospheric Pollutants in the Air Quality: A Case-Study for Ozone

Chapter 3

Particle and Carbon Monoxide Atmospheric Pollution in the City of Tepic, Nayarit, Mexico

Mario García, Héctor Ulloa, Omar García, Hermes Ramírez, Aida Fajardo, Claudia Saldaña, Sarah Messina and Yamilet Rodríguez

Abstract

Actively caring for the environment is an issue that prevails in the international debate, and our country takes part on this argument. One aspect of environmental deterioration is, with no doubt, atmospheric pollution; a constant in modern societies, which, in the attempt to find growth and development, impact the natural and urban environment they inhabit. A distinctive feature of commercial and economic exchange are the strategic cities, so-called capitals, in addition to the territories where coastal tourism predominates as an engine of regional human development. In this balance, which is far from being sustainable and fair, an exponential consumer market dominates and generates the progressive increase in the use of fossil fuels. The former being emitted into the atmosphere, in such a way that they alter chemical composition and cause harmful air quality. In addition, the territory is impacted, intoxicating the soil and water, which are the final deposit. The objective of this work is to determine the temporal behavior of atmospheric pollutants in the city of Tepic, Nayarit, Mexico and to identify the dominant pollution indicators considering the international and national context. Through the statistical analysis of the databases of particles smaller than 2.5 micrometers, particles smaller than 10 micrometers and carbon monoxide, the behaviors of these pollutants in the study area were obtained. Among the most significant results, particles smaller than 2.5 micrometers showed maximum levels outside the norm almost all year round, with values reaching 170 micrograms per cubic meter. On the other hand, the particles smaller than 10 micrometers presented satisfactory levels in their average behavior; however, the maximum concentrations remained outside the official Mexican standard. Regarding the analysis of CO, a behavior within the maximum permissible limits of protection for the population was reported; Nevertheless, by favoring the formation of tropospheric ozone, its contribution is significant, especially when the atmosphere is highly photo-reactive. This research can be used as a timely tool for mitigation of climate change, where the results contribute to the review and rethinking of public management of the environment towards sustainable development.

Keywords: air pollution, particles, carbon monoxide, Tepic, Mexico
Chapter 3
Particle and Carbon Monoxide
Atmospheric Pollution in the City of Tepic, Nayarit, Mexico

Mario García, Héctor Ulloa, Omar García, Hermes Ramírez, Aida Fajardo, Claudia Saldaña, Sarah Messina and Yamilet Rodríguez

Abstract

Actively caring for the environment is an issue that prevails in the international debate, and our country takes part on this argument. One aspect of environmental deterioration is, with no doubt, atmospheric pollution; a constant in modern societies, which, in the attempt to find growth and development, impact the natural and urban environment they inhabit. A distinctive feature of commercial and economic exchange are the strategic cities, so-called capitals, in addition to the territories where coastal tourism predominates as an engine of regional human development. In this balance, which is far from being sustainable and fair, an exponential consumer market dominates and generates the progressive increase in the use of fossil fuels. The former being emitted into the atmosphere, in such a way that they alter chemical composition and cause harmful air quality. In addition, the territory is impacted, intoxicating the soil and water, which are the final deposit. The objective of this work is to determine the temporal behavior of atmospheric pollutants in the city of Tepic, Nayarit, Mexico and to identify the dominant pollution indicators considering the international and national context. Through the statistical analysis of the databases of particles smaller than 2.5 micrometers, particles smaller than 10 micrometers and carbon monoxide, the behaviors of these pollutants in the study area were obtained. Among the most significant results, particles smaller than 2.5 micrometers showed maximum levels outside the norm almost all year round, with values reaching 170 micrograms per cubic meter. On the other hand, the particles smaller than 10 micrometers presented satisfactory levels in their average behavior; however, the maximum concentrations remained outside the official Mexican standard. Regarding the analysis of CO, a behavior within the maximum permissible limits of protection for the population was reported; Nevertheless, by favoring the formation of tropospheric ozone, its contribution is significant, especially when the atmosphere is highly photo-reactive. This research can be used as a timely tool for mitigation of climate change, where the results contribute to the review and rethinking of public management of the environment towards sustainable development.

Keywords: air pollution, particles, carbon monoxide, Tepic, Mexico
1. Introduction

The emission of pollutants into the atmosphere has caused damage to the environment, destroying and large areas of flora and fauna, necessary for the natural balance of the planet. The use of fossil fuels raises air pollution to harmful levels for humans, favors the accumulation of greenhouse gases and destroys the ozone layer, in addition to the acid rain phenomenon that has affected Europe, Asia and North America; in fact, it is considered a significant problem in China so far in the 21st century [1–4]. The most relevant impact occurs in urban areas and industrial complexes; however, adverse effects have been observed even in distant areas [5].

Although air pollution is a cross-cutting issue that needs to be addressed in a comprehensive manner, the media discourses, being transformed into immediate solutions not for prevention and control in the long term but for mitigation, stand out. Consequently, the centralization of goods and services in the territory negatively affects the well-being of the population [6–11]. In this context, Khan et al. [12], reported that the use of renewable energy in logistics operations improves the environmental and economic state and reduces spending on public health.

The role of air quality indexes is pivotal in controlling emissions from both mobile and stationary sources. No traffic congestion problems would be observed if the use of means of transport were planned; Transportation is inefficient due to the metropolis great extension and functional segregation [6, 13]. While pollution in developed countries is due to industrialization, in most countries of Latin America and the Caribbean, it is influenced by motor vehicles [14–18].

Climate, meteorological and topographic conditions influence the pollutant concentration, transport and dispersion, as well as the magnitude of the impact on the population and its habitat [14–18]. The statistical analysis of meteorological and pollutant data makes possible to identify a relationship between local emission sources and to have a better understanding of the spatio-temporal trends of air quality indexes; whose variation depends on the distance between sources and traffic volumes [14, 19]. In addition, cities located in depressions are associated with the formation of thermal inversions, an optimal condition for the assembling of pollutants, at harmful rates, in the lower layer of the atmosphere [20]. These changes avoid the dispersion of pollutants, especially in winter.

Several studies report that the association of pollutant-meteorological variables impact human health. Therefore, incorporating atmospheric monitoring stations in cities for their evaluation and control is fully justified [19]. Another study by Tiwari et al. [21], reported that rain, wind speed, and surface temperature are the factors that control the evolution of PM10 and PM2.5 particles over Guwahati, India. Pollution levels are comparable with those obtained in other megacities and explain the effects on health in recent years.

Mexico is no stranger to environmental problems; in fact, air pollution in cities has impacted the life quality of society, as well as its health and the environment. The metropolitan area of the Valley of Mexico (Figure 1), Guadalajara and Monterrey are included among the metropolises that are characterized by suffering from environmental issues [22–24]. The objective of this work is to determine the spatial–temporal behavior of atmospheric pollutants in the city of Tepic, Nayarit, Mexico and define, based on the available information, the dominant pollution indicators in the area. The results can contribute to the improvement of atmospheric contingency plans, in addition to being an alternative for public management of environment aspects.
1. Introduction

Environmental Sustainability - Preparing for Tomorrow

The results can contribute to the improvement of atmospheric quality in Mexico and define, based on the available information, the dominant pollution pattern in the city of Tepic, Nayarit, and Monterrey are included among the metropolises that are characterized by suffering severe air pollution problems. The increase in human activities has impacted the life quality of society, as well as its health and the environment. Therefore, incorporating atmospheric monitoring stations is essential for their evaluation and control is fully justified. Another study by R. Singh et al. [22] reported that the association of pollutant-meteorological variables improves the environmental and economic state and reduces spending on health. The statistical analysis of meteorological and pollution data makes possible to identify a relationship between local emissions and pollution levels for humans, favors the accumulation of greenhouse gases and destroys the natural balance of the planet. The use of fossil fuels raises air pollution to harmful levels for humans, favors the accumulation of greenhouse gases and destroys the natural balance of the planet. The use of fossil fuels raises air pollution to harmful levels for humans, favors the accumulation of greenhouse gases and destroys the natural balance of the planet.

2. Case study and methodology

2.1 Description of the study area: Tepic City, Nayarit, Mexico

The state of Nayarit is located in the central western region of Mexico and has an approximate area of 27,857 km² that covers 1.4% of the national territory. Its geographic coordinates correspond to 23° 05′-20° 36′ north latitude and 103° 43′-105° 46′ west longitude [25–27]. It has an approximate population of 1,181,050 inhabitants [28] and it is composed of 20 municipalities, the city of Tepic being the state capital. Within its growth and development potential, tertiary and service economic activities predominate, as a consequence of its tourist and commercial explosion. From its side, the municipality of Tepic is located in the center of the state with a land area of 1,983.3 km² which represents 7.25% of the state of Nayarit. It has an approximate population of 413,608 inhabitants, highlighting the towns of Tepic, Francisco I. Madero, Bellavista and Camichín de Jauja. Its geographic coordinates are 21° 51′-21° 24′ north latitude and 104° 34′-105° 05′ west longitude [26, 27, 29].

Regarding its orography, 72.5% of the land relief of the municipality corresponds to mountains, the rest is represented by hills, plains and small valleys. The mountain ranges that cross the municipality are the Neovolcanic Axis and the Sierra Madre Occidental. Its main elevations correspond to the volcanoes of Sangangüey, San Juan, Las Navajas and El Rincón hill, with altitudes of 2340, 2180, 1680 and 1600 meters above sea level, respectively.

Two main types of climate predominate; subhumid warm climate with rain in summer that affects 66.06% of the municipal geography and the subhumid semi-warm climate with rain in summer, which benefits the remaining 33.94%. Rain concentration of 91.05% is observed between the months of July and October. Average annual rainfall is 1,121 mm. In this order, Table 1 shows monthly values of temperatures (maximum and minimum); the average temperature oscillates between 21.1°C, with north prevailing winds, with an average speed of 8 km/h [26, 27, 31].
The city of Tepic has developed around a significant vehicular complex and extraordinary industrial activity dominated by the “El Molino” sugar mill with more than a century of operations. Both sources have increased the discharge of pollutants into the atmosphere, such as total suspended particles and carbon monoxide, among others. This sugar factory, due to its magnitude and economic impact, remains within the top 10 in performance at the national level and the most important in the state of Nayarit, with the countryside, suppliers, contractors, transporters and employees, as sectors that benefit the most. In this way, Khan et al. [32], reported that trade and transport infrastructure are positively correlated with per capita income, while logistics operations are negatively associated with social and environmental problems (climate change). In addition, air pollution in the territory contributes to the generation of acid rains, water pollution and a harmful impact on human health. In this scenario, the search for better living conditions has an impact on the habitat, exceeding air quality indexes to levels that are harmful to the population.

In relation to this, Hernández [33] showed that “El Molino” is a source of atmospheric pollution. It is noteworthy that, due to its location close to the city center, due to the burning of sugarcane and its transportation, the damage to health increases 2.6 times during the harvest season.

In coincidence, the work carried out in El Salvador by Castillo and Rivera [34], reported that the sugar sector, despite its high economic and nutritional value, is a source of pollution. Accordingly, with information from 2011 to 2013, Alatorre and Llanos [35] identified that the most significant peaks in CO concentrations occur during the morning (6:00–9:00 hours), associated with low temperatures (lower temperatures, higher concentration of particles in the air) and to vehicular and industrial influence. This is proven by the fact that the most significant values were recorded in the months of December to April. Furthermore, the synergy
The city of Tepic has developed around a significant vehicular complex and extraordinary industrial activity dominated by the "El Molino" sugar mill with more than a century of operations. Both sources have increased the discharge of pollutants into the atmosphere, such as total suspended particles and carbon monoxide, among others. This sugar factory, due to its magnitude and economic impact, remains within the top 10 in performance at the national level and the most important in the state of Nayarit, with the countryside, suppliers, contractors, transporters and employees, as sectors that benefit the most. In this way, Khan et al. [32], reported that trade and transport infrastructure are positively correlated with per capita income, while logistics operations are negatively associated with social and environmental problems (climate change). In addition, air pollution in the territory contributes to the generation of acid rains, water pollution and a harmful impact on human health. In this scenario, the search for better living conditions has an impact on the habitat, exceeding air quality indexes to levels that are harmful to the population.

In relation to this, Hernández [33] showed that "El Molino" is a source of atmospheric pollution. It is noteworthy that, due to its location close to the city center, due to the burning of sugarcane and its transportation, the damage to health increases 2.6 times during the harvest season.

In coincidence, the work carried out in El Salvador by Castillo and Rivera [34], reported that the sugar sector, despite its high economic and nutritional value, is a source of pollution. Accordingly, with information from 2011 to 2013, Alatorre and Llanos [35] identified that the most significant peaks in CO concentrations occur during the morning (6:00–9:00 hours), associated with low temperatures (lower temperatures, higher concentration of particles in the air) and to vehicular and industrial influence. This is proven by the fact that the most significant values were recorded in the months of December to April. Furthermore, the synergy

<table>
<thead>
<tr>
<th>Month</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTR</td>
<td>28</td>
<td>29</td>
<td>31</td>
<td>32</td>
<td>35</td>
<td>33</td>
<td>33</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>DMaxT</td>
<td>25</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>32</td>
<td>31</td>
<td>28</td>
<td>30</td>
<td>29</td>
<td>30</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>DMinT</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>16</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>21</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>MinTR</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>17</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Maximum temperature recorded (MaxTR), Daily maximum temperature (DMaxT), Minimum temperature recorded (MinTR), Daily minimum temperature (DMinT). Temperature (°C). [30].

Table 1.
Tepic average climatic parameters.
of pollutants in Tepic can negatively impact the presence of thermal inversions (Figure 3). The geography and orography of the city allow this behavior to occur frequently, concentrating pollution for long periods and reaching harmful levels for the exposed population [10, 36]. Finally, other essential activities of the municipality are agriculture and livestock, followed by logging, which bring with them multifactorial problems related to air, soil and water pollution. The list is completed by an excessive generation of urban solid waste, the elimination of electronic devices (e-waste), in addition to the high stress to which sanitary landfills or open dumps are subjected [37].

2.2 Methodology

The presence of phenomena that have affected the territory over time, leads researchers, decision makers and society to search for instruments to analyze and understand the root causes of the problem. In order to apprehend reality and identify solid bases to act in the prevention and mitigation of the risk to which living beings are continuously exposed, particularly human beings. Determining the magnitude and influence of pollution indicators and rethinking control methods in cities provides an indispensable tool for the preservation of the society-nature balance. In this synergy, problems and areas of opportunity can be identified in the management of the territory.

In the first instance, information corresponding to the database of atmospheric pollutants and meteorological variables (two monitoring stations) was collected in collaboration with the Ministry of Rural Development and Environment (SEDERMA) of Nayarit. Data were selected, validated and processed with statistical methods. To choose the indicators that best describe the problem in the territory, the Official Mexican Standard (NOM) is used as reference for the criteria and their relationship with international standards (Table 2). The reliability and updating of data, and the spatio-temporal trends are considered as key information in the description-evaluation of the phenomenon.

2.3 Stochastic processes

Using a stochastic model, it is possible to know the future of processes that develop over time, predict the behavior of physical and atmospheric phenomena, know their evolution and culminate with decision-making considering the best solution. The time series or temporal series that record observations of a process as
Using a stochastic model, it is possible to know the future of processes that develop over time, predict the behavior of physical and atmospheric phenomena, and understand the root causes of the problem. In order to apprehend reality and identify solid bases to act in the prevention and mitigation of the risk to which living beings are continuously exposed, particularly human beings. Determining the magnitude and influence of pollution indicators and rethinking control methods are continuous tasks. The presence of phenomena that have affected the territory over time, leads to a function of time, are justified to predict the future based on past data, know and control the process that generates it and obtain a description of its characteristics, among others [40].

In the case of Tepic, a pollution analysis was performed using this series-based methodology using spectral analysis and correlation functions. The tool used was the Statistical Package for the Social Sciences [41]; the solution provides adequate control that provides certainty and decision opportunity. In addition, environmental indicators (Table 3) are instruments for monitoring through the systematic collection of data obtained and time series. Overall, the indicators, variables and indices synthetically reflect a social concern regarding the environment and are coherently inserted into the decision-making process.

In order to know the current state of air quality, SEDERMA operates the air quality monitoring network, which measures pollutants: carbon monoxide (CO), nitrogen oxides (NOx), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2) and particles smaller than 10 and 2.5 micrometers (PM10 and PM2.5). The evaluation period is 2015, with the official institution being the provider of the information. PM10, PM2.5 and CO are evaluated, which are subjected to a spatial and temporal analysis. Regarding the inclusion criteria, the hourly average concentration of the pollutants is evaluated. Data outside the consistency range, negatives, zeros, and undetected were removed. Using a map, the study area was georeferenced and the monitoring stations were located, one located to the east over the “Primary School: PRIM” and the other to the west over the “Technological Institute of Tepic: ITT” (Figure 4).

<table>
<thead>
<tr>
<th>Pollution indicator</th>
<th>World Health Organization (WHO)*</th>
<th>Environmental Protection Agency (EPA)*</th>
<th>Official Mexican Standards (NOM) - DOF (1994)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td>μg/m³</td>
<td>ppm</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>-</td>
<td>-</td>
<td>0.05 (8 h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.053 (8 h)</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>9 (8 h)</td>
<td>10290</td>
<td>9 (8 h)</td>
</tr>
<tr>
<td></td>
<td>26 (1 h)</td>
<td>29725</td>
<td>35 (1 h)</td>
</tr>
<tr>
<td>Nitrogen dioxide (NO₂)</td>
<td>0.106 (1 h)</td>
<td>200</td>
<td>0.25 (1 h)</td>
</tr>
<tr>
<td></td>
<td>0.023 (annual)</td>
<td>40</td>
<td>0.053 (annual)</td>
</tr>
<tr>
<td>Sulfur dioxide (SO₂)</td>
<td>0.007 (24 h)</td>
<td>20</td>
<td>0.14 (24 h)</td>
</tr>
<tr>
<td></td>
<td>0.191 (10 min)</td>
<td>500</td>
<td>0.03 (annual)</td>
</tr>
<tr>
<td>Breathable particulate material (PM₁₀) **</td>
<td>—</td>
<td>50 (24 h)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 (annual)</td>
<td></td>
</tr>
<tr>
<td>Fine particulate material (PM₂.₅) **</td>
<td>—</td>
<td>25 (24 h)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (annual)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.
Air quality standards (average pollution indicators).

[38]. [39]. ppm: parts per million, μg/m³: microgram/cubic meter.
3. Results

Within the variety of aspects that characterize the Earth’s atmosphere, one of them is its dynamic character; it is not static, but significant changes are constantly taking place. Thus, due to its influence on humans, it seeks to understand in depth atmospheric phenomena and even predict their formation [42]. Pollution is influenced by the atmosphere state; if the pollutants in the air exceed their concentration in excess of that existing in a normal environment, the same atmosphere is responsible for transporting, dispersing and even transforming them.

3.1 Monthly average behavior of particles smaller than 2.5 micrometers in 2015

The official Mexican standard for particles smaller than 2.5 micrometers (PM2.5) establishes a maximum permissible limit (threshold) of 45 μg/m³ as
an average in a 24-hour interval (or 12 μg/m³ annual average). According to the results obtained for this pollutant (PM2.5), during the month of January, a series of inconsistencies prevail. The homogeneous behavior observed is the result of the absence of information, deficiencies in the calibration and data validation stage during that month. Based on the information provided, the maximum values range between 50 and 80 μg/m³, that is to say, unsatisfactory levels with respect to current regulations. Regarding February, it was observed that average concentrations are maintained between 25 and 45 μg/m³ while the maximum values move in a range of 45 and 55 μg/m³ respectively. In this order, the month of March shows a negative trend in the average data, while the maximums only in some moments of the day exceed the regulations. In the case of April, the trend in the average values is maintained, although the maximums show higher levels in relation to the previous month, reaching concentrations between 55 and 75 μg/m³ (Figure 5).

On the other hand, during the month of May fluctuations are observed that keep the concentrations within the environmental regulations, both in their average and maximum levels. In June, a similar behavior to the previous month is maintained, although with a slight positive trend its maximum peaks, however, the decrease in its average concentrations during the second half of the month due to the progressive influence of the wet period. For July, two schedules of maximum concentrations predominate; one at 4:00 p.m. and another at 6:00 p.m., reaching 60 μg/m³. The results for the months of August, September and October remain within the standards established in the NOMs, both in their average and maximum concentrations. For this region of the country, the influence of the rainy season is noticeable, maintaining a relatively clean atmosphere. The most significant values do not exceed 25 μg/m³ (Figure 6).

Finally, the months of November and December begin to experience a positive trend typical of the transition from the wet period to the dry and cold period. Average concentrations are kept within environmental regulations; however, its maximum levels range from 50 to 170 μg/m³ (Figure 7), indices of air quality that are harmful to the exposed population.

The analysis of the year 2015 for PM2.5, reports maximum levels outside the norm practically throughout the year, with the exception of the wet period, where a marked decrease in concentrations is observed. Maximum average concentrations reached maximums of 170 μg/m³ (Figure 8).

Figure 5. (a–d) Monthly average behavior of PM$_{2.5}$ (24 h).
In the case of particles smaller than 10 micrometers (PM10), current regulations define a maximum permissible limit of protection for population not being higher than 75 μg/m³ average in 24 hours (40 μg/m³ annual average). In a similar way to PM2.5, the average results on PM10 during the month of January report a series of inconsistencies, a consequence of the absence of reliable information, in addition to deficiencies in the calibration and validation stage of temporary data. Although maximum average concentrations are observed above the NOM (80 μg/m³), they are not considered relevant. In relation to February, concentrations have significant fluctuations between hourly records, being more important during 5:00 and 10:00 hours; Although its average levels do not exceed the norm for this pollutant, the maximum concentrations remain outside the standards throughout the period, with peaks reaching 140 μg/m³. During the months of March, April, May and June, concentrations within the NOM continue to be observed at their average levels, however, the maximum values for the two monitoring stations increased their maximum average

3.2 Monthly average behavior of particles smaller than 10 micrometers in 2015

...
In the case of particles smaller than 10 micrometers (PM10), current regulations define a maximum permissible limit of protection for the population not being higher than 75 μg/m³ average in 24 hours (40 μg/m³ annual average). In a similar way to PM2.5, the average results on PM10 during the month of January report a series of inconsistencies, a consequence of the absence of reliable information, in addition to deficiencies in the calibration and validation stage of temporary data. Although maximum average concentrations are observed above the NOM (80 μg/m³), they are not considered relevant. In relation to February, concentrations have significant fluctuations between hourly records, being more important during 5:00 and 10:00 hours; although its average levels do not exceed the norm for this pollutant, the maximum concentrations remain outside the standards throughout the period, with peaks reaching 140 μg/m³. During the months of March, April, May and June, concentrations within the NOM continue to be observed at their average levels, however, the maximum values for the two monitoring stations increased their maximum average concentrations of PM10. A common characteristic of these months is the progressive increase of pollutants starting at 7:00 a.m., remaining during the rest of the day, with maximums of up to 220 and 260 μg/m³ (at 9:00 a.m. and 3:00 p.m.). Clearly, the maximum levels observed in the morning are related to the presence of thermal inversion, a natural phenomenon typical of the study area that contributes to the accumulation “in volume” of pollutants at air quality indices harmful to the population. On the other hand, the maximum levels in the afternoon are related to the intense productive activity of the sugar mill “el Molino” (stationary sources) and the vehicle fleet (Figure 9).

The continuity of the results allows us to observe that, at the end of June and the beginning of July, the negative trend is sufficiently noticeable due to the marked influence of the rainy season in the area; for this reason, the month of July perceives average concentrations within the NOM, while its maximum levels are located at the limit and slightly above 75 μg/m³ (interval between 8:00 and 10:00 hours); this scenario remains without significant changes during the month of August. Meanwhile, September and October experience satisfactory average levels of air quality; despite this, the maximum average concentrations define significant hourly fluctuations, highlighting the intervals from 4:00 a.m. to 10:00 a.m. for September and from 6:00 a.m. to 10:00 a.m. for October, even with a peak of extreme maximums at the beginning and end of the month (between seasons). These variations of maximum values move in a range from 75 to 180 μg/m³. It is worth mentioning that these peaks define interactions coupled with a transition between the end of the wet period and the beginning of drier and colder periods (Figure 10).

Finally, the months of November and December observe critical conditions for the well-being of the population. Figure 10 shows average concentrations of PM10 with peaks at the limit of the satisfactory threshold, while the maximum average values exceed the Mexican environmental regulations for this pollutant. PM10 levels vary between 75 and 200 μg/m³, with higher volumes exceeding between 8:00–12:00 hours and 19:00–22:00 hours.

In addition, through the monthly analysis for 2015, satisfactory levels were observed in its average behavior; however, the average maximum concentrations remained outside the official norm; in fact, far above it. When making a comparison between the NOM and the WHO contamination standards for PM10, the maximums exceed 3.4 times the Mexican standard and 5.2 times the WHO indicators. Only the influence of the humid period in the interval from July to September, benefits the air quality in the city of Tepic, increasing again from October; the concentrations of 260 μg/m³ during June show the magnitude of the environmental problems in the city (Figure 11).
Environmental Sustainability - Preparing for Tomorrow

3.3 Average and maximum monthly CO behavior in 2015

Environmental researchers have verified that the tools used to determine the current state of a territory must be supported by sufficiently reliable data bases, in such a way that the results of the analysis allow the generation of strategic pollution control plans. In this context, carbon monoxide (CO) is one of the pollutants that is emitted into the atmosphere most frequently; it is a primary gas, a product of the incomplete combustion of fossil fuels. However, its rapid ease of reacting with light (incident radiation), before raising its concentrations to out-of-standard rates, contributes to the generation of the secondary pollutant called ozone (O3), which is a determining indicator in cities that experience smog photochemical. The NOM for pollutant CO establishes a concentration of 11 ppm as an average maximum limit of protection; this for 8 hours.

The aforementioned allows us to affirm that January, being a wet and cold month, presents maximum average concentrations outside the norm, especially during the first half of the day; while, as solar radiation increases, CO levels gradually decrease. For the month of February, only two small peaks with higher values are observed, but within the norms; this occurs in the morning and in the afternoon, a typical behavior of the accumulation of pollutants due to the presence of thermal inversions and vehicular flow. Regarding the months of March and April (Figure 12), the presence of two peaks of maximum values towards the PRIM station (center-west of the city) stands out, with values between 11 and 18 ppm (11,00–14:00 and 11:00–15:00 hours, respectively).

Figure 9.
(a–f) Maximum monthly average behavior of PM$_{10}$ (24 h).

Figure 10.
(a–f) Maximum monthly average behavior of PM$_{10}$ (24 h).

Figure 11.
Monthly average behavior of PM$_{10}$ for 2015.

Figure 12.
(a–d) Average behavior and monthly maximum of CO (24 h).
such a way that the results of the analysis allow the generation of strategic pollution control plans.

In this context, carbon monoxide (CO) is one of the pollutants that is emitted into the atmosphere most frequently; it is a primary gas, a product of the incomplete combustion of fossil fuels. However, its rapid ease of reacting with light (incident radiation), before raising its concentrations to out-of-standard rates, contributes to the generation of the secondary pollutant called ozone (O₃), which is a determining indicator in cities that experience smog photochemical. The NOM for pollutant CO establishes a concentration of 11 ppm as an average maximum limit of protection; this for 8 hours.

The aforementioned allows us to affirm that January, being a wet and cold month, presents maximum average concentrations outside the norm, especially during the first half of the day; while, as solar radiation increases, CO levels gradually decrease. For the month of February, only two small peaks with higher values are observed, but within the norms; this occurs in the morning and in the afternoon, —a typical behavior of the accumulation of pollutants due to the presence of thermal inversions and vehicular flow—. Regarding the months of March and April (Figure 12), the presence of two peaks of maximum values towards the PRIM station (center-west of the city) stands out, with values between 11 and 18 ppm (11:00–14:00 and 11:00–15:00 hours, respectively).

![Figure 11. Monthly average behavior of PM₁₀ for 2015.](image1)

![Figure 12. (a–d) Average behavior and monthly maximum of CO (24 h).](image2)
On the other hand, in the interval from May to October, all the months present a behavior within the satisfactory standards, except July, which maintain concentration peaks outside the norm between 10:00 and 12:00 hours, with values 18 ppm. The month of November maintains its average levels in a satisfactory range, while the maximum averages are located at the limit in the evening hours (8:00 p.m. and 10:00 p.m.). Finally, December reports concentrations outside the NOM, especially at their maximum averages; this is observed at the end of the day, with values ranging between 11 and 52 ppm. This month contributes to a worrying scenario for the health of the exposed population (Figure 13).

Overall, CO keeps a behavior within the established regulations, however, by favoring the formation of tropospheric ozone, its contribution is significant especially when the atmosphere is highly photo-reactive.

4. Discussion and conclusions

The emission of pollutants into the atmosphere and local immission, in addition to the generation of waste in strategic cities, alter the habitat, the quality of life of the population and compromise sustainable urban development. The city of Tepic has prospered around a significant vehicle complex and extraordinary industrial activity, a scenario that produces air pollution. In Tepic a vehicular congestion prevails caused by inefficient transportation (public and private); it is a city that

Figure 13.
(a–h) Average behavior and monthly maximum of CO (24 h).
is gaining in extension and functional segregation. These factors contribute to the increase in the concentration of pollutants, which, added to the sugar mills (regional axis for development), represent a constant source of contamination and latent risk to the health of the population.

The sugar mill “el Molino” in its beginnings was an industry founded on the periphery of the city, however, the absence of uncontrolled real estate development plans, was propitiating a segregated growth in the surroundings, to such a degree that the synergy -city- industry- strengthened in deterioration of air quality, impacting on the most vulnerable age groups. In the work of Hernández [33], it was reported that damage to health increased 2.6 times in the harvest season, sugarcane burning and transportation, mainly the total suspended particles and CO. For its part, in the present study these levels rose to 3.7 times for PM2.5 and 3.4 times for PM10 with respect to the NOM (6.8 and 5.2 times for the WHO indicators).

It is observed that the diurnal patterns vary between seasonal periods (dry and wet period). The volumes and type of pollutants are significant for each place and region; in addition, the distances between sources and types of traffic are other aspects to consider.

Although it was not possible to determine the type of thermal inversion that occurs in the city, it is evident that it influences the concentration of pollutants, especially during the early hours and in the morning. Jang et al., [14]; Amarillo and Carreras [23] mention that cities located in depressions are associated with the formation of strong thermal inversions, an optimal condition for the accumulation of pollution in the lower atmosphere. In this context, the city of Tepic is located within a semi-closed valley, an ideal natural physical obstacle for pollutants to accumulate and prevent their dispersion, especially in the winter period. The geography and relief of the city contribute so that the anomaly of the temperature with the height, occurs frequently, concentrating the indices of air quality to levels not satisfactory for the population and, in the periods of greater cooling of the surface [43].

The results obtained show high air pollution at specific times, which can motivate local authorities to implement new criteria, create public policies, methodologies and innovate in mobility tasks, among others.

The current air quality monitoring stations are overwhelmed by the size of the city; It is suggested to incorporate three stations and distribute them in a homogeneous way in such a way that between the five they cover a greater coverage radius and a more comprehensive analysis. One element that can contribute to the evaluation of contamination by stationary sources is the assessment of the level of influence of the mill “El Molino” through the measurements “in situ” of the pollutants analyzed in this work (PM10, PM2.5, and CO, among others). The scaffolding must be laid for the configuration of an air quality monitoring network, supported by short and medium-term plans, where continuous monitoring is maintained on the databases obtained. This is useful in joint decision-making by the integrating axis Government and society [12]. It should be noted that various studies report an association between pollutants-meteorological variables and human health [32]; therefore, incorporating a mesh of five atmospheric monitoring stations in Tepic is fully justified [17], in addition, it will allow a comprehensive assessment of contamination and generate control mechanisms, as well as viable strategies for decision-making.

Tepic is a region that has the opportunity to progress under the objectives or characteristics pursued by sustainable development. Although it is true that there is an industrial productive sector that strengthens local economic development, it is possible to progress taking care of the local habitat, without compromising future generations and without risking the health of the vulnerable population [12].

The participation of the health sector and the Ministry of the Environment of Nayarit (SEMANAY) is significant in the sense of keeping track of cases of acute
The study of pollutants in the air has great relevance to design strategies based on prediction, prevention, mitigation and resilience in the habitat. In agreement with Khan et al. [12], the present results can be a useful tool for the formulation of public policies and their implementation towards sustainable economic growth. Thus, the city of Tepic plays a key role in the state's economy and “el mill” is a central axis of the territory because the strategic lines that largely support the family economy converge there.

The continuous analysis of the CO pollutant for a longer period of time can favor the integral obtaining of plans and strategies for the control of emissions in the atmosphere of Tepic. Daytime patterns vary seasonally, weekly, and spatially depending on the distance between sources and volumes of traffic [14, 19].

Alatorre and Llanos [35] conducted a study on air pollution in the city of Tepic, reporting that there was no monitoring of air quality in the area; There was only one monitoring unit, but its operation was not optimal (constant interruptions in measurements). Emphasis is placed on the lack of dissemination of information, a situation that leads to high vulnerability in areas that lack it. That is, it is not disclosed or available to users. Through SEMANAY and with the information from 2011 to 2013, they identified that the most significant peaks in CO concentrations occur during the morning (6:00–9:00 am). They associated this with low temperatures (lower temperatures, higher concentration of particles in the air) and vehicular influence in this period of time (entry to schools and work). According to the National Institute of Ecology, the metropolitan area of Guadalajara with its 4.5 million inhabitants approximately, registers CO concentrations at an average of 10 ppm, while in Tepic (with an eighth of this population) levels have been observed by above 8 ppm. This is an indication that the proportion of contamination per inhabitant in Tepic is high.

It should be remembered that the sugar mill “El Molino” due to its historical impact and its economic importance represents an essential axis of local and regional development; However, despite being recognized as respectful of the environment and occupying the first place in the control of emissions of gases and solids released into the atmosphere, it is a constant source of air pollution and represents a risk to the health of the population [33]. Finally, although a period of one year is a short time for the analysis of air pollution, this diagnosis observes trends for PM10 and PM2.5; results that allow knowing the evolution of pollution in the short term and timely informing the population about its status in real time.
Environmental Sustainability - Preparing for Tomorrow

52

respiratory diseases in the different seasons of the year, and specifically, at the harvest season.

The study of pollutants in the air has great relevance to design strategies based on prediction, prevention, mitigation and resilience in the habitat. In agreement with Khan et al. [12], the present results can be a useful tool for the formulation of public policies and their implementation towards sustainable economic growth.

Thus, the city of Tepic plays a key role in the state's economy and "el mill" is a central axis of the territory because the strategic lines that largely support the family economy converge there.

The continuous analysis of the CO pollutant for a longer period of time can favor the integral obtaining of plans and strategies for the control of emissions in the atmosphere of Tepic. Daytime patterns vary seasonally, weekly, and spatially depending on the distance between sources and volumes of traffic [14, 19].

Alatorre and Llanos [35] conducted a study on air pollution in the city of Tepic, reporting that there was no monitoring of air quality in the area; There was only one monitoring unit, but its operation was not optimal (constant interruptions in measurements). Emphasis is placed on the lack of dissemination of information, a situation that leads to high vulnerability in areas that lack it. That is, it is not disclosed or available to users. Through SEMANAY and with the information from 2011 to 2013, they identified that the most significant peaks in CO concentrations occur during the morning (6:00–9:00 am). They associated this with low temperatures (lower temperatures, higher concentration of particles in the air) and vehicular influence in this period of time (entry to schools and work). According to the National Institute of Ecology, the metropolitan area of Guadalajara with its 4.5 million inhabitants approximately, registers CO concentrations at an average of 10 ppm, while in Tepic (with an eighth of this population) levels have been observed by above 8 ppm. This is an indication that the proportion of contamination per inhabitant in Tepic is high.

It should be remembered that the sugar mill "El Molino" due to its historical impact and its economic importance represents an essential axis of local and regional development; However, despite being recognized as respectful of the environment and occupying the first place in the control of emissions of gases and solids released into the atmosphere, it is a constant source of air pollution and represents a risk to the health of the population [33]. Finally, although a period of one year is a short time for the analysis of air pollution, this diagnosis observes trends for PM10 and PM2.5; results that allow knowing the evolution of pollution in the short term and timely informing the population about its status in real time.

Author details

Mario García1*, Héctor Ulloa1, Omar García1, Hermes Ramírez1, Aida Fajardo1, Claudia Saldaña2, Sarah Messina2 and Yamilet Rodríguez2

1 Universidad de Guadalajara, México
2 Universidad Autónoma de Nayarit, México

*Address all correspondence to: megarcia@astro.iam.udg.mx

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

variation of urban air pollutants and their concentrations in relation to meteorological conditions at four sites in Busan, South Korea. 2017: Vol.8, No.1, Pp: 89-100. https://doi.org/10.1016/j.apr.2016.07.009.

[19] Amarillo, Ana Carolina; Carreras, Hebe Alejandra. Quantifying the influence of meteorological variables on particle-bound PAHs in urban environments; Elsevier; Atmospheric Pollution Research; 7; 4; 2-2016; 597-602. https://doi.org/10.1016/j.apr.2016.02.006

PM$_{10}$ y PM$_{2.5}$ en el aire. Secretaria de Salud. http://siga.jalisco.gob.mx/aire/Normas.html.

Section 2

Air Pollution
Chapter 4
Characterization of Atmospheric Mercury in the High-Altitude Background Station and Coastal Urban City in South Asia
Manikanda Bharath Karuppasamy, Srinivasalu Seshachalam, Usha Natesan and Karthik Ramasamy

Abstract
This study is performed to evaluate the potential sources and seasonal variation of atmospheric mercury (Hg) emissions from regional sources and other influences in India. To achieve this, using the gold amalgam technique with an automated continuous mercury vapour analyzer (TekranTM 2537B). To assess the total gaseous mercury in high altitude mountain peak station at Kodaikanal & coastal/urban air in Chennai region, the impact of changing weather conditions is also evaluated. To compare the past and recent reports of mercury at different locations in the world. The average total gaseous mercury value in Chennai is 4.68 ng/m³, which is higher as compared to Kodaikanal, where it is 1.53 ng/m³. The association between TGM with meteorological parameters in ambient air such as temperature, relative humidity, rainfall intensity, the direction of wind and velocity of was studied. The TGM concentration in India are compared with other nations, the TGM levels are similar to the east and Southeast Asian countries, and also Europe, Sub-Saharan Africa and North America are the averages and maximum concentration generally smaller. This research will help to establish more effective management approaches to mitigate the impacts of atmospheric mercury on the rural and urban environment.

Keywords: ambient total gaseous mercury, meteorological parameters, high-altitude station, coastal urban city, global perspective

1. Introduction
The Atmosphere hosts almost all emissions from every source on the Earth’s surface, freshwater bodies, oceanic surface and anthropogenic emissions. In the atmosphere, mercury occurs in the following three primary forms: The gaseous elemental mercury (GEM), reactive elemental mercury or divalent mercury (RGM) and particulate mercury (PHg) [1, 2]. There is a significant quantity of research which indicates that these elements in the environment, water and marine environments via a dynamic mixture of transport and transformation in natural and human (anthropogenic) [1, 3–5]. Mercury (Hg) stays as a natural substance with the biogeochemical cycle, which is involved in the Earth and is considered as a contaminant because of its long-range transport in the atmosphere [6, 7].
Chapter 4

Characterization of Atmospheric Mercury in the High-Altitude Background Station and Coastal Urban City in South Asia

Manikanda Bharath Karuppasamy, Srinivasalu Seshachalam, Usha Natesan and Karthik Ramasamy

Abstract

This study is performed to evaluate the potential sources and seasonal variation of atmospheric mercury (Hg) emissions from regional sources and other influences in India. To achieve this, using the gold amalgam technique with an automated continuous mercury vapour analyzer (TekranTM 2537B). To assess the total gaseous mercury in high altitude mountain peak station at Kodaikanal & coastal/urban air in Chennai region, the impact of changing weather conditions is also evaluated. To compare the past and recent reports of mercury at different locations in the world. The average total gaseous mercury value in Chennai is 4.68 ng/m³, which is higher as compared to Kodaikanal, where it is 1.53 ng/m³. The association between TGM with meteorological parameters in ambient air such as temperature, relative humidity, rainfall intensity, the direction of wind and velocity of was studied. The TGM concentration in India are compared with other nations, the TGM levels are similar to the east and Southeast Asian countries, and also Europe, Sub-Saharan Africa and North America are the averages and maximum concentration generally smaller. This research will help to establish more effective management approaches to mitigate the impacts of atmospheric mercury on the rural and urban environment.

Keywords: ambient total gaseous mercury, meteorological parameters, high-altitude station, coastal urban city, global perspective

1. Introduction

The Atmosphere hosts almost all emissions from every source on the Earth’s surface, freshwater bodies, oceanic surface and anthropogenic emissions. In the atmosphere, mercury occurs in the following three primary forms: The gaseous elemental mercury (GEM), reactive elemental mercury or divalent mercury (RGM) and particulate mercury (PHg) [1, 2]. There is a significant quantity of research which indicates that these elements in the environment, water and marine environments via a dynamic mixture of transport and transformation in natural and human (anthropogenic) [1, 3–5]. Mercury (Hg) stays as a natural substance with the biogeochemical cycle, which is involved in the Earth and is considered as a contaminant because of its long-range transport in the atmosphere [6, 7].
At World level, about 50 to 70% of total mercury discharge is through anthropogenic exercises, including petroleum product ignition, smelting of metals, burning of urban waste, the release of smoke from coal-burning power plants [8, 9]. In nature, mercury occurs in three unmistakable structures, GEM, RGM and PHg [10–13]. Among these three structures, RGM and PHg shift rapidly because of their characteristics such as high-water dissolvability and reactivity [14, 15]. The lifetime of GEM is 0.5 to 2 years, which is sufficient for its transportation worldwide level [16–18]. It is reported that East Asian Nations are a standout amongst the most critical patrons of worldwide anthropogenic mercury discharge [19–21]. Total gaseous mercury (Hg0) evasion is approximated to be 2900 mg/year (range 1900–4200 mg/yr) from the ocean [22, 23]. The ocean is therefore known to be the primary terrestrial Hg source worldwide, contrasted with approximately 2000 mg/yr from direct anthropogenic emissions. Hg usually occurs in geochemical reserves, but for several years human activities including mining and more recent burning of fossil fuels have increased the emission of Hg from the mineral source into the atmosphere [24, 25]. The background means the concentration of TGM in the northern hemisphere (1.3–1.6 ng m⁻³), southern hemisphere (1.1–1.3 ng m⁻³) and tropic regions (0.8–1.1 ng m⁻³) respectively [26–28]. Various investigations have been completed worldwide on GEM mainly centred on the urban and rural locales, including mining and mechanical territories [29–34]. A thorough investigation of the air fluctuation, adding up to vaporous mercury and their relationship at the high-altitude station (Kodaikanal) of Southern India has been reported [35]. However, there is no complete investigation of the developed and developing urban regions of India and their contribution to TGM. This is the first research in India with a comparative and continuous observation of the temporal variations in TGM and its relationship to other meteorological parameters in urban and rural high-altitude stations. In general, the variation in mean seasonal concentration of TGM depends largely on meteorological variables. The study aims to investigate that during the day concentration of TGM is strongly change by solar radiation, evaporation and weather patterns. The main objectives of this study are to assess the Seasonal variability of atmospheric Total Gaseous Mercury (TGM) in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in India, to identify the potential sources and sinks of atmospheric mercury in the study areas and the influence of changing weather conditions on the atmospheric mercury distribution. Further, to compare the concentration of mercury in the past and recent findings of mercury at different locations around the world.

2. Materials and methods

In this study, monitoring sites are centrally located in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India (Figure 1). Kodaikanal is situated on a plateau on the southern ridge of upper Palani hill, at 2133 m (6998 ft) between the valleys of Parappar and Gundar. Such hills surround the Western Ghats mountains on the western side of South India. Kodaikanal region covering the whole of Kodaikanal taluk is located between 10° 7′ 56″ N latitude and 10° 26′ and 77° 15′ East and 77° 42′ East longitude. Such hills shape the western Ghats on the west portion of South India's eastward slope. Kodaikanal is located on the east coast of the Western Ghats, at the southern end of the elevated hills of Palani of Dindigul district, in the state of Tamil Nadu. For a long time in Kodaikanal, despite reports of extensive mercury contamination, the closure of a mercury factory owned by the Indian Unilever company Hindustan Unilever became a big concern. There are 35,021 residents in Kodaikanal.
and tropic regions (0.8–1.1 ng m\(^{-3}\)) respectively [26–28]. Various investigations past and recent findings of mercury at different locations around the world. Further, to compare the concentration of mercury in India, to identify the potential sources and sinks of atmospheric mercury in the high-altitude stations. In general, the variation in mean seasonal concentration of TGM and its relationship to other meteorological parameters in urban and rural India with a comparative and continuous observation of the temporal variations of urban regions of India and their contribution to TGM. This is the first research in [35]. However, there is no complete investigation of the developed and developing locales, including mining and mechanical territories [29–34]. A thorough investigation of the air fluctuation, adding up to vaporous mercury and their relationship to other meteorological parameters in urban and rural areas was completed worldwide on GEM mainly centred on the urban and rural regions [24, 25]. The background means the concentration of TGM in reserves, but for several years human activities including mining and more recent burning of fossil fuels have increased the emission of Hg from the mineral source [22, 23]. The ocean is therefore known to be the primary terrestrial Hg source worldwide, contrasted with approximately 2000–4200 mg/yr (range 1900–4200 mg/yr) from the ocean [22, 23]. The ocean Total gaseous mercury (Hg\(_0\)) evasion is approximated to be 2900 mg/year (range 510.2x737.0

Characterization of Atmospheric Mercury in the High-Altitude Background Station and Coastal...

DOI: http://dx.doi.org/10.5772/intechopen.94543

Chennai, situated on the South East Coast of India is the capital of Tamil Nadu. The Chennai city houses large scale enterprises like Petrochemical businesses, Thermal power plants, Rubber Factories and also many small-scale industries are prospering in and around the city. Chennai Metropolitan falls in the tropical wet and dry climatic condition, with the average barometrical temperature of around 25 to 40°C. The normal yearly precipitation of the city is approximately 140 cm. Because of its varied industrial and domestic setting, Chennai Metropolitan is a suitable site for studying the variations in the concentration of TGM in the air. The computerized mercury vapour analyzer (Model No - Tekran 2537B) placed at Anna University, Guindy Campus, Chennai (13° 0'45.05" N - 80° 14'2.66" E; MSL – 49 ft) was used for TGM measurements. TGM measurement and dataset were collected from the top of the Institute for ocean management, building in the Guindy campus of Anna University. The sampling height is about 50 m above the ground level, and the sample inlet was fixed in 1m above the floor of the sampling site. Many significant roads crossed in the nearby observation sites it creating vehicular pollution, with no significant sources of massive industrial pollution within 10 km radius.

3. Sampling methods and materials

The Total Gaseous Mercury (TGM) estimation was carried out using a Tekran™ 2537B utilizing an in-situ automated ambient mercury vapour analyzer. Tekran mercury vapour analyzer (2537B) continuously measured the TGM every 5-minutes from January 2015 to December 2016 at high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India. The meteorological information was acquired from computerized weather stations such as the Central Pollution Control Board (CPCB) Chennai station, Indian Meteorological Department and World weather online. Consistent informational collections of the above said parameters were recorded for each 15-minute interim and per day averages. Using a Mercury Vapor Automated Analyzer (Model No–Tekran 2537B), the addition of total gaseous mercury (TGM) was studied. To this achieve, using cold vapour atomic fluorescence spectroscopy (CVAFS) techniques and the minimum
detection limit 0.1 ng/m³, which are described. When the ambient air was analyzed, a 47 mm Teflon filter was inserted in the whole measurement method of usage of the experiment. The flow rate is constant 1 L min⁻¹ during all sampling periods. The implicit two gold cartridges, on the other hand, gather and thermally desorb mercury. The analyzer measured the Hg concentrations with intervals of 5 minutes automatically every 24 hours, and it was calibrated with its internal permeation sources. Present measurements at atmospheric TGM concentrations include other parameters, temperature, relative humidity, density, rainfall intensity, the direction of wind and velocity of the wind. The analyzer is automatically adjusted every 24 hours for each cartridge utilizing the internal ZERO and SPAN Permeation Processes. The peak areas for both cartridges during the calibration cycle are ensured during the ZERO process and under an error of less than ± 10% during the SPAN process. Computerized day-to-day alignments were performed every 24 hours (3.10 p.m. and 3.40 p.m.) using the instrument’s internal adjustment source [35, 36]. The periodical inner alignment expels both in traverse and zero that are caused for the most part by temperature and maturing of the fluorimeter light. The tested air was estimated in each five-minute time interim at a stream rate of 5 L min⁻¹. The detail of the inspecting air and the precision status of the instrument is clarified by Mao et al. The recognition furthest reaches of the TGM are < 0.1 ng m⁻³. The precision of the estimation and the task is ± 5%. Zero air was utilized as straightforward for the instrument. Airstream was gathered through PFA Teflon tube, which was tried with an aftereffect of around 100% RGM passing proficiency (vacillation of RGM is once in a while < 2%). However, this method is still the most accurate to date and is widely used for the observation of speciated Hg in ambient air.

4. Results and discussion

4.1 Characteristics of TGM in the high-altitude background station in South India

In the meteorological variables at the high-altitude ground station at Kodaikanal, India continued measurement of total gaseous mercury (TGM= Gaseous Elemental Mercury (GEM) + Reactive Gaseous Mercury (RGM) was performed from Jan 2015 to December 2015). The mean concentration for TGM was 1.49 ng m⁻³ with a range of 1.1–2.10 ng m⁻³ is shown in Figure 2. The Global Mercury Observation System (GMOS) ground-based monitoring sites in India are also the highest altitude monitoring location in the GMOS network at Kodaikanal (South India). Such measurement positions constitute a major addition to the GMOS network and improve the understanding of atmospheric Hg species in this world region. The statistical summary of TGM concentration along with the meteorological parameters in the ambient air of Kodaikanal during the study period provided in Table 1. Figure 2 shows the hourly average, daily average, monthly variation of TGM concentration in high-altitude background station (Kodaikanal) in South India. The maximum hourly and daily average concentrations were 2.55 ng/m³ and 1.95 ng/m³, respectively. The TGM concentration was occurring at every day for a month, evening time (3.00 am to 6.00 pm; the maximum concentration within the whole-time frame) it is shown in Figure 2. This finding was identical to previous observations of [37], at high altitude, remote area of the region of Mt. Changbai, northeast China. Mean annual TGM concentrations at the site of Kodaikanal were recorded at 1.52 ± 0.24 ng/m³; between 0.77 ng/m³ and 3.35 ng/m³. These observable values of mean TGM concentrations were strongly linked to previous observations [35]. The average TGM values in the study
area have also been compared with those reported from the high-altitude rural areas, but lower than in the Asian coastal regions [30, 38]. The highest monthly average TGM was reported in April 2015 (2.07 ng/m³), while in July 2015 the lowest monthly average was 1.08 ng/m³. The TGM concentrations range from 0.7 to 2.0 ng/m³, accounted for approximately 96% of the overall TGM. The annual mean TGM values were usually higher during the day time (1.57 ng/m³) compared tonight (1.08 ng/m³) it shows in Figure 2. The day-night fluctuations in the TGM level may be induced by temperature variations and thus condensation levels and soil volatilization. A rural site with a similar altitude (~2800 m) in the south of France, where the estimation of TGM in the Pic du Midi Observatory [39], with equivalent techniques, recorded an average of 1.86 ± 0.27 ng/m³. The geogenic mercury emissions are almost ~0.5 kilotonnes per year (kt y⁻¹) and re-emission of Hg ~1.6 kt y⁻¹ from the sources of plants and biomass burning [40]. The mercury deposition can be influenced by organic substances complexation, binding to Fe-Mn oxides, hydrothermal pollutants, sulfide interaction and methylation, as well as world proximities such as river drainage, waste sources, etc. [9, 10, 19, 41].

Meteorological conditions of high-altitude background station (Kodaikanal) in South India studied during the period under report are presented in Figure 3. The rose diagram graphically displays wind speed, and wind direction graph indicates that West, ENE direction has the maximum value of frequency fall in 20% with a wind speed range of 4–5 m/s at December to March. The minimum wind speed ranges 2–3 m/s falls in during May to November in Kodaikanal site (Figure 3). The relative humidity values increased from June to November; also, the TGM

![Figure 2](Image)

Figure 2.
Diurnal and monthly variation of TGM concentration in high-altitude background station (Kodaikanal) in South India.
concentrations were decreased. But relative humidity values decreased from December to May; similarly, the TGM concentrations were increased. Between November and May (dry season), the TGM concentration difference was relatively higher than between June and August (wet season). The Correlation trends of TGM concentration and meteorological parameters in high-altitude background station (Kodaikanal) in South India it shows in Figure 3. There were major differences in the mean seasonal concentration of TGM, which mainly depends on weather conditions, and found to be the following: Summer > Winter > Northeast monsoon or Autumn > South-West monsoon or Spring it is given in Table 1. This research also showed that solar radiation, evaporation and rainfall strongly changed the daytime TGM concentration. The seasonal variation is influenced by meteorological conditions and other external sources [4, 14]. The gaseous elemental mercury is an important pathway from soil to atmosphere at the forest and to the environment [19]. Also, in the Kodaikanal region, the mean annual TGM value in the Northern Hemisphere in Kodaikanal is well within the ranges of the recorded TGM background for the area (1.5–1.7 ng/m³). These ground stations mainly track the remote background at high altitude sites and sea levels. The meteorological conditions are significantly influenced by the topsoils and vegetation to release mercury in nature environments [8, 26]. The findings were also significantly affected by long- transport of improved Hg air masses from the eastern part of Gansu, the west of Shanxi, the west of Ningxia as well as northern India [37]. Furthermore, these studies have shown that natural source emissions in summer are higher than in winter.

4.2 Temporal variability of atmospheric mercury in Chennai coastal and urban region

Diurnal and monthly variation of TGM concentration and meteorological parameters in the coastal urban city (Chennai) in South India were estimated in-situ. In the overall monitoring period, day by day, TGM esteem ranges from 0.07 to 638.74 with a mean estimation of 4.68 ng/m³. The highest concentration of total

<table>
<thead>
<tr>
<th>Sites</th>
<th>Air Quality Parameters</th>
<th>Seasons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Autumn</td>
</tr>
<tr>
<td>Chennai</td>
<td>Wind Speed (m/s)</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>Wind Dir (Deg)</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Temp (Â°C)</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>RH (%)</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>SR (W/sq.m)</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>TGM (ng/m³)</td>
<td>4.69</td>
</tr>
<tr>
<td>Kodaikanal</td>
<td>Wind Speed (m/s)</td>
<td>8.60</td>
</tr>
<tr>
<td></td>
<td>Wind Dir (Deg)</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Temp (Â°C)</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>RH (%)</td>
<td>92.2</td>
</tr>
<tr>
<td></td>
<td>SR (W/sq.m)</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>TGM (ng/m³)</td>
<td>1.54</td>
</tr>
</tbody>
</table>

Table 1. Statistical summary and Seasonal variations of ambient air quality parameters sites in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India.
Environmental Sustainability - Preparing for Tomorrow

...concentrations were decreased. But relative humidity values decreased from December to May; similarly, the TGM concentrations were increased. Between November and May (dry season), the TGM concentration difference was relatively higher than between June and August (wet season). The Correlation trends of TGM concentration and meteorological parameters in high-altitude background station (Kodaikanal) in South India is shown in Figure 3. There were major differences in the mean seasonal concentration of TGM, which mainly depends on weather conditions, and found to be the following: Summer > Winter > Northeast monsoon or Autumn > South-West monsoon or Spring is given in Table 1. This research also showed that solar radiation, evaporation and rainfall strongly changed the daytime TGM concentration. The seasonal variation is influenced by meteorological conditions and other external sources [4, 14]. The gaseous elemental mercury is an important pathway from soil to atmosphere at the forest and to the environment [19]. Also, in the Kodaikanal region, the mean annual TGM value in the Northern Hemisphere in Kodaikanal is well within the ranges of the recorded TGM background for the area (1.5–1.7 ng/m³). These ground stations mainly track the remote background at high altitude sites and sea levels. The meteorological conditions are significantly influenced by the topsoils and vegetation to release mercury in nature environments [8, 26]. The findings were also significantly affected by long-distance transport of improved Hg air masses from the eastern part of Gansu, the west of Shanxi, the west of Ningxia as well as northern India [37]. Furthermore, these studies have shown that natural source emissions in summer are higher than in winter.

4.2 Temporal variability of atmospheric mercury in Chennai coastal and urban region

Diurnal and monthly variation of TGM concentration and meteorological parameters in the coastal urban city (Chennai) in South India were estimated in-situ. In the overall monitoring period, day by day, TGM esteem ranges from 0.07 to 638.74 with a mean estimation of 4.68 ng/m³. The highest concentration of total sites Air Quality Parameters Seasons

<table>
<thead>
<tr>
<th></th>
<th>Chennai</th>
<th>Kodaikanal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wind Speed (m/s)</td>
<td>Wind Speed (m/s)</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.13</td>
<td>8.60</td>
</tr>
<tr>
<td>Spring</td>
<td>1.38</td>
<td>6.70</td>
</tr>
<tr>
<td>Summer</td>
<td>1.41</td>
<td>8.40</td>
</tr>
<tr>
<td>Winter</td>
<td>1.11</td>
<td>9.20</td>
</tr>
<tr>
<td></td>
<td>Wind Dir (Deg)</td>
<td>Wind Dir (Deg)</td>
</tr>
<tr>
<td>Autumn</td>
<td>198</td>
<td>177</td>
</tr>
<tr>
<td>Spring</td>
<td>131</td>
<td>258</td>
</tr>
<tr>
<td>Summer</td>
<td>157</td>
<td>129</td>
</tr>
<tr>
<td>Winter</td>
<td>187</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Temp (°C)</td>
<td>Temp (°C)</td>
</tr>
<tr>
<td>Autumn</td>
<td>29</td>
<td>17.6</td>
</tr>
<tr>
<td>Spring</td>
<td>30</td>
<td>17.4</td>
</tr>
<tr>
<td>Summer</td>
<td>31</td>
<td>20.5</td>
</tr>
<tr>
<td>Winter</td>
<td>27</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>RH (%)</td>
<td>RH (%)</td>
</tr>
<tr>
<td>Autumn</td>
<td>71</td>
<td>92.2</td>
</tr>
<tr>
<td>Spring</td>
<td>73</td>
<td>91.1</td>
</tr>
<tr>
<td>Summer</td>
<td>67</td>
<td>82.6</td>
</tr>
<tr>
<td>Winter</td>
<td>73</td>
<td>80.3</td>
</tr>
<tr>
<td></td>
<td>SR (W/sq.m)</td>
<td>SR (W/sq.m)</td>
</tr>
<tr>
<td>Autumn</td>
<td>199</td>
<td>290</td>
</tr>
<tr>
<td>Spring</td>
<td>254</td>
<td>304</td>
</tr>
<tr>
<td>Summer</td>
<td>213</td>
<td>346</td>
</tr>
<tr>
<td>Winter</td>
<td>198</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>TGM (ng/m³)</td>
<td>TGM (ng/m³)</td>
</tr>
<tr>
<td>Autumn</td>
<td>4.69</td>
<td>1.54</td>
</tr>
<tr>
<td>Spring</td>
<td>5.40</td>
<td>1.38</td>
</tr>
<tr>
<td>Summer</td>
<td>3.62</td>
<td>1.62</td>
</tr>
<tr>
<td>Winter</td>
<td>5.39</td>
<td>1.59</td>
</tr>
</tbody>
</table>

Table 1. Statistical summary and Seasonal variations of ambient air quality parameters sites in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India.

gaseous mercury was recorded in June 2016 (638.74 ng/m³), and lowest concentration was recorded in August 2016 (0.07 ng/m³) at the coastal urban city (Chennai) in South India (Figure 4). The measured values of TGM are having a higher range than the Northern Hemisphere foundation concentration (1.50–1.75 ng/m³) [9, 42]. TGM concentration occurring at every day, night or early morning (2.00 am to 7.00 am; the maximum concentration within the whole-time frame) is shown in Figure 4. Similarly, TGM concentrations were higher in the early in the morning and midnight times reported by Schmolke et al. [36]. Such night-time maximums of TGM concentration [33, 36, 43, 44] have been due to mercury releases in the night-time inversion layer from surface accumulations. The potential sources of TGM in the investigation ground are from coal-based power plants, vehicular discharge, and

Figure 3. Trends of TGM concentration and meteorological parameters in high-altitude background station (Kodaikanal) in South India.
southerly direction [11, 12, 43]. The short-term measurements of TGM in China report recommend that the TGM ranges from 2.5 to 3.5 ng/m³ for east beach front territories of China, 1.94 to 3.22 ng m⁻³ for Indochina peninsular regions [29]. Ci et al. [45] revealed that sea occasions are effectively engaged with the conveyance of the GEM along with the beachfront territories. Globally an average of 1.5 ng/m² of gaseous mercury is found in the atmosphere and Chennai; the average is 4.68 ng/m³. The present-day a large source of atmospheric mercury obtains from the ocean mostly in Hg0 (approximately ranges 1900–4200 Mg/year). The datasets of meteorological parameters versus TGM were plotted in Figure 5. Amidst the whole investigation time frame, the most extreme aggregate recurrence of wind rose was seen between 35 to 65° (NE) and 195 to 275° (SSE to WSW), and this focus is around 39% of the aggregate TGM outflow from the coastal urban city (Chennai) in South India Figure 5. TGM fluctuations were observed seasonally and diurnally, which suggested differences in source intensity, deposition processes and meteorological influences. The meteorological data set observed used to compare total gaseous mercury variation in the coastal urban city (Chennai) in South India, and it shows in Figure 5. The annual rose diagram graphically displays wind speed, and wind direction graph indicates that NE direction has the maximum value of frequency fall in 14% with a wind speed range of more than 5 m/s at Chennai urban environments. It is observed that when the temperature (27 centigrade) is low, the total gaseous mercury is found to be maximum (8.07 ng/m³) for February (Figure 5). Solar radiation, temperature, relative humidity and the wind speed increased a month of April, but the TGM concentration was in declined it shows in Figure 5. The TGM concentration was in positively correlated in barometric pressure and wind direction. The TGM concentrations continuously decreased in the following months, April to August; similarly, the barometric pressure and relative humidity also decreased (Figure 5). The meteorological parameters play a vital role in regulating atmospheric total gaseous mercury concentrations [15, 46]. The leading cause of pollution in megacities India is affected by the coal-fired power plants, transportation, industrial activity and also urban solid waste [47]. The peak concentration of total gaseous mercury was observed in Chennai urban environments during Winter as 5.64 ng/m³, and the lowest concentration occurred during South-West
Monsoon, which is 3.91 ng/m3. The highest concentration is observed during Winter and Summer due to long-range transportation of total gaseous mercury compared to autumn and spring seasons. The concentration of total gaseous mercury for the four seasons are arranged in the following order: Winter > Summer > Autumn > Spring for the coastal urban city (Chennai) in South India it is given in Table 1.

4.3 Mercury assessment of South Asia and global perspective

The influence of seasonal shift is very predominant in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India. The meteorological parameters (Wind speed, wind direction, solar radiation, Atmospheric temperature, Relative humidity) and TGM focus were connected to decide the relationship connection between the informational indices of the monitoring sites. Total gaseous mercury concentration varies significantly with wind speed and wind direction and other meteorological parameters, a concentration which changes with the seasons as given in Table 1. China and India where less attention of recycling the waste and increased production of coal combustion, metals, chlorine, and cement production. In India imported mercury users of Chlor-alkali plants, thermometers, batteries, Hg-Zinc, Zn-Carbon, fluorescent lamps, thermostat switches, alarm clocks, and hearing aids a total mercury user.

The primary anthropogenic sources such as combustion of fossil fuels for 24% and coal-burning (21%) at worldwide estimated emissions [5]. The approximately 2320 Mg of mercury is released yearly to the worldwide atmosphere (31%) for the primary sources of anthropogenic emission [8]. The world’s leading mercury reservoirs, a unit of the Earth’s measurement system and still an ecosystem suffering from anthropogenic activity, encompass the atmosphere (4.4 to 5.3 Gt), the terrestrial environment (in particular soils: 250 to 1000 Gg) and aquatic ecosystems (e.g. oceans: 270 to 450 Gg) [48]. The sustainability of mercury monitoring networks is an essential factor affecting the effectiveness of monitoring efforts.

In a global mercury assessment in 2013, mercury reported to dental usage measured at roughly 270-341 tons in 2010 [49], which represents 10% of global consumption of mercury Figure 6. Recently, the United Nations Environment Programme (UNEP) report 2018 to estimate the anthropogenic sources of
anthropogenic sources in 2015 were about 2220 tons. Such sources constitute respectively 25 to 37 percentages of overall worldwide mercury emissions, measured at approximately 2000 tons. The TGM concentration in South Asia (India) are compared with other nations, the TGM levels are similar to the east, and southeast Asian countries and also Europe, Sub-Saharan Africa and North America are the averages and maximum concentration generally smaller. Mercury emission estimated (kg) in global in south Asia was in the second-largest nation in the worldwide it shows Figure 6 [49]. Recent assessments of emissions of mercury into the environment (the 2010 targets) indicate that the primary anthropogenic sources of mercury pollution into the environment are artisanal and small-scale gold mining and fossil fuels (primarily coal) for power plants and industrial boilers for the generation of heat and electricity. In India majority of mercury releases from coal-burning (89,444 kg) followed by non-ferrous metal production (22,536 kg), waste from products (13,692 kg), cement production (13,421 kg) non-ferrous metal production, combustion of fossil fuels and artisanal small scale gold mining was in less than 1000 kg etc. it shows in Figure 6 [49]. The most important natural sources and sources of re-emissions assessed within the GMOS project are oceans, which contribute 36% of the emission of mercury, followed by biomass (9%), deserts, metal and non-vegetation areas (7%), tundra and grassland (6%), forest (5%) and evasion after the events of mercury depletion (3%) [25, 40]. The majority of mercury releases worldwide estimated by fossil fuel combustion (11%), small-scale gold mining (5%), non-ferrous metal production (4%), cement production (3%),

Figure 6.
Country and sector-wise mercury emission and sources of emission sectors in India and global (data source: UNEP [49]).
caustic soda production (2%), waste incineration (2%) and pig iron production (1%) [8]. Total mercury emissions are dominant in Asian countries, particularly China and India, and this information on the above factors and detailed estimates for mercury can be found in AMAP/UNEP [49].

Mukherjee et al. [47] reported the mercury contamination in India its mainly from industrial mercury emissions from coal combustion, the iron and steel industry, non-ferrous metallurgical plants, chloralkali plants, cement industry, waste disposal and other minor sources (i.e. brick production). The largest contributors to the source categories are coal combustion (52%) and waste incineration (32%) as shown in Figure 6. In general, TGM concentrations in urban and suburban areas are higher than in rural areas [49]. Mercury emission estimated (kg) in global south Asia was in the second-largest nation in the worldwide [49]. However, measurements from global urban sites, which are also situated in the same region Asia, showed less than half of the mean concentration from our site. One of the main reasons for our study area is located in the coastal region was that episodically diluting with cleaner marine air and TGM with oceanic bromine will reduce pollution [50]. The possible sources of TGM in India are coal-fired power plants, vehicular emission, manufacture of ferrous and non-ferrous metals, waste incinerating sites, domestic fuel use from residents within the Informal villages around the Landward side, and ocean origin sources. Also, The Asian countries emissions are dominated in the global anthropogenic mercury emissions [21]. Current estimations on mercury emissions and re-emissions of primary natural mercury, including, mercury leakage cases, were measured at 5207 tonnes year\(^{-1}\), which accounts for approximately 70% of the GMOS programme [5]. This pollution estimate is accurately compared to the information given by Cohen et al. Various additional lines of study and measurement are necessary to improve inventories of mercury and improve the ability to assess control options.

5. Conclusions

India is known to be the second-highest mercury (Hg) contributor to the global Hg budget for the environment. The present study is focused on the hourly, daily, and seasonal variations of the TGM concentration and meteorological parameters investigated at high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in India. The mean total gaseous mercury concentration in Chennai is 4.68 ng/m\(^3\), which is higher when compared to Kodaikanal, where it’s approximately 1.53 ng/m\(^3\). TGM concentrations exhibit an obvious diurnal pattern at Chennai urban region. All peak values appear between 3:00 am, and 8:00 am in all the seasons. This is probably the result of the change in the height of the atmospheric boundary layer that occurs between day and night. This is in large relation to global averages, but slightly less than in semi-industrial/urban areas in India.

The reason behind the higher concentration of total gaseous mercury in Chennai region is the high pollution due to anthropogenic sources, for example, industrial and vehicular emissions, which essentially improves vaporous mercury and also significantly enhances the atmospheric mercury level. Among the seasons, concentrations of TGM were higher during winter season both in Chennai and Kodaikanal indicating dry air with lower humidity aggregates higher pollutants in an urban environment. Total gaseous mercury concentration during the winter season is observed to be maximum in both regions. The average TGM concentrations during four monitoring seasons were ordered as Winter > Summer > Autumn > Spring. The average TGM concentrations in Chennai during the four monitoring seasons were ordered as Winter (5.64 ng/m\(^3\)) > Summer (5.16 ng/m\(^3\)) > Autumn (4.59 ng/m\(^3\))
> Spring (3.92 ng/m³). The average concentration of total gaseous mercury in the high-altitude background station (Kodaikanal) for the four seasons are arranged in the following order: Winter (1.61 ng/m³) > Autumn (1.53 ng/m³) > Summer (1.51 ng/m³) > Spring (1.36 ng/m³). From the results, it is clear that meteorological parameters play a vital role in the variation of total gaseous mercury. Factors such as the re-emission of concentrated mercury through Earth soils, vertical mixing and long-range transport influenced the seasonal variability of TGM at the monitoring sites. Moreover, it is clear that in the future if these meteorological parameters changes, it will change the concentration of total gaseous mercury in the observation regions. The present study can be extended by quantifying the total mercury emission from the earth systems and its impact on environments and human health in the Chennai urban region. There is a shortage of essential information and pollution factors for Asian countries to complete this analysis to address this situation. Recent work has used TGM and meteorological parameters, although the impact of wind speed, wind direction, and solar radiation on pollutant behaviour are well known, and these factors can be more easily approached in future research.

Acknowledgements

The authors express their gratitude towards The Global Mercury Observation System (GMOS), European Commission, for providing instrumental (Grant Agreement no. 265113) and technical support and Central Pollution Control Board (CPCB), Chennai, for providing meteorological data.

Author details

Manikanda Bharath Karuppasamy¹*, Srinivasalu Seshachalam¹, Usha Natesan² and Karthik Ramasamy³

1 Institute for Ocean Management, Anna University, Chennai 600025, Tamil Nadu, India

2 Centre for Water Resource, Anna University, Chennai 600025, Tamil Nadu, India

3 National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, Tamil Nadu, India

*Address all correspondence to: krmanibharath93@gmail.com

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[26] Lynam M, Dvorch J,T, Barres J, et al. Atmospheric wet deposition of
Characterization of Atmospheric Mercury in the High-Alitude Background Station and Coastal...
DOI: http://dx.doi.org/10.5772/intechopen.94543

[40] Outridge, P.M., Mason, R.P., Wang, F., Guerrero, S., Heimbürger-Boavida,
Urban air pollution has become a salient environmental issue in many Asian emerging economies, as pollution from both natural and man-made sources has become a major concern for health and economic well-being. Pollution can lead to a variety of health impacts, including respiratory and cardiovascular disease. Urbanization and industrial development can cause major increases in particulate matter and other pollutants in the air, which can affect people, vegetation, and the global environment. Human activities play a significant role in pollution, contributing to elevated levels of contaminants. The consequences of pollution can be significant, including increased health care costs, reduced life expectancy, and economic losses. As such, pollution control and mitigation are important goals for urban and industrial areas, especially in rapidly developing regions.
Chapter 5

Health Impacts of Air Pollution

Muhammad Ikram Bin A Wahab

Abstract

Urban air pollution has become a salient environmental issue in many Asian countries due to their rapid industrial development, urbanization, and motorization. Human-induced air pollution has been and continues to be considered a major environmental and public health issue. Its severity lies in the fact that high levels of pollutants are produced in environments where damage to human health is concentration, duration of exposure and welfare is more likely. This potential is what makes anthropogenic air pollution an important concern. Extreme air pollution episodes were reported for the Meuse Valley, Belgium, in 1930; Donora, PA, and the Monongehela River Valley in 1948; and London in 1952. These episodes are significant in that they provided solid scientific documentation that exposure to elevated ambient pollutant levels can cause acute illness and even death. The most devastating events contributed to important efforts to control ambient air pollution. The International Agency for Research on Cancer (IARC) assessment concluded that outdoor air pollution is carcinogenic to humans, with the particulate matter component of air pollution mostly associated with increasing cancer incidence especially lung cancer. Pollutant effects typically occur in some target organs. These can be straightforward; i.e., pollutants come into close contact with the affected organ. Such is the case for eye and respiratory irritation. Effects may be indirect. For example, Pollutants can enter the bloodstream from the lungs or gastrointestinal system through the respiratory route. Effects may then be distant from the immediate organ of contact. A target organ can have no immediate and intimate contact with atmospheric contaminants. The primary organs or target organs are the eyes and the respiratory and cardiovascular systems.

Keywords: Urban Air Pollution, Human Health Effects, Respiratory and Cardiovascular Disease

1. Introduction

Air pollution is the presence of unwanted substances in the air in sufficient quantities to produce adverse effects. Undesirable substances can affect human health, vegetation, human property or the global environment including creating esthetic slurs in the form of brown or foggy air or offensive odors. Outdoor or ambient air pollution has been recognized as one of the major concerns that have high potential for its deleterious effects on health. Increased urbanization, human activities and changing urban setting in the country have resulted in elevated air pollution and the occurrence of urban heat islands.

The classification of air pollutants is based mainly on the sources producing pollution. There are four main air pollution sources namely major, area, mobile and natural sources. Major sources include the emissions from power stations,
refineries, petrochemicals, manure industries, metalworking and other industrial facilities, and municipal incineration. Indoor sources include household cleaning operations, printing facilities and gas stations. Mobile sources include motor vehicles, cars, rail lines, airways and others. Last but not least, natural sources include physical disasters such as forest fires, volcanic eruptions, dust storms, and agricultural burning [1].

Particulate matter air pollution less than 2.5 μm has received great international attention due to its diverse contribution to the global burden of disease. Study done by Brauer et al [2] mentioned that majority of the planet still resides in areas where the World Health Organization Air Quality Guidelines of 10 μg/m³ (annual) and 25 μg/m³ (24hrs) is exceeded. Ground level measurement of PM2.5 or lower are still limited in most of the places in the world. Therefore, studies are required to evaluate and provide insight in high risk as to the exposure and risk as many of the form of air pollution are beyond the control of individual and require policy at national and international levels.

The inorganic components constitute a small portion by mass of the particulates; however, it contains some trace elements such as As, Cd, Co, Cr, Ni, Pb and Se which are human or animal carcinogens even in trace amounts [6, 7]. The high level of Pb can induce severe neurological and hematologic effects on the unprotected population particularly in children, whereas both Cd and Ni are known to cause cancer-causing effects on humans by inhalation. Workplace exposure to Cd is an important risk factor for chronic pulmonary diseases [8]. Cr (VI) have been recognized to cause toxicity and carcinogenicity in the bronchial tree [9, 10]. Exposure to Mn is associated with an increase in neurotoxic deficiencies [11]. Elevated levels of Cu may cause respiratory irritation [10, 12].

PAHs have attracted a substantial amount of attention due to their persistent, bio-accumulative, carcinogenic and mutagenic properties related to health problem such as cataracts, kidney and liver damage, and jaundice [13]. The maximum concentrations of airborne PAHs are typically occur in the urban environment due to increased vehicle traffic and the spread of air pollutants. Given the high urban population density, the risk from human exposure to airborne PAHs in highest [14].

Global Burden of Disease Study (GBD) 2015 indicated that ambient particulate matter pollution accounted for 4.2 million deaths and 103 million healthy life-years lost in 2015, representing 7.6% of total global mortality and making it the fifth-ranked global risk factor.

2. Particulate matter

The term particulate matter (PM) or atmospheric aerosols is a mixture of solid particles and/or liquid droplet that may vary in concentration, composition and also size distribution. Aerosols can be defined as suspensions of solid or liquid in a gas. Therefore, aerosols include both the particle and the gas in which they are suspended. Although aerosol and particle are different, they are often used interchangeably throughout the literature to refer to the particle only.

Aerosol particulates in the atmosphere come from a wide mixture of natural and anthropogenic sources. Primary particulates are released directly as liquids or solids from sources such as biomass combustion, incomplete fossil fuel combustion, volcanic eruptions and suspension of road, ground and mineral dust, sea salt...
and biological materials caused by wind or traffic. Secondary particulates, on the other hand, are formed by the conversion of gas into particulates in the atmosphere. Primary gaseous species might undergo chemical reaction to produce low-volatility products. Then, these products partitions to the particulate phase, i.e. new particles are formed by nucleation and condensation of gaseous precursors [15].

Small aerosol particles predominantly contribute to number concentrations; however they only play a smaller role for the volume distribution. On the other hand, larger particles play a role for the volume distribution but do not contribute substantially to the number concentration [16]. Particles are conventionally divided into different size of fractions; based on the physical and chemical processes involved in the particle formation and growth. The different size of fractions is generally called “modes” [17].

The nucleation (or ultrafine) mode resides in the range below 0.02 μm of particle diameter and usually presents its maximum number-density around 5-15 nm of particle diameter. H₂SO₄, NH₃ and H₂O are examples of precursor gases to form new particles by homogenous nucleation in the ambient atmosphere. However, due to the condensation by other condensing gases, organic and inorganic components, the newly formed particles rapidly grow bigger. These particles have hours lifetime in the atmosphere as they rapidly coagulate with larger particles or grow into larger sizes due to condensation. Classical nucleation theory shows that the nucleation highly depends on the concentrations of the gaseous precursors, relative humidity and temperature. In particular, the nucleation is favored by decreases in the temperature and/or increases in the relative humidity [18].

Aitken mode particles range from 0.02 to 0.1 μm and originate either from primary particles, natural and anthropogenic, or by growth of nucleation mode particles. Secondary Aitken mode particles are likely to be formed by coagulation of ultrafine particles, by condensation and by liquid phase reactions. Combustion process is a primary source that has very large emissions of Aitken mode particles. Aitken mode particles are present at relatively stable concentration in the atmosphere; indicating a long residence time of Aitken particles at ambient atmosphere. The accumulation mode covers the range between 0.1 and up to 1 μm. Aitken mode particles have a tendency to grow to accumulation mode particles due to coagulation and liquid phase reactions occurring in cloud droplets. Hoppel et al. [19] stated that the mass transfer by condensation and/or nucleation/coagulation is not enough to cause any significant change in particles size compared with the observed growth.

3. Health effects of particulate matter

Particulate pollution includes particulate matter with a diameter of 10 micrometers (μm) or less, referred to as PM10, and extremely fine particulate matter with a diameter of 2.5 micrometers (μm) or less. Particles contain tiny liquid or solid droplets which may be inhaled and cause adverse health effects. PM10 when inhale can enter the lungs and the bloodstream. Fine particulate matter, PM2.5, represents a greater health risk (Table 1) [1].

There is consistent evidence for the relationship between atmospheric particulate matter and public health outcomes for adverse health effects [20]. The range of effects is extensive, including effects on the respiratory and cardiovascular systems that extend to children and adults in the general population [20–22], but also including lung cancer [21, 22].

The risk for various outcomes has been shown to increase with exposure and there is little evidence for a threshold below which no adverse health effects would be anticipated [20]. In one WHO report [23, 24], the importance to public health
of the long-term effects of particulate matter exposure outweighs the importance of short-term effects. The short-term effects of exposure have been recognized in many time series studies, and short-term (24-hour) and long-term (yearly average) guidelines are suggested [24]. PM2.5 and PM10 are recommended for assessment and control as fine and coarse particles have diverse sources and can have multiple effects. With respect to ultrafine particulate matter, there is insufficient information to support a quantitative assessment of the potential health effects of exposure [25].

Particle size and surface area are important characteristics from a toxicological point of view. Pope & Dockery [21]; Schlesinger et al. [22] recently review the current understanding of particulate matter, its size and its health effects.

Study done by Pope & Dockery [21]; Schlesinger et al. [22] proved that the relationship between fine particulate matter, PM2.5, and most health effects is greater than between PM10 and health effects. Ultrafine particulate matter contributes little to the mass concentration of particulate matter; however, it affects the surface in large numbers and is of interest to toxicological studies [22]. Study done by Nel et al. [26] concluded that as the size of a particle decrease, its surface area increases, thus allowing a greater proportion of its atoms or molecules to be displayed on the surface. Furthermore, particle size is crucial for penetration and deposition efficiency into human lungs, since ultrafine particles ability to penetrate the membranes of the respiratory tract and enter the blood circulation.

Particulate organic matter in ambient air is a complex mixture of chemicals, i.e. polycyclic aromatic hydrocarbons (PAHs). The International Agency for Research on Cancer (IARC) classified some PAHs, i.e. benzo[a]pyrene, as human carcinogens [27]. Another group that has gained interest in recent years is metals. Schlesinger et al. [22] have summarized current knowledge regarding trace metals and their health impact. The assessment of the risk associated with exposure to PAHs is still a challenge. PAHs present in ambient air mainly as a complex mixture and the interactions among components may lead to additively, synergistic or antagonistic effects. In addition, a study conducted by Topinka et al. [28] shows that organic matter extracted from PM2.5 are likely to induce DNA adducts and oxidative DNA damage in in-vitro cell-free assay experiments.

The toxicological findings strongly suggest that transition metals such as V, Cr, Mn, Fe, Ni, Cu and Zn are components in PM with toxic capability based on their potential for oxidative activity and the production of reactive oxygen species [22]. Soil dust is composed of crust elements (Si, Ca, Al and Mg) and is existent in ambient PM2.5, but bigger segments are present in coarse mode.
Windblown soils, dust, at least in rural areas, are not considered a significant health risk however natural crusty materials may be contaminated with road dust generated by moving vehicles. Contaminants may contain a range of constituents, including PAHs and various metals that can alter the toxicology of crust particles.

Several studies indicated that particles produced from burning of biomass for domestic heating have increased and become one of the major sources of PM$_{2.5}$ in Europe and other parts of the world [29, 30]. Incomplete combustion of biomass produces a multitude of different organic species as well as trace metals. In a assessment of some epidemiological studies carried out in areas where wood smoke is prevalent. Boman et al. [31] concluded that particulate matter from wood smoke appears to be at least as deleterious as particulate matter from other sources.

In 2016, air pollution was ranked sixth in terms of global burden of disease and that 7.5% of all deaths were attributable to ambient air pollution (4.1 million deaths) [32]. Globally, ambient air pollution is responsible for about 27.5% of all lower respiratory infection deaths and 27% of all deaths due to chronic obstructive pulmonary disease [32]. The World Health Organization (WHO) estimates that about 26% of deaths due to ambient air pollution in 2012 occurred in South East Asia [33].

South East Asia population is not only exposed to local sources of air pollutants (for example, industrial and traffic related air pollutants) but it also exposed to regional smoke from the seasonal forest fires (or ‘haze’) that occur in Sumatra and Kalimantan. The fine particulate pollution from these forest and peat fires can reach hazardous levels for extended periods of time, posing severe health risks to millions of people across Malaysia. These forest fires are also a major cause of transboundary air pollution throughout South East Asia. The forest fires occur in the dry season, (known as the South-west monsoon season, April to September) and tend to be more severe in the El Nino years. During this monsoon season, the prevailing wind direction is south westerly, and the smoke from forest fires in Sumatra are commonly transported towards Malaysia. The most severe haze episode from these forest fires occurred in 1997. Since then, there have been severe haze episodes from forest fires every two to three years, for example, in 2005, 2006, 2009, 2010, 2011, 2012, 2013, 2014 and 2015 [34]. The last major transboundary haze episode occurring in 2015 has been estimated to have resulted in 91,600 excess deaths in Indonesia, 6,500 deaths in Malaysia and 2,200 deaths in Singapore [35].

During the haze episodes, the main air pollutant of concern is PM2.5. The health impacts of PM2.5 are related to concentration, duration of exposure and individual susceptibility. PM2.5 pollution is causally related to cardiovascular (myocardial infarction, hypertension, heart failure, arrhythmias) and respiratory disease (chronic obstructive pulmonary disease and lung cancer [32]. Long-term exposure to PM2.5 has also been linked to adverse birth outcomes, childhood respiratory disease and possibly neurodevelopment and cognitive function, and diabetes [36, 37]. PM2.5 is also associated with systemic inflammation with associated increases in acute phase proteins such as C-reactive protein and fibrinogen [38]. These biomarkers have been consistently linked to subsequent cardiovascular disease and death [37].

4. Trace metals

Toxic heavy metals are one of the major hazardous that affects us today. Atmospheric deposition of toxic heavy metals has stimulated profound research all over the world due to effects on living organisms. Toxic metals like lead (Pb), cadmium (Cd), arsenic (As) and chromium (Cr) can essentially attack specific areas in the human body upon exposure [39]. Their dispersal and transport through
Metal toxicity

A toxic material is a substance that has an adverse effect on health. Many chemicals could be classed as toxic, but some are more toxic than others. When metals bind to the sulfhydryl groups in proteins, they may move essential elements, interrupt function or obstruct the activity of the sulfhydryl group leading to toxicity [45]. Trace metals like mercury, lead, arsenic, zinc, copper, gold, cobalt and cadmium can be highly toxic and easily accessed by living organisms. Plants may exhibit different signs of toxicity according to type of metal and plant. Generally, in humans, heavy metal toxicity may range from reproductive defects to lung damage [46, 47] while in plants, they may cause damage to root systems, disrupt the proper functioning of the stomata and inhibit growth [48, 49].

Over the last 50 years, there has been a rapid rise in the number of significant trace elements associated with water pollution incidents. The release of cadmium into the Jinstu River in Japan resulted in serious bone damage [50].

Even chromium is an essential micronutrient, chromatic salts can have serious effects on the skin, nasal septum and lungs [46]. Homeostatic mechanisms generally work to control gastrointestinal absorption, so entering the body through other routes bypasses this control. Another example is Zn, whereby inhalation of zinc oxide vapors can cause an allergic reaction leading to metal smoke fever [51].
Large number of metals such as Cd, Pb and Hg have no recognized biological significance in human and exposure of small amounts may be toxic [52]. “Trace metals” is a broad collective term that includes any metal that is toxic and has a relatively high specific density as well [52]. Common indications of intoxication (Cd, Pb, As, Hg, Zn, Cu and Al) encompass gastrointestinal disturbances, diarrhea, stomach ulcer, hemoglobinuria, ataxia, paralysis, vomiting and seizures, depression and pneumonia [52].

Metals intrude with the biochemistry of the organism during common metabolism processes. In the acidic middle of the stomach, they transform into stable oxidation states and merging with the body’s biomolecules like proteins and enzymes to establish solid and stable chemical bonds, replacement of hydrogen or essential metals in an enzyme and, therefore, inhibit its functioning [52].

Metallic ions in the body’s metallo-enzymes can be easily substitute by another similar sized metallic ion. Occasionally, the enzymes of a whole sequence coexist in the form of a single multi-enzymatic complex hence replacing an essential metal by an interfering metal blocks the biological reaction of the enzyme function. One example is the substitution of Zn by Cd and caused detrimental effects on body chemistry [53].

Therefore, the metal remains incorporated in the tissue and will effect in a variety of bio-malfunctions, not all evenly severe [52]. The most toxic forms of interference metals are their most stable oxidation states, since these very stable forms of biotoxic compounds are difficult to isolate with detoxification therapies [52].

6. Trace elements in whole blood

Heavy metals and trace elements can be measured in whole, serum, urine and other tissues. In blood, metals are distributed between the non-cellular (plasma/serum) and intra-cellular compartment (predominantly erythrocytes). For examples, lead (Pb) is known to have a strong affinity for erythrocyte [54]. Thus Pb is measured primarily in whole blood. Levels of metals in blood and serum have been extensively studied in different samples to identify the exposure of human population. Pregnant mother and their growing fetuses are especially vulnerable to exposure to pollutants. Air and water pollution, exposure to toxic elements, and exposure to persistent organic compounds have been associated with adverse pregnancy and developmental outcome [55, 56].

In addition to that, trace elements are also required in the body for its normal function. Macrominerals refer to minerals that adults need in quantities greater than 100 mg/day. The principal (macro-nutrients) consist of sodium, potassium, chloride, calcium, magnesium and phosphorus. Trace elements (trace mineral) are commonly stipulated as minerals required by adults between 1 and 100 mg/day. The group of trace minerals is composed of iron, copper and zinc. Ultra-trace minerals are defined as minerals that are needed in quantities under 1 mg/day. These consist of chromium, manganese, fluoride, iodide, cobalt, selenium, silicon, arsenic, boron, vanadium, nickel, cadmium, lithium, lead and molybdenum [57].

7. Polycyclic aromatic hydrocarbon (PAHs)

PAHs comprise diverse groups of compounds whose structure comprises at least two benzene groups and assorted functional groups that may include more than one element. They can be eliminated or converted to even more toxic compounds via chemical reactions such as sulfonation, nitration or photooxidation. For example,
under certain conditions, traces of nitric acid may convert some PAHs into nitro-PAHs [58].

Organic compounds can be released from their sources in gas phase or can be associated with particles by nucleation and condensation, forming particulate matter. PAHs can be found in the particulate and gaseous phases, depending on their volatility. Low molecular weight PAHs (LMW PAHs) with two or three aromatic rings are released in the gas phase. High molecular weight PAHs (HMW PAHs) of five or more rings are generated in the particulate phase.

The particulate form of PAHs is first found in the high-temperature gas phase. Nevertheless, when the temperature drops, the gas-phase PAHs adsorb or settle on the fly ash particles. Smaller particles offer more surface area for PAH adsorption. Environmental temperature is very important for the distribution of PAH gas particles. PAH can be formed in any incomplete combustion or high temperature pyrolytic process involving fossil fuels, or more generally, materials containing C and H [59].

The mechanisms by which PAHs are formed and emitted can be divided into two processes: pyrolysis and pyrosynthesis in any fuel combustion system. Pyrolysis is the development of smaller, unstable fragments from a heated organic compound. Fragments are extremely reactive free radicals whose average life expectancy is very short. Through recombinant reaction, these free radicals result in more stable PAHs and this process is known as pyrosynthesis. For instance, B (a) P and other PAHs are formed by pyrolysis of methane, acetylene, butadiene and other compounds [60].

The formation of PAHs in pyrolysis oils was attributed by Diels-Alder responses of alkenes to form cyclic alkenes. In cyclic alkene dehydrogenation responses, stable rings of aromatic compounds from which PAH compounds are formed. Nonetheless, complex hydrocarbons need not necessarily decompose into small fragments prior to the recombinant process. Compounds with multiple rings are susceptible to partial cracking. Moreover, phenyl radicals also play a significant role in addition to intermolecular and intramolecular hydrogen transfers at intermediate constituent in high-temperature process which result in PAH formation [60].

8. Toxicity and carcinogenicity of PAHs

Elevated levels of PAHs in air cause numerous adverse effects on different types of organisms, inclusive plants, birds and mammals. A few studies have shown a significant positive association between lung cancer mortality in humans and PAH exposure from coke oven exhaust, cover tar and tobacco smoke. Concurrently, certain PAHs were shown to react with near ambient levels of NO$_2$ + HNO$_3$ and with O$_3$ in synthetic atmospheres, to form directly mutagenic nitro-PAH and oxy-PAH [61].

Some of the PAHs and their metabolites can induce stable genetic alterations that have the potential to irreversibly alter the control of cell division. This may result in tumor growth and cancer in fish and mammals. Due to solubility of PAHs in fatty tissue, they may bioaccumulate and transferred in the food chain. Certain PAHs have been specified as possible or probable cancer causing in humans, notably benzo (a) anthracene, chrysene, benzo (b and k) fluoranthene, benzo (a) pyrene and others [62]. Epidemiological studies have demonstrated that individuals exposed to mixtures containing PAHs have increased lung cancer rates [63].

It is known that the lower molecular weight PAHs is less harmful. They are predominantly discovered in the vapor phase in an urban air where they can react with other pollutants (O$_3$ and NO$_3$) to form more toxic derivatives. For example, PAHs react with NO$_3$ will form carcinogenic nitro-derivatives [64].
Particles smaller than 10 μm are more potent to incorporate larger quantities (unit mass) of PAHs because of their large area-to-volume ratio. That is a major concern because smaller particles are retained by the lung. In the human respiratory system, particles greater than 10 μm in diameter could not reach the thorax. Particles between 2.1 and 10 μm are preferably trapped by the pharynx, trachea and bronchi while particles less than 2.1 μm can reach bronchial and terminal alveoli. Consequently, harmful physical action of inhalable particles (i.e., development of lung emphysema) is ascertained with chemical impact as a result of their toxicity [65].

Humans may be exposed to PAHs by inhaling contaminated air or cigarette smoke, ingesting food with PAHs, and skin absorption of soil or materials that contain PAHs. Ingestion and inhalation are the two principal routes of exposure to the general population [27, 66]. For some professions, such as coal tar roofers and coking plant workers, skin absorption may be the primary route of exposure to PAHs [67].

Once PAHs have penetrated the human body, they undergo a series of bio-transformation processes. During Stage I metabolism, PAHs are oxidized by cytochrome P450 enzymes to develop reactive epoxy intermediates, followed by hydrolysis to form hydroxylated derivatives (OH-PAHs). In Phase II metabolism, PAHs-OH are combined with glucuronic acid and/or sulphate to increase metabolite solubility in water and for ease of removal by urine, bile or stool [68]. Urinary OH-PAHs have been used as biomarkers to assess human exposure to PAHs, with 1-hydroxypyrene (1-PYR) as the most commonly used indicator in biomonitoring studies [69].

9. PAHs in whole blood

Blood measurement for DNA adducts of PAHs have been employed as a markers for PAHs exposure in human populations. Environmental monitoring documents the presence of a environmental pollutants, but the biological consequences of exposure to the organism are found only intracellularly [70, 71]. Protein-adduct formation is considered a surrogate of DNA adducts formation, but only the latter results in critical mutagenic changes [72].

Benzo(a)pyrene B(a)P is a potent carcinogen that have been used a proxy marker for PAHs in environmental sample. Individual metabolism transforms B(a)P to benzo epoxide (a) pyrene diol (BPDE), that establish adducts with DNA and proteins and hydrolysed to BPDE tetrols that are eliminating from the individual body [73].The concentrations of human serum albumin (HSA) is more than a thousand fold greater than that in DNA in human blood and unlike DNA adducts, HSA adducts are not repair. Therefore, BDPE-HSA should be relatively stable biomarker of B(a)P exposure, with human half life of 20 days that ensures integration B(a)P exposure over about a month [74].

Over the years many studies have contributed to validation of PAH-DNA adduct measurements in human DNA using immunoassays, the most-sensitive of which is the chemiluminescence immunoassay (CIA) [75]. A cohort study of US military soldiers displaced from an area with a clean environmental zone to a much more polluted area showed a substantial increment in the levels of HAP-DNA adducts in blood cells for each individual [76, 77]. In addition, a tremendously higher rate of PAH-DNA adducts for blood cells was observed in young adults sampled in Mexico City during the dry season when atmospheric PAH concentrations were higher, in comparison to the rainy season, when PAH levels were decrease [78].
10. Volatile organic compounds

Volatile organic compounds (VOCs) are defined as photochemically reactive organic species with a high vapor pressure in the Earth's atmosphere [79]. VOCs include a wide range of compounds such as carbonyls, organic acids, alcohols, alkanes, alkenes, aldehydes, esters, paraffins, ketones and aromatic hydrocarbons [80]. The physical and chemical properties of VOCs and their residence times in the atmosphere (ranging from a few minutes to several months) often lead to threats towards the environment and human health [81].

VOCs originating from biogenic sources play crucial roles in atmospheric chemistry because they are strong ozone precursors that supply essential OH radicals in ambient air for the formation of tropospheric ozone [82, 83]. VOCs have been identified for formation of photochemical smog, stratospheric ozone depletion and the formation of organic acids which contribute to environmental acidification by lowering the pH of rainwater [84–86]. From a human health perspective, their toxic nature and ability to form fine aerosols pose that contribute to health risks, such as asthma, headaches, dizziness, visual disorders and memory impairment [87–90].

11. Health effects of VOCs

The volatilization characteristics of VOCs allow them to enter living organisms through three main routes; by inhalation, dermally and orally through contaminated water or food in order of importance [81]. Toxicokinetic studies showed distribution to lipid-rich tissues such as the brain, bone marrow and body fat [91]. Children and the elderly are the most vulnerable groups due to their higher metabolic rate and weak immune systems [92]. BTEX and carbonyl compounds are classified as toxic air pollutants able to cause adverse health effects even at low concentrations by affecting different target organs e.g. central nervous system, respiratory system, liver, kidneys and reproductive system [93]. Benzene can be absorbed through various tissues such as tissues in the brain, bone marrow cells and also tissues containing high amounts of lipid, with succeeding genotoxic action. Prolonged exposure to benzene may have effects on neurological, immunological, endocrine and blood disease disorders such as aplastic anemia and myeloid leukemia [94]. As a result benzene is the most regulated substance in the world being classified as ‘Group 1, carcinogenic to humans’, by the International Agency for Research on Cancer (IARC).

When human exposed to toluene, the vaporized toluene will be absorbed to the respiratory tract. According to Pierrehumbert [95], inhalation is the most important route for toluene exposure. About 80% of toluene vapor will be absorb in the first exposure and the absorption is decreasing afterwards. It is known that pulmonary absorption is faster than oral absorption. Oral absorption takes around 2–3 hour to get contact with blood, compare to inhalation absorption which takes only 20–3-minutes at the concentration of 100 ppm. The half life of toluene in human blood is around 3.4 hour but likely to increase to 0.5–2.7 days with the greater amounts of body fat. Due to its solubility, toluene can passess through the placenta, amniotic fluid, human neonates then end up in edipose tissues. This was proved by a study from Fabietti et al. (2—24) which found 0.76 ug/kg concentration of toluene in human breast milk. Apart from the neurotoxicity of toluene, recent studies found that toluene has been linked with color vision loss [96]. The most evidences are the effect on blue yellow discrimination but in few cases, the red green discrimination might be experiences [97]. On top of that, the prolonged exposure of small dose to toluene may effect the lens eyes and outer retinal layer [98, 99].
IARC [100] assessed ethylbenzene as demonstrating sufficient evidence of carcinogenicity in animals and therefore is classified as a possible human carcinogen. Rodent bioassays by Scott et al. [101], clearly showed enough evidence of carcinogenic activity following inhalation exposure in male rat. The carcinogenicity is depends on the incidences of renal neoplasms after exposure to dose up to a 750 ppm. In human body, ethylbenzene is effectively absorbed through the inhalation and expeditiously circulated. Both in human and rodents, ethylbenzene is metabolized through hydroxylation to produce phenylethanol and will excrete via urination [100]. Urinary excretion is believed to be the main pathway of ethylbenzene elimination both in human and animal studies following inhalation exposure. Human appears to have acute symptom of ethylbenzene on ocular irritation and respiratory tract. Furthermore, affects on hematological changes might be experiences. Acute toxicity studies on animal are almost the same as have been detected in human, however the differentiated between human is that acute toxicity in animal demonstrated by neurobehavioral and neurological effects.

Respiration appears to be the major pathway of exposure to xylene. Approximately 60% of inhaled xylene goes to lungs. As xylene is well metabolized in human bodies; more than 90% is bio transformed to methylhippuric acid, where it is excreted in urine. Vapors xylene in the lung alveoli dispersed into the blood and are distributed across human body by the circulatory system [102]. Nevertheless, xylene do not have tendency to accumulate in human body. Acute exposure of xylene results in irritation of eyes, nose, throat as well as gastrointestinal effects, and neurological effects. Meanwhile, CNS, kidney, cardiovascular and respiratory effects have been discovered due to xylene exposure. In addition, a study conducted by Adams et al. [102] suggest that chronic exposure to xylene as also associated to a variety of disease, leukopenia, electrocardiogram abnormalities, dyspnoea and cyanosis.

Table 3 shows the carcinogenic and non-carcinogenic effects of selected VOC compounds, target organs and their critical health effects.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>USEPA cancer classification</th>
<th>Target organ</th>
<th>Precursor effect/tumor type</th>
<th>Critical effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>A</td>
<td>Blood</td>
<td>Leukemia</td>
<td>Decreased lymphocyte count</td>
</tr>
<tr>
<td>Toluene</td>
<td>D</td>
<td>—</td>
<td>—</td>
<td>Neurological effects</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>B2</td>
<td>Kidney</td>
<td>Tumors</td>
<td>Developmental toxicity</td>
</tr>
<tr>
<td>Xylene</td>
<td>D</td>
<td>—</td>
<td>—</td>
<td>Impaired motor coordination</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>B1</td>
<td>Nasal Cavity</td>
<td>Squamous cell carcinoma</td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>B2</td>
<td>Nasal</td>
<td>Nasal squamous cell carcinoma or adenocarcinoma</td>
<td>Olfactory degeneration</td>
</tr>
</tbody>
</table>

Adapted from Kitwattanavong et al. [103].
Sources: Integrated Risk Information System. The Risk Assessment Information System [104].
USEPA cancer classification: A = human carcinogen; B1 = probable human carcinogen; B2 = probable human carcinogen; C = possible human carcinogen; D = not classifiable as to human carcinogenicity; E = evidence of non-carcinogenicity for humans.

Table 3. The health effects of the main BTEX and carbonyl compounds.
12. Ozone

Ozone is developed upon the reaction of the dioxygen and a single oxygen in the existence of a molecule of the third body that can absorb the heat of the reaction. The unique highly responsive and short-lived oxygen (O) can be produced by photolysis of nitrogen dioxide (NO2) or by ionization of O2.

The stratosphere and troposphere are composed of background ozone. Stratospheric ozone is confined to the tropopause (between 8 and 15 km high) a region it is known as the ozone layer. Stratospheric ozone is referred to as the “good” ozone, considering the ozone layer is crucial for the absorption of life-threatening ultraviolet (UV-B) rays to human health. Given that immediate contact with ground-level ozone can induce detriment to living cells, organs and species, including individual, animals and plant life, ground-level ozone is considered to be a “bad” ozone.

According to Nuvolene et al. [105] and Koman & Mancuso [106], the documented health effects of ozone are

- Ozone can create undesirable respiratory effects like difficulty breathing and inflammation of the respiratory tract in the general individual (breathlessness and pain during deep breathing). These effects can worsen pulmonary illnesses such as asthma, emphysema and chronic bronchitis.

- Prolonged exposure to ozone is likely one of many contributing factors to the development of asthma.

- Exposure to ozone is likely to result in premature death, and there is stronger evidence for mortality from respiratory diseases.

- Children are at increased risk from ozone exposure, as children have a relatively higher dose per body mass and children's lung is still developing.

Even at really low levels, tropospheric ozone result of a vary of health problem including worsened asthma, decreased pulmonary ability, and increased sensitiveness to respiratory diseases including pneumonia and bronchitis. Persistent exposure to ozone over several months can permanently damage the lungs [107]. Ozone can irritate lung airways and cause inflammation much like a sunburn [108, 109]. Other symptoms include wheezing, coughing, pain when taking a deep breath, and breathing difficulties during exercise or outdoor activities [109].

13. Carbon monoxide

Carbon monoxide is produced from the incomplete combustion of fossil fuel such as petrol, coal, wood, and natural gases. The health effects of CO breathing include headache, vertigo, nausea, vomiting and eventually loss of consciousness.

The affinity of carbon monoxide to hemoglobin is far superior to that of oxygen. Along this vein, severe intoxication may occur in individuals susceptible to elevated levels of carbon monoxide for an extended period of time. As a result of oxygen loss due to competitive binding of carbon monoxide, hypoxia, ischemia and cardiovascular diseases are discovered [1].
14. Environmental burden of disease of air pollution and temperature

Air pollution is currently considered as the most significant environmental cause of disease, whereby kills about 3 million people annually and majorly affected the Western Pacific and South East Asia regions [33]. Short-term exposure to air pollutants are associated with Chronic Obstructive Pulmonary Disease (COPD), cough, shortness of breath, wheezing, asthma, respiratory disease, and high morbidity (hospitalization). Meanwhile, the long-term effects associated with air pollution are chronic asthma, pulmonary insufficiency, cardiovascular diseases, and cardiovascular mortality [1].

The differential effect of air pollution on health, which is particularly deleterious for older people, children and people with limited resources, is of major concern to global health populations. It is estimated that airborne fine particulate pollution is responsible for approximately 3% of adult cardiopulmonary mortality worldwide [110]. Air pollution is expected to have similar negative impacts in developing countries, with Asian countries accounting for about two-thirds of the world's burden [110]. Beelen et al. [111] had found a relationship between mortality and long-term exposure to particulate matter, fine particles, and nitrogen compounds.

Elevated air pollution is usually related with extreme events such as increasing in ambient temperature. Engardt et al. [112] indicated that ozone levels are directly driven by weather since ozone-generating photochemical reactions of air pollutants (nitrogen oxides; methane; volatile organic compounds, VOCs) need high temperatures and bright sunshine.

The associations between ambient temperatures and human health have been widely studied, and growing evidences have revealed that exposure to ambient temperatures may increase the risks of a range of respiratory diseases, cardiovascular diseases, and other disease [113–115]. Although most previous studies found significant relationships between ambient temperature and morbidity or mortality [116, 117], only few had assessed the disease burden attributable to ambient temperatures. It was demonstrated that heat-related mortality and morbidity rapidly increase when temperatures were above optimal. Recently study done by Yiju Zhao et al. [118] highlighted high and low temperature increase the morbidity risk of respiratory disease. Meanwhile, study done by Chung et al. [119] discovered excess mortality due to high ambient temperature was expected to be profound in Korea.

The disease burden of a population and how the burden is distributed across different subpopulations (e.g. infants, women) are important pieces of information for defining strategies to improve population health. Burden of disease (BOD) is a comprehensive measurement of mortality and morbidity in a single index, which is manifested as disability-adjusted life years (DALY). DALY is estimated by summing the years of life lost (YLL) and years lost due to disability (YLD). Estimation of burden of disease had advantaged over other epidemiological indexes because of its simplicity, comprehensiveness, and applicability for policy-making process.

The Environmental burden of Disease (EBD) series continues the effort of BOD to generate reliable information, by presenting methods for assessing the environmental burden of outdoor air pollution at national and local levels, as what had been described in World Health Report [120]. Worldwide global burden of disease between 1990 and 2015 shows COPD mortality rates and DALYs were observed in South-East Asia region with 39 deaths per 100,000 people and 791 DALYs per 100,000 people in 2015, followed by Western Pacific region with 25 deaths per 100,000 people and 421 DALYs per 100,000. Ischemic stroke, Trachea, Bronchus and Lung cancer, Ischemic heart disease’s DALYs and death rate were generally
higher in all the regions with South-East Asia having 943 DALYs per 100,000 people and 38 deaths per 100,000. Exposure to air pollution caused over 7.0 million deaths and 103.1 million lost years of healthy life in 2015, caused an estimated 7.6% of total global mortality in 2015 [121]. The WHO estimation report for Malaysia’s Environmental burden of disease was published in 2009 [24]. Estimates were based on Comparative Risk Assessment, evidence synthesis and expert evaluation for regional exposure and WHO country health statistics 2004. Cardiovascular disease, respiratory infections, COPD, asthma and lung cancers were among the disease listed. The preliminary estimations for the diseases were 2.5, 1.6, 1.4, 1.2 and 0.5 DALYs/1000 capita, per year, respectively [120].

Author details

Muhammad Ikram Bin A Wahab
Environmental Health and Industrial Safety Programme, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia

*Address all correspondence to: ikram@ukm.edu.my

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Health Impacts of Air Pollution
DOI: http://dx.doi.org/10.5772/intechopen.98833

References

[12] ATSDR, 2002. Toxicological profile of copper. Division of Toxicology, Atlanta, GA.

[34] ASM 2016. Local and transboundary haze study. ASM Task Force on Haze, Academy of Sciences Malaysia.

biological monitoring of exposure to toluene, phenol, lead, and mercury: II. Compartamental based toxicokinetic modelling. Toxicology Letters, 134-165-175.

Chapter 6

Medellin Air Quality Initiative (MAUI)

Andres Yarce Botero, Olga Lucia Quintero Montoya, Santiago Lopez-Restrepo, Nicolás Pinel, Jhon Edinson Hinestroza, Elias David Niño-Ruiz, Jimmy Anderson Flórez, Angela María Rendón, Monica Lucia Alvarez-Laínez, Andres Felipe Zapata-Gonzalez, Jose Fernando Duque Trujillo, Elena Montilla, Andres Pareja, Jean Paul Delgado, Jose Ignacio Marulanda Bernal, Jaime Andres Betancur, Alejandro Vélez, Arjo Segers, Arnold Heemink, Juan Ernesto Soto, Bibiana Esperanza Boada Sanabria and Sara Lorduy

Abstract

This chapter book presents Medellín Air qUality Initiative or MAUI Project; it tells a brief story of this teamwork, their scientific and technological directions. The modeling work focuses on the ecosystems and human health impact due to the exposition of several pollutants transported from long-range places and deposited. For this objective, the WRF and LOTOS-EUROS were configurated and implemented over the región of interest previously updating some input conditions like land use and orography. By other side, a spinoff initiative named SimpleSpace was also born during this time, developing, through this instrumentation branch a very compact and modular low-cost sensor to deploy in new air quality networks over the study domain. For testing this instrument and find an alternative way to measure pollutants in the vertical layers, the Helicopter In-Situ Pollution Assessment Experiment HIPAE misión was developed to take data through the overflight of a helicopter over Medellín. From the data obtained from the Simple units and other experiments in the payload, a citogenotoxicity analysis quantify the cellular damage caused by the exposition of the pollutants.

Keywords: Chemical Transport Model, LOTOS-EUROS, contaminant deposition, airborne measurements, cellular damage, SimpleSpace
1. Introduction

1.1 Medellin air qUality initiative

Cyber-physical systems are concepts that have been positioned in the area of systems and control, such as the way to integrate different types of information sources in schemes that allow human interaction with machines for proper decision-making. From this perspective, many aspects of man's interaction with the environment in the era of the fourth revolution become a subject of study that must approach in an interdisciplinary way. Although they have been widely discussed worldwide, air pollution problems increasingly are appearing in people's daily lives with higher frequency than before, what has made this problem a center of public attention during the recent years.

This work has a public policy background on human and ecosystem health and its impacts aims to be on the science-based decision-making processes. In the framework of cyber-physical systems, mathematical models require not only initial and boundary conditions to represent the physical and chemical phenomena but the data and convert it into useful information that is reliably transmitted to the computers where these models live. The reduction of uncertainty in the representation of these phenomena, with the aim of control or mitigation of human actions, makes Bayesian data assimilation techniques play a fundamental role. When trying to attack the problem of the ability to make decisions based on mathematical models that accurately predict atmospheric pollutants' behavior in sources, a general approach is necessary to methodically and systematically address each of the issues questions and formalize the research questions.

1.1.1 A brief history

The project named Data Assimilation Schemes in Colombian Geodynamics - Cooperative Research Plan for 2017–2020 Between Universidad EAFIT in Colombia and TUDelft in the Netherlands started in 2016 to reduce uncertainty and incorporating data in large-scale mathematical models. In particular, the modeling of Colombian geodynamics using a chemistry and transport model responds to the complexities of atmospheric dynamics in the country due to its global location and the rugged terrain determined by the Andes mountain range system.

As in [1] The peculiar topography (such as abrupt elevation changes, with narrow inter-mountain valleys over 1000 meters deep, and transitions from sea level to over 5000 meters in less than 200 km), the environmental conditions of the region (such as the bi-annual transit of the Inter-Tropical Convergence Zone, and the irregular behavior of the El Niño Southern Oscillation) generate atmospheric conditions that impoverish air quality. The Tropical Andean Region (TAR) geographical singularities present unprecedented challenges for modeling atmospheric chemical dynamics.

However, this is not just a chemical modeling problem. The chemistry and transport models used to determine air quality aspects require meteorological (short term) and climatic (long time) information that allows them to reproduce the atmosphere's physics state. These numerical weather prediction (NWP) models are also problematic in terms of phenomenology, susceptible to initial and boundary conditions, and the effects of the numerical solution methods of these equations. This, without considering the difficulty of modeling the microphysics parametrization in terrain as complex as Colombia and neighboring countries in the TAR.

In this scenario, Bayesian data assimilation techniques for incorporating information into models play a fundamental role improving this atmosphere states. It is
required to use different source of information such as satellite information for example GOES16, radar, metar, SYNOP, sounding probes, measurements on-site, and airborne measurements to complete the meteorology scenario in Colombia to achieve models with greater prediction capacity of meteorological phenomena that impact the chemistry representation of the atmosphere. The former questions arise and the research project called Sensitivity and uncertainty sources in numerical modeling to forecast atmospheric systems: High-resolution WRF model simulations in urban valleys applied to air quality issues. Was written in 2017 an effort to focus on the meteorological fields for the complex TAR.

The estimation of states and parameters represents mathematical challenges that must approach from the estimation theory, the numerical analysis, and control theory. It is here where not only technological and computational aspects give rise to questions that allow quantifying the uncertainty for applications not only of air quality in human health and ecosystems but also in factors such as navigation and air safety.

Speaking of atmospheric knowledge, in the effort to know and adequately model the country’s meteorological conditions, a series of institutions whose mission is aligned must be incorporated. In terms of scientific research, university researchers tend to answer more fundamental questions regularly. Numerical models such as the WRF (Weather Research Forecast) and Chemical transport Model (LOTOS EUROS) can be coupled to use meteorology to improve the representation of the reality. Institutions such as the Colombian Air Force (FAC) daily solve high-value scientific problems in their mission of guaranteeing the safety of air navigation (Air navigation direction - Dirección de navegación aerea DINAV and the Centre of Technological Development for Defense CETAD). The data assimilation techniques in meteorological prediction models such as WRF vary from the variational in three dimensions to approximations using particle filters and location. None of them is cheap computationally and requires an infrastructure not only for computing but also data, information, and knowledge. Techniques of fusion of meteorological data and 3D variational assimilation in the WRF model existing in the FAC allowed the universities’ researchers to pave the way to determining sources of inertness and quantification of the sensitivity of the models to focus efforts on modeling and parameterization of atmospheric phenomena.

Medellin Air Quality Initiative: MAUI aims to bring together local, regional, and international experts on subjects related to air quality and its impact on human and ecosystem health to establish a knowledge network, gather the available tools to tackle the problem, and identify knowledge gaps to contribute to a deeper understanding of the local and regional scale of the impact of air pollution, motivate research collaborations, and inform public policy [2].

Until now, several universities and the state institutions efforts began to align in search of the Colombian atmosphere’s representation. The particularities of the country’s principal cities and the vulnerability of Colombian biodiversity offer a field of research where the questions and the rigor they must be answered give rise to interdisciplinarity spaces. In MAUI, larger-scale aspects such as numerical models and the integration of satellite information and data from various sources are integrated, and research results at the micro and nanometric level are incorporated.

Chemistry and transport models require emissions inventories within their initial and boundary conditions regularly updated by environmental authorities. This statement is entirely proper for Europe and the United States, but in Latin America, some ethnographic and political factors mean that the agencies in charge of them cannot give prompt answers. The uncertainties in dedicated emissions inventories generate problems of over and underestimating the models. The assimilation of data.
from the high, medium, and low-cost sensor networks can help the models improve the representation of dynamics in various magnitude orders. However, the information on the concentration of pollutants such as 10 and 2.5-micron particulate matter or tropospheric ozone and nitrogenous is not complete.

The use of European emissions inventory leads to revising the biogenic and anthropogenic emissions and revisiting the current national emissions inventory. Several experts joined the effort, and some preliminary and results are close to being published. However, it is a reality that with the rapid growth of cities in Latin America and the poor planning of land use, an inventory regularly does not end up being updated on the date of its launch. Some modeling experiments showed how large Colombian cities behave like volcanoes that expel pollutants to the country’s protected areas.

Other potential forms of emission modeling appear when using traffic information from large cities to estimate density, flow, velocity, and behavior models that allow the short, medium, and long term to understand the dynamics of emissions from traffic. This question is not easy to solve either and in the project Scale-FreeBack from the Research at the National Center for Scientific Research (CNRS) in France [3] aims to understand when and how a complex, large-scale network system can be represented by a scale-free (low complexity) model usable for control design, understanding how the internal states of a scale-free network system are monitored and estimated using information originating from sources of various kinds. This project aims to know how it will be possible to design scale-free control algorithms and make them resilient to changes of scale, node/link failures/disconnections/attacks, and how can those ideas be applied to large-scale road urban networks. MAUI initiative used their ideas and joined their team for the emission modeling and estimation research.

Using available mobility information and merging it with previous knowledge of the inventories of static emissions and other sources incorporates the ability to control within the extensive cyber-physical system the number of pollutants emitted into the atmosphere city and eventually mitigate its effect. The mathematical and control problems are not easy to solve, but the results of the beginning to bear fruit in the chain of description and modeling of air chemistry within and outside cities.

In 2016, simultaneous work was being done on the magnetic characterization of the particulate material of Medellín analyzed atmos9070283 via optical spectroscopy to determine the presence of ferromagnetic material in the 10 and 2.5-micron particulate. This research naturally raised more questions about the possibility of using analogous methods of validation of the results of the models and the potential quantification of exposure levels. The biosensors’ findings allowed incorporating more advanced passive sensing techniques and subsequent analysis with optical spectroscopy. The PARTICLE VISION group joined the MAUI capabilities.

Particle Vision is a highly qualified team with long-standing experience in particle analysis, aims to develop innovative analytical methods for the characterization and quantification of particles and apply them to a wide variety of questions. With its technology and support from FAC SEM/EDX instruments, the project made progress in knowing the city’s chemical and morphological characteristics of Medellin’s particulate material. These investigations have potential impacts on public health issues but are beyond the scope of this book chapter.

Thus, the knowledge at the microscopic level of urban particles’ components allows establishing models of validation of numerical results of environmental chemistry. At the local level, nanotechnology has the technical-scientific capacity to develop electrospinning polymeric nanofibers to capture finer particles and offer an additional ability to the analytical aspects of environmental pollutants. This ability
represents a leap in scale in orders of magnitude and value since it is possible to obtain particulate material in nanofibers and generate a solution from them that allows evaluating their damage capacity at smaller scales.

The work team is recently completed with experts in in-vitro and in-vivo biological models that, from the nanofibers’ material, can analyze and quantify cellular and molecular damage using state-of-the-art techniques.

Our curiosity and technical capacity then led us to advance in different sampling techniques, and in 2019 the first airborne pollutant measurement mission called Helicopter Insitu Pollution Acquisition Experiment HIPAE was carried out. In this mission, the counting instruments for particulate matter, nanofilters, measurement units (inertial, geoposition, meteorological, and gasses measurements) built by the EAFIT spinoff SimpleSpace, and passive samplers attached to air pumps to simulate the expected breath air flux through them. The helicopter with the instruments traveled through the Aburra Valley at different heights. In this aircraft of the Colombian Air Force (FAC), not only gases and meteorological variables were measured, but contamination profiles were established, and the experimental model's evaluation was carried out.

The research groups, researchers, and students linked to this proposal compose an interdisciplinary group that has been working not only on the understanding of atmospheric phenomena, chemistry and transport of pollutants, assimilation of data, and artificial intelligence but also on studying the impact of anthropogenic activity on air pollution dynamics with effects on human health, ecosystems, and agriculture.

The result of this research history will be expanded a little more with the development of this chapter, sending the reader to the primary references of the works where they can obtain specific details of the principal methodologies, techniques, and findings of each area knowledge participating in MAUI.

Detailed review and explanation of some regional and worldwide initiatives similar to ours can be found in the critical review of QuinteroMontoya2020, and the recent paper of Advances in air quality modeling and forecasting BAKLANOV2020261. Some of the remarkably similar missions to HIPAE will be addressed in the following sections.

1.1.2 Scientific and technological directions

As a consequence of this interaction, much more specific goals are proposed in two directions: human health and ecosystem health. In the former direction, the research program called ExPoR² is proposed.

Exposure to Pollutants Regional Research ExPoR² aims to develop models of human exposure to air pollution in urban areas as a decision-making tool. Our purpose is to develop high-level scientific research that enables science-based decision-making and solutions to environmental and sustainability problems due to air pollution in human health, agriculture, and ecosystems. Three different research paths are going to be followed:

1. Ensemble of models to estimate human exposure to atmospheric pollutants. The General purpose is to develop an assembly of models to estimate human exposure to atmospheric pollutants in different areas of the Aburrá Valley. Specific objectives: Coupling the WRF model with the Open LOTOS-EUROS models at high resolution to simulate concentrations and dispersion of pollutants within the Aburrá Valley. Implement traffic models for the Aburrá Valley, to simulate the zonal contributions to atmospheric pollutant concentrations by the automotive fleet. Assimilate and merge data from various sources on concentrations of atmospheric pollutants. Coupling
high-resolution simulations of concentrations and dispersion of pollutants with data on human activity and occupation to estimate levels of human zonal exposure to air pollutants. Chemical and morphological profiles of the nano and microparticulate material present in the air of the Aburrá Valley. This research aims to establish the chemical and morphological profile of the nano and microparticulate material present in the Aburrá Valley air to establish its toxicological effect. Establish sampling areas and measurement periods to capture particulate matter of different sizes with the three filtration systems. Chemically and morphologically, characterize the particulate material present in the Aburrá Valley to identify the emission source and Manufacture nanofiber membranes from the selection of polymers with different surface energies to favor the capture of ultrafine particulate material.

2. Cytogenotoxicity of air pollutants. This research will particularly develop an in vitro evaluation model of the impact of particulate material on the health of the occupationally exposed population of the Aburrá Valley. Through this, build a zoned profile of the cytogenotoxic potential of particulate pollutants in the region. Specific objectives: To evaluate the sensitization, irritation and dermal corrosion of PM of different sizes collected with DRMPs, in 2D and 3D in vitro cell models. To evaluate the irritation and serious ocular damage of PM of different sizes collected with DRMPs, in 3D in vitro cell models. To evaluate PM’s cytotoxicity and genotoxicity of different sizes collected in different city center areas in 2D and 3D in vitro cell models. To evaluate the mechanism of action of particulate matter in atmospheric pollutants on the distribution of cell cycle phases, mitochondrial activity, and the induction of senescence. Generate a Biosensor transgenic line by inserting the Hyper gene to detect intracellular ROS production after exposure to particulate matter from atmospheric pollutants. Relate the biological effects in vitro with the morphological and chemical composition of the particulate material collected in the different areas of the Aburrá Valley.

Focusing on the health of ecosystems and the various implications that cities can have on protected areas, the research program 3D + 1 Air Pollution Study: In situ, Surface, Remote Detection and Atmospheric Modeling Measurements’ 4D Air - MISEDM. The objectives of this research are oriented to develop remote laser and in situ detection technology to characterize pollutant particles and improve the precision of assimilation techniques in atmospheric modeling.

Some main goals of our current research directions are:

1. Design and implement a multi-channel laser remote detection system to obtain in real time the volumetric concentration of atmospheric aerosols.

2. Design and implement network sensors for in situ and surface monitoring of particulate matter, NO2 and O3 with aerospace technology.

3. Develop and implement the signal inversion algorithm backscattering of atmospheric aerosols.

4. Develop and implement the experimental model and the depolarization signal calibration algorithm for tropospheric aerosols.

5. Estimate the operating parameters of the HSI-DOAS instrument for its operation in the geomorphological and climatic conditions of northwestern South America.
6. Carry out joint measurement campaigns of remote and in situ detection systems on the surface to obtain the microphysical and radiative properties of the atmospheric components (gases and particles) in the Aburrá Valley.

7. Demonstrate the scientific relevance of determining the chemical and morphological characteristics of particulate matter as a differentiating element in determining sources of pollutants.

8. Compositionally and morphologically characterize the coarse particulate material (PM10) and (PM2.5) present in the city of Medellín through the use of SEMEDX techniques, in order to carry out a categorization of sources corresponding to the production of this particulate material.

9. Study the regional dynamics of emission and deposition of pollutants and their effect on protected areas, ecosystems and agriculture and their impact on biodiversity, its evolution and conservation.

10. Develop large-scale model evaluation techniques using robust functional data analysis techniques applied to modeling pollutant transport at high spatial resolutions within the Aburrá Valley.

11. Develop new and better data assimilation schemes in complex systems studying the problems of uncertainty, not Gaussianity, taking into account the problems of spatially dispersed data. With applications in the study of the dispersion of pollutants in the Aburrá Valley.

Additionally, MAUI’s research path will allow obtaining results that extend not only to society in matters of public health but also to become antecedents of regional positioning in science and technology and aerospace technology’s knowledge.

The confluence of public and private universities with the Colombian state through the Colombian Air Force and the Ministry of Sciences allows the work’s speed to be doubled. The results also led to improved quality of life and the protection of biodiversity and economic growth.

At the national level, our purpose is to scale our research to the entire territory. Expand our goals to human and ecosystem health to guarantee our national resources and proper land use. To achieve this, it is evident that meteorological modeling and data incorporation to the models via assimilation must be carried out.

Colombian Air Force system for meteorological information (in Spanish, Sistema de Información meteorológica de la Fuerza Aerea Colombiana -SIMFAC) is the integrated and operational system for meteorological information for military forces and public state aviation. SIMFAC operates with the Weather Research and Forecasting (WRF) model version 4.1 under the 3DVar data assimilation scheme. Our multidisciplinary team seeks to review and test the performance of the current implementation of the data assimilation techniques on the WRF model, looking to understand the technique’s results in 3DVar implementations for a known micro-physics. In order to achieve this, we use the micro-physics parameterization of the SIMFAC to generate a background on the WRF model and, via comparison against the 3DVar implementation using satellite, radar, and in-situ observations, Potential improvements of the 3DVar implementation were verified, looking for an accurate assessment and determining the potential risks for air navigation. Our main goal is to scale the operational set up to 4DVar implementation to enhance the Colombian Air Force’s capabilities.
Observational and model weather records are a source of valuable data since hydro climatological variables like precipitation are recorded through time. Functional data analysis (FDA) encompasses different numerical and statistical methodologies that could help separate climate variability aspects and explore their consequences, improving the system understanding. These methodologies seek to represent the data in ways that aid additional analysis, highlighting different data characteristics. Further, a comparison between observational and model functional data analyses would serve as a model evaluation technique. FDA is used to compare two or more sets of data concerning certain types of variation, where two sets of data can contain different sets of replicates of the same functions or different functions for a standard set of replicates.

The FDA seeks to group multivariate functional data, identifying homogeneous groups without using any additional label to the model’s records. The objective is to promote a classify and compare it with a natural and intuitive geographical classification offering a basis for the correction of biases.

With the achievement of a correct and precise representation of the national meteorology at different time scales, different objectives are achieved that are fundamental for studies of climate change, air pollution, and protection of Colombian biodiversity. Additionally, the national airspace’s flight safety standards increase with information from different sources via data assimilation and deep learning techniques. Significant improvements on command and control for national security are part of the non-predicted results of our joint effort.

It is undeniable that thanks to the concern to attend to human health and ecosystems’ relevant problems, it has been possible to articulate a network of knowledge that can also leverage Colombia’s aerospace development. This is based on the development capacity of low-cost sensors with CanSat technology developed from the Spinoff SimpleSpace, which, due to their versatility in modularity and adaptive communications for different scenarios, allows the completion of the temporal space measurements, reducing the covariance of the state matrices and measurements in the assimilation of large scale models. Additionally, some preliminary results of the work team’s ability to measure over the airspace with SimpleSpace units aboard Colombian Air Force aircraft show how data use can lead to precise knowledge and strategies for making environmental decisions matters.

Regarding human health, in a section, we will present some results obtained in the HIPAE mission where analysis of the particulate material captured with polymer nanofibers was carried out through cellular and molecular analyzes.

The Tropical Andean countries (Venezuela, Colombia, Ecuador, Peru, and Bolivia) face deteriorating air quality. When thinking about the assimilation of data and intelligent systems for data fusion or automatic learning, the quantity and quality of the sources begin to be a concern.

If a complete understanding of TAR’s atmospheric dynamics is desired, satellite information on land use and chemical species combined with images of unmanned aerial vehicles is becoming a viable option for developing land-use models.

In the subsequent sections, the reader will find some scientific and technical details of the activities carried out by MAUI. In particular, we have selected some sections that are not published. In them, aspects of ecosystem health and the influence of the correct estimation of land use parameters to determine deposits of species such as nitrogenous are discussed. Also, the models with which our team has been advancing data assimilation techniques, artificial intelligence, and coupling are presented. We mention some hypothetical modeling scenarios where meteorological information can give relevant clues about the influence of cities’ emissions and their impact on surrounding areas such as water sources.
Factors such as reducing uncertainty in the topographic representations and landcover in the tropicalization of models developed in other latitudes are briefly mentioned. The need to know and make this type of knowledge technologically independent has led to the emergence and potentiation of several technological developments such as SimpleSpace units and LIDAR 4D systems that are not specifically mentioned due to their current state design.

It is expected to advance in the development of more frequent measurement campaigns, but during 2020 they have been suspended as MAUI researchers overturn our ability to respond with science for the country in the situation of COVID-19. Our computing, nanomaterials, and cellular and molecular biology laboratories had to slow down the expected results. However, the design of additional sampling mechanisms means that in 2021 we announce a new airborne measurement platform dedicated to meteorology and air quality.

Finally, concrete examples of the data assimilation for applying contamination by the particulate matter of 10 and 2.5 microns are presented in the second chapter of this book. These sections will be partially published in magazines on the subject in a short time.

We hope that our work experience, scientific findings, technological developments, and research directions allow the reader to define the strategy that best suits him for the correct knowledge of the surrounding systems, however, even more so for developing strategic decision-making tools in public health, environment, biodiversity, air safety, and national security. None of the above can be achieved without a network that involves actors from different sectors and researchers from many specialties.

2. Modeling pollution for health: human and ecosystems

2.1 Ecosystem health

This work presents the implementation of the LOTOS-EUROS regional atmospheric Chemical Transport Model (CTM) on Northwestern South America. The impact of land use and orography update in the model was analyzed to identify potential vulnerable natural areas by quantifying atmospheric deposition pollutants. CTMs allow simulating the physical dynamics of trace gases and aerosols, including processes such as emission, chemical reactions, transport, and deposition. The deposition of atmospheric contaminants like nitrogen dioxide (NO₂) and ammonia (NH₃) induces chemical fluxes in natural ecosystems, with potential subsequent severe impacts like biodiversity loss. Due to the vast geographical diversity present in the study area, the LOTOS-EUROS model was updated for the land and topography inputs to simulate more representative conditions for the study region. Depositions were very sensitive for the change of land cover maps used in the model, and on the other side, topography update impacts more in the high layer of the model above harsh terrain. Additional simulations for the updated scenario using point sources were performed to identify the deposition area's spatial extent for the principal Colombian cities.

Through atmospheric transport and deposition, emitted pollutants from different anthropogenic and natural sources can alter remote ecosystems' dynamics [4, 5]. Atmospheric deposition is described as the mechanism that induces a flux of gases and particles to the land surface due to meteorological, chemical, and biological phenomena [6] which is responsible for the balance concentration change of the different soil components.

Anthropogenic activities are significant sources of reactive nitrogen (Nₓ) to the atmosphere [7]. Photochemical reactions of NOₓ and NH₃ create secondary inorganic aerosols [8] that can be transported over large distances [9]. Long-distance
transport of secondary inorganic aerosol accounts for over 8% of the planet’s reactive nitrogen flow in terrestrial ecosystems [7], and a significant source of Nr to the ocean [10]. Deposition of atmospheric N, alters oligotrophic ecosystems [8, 11], affecting the distribution of communities of species [12–16] and ecosystem stability [17]. NO₂ is a gas emitted by anthropogenic and natural sources as part of the family of the nitrogen oxides NOx(NO+NO₂). NO₂ is emitted from anthropogenic (industrial activity, transport, and biomass burning) and natural (NOx soil emissions and lighting) sources. Agricultural activities and livestock feedlot operations are the primary sources of atmospheric NH₃, followed by wood-burning (including forest fires) and to a lesser degree fossil fuel combustion. Acute exposures to NH₃ near its origin (4–5 km) can lead to substantial foliar damage to the plant, growth and productivity decrease [18].

Atmospheric ozone exposure can cause ecological and agricultural harm (e.g., [19] and references therein), so it also poses a risk to protected areas. The identification of natural and agricultural areas that may be excessively exposed to ground-level ozone will allow us to estimate the detrimental impact that urban pollution may have on our protection and agricultural efforts.

Páramos are high-altitude ecosystems that serve as water supplies for a large part of Colombia and as suppliers of critical ecosystem services, they are protected under Colombian law. The following picture shows a quantification analysis of the paramos ecosystems (Figure 1(a)) and natural protected areas (Figure 1(b)) delimitation, quantifying the model output and the total deposition those areas are receiving.

The Paramo de Las Baldías was the paramo zone with greater exposure to atmospheric pollutants. It receives 14 kg/(ha yr), above the standard critical load of Nr, and above 60 kg/(ha yr) of ozone. The paramos of western Antioquia receive 5–6 kg/(ha yr), while the Sonson Paramos are identified as those with the lowest exposure to atmospheric pollutants (2.2–2.6 kg/(ha yr) Nr; 35–40 kg/(ha yr) ozone). The west of the Caribbean coast ecosystems receives the highest ozone load nationwide (50–100 kg/(ha yr)).

Figure 1.
Simulated calculation of annual (2016) deposited nitrogen budget for natural protected areas and paramo ecosystem.
Figure 1 shows a histogram quantification over the natural protected areas and paramo ecosystems to identify the critical deposition load of NO$_2$ in ecosystems and how many areas are at higher risk for the transport of pollutants. The critical load in a tropical ecosystem is not very well determined, and probably, due to the high biodiversity index in this region, the critical load should be less.

2.1.1 The WRF (weather research and forecasting) model

The WRF (Weather Research and Forecasting) model is a numerical weather prediction and atmospheric simulation system designed for research and operational applications. This model tries to advance the understanding and prediction of mesoscale weather and accelerate the transfer of research advances into operations. This model mainly is the result of the effort of the National Center for Atmospheric Research (NCAR) which is operated by the University Corporation for Atmospheric Research (UCAR), but, have contributions of many other sources, like Mesoscale and Microscale Meteorology (MMM) Division, the National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Environmental Prediction (NCEP) and Earth System Research Laboratory (ESRL), the Department of Defense’s Air Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, and the Federal Aviation Administration (FAA), so like contributions of researchers and Universities [20].

It’s worth pointing out that for the operations of a model like WRF is necessary to set aspects like parameterizations, boundary and initial conditions. So, usually, if it desires to evaluate the performance of a model like WRF in a domain, different configurations are used, for example, changing parameters the initial and boundary conditions [21], doing online modeled [21, 22], modified the planetary boundary layer schemes, micro-physics, land-surface models, radiation schemes, sea surface temperature and 4-dimensional data assimilation [23] or to integrate new methodologies such as data assimilation [23, 24]. This aspect correspond to the physical options of the ARW, grouped in the micro-physics, cumulus parameterization, planetary boundary layer (PBL), land-surface model and radiation [20]. These options are important because they let obtaining a solution that according to the particularities of the work domain. It important to say that an important research for us is developed in Cauca river valley-Colombia, by [25], where the topography is similar to Aburrá Valley. This team try with convective parameterization schemes KF, BMJ, and G3D and show that the best is schemes KF.

With WRF model is possible to understand the behavior of a meteorological variable set through simulations, where the parameters of the model are configured in relation with the domain [21, 22, 26–29] of study like the Aburrá Valley that is our interest. However, here the intention is to understand initially the behavior of the model to alteration or modification in the information that received, particularity, the initial conditions.

One part from WRF model is its solver, ARW module or the Advanced Research WRF (ARW). Through this module is possible to producing a simulation [20]. The ARW is really important in the representations of the modeled in WRF. this component is composed by several programs for the idealized, and real simulations, as like as numerical integration program1. As ARW is the solver of WRF, this one have the mathematical representation of the physical and/or meteorological process, in

general this is represented by a set of partial differential equations obtained of the flux-form Euler equations.

The WRF (Weather Research and Forecasting) model is a numerical weather prediction and atmospheric simulation system designed for research and operational applications. However, this model’s behavior depends on domain configuration, physic parameterizations, boundary and initial conditions, and terrain characteristics. The model has to be configured according to the researchers’ interest or particularities characteristic of the domain of interest and the information available for assimilation purposes. For this reason, one way to improve the model’s performance is to use data assimilation for integrating additional information to understand the dynamics in an irregular territory like Colombian geography.

The accuracy of the numerical weather prediction is limited by the precision of the mathematical and physical representations of reality, bringing uncertainty from the initial and boundary conditions incorporated into a numerical model.

In WRF, the implementations of data assimilation cover since hybrid method as ensemble transform Kalman filter–three-dimensional variational data assimilation (ETKF–3DVAR) system [30], three dimensional variational data assimilation 3DVAR, four-dimensional variational data assimilation (4Dvar) [31–33], or ensemble methods as [34–38].

2.1.2 The LOTOS-EUROS model

The LOTOS-EUROS (LOng Term Ozone Simulation- EURopean Operational Smog model) [39] is a chemical transport model that models in three dimensions different species in the lower troposphere. This model was developed in 2004 by TNO and RIVM/MNP organizations, in The Netherlands, unifying the previously developed LOTOS and EUROS models. At the beginning it was developed as a model focused on ozone, but currently, the LOTOS-EUROS calculates concentrations of ozone, particulate matter, nitrogen dioxide, heavy metals and organic components [40]. LOTOS-EUROS has been widely used in different projects around the world, demonstrating the capacity of the model [41]. The dynamics of pollutants in LOTOS-EUROS is regulated by processes of chemical reactions, diffusion, dry and wet deposition, emissions and aversion [42]. The LOTOS-EUROS dynamics are given by:

\[
\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} + V \frac{\partial C}{\partial y} + W \frac{\partial C}{\partial z} = \frac{\partial}{\partial x} \left(K_h \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_h \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial C}{\partial z} \right) + E + R + Q - D - W
\]

where \(C \) is the concentration of a specie; \(U, V \) and \(W \), are wind components in West–East, South–North direction and vertical direction, respectively; \(K_h \) and \(K_z \) are horizontal and vertical coefficients of diffusion by turbulence; \(E \) represents the entrainment or detrainment due to variations in layer height; \(R \) represents generation and consumption rates of pollutant by chemical reactions; \(Q \) is contribution by emissions and \(D \) and \(W \) are loss by dry and wet deposition process, respectively.

The main equation of LOTOS-EUROS dynamics is composed of different operators. Each one models different components of pollutants behavior. The operators that compose the LOTOS-EUROS are: i) the transport operator, ii) the chemistry operator, iii) the dry deposition operator, and iv) the wet deposition operator. Emissions and values related to meteorology are directly taken as input data. The transport operator consists of the dynamics of advection in three dimensions,
diffusion and entrainment. The chemistry operator models everything related to the production and consumption of components by different chemical reactions in the atmosphere. The dry deposition is divided in two phases, the dry deposition of gases and the dry deposition of particles. The dry deposition of gases is modeled through the transfer of gases between the land surface and the atmosphere, result of the difference in concentrations and resistance between them. In the dry deposition of particles the scheme used depends on the given land use over the analysis region. The operator of wet deposition is modeled through the below cloud scavenging process. The below cloud scavenging process uses a sweep coefficient that describes the mass transfer speed of a pollutant from the air to the raindrops.

The LOTOS-EUROS model as other CTMs, is considered a high-uncertainty system due to the large number of uncertainty sources like meteorology, emissions, depositions parameters, among others. Additionally it is a high-dimensional system since the solution of Equation (1) is executed for different components and in each point belonging to a grid on the region of analysis. Due to this process, the state vector has a dimension in the order of millions.

The simulation of the deposition of atmospheric species is a challenging task highly dependent on whether the phenomena are modeled in the near, local or long-field range. Near-field deposition is dominated by larger particles. Local field events occur in the portion of the plume dominated by the wind-driven trajectory where the peak-to-mean concentration ratios are much smaller than closer to the source, resulting in more uniform deposition patterns. In long-range fields the larger particles have been removed so smaller particles are the main concern of the modeling [43]. The parameters that describe the deposition phenomena are highly uncertain, especially when land use and vegetation type data are low in detail or spatial resolution. Existing models of atmospheric deposition might not be appropriate for simulating deposition fluxes around urbanized environments, which present varied and rapidly changing forms of land use [44]. This study focuses on the impact of updating the land use data on the estimates of nitrogen deposition in Colombia. Whereas previous studies were limited by the use of rather coarse spatial resolutions [45, 46], here a resolution of 0.09° x 0.09° was used to increase the level of detail in the simulations. The sensitivity to input (land use and topography) modifications was studied to determine the impacts on the model deposition predictions. Additionally, point source experiments were conducted to start to understand the spatial deposition dynamics of N₄, emanating from the principal urban areas of Country. This work contributes in assessing the performance of the LOTOS-EUROS CTM in NW South America.

In order to have a model that represents the principal meteorological, chemical and transport dynamics over a region is important first to improve as much as is possible the input information. Two input information were updated for the LOTOS-EUROS implementation over the northwest-southamerica region, the orography and the land use information.

The default elevation model for LOTOS-EUROS is obtained from the ECMWF meteorological data, which has a resolution of 0.07° (≈ 7 km). An updated elevation model used for the region was obtained from the Global Multi resolution Terrain Elevation Data (GMTED 2010) [47], with a resolution of 0.002° (≈ 220 m). Figure 2 shows a comparison between the default (Figure 2(A)) and the updated elevation model (Figure 2(A)). The inset zoomed in around the Aburrá Valley (Medellín and neighboring munici-palities) demonstrates how the valley is entirely absent in the default elevation model (Figure 2(A)).

LOTOS-EUROS interpolates the input elevation data within each grid cell according to the resolution of the simulation. Changing the input elevation model can generate changes in the outcome of variables such as the temperature profiles of
the vertical layers. The effect of an updated elevation model depends on the desired simulation grid resolution. Figure 3 shows a transverse cut at a latitude of 6.6° North for the simulation at a horizontal resolution of 0.09° x 0.09°, illustrating the impact of the change through the Aburrá Valley. The most significant changes in temperature occurred in the upper layers, reaching differences of up to 5°C degrees in top layers.

For modeling the deposition dynamics LOTOS-EUROS requires a map with deposition properties per grid cell. Land use characteristics are relevant for the deposition dynamics of a CTM because they define the parameters of the terrain roughness and canopy altitude of each category that determine the velocity at which the component is going to be deposited dependent on the vegetation type. The default land use/land cover (LU/LC) input data for LOTOS-EUROS were derived from the Global Land Cover (GLC2000) project [48], which includes 23 categories consistent with the Land Cover Classification System of the Food and Agriculture Organization (FAO) classification. For South America, the mapping of these categories at spatial resolutions of 1 km x 1 km was done in [49], with contributions from some regional experts based on multi-resolution satellite data. In this work, the LU/LC data was updated with the 2009 Land Cover Climate Change Initiative (CCI) dataset [50], with 38 categories at a horizontal resolution of 300 m x 300 m. Figure 4 compares the default and updated LU/LC models for Aburrá Valley.

The mapping of the 39 (CCI) and 23 (GLC) LU/LC categories to the 9 classes of the DEPAC deposition model is illustrated in Figure 5. The descriptions of each category are presented in Table 1. The mapping from GLC to DEPAC is the standard scheme constructed for LOTOS EUROS. The mapping from CCI to GLC...
the vertical layers. The effect of an updated elevation model depends on the desired simulation grid resolution. Figure 3 shows a transverse cut at a latitude of 6.6° North for the simulation at a horizontal resolution of 0.09° x 0.09°, illustrating the impact of the change through the Aburrá Valley. The most significant changes in temperature occurred in the upper layers, reaching differences of up to 5°C degrees in top layers.

For modeling the deposition dynamics LOTOS-EUROS requires a map with deposition properties per grid cell. Land use characteristics are relevant for the deposition dynamics of a CTM because they define the parameters of the terrain roughness and canopy altitude of each category that determine the velocity at which the component is going to be deposited dependent on the vegetation type. The default land use/land cover (LU/LC) input data for LOTOS-EUROS were derived from the Global Land Cover (GLC2000) project [48], which includes 23 categories consistent with the Land Cover Classification System of the Food and Agriculture Organization (FAO) classification. For South America, the mapping of these categories at spatial resolutions of 1 km x 1 km was done in [49], with contributions from some regional experts based on multi-resolution satellite data. In this work, the LU/LC data was updated with the 2009 Land Cover Climate Change Initiative (CCI) dataset [50], with 38 categories at a horizontal resolution of 300 m x 300 m. Figure 4 compares the default and updated LU/LC models for Aburrá Valley. The mapping of the 39 (CCI) and 23 (GLC) LU/LC categories to the 9 classes of the DEPAC deposition model is illustrated in Figure 5. The descriptions of each category are presented in Table 1. The mapping from GLC to DEPAC is the standard scheme constructed for LOTOS-EUROS. The mapping from CCI to GLC

![Figure 4](image-url)

Comparison between (A) the LOTOS-EUROS’ original land cover model (global land cover, with resolution of 1 km x 1 km.) and (B) the updated land cover scheme (land cover from the climate change initiative, with resolution 0.3 km x 0.3 km). Real color Landsat cloudless imagery for the date 2019-09-03 is included in (C) as a reference for the artificial surfaces from the city infrastructure. The political boundaries correspond to the municipality of Medellín and the other nine municipalities that constitute the Aburrá Valley metropolitan area conurbation.

![Figure 5](image-url)

Climate change initiative (CCI) land cover data categories mapped to the global land cover (GLC). The GLC categories are in turned mapped to the model’s equivalencies. The category’s codes are as in Table 1.
Table 1. Land Use/Land Cover Categories for the Two Sources of Data Used in This Study and for the DEPAC Module

<table>
<thead>
<tr>
<th>Number</th>
<th>Land Cover Climate Change Initiative (CCI) label</th>
<th>Code CCI</th>
<th>Number</th>
<th>Global Land Cover (GLC) label</th>
<th>Code CORINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No data</td>
<td>ND</td>
<td>1</td>
<td>Tree Cover, broadleaved, evergreen</td>
<td>TBE</td>
</tr>
<tr>
<td>10</td>
<td>Cropland, rainfed</td>
<td>CRA</td>
<td>2</td>
<td>Tree Cover, broadleaved, deciduous, closed</td>
<td>TBDC</td>
</tr>
<tr>
<td>11</td>
<td>Herbaceous cover</td>
<td>HBC</td>
<td>3</td>
<td>Tree Cover, broadleaved, deciduous, open</td>
<td>TBDO</td>
</tr>
<tr>
<td>12</td>
<td>Tree or shrub cover</td>
<td>TSC</td>
<td>4</td>
<td>Tree Cover, needleleaved, evergreen</td>
<td>TNE</td>
</tr>
<tr>
<td>20</td>
<td>Cropland, irrigated or post-flooding</td>
<td>CIP</td>
<td>5</td>
<td>Tree Cover, needleleaved, deciduous</td>
<td>TND</td>
</tr>
<tr>
<td>30</td>
<td>Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%)</td>
<td>MC/NV</td>
<td>6</td>
<td>Tree Cover, mixed leaf type</td>
<td>TML</td>
</tr>
<tr>
<td>40</td>
<td>Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%)</td>
<td>MNV</td>
<td>7</td>
<td>Tree Cover, regularly flooded, fresh water</td>
<td>TRF</td>
</tr>
<tr>
<td>50</td>
<td>Tree cover, broadleaved, evergreen, closed to open (>15%)</td>
<td>TBECO</td>
<td>8</td>
<td>Tree Cover, regularly flooded, fresh water</td>
<td>TRS</td>
</tr>
<tr>
<td>60</td>
<td>Tree cover, broadleaved, deciduous, closed to open (>15%)</td>
<td>TBDCO</td>
<td>9</td>
<td>Mosaic: Tree Cover/Other natural vegetation</td>
<td>MTO</td>
</tr>
<tr>
<td>61</td>
<td>Tree cover, broadleaved, deciduous, closed (>40%)</td>
<td>TBDC</td>
<td>10</td>
<td>Tree Cover, burnt</td>
<td>TCB</td>
</tr>
<tr>
<td>62</td>
<td>Tree cover, broadleaved, deciduous, open (15–40%)</td>
<td>TBDO</td>
<td>11</td>
<td>Shrub Cover, closed-open, evergreen</td>
<td>SCOE</td>
</tr>
<tr>
<td>70</td>
<td>Tree cover, needleleaved, evergreen, closed to open (>15%)</td>
<td>TNECO</td>
<td>12</td>
<td>Shrub Cover, closed-open, deciduous</td>
<td>SCCD</td>
</tr>
<tr>
<td>71</td>
<td>Tree cover, needleleaved, evergreen, closed (>40%)</td>
<td>TNEC</td>
<td>13</td>
<td>Herbaceous Cover, closed-open</td>
<td>HCCO</td>
</tr>
<tr>
<td>72</td>
<td>Tree cover, needleleaved, evergreen, open (15–40%)</td>
<td>TNEO</td>
<td>14</td>
<td>Sparse herbaceous or sparse shrub cover</td>
<td>SHSS</td>
</tr>
<tr>
<td>80</td>
<td>Tree cover, needleleaved, deciduous, closed to open (>15%)</td>
<td>TNDCO</td>
<td>15</td>
<td>Regularly flooded shrub and/or herbaceous cover</td>
<td>RFSH</td>
</tr>
<tr>
<td>81</td>
<td>Tree cover, needleleaved, deciduous, closed (>40%)</td>
<td>TNDC</td>
<td>16</td>
<td>Cultivated and managed areas</td>
<td>CMA</td>
</tr>
<tr>
<td>82</td>
<td>Tree cover, needleleaved, deciduous, open (15–40%)</td>
<td>TNDO</td>
<td>17</td>
<td>Mosaic: Cropland/Tree Cover / Other natural vegetation</td>
<td>MCTO</td>
</tr>
<tr>
<td>90</td>
<td>Tree cover, mixed leaf type (broadleaved and needleleaved)</td>
<td>TMBN</td>
<td>18</td>
<td>Mosaic: Cropland/Shrub and/or grass cover</td>
<td>CSG</td>
</tr>
<tr>
<td>100</td>
<td>Mosaic tree and shrub (>50%)/herbaceous cover (<50%)</td>
<td>MTS</td>
<td>19</td>
<td>Bare areas</td>
<td>BAR</td>
</tr>
<tr>
<td>110</td>
<td>Mosaic herbaceous cover (>50%)/tree and shrub (<50%)</td>
<td>MHC</td>
<td>20</td>
<td>Water bodies</td>
<td>WAB</td>
</tr>
</tbody>
</table>
Table 1.
Land use/land cover categories for the two sources of data used in this study and for the DEPAC module.

<table>
<thead>
<tr>
<th>Number</th>
<th>Land Cover Climate Change Initiative (CCI) label</th>
<th>Code CCI</th>
<th>Number</th>
<th>Global Land Cover (GLC) label</th>
<th>Code CORINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>Shrubland</td>
<td>SRU</td>
<td>21</td>
<td>Snow an Ice</td>
<td>SNI</td>
</tr>
<tr>
<td>121</td>
<td>Shrubland evergreen</td>
<td>SRE</td>
<td>22</td>
<td>Artificial surfaces and associated areas</td>
<td>URB</td>
</tr>
<tr>
<td>122</td>
<td>Shrubland deciduous</td>
<td>SHD</td>
<td>23</td>
<td>No Data</td>
<td>ND</td>
</tr>
<tr>
<td>130</td>
<td>Grassland</td>
<td>GRA</td>
<td>Number</td>
<td>LOTOS-EUROS fractional categories</td>
<td>LE-fract code</td>
</tr>
<tr>
<td>140</td>
<td>Lichens and mosses</td>
<td>LIM</td>
<td>1</td>
<td>Arable</td>
<td>ARA</td>
</tr>
<tr>
<td>150</td>
<td>Sparse vegetation (tree, shrub, herbaceous cover) (<15%)</td>
<td>SPV</td>
<td>2</td>
<td>Permanent crops</td>
<td>CRP</td>
</tr>
<tr>
<td>151</td>
<td>Sparse tree (<15%)</td>
<td>SPT</td>
<td>3</td>
<td>Grass</td>
<td>GRS</td>
</tr>
<tr>
<td>152</td>
<td>Sparse shrub (<15%)</td>
<td>SPS</td>
<td>4</td>
<td>Coniferous forest</td>
<td>CNF</td>
</tr>
<tr>
<td>153</td>
<td>Sparse herbaceous cover (<15%)</td>
<td>SHC</td>
<td>5</td>
<td>Deciduous forest</td>
<td>DEC</td>
</tr>
<tr>
<td>160</td>
<td>Tree cover, flooded, fresh or brackish water</td>
<td>TFFB</td>
<td>6</td>
<td>Other</td>
<td>OTH</td>
</tr>
<tr>
<td>170</td>
<td>Tree cover, flooded, saline water</td>
<td>TFS</td>
<td>7</td>
<td>Water</td>
<td>WAT</td>
</tr>
<tr>
<td>180</td>
<td>Shrub or herbaceous cover, flooded, fresh/saline/brackish water</td>
<td>SHCF</td>
<td>8</td>
<td>Urban</td>
<td>NO2</td>
</tr>
<tr>
<td>190</td>
<td>Urban areas</td>
<td>URB</td>
<td>9</td>
<td>Desert</td>
<td>DSR</td>
</tr>
<tr>
<td>200</td>
<td>Bare areas</td>
<td>BAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Consolidated bare areas</td>
<td>CBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Unconsolidated bare areas</td>
<td>UBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Water bodies</td>
<td>WAB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Permanent snow and ice</td>
<td>SNI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

took into account the similar morphological characteristics between categories, and the aseasonality in this tropical region. The model defines for each grid cell the fraction covered by each one of the LU/LC classes used by the DEPAC module, and calculates the deposition over each fractions.

Deposition depends on land-use changes. It was essential to analyze the temporal behavior of the area of interest to identify zones with over and subs estimation comparing with the early reference. Natural protected areas with notable changes in deposition between the default and updated input data were identified, emphasizing the importance of using up-to-date and accurate land cover data in the simulation model. Vulnerable areas like natural protected areas and paramos ecosystems may require more than a local conservation effort for the preservation of their ecological functions.

To explore the fate of nitrogenous atmospheric species emitted from the main Colombian cities, the grid cells housing the centroids of the urban area for Bogotá, Medellín, Cali, and Barranquilla were assumed as artificial point sources of emissions. The simulations were conducted with the updated elevation model and updated LU/LC scheme detailed above, for a total of 10 days in four different times of the year: March 1–10, June 1–10, September 1–10, and December 1–10. After a
2-day model spin up, the point source was from 08:00–18:00 of day 3 of the simulation, emitting a total of 1000 kg/hour NO₂, which is the amount of daily NO₂ emissions reported for Medellín [51]. The artificial emissions were monitored during seven additional days, during which time all of the emitted species had either deposited or transformed. Similar simulations were conducted but without the activation of the point source in order to estimate the background deposition values for each grid cell.

A second experiment was conducted as above, but focusing on either Medellín or Rionegro. The latter city is located to the East of the Aburrá Valley, near the international airport that serves Medellín and the immediate region. Rionegro is the largest and fastest growing city in the Valley of San Nicolás. The urban growth in this region is being fueled in part by the migration of people from the Aburrá Valley. Many residents in the Valley of San Nicolás hold jobs inside the Aburrá Valley, and many schools that serve middle and upper income families from the Aburrá Valley are located in the Valley of San Nicolás. The second experiment was aimed at understanding the potential implications for regional Nr deposition derived from increase urban development in the Valley of San Nicolás.

The LOTOS-EUROS emission module explains the discharge of tracers and aerosols from various sources (anthropogenic, biogenic, marine, airborne dust, fires) that can be configured to define emissions in specific point sources to simulate scenarios. Figure 6(A) shows the simulation of the total deposition (dry and wet) for Nitrogen taking into account the emission of the four principal cities in Colombia. Cities here were assumed to be point emission sources, which works to determine the influence area of this city. Figure 6(A) shows the contours generated...
with an increment of 5 g/ha between contour level and bias correction of +2 g/ha to avoid negative values that appears as a numerical noise from the rest of the reference run minus the punctual perturbed emission run for the city of Medellín as a point source in the Figure 6(B) this same magnitude contour levels but in this case having the emission source located in Rionegro city. The more rounded contour delimits the impact zone for each of the cities.

It is possible to identify some trends in the wind direction for the four different times of the year, for which was performed simulations for the 1–9 days of March, June, September, and December. The influence of Barranquilla to faraway zones is perceivable due to the near location of this city to the Caribbean coast, where intense wind conditions exist as well as flat topography that drives the transport dynamics far away. More of the depositions from Barranquilla is going to the ocean direction and, in other time of the year to the southwest of the city reaching inclusive the other cities deposition areas. For the other cities, the impact area is more limited but with higher deposition values due to the roughness of the mountainous terrain and the less magnitude of the wind patterns presented. It is also interesting to see that the deposition from Bogotá could reach other cities as Medellín at some times of the year.

Figure 6(B) shows a simulation for what happens with Medellín for increase simulation resolution to 0.03x0.03°, conceiving the point source concentrated in a grid cell in the middle of the metropolitan area. The results of simulations indicate that the northwest-west area of the Aburra Valley (Medellín and municipalities of the metropolitan area) are the most affected, which could be seen in how paramos ecosystems located in the points a and b in the map receive nitrogen that was emitted from the cities. In the mosaic in the right part of Figure 6(C) a detailed simulation, conceiving the point source concentrated now in a grid cell in the middle of the metropolitan Rionegro area. It is important to notice during some parts of the year that Rionegro influences Medellín in terms of the deposition of its emissions. It means there is a transport dynamic of contaminants that should be studied from more detail because of the increasing Rionegro area for the industrial and urban setting.

Simulations with point sources identified the transport patterns in the territory, and showed the regional influence of the major cities in base of qualitative and quantitative results to understand the dynamics of emission and deposition of contaminants for the principal cities of Colombia which consist in an attractive information supply to start understanding the transport of atmospheric contaminants over this territory. The atmospheric transport and deposition of pollutants present ecosystem risk factors that require an evaluation of impacts directly in the field based on the reported results, and their inclusion in conservation strategies.

2.1.3 Technological development: SimpleSpace

A Simple module is a “CanSat” form factor measurement device with a standard for pico-satellites (0.1–1 kg). It has a mass of 0.4 kg and a volume of approximately 330 ml. It is a product of SimpleSpace, a spin-off program started at Universidad EAFIT since the early 2020 (Figure 7). Its aerospace design is versatile, and it does not represent a heavy load for any possible airborne campaign. As the module has already been measured at a stratospheric level in different High Altitude Balloon activities in the country, the sensors’ robustness is guaranteed. Two simple modules inside and outside the aircraft provided an exciting framework for distributing pollutants outside and inside the urban area.

A Simple module is depicted in Figure 8, showing that it contains the necessary subsystems that a satellite architecture requires: an energy power supply, a
information is obtained in this research study regarding dynamics over the sensor pressurized aircraft of the Colombian Air Force for airspace protection. Valuable sensor (accelerometers and magnetometers). (Pressure, Humidity, Temperature, Wind direction and magnitude) and inertial temperature using a CMOS based sensor. Additional sensor like the meteorology H2 (1100 ppm), Ethanol C2H5OH (10-500 ppm), Hydrogen H2 (1-1000 ppm), Ammonia NH3 (1-500 ppm), Methane CH4 (¿1000 ppm), Propane C3H8 (¿1000 ppm), Iso-butane C4H10 (¿1000 ppm), altitude, pressure and temperature using a CMOS based sensor. Additional sensor like the meteorology (Pressure, Humidity, Temperature, Wind direction and magnitude) and inertial sensor (accelerometers and magnetometers).

The previous figure shows the single units’ observations onboard a non-pressurized aircraft of the Colombian Air Force for airspace protection. Valuable information is obtained in this research study regarding dynamics over the sensor communications subsystem, an on-board command data-handling subsystem, and a payload subsystem and a communication bus through all this subsystems.

The gases that were measured by the SimpleSpace modules for measurement in vertical layers in the HIPAE missio were: Carbon monoxide CO (1–1000 ppm), Nitrogen dioxide NO2 (0.05–10 ppm), Ethanol C2H5OH (10–500 ppm), Hydrogen H2 (1–1000 ppm), Ammonia NH3 (1–500 ppm), Methane CH4 (¿1000 ppm), Propane C3H8 (¿1000 ppm), Iso-butane C4H10 (¿1000 ppm), altitude, pressure and temperature using a CMOS based sensor. Additional sensor like the meteorology (Pressure, Humidity, Temperature, Wind direction and magnitude) and inertial sensor (accelerometers and magnetometers).

The previous figure shows the single units’ observations onboard a non-pressurized aircraft of the Colombian Air Force for airspace protection. Valuable information is obtained in this research study regarding dynamics over the sensor
devices and data assimilation experiments with the LOTOS-EUROS and WRF models. Scientists use numerical models that consider emissions and depositions of pollutants such as nitrogenous species and ozone in ecosystems to calculate these pollutants’ transport and chemical reaction. The value of this lies in the possibility of defining courses of action to protect them because, in natural protected areas, the long-range transport pollution problem has not been extensively studying.

2.2 Human health

Behind many of the efforts of MAUI lies the intention to contribute to improving the environmental health in our region. Poor breathing air quality is amply recognized as a major environmental cause of morbidity and mortality [52], with global estimates suggesting nearly 9 million annual deaths being related to exposure to outdoor air pollution [53]. The National Institutes of Health in Colombia estimates that poor air quality is annually responsible for nearly 16,000 deaths representing the leading detriment to the national environmental health [54]. In Medellín and two other large Colombian cities, exposure of industrial air pollution has been associated with clusters of Acute Childhood Leukemia [55]. As has been repeatedly observed around the globe (e.g., [56]), urban exposure to air pollution has been found to be associated with increased rates of hospital visits related to respiratory and circulatory conditions in Medellín and other three large Colombian cities [57], and impact seemingly dominates the effect of atmospheric NO2 and its synergistic effect with other contaminants [58]. Atmospheric contaminants represent a threat to the health of Colombian people not only through their respiratory and mucosal exposure to polluted air, but also to surface-deposited contaminants [59].

The dynamics and spatial patterns of pollutant emissions in urban settings accentuate economic disparities with marked inequities in exposure to pollution [60]. Despite the reductions in air pollution resulting from total and partial lockdowns in response to the COVID-19 pandemic [61], long-term exposure to poor air quality has been observed to exacerbate the manifestations of COVID-19 and increase its mortality rate [62]. Curiously, this effect was not apparent in Colombia, where sociodemographic differences appeared to be the leading factor influencing the dynamics of SARS-CoV-2 infections in the country [63]. Nevertheless, the cited authors suggest that ample errors affect the strength of the conclusions related to air pollution, and given the dearth of exposure models or assessments at sufficiently high spatial resolution available for Colombian cities, these results are indeed preliminary.

The development of mathematical models that could help us estimate the human exposure levels was one of the early goals at the outset of MAUI. With the research program ExPoR² we have been given the opportunity to finally pursue that goal.

2.2.1 HIPAE Mission

Research into nitrogenous species, ozone, and marine aerosols faces a common challenge posed by a scarcity of in situ measurements [8, 64]. Ideally, additional research infrastructure and sensors would be installed in the regions of interest. In the meantime, however, researchers will need to maximize the usefulness of satellite data, which is already available [11, 65] and alternative measurements sources as the airborne measurement campaigns.

Airborne measurements constitute complementary in situ information for the vast array of measurements that may be collected from the atmosphere. To this end, HIPAE proves the viability of a measurement concept mission performed inside the
Colombian UH-60 L “Black Hawk” aircraft FAC4121, with the support of two groups within the Colombian Air Force: the fifth Air combat command -Comando aereo de combate N5 (CACOM5) - and Center for the technological development for defense -Centro de desarrollo tecnológico aeroespacial para la defensa (CETAD). This is the first time that this kind of measurement has been performed over Colombian territory.

Some references of airborne measuring campaigns come from the European project IAGOS (In-service Aircraft for a Global Observing System), a project that combines the expertise of two successful European research projects [66], MOZAIC (Measurements of OZone, water vapor, CO, NO\textsubscript{x} by in service Alrbus airCraft) [67] and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) used in different scenarios to study the atmosphere composition [68]. The work of (Anthony et al., 2018) [69] used helicopter-borne electromagnetic measurements to derive a 3D resistivity model to study the permafrost carbon emission and compare a chemical transport model. One example from North America is the project from NOAA-ESRL named Tropospheric Aircraft Ozone Measurement Program focused on O\textsubscript{3} measurements [70]. Other project focused on aircraft measurements is called EMeRGe (Effect of Megacities on the transport and transformation of pollutants in the Regional and Global scales) which exploits the unique capabilities of the HALO (High Altitude and Long-Range aircraft) to investigate the impact of major population centers emissions on air pollution (Griffing et al., 2019).

In the mission HIPAE, we have the possibility of experimenting on topics such as nanomaterials, applied electromagnetism, atmospheric optics, environmental magnetism, biodiversity and conservation, mathematical modeling and meteorology [71]. This paper is the detailed extension of the work of [71]. The data assessed constitute a valuable source necessary for data assimilation experiments with the LOTOS EUROS to understand the dynamic of transport of contaminants in the region. The optical particle count and information retrieved from the 8 aerosol compounds of the Simple modules will allow valuable annotations to be used for the design of Lidar 4D systems; that will complement the TROPOMI ground and satellite measurements for the assimilation of data from the LOTOS-EUROS model at high and low resolution, increasing the impact from local to national in terms of the capacity to forecast the transport of pollutants (Figure 9).

The results of this experiment will not only validate the use of nanomaterials to capture particulate material, but will also offer valuable information on its composition, morphology, and chemistry via scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) analysis. These results are not going to be discussed in this paper and are considered under review on different journals. On the other hand, we address studies of cytogenotoxicity of pollutants in vertical columns of the atmosphere will provide valuable information to be used in human health risk assessments.

2.2.2 Preliminary results

From in situ aerosol measurements performed by HIPAE, a very clear picture emerged about the volumetric distribution of urban and rural pollutants in the Aburrá Valley. These data achieved good temporal and spatial resolutions. Direct analysis of numerous gases supported several decision-relevant findings, including spatial dynamics and source apportionment. This data will be assimilated into models in order to provide accurate dispersion scenarios and forecasting. Collected data by the OPC-N2 for PM 1.0, 2.5 and 10 match with those reported for the government services for the air quality monitoring. This demonstrates the reliability of the method.
From a simple inspection of the comparison between the altimeter from the Simple device and the PM counters, several urban atmosphere dynamics were revealed. The concentrations of the two measures (PM10 and PM2.5) increased as the helicopter descended through the valley. Concentration data is useful for assimilation in a chemical transport models. The assimilated LE model was able to represent the concentrations of PM10 at low altitudes, as can be corroborated by ground stations; however, the model tends to underestimate concentrations proportional to the target altitude.

A remote laser detection device for research will be designed taking into account this information to define the physical design and its portability and of course, define the optimal channels to measure key particles i.e. wavelengths to detect, depolarization or Raman channels.

An automatized system for particulate matter collection is also needed to be designed, in order to have the possibility to capture particulate matter at different flying altitudes or city zones. This system also prevents to incorporate particle matter during take-off, landing and external load hooking maneuvers. Detailed information must be found in [71].

2.2.2.1 Polymer nanofibers for capture of particulate matter

In order to determine the capability of a novel nanofiber filter design, two types of filters were used in this study: one manufactured at Universidad EAFIT, based on PolyAcryloNitrile (PAN) nanofibers; and the other a commercial filter based on glass microfibers (GMF) [71].

The nanofilters were manufactured by an electrospinning technique. A high voltage was applied to a polymer solution in a syringe so that the polymer formed a small filament that traveled to a collection system. To manufacture the nanofilters,
a concentration of 12 wt% of PAN, a voltage of 8 kV, and a 12-cm needle-collector were used.

Each fiber diameter was 560 ± 130 nm, with a length of 50 ± 5 um. The commercial filters were obtained from Electron Microscopy Sciences (Hatfield, PA). The assembly of the filters was done using air cassettes and GilAir 3 air sampling pumps (Sensidyne, USA).

The cassettes were connected by hoses to the pumps, which were programmed to intake 3 L/min. The filters were massed in a microbalance prior to installation (Mettler Toledo, USA) and were massed again at the end of the test [71]. The filtration efficiency of the particulate matter was determined in this way by gravimetry.

2.2.2.2 Cellular and molecular damage quantification

2.2.2.2.1 Particulate matter extraction

The PAN and GMF filters were suspended in dichloro-methane (DCM) and stored at 20°C until extraction. The organic fraction of the PM was extracted with DCM in a sonicator for 45 min, broken into 15-min periods. The supernatant was rotavaporated at 35°C until the extract reached 0.5 mL. The extracts were then placed in amber bottles and left to dehydrate overnight. The PM extracts obtained from both filters were dissolved in 1 mL of dimethyl sulfoxide (DMSO).

2.2.2.2.2 Cell cultures

HaCaT cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM), which was supplemented with 5% fetal calf serum (Sigma, USA), 100 μg/mL penicillin, and 100 μg/mL streptomycin, in a humidified atmosphere of 5% CO2/95% air at 37°C. Exponentially growing cultures were used in all experiments.

2.2.2.2.3 Cytotoxicity assay

Cytotoxic evaluations of particulate matter captured with PAN and GMF filters were performed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, according to ISO/EN10993–5. Proliferating HaCaT cell lines were seeded in 96 well plates at a density of 10 cells/well in 100 mL of DMEM medium. Three concentrations of PM extract were tested: 25, 50, and 75 mg/mL. A positive control (methyl methanesulfonate, MMS, 100 μg/mL) and a negative control (DMSO, 1%) were implemented. Cells were incubated for 24 h with test extract concentrations, and all tests were carried out in triplicate. After the treatment, MTT (1 mg/mL) was added to each well and incubated for an additional 3 h. The performance of each well was quantified by measuring the spectral absorbance of the solution at 540 nm, using a microplate spectrophotometer.

2.2.2.2.4 Alkaline comet assay

Comet assays were performed with minor modifications, according to Sing et al. (1988). Briefly, HaCaT cells were seeded in each of 24 well plates, and exposed to 25, 50, 75 mg/mL PM solutions, and negative (DMSO 2%) and positive (50 mM H2O2) controls, for 1 hour. Cells were then trypsinized. Cell suspensions were mixed with low-melting-point agarose (0.75%), and immediately spread onto a microscope slide precoated with normal-melting-point agarose. Slides were then incubated in an ice-cold lysis solution (2.5 M NaCl, 10 mM Tris, 100 mM EDTA, 1%
Triton X-100, and 10% DMSO, at a pH of 10.0) at 4°C for 1 h. For the alkaline comet assay, slides were placed in an electrophoresis chamber containing freshly prepared alkaline buffer (300 mM NaOH and 1 mM EDTA, pH > 13.0) at 4°C for 20 min. After that a 300-mA and 25-V electric current was applied for 20 min to perform DNA electrophoresis. Slides were then neutralized (0.4 M Tris, pH 7.5) and stained using 2% ethidium bromide solution. For the analysis, 200 randomly selected cells from each treatment were measured for DNA damage (% tail DNA). The tests were carried out in triplicate.

2.2.2.2.5 Cell cycle analysis

After 24 h of treatment, cell samples were fixed in 70% ethanol and subsequently incubated with 5 g/mL R5000 RNase (Sigma, USA), stained with 5 g/mL P4170 propidium iodide (Sigma, USA) for 30 min, and then analyzed for propidium iodide fluorescence using a BD LSFRess flow cytometer (BD Biosciences, USA). Percentages of cells in each phase were calculated using the FlowJo software package (FlowJo LLC, USA).

2.2.2.3 Cytogenotoxicity and genotoxicity analysis

2.2.2.3.1 Statistics on the data

As usual in biological sciences, a statistical analysis was carried out. Unless stated to the contrary, all data presented in this report represent results obtained from three independent experiments. Analysis of variance tests were performed with GraphPad Prism or Statview software, with post-hoc comparisons carried out by Fisher’s protected least significant difference tests.

The cell viability examined by MTT assay showed that, compared with the unexposed control cells, there was statistically significant (p < 0.05) reduction in relative viability as the PM extract concentration increased from 25 to 50 to 75 mg/mL of PM. At the highest tested concentration, the cells reached a reduction of 25% of relative viability (Figure 10).

![Figure 10](Image)

Figure 10.
Cytotoxicity determined by relative viability, as measured by MTT assay of different concentrations of particulate matter extract obtained from GMF and PAN filters (25, 50, and 75 mg/mL). Positive control (C+; MMS 100 µg/mL) and negative control (C+; DMSO 2%) results are also depicted. The results are expressed as mean ± SE. Asterisks indicate statistical significance: * = (p < 0.05), ** = (p < 0.01).
2.2.2.3.2 Alkaline comet assay

As shown in Figure 11, the alkaline comet assay identified no significant statistical difference between the negative control (DMSO 2%) and the different concentrations of PM evaluated (25, 50, or 75 mg/mL).

2.2.2.3.3 Cell cycle analysis

Flow cytometry analysis indicated that, relative to control cells, the particulates captured by both GMF and PAN filters had no effect on the DNA content or the cell cycle phase distribution (Figure 12). The histograms in Figure 13 show a slight population increase in the S phase, but without a significant statistical difference.

The cytotoxicity results show a clear reduction in the real viability related to the increase in the concentration of MP. The cytotoxicity results obtained in this work are in accordance with what was reported in other research papers that report cytotoxicity caused by PM after exposure to concentrations above 25 g/ml, for periods longer than 24 hours. (D. On the other hand, no evidence of genotoxicity or effects on the cell cycle of HaCaT cells was found at the concentrations evaluated. Which differs from the results reported by other researchers at similar concentrations of PM. These results may be related to the chemical composition of the PM at the sampling height.

Our analysis of the performance of PolyAcryloNitrile nanofibers in the capture and chemical and morphological analysis of particulate matter were promising. The designed nanomaterials outperformed the commercial filters at efficiently capturing particulate matter and in a way that was accessible for analysis.

Cell cycle analysis carried out on the particulate matter captured by the PAN nanofibers and GMF revealed lower rates of cellular damage compared with previous analysis on the surface. In addition, the comet assay identified no statistically significant difference between the negative control and the different concentrations of PM evaluated. The chemical composition of nano- or microscale particulate matter will determine the validity the hypothesis that cellular and genetic damage can be caused by human exposure to heavy particulate matter trapped near the surface in urban areas. Despite non-significative results on DNA damage and cell cycle analyses. We do strongly recommend taking into account these tests for future

Figure 11.
Alkaline comet assay based on DNA breakage induced by different concentrations of PM extract obtained from GMF and PAN filters (25, 50, and 75 mg/mL). Positive control (C+; H2O2 50 mM) and negative control (C; DMSO 2%) results are also depicted. The results are expressed as mean ± SE.
analyses as a measure to monitor the evolution of the air pollution and air quality in the valley.

Figure 14 depicts the Simple module measurements of ethanol and propane over the Aburrá Valley. The mission started in the military base near an urban area called Valle de San Nicolas. Flying north at a low altitude, the concentrations of C2H5OH were lower than when the aircraft entered the valley above Girardota. During the entire measurement campaign, and at several altitudes within the valley, there was no significant difference in ethanol concentrations in the vertical profiles, except for some portions in the south of the valley, where the land is not heavily urbanized. Human activities increase the concentration of ethanol, but when vegetation is present, it is mitigated. Similar behavior was detected by the measurements of
propane, which reflect the presence of vegetation in urban areas with lower concentrations. Nevertheless, the highest urban concentration of propane was approximately 3410 ppm.

Simple module measurements of carbon monoxide and hydrogen over the Aburrá Valley are depicted in Figure 15. Carbon monoxide is toxic when encountered in concentrations above about 35 ppm. In the atmosphere, it is spatially variable and short-lived, having a role in the formation of ground-level ozone. Its presence indicates that tropospheric ozone is present in this urban area, having consequences for human health and nearby ecosystems. These measurements will enable several reaction schemes to be tested within a chemical transport modeling in the valley.

Simple module measurements of ammonia and nitrogen dioxide over the Aburrá Valley are depicted in Figure 16. The presence of elevated concentrations of nitrogenated species in the highest-altitude layers is deeply concerning. Ammonia is an irritant compound whose potency increases with its concentration. The permissible exposure limit is 25 ppm, and it becomes lethal above 500 ppm.
propane, which reflect the presence of vegetation in urban areas with lower concentrations. Nevertheless, the highest urban concentration of propane was approximately 3410 ppm.

Simple module measurements of carbon monoxide and hydrogen over the Aburrá Valley are depicted in Figure 15. Carbon monoxide is toxic when encountered in concentrations above about 35 ppm. In the atmosphere, it is spatially variable and short-lived, having a role in the formation of ground-level ozone. Its presence indicates that tropospheric ozone is present in this urban area, having consequences for human health and nearby ecosystems. These measurements will enable several reaction schemes to be tested within a chemical transport modeling in the valley.

Simple module measurements of ammonia and nitrogen dioxide over the Aburrá Valley are depicted in Figure 16. The presence of elevated concentrations of nitrogenated species in the highest-altitude layers is deeply concerning. Ammonia is an irritant compound whose potency increases with its concentration. The permissible exposure limit is 25 ppm, and it becomes lethal above 500 ppm.

variable and short-lived, having a role in the formation of ground-level ozone. Its presence indicates that tropospheric ozone is present in this urban area, having consequences for human health and nearby ecosystems. These measurements will enable several reaction schemes to be tested within modeling in the valley.

Simple module measurements of ammonia and nitrogen dioxide over the Aburrá Valley are depicted in Figure 16. The presence of elevated concentrations of nitrogenated species in the highest-altitude layers is deeply concerning. Ammonia is an irritant compound whose potency increases with its concentration. The permissible exposure limit is 25 ppm, and it becomes lethal above 500 ppm.
Author details

Andres Yarce Botero1,2,3,4*, Olga Lucia Quintero Montoya1,4, Santiago Lopez-Restrepo1,2,4, Nicolás Pinel2, Jhon Edinson Hinestroza1, Elias David Niño-Ruíz3, Jimmy Anderson Flórez6, Angela María Rendón7, Monica Lucia Alvarez-Laínez8, Andres Felipe Zapata-Gonzalez8, Jose Fernando Duque Trujillo9, Elena Montilla10, Andres Pareja11, Jean Paul Delgado12, Jose Ignacio Marulanda Bernal13, Jaime Andres Betancur6, Alejandro Vélez6, Arjo Segers14, Arnold Heemink3, Juan Ernesto Soto6, Bibiana Esperanza Boada Sanabria1 and Sara Lorduy1,6

1 Mathematical Modelling Research Group, Universidad EAFIT, Medellin, Colombia

2 Department of Biological Sciences, Evolution and Conservation, Research Group on Biodiversity, Universidad EAFIT, Medellin, Colombia

3 Department of Applied Mathematics, TU Delft, Delft, The Netherlands

4 SimpleSpace, Universidad EAFIT, Medellin, Colombia

5 Applied Math and Computer Science Lab, Universidad del Norte, Colombia

6 Fuerza Aerea Colombiana, Colombia

7 Grupo de Ingeniería y Gestion Ambiental, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia

8 Design Engineering Research Group–GRID, Universidad EAFIT, Colombia

9 Departamento de Ciencias de la Tierra, Universidad EAFIT, Colombia

10 Applied Optics Research group, Universidad EAFIT, Colombia

11 Unidad de Toxicidad in vitro, Universidad CES, Colombia

12 Research Group of Genetics, Regeneration and Cancer, Institute of Biology, Universidad de Antioquia, Colombia

13 Applied Electromagnetism Research Group, Universidad EAFIT, Colombia

14 TNO Department of Climate, Air and Sustainability, Utrecht, The Netherlands

*Address all correspondence to: a.yarcebotero@tudelft.nl

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

Ambientales, Area Metropolitana del Valle de Aburra, Medellín, 2017.

[59] Erika P. Donado, Marcos L.S. Oliveira, Janaína O. Gonçalves,

Chapter 7
Data Assimilation as a Tool to Improve Chemical Transport Models Performance in Developing Countries

Santiago Lopez-Restrepo, Andrés Yarce Botero, Olga Lucia Quintero, Nicolás Pinel, Jhon Edinson Hinestroza, Elias David Niño-Ruiz, Jimmy Anderson Flórez, Angela Maíra Rendón, Monica Lucia Alvarez-Laínez, Andres Felipe Zapata-Gonzalez, Jose Fernando Duque Trujillo, Elena Montilla, Andres Pareja, Jean Paul Delgado, Jose Ignacio Marulanda Bernal, Bibiana Boada, Juan Ernesto Soto, Sara Lorduy, Jaime Andres Betancur, Arjo Segers and Arnold Heemink

Abstract
Particulate matter (PM) is one of the most problematic pollutants in urban air. The effects of PM on human health, associated especially with PM of ≤2.5 μm in diameter, include asthma, lung cancer and cardiovascular disease. Consequently, major urban centers commonly monitor PM2.5 as part of their air quality management strategies. The Chemical Transport models allow for a permanent monitoring and prediction of pollutant behavior for all the regions of interest, different to the sensor network where the concentration is just available in specific points. In this chapter a data assimilation system for the LOTOS-EUROS chemical transport model has been implemented to improve the simulation and forecast of Particulate Matter in a densely populated urban valley of the tropical Andes. The Aburrá Valley in Colombia was used as a case study, given data availability and current environmental issues related to population expansion. Using different experiments and observations sources, we shown how the Data Assimilation can improve the model representation of pollutants.

Keywords: chemical transport model, air quality, data assimilation, LOTOS-EUROS, low-cost networks
Chapter 7

Data Assimilation as a Tool to Improve Chemical Transport Models Performance in Developing Countries

Santiago Lopez-Restrepo, Andrés Yarce Botero, Olga Lucia Quintero, Nicolás Pinel, Jhon Edinson Hinestroza, Elias David Niño-Ruiz, Jimmy Anderson Flórez, Angela Maíra Rendón, Monica Lucia Alvarez-Laínez, Andres Felipe Zapata-Gonzalez, Jose Fernando Duque Trujillo, Elena Montilla, Andres Pareja, Jean Paul Delgado, Jose Ignacio Marulanda Bernal, Bibiana Boada, Juan Ernesto Soto, Sara Lorduy, Jaime Andres Betancur, Arjo Segers and Arnold Heemink

Abstract

Particulate matter (PM) is one of the most problematic pollutants in urban air. The effects of PM on human health, associated especially with PM of $\leq 2.5 \mu m$ in diameter, include asthma, lung cancer and cardiovascular disease. Consequently, major urban centers commonly monitor PM$_{2.5}$ as part of their air quality management strategies. The Chemical Transport models allow for a permanent monitoring and prediction of pollutant behavior for all the regions of interest, different to the sensor network where the concentration is just available in specific points. In this chapter a data assimilation system for the LOTOS-EUROS chemical transport model has been implemented to improve the simulation and forecast of Particulate Matter in a densely populated urban valley of the tropical Andes. The Aburrá Valley in Colombia was used as a case study, given data availability and current environmental issues related to population expansion. Using different experiments and observations sources, we shown how the Data Assimilation can improve the model representation of pollutants.

Keywords: chemical transport model, air quality, data assimilation, LOTOS-EUROS, low-cost networks
1. Introduction

Air pollution is defined as the presence of solid, liquid or gaseous components in the atmosphere that can cause risk and troubles for living beings or goods in general. Air pollution is one of the major environmental problem in modern human history [1]. Environmental pollution can be produced by natural or human actions. Natural sources include forest fires, volcanic emissions, dust, sand, vegetation (as pollen) and wildlife (as methane). The main human sources of air pollution are industry, power generation, transportation, deforestation and cattle raising [2].

The current exponential growth in world population heightens the importance of public health issues related to air quality [3, 4]. In developing countries, decision makers must cope with the environmental demands of expanding and overpopulated urban centers. Short term air quality forecasts and long term mitigation strategies for these centers are usually based on specialized assessments of particulate matter dynamics [5, 6]. The Aburrá Valley houses the city of Medellín and neighboring municipalities. It is the second most populous urban agglomeration in Colombia, and the third densest in the world. The valley traces the course of the Medellín River along 60 km of a deep mountain canyon that ranges in width between 3 and 10 km, and with a height difference of up to 1800 m. Air quality conditions deteriorate severely within the valley twice a year around the time of the arrival of the Intertropical Convergence Zone (March–April, and with lower intensity in October–November), when the atmospheric inversion layer persists throughout the day below the rim of the canyon, thus trapping all of the urban atmospheric contaminants within the lower atmosphere [7]. During these periods, the concentrations of particulate matter below 10 μm (PM10) and 2.510 μm (PM2.5) remain at levels considered hazardous for vulnerable populations and even for the general population (Figure 1).

Due to the large stress on human health induced by this air pollution, efforts have been made to monitor, reduce, and prevent episodes in which concentrations of pollutants reach hazard levels. Before measures for reducing air pollution can be implemented it is important to know the actual concentration levels and how these evolve in time over the area of interest. This could be done using a Chemical Transport Model (CTM) to simulate concentrations of trace gases and particulate matter [8, 9]. In the last 20 years, CTMs have seen a huge growth and development; in consequence a diversity of models exists, differing in their complexity, size of the region of study, and methods used for their development. CTMs can be broken down in four categories according to their dynamic behavior: i) Gaussian, ii)
Data Assimilation as a Tool to Improve Chemical Transport Models Performance...
DOI: http://dx.doi.org/10.5772/intechopen.97503

statistic, iii) Lagrangian and iv) Eulerian [8]. Eulerian models are the most widely used and reported for monitoring and predicting the pollution behavior and define the air quality in bigger areas [9]. So, these are frequently used in areas with sizes like countries or continents and have been less used in areas like cities.

Data assimilation (DA) is a mathematical process that provides integration between measured values (observations) and a dynamic model, to improve the operation of the model. With DA, the output value provided by the model has a smaller error than the output value provided by the model without observations. DA has two key objectives: to improve the operation in predictions of model states; and estimate unknown parameters of the model [10]. DA has been tested in different science fields such as oceanography, climatology, CTMs, and reservoirs characterization [11]. DA allows integrating models and observations out different scales of size and temporal sampling [12]. When two sources of information are combined, DA assumes that both the model and the measurements are subject to errors. These errors are impossible to know with accuracy and need to be specified in statistical and probabilistic terms. DA is not only looking to reduce the model error in space or time with observations; its mission is to digest the observation based on the laws given by the model and to determine the dynamic evolution of the model state that represents better measurements [13].

Large-scale model uncertainty, especially in CTM, is a very complicated issue. Increasing the accuracy of initial conditions, such as accurate land cover representations or updated emissions inventories, or using observations and DA, may reduce uncertainty. Data assimilation offers an alternative that is dynamically driven to reduce the lack of knowledge about the behavior of air pollution. The addition of surface, satellite, in situ, and laser-based remote sensing data to a model will enhance the understanding of proper scenario simulation and online decision-making. A bounty promise lies in the incorporation of the DA, not only for its contribution to the reduction of uncertainty, but also for opening the door to air quality forecasting in atmospheric pollution modeling. CTM forecasting presents us with interesting and complex challenges associated with the uncertainty of weather forecasting, the lack of precise inventory of emissions, and the scarcity and sparsity of monitoring networks for air quality. Such challenges require creative solutions; these challenges are opportunities for knowledge advancement. Due to the scarcity of data and high uncertainty in the model inputs, a mathematical, analytical, and computational effort is needed to push the frontiers of knowledge in the field.

Public air quality monitoring networks often consist of fixed measuring stations equipped with expensive sensors and maintained under rigorous operational and calibration regimes in order to provide high quality data. The high costs associated with establishing and maintaining such stations means that not all cities in developing countries can afford monitoring networks of sufficient spatial coverage [14]. Even in large cities in developed countries, the official air quality monitoring networks do not always provide information at the spatial and temporal resolution required to assess the impact of pollution sources on health [15], as the cost of the equipment makes the necessary density prohibitive. In the metropolitan region of Medellín (Colombia) and its con-urban municipalities for example, there are 21 main PM2.5 monitoring stations, at an average density of 8.25 km2 over the entire area of the 10 municipalities. This has motivated the expansion and improvement of low-cost systems and programs to measure PM [16]. The limited number of studies that have evaluated newer generations of low-cost PM2.5 sensors have shown that the most widely used low-cost sensors attain high accuracy when compared to standard monitoring stations (R² value ranging from 0.93 to 0.95) [17]. The data provided by these sensors can complement those generated by conventional systems, increasing the data resolution and allowing studies of exposure at the human
level [15, 18]. By data assimilation, the incorporation of air pollution data into CTM increases the ability to grasp local and regional patterns and fill spatial coverage gaps. Additionally, the combination of different sources of information and knowledge (data and model) increases the robustness and reliability of low-cost observations [12, 19].

2. The ensemble Kalman filter

The Ensemble-Based DA is a family of methods that uses an ensemble to model the statistics of the first guess (background). In each assimilation step, a forecast from the previous model simulation is used as a first guess, using the available observation this forecast is modified in better agreement with these observations. Due to it is easily implemented, it is relatively low in computational costs (compared with other DA techniques), and has a very general statistical formulation it is one of the most widely used approaches for tackling real-time forecasting problems [20].

The Ensemble Kalman filter (EnKF) is the main Ensemble-based DA method [21]. Based on the Kalman Filter (KF) [22], EnKF is an alternative for nonlinear, high-dimensional systems. EnKF essentially is a Monte Carlo Ensemble-based method, based on the representation of the probability density of the state by an ensemble of N model realizations. Each ensemble member is assumed to be a single sample out of a distribution of the true state [23]. In the first step, a Monte Carlo ensemble of the initial condition is generated to represent the uncertainty in the initial condition. After that, and in the same way that the KF, the EnKF propagates each ensemble using the state-space operator, this step is called forecast step. When observations are available, the EnKF uses them to update each forecast ensemble members and obtain the analysis ensemble, this step is named analysis step. The update is proportional to the differences between the observations and the model outputs, by a gain called Kalman Gain. Figure 2 shows a graphic representation and a comparison between the KF and EnKF.

3. Forecasting PM10. And PM2.5. in the Aburrá Valley (Medellín, Colombia) via EnKF based data assimilation

Understanding local and regional atmospheric particulate matter transport patterns becomes a top priority for urban valleys in the northern Andes. This work will help establish accurate air quality forecasting systems for the Aburr’a Valley (and other similar areas) and improve decision-making. Chemical Transport Models (CTM) are valuable resources for understanding atmospheric pollutants’ dynamics and have thus been widely used in air quality monitoring [8, 9].

Here we use simulations of the LOTOS-EUROS (LE) chemistry transport model (CTM) to investigate the atmospheric contaminant dynamics in the Aburr’a valley, which spans ten municipalities, including Medellín city. The Sistema de Alerta Temprana del Valle de Aburrá (SIATA), a ground-based sensor network with stations throughout the valley, can provide particulate material observations. A preliminary exercise is carried out to assimilate these findings into the simulations and assess the system’s forecast capacity. Due to the various sources of uncertainty present, this implementation poses a challenge from a scientific standpoint. The topography and scale of the valley and the physical conditions of the area of interest necessitate an extra effort to perform a regional high-resolution model simulation.
Model inputs (emission inventory and meteorology) are not readily available with the desired resolution and accuracy, which adds to the experiment’s uncertainty.

3.1 Material and methods

A data assimilation method for the LOTOS-EUROS chemical transport model has been introduced to boost the PM$_{10}$ and PM$_{2.5}$ forecasts. The system uses an Ensemble Kalman filter with covariance localization, which is based on the specification of emissions uncertainties. The data was gathered from a surface network for the months of March and April 2016, during one of the region’s worst air quality crises in recent memory. The SIATA is spread around the five most populous municipalities in the Aburrá Valley, with the bulk of the measuring stations in Medellín. Figure 3 represents the distribution of observation sites.

Measurements for one station for each species (represented with a star in Figure 3) were used for validation, taking two stations with a considerable distance between them to obtain an acceptable spatial representation.

In a first series of experiments, the spatial length scale of the covariance localization and the temporal length scale of the stochastic model for the emission uncertainty were calibrated to optimize the assimilation system. The calibrated system was then used in a series of assimilation experiments. The summarized experimental setup is presented in the Figure 4.

Simulations were conducted with the LE model, adopting a nested domain configuration as depicted in Figure 5 and detailed in Table 1. The data sets used in the model are summarized in Table 2.
3.2 Results

Estimated PM$_{10}$ emissions and EDGAR nominal emissions are shown in Figure 6. The emissions hot-spots occur in rural zones with limited human activity in the EDGAR database. The estimated emissions attempt to remedy this behavior by projecting the most of the pollution into the metropolitan region of the valley (Figure 6).

The assimilated PM$_{10}$ concentration match closely those measurements at the Universidad San Buenaventura (center of the valley) from April at 19:00 UTC-5 through April 25 at 11:00 UTC-5 (see Figure 7). The peak around 18:00 (and usually all day up to that hour) may be unreliable, which may be because of EDGAR’s
3.2 Results

Estimated PM10 emissions and EDGAR nominal emissions are shown in Figure 6. The emissions hot-spots occur in rural zones with limited human activity in the EDGAR database. The estimated emissions attempt to remedy this behavior by projecting the most of the pollution into the metropolitan region of the valley (Figure 6).

The assimilated PM10 concentration match closely those measurements at the Universidad San Buenaventura (center of the valley) from April at 19:00 UTC-5 through April 25 at 11:00 UTC-5 (see Figure 7). The peak around 18:00 (and usually all day up to that hour) may be unreliable, which may be because of EDGAR’s SIATA sensor network for PM10 and PM2.5. The stars represent observation points for validation and the circles represent observations points for assimilation. Taken from [24].

Figure 4.

Graphic representation of the experimental setup. Taken from [24].

Figure 5.

Four nested domains for metropolitan area of Aburrá Valley assessment. Taken from [24].

<table>
<thead>
<tr>
<th>Domain</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Cell size</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>84°W-60°W</td>
<td>8.5°S-18°N</td>
<td>0.27° × 0.27°</td>
</tr>
<tr>
<td>D2</td>
<td>80.5°W-70°W</td>
<td>2°N-11°N</td>
<td>0.09° × 0.09°</td>
</tr>
<tr>
<td>D3</td>
<td>77.2°W-73.9°W</td>
<td>5.2°N-8.9°N</td>
<td>0.03° × 0.03°</td>
</tr>
<tr>
<td>D4</td>
<td>76°W-75°W</td>
<td>5.7°N-6.8°N</td>
<td>0.01° × 0.01°</td>
</tr>
</tbody>
</table>

Table 1.

Nested domain specifications.

temporal emissions factors. Additionally, concentrations can be increased by the meteorological fields. Note that the daily cycle for the assimilated model remains closer to the observations than the model without assimilation.

Figure 8 shows a similar comparison for the PM$_{2.5}$ station. The model in a free run tends to over estimate the PM$_{2.5}$ concentrations (see peaks in 15 April at 23:00 UTC-5, 24 April at 22:00 and 25 April at 23:00 UTC-5). The results of the assimilation process offer a better average estimation. The daily cycle of PM$_{2.5}$ within the Aburrá valley is related to the industrial and mobile sources emissions profile and the meteorological conditions inside the valley.
3.3 Conclusions

Poor air quality is a current environmental problem in several Colombian cities. To be prepared for air quality degradation requires accurate and reliable data for decision-making in South America. This study shows that the LOTOS-EUROS model can function in areas with more complex topography, such as the Abura Valley, and encourages the development of fine-tuned weather forecasting systems to support the target. The use of regional, ground-based pollutant data from the SIATA sensor network, in the assimilation of the LOTOS-EUROS model, enhanced the PM$_{10}$ and PM$_{2.5}$ representation.

4. Urban air quality modeling using low-cost sensor network and data assimilation in the Aburrá Valley, Colombia

Public air quality monitoring networks frequently consist of fixed measuring stations equipped with expensive sensors and maintained under strict operational and calibration regimes. Because of the high costs of setting up and maintaining...
3.3 Conclusions

Poor air quality is a current environmental problem in several Colombian cities. To be prepared for air quality degradation requires accurate and reliable data for decision-making in South America. This study shows that the LOTOS-EUROS model can function in areas with more complex topography, such as the Abura Valley, and encourages the development of fine-tuned weather forecasting systems to support the target. The use of regional, ground-based pollutant data from the SIATA sensor network, in the assimilation of the LOTOS-EUROS model, enhanced the PM10 and PM2.5 representation.

4. Urban air quality modeling using low-cost sensor network and data assimilation in the Aburrá Valley, Colombia

Public air quality monitoring networks frequently consist of fixed measuring stations equipped with expensive sensors and maintained under strict operational and calibration regimes. Because of the high costs of setting up and maintaining such stations, not all cities in developing countries can afford monitoring networks with sufficient spatial coverage [14]. Even in developed cities, official air quality monitoring networks do not always provide information at the spatial and temporal resolution required to assess the impact of pollution sources on health, [15], due to the equipment’s high cost. This has prompted the development and improvement of low-cost PM measurement systems and programs. According to [17], a small number of studies evaluating newer generations of low-cost PM2.5 sensors have found such stations, not all cities in developing countries can afford monitoring networks with sufficient spatial coverage [14]. Even in developed cities, official air quality monitoring networks do not always provide information at the spatial and temporal resolution required to assess the impact of pollution sources on health, [15], due to the equipment’s high cost. This has prompted the development and improvement of low-cost PM measurement systems and programs. According to [17], a small number of studies evaluating newer generations of low-cost PM2.5 sensors have found...
that the most widely used low-cost sensors achieve high accuracy when compared to standard monitoring stations (R^2 values ranging from 0.93 to 0.95). The data collected by these sensors can be used to supplement that collected by traditional systems, increasing data resolution and allowing studies of human exposure [15, 18].

Using techniques like data fusion or data assimilation to integrate observations from dense networks of low-cost sensors into mathematical models allows for a spatially continuous representation of concentration fields with significantly reduced bias citeLahoz2014. By spatially interpolating between monitoring locations and constraining the model with observations, these techniques add value to the sensor observations while also adding value to the model [17, 18, 25]. Both sources of information can thus be combined in a mathematically objective manner to reduce the uncertainty inherent in both sources [12]. Although data assimilation is a more complex family of methods than data fusion or interpolation techniques, it is the most versatile and robust of these approaches. The goal of evaluating the data from the low-cost sensor network as an alternative to monitoring PM2.5 concentrations in developing countries is to see if it is viable.

4.1 Material and methods

The SIATA project operates the official high-end air quality monitoring network (henceforth official network, and a hyper-dense, low-cost air quality network developed within the Citizen Scientist program (henceforth low-cost network).

The low-cost network was created with the aim of engaging the community in issues surrounding air quality, and as an extension of the official network. The low-cost network consists of 255 real-time PM$_{2.5}$ (Figure 9, panel b). The measuring equipment was developed by SIATA based on the well-known low-cost Shinyei PPD42NS, NOVA SDS011, and Bjhike HK-A5 sensors [27]. Each low-cost sensor is calibrated individually against BAM-1020 measurements [27]. The calibration process showed the measurements of 91% of the low-cost sensors with correlation values above 0.6 against the official measurements, and 67% with values above 0.8.

![Figure 9](image)

Figure 9. Spatial distribution of the hyper-dense low-cost network citizen scientist and official monitoring air-quality network for PM$_{2.5}$. The gray raster represent the LOTOS-EUROS model grid. Taken from [26].
The median of the root mean square error showed a value of 6.2 μg/m³, with a tendency to decrease for higher concentrations [27]. The low-cost network thus represents satisfactorily the dynamics of PM_{2.5} concentrations in the Valley’s atmosphere.

An anthropogenic urban emissions inventory for 2016 specific to Medellín and the other nine municipalities of the Aburrá Valley was used for the simulations on the D4 domain. The construction of the inventory followed a bottom-up methodology, combining activity data (traffic intensities, industrial production) with emission factors. Only traffic and industrial point sources were considered, without accounting for neither household nor commercial emissions [28].

The emission inventory was disaggregated over the Aburrá Valley (76°W-75°W and 5.7°N-6.8°N) at a resolution of 0.01° × 0.01° (approximately 1 km × 1 km), using a method based on road density as in [29]. The road network map was obtained from the OpenStreetMap database [30], and simplified by removing segments classified as residential, as recommended in [31, 32]. The simplification of the road network can reduce errors in the spatial disaggregation since residential roads correspond to a high portion of the road network length but carry a low percentage of total vehicular traffic. The point-source emissions were distributed on the grid using their known location [28]. Figure 10 shows the resulting emissions maps for PM_{2.5} and PM_{10}.

Two sets of low-cost sensors data were assembled: The first one included 255 sensors from the low-cost network that had a station from the official network within a 2-km radius. The second, higher quality one consisted of a subset of the previous set, including only those sensors whose data showed an R value equal or greater than 0.8 when evaluated against the official network.

We performed four different LOTOS-EUROS simulations:

1. a LOTOS-EUROS model simulation without data assimilation (henceforth LE);

2. a simulation with assimilation of data (observations) from the 14 stations of the official network (henceforth LE-official);

3. a simulation with assimilation of the data from the entire low-cost network (henceforth LE-lowcost)
4. a simulation with assimilation only of high-quality data from the low-cost network (henceforth LE-lowcost-HQ).

4.2 Results

The concentration fields were evaluated using seven of the official monitoring stations (validation stations. Figure 11 shows the temporal series for the simulated and observed PM$_{2.5}$ concentrations at four of the validation stations. The four selected stations represent downtown Medellín (station 25), residential areas (station 86), areas with high vehicular flow (station 88), and a peri-urban area in the outskirts of the city (station 85). Those stations summarize the behavior of all seven validation stations. The LE simulation consistently underestimated the concentrations observed at stations 85 and 88. At stations 25 and 86, the LE simulation results were close in magnitude between February 24 and March 3 and March 10 to March 15; between March 3 and March 10, the model presented values much lower than those observed. The day-to-day variability was reduced for this same period, as seen in stations 85 and 86. This inconsistent behavior suggests a poor representation of the meteorological dynamics that govern the dispersion and accumulation of PM$_{2.5}$ within the valley. Simulations using data assimilation showed noisier behaviors than the LE simulation. This process is commonly observed when applying the EnKF and obeys the stochastic nature and the handling of uncertainty inherent to the method [21]. However, those simulations managed to correct the large discrepancies present.
in the LE simulation. Both LE-official, LE-lowcost, and LE-lowcost-HQ represented more accurately the day-to-day variability of the observations than LE. In general terms, there was no evidence of a sizeable and persistent difference among the simulations with data assimilation throughout the entire period. Nevertheless, the LE-lowcost-HQ simulation reproduced with greater accuracy the concentrations observed in different periods, such as between February 26 and March 4 in station 25, between March 9 and March 14 in stations 85 and 86.

Figure 12 shows the diurnal cycles during the simulation period in the four selected validation stations. The diurnal cycle of the LE simulation differed from the observations in both magnitude and temporal behavior. The highest concentration peak that appears around 09:00 in all the stations is mainly due to traffic dynamics. In stations 25 and 88, the LE morning peak corresponded in time but not in magnitude with the observations; in stations 85 and 86, said peak appeared later in the simulations than in the observations. This time lag suggests a poor spatial representation of mobile emissions by the emissions inventory; or a deficiency it the wind fields in reproducing the valley dynamics, showing a late transport of the particulate material to these areas. The LE simulation did not capture the evening peak shown by the observations around 21:00 hours. The simulations using data assimilation presented diurnal cycles closer to the observations than did the LE simulation. The LE-official simulation captured the time and magnitude of the morning peak in stations 85 and 86. In station 88, LE-official corrected the time lag in the morning peak seen in LE, and improved the estimated magnitudes albeit still falling short of the observed values. A different behavior was seen for station 25,
where LE-official had low diurnal variability, with a slight underestimation in the morning, and an overestimation in the afternoon. The LE-lowcost and LE-lowcost-HQ simulations results resembled closely the diurnal behavior of the observations, especially the temporal component. In all the stations, both the morning and the evening peaks matched the observations. The observed concentrations for stations 25 and 88 fell inside the standard deviation range for the LE-lowcost simulation; the same simulation overestimated the concentrations between 11:00 and 19:00 for station 85, and underestimated the concentrations between 01:00 and 13:00 for station 86. The LE-lowcost-HQ simulation results were overall the closest to observations.

The averaged evaluation statistics among all the validation station are shown in Table 3. The simulation results without data assimilation (LE) underestimated the observed concentrations in all the validation stations. This was also seen in previous related works [24, 33]. The RMSE value reflected a low correspondence between the observed and simulated concentrations when using the model without data assimilation. The correlation coefficient was low, meaning that the model was not able to capture the variations in diurnal and day-to-day concentrations. In contrast, the three simulations using data assimilation had MFB values close to 0, without a significant difference among them. The data assimilation was thus effective in reducing between the model and reality. The RMSE also improved when using data assimilation, decreasing by 24.4% in the LE-official, 32.8% in the LE-lowcost, and 36.2% in the LE-lowcost-HQ simulations relative to the RMSE of the LE simulation. The R values were all above the criteria of good performance according with [34] Table 2, and based in [35, 36]. Assimilation of either data set from the low-cost network resulted in improved error statistics when compared to the LE-official simulation.

4.3 Conclusions

We present a data assimilation application of a hyper-dense low-cost PM network and the chemical transport model LOTOS-EUROS in a urban setting. The low-cost network provided high quality data comparable to those provided by the official monitoring network. The performance of the model with assimilation of the spatially-dense data from the low-cost network improved both in terms of its representation of the observed dynamics, as well as in its forecast capabilities, highlighting its value as an air-quality management tool. Our results support the idea than with the current advances in the low-cost sensors, it is possible to use low-cost networks and data assimilation to model and predict air quality in urban areas.

Jointly with previous work [15, 18, 25, 37–39], our results can support and motivate the development of future low-cost networks and their integration in data fusion applications. According to the literature, North America, Europe, and China concentrate most of the current low-cost implementations, with experimental, citizen, and data dissemination purposes [14, 40]. In developing countries, a low-cost network, together with a CTM and data assimilation can provide a valuable first approach to monitoring PM without the high cost of an official air quality network.

Although one of the main advantages of a low-cost networks is the possibility of implemented hyper-dense networks with relative low costs, it is recommended to prioritize in the quality of the data (sensor quality, calibration, maintenance) and the study of optimal localization. High quality and the correct number and localization of sensors improve the data assimilation process and minimizes operational and computational costs.

Table 3.

Mean fractional bias, root mean square error and Pearson correlation coefficient for simulated PM$_{2.5}$. Values are averaged over all the validation stations for the simulation period.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>MFB</th>
<th>RMSE</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>-0.65</td>
<td>27.38</td>
<td>0.42</td>
</tr>
<tr>
<td>LE-official</td>
<td>-0.07</td>
<td>20.69</td>
<td>0.64</td>
</tr>
<tr>
<td>LE-lowcost</td>
<td>0.08</td>
<td>18.39</td>
<td>0.76</td>
</tr>
<tr>
<td>LE-lowcost-HQ</td>
<td>0.06</td>
<td>17.46</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Acknowledgements

The authors acknowledge the supercomputing resources made available by the Centro de Computación Científica Apolo at Universidad EAFIT (http://www.eafit.edu.co/apolo) to conduct this work.

Conflict of interest

The authors declare no conflict of interest.
concentrate most of the current low-cost implementations, with experimental, citizen, and data dissemination purposes [14, 40]. In developing countries, a low-cost network, together with a CTM and data assimilation can provide a valuable first approach to monitoring PM without the high cost of an official air quality network.

Although one of the main advantages of a low-cost networks is the possibility of implemented hyper-dense networks with relative low costs, it is recommended to prioritize in the quality of the data (sensor quality, calibration, maintenance) and the study of optimal localization. High quality and the correct number and localization of sensors improve the data assimilation process and minimizes operational and computational costs.

Acknowledgements

The authors acknowledge the supercomputing resources made available by the Centro de Computación Científica Apolo at Universidad EAFIT (http://www.eafit.edu.co/apolo) to conduct this work.

Conflict of interest

The authors declare no conflict of interest.
Author details

Santiago Lopez-Restrepo1,2,3*, Andrés Yarce Botero1,2,3, Olga Lucia Quintero2, Nicolás Pinel4, Jhon Edinson Hinestroza1, Elías David Niño-Ruiz5, Jimmy Anderson Flórez6, Angela Maíra Rendón7, Monica Lucia Alvarez-Laínez8, Andrés Felipe Zapata-Gonzalez9, Jose Fernando Duque Trujillo9, Elena Montilla10, Andrés Pareja11, Jean Paul Delgado12, Jose Ignacio Marulanda Bernal13, Bibiana Boada1, Juan Ernesto Soto6, Sara Lorduy6, Jaime Andres Betancur12, Arjo Segers14 and Arnold Heemink2

1 Mathematical Modelling Research Group, Universidad EAFIT, Medellín, Colombia
2 Department of Applied Mathematics, Delft University of Technology, The Netherlands
3 SimpleSpace, Medellín, Colombia
4 Department of Biological Sciences, Research Group on Biodiversity, Evolution and Conservation at Universidad EAFIT, Medellín, Colombia
5 Applied Math and Computer Science Laboratory, Department of Computer Science, Universidad del Norte, Colombia
6 Comando Aereo de Combate N 5 CACOM 5, Centro Tecnologico Aeroespacial para la Defensa CETAD, Fuerza Aérea Colombiana, Rionegro, Colombia
7 Grupo GIGA, Universidad de Antioquia, Medellín, Colombia
8 GRID Nano-Fiber Group, Universidad EAFIT, Medellín, Colombia
9 Environmental Magnetism, Universidad EAFIT, Medellín, Colombia
10 Applied Optics Research Group, Universidad EAFIT, Medellín, Colombia
11 Unidad de Toxicidad in vitro, Universidad CES, Sabaneta, Colombia
12 Grupo, genérica, regeneración y cáncer, Universidad de Antioquia, Medellín, Colombia
13 GEMA, Universidad EAFIT, Medellín, Colombia
14 Department of Climate, Air and Sustainability, TNO, The Netherlands

*Address all correspondence to: slopezr2@eafit.edu.co

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. [CC BY]
References

Area Metropolitana del Valle de Aburra, Medellín, 2017.

Chapter 8

A Synthesis of the Information Given by Temporal Data Series:

The Representative Day

Tiziano Tirabassi and Daniela Buske

Abstract

The recording of air pollution concentration values involves the measurement of a large volume of data. Generally, automatic selectors and explicators are provided by statistics. The use of the Representative Day allows the compilation of large amounts of data in a compact format that will supply meaningful information on the whole data set. The Representative Day (RD) is a real day that best represents (in the meaning of the least squares technique) the set of daily trends of the considered time series. The Least Representative Day (LRD), on the contrary, it is a real day that worst represents (in the meaning of the least squares technique) the set of daily trends of the same time series. The identification of RD and LRD can prove to be a very important tool for identifying both anomalous and standard behaviors of pollutants within the selected period and establishing measures of prevention, limitation and control. Two application examples, in two different areas, are presented related to meteorological and \(\text{SO}_2 \) and \(\text{O}_3 \) concentration data sets.

Keywords: air pollution, daily trends, data set, temporal series, air pollution management, representative day

1. Introduction

In recent years, environmental management and a suitable development have assumed great importance [1, 2]. Air quality management and protection presuppose knowledge of the state of the environment. Such knowledge involves a properly cognitive and interpretative ability.

Local or regional air pollution control is usually achieved through air quality monitoring networks. These networks are a useful tool for the protection of human health and the environment, and allow both to evaluate the benefit of remediation actions and to prepare specific interventions in case of exceeding the threshold levels considered dangerous. For economic and managerial reasons, the number of measuring points in a network is limited and, especially if their arrangement has not been carefully studied, the detection units risk being unrepresentative of the entire territory that is to be monitored. In this regard, the mathematical models that simulate the transport and diffusion of pollutants in the atmosphere constitute a valid integration to the measurements, allowing to have estimates of concentrations over the entire territory for which it is interesting to know the evolution of concentrations. Once the good quality of the answers provided by a model has been ascertained, it allows us to trace the contribution of the different sources to the...
Abstract

The recording of air pollution concentration values involves the measurement of a large volume of data. Generally, automatic selectors and explicators are provided by statistics. The use of the Representative Day allows the compilation of large amounts of data in a compact format that will supply meaningful information on the whole data set. The Representative Day (RD) is a real day that best represents (in the meaning of the least squares technique) the set of daily trends of the considered time series. The Least Representative Day (LRD), on the contrary, it is a real day that worst represents (in the meaning of the least squares technique) the set of daily trends of the same time series. The identification of RD and LRD can prove to be a very important tool for identifying both anomalous and standard behaviors of pollutants within the selected period and establishing measures of prevention, limitation and control. Two application examples, in two different areas, are presented related to meteorological and SO$_2$ and O$_3$ concentration data sets.

Keywords: air pollution, daily trends, data set, temporal series, air pollution management, representative day

1. Introduction

In recent years, environmental management and a suitable development have assumed great importance [1, 2]. Air quality management and protection presuppose knowledge of the state of the environment. Such knowledge involves a properly cognitive and interpretative ability.

Local or regional air pollution control is usually achieved through air quality monitoring networks. These networks are a useful tool for the protection of human health and the environment, and allow both to evaluate the benefit of remediation actions and to prepare specific interventions in case of exceeding the threshold levels considered dangerous. For economic and managerial reasons, the number of measuring points in a network is limited and, especially if their arrangement has not been carefully studied, the detection units risk being unrepresentative of the entire territory that is to be monitored. In this regard, the mathematical models that simulate the transport and diffusion of pollutants in the atmosphere constitute a valid integration to the measurements, allowing to have estimates of concentrations over the entire territory for which it is interesting to know the evolution of concentrations. Once the good quality of the answers provided by a model has been ascertained, it allows us to trace the contribution of the different sources to the
overall pollution, and therefore to correctly address any actions to limit emissions. Furthermore, only with the models is it possible to make forecasts or simulate concentration scenarios in connection with emission limitation policies as part of the preparation of recovery plans. The analyzers network, together with the inventory of emissions sources, is of fundamental importance for the construction of the cognitive framework, but not the interpretive one. In reality, air quality control requires an instrument interpretative capable of extrapolating in space and time the values measured in the of the analyzers, while the improvement of the air quality can be obtained only with plans that reduce emissions and then with instruments (such as the air pollution mathematical model) capable of linking the cause (source) of pollution with the effect (the concentration of the pollutant) [3].

The introduction of mathematical modeling produces a qualitative leap in the management of atmospheric pollution compared to that possible through measurements alone, because the models allow functions that are not accessible to the latter [4].

Mathematical models are capable of:

- describe and interpret the experimental data;
- control in real time and/or analyze air quality;
- manage accidental releases and assess risk areas;
- identify pollution sources;
- evaluate the contribution of a single source to the pollution load;
- manage and plan the territory.

For the above consideration, they turn out to be a technical instrument indispensable for environmental management. In fact, it is of considerable importance the description of the processes that govern the transport and diffusion of pollutants. They are generally represented by meteorological preprocessors able to describe the transport operated by the wind and the variables useful for the different models to calculate the diffusion of pollutants [3]. They are extremely useful when local phenomena such as land-sea and/or upstream-downstream breezes have to be described.

While the complete dataset of the measured data is useful (also from a legal point of view) for an environmental control and the data can also be considered as alarm signals for particularly dangerous situations, on the contrary, for the use of the models it is generally necessary to limit the number of the data to simulate. To this regard it is useful to have techniques that allow to feel the data or identify subsets. Generally, in order to summarize information automatic selectors and explicators are used, many of which are provided by statistics as probability density function, mean standard deviation, median, quantiles. Moreover, time-series trends, spectral analysis, principal component analysis and cluster analysis are usually used. In support of good decision-making, the use of statistic has become widespread in air pollution assessment. In addition, collected data are used to define specific typical periods that may be of particular interest in a study of pollutant diffusion. We can also mention, for example, a typical working day, a typical holiday, a typical seasonal day, etc. The purpose of a such typifying is that of outlining characteristic scenarios for a given period under investigation. Afterwards, mathematical models make it possible to attempt simulation of a typical period trend.

It is very useful to identify from the set of data periods that can represent the peculiarity of the area under control and at the same time extraordinary events, in
particular if they represent critical situations from the point of view of environmental pollution, so as to be able to study which meteorological situations and emissions conditions that cause them.

To meet these needs, it is proposed to use a methodology capable of identifying the most representative day of a series of daily data so that the simulation of that day allows to understand the diffusion and pollution situation typical of the study area. At the same time, the methodology should also identify the most anomalous day or the most anomalous days that correspond to situations of major pollution on the ground. Naturally, the methodology must identify real days, not fictitious as the typical day [5] constructed with time series of data composed of the average values of the concentration averaged (at the same time) over the whole dataset.

Identifying real days is also important because only in this way can be identified the meteorological and emission data that characterized that day and the measured ground level concentrations. This methodology will be presented below.

2. The representative day methodology

What we want to select in an annual, seasonal or monthly dataset of daily time series is the one that best represents the set of those stored. This can be achieved with the RD technique.

What we call RD technique is a daily data set, actually recorded at a field station, which is characterized by the minimal differences with respect to all the daily measurements series of that station’s temporal series: that is, the daily series whose sum of the squared differences over one day turns out to be the smallest compared to all the other days of the period under consideration [6].

That is, if A is the matrix:

$$A_{ij} = \sum_{k=1}^{24} (c_{ki} - c_{kj})^2, \ i, j = 1, 2, \ldots, N$$ \hspace{1cm} (1)

where N is the number of days in the time period for which the representative day is calculated, and c_{ki} is the pollutant concentration of the i – th day at the k – th time period.

We adopt A_i to indicate the sum of all the squared residuals of the i – th line (or column, A_{ij} being a symmetrical matrix with all zeros in the diagonal):

$$A_i = \left(\sum_{j=1}^{N} A_{ij} \right)$$ \hspace{1cm} (2)

The RD is the one with the lowest sum, i.e. the i – th day where A_i is the smallest of the quantities obtained. The purpose of such typifying is that of outlining characteristic scenarios for a given period under investigation. That is, identify the day of the data series that is closest (in the meaning of the least squares technique) to all the time series included in the data set under examination.

2.1 The least representative day

The shown above approach also allows the identification of the “least representative day” (LRD), i.e. the daily series that maximizes the mean sum of squared residuals. The LRD identifies an anomalous situation of pollutant dispersion.
As LRD is a real day, it allows us to identify the meteorological characteristics and air pollution emissions related to that day and, therefore, giving us the possibility to study the phenomena and conditions that contributed to the realization of that air pollution diffusion and that distribution situation of air pollution concentrations on the ground.

Of course, by eliminating the data of that day from the original series and repeating the procedure on the remaining data, it is possible to highlight the second less representative day. Proceeding in the same way, the third, fourth, etc., LRD can be highlighted.

2.2 Results normalization

To compare the degree of representativity of the most or least representative days with that obtained for other time periods and/or at other measurement stations or stations in different areas, a normalization is required in order to make the day independent of the length of the measurement series, sampling period and characteristics of the area under study.

The “representativity” of an RD can be quantified by introducing the adimensional index DI:

\[
DI = \frac{\sum_{i=1}^{N} \sum_{k=1}^{24} (\Gamma_k - c_{ik})^2}{\sum_{i=1}^{N} \sum_{k=1}^{24} \bar{c}_k^2}
\] (3)

where \(\bar{c}_k\) is the time mean concentration of the RD at the \(k-th\) data, and \(\Gamma_k\) is the time mean concentration at the \(k-th\) data calculated over the period under consideration, i.e.:

\[
\bar{c}_k = \frac{1}{N} \sum_{i=1}^{N} c_{ik}, \quad k = 1, 2, ..., 24
\] (4)

\(N\) is the number of days making up the time interval and \(c_{ik}\) is the time mean concentration of the pollutant of the \(i-th\) day at the \(k-th\) data of the daily sequence.

DI is an adimensional quantity greater than or equal to 1, which is closer to unit the more the RD is representative of the period under consideration.

The LRD can also be normalized in the same way: one simply substitutes in Eq. (3) the time mean concentration of the RD (\(\Gamma_k\)) with the least representative ones. In this case, the value of DI will always be greater than one, providing an indication of the low degree of representativity of the day obtained; the more DI is greater than 1, the more the LRD is “anomalous”, compared to the trend of RD.

The normalization procedure described above it is independent of the size of the measured concentrations and of the number of days (N) included in the time period considered.

2.3 A fictional day: the typical day

We introduce the typical day (TD), that could be defined as a “fictional” day, whose concentrations (the time concentrations that form the daily sequence) are given by the concentration means, calculated, time by time over all the days of the period of study. The daily sequences can belong to periods of a month, a season, a year, or grouping of particular days that share the features one wishes to study. This form of data representation is widely used in Italy [5].
The TD, with the notation already introduced, can be mathematically expressed by:

$$C_k = \frac{1}{N} \sum_{i=1}^{N} c_{ik}, \quad k = 1, 2, \ldots, 24$$

(5)

However, since the TD is not a real day, this form of evaluation provides a presentation which cannot take account of the variations characterizing the actual behavior of the quantity under examination. Furthermore, since it is not a real day, it cannot be associated with any meteorological or emission parameters and therefore is of little interest for a possible air pollution diffusion model applied in the area.

The TD can be considered as an extreme case: for an infinite series of data, the RD tends toward the TD. Therefore, the TD can be considered an asymptotic limit for the RD.

3. Application examples

We applied the method to SO$_2$ concentrations measurements recorded in the Ravenna area (Italy). The town of Ravenna is 10 Km from the sea, while his industrial area is situated between the sea and the town. The climate is basically continental but more temperate by the proximity of the coast. The entire area is subject to a series of weak local wind circulation, frequent inversion phenomena and high relative humidity [7, 8]. The methodology was applied to a time series of hourly SO$_2$ concentration data measured by a station of the automatic monitoring network located in the city of Ravenna. In Figure 1 it is shown the RD and LRD of hourly SO$_2$ record. There is a big difference between the RD and LRD from 10 am onwards.

Such behavior can be explained by the fact that SO$_2$ is mainly emitted from point sources located in the industrial area (located between the sea and the town) and therefore the measurements are influenced by wind direction. The LRD correspond to the SO$_2$ concentration recorded on the January 3 where, as it is shown in Figure 2, at 10 am wind change direction with a corresponding doubling in the speed.

![Figure 1](image-url)

Figure 1. Representative day (RD) and least representative day (LRD) of SO$_2$.

161
Another interesting example of application of the methodology is that of concentration time series detected in the Falconara industrial area, where we have a high ozone production due to the characteristics of the local conditions and the emission sources [9]. In addition, there is an automatic monitoring network in the area which has collected a large amount of data.

Falconara is an urban center located north of Ancona on the Adriatic coastline of Italy. The Falconara area faces air pollution problems, mainly during summertime. Preliminary studies [10] showed that the most important factor contributing to urban air pollution in Falconara and its surroundings is the amount of emissions from mobile sources and industries.

The Falconara area can be roughly divided into two parts: a coastal area and an inland area. The coastal area is characterised by the presence of a large oil-refinery. The inland area comprises the main urban area surrounded by hills. The description of the microclimate and landform of this area can be found in [9].

The accumulation of photochemically produced Ozone depends strongly on the prevailing meteorological conditions. In fact, meteorological conditions observed on days with high Ozone mixing ratios are often quite different from those when Ozone concentrations are low [11, 12].

In the first example we present, the Ozone shows the same trend on the RD and LRD, although with lower concentration values in the second part of the day.

Regarding Figure 3, the explanation can be found by analyzing the solar energy data for the day corresponding the LRD, June 21st., Figure 4 shows lower solar radiation values in the middle of the day. The explanation for this case is very obvious because of the direct correlation between Ozone and solar radiation [13].

Another example, where on the contrary the Ozone shows the same trend in the RD and LRD, although with higher concentration values in the second part of the day (see example Figure 5). In this case the main wind direction during the last afternoon and the evening is North-East, indicating that the wind came from the sea (see Figure 6). Land breeze/sea breeze phenomenon seems to predominate in the Italian Adriatic area, so that the air pollution produced over the urban-industrial coast is transported as plumes over the sea and, subsequently, due to sea breezes, transported back to the coastal areas. The evening sea breezes transport the masses
Another interesting example of application of the methodology is that of concentration time series detected in the Falconara industrial area, where we have a high ozone production due to the characteristics of the local conditions and the emission sources [9]. In addition, there is an automatic monitoring network in the area which has collected a large amount of data.

Falconara is an urban center located north of Ancona on the Adriatic coastline of Italy. The Falconara area faces air pollution problems, mainly during summertime. Preliminary studies [10] showed that the most important factor contributing to urban air pollution in Falconara and its surroundings is the amount of emissions from mobile sources and industries.

The Falconara area can be roughly divided into two parts: a coastal area and an inland area. The coastal area is characterized by the presence of a large oil-refinery. The inland area comprises the main urban area surrounded by hills. The description of the microclimate and landform of this area can be found in [9].

The accumulation of photochemically produced Ozone depends strongly on the prevailing meteorological conditions. In fact, meteorological conditions observed on days with high Ozone mixing ratios are often quite different from those when Ozone concentrations are low [11, 12].

In the first example we present, the Ozone shows the same trend on the RD and LRD, although with lower concentration values in the second part of the day. Regarding Figure 3, the explanation can be found by analyzing the solar energy data for the day corresponding the LRD, June 21st. Figure 4 shows lower solar radiation values in the middle of the day. The explanation for this case is very obvious because of the direct correlation between Ozone and solar radiation [13].

Another example, where on the contrary the Ozone shows the same trend in the RD and LRD, although with higher concentration values in the second part of the day (see example Figure 5). In this case the main wind direction during the last afternoon and the evening is North-East, indicating that the wind came from the sea (see Figure 6). Land breeze/sea breeze phenomenon seems to predominate in the Italian Adriatic area, so that the air pollution produced over the urban-industrial coast is transported as plumes over the sea and, subsequently, due to sea breezes, transported back to the coastal areas. The evening sea breezes transport the masses of air offshore, where the deposition rate is so slow that the ozone accumulates and is transported back to the coast when the daytime sea breezes resume, thus setting in motion mechanisms of photo-oxidant re-circulation [8, 9, 14].
Table 1 provides the representative adimensional index DI of RD and LRD. It is possible to see the different behavior of SO_2 and O_3. In the case of O_3 the indices show that the RD are less representative and the LRD is less anomalous. An explanation of this different behavior can be explained by the fact that SO_2 is emitted mainly from point industrial sources, so that at the beginning very concentrated plumes are composed. Therefore, the resulting concentrations on the ground are more subject to weather conditions and wind direction. On the contrary, ozone is a secondary gas (it is not directly emitted into the atmosphere) and therefore forms less concentrated plumes and offers greater inertia (compared to SO_2) to the production of different concentration scenarios on the ground.

4. Conclusions

Automatic monitoring networks are often used for study, control and management of local environmental problems. As a result, over time, a large mass of data is collected. While the individual data are very useful for real-time control and to report any alarms, it is necessary, for the study of the territory, for the understanding of the phenomena present in the area, to obtain a synthetic set of the measured data. Moreover, the processes that govern the transport and diffusion of pollutants are numerous and of such complexity that it is not possible to describe them without using mathematical models. Both the interpretation of the phenomena governing pollutant diffusion and the use of mathematical models requires a synthesis of the information given by temporal data series.

For this purpose, the most representative day constitutes a simple and immediate method through which to characterize the temporal structure of daily trends. We have called the “representative day” the day which, in a set of data composed of daily series, best represents the whole set of series. In mathematical terms, the one
which minimizes the sum of squared differences with respect to all the daily trends in a temporal series. The attention is focused on the “day as a unit”, without losing, however, the particular temporal structure, as partly occurs in the case of the “typical day”.

Moreover, RD being an actual day, it allows the identification of the date on which it occurred and, thus, a knowledge of the meteorological and emission parameters which characterized it. Among other things, this allows it to be simulated with air pollution diffusion models.

The same approach also allows the identification of the “least representative day”, that is, the day on which an anomalous, nearly always critical situation occurred, compared to the average trend recorded for that period. LRD is also an actual day. The study of the meteorological and emission parameters relating to this day, will allow a preliminary interpretation of the phenomena which brought about the situation.

By eliminating the data of that day from the original series and repeating the procedure on the remaining data, it is possible to highlight the second less representative day. Proceeding in the same way, the third, fourth, etc. LRD can be highlighted.

Both RD and LRD can be normalized so that the degree of representativity can be compared independently of the length of the measurement series, sampling period and characteristics of the area under study.

Author details

Tiziano Tirabassi*† and Daniela Buske2†

1 Federal University of Santa Maria, Santa Maria (RS), Brazil

2 Federal University of Pelotas, Pelotas (RS), Brazil

*Address all correspondence to: tiziano.tirabassi@gmail.com

† These authors contributed equally.

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

Chapter 9

Why Airborne Pesticides Are So Dangerous

Tomaz Langenbach, Tácio M.P. de Campos and Luiz Querino Caldas

Abstract

More than four billion of tons of pesticides are used annually in agriculture worldwide. Part of it drifts down after pulverization, but a volatilized portion moves upwards. Pulverized pesticide applications are controlled by different parameters of fan and climate conditions. This can be mitigated with buffer zones, hedgerows and forest strips. Volatilization is determined by physicochemical parameters of the product and adsorption capacity to soils and leaves, and climate conditions. Prevention is the only efficient approach by banning high vapor pressure active ingredients. Volatilized pesticides are transported by air streams. Subsequently products are retained by mountains or eventually moved further by wind and descend in rain returning them to soil or vegetation. All regions of the planet are submitted to air pollution and nowadays pristine environments are very rare. These pollutants have hazardous effects on environment and toxic effects to skin and when they reach the blood stream directly via the lungs, are more intense to humans than from ingestion. The challenge of this overview highlights sustainability to avoid airborne pesticides by different strategies such as reduction of amounts sprayed through integrated pest management and mainly replacement of hazardous chemical pesticides by harmless ones or by biological control.

Keywords: pesticides airborne, air pollution, pulverization, volatilization, pesticide drift

1. Introduction

Before we trace the sinuous movement with hazardous effects of pesticides in the air, we need to take in account that humankind up to the twentieth century was threatened by hunger due to many factors including loss of agriculture production by pests [1]. Only by the control of essential factors of agricultural production as soil fertilization, dryness and pest management was it possible to get food security. Hunger today is addressed mainly to economic and political questions.

The first intensively used product was the insecticide DDT developed by Paul Muller at beginning of the 1940s, followed by new products applied as fungicides, acaricides, nematicides and bactericides [2]. Finally, the exclusion of herbs that compete for natural resources with crops, had changed from mechanical to chemical methods by herbicides. These processes dramatically increase productivity with less land used and resulted in intense migration of the rural population to the cities [3]. Herbicides in many countries now constitute about 50% of the amount of pesticide used.
The mechanism of action of insecticides [4] and fungicides [5] are highly active on animal cells and therefore the toxic effects are generally high in humans and fauna. Many of the active mechanisms of herbicides inhibition act on plant and algae physiology like photosynthesis, hormones, and others [6], but other molecules that inhibit electron chains in plants are also very dangerous to humans and other animals. Poisoning side effects have been identified for many pesticides. The criteria of mutagenicity and carcinogenic were more required. The toxic effects are more permanent from persistent molecules, so biodegradation is one of the most important parameters in ecotoxicology [7].

The hazardous effects of pesticides in the environment were first denounced by Carlson with publication of “Silent spring” in 1962 [8]. Their deleterious effects have been sensed dramatically and increasing along with the chaotic shifts provoked in nature, fauna, and flora. The repercussion and significance of its effects in the natural history of our planet remains to be assessed.

After 1970, in the USA the “Environment Protection Agency” (EPA) organized the first registration process to control all pesticides some of which were banned or restricted, particularly, the most hazardous [9]. Later many countries created similar agencies. The legal requirements include physical–chemical parameters of the active ingredients of the pesticides that give information about volatility capacity, an important tool to restrict the use of the worst of them. In this process many other parameters were considered such as biodegradation/persistence, effects on non-target forms of life, and acute and chronic toxicology.

The increase and decrease of airborne particles in the environment follow the history of the pesticides not only in quality but also in quantity. The figures of worldwide consumption have increased (Figure 1). This process was started in developed countries and followed in developing countries. Control by banning of many products has occurred differently among countries, but in the overall the amount increased about 80% between 1990 and 2018 [10]. We are far from reaching sustainability in the pest control even in the countries with the best management.

![Figure 1. Global pesticides use over 1990–2018.](image-url)
The fate of airborne pesticides has some peculiarities: more disperse movement than those in polluting the whole world’s water bodies [11, 12]; air movements are not under human control and the uptake by animals put them in direct contact with skin and blood. The purpose in this chapter is not only to describe airborne movement and the hazardous effects of pesticides, but also to identify new approaches in technical and management science that can overcome the bottlenecks toward sustainability.

2. How pesticides pollute air

Pulverization is a human decision of what, when, were and for what pests the pesticides will be applied. However, the step of volatilization in which molecules change to gas phase and are released into the air following application. Products with high volatilization are out of human control with scarce possibilities of mitigation.

2.1 Pulverization

Pesticides can be applied as dry powders that were mainly used in the past, as granules to control ants and other insects but the most frequent pesticide application is in water. In this form spraying can pollute air and is likely to drift to non-target areas. The modalities are wettable powder, emulcifiable concentrate and dilution of the commercial product in water for application.

Pulverization can be performed in different forms directly down to the soil, on the canopy of orchards or by floating for sanitary functions to control mosquitos. The efficiency of the methods used generally involves high amounts of loss to non-target forms of life in the environment. This process involves many parameters as fan position depending where the pests are in the soil, on upper leaf surface or on the underside of the leaves. The fan pressure is important for pesticide to arrive at the pest area and with high pressure directed toward the soil to reduce drift. Drop size higher than 5 μ diameter weigh more than air and move down by gravity [13]. Smaller drops can float in the air. Climate conditions of wind speed and direction have important influence on the spraying through drift. All these parameters need to be considered for pesticide spraying.

The worst situation is of poor farmers using knapsack or pump with hose application in which the operator moves into the pesticide cloud with an enormous level of pesticide exposure [14]. Individual protection equipment in many instances are not used due to hot climate conditions and the protection itself has limits when using for longer periods. The use of tractors is much better because it moves away from the cloud and in tractors with a cabin the protection is quite good. The worst exposure to human populations that live in the countryside is spray from airplanes, forbidden in many countries or regions.

2.2 Volatilization

This process is when the active ingredient of the pesticide change to the gaseous phase and move upward into the atmosphere. Up to 0.5 cm above soil surface the molecules move only by dispersion while in the upper air layers gradual increase the wind speed and, in turbulence, mix this process these gases into the air [15]. Volatilization of each active ingredient depends on the physical–chemical conditions, mainly vapor pressure and Henri’s Constant Law (partition of a substance between water and gas phase), strongly integrated with climate conditions. The highest volatilization rate occurs after rain followed by high temperatures due to Henri’s Law. These conditions occur frequently in tropical areas.
Pesticide spraying is directed to soil or to vegetation for pest control. First, we begin with soil. In a report of different substances exposed under the same conditions shows that at low vapor pressure of less than 10^{-3} Pascals (Pa) no volatilization occurs, but after this value the increase is strong with amounts that can reach 90% of the pesticide sprayed. Volatilization on leaves with lower vapor pressure begins at 10^{-5} Pa and can arrive at high values from using higher Pa [15]. This parameter can be very useful to restrict dispersal of high volatile pesticides.

3. Factors influencing volatilization

Volatilization depends on the physical chemical properties of the active ingredient, climate, adsorption by surface, agriculture management and the interrelation between these factors. The humidity of the climate influences this residue adsorption, under dry conditions adsorption is more intensive and volatilization reduced [16, 17]. In Table 1 climate and management factors influencing soil and leaf pesticide adsorption resulted in different amounts of volatilization [18].

Pesticide adsorbed on soil is a process in which aging is an important factor and this process can be reversible. Binding by entrapment and covalent bonding often occurs only after long contact time. Adsorption reduces the number of free molecules and therefore reduces the bioavailability that allows the molecule to eliminate pests. Likewise, adsorption can reduce the toxicity of the molecule and reduce free movement to leach or to volatilize. In practice, this is usually measured by adsorption of Freundlich isotherms or others [19]. The literature describes many different binding forms of pesticides depending strongly on the chemical characteristics of each product and soil composition as are mentioned below [20].

- **Covalent bonding** – the pesticide reacts with some soil molecules resulting in a new substance that mischaracterize the pesticide. It is a strong chemical bounding.
- **Ionic charge** - Compounds and their metabolites adsorbed by ionic bonding, or cation exchange, exist either in the cationic form in solution or can be protonated and become cationic.
- **Hydrogen bonding** - Pesticide molecules compete with water for the binding sites on humic substances. H-bonding is suggested to play a vital role in the adsorption of several non-ionic polar pesticides,
- **Electron donor or acceptor complex** - is a transfer of electron to acceptor pesticides with a part of humic substance that donated this electron. The resulting electrostatic attraction provides a stabilizing force for the molecular complex.

<table>
<thead>
<tr>
<th>Climate conditions</th>
<th>Pesticide on soil</th>
<th>Pesticide on leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>10° C increase <3 to 4 times Pa > volat.</td>
<td>high temp. > volat.</td>
</tr>
<tr>
<td>Air humidity</td>
<td>Dry</td>
<td>> adsorption < volat.</td>
</tr>
<tr>
<td></td>
<td>< volat.</td>
<td>> adsorption < volat.</td>
</tr>
<tr>
<td></td>
<td>< volat.</td>
<td>< volat.</td>
</tr>
<tr>
<td>Dew</td>
<td>morning / late afternoon > volat.</td>
<td>washout > penet. < volat.</td>
</tr>
<tr>
<td>Rain</td>
<td>leaching + enhanced > volat.</td>
<td>< volat.</td>
</tr>
<tr>
<td>Wind</td>
<td>> wind > volat.</td>
<td>> wind > volat.</td>
</tr>
<tr>
<td></td>
<td>> turbulence > volat.</td>
<td>> turbulence > volat.</td>
</tr>
<tr>
<td>Pesticide management</td>
<td>Pesticide in soil</td>
<td>Pesticide in leaves</td>
</tr>
<tr>
<td>Small drop pulverization</td>
<td>less water < volat.</td>
<td>quick evaporation</td>
</tr>
<tr>
<td>Big drop pulverization</td>
<td>more water > volat.</td>
<td>faster adsorption</td>
</tr>
</tbody>
</table>

Table 1. Parameters that influence pesticide volatilization from soil and leaves.
Van der Walls forces - is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and therefore more susceptible to disturbance.

Hidrophobic partition - Hydrophobic retention need not be an active adsorption mechanism but can also be regarded as a partitioning between a solvent and a non-specific surface.

Pesticides in soil are adsorbed in part by strong binding energy different than for plants in which the main adsorption occurs by hydrophobic partition, a much weaker binding.

Most pesticide applications are on the plants which have quite different chemical composition than soil. Covering the epidermal cells of leaves, a domain called the cuticular layer is rich in polysaccharides (Figure 2) enriched with waxes (which are hydrophobic, i.e. repel water). These wax deposits inside the cutin matrix are called intracuticular. On the surface, the cutin is covered with a film and epicuticular wax crystals that give the leaf a glossy appearance [21].

Figure 3a shows the dynamics of the fate of parathion volatilization, leaf penetration, and photo-degradation after spraying. In Figure 3b the fate of chlorotanoyl during an experiment where rain washed it from leaves to the ground [22].

In experiments with parathion and chlorotanoyl pulverization the fate of these molecules on the leaves is traced (Figure 3) showing the residue amounts on the leaves, volatilized, penetration of the cuticle and the photo-transformed quantities. More than twenty percent of the applied amount of Parathion was volatilized with the vapor pressure of 8.9 x 10^{-4} Pa and chlorotanoyl with lower vapor pressure of 7.6 x 10^{-5} Pa volatilized about 5%.

Volatilization of parathion is fast with high volatilization in the first day and strong reduction in the following period (Figure 4a). For chlorotanoyl the amounts per day are much smaller and the volatilization process gradually reduces (Figure 4b). In both cases no volatilization occurs during the night and residue volatilization is higher than for commercial products showing that formulation can reduce volatilization [23].

In all the figures obtained by SURFATM-Pesticides volatilization did not occur at night. High sensitivity of the model was shown for vapor pressure to promote volatilization and the constant of the relation octanol/water K_{ow} for the penetration in the wax layer of the leaf. More recently models were developed that integrate pesticide volatilization on leaves and soil [24].

Figure 2.
The different process on fate of pesticide drops above leaves that are exposed to volatilization; photo-transformations; wash-off by rain and penetration on waxes. In focus is the cuticle with the wall (yellow) of upper epidermis.
4. Prevention and mitigation of airborne pesticides

Many possibilities exist to mitigate pesticide pollution by spray drift. Directing the fan on the intended target to exclude as much general dispersion to non-target areas as possible. Some countries and in many cases, counties, cities and villages enforce buffer strips around the border in which spray is prohibited resulting in strong reduction of drift [25, 26]. This strip generally is about 10 m wide but can also be more. For small farms, these strips reduce the spraying area and land use. In such cases hedgerows of appropriate size can be used to mitigate drift pollution to neighbors or residential areas [27]. Every binding of residues can restrict volatilization. All wind break constructions as outdoor and indoor walls can retain pesticides [28]. Depending on the binding strength of the residues, they may escape to the air over time [29]. Indoor pollution with pesticides is a major problem by continuous exposure rural living habitants. In this case children are severely exposed by the hand to mouth movements [30]. Another possibility is to retain in hedgerows or forest strip to protect humans and environment [31].

Prevention of volatilization could be done by excluding all products with high vapor pressure. Mitigation can have some effects to preserve buildings and small villages when protected by a forest strip. Experiments have shown that riparian
forest are able to retain volatilized pesticide residues on the canopy that by rain washing or leaf senescence move down to the soil [31, 32]. Phytoremediation with genetically modified poplar trees with introduction of Citochrome P450, shows that thricloroethilene can be adsorbed by leaves and degraded efficiently [33]. In large scale pesticide dispersion up to remarkably high atmosphere altitudes are completely out of human control and no mitigation is possible. As a response to climate conditions, it is possible to change pesticide application management. Experiments in which sets of samples of the herbicide 2,4-D were applied in morning and then at 18 h in the evening showed samples from the afternoon volatilization were 9 to 30% less than when applied in the morning when measured 24 h after application [34]. These results suggest that dry soil in the afternoon adsorbed more residues yielding reduced volatilization as observed by others [35]. The best application management is to exclude loss factors as strong adsorption, photo degradation and volatilization mainly in the first period of application and this will occur at night [23, 36]. During this time residues need to have high bioavailability to act on the pest. Under these conditions it is possible to greatly reduce the amount of pesticide without efficiency loss.

5. Dynamics of pesticides in the air

After volatilization of pesticides from soil, leaves or water, these molecules move upward and through turbulence to arrive as a quite homogeneous mixture. Residues can move up and down powered by air streams following the directions of wind currents. The main deposition of pesticides are due to rain and snow. This occurs more frequently on mountains. When pesticides are airborne and arrive high altitudes, they can be transported for long-distances. Residues were found more than 50 years ago in the Antarctic [11]. This was due to wind and rain/snow deposits, but not from human activities. Pesticide residues coming from other regions were found recently on the top of the Itatiaia mountains in the State of Rio de Janeiro (Brazil) [12]. Much evidence shows that airborne pesticides arrive with impact in all environments around the world giving little chance of pristine environment without pesticides existing.

Photo-degradation occurs not only in the air but also on all kinds of surfaces exposed to solar irradiation. Many photo reactions are by direct action on molecules causing degradation while others have indirect effect in which some substances absorb photons and with this energy promote transformation reactions in other molecules. These processes have been shown to be a relevant pathway. The setup of laboratory conditions in which the experiments occur is very diversified and influence the reactions with different intensity [37].

Much of the airborne pesticide burden is removed from the atmosphere through deposit by rain in ocean and that could be considered as a sink. Nevertheless, the reverse movement in which pesticides volatilize to air occur also. The relative intensity of these two movements is expressed by the fugacity ratio \(\frac{fa}{fw} \) of pesticide in air to the amount in the water. This define if the process is predominantly of deposition or volatilization [38]. Data show that some pesticides reduce fugacity rate with increase in surface water at higher latitudes (around 70° North) in the Arctic Ocean like a cold trap [39]. Persistent organochlorines compounds after long-range transport from the application site, pollute pristine environments as the artic in which the ecosystem is more vulnerable than those species on which risk assessment is based [40].
The fate of pesticides shows that all kinds of movements occur from air to soil/plants, to water and the reverse movement between all these environments. All flora and fauna are exposed to these residues in the air, but it is important to differentiate environments between high and low airborne pesticides as rural areas with intensive agriculture activity with cities and areas with little agriculture. In humans the toxicologic effects can be due to ingestion or to air pollution, but unprotected agricultural workers are exposed to high risk of acute toxic effects from pesticides.

6. Pesticides in environment and health

6.1 Air pollution in the environment

The potential degradation and accumulation of hazardous substances in the atmosphere of newly formed compounds within the environment are still quite unknown because of an enormous variety of possibilities generated by abnormal climatic conditions and anthropic actions around the globe [14]. When major, hard to predict, recurrent crucial environmental damages occur, they may irreversibly affect nature. Changes in its delicate balance that generally demand decades or centuries to recover, if they do at all. For instance, if the predator–prey relationship is severely disturbed due to the persistent exposure to airborne pesticides, it raises deep ecological changes in the local biota.

In humans, mammals, and reptiles we should pay special attention to the action of pesticides in two hormonal structures: gonadal and thyroid, because during the development, these glands (organs) are especially sensitive and, therefore, affected by exposure of low concentrations of sex steroids and thyroid hormones. It is recognized that there is a difference in the endocrine response of adults as compared to the embryonic/fetal/neonatal responses. Changes induced by exposure to these hormones during development are often irreversible, in contrast to reversible changes induced by exposure to transient hormones in adults [41]. Hayes and his coworkers [42–44], have studied isolated atrazine and a mixture of nine pesticides, on the impact in the environment, as an endocrine interfering factor. Examined larvae growth and development, sexual differentiation, and immune function in leopard frog found hormonal changes in sexual differentiation, body development and damage to the thymus resulting in immunosuppression. They concluded that the evaluation of each pesticide alone is inadequate to estimate the adverse impact on amphibian development or to link pesticides to the decline in the number of amphibians, as blends of pesticides provoked more effects than the isolated components.

In humans, apart from the bare skin exposure (explained further on), the lungs mainly of those occupationally exposed, usually remain the major cause of infirmities and the number of deaths among agricultural workers. Also, cancer and some effects in the endocrine system cannot be ignored [45–47].

6.2 Pesticides in the lungs

Inhalation of various volatile forms of aerosols, vapors, dust, or mist can be the source of respiratory diseases in agricultural workers, particularly for those without proper personal protective equipment or when they work in confined spaces. The main outcomes observed were bronchial asthma (BA), chronic obstructive pulmonary disease (e.g. emphysema) and lung cancer [48]. As explained below, the etiopathogenesis varies, some of them affecting the lung clearance by the
mucociliary tracheobronchial cells system, others affecting the bronchiolar smooth muscles physiology, or else destroying alveolar walls, burdening pneumocytes. Some pesticide molecules may deeply affect the oxygen supply and, therefore, will interfere with the exchange of carbon dioxide, the body’s metabolic by-product. This, ultimately and decisively, will interfere in the metabolic turnover, and not rarely, leading to death.

In an average-sized person at rest, the O₂:CO₂ ratio is 1.25 (250 ml:200 ml/min) whereas when incrementing metabolic activity (e.g. exercise), the oxygen demand as well as concurrently its by-product CO₂ increases in order to preserve the body homeostasis. The bronchial ducts and alveolar sacs serve to conduct fresh air into the lungs (inhalation) where active gas exchange occurs between the environment and blood pressure gradients determine the gas exchange from the opposite direction, breathing out the body by-products. In the latter situation, the pulmonary ventilation rate may increase 20% with higher exposure to airborne pesticide.

Droplets larger than 10 μm are deposited in the upper respiratory tract (nose and mouth). The toxic effects of pesticides start as the air breathed in enters through the nose and contacts the sinus cavities where it irritates the fragile membranes and in response may lead to an inflammatory reaction with glands secreting significant mucous production which may ultimately become infected. When coarse particles (>5 μm) reach the upper respiratory tract, they are usually trapped into the conducting airways whereas fine (<0.2–5 μm) particles (such as pesticide drops) are deposited by impact and sedimentation (Figure 5). Other molecules may be adsorbed so that material dissolved in solvents or water vapor (hygroscopic) may get into contact with the airways ducts or alveolar septum with a 80–120-ml monolayer of blood.

That is, when these compounds provoke repeated cycle oxidation/reduction reactions generating toxic amounts of reactive oxygen species it can lead to diffuse pulmonary alveolitis culminating in a rampant acute or chronic fibrosis and, possibly, death [50].

This storm of clinical symptoms results in a profound change in the acid–base homeostatic mechanisms that lead to acidaemia, obnubilation culminating with convulsions and death. Supposedly, clean air, free from foreign substances, humidified and regulated to the body temperature must reach the alveoli where potentially injurious substances such as the airborne pesticides are in close contact with the alveolar system. In the tracheobronchial tree, smooth muscle spasms will resemble an asthmatic response.

![Figure 5](image_url)

Figure 5.

Effect of aerodynamic diameter on deposition efficiency of inhaled droplets in human respiratory system and their reversal arbitrarily toxicity for the lungs adapted from Giles et al. [49].
6.3 Other systemic effects of airborne pesticides

The cutaneous hypersensitivity resulting from intimate contact of pesticides with the skin and/or the eyes since many spray adsorbent formulas can be seized and absorbed through the tissues.

Oxidative stress can be involved in many pathological conditions in the lungs and in the skin. It may alter irreversibly causing cell damage that evokes changes in proteins or DNA structures [51, 52] as well as mitochondrial disorders that lead to antioxidant enzyme suppression as dismutase and superoxidase [53]. Some compounds provoke repeated cyclic oxidation/reduction reactions generating toxic amounts of reactive oxygen species that can lead to diffuse pulmonary alveolitis culminating in a rampant acute or chronic fibrosis with possible, death [50].

7. Perspectives

Our focus here is on the future perspective of airborne pesticides. Airborne pesticide pollution can only be solved when sustainable products of pest control substitute harmful for harmless pesticides. The 1962 book Silent Spring of Carlson [8] was the first dramatic announcement of problems in flora and fauna due to pesticides use. After almost six decades no one, even the most pesticide-concerned countries, can commemorate agriculture with sustainable pest control [54]. In this period progress occurred with: the introduction of a registration process to ban the most hazardous pesticides worldwide; list of the worst products to be banned by the International conference of Stockholm 1972; introduction of the “International Code of Conduct on Pesticide Management” sponsored by FAO/WHO for a better practice of pesticide use; many scientific international conferences to improve technical advances and better policies of pesticide control and organic agriculture increased. It is difficult to know if the balance of these positive actions can overcome the hazardous exposure of environment and human health due to the enormous increase of pesticides used in the last decades. The conclusion is that we are far from the main target of sustainability in agriculture to avoid poisoning exposure but Improvement of sustainability would be a benefit in health, environment and social development [55].

The highly bureaucratic agencies of pesticide control together with the industrial interest shared with agricultural producers make the use of pesticides a steady state that does not promote progress toward sustainability due to the hegemonic economic interest. Approaching sustainability cannot achieved by banning of hazardous pesticides alone. Sustainability of pest control can be reached when applied pesticides are specific and not highly toxic to humans and to flora and fauna because of ecotoxic effects on non-target forms of life. An additional essential characteristic is to be completely biodegraded with no residue accumulation in the environment.

The new perspective for that is the intense use of recently developed biopesticides that can control insects, fungi, and nematodes efficiently. A lack of data makes it difficult to evaluate the intensity of use of these products up to now, but it seems that it was not very much. This demands a new specific policy to promote and push these changes to agriculture practice. To overcome the bottle neck of the few organic herbicides available, the most applied products, scientific advances with focus of new products with different approaches as allelopathic chemicals or development of reduction of herb populations by strategies of agriculture management or development of other solutions.

To arrive at sustainability all tools from restriction and banning of pesticides, integrated management supported by remote sensing [56] and the new approaches
of nanotechnology [57], code of conduct of pesticide management and biopesticides, need to be used. This is a difficult task in which scientific development and information, creativity, flexibility and political will of the stakeholders, are essential.

Finally, a scenario in which hazardous chemical pesticides are substituted by non-hazardous organic control in a sustainable agriculture, would stop the introduction of more pesticides in the air. Nevertheless, to eliminate the huge amount of residual pesticides in the air, time would necessary to promote biodegradation, photo-transformation and covalent binding to soil or other molecules, condition necessary to gradual elimination of these products from our environment.

Acknowledgements

The authors would like to thank the review of the manuscript to prof. Allen Hagler and the financial support of the workshop provided by CNPq and FAPERJ.

Author details

Tomaz Langenbach1,2*, Tá cio M.P. de Campos1 and Luiz Querino Caldas3,4

1 Civil and Environmental Engineering Department, Pontifical Catholic University of Rio de Janeiro, Brazil

2 Institute of Microbiology of the Federal University of Rio de Janeiro, Brazil

3 Clinic Toxicology Faculty of Medicine, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil

4 Harvard School of Public Health, Boston, USA

*Address all correspondence to: tomazlane@yahoo.com.br

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[10] FAO - UNITED NATIONS FAOSTAT. FAO. Ess website ess pesticide use

[18] Bedos C., Cellier P., Calvet R., Barriuso E., Gabrielle B. Review article Mass transfer of pesticides into the atmosphere by volatilization from

[34] Costa, D., T. Campos, T. Langenbach, and A. Haddad-Nudi. Aplicação e volatilização do 2,4-D na superfície de solos em diferentes horários. In

[38] Li Y.F., Macdonald R.W. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Science of the Total Environment 2005;342:87-106

[43] Hayes T.B., Haston K., Tsui M., Hoang A., Haeffele C. and Vonk A. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environmental Health Perspectives. 2003;11n.4:568-575

[44] Hayes T.B., Case P., Chui, S. Chung, D., Haeffele C., Haston K., Lee, M., Mai V.P., Marjoua Y., Parker J. and Tsui M. Pesticide mixture, endocrine disruption and amphibian declines: are we underestimating the impact?. Environmental Health Perspectives. 2006;114(1):40-501

Chapter 10
Air Pollution, Health and Perception
Banwari Dandotiya

Abstract
This chapter provides a general overview of the effects of air pollution, pollutant sources in different regions, and the role of perception in assessment of pollution level and different health effects. The discussion in this chapter focuses basically on the different dimensions related to air pollution such as climatic and meteorological effects, anthropogenic and natural sources, ecosystem disturbances, and their interrelationship in the context of air quality. Basically, climate disturbances may be responsible for pollution episodes of certain regions. Discussions related to seasonal variations in air quality also included because seasonal meteorological elements exert different effects in different climatic regions. Air pollutants are emitted by a number of sources in the atmosphere such as urbanization, industrialization, transportation, and population growth, so these contributing factors and its effects of climatic events like temperature, wind speed, and seasonal disturbances are relatively described in this chapter.

Keywords: air pollution, perception, health effects, climatic factors

1. Introduction
Air pollution in a great number of cities in India exceeds national and international standards. Air pollution in India is a growing threat to human health, especially in densely populated urban areas exposed to high concentrations of air pollutants. Meteorological parameters can contribute in high concentration episodes of air pollution [1]. Over the recent couple of years, air pollutant concentration and human exposure have received special attention due to increasing scientific evidences of causal relationship between exposure with air pollutants and negative health outcomes [2]. The detrimental effects of ambient air pollution on health of human beings have been consistently observed in many epidemiologic studies globally, and it has been calculated that at least seven million deaths are annually attributable to the effects of air pollution.

In addition to the contributions of urban sources to air quality degradation, outdoor fires are a regional air pollution source dominated by fires in wheat and rice harvest [3–5]. For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. An important fraction of the exposure leading to those health impacts occurs in cities, due to the higher density of human activities and their emissions to the air. According to the region, however, high emissions can also occur from domestic fuel use in sub-urban or urban areas. Road traffic contributes significantly to the high levels of air pollution observed in urban areas around the world [6]. Ambient air pollution, especially in...
Chapter 10

Air Pollution, Health and Perception

Banwari Dandotiya

Abstract

This chapter provides a general overview of the effects air pollution, pollutant sources in different regions and role of perception in assessment of pollution level and different health effects. The discussion in this chapter focuses basically on the different dimensions related to air pollution such as climatic and meteorological effects, anthropogenic and natural sources, ecosystem disturbances and their interrelationship in context of air quality. Basically, climate disturbances may be responsible for pollution episodes of certain regions. Discussions related to seasonal variations in air quality also included because seasonal meteorological elements exert different effects in different climatic regions. Air pollutants are emitted by a number of sources in the atmosphere such as urbanization, industrialization, transportation, and population growth, so these contributing factors and its effects of climatic events like temperature, wind speed and seasonal disturbances are relatively described in this chapter.

Keywords: air pollution, perception, health effects, climatic factors

1. Introduction

Air pollution in a great number of cities in India exceeds national and international standards. Air pollution in India is a growing threat to human health, especially in densely populated urban areas exposed to high concentrations of air pollutants. Meteorological parameters can contribute in high concentration episodes of air pollution [1]. Over the recent couple of years, air pollutant concentration and human exposure have received special attention due to increasing scientific evidences of causal relationship between exposure with air pollutants and negative health outcomes [2]. The detrimental effects of ambient air pollution on health of human being have been consistently observed in many epidemiologic studies globally, and it has been calculated that at least seven million deaths are annually attributable to the effects of air pollution.

In addition to the contributions of urban sources to air quality degradation, outdoor fires are a regional air pollution source dominated by fires in wheat and rice harvest [3–5]. For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. An important fraction of the exposure leading to those health impacts occurs in cities, due to the higher density of human activities and their emissions to the air. According to the region, however, high emissions can also occur from domestic fuel use in sub-urban or urban areas. Road traffic contributes significantly to the high levels of air pollution observed in urban areas around the world [6]. Ambient air pollution, especially in
urban context, has demonstrated multiple health effects in human body [7]. High air pollutant concentrations increases risks for a wide range of diseases including respiratory [8], post-respiratory [9, 10], and is a leading environmental cause of cancer deaths [11]. Health effects of air pollution have been significantly associated with exposure time. Previous study of an urban area was reported that ambient air pollutants have comparatively stronger relationships with temperature than they do with any other meteorological parameter [12]. Degraded air quality, especially in industrial area, has demonstrated various negative human health impacts [13]. Higher concentration of air pollutants in ambient air increases risk for a wide range of health effects including respiratory [14] and cardiac [15, 16] and is a leading environmental cause of cancer related deaths [17]. For instance, a heart attack or stroke resulting from exposure during a day of high ambient air pollutant concentration may be a consequence of chronic disease progression associated with long-term exposure [18]. Some effects are long-term and causation can be difficult to prove because sometimes higher concentrations of air pollutants worked as catalyzing factor for some health effects. Respiratory particles have the largest contribution to the total particle number concentrations on in ambient air [19, 20]. Their major sources include direct emissions (vehicular exhaust, heating, burning) and atmospheric nucleation [21, 22]. Respiratory particles enter into the human body by respiratory track, and approx. 60% of them can be deposited in the respiratory system [23, 24]. They can cause adverse health effects mainly by inflammation in respiratory organs or oxidative stress [25, 26].

In order to take actions to reduce exposure to air pollution and hence the associated health impacts, it is essential to know the sources and activities contributing to local levels of pollution. For this reason, an increasing number of local studies on the contribution of sources to air pollution levels have been developed, most often at city level. Perceptual studies also important in this context because perception of people is the main indicator of pollution level and experienced health effects. On the basis of perception information researchers also identified that pollutant which is present in higher concentration in ambient air of studied area [27]. In the context of air pollution perception plays a major role in identification of pollutant responsible for degradation of air quality in that area in the sense of health effects of air pollution identified in perceptual studies.

2. Climate and air pollution

Multiple linkages connect air pollutants and meteorological parameters in different manners [28, 29]. Air quality degradation may leads to give pace to climatic changes in many polluted regions by changing air pollution meteorology, precipitation and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Climatic processes and air quality are intricably connected. Many sources of conventional non-conventional air pollutants are also sources of CO2, other air pollutants and GHGs and/or particles that affect climate. These air pollutants interact with atmospheric solar and terrestrial radiation and perturb the planetary energy balance, leading to changes in climate [30]. Climate change can influences air pollution concentrations according to the changing pattern of climate by altering the frequency, severity, air stagnation events, precipitation, duration of heat waves, and other meteorology conducive to pollutant accumulation [31, 32]. A measure of the perturbation to the climatic system due to changes in various atmospheric constituents between the pre-industrial and present day atmosphere is radiative forcing. Positive radiative forcing induces a warming, whereas negative. Radiative forcing induces a cooling of the earth's surface and
troposphere. The increases in the atmospheric burdens of GHGs, including CO2, and that of tropospheric O3 and its precursor methane (CH4) over the past few centuries have exerted a warming influence.

Climate simulations show that the population in tropical regions will be exposed to substantially more frequent daily temperature extremes due to global warming compared to the population at higher latitudes [33]. If anthropogenic air pollutants were a significant contributor to 20th-century climate, then it must have coincided with a large warming from increasing levels of CO2 and other GHGs to produce the observed increase in global mean surface temperature [34]. Tropical latitudes are highly populated regions and home to a large share of the global food and goods production. With high population densities and little incentives for improvement in the work environment, there are millions of people working in factories with poor or non-existent ventilation systems or in agriculture where they are fully exposed to heat and poor air quality.

3. Air quality monitoring in India

The Central Pollution Control Board had adopted first ambient air quality standards on November 11, 1982 as per section 16 (2) (h) of the Air (Prevention and Control of Pollution) Act, 1981. The air quality standards have been revised by the Central Pollution Control Board on April 11, 1994 and were notified in Gazette of India, Extraordinary Part-II Section 3, sub section (ii), dated May 20, 1994.

Central Pollution Control Board initiated National Ambient Air Quality Monitoring (NAAQM) programme in the year 1984 with 7 stations at Agra and Anpara. Subsequently the programme was renamed as National Air Monitoring Programme (N.A.M.P.). The number of monitoring stations under N.A.M.P. has increased, steadily, to 295 by 2000–2001 covering 98 cities/towns in 29 States and 3 Union Territories of the country. Steadily the air quality monitoring network got strengthened by increasing the number of monitoring stations from 28 to 365 during 1985–2009. During the financial year 2010–2011, 93 new stations were added and the number of stations under operation was raised to 456 covering 190 cities in 26 states and 5 Union Territories as on 31st March 2011. As on 31st October 2011 the number of stations under operation has been further raised to 503 distributed in 209 cities, 26 states and 5 UTs [35].

4. Health effects

In large urban areas around the world, the effects of higher concentrations of air pollutants on human health present a growing problem. In this context we can say that only government is not responsible for increasing concentrations of air pollutants in urban and rural areas, awareness and ethics of residents of concerned area also responsible for such situations. Urban residents comparatively more susceptible to effects of air pollution because ambient concentration is high in urban areas than indoor concentration and ambient pollutants also affects indoor concentrations [36], results increase in exposure time with higher concentrations. Urban populations experience heavier exposures to air pollutants. Time of exposures increases with the density of traffic and with traffic congestion, a trend common in many large urban centers and magnitude of exposure increases among higher density populations. In rural areas indoor air pollution in households is predominantly contributed from wood combustion, smoking, paints and varnishes, unpaved roads and agricultural residue burning, resulting in terrible health implications [37],
but in rural areas ambient concentration of air pollutants not higher as much as in urban areas. The health effects of air pollution in rural and urban areas have been studied intensely in recent decades. Exposure to higher concentration of pollutants has been associated with increased mortality and hospital admissions (HAs) due to respiratory and cardiovascular diseases. These effects have been found in both short term and long-term studies rural, suburban and urban areas [38]. Exposure time have crucial role in health effect phenomenon in all type of residential areas. During covid-19 situation a number of studies were reported by researcher community in India and in the world, correlation has been drawn between number of covid patient and air quality indexes and associations between them reported in a great number of studies. Studies belongs to different areas of the world and depicted various observations but review of these kind of studies not indicated any kind of correlation of AQI and covid-19 patients because there were a number of places have number of patient with very good AQI. A perceptional study exhibits if the exposure time was long than not only old age residents were affected by air pollution but also residents of young age [39].

5. Role of perception

Perceptional studies have a crucial role in assessment of health effects and also a good indicator of responsible pollutant for AQI. We have done a perceptional study in Gwalior urban area for identification of impacts of air pollution and also awareness level of residents of different urban area such as residential, commercial, high traffic and greenery rich area. This perceptional study includes 22 types of major and minor health effects such as Asthma, lung problem, lung cancer, nose irritation, throat irritation, bronchitis, eye irritation, High blood pressure, nausea, sleeplessness, fatigue and cough etc. reported by respondents of study area. Study also includes questions regarding smoking habit, age group and exposure time. In the awareness section of this study questions included regarding awareness about air pollution, air pollutants, sources of air pollutants, gaseous and particulate pollutants and identification of air pollution as smoke and dust was one of the most interesting outcomes. This study identifies a fairly coherent knowledge regarding the health effects of air pollution and awareness in residents of Gwalior urban area. The results indicate that transportation and solid waste burning are important emitters of air pollutants in the urban area. In the perception of awareness respondents were experienced that the air pollutants harmful for health but they had very less aware about specific effect of air pollutants on health [40].

6. Seasonal effects on air pollutants

Local weather conditions must also be taken into account when assessing the air quality of a certain area, air quality depends on many meteorological and chemical variables [41]. Wind shear and turbulence exerts effects on the mixing and dilution of air pollutants [42]. Humidity is not always linked to the temperature and may be associated with the unequal distribution of moisture with height in the air masses [43]. Pollutants transported from Long distance are dominant during all seasons of the year [44]. Meteorological variables of temperature and wind speed are strongly related to area-wide air pollutant concentrations and a number of meteorological, topographic and settlement issues are significant factors that influence the accumulation, dispersion and chemical transformation processes of air pollutants [45]. In a correlation study of two years between air pollutants and meteorological
parameters indicated that maximum concentrations of air pollutants occurred in winter season due to inversion and stagnant air masses, other seasons have intermediate trends according to areas. Minimum concentrations were found in rainy season in this study and there is no strong relationship between air pollutants concentrations and relative humidity. Concentrations of pollutants show comparatively stronger relationships with temperature than they do with any other meteorological parameter such as relative humidity and wind speed [46].

7. Impacts on ecosystems

Air pollution affects ecosystems in a number of ways, altering basic ecosystem functions such as biogeochemical cycling and primary production which in turn affect the ecosystem services and therefore the benefits that humans get from the ecosystem such as clean drinking water, timber wood, medicinal products and appreciation of nature. The complex causal chains by which air pollution subsequently affects a range of ecosystem services have been reviewed extensively by a great number of researchers [47–51]. Eutrophication (nitrogen), acidification (nitrogen and sulfur) and direct toxicity (ozone, ammonia and nitrogen oxides) are the main mechanisms of ecosystem affected by current pollution levels all of which affect a wide range of services due to their impacts on underlying ecosystem functions and processes (Figure 1). Pollutants such as sulfur can responsible for excess levels of acid in lakes and streams and damage forest soils and trees, increasing concentration of atmospheric nitrogen can reduce the biodiversity of plant communities and harm almost all species of fish and other aquatic life, higher ozone concentrations can damages tree leaves and negatively affects scenic vistas in protected natural areas, mercury and other heavy metal compounds emitted as

![Diagram of ecosystem impacts](Image)

Figure 1. Eutrophication [47, 48].
exhaust from fuel combustion can eventually accumulate in plants and animals, some of which are consumed by people [52]. Basically, increasing temperature and greenhouse gases derived from climate disturbances have the ability to induce this kind of phenomena [53].

The northernmost terrestrial regions are experiencing warmer and wetter climate and the rate of warming is projected to increase in the future [54]. Climate change in concerned with many anthropogenic drivers like air pollution, of change is already rapidly affecting northern ecosystems with consequences for living beings, infrastructure and economic condition [55]. The impact that climate change has on natural terrestrial and other ecosystems, on human society and economies could be disastrous, potential effects range from sea level rise and melting ice at higher latitudes and altitudes, to changing regional weather patterns. The increase in the atmospheric abundance of greenhouse gases alters the energy balance of the climate system of terrestrial ecosystems and causes a variety of natural disturbances related to ecosystems [56].

8. Sources of air pollution

There are a number of sources of air pollutants such as fossil fuel, human-induced impacts on forestry, clearing for agriculture, degradation of soils, agricultural activities, waste management, energy use, fertilizer, industrial processes, refrigeration and use of a variety of consumer products [57]. Some other micro pollutants emitted in processes like energy production by combustion: entailing burning of wood, coal, and oil (As, Cd, Cu, Hg, Ni, Pb, Sb, Se, V, and Zn), metal-lurgical industry: emission of dust near the extraction and point of exploitation, high-temperature processing of ores emit aerosols rich in trace elements (Cd, Cu, Ni, Pb, V, and Zn). The proportion of individual elements emitted in the aerosols depends on the type of ore processed, other industrial processes: high-temperature processing and manufacturing (As, Cr, Cu, Ni, Pb, and Zn), Transport: road traffic (Cd, Cu, Fe, Ni, Pb, and Zn), erosion of brake pads (Cu, and Sb), erosion of train rails (Cu), waste treatment: incineration of household waste (As, Cr, Cu, Ni, Pb, Sb, Se, V, and Zn) (Figure 2) [58].

Air pollution in energy production emissions in Indian context increased by 1,563 MtCO2e (246%) from 1990 to 2014. International Energy Agency data show that total electricity generation quadrupled between 1991 and 2014, with an increasing share of coal and a decreasing share of hydropower [60]. Agriculture emissions increased 25% from 1990 to 2014, driven by emissions from synthetic fertilizers (47%) and enteric fermentation from livestock (30%) [61]. In India from 2002 to 2014, use of nitrogen fertilizers (total N) increased 62%, potash (K2O) 59%, and phosphates (P2O5) 51% [62]. India's GDP increased 357% from 1990 to 2014, while GHG emissions increased 180%. In 2014, India emitted more than twice the GHGs relative to GDP than the world average [63]. Globalization in tourism industry [64, 65], public health expenditure and Asian emerging economies can contribute in sustainable economic growth [66, 67]. India pledged to achieve electric power installed capacity of about 40% from non-fossil fuel-based energy resources by 2030 with the help of technology transfer and low-cost international finance, create an additional carbon sink of 2.5 to 3 billion tonnes of CO2 equivalent by 2030 through additional forest and tree cover, mobilize domestic and additional funds from developed countries to implement mitigation actions, and build capacity, create a domestic framework and international architecture for quick diffusion of cutting edge climate technology in India and for joint collaborative research and development for future technologies.
Air quality degradation is a growing threat to human health, especially in densely populated urban areas exposed to high concentrations of air pollutants. Meteorological parameters can contribute in high concentration episodes of air pollution. Over the last couple of years, air pollutant concentration and human exposure have received special attention due to increasing scientific evidences of causal relationship between exposure with air pollutants and negative health outcomes. Ambient air pollution, especially in urban context, has demonstrated multiple health effects in human health. Health effects of air pollution have been significantly associated with exposure time. Perceptual studies can play a crucial role in future; on the basis of perception information researchers also identified that pollutant which is present in higher concentration in ambient air of studied area. Interaction of air pollutants with atmospheric solar and terrestrial radiation and perturb the planetary energy balance, leading to changes in climate. Climatic changes can influences air pollution concentrations according to the changing pattern of climate by altering the frequency, severity, air stagnation events, precipitation, duration of heat waves and other meteorology conducive to pollutant accumulation. Exposure to higher concentration of pollutants has been associated with increased mortality and hospital admissions due to respiratory and cardiovascular diseases. These effects have been found in both short term and long-term studies in rural, suburban and urban areas. Exposure time have crucial role in health effect phenomenon in all type of residential areas.
Air quality depends on many meteorological and chemical variables. Wind shear and turbulence exerts effects on the mixing and dilution of air pollutants. Humidity is not always linked to the temperature and may be associated with the unequal distribution of moisture with height in the air masses. Pollutants transported from long distance are dominant during all seasons of the year. Air pollution affects ecosystems in a number of ways, altering basic ecosystem functions such as biogeochemical cycling and primary production which in turn affect the ecosystem services and therefore the benefits that humans get from the ecosystem such as clean drinking water, timber wood, medicinal products and appreciation of nature.

Author details

Banwari Dandotiya
Department of Environmental Science, Jiwaji University Gwalior, India

*Address all correspondence to: banwaridandotiya@gmail.com

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Air quality depends on many meteorological and chemical variables. Wind shear and turbulence exert effects on the mixing and dilution of air pollutants. Humidity is not always linked to the temperature and may be associated with the unequal distribution of moisture with height in the air masses. Pollutants transported from long distance are dominant during all seasons of the year. Air pollution affects ecosystems in a number of ways, altering basic ecosystem functions such as bio-geochemical cycling and primary production which in turn affect the ecosystem services and therefore the benefits that humans get from the ecosystem such as clean drinking water, timber wood, medicinal products and appreciation of nature.

References

[24] Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling,

[50] Harmens, H. ; Mills, G. 2012 Ozone pollution: Impacts on ecosystem services and biodiversity. ICP Vegetation Programme Coordination Centre

[53] Banwari Dandotiya and Harendra K. Sharma (2020). Climate Change and Its Impact on Terrestrial Ecosystems, Impacts of Climate Change on
Agriculture and Aquaculture. DOI: 10.4018/978-1-7998-3343-7.ch007

[56] IPCC, 2014. Intergovernmental Panel on Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

Section 3

Environmental Sustainability Practices
Chapter 11
Aerotechnogenic Pollution of Boreal Forests in Northern Europe
Alexander Evdokimov

Abstract
This paper discusses the changes that boreal forest ecosystems undergo under the influence of gaseous waste from the processing of non-ferrous ores on the Kola Peninsula. These communities are represented primarily by pine forests growing on the northern border of their range. The main forest-forming species here is Scots pine. Main components for this local aeronautical emission are polymetallic dust and sulfur dioxide, which is the main by-product during the roasting of sulfide and polysulfide ores. The studies were carried out on the basis of materials obtained at 6 sample plots located at different distances from the pollution source. As a result, an exponential increase in the content of heavy metals in the soil, as well as in the assimilatory organs of the components of these communities, was shown when approaching the source of pollution (this pattern is different for each of the metals). Regularities of negative changes in the structure of some components of plant communities, such as phytomass, projective cover of the lower layers, and the vital structure of the tree layer were also identified.

Keywords: northern taiga, boreal forests, pine forests, aerotechnogenic emissions, heavy metals, sulfur dioxide, nonferrous metallurgy

1. Introduction
At present, atmospheric pollution is one of the most pressing environmental problems. An actively developing industry inevitably has a negative impact on the fragile structure of biocenoses. It is not only natural communities in the immediate vicinity of industrial centers that are under threat. The development of the transport system [1, 2], tourism [3] and, in general, the improvement of the quality of life of the population of the region has a negative impact. However, the most noticeable man-made effect of a local nature (including aero-man-made one) is produced by large enterprises. This problem is especially acute in the Russian Federation, where one of the main sources of income for the state is the extraction and primary processing of natural resources (cleaning of raw materials, remelting ores). Basically, such pollution is of a local nature, and exposure to toxic substances occurs only in the area associated with the enterprise, as evidenced by various studies [4–6]. This study was carried out on the territory of the Kola Peninsula, the Murmansk region, where, in addition to the main object of pollution: Monchegorsk mining and metallurgical plant “Severonikel”, there are a number of other industrial pollutants (Kola NPP, Kandalaksha aluminum plant, Apatity plant of nonmetallic materials, mining and metallurgical plant “Pechenganikel”). However, such enterprises have insignificant local atmospheric pollution. In the taiga zone of...
Chapter 11

Aerotechnogenic Pollution of Boreal Forests in Northern Europe

Alexander Evdokimov

Abstract

This paper discusses the changes that boreal forest ecosystems undergo under the influence of gaseous waste from the processing of non-ferrous ores on the Kola Peninsula. These communities are represented primarily by pine forests growing on the northern border of their range. The main forest-forming species here is Scots pine main components for this local aeronautical emission are polymetallic dust and sulfur dioxide, which is the main by-product during the roasting of sulfide and polysulfide ores. The studies were carried out on the basis of materials obtained at 6 sample plots located at different distances from the pollution source. As a result, an exponential increase in the content of heavy metals in the soil, as well as in the assimilatory organs of the components of these communities, was shown when approaching the source of pollution (this pattern is different for each of the metals). Regularities of negative changes in the structure of some components of plant communities, such as phytomass, projective cover of the lower layers, and the vital structure of the tree layer were also identified.

Keywords: northern taiga, boreal forests, pine forests, aerotechnogenic emissions, heavy metals, sulfur dioxide, nonferrous metallurgy

1. Introduction

At present, atmospheric pollution is one of the most pressing environmental problems. An actively developing industry inevitably has a negative impact on the fragile structure of biocenoses. It is not only natural communities in the immediate vicinity of industrial centers that are under threat. The development of the transport system [1, 2], tourism [3] and, in general, the improvement of the quality of life of the population of the region has a negative impact. However, the most noticeable man-made effect of a local nature (including aero-man-made one) is produced by large enterprises. This problem is especially acute in the Russian Federation, where one of the main source of income for the state is the extraction and primary processing of natural resources (cleaning of raw materials, remelting ores). Basically, such pollution is of a local nature, and exposure to toxic substances occurs only in the area associated with the enterprise, as evidenced by various studies [4–6]. This study was carried out on the territory of the Kola Peninsula, the Murmansk region, where, in addition to the main object of pollution: Monchegorsk mining and metallurgical plant “Severonikel”, there are a number of other industrial pollutants (Kola NPP, Kandalaksha aluminum plant, Apatity plant of nonmetallic materials, mining and metallurgical plant “Pechenganikel”). However, such enterprises have insignificant local atmospheric pollution. In the taiga zone of
this region, the main plant communities are pine and spruce forests. Therefore, the species that make up such communities were selected by us as indicators of industrial atmospheric pollution.

At the moment, special attention is paid to assessing the level of pollution and assessing the state of plant and animal communities affected by this pollution. First of all, this is due to the general tendency to introduce such concepts as “ecological significance” and “environmental impact” into all aspects of our life. On the other hand, the very policy of the state develops in such a way that there is a shift in priorities from the predatory exploitation of natural resources to an attempt to maintain the ecological state of nature in a stationary primordial state and a model of sustainable development.

2. Aerotechnogenic impact on plant communities

To date, a significant amount of data has been accumulated on the impact of such emissions on the biocenoses of the Kola Peninsula. The effect of harmful effects on the layers in the community is especially pronounced in the areas where industrial enterprises are located. In these cases, toxic substances in the air form compounds that simultaneously affect different plant organs. The Severonikel Plant (Monchegorsk, Murmansk Region) is one of the largest non-ferrous metallurgy plants in the Russian Federation. The first permanent sample plots in the region were established in the 1970s. Since the second half of the 90s of the XX century, the plant has significantly reduced the amount of airborne industrial emissions (Figures 1 and 2), as evidenced by the data of various studies [7].

For several decades, atmospheric emissions have allowed toxic compounds to accumulate in biotic and abiotic components of the environment in the vicinity of the plant. The results of the analysis of various components of Scots pine (*Pinus sylvestris* L.) communities (soil, litter and various parts of plants) in the vicinity of the plant in the 1980s differed by almost two orders of magnitude from similar samples taken in the background areas, and were threshold for plant growth [8, 9].

Currently, special attention is paid to assessing the level of pollution and assessing the state of plant and animal communities subjected to this and similar pollution. First of all, this is due to the general tendency to introduce such concepts as “ecological significance” and “environmental impact” into all aspects of our life.
On the other hand, the very policy of the state develops in such a way that there is a shift in priorities from the active “predatory” exploitation of natural resources to an attempt to maintain the ecological state of nature in a stationary primordial state (according to the concept of sustainable development).

The progressive deterioration of the vital state and drying out of pine forests under the influence of industrial atmospheric pollution in almost all European countries, including Russia, is currently attracting special attention of researchers. Significant damage to pine forests is caused by uncontrolled accidental emissions even from relatively small industrial enterprises, in which the concentration of pollutants entering the atmosphere increases sharply. The influence of emissions is more distributed in the direction of the prevailing winds. On the basis of comprehensive and in-depth studies of the influence of industrial pollution on the growth, productivity and condition of Scots pine stands, methods and methodological approaches to assessing changes in forest phytocenoses under anthropogenic disturbances are proposed.

Studies have established that a decrease in the height gain in pine under the influence of air and soil pollution occurs much later than the manifestation of visual signs of damage to the assimilation apparatus of trees [10]. It was also found that the decrease in height gain and the process of top drying did not decrease with limited emissions [11]. This can be explained by the fact that the intensity of the drying process is due not only to the amount, but also to the concentration of harmful chemicals in the soil and tree tissues.

It was also found that the increase in diameter of 50-100-year-old individuals can serve as a reliable indicator of environmental pollution. These trees reduce the growth rate before serious damage or death of individuals occurs.

3. The main products aerotechnogenic emissions

Sulfur compounds.

These substances have an effect primarily on the assimilation apparatus of plants. The main atmospheric pollutant in this region is sulfur dioxide (SO₂), which, entering the leaves and needles through the stomata, turns into a highly toxic sulfite ion (SO₃²⁻), which in turn is slowly oxidized to a less toxic sulfate ion (SO₄²⁻). In addition to the selective effect on some enzymes and catalytic chains (disruption of the light and dark phases of photosynthesis, the effect on the state of chlorophyll,
changes in the lamellar structure of gran. These ions acidify the internal environment of cells, resulting in a decrease in the pH of the cytoplasm, stroma and matrix, which leads to a general disruption in the functioning of cells, resulting in the development of chlorosis and necrosis in needles.

Heavy metals.

Nickel. It is present in the plant as a Ni\(^{2+}\) ion. Nickel is a member of a number of enzymes, the most studied of which is urease, which is involved in the breakdown of urea. In addition, nickel activates the work of a number of enzymes (peptidases, nitrate reductases), stabilizes the structure of ribosomes, and influences the supply and transport of nutrients. There is still no clear evidence of nickel deficiency in plants. Under experimental conditions, the lack of metal causes disturbances in the metabolism of urea.

Copper. The question of the form in which copper enters underground and aboveground organs (Cu\(^{+}\); Cu\(^{2+}\)) is currently under discussion. In plants, up to 98% of the metal is in an insoluble bound state. Seeds and growing parts of the shoot are relatively rich in this element. In the leaves, most of the copper is concentrated in chloroplasts and almost half in the composition of plastocyanin, one of the electron carriers between PS I and PS II. Most of the functions of copper are associated with its participation in enzymatic redox reactions. In addition, copper promotes the formation of chlorophyll and slows down its destruction in the dark. It affects nitrogen metabolism, being a part of nitrite reductase and nitric oxide reductases, and enhances the process of binding nitrogen molecules. Copper Functions in the cytochrome oxidase complex of the mitochondrial respiratory chain. It also contributes to the intake of manganese, zinc and boron into the body, increases drought, frost, and heat resistance, takes an active part in protecting against pathogens. Lack of copper causes a delay in growth and flowering, leads to a loss of turgor in the leaves. A high content of copper in plants can lead to a change in pigmentation (blackening of the petals of angiosperms, the copper content can reach 0.021%).

Cobalt. For a long time, cobalt was considered as an element necessary only for animals and microorganisms. Currently, it is referred to as the metals necessary for higher plants. In plants, cobalt is found in free ionic (Co\(^{3+}\); Co\(^{3+}\)) and bound forms. It concentrates in the generative organs, accumulates in the pollen, and accelerates its germination. Cobalt enhances protein biosynthesis, regulates growth processes, removes the inhibitory effect of auxin on cell division and inhibits ethylene biosynthesis. In addition, cobalt is a part of vitamin B12 and increases immunity to certain diseases, takes part in redox processes, increases the content of pigments in leaves, which is associated with an increase in the plastid apparatus due to the replication and growth of organelles. Along with magnesium and manganese, cobalt activates the glycolysis enzyme phosphoglucomutase.

The main source of heavy metals entering the environment is technogenic. The mechanism of entry of heavy metals from the soil into plants by the root route includes passive (non-metabolic) transfer of ions into the cell in accordance with their concentration gradient and active (metabolic) absorption by the cell against the concentration gradient. Also, heavy metals in the composition of aerosols and dust fall on the sheet, are retained on it in the form of surface deposits, some can be washed out by rainwater, and some enter the plant [12].

The influence of heavy metals on physiological processes.

Growth. Growth inhibition is one of the most common manifestations of the toxicity of heavy metals to plants. In the presence of high concentrations of heavy metals, the intensity of cell division slows down, the number of cells decreases at all phases of mitosis, and the duration of individual phases and the entire mitotic cycle increases. In addition, heavy metals can slow down the presynthetic and postsynthetic stages of cell division.
A reliable relationship was found between the radial growth of tree trunks and the volumes of emissions from the plant entering the atmosphere, while the relationship is nonlinear and depends on the level of anthropogenic load on trees at different distances from the plant, on the species of trees and location on the slopes of hills. In particular, the response of pine to technogenic stress was revealed. Despite a significant decrease in emissions in recent years, the radial growth of trees in the impact zone continues to remain significantly less than the background values. The main reason is the high content of heavy metals in the organogenic horizon of the soil and the persisting atmospheric precipitation.

Photosynthesis. A decrease in the intensity of photosynthesis in plants in the presence of heavy metals is primarily associated with their negative effect on photosynthetic pigments. In the presence of heavy metals, a decrease in the content of chlorophyll a and b was found. At the same time, pronounced chlorosis is observed on the leaves. The main reason for this effect is the suppression of chlorophyll biosynthesis, which is associated with the direct action of heavy metals on the active centers of enzymes. It is also possible to expel magnesium ions from the chlorophyll molecule.

Disruption of the chloroplast ultrastructure in the presence of heavy metals is also one of the most important reasons for a decrease in the content of pigments in plants and, in general, for a decrease in the intensity of photosynthesis. So, under the action of nickel and copper in high concentrations, the number of plastoglobules in plants increases, which indicates an increase in the degradation of organelles. In addition, the number of grains decreases and their structure is disturbed. Grana become irregular and contain fewer thylakoids. Heavy metals directly affect the transfer of electrons in photochemical reactions. In addition, in the presence of heavy metals in plants, cyclic and non-cyclic phosphorylation slows down, and ATP synthesis is suppressed.

4. Material and methods

The studies were carried out on the basis of material obtained on the territory of the Kola Peninsula in Monchegorsk (buffer and impact zones) and Kovdorsk

<table>
<thead>
<tr>
<th>№</th>
<th>Sample plot name</th>
<th>Distance from pollution source, km</th>
<th>Community age, years</th>
<th>Height above sea level, m</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 O</td>
<td>10</td>
<td>80</td>
<td>158</td>
<td>N 68 00.384, E 032 55.541</td>
</tr>
<tr>
<td>2</td>
<td>29 O</td>
<td>15</td>
<td>80</td>
<td>162</td>
<td>N 67 44.216, E 032 46.447</td>
</tr>
<tr>
<td>Buffer zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>25</td>
<td>80</td>
<td>169</td>
<td>N 68 06.817, E 033 19.455</td>
</tr>
<tr>
<td>4</td>
<td>27 O</td>
<td>35</td>
<td>80</td>
<td>165</td>
<td>N 67 38.168, E 032 42.234</td>
</tr>
<tr>
<td>Non-contaminated zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>65</td>
<td>80</td>
<td>145</td>
<td>N 67 30.055, E 031 46.886</td>
</tr>
</tbody>
</table>

Table 1. Location of permanent sample plots in the study area.
The vitality structure of the tree layer was analyzed. The index of the vital state is calculated using the formula (Eq. (1)).

The vitality class were determined. We have identified 5 categories of vitality class: healthy individuals (I), defoliated individuals (II), severely defoliated individuals (III), withered individuals (IV), and dead individuals (V).

On each trial plot, samples of the upper organic horizon of Al-Fe-podzol were taken in the amount of 5 samples for each trial plot, from which the undecomposed upper elements of forest litter were excluded. These samples were used to prepare a soil extract (extract with 1.0 N HCl solution), for which the content of acid-soluble forms of Ni, Cu, Co was further determined by atomic absorption spectrometry. Similarly, the content of heavy metals was determined in the assimilation organs of plants growing on these test plots (the tree layer and the undergrowth canopy were mainly formed by the species Pinus sylvestris L.; the herb-dwarf layer was formed by the species: Vaccinium vitis-idaea L., Vaccinium myrtillus L., Empetrum hermaphroditum Hagerup., Arctostaphylos uva-ursi (L.) Spreng.; moss-lichen layer is formed by species: lichens of the genus Cladonia (C. stellaris (Opiz.) Brodo, C. rangiferina (L.) Nyl., C. mitis (Sandst.) Hustich), C. coccifera (L.) Willd. and Pleurosium schreberi (Brid.) Mitt.). The work presents the average values of the available sample for these sample plots.

For the ground layers, the total projective cover of the species was determined, as well as the ground phytomass of plants. The characteristics of the tree layer were also obtained on these permanent sample plots. We assigned all individuals of the forest-forming species with a trunk diameter of 4 cm or more at a height of 1.3 m to the tier of the stand. For all individuals of the stand, trunk diameter, tree height and the ground phytomass of plants. The characteristics of the tree layer were also obtained on these permanent sample plots. We assigned all individuals of the forest-forming species with a trunk diameter of 4 cm or more at a height of 1.3 m to the tier of the stand. For all individuals of the stand, trunk diameter, tree height and vitality class were determined. We have identified 5 categories of vitality class:

I - healthy individuals;
II - defoliated individuals;
III - severely defoliated individuals;
IV - withered individuals;
V - dead individuals.

The vitality structure of the tree layer was analyzed. The index of the vital state of the stand was also calculated using the formula (Eq. (1)):

\[I_n = \frac{n_1 + 0.7n_2 + 0.4n_3 + 0.1n_4}{n} \] (1)

For the ground layers, the total projective cover of the species was determined, as well as the ground phytomass of plants. The characteristics of the tree layer were also obtained on these permanent sample plots. We assigned all individuals of the forest-forming species with a trunk diameter of 4 cm or more at a height of 1.3 m to the tier of the stand. For all individuals of the stand, trunk diameter, tree height and vitality class were determined. We have identified 5 categories of vitality class:

I - healthy individuals;
II - defoliated individuals;
III - severely defoliated individuals;
IV - withered individuals;
V - dead individuals.

The vitality structure of the tree layer was analyzed. The index of the vital state of the stand was also calculated using the formula (Eq. (1)):

\[I_n = \frac{n_1 + 0.7n_2 + 0.4n_3 + 0.1n_4}{n} \] (1)
where \(I_n \) – life condition index;
\(n_1 \) – the number of individuals classified as “healthy”; \(n_2 \) – the number of individuals classified as “defoliated”; \(n_3 \) – the number of individuals classified as “severely defoliated”; \(n_4 \) – the number of individuals classified as “withered”; \(n \) – total number of individuals.

5. Results

Content of heavy metals in community components.

As can be assumed, with approaching the source of pollution, the amount of heavy metals in the components of the community is steadily increasing. However, the nature of this increase may vary depending on the specific component of the community (including its species) and the pollutant.

Organic soil horizons.

The content of nickel in the non-contaminated zone averages 7.5 mg/kg, copper - 16.75 mg/kg, cobalt - 1.5 mg/kg. In studies of past years, the value of 10 mg/kg for the first two metals is taken as background values. Consequently, a slight increase in the copper content is observed, which is most likely associated with the peculiarity of the location of the constant sample plot relative to the prevailing winds, as well as with the change in the activity of the plant (the use of various ores, the change in the nature of production and purification, etc.). We take the cobalt content as the background value.

In the buffer zone, the nickel content is about 50 mg/kg, which is 5 times higher than the background values. The content of copper ranges from 185.5 to 76.9 mg/kg (different sample plots), cobalt - from 2.72 to 5.63 mg/kg, which also significantly exceeds the background values.

In the impact zone, the concentration in all three cases sharply increases the concentration. For nickel, the content can reach 598.5 mg/kg (60 times), for copper - 3582 mg/kg (almost 360 times), for cobalt - 28.7 mg/kg (almost 20 times) (Figure 4).

The data obtained are consistent with the earlier stages of the study of this region. It should also be noted that this picture is observed with a decrease in the intensity of emissions into the atmosphere by the Severonikel plant. This indicates a strong fixation of heavy metals in the organic horizon and a very low rate of their leaching into the underlying horizons.

Community Component Characteristics.

Tree layer.

The main component of pine forests is a tree stand, the analysis of the vitality structure of which can indicate not only the state of the entire cenopopulation at the moment, but can also help to reveal the natural processes of formation and development, as well as reflect the effect of stress factors (in our case, this is aerotechnogenic pollution) To assess the vitality class, as a rule, a number of quantitative and qualitative signs are used. On the basis of these features, from 3 to 6 classes are distinguished and the vital state index is calculated (in our work we will limit ourselves to 5 classes).

In the non-contaminated zone (65 km and more from the source of pollution), healthy individuals of *Pinus sylvestris* L. dominate (from 61–68%). The ratio of defoliated individuals varies from 20–9%, those of severely defoliated ones - from 15–17%. The number of withered trees is minimal and ranges from 2–4%. Such a significant number of defoliated and severely defoliated trees can be explained by the competition between trees for water and nutrients in the soil, and further
Weakened individuals, which indicates a strong oppression of the entire community. The proportion of severely defoliated trees ranges from 8–32%. Here we see the predominance of weakened and strongly defoliated individuals - 45%. Moreover, the share of withered trees is about 12%, which is significantly higher than the indicators of the non-contaminated zone. These data most likely indicate a decrease in the airborne anthropogenic load passed into another region. But at the same time, the share of withered trees is about 12%, which speaks of a significant suppression of the vital state. Thus, part of the trees with a decrease in the intensity of the aerial anthropogenic load passed into another group of vitality. The vitality class index is similar to that of the background regions and is 0.79.

In the vitality spectrum of the impact zone (15 km or less from the source of pollution), the situation changes dramatically. The proportion of healthy trees does not exceed 64%. The share of defoliated and severely defoliated trees is 10% and 12%, respectively. These data are quite similar to what we observed in the non-contaminated regions. But at the same time, the share of withered trees is about 12%, which is significantly higher than the indicators of the non-contaminated zone. These data most likely indicate a decrease in the airborne anthropogenic load on forest communities (a large number of withered and dead trees indicates a higher level of pollution in the past). This is also confirmed by data from past years, which speaks of a significant suppression of the vital state. Thus, part of the trees with a decrease in the intensity of the aerial anthropogenic load passed into another group of vitality. The vitality class index is similar to that of the background areas and is 0.79.

In the vitality spectrum of the impact zone (15 km or less from the source of pollution), the situation changes dramatically. The proportion of healthy trees ranges from 10 to 25%. The proportion of defoliated individuals reaches 30%, and the proportion of severely defoliated ones - 45%. Moreover, the share of withered trees ranges from 8–32%. Here we see the predominance of weakened and strongly weakened individuals, which indicates a strong oppression of the entire community as a whole. And first of all, this is determined not only by the proximity to the source of pollution, but also by a change in the nature of the aerotechnological load (in the impact area, plants are affected not only by sulfur dioxide, but also by aerosol forms of heavy metals, which almost do not penetrate into the buffer zone). The vitality class index is 0.53 (Figure 5).

Ground tiers.

Assessment of the condition of the lower layers of boreal forests is no less important than assessing the condition of the tree layer. Moreover, here one of the most important criteria is the total projective cover.

In the non-contaminated zone, the total projective cover of the herb-dwarf shrub layer is about 20%. The dominant species are *V. vitis-idaea* L. and *V. myrtillus* L.,
occupying 9.5% and 12.5%, respectively. According to the data of previous studies, it can be done that the total projective cover of the herb-dwarf shrub layer gradually increases (on average, for the species of the genus Vaccinium, the total projective cover increased from 6% to fifteen%). First of all, this can be explained by the post-fire restoration of pine forests. And also a decrease in the intensity of emissions from the Severonikel plant (to a lesser extent).

The total projective cover of the moss-lichen layer is about 60% and is represented by lichens of the genus Cladonia (C. stellaris (Opiz.) Brodo, C. rangiferina (L.) Nyl., C. mitis (Sandst.) Hustich) and moss Pleurosium shreberi (Brid.) Mitt. It should be noted that the total projective cover of mosses is insignificant and amounts to no more than 1%. Such an insignificant amount of moss indicates a disturbance of the moss-lichen layer.

In the buffer zone, the total projective cover of the lower tiers begins to decrease, which indicates an increase in the airborne industrial load on the communities. The cover of the grass-dwarf shrub layer remains almost unchanged and amounts to 15-18%. In general, the herb-dwarf shrub layer of pine forests in the buffer and background regions does not differ significantly in terms of the total coverage and composition of dominant species.

The situation is different with the moss-lichen layer of the buffer zone. The total projective cover of the genus Cladonia decreases significantly and amounts to about 15%. At the same time, Cladonia coccifera (L.) Willd. appears. - a species typical for successional communities. The total coverage of this type can be up to 30%. In this area, mosses are almost completely absent (hepatic mosses are occasionally found, but their effect on the total projective cover is insignificant).

Despite the reduction in the volume of emissions from the Severonikel plant, there is a noticeable deterioration in the lower tiers. Projective cover by C. coccifera (L.) Willd. increased almost 2 times. This is also evidenced by the almost complete absence of the species P. shreberi (Brit.) Mitt. In this case, it can be concluded that the moss-lichen layer is in a depressed state and is significantly disturbed.

In the impact zone, the total projective cover of the grass-dwarf shrub layer is on average about 5%. At the same time, species composition changes sharply. V. vitis-idaea L. and V. myrtillus L. have a very depressed state. The number of E. hermaphroditum Hagerup increases, which becomes the dominant species and Arctostaphylos uva-ursi (L.) Spreng appears. This fact indicates a higher level of tolerance to
Aerotechnogenic Pollution of Boreal Forests in Northern Europe

DOI: http://dx.doi.org/10.5772/intechopen.95795

...aerotechnogenic impact in these species compared to representatives of the genus Vaccinium (the projective cover is no more than 1.5%). This is also due to the destruction of the moss-lichen layer and litter, which play an essential role in maintaining the moisture capacity of organic soil horizons.

The total projective cover of the moss-lichen layer reaches 5%, which is significantly lower than in the buffer zone (in some cases, this indicator may be even lower).

C. coccifera (L.) Willd becomes the dominant species. The lichens of the genus Cladonia disappear almost completely. Mosses are completely absent.

Despite the decrease in the intensity of the airborne technogenic load, there was no significant change in the state of the lower tiers in the impact zone.

The study of the projective cover of ground layers can vary greatly depending on the distance to the source of airborne industrial pollution (Figures 6 and 7).

6. Conclusions

The study made it possible to reveal some regularities in the effect of airborne pollution on the vitality structure of pine forests. First of all, our data are consistent with the results of other studies. General tendencies of the formation of forest communities under the conditions of aerotechnogenic load are revealed. The study showed that the vital state of the communities directly depends on the intensity and nature of the aerial anthropogenic impact.

Some features have also been identified. First of all, this concerns changes in the structure of communities in comparison with the data of previous years (there is a general trend towards an improvement in the living condition due to a decrease in emissions from the Severonikel plant). Based on the data obtained, it can be concluded that the pollution with sulfur dioxide and heavy metals is of a local nature.

The vitality structure of pine forests varies depending on the distance from the pollution source (and, accordingly, on the intensity of the aerial anthropogenic load). In the non-contaminated zone, the vitality index is 0.81; in the buffer zone - 0.79; in the impact zone - 0.53. Under the conditions of airborne industrial pollution, noticeable disturbances in the growth and development of the tree layer occur. There is a deviation from the monopodial type of branching (due to the death of the apical meristem of the leading shoot), a noticeable decrease in the increase in phytomass and a violation of the assimilation apparatus (the appearance of pronounced chlorosis and necrosis on the needles).

The total projective cover and ground phytomass of the lower tiers noticeably decrease when approaching the pollution source. Moreover, in addition to the general oppression, there is a change in the dominant species in the synusia of the herb-dwarf shrub and moss-lichen layers.
aerotechnogenic impact in these species compared to representatives of the genus *Vaccinium* (the projective cover is no more than 1.5%). This is also due to the destruction of the moss-lichen layer and litter, which play an essential role in maintaining the moisture capacity of organic soil horizons.

The total projective cover of the moss-lichen layer reaches 5%, which is significantly lower than in the buffer zone (in some cases, this indicator may be even lower). *C. coccifera* (L.) Willd becomes the dominant species. The lichens of the genus *Cladonia* disappear almost completely. Mosses are completely absent. Despite the decrease in the intensity of the airborne technogenic load, there was no significant change in the state of the lower tiers in the impact zone.

The study of the projective cover of ground layers can vary greatly depending on the distance to the source of airborne industrial pollution (*Figures 6* and 7).

6. Conclusions

The study made it possible to reveal some regularities in the effect of airborne pollution on the vitality structure of pine forests. First of all, our data are consistent with the results of other studies. General tendencies of the formation of forest communities under the conditions of aerotechnogenic load are revealed. The study showed that the vital state of the communities directly depends on the intensity and nature of the aerial anthropogenic impact.

Some features have also been identified. First of all, this concerns changes in the structure of communities in comparison with the data of previous years (there is a general trend towards an improvement in the living condition due to a decrease in emissions from the Severonikel plant). Based on the data obtained, it can be concluded that the pollution with sulfur dioxide and heavy metals is of a local nature.

The vitality structure of pine forests varies depending on the distance from the pollution source (and, accordingly, on the intensity of the aerial anthropogenic load). In the non-contaminated zone, the vitality index is 0.81; in the buffer zone - 0.79; in the impact zone - 0.53. Under the conditions of airborne industrial pollution, noticeable disturbances in the growth and development of the tree layer occur. There is a deviation from the monopodial type of branching (due to the death of the apical meristem of the leading shoot), a noticeable decrease in the increase in phytomass and a violation of the assimilation apparatus (the appearance of pronounced chlorosis and necrosis on the needles).

The total projective cover and ground phytomass of the lower tiers noticeably decrease when approaching the pollution source. Moreover, in addition to the general oppression, there is a change in the dominant species in the synusia of the herb-dwarf shrub and moss-lichen layers.
Aerotechnogenic Pollution of Boreal Forests in Northern Europe

DOI: http://dx.doi.org/10.5772/intechopen.95795

References

References

Chapter 12
Influence of Microenvironments
and Personal Activities on
Personal PM2.5 Exposures among
Children and Adults
Mahima Habil, David D. Massey and Ajay Taneja

Abstract
Environmental issues are a major worldwide problem of significant concern. Due to the growing human population and advancement in every sector, the environmental related issues are multiplying in recent years. Scalable exposures assessments approach that captures personal exposure to particles for purposes of epidemiology are currently limited, but very valuable especially for a country like India. The high levels of indoor particulate matter and the apparent scale of its impact on the global burden of disease underline the importance of particulate as an environmental health risk and the need for monitoring them. Human exposure especially to fine particles can have significant harmful effects on the respiratory and cardiovascular system. To investigate daily exposure characteristics to PM2.5 with ambient concentrations in an urban environment, personal exposure measurements were conducted for different age groups of people residing in different indoor environments. To account for PM2.5 exposure and measurements personal environment monitors (PEM) and medium volume sampler APM 550 was used to measure PM2.5 concentration. On comparing the annual average PM2.5 concentration with National Ambient Air Quality and WHO standards the concentrations were found to be many folds higher for personal and ambient monitoring at homes, schools, and offices. Moreover, the questionnaire data study explains the fact that the health hazards experienced by occupants linked to various activity patterns pose a greater risk in different indoor environments as compared to outdoor environments. The presented research method and analysis can help develop environmental awareness in identifying these pollutants and can also help in elucidating these contaminants. A real understanding of these possible causes of airborne contaminant is crucial for selecting and developing suitable and effective control methods.

Keywords: personal exposure monitoring, PM2.5, indoor air quality

1. Introduction
Indoor air quality in sensitive areas like homes and public places has caught the interest not only of scientists but of the general public as well. Increasing public awareness is focusing on this issue as more and more individuals spent time inside than outside, particularly those who are most susceptible to the effects of poor air
Influence of Microenvironments and Personal Activities on Personal PM$_{2.5}$ Exposures among Children and Adults

Mahima Habil, David D. Massey and Ajay Taneja

Abstract

Environmental issues are a major worldwide problem of significant concern. Due to the growing human population and advancement in every sector, the environmental related issues are multiplying in recent years. Scalable exposures assessments approach that captures personal exposure to particles for purposes of epidemiology are currently limited, but very valuable especially for a country like India. The high levels of indoor particulate matter and the apparent scale of its impact on the global burden of disease underline the importance of particulate as an environmental health risk and the need for monitoring them. Human exposure especially to fine particles can have significant harmful effects on the respiratory and cardiovascular system. To investigate daily exposure characteristics to PM$_{2.5}$ with ambient concentrations in an urban environment, personal exposure measurements were conducted for different age groups of people residing in different indoor environments. To account for PM$_{2.5}$ exposure and measurements personal environment monitors (PEM) and medium volume sampler APM 550 was used to measure PM$_{2.5}$ concentration. On comparing the annual average PM$_{2.5}$ concentration with National Ambient Air Quality and WHO standards the concentrations were found to be many folds higher for personal and ambient monitoring at homes, schools, and offices. Moreover, the questionnaire data study explains the fact that the health hazards experienced by occupants linked to various activity patterns pose a greater risk in different indoor environments as compared to outdoor environments. The presented research method and analysis can help develop environmental awareness in identifying these pollutants and can also help in elucidating these contaminants. A real understanding of these possible causes of airborne contaminant is crucial for selecting and developing suitable and effective control methods.

Keywords: personal exposure monitoring, PM$_{2.5}$, indoor air quality

1. Introduction

Indoor air quality in sensitive areas like homes and public places has caught the interest not only of scientists but of the general public as well. Increasing public awareness is focusing on this issue as more and more individuals spent time inside than outside, particularly those who are most susceptible to the effects of poor air
quality, such as the elderly, the young, and those with poor health [1, 2]. A series of epidemiological studies reported that there are robust associations between short-term and long-term exposure to fine particles (particulate matter with a diameter less than PM$_{2.5}$ μm), they are responsible for harmful effects on human health, including cardiac and respiratory diseases. The American Cancer Society has noticed that for every 10 μg/m3 increase in PM$_{2.5}$, a 6% increased risk of mortality and morbidity, which have recently increased to 10%, resulting in premature deaths, according to California Air Resource Board [3].

Mostly all individuals are potentially affected, but as a subpopulation child are more prone to suffer health effects due to surrounding emission sources [4]. Since their lung structure and immune system are not fully developed and have a higher metabolic rate than adults, which means that they breathe in more air per unit of body weight and are generally more susceptible to the effects of indoor air pollutants. Studies have reported an association of pupil's health with both school and domestic exposure [5, 6]. These pollutants may emanate from a variety of sources (building and construction materials and furnishings, building occupants and activities, inadequate building design, lack of maintenance), including the infiltration of outdoor pollutants, such as dust, soil, and fuel consuming products and internally from smoking, cooking, incense burning, building, and furniture materials, consumer products, shed skin cells and organic fibers. Therefore, children's personal exposures to air pollutants differ from that of adults. Nowadays the highest importance is attributed to aerosols, especially fine particles because they represent a complex mixture of organic and inorganic substances with potentially toxic, carcinogenic, inflammatory, allergens, and other adverse properties. Furthermore, varied sources of PM results in an extensive range of particle sizes, i.e., the lesser the diameter size, the further deeply it will deposit in the respiratory tract. In the nasal-breathing mode, the mucus and cilia act as a very particle deposition inside the respiratory area depend not only on particle characteristics, but also human physiology, i.e., is the individual's behavior throughout the day like breathing deeply. Personal monitoring is the most accurate approach for determining direct exposure to airborne environmental contaminants because it incorporates complex human activity patterns into the exposure assessment. Only a few data are available on personal measurements of fine particles and its characterization of chemical species is lacking in comparative studies for both adults and children's activity patterns in different microenvironments which is important for developing a regulatory outline.

Thus the present study aimed to pinpoint the integrated actions essential to reduce the particulate pollutant and eliminate the toxicological environmental impacts of the urban environment. Identification of sources and controls of this location may allow for better protection for adults and children's health and understanding to control them.

2. Site description

Agra (27°10’N, 78°05’E) is situated in the state of Uttar Pradesh in India. It is surrounded by the Thar Desert in its south-east, west, and north-west peripheries and is therefore, it's a semiarid area. Agra experience three different seasons; summer (March–June), monsoon (July–October), and winter (November–February) in a year. In the summer period Agra experiences hot weather with dry westerly winds. During this time temperature ranges between 30–46°C. The relative humidity is quite low between 18% and 48% during this time duration. In the monsoon it is hot and humid, temperature varieties from 24 to 36°C, and the humidity varieties
from 70–90%. The pre-monsoon and monsoon periods experience strong north-east and southeast winds and in the winter, the temperature varies from 5–25°C. Thunderstorms and dust storms are frequently observed during the months from March to June. The wind speeds diverge from 2.6 to 6.9 Km/h with a maximum during summer and monsoons and a minimum in winters [7]. Agra is the one of the most populated cities in Uttar Pradesh, India. Agra has a population of about 1.5 million (Females = 47% and Males = 53%), with a birth rate of 28/1000 people and a death rate of 7/1000 people (Agra Nagar [8]). Tones of solid wastes are generated every day that can be seen in the form of piles along roadsides and streets due to poor municipal services. It is also a major cause for adding contamination to soil and groundwater. In the present study, personal and ambient monitoring was carried out for PM$_{2.5}$ in three different locations (two homes, two schools, and two offices) in the city of Agra (Figure 1).

3. Sampling sites

Two homes were selected in different colonies of the urban area of the city Agra, personal and ambient monitoring was done throughout the study. In the urban colonies, there is usually the old type of houses, having parking garages inside their houses or beneath the house due to lack of spaces. The houses are very near to each other making the environment very congested which is believed to be due to lack of proper planning. Adults were selected especially women, for personal sampling at homes as they spend most of their time indoors. Similarly, two schools were selected adjacent to roads in the city of Agra. Near schools usually, their environment is of high traffic during the morning and late afternoon hours when the schools get over. Personal and ambient monitoring was also carried out here during the study period. Different children were selected for personal sampling at schools. Similarly, two offices were selected in the commercial areas of the city of Agra. The offices are situated adjacent to a busy road in the city which experiences heavy traffic throughout the day. Personal and ambient monitoring was also carried out here during the study period. Different adults were selected for personal exposure monitoring carrying out routine activities in the offices and during their outdoor visits (Figure 2).
4. Sampling and analytical method

The study was conducted from December 2013 to February 2015 to determine the mass concentration of PM$_{2.5}$ in personal and ambient samples from two homes, two schools, and two offices located in the urban area of the city Agra. A total of 180 samples were collected from personal and ambient monitoring over 15 months from December 2013 to February 2015, i.e. 90 samples from personal monitoring and 90 samples from ambient monitoring. The monitoring was done for 24 hours for personal exposure and ambient sampling. For personal monitoring, the time period contains the occupant’s daily indoor and outdoor activities. The number of samples gathered in a month duration was 12; six for the ambient environment (i.e. two from schools same way from homes and offices) and six samples of personal exposure (i.e. two from school and in similar fashion from homes and offices) respectively. Personal exposure measurements were carried out, using PEM (Personal Environmental Monitor, SKC Inc., USA) (Figure 3) with the Leland legacy sampling pump at 10 L/min, fitted within a waist pack to each individual participating. Rechargeable lithium-ion (Li-Ion) battery pack will provide 24-hour run time with impactors and other sampling devices with low back pressures. PEM is a lightweight, personal sampling device consisting of a single-stage impactor and an after-filter. Aerosol particles are sampled through the single-stage impactor to remove particles above the 50% cut-point of 2.5 μm in aerodynamic diameter. These large size particles are gathered on a greased ring and are rejected after sampling. Particles lesser than the 50% cut-point is authorized to pass through the impactor and get collected on a 37-mm after-filter paper. To investigate personal exposure, the filter is investigated gravimetrically for particle mass and chemical analysis. The sampling pump provides the required airflow through the PEM. The PEM operates on the principle of inertial separation of airborne particles using an impactor. Particle-laden air is accelerated into the sampler through the round nozzles located in a circle around the outer edge of the cover [9]. For PM$_{2.5}$ ambient samples were collected with a fine particulate dust sampler (APM 550, Envirotech) shown in Figure 3. The air inlet has a circular symmetrical hood designed to keep out of the rain, insects, and very large particles. The Inlet section leads to an Impactor stage, which traps particles larger than 10 microns aerodynamic diameter. The airstream
The study was conducted from December 2013 to February 2015 to determine the mass concentration of PM$_{2.5}$ in personal and ambient samples from two homes, two schools, and two offices located in the urban area of the city Agra. A total of 180 samples were collected from personal and ambient monitoring over 15 months from December 2013 to February 2015, i.e. 90 samples from personal monitoring and 90 samples from ambient monitoring. The monitoring was done for 24 hours for personal exposure and ambient sampling. For personal monitoring, the time period contains the occupant’s daily indoor and outdoor activities. The number of samples gathered in a month duration was 12; six for the ambient environment (i.e. two from schools and two from homes and offices) and six samples of personal exposure (i.e. two from school and in similar fashion from homes and offices) respectively. Personal exposure measurements were carried out, using PEM (Personal Environmental Monitor, SKC Inc., USA) with the Leland legacy sampling pump at 10 L/min, fitted within a waist pack to each individual participating. Rechargeable lithium-ion (Li-Ion) battery pack will provide 24-hour run time with impactors and other sampling devices with low back pressures. PEM is a lightweight, personal sampling device consisting of a single-stage impactor and an after-filter. Aerosol particles are sampled through the single-stage impactor to remove particles above the 50% cut-point of 2.5 μm in aerodynamic diameter. These large size particles are gathered on a greased ring and are rejected after sampling. Particles lesser than the 50% cut-point is authorized to pass through the impactor and get collected on a 37-mm after-filter paper. To investigate personal exposure, the filter is investigated gravimetrically for particle mass and chemical analysis. The sampling pump provides the required airflow through the PEM. The PEM operates on the principle of inertial separation of airborne particles using an impactor. Particle-laden air is accelerated into the sampler through the round nozzles located in a circle around the outer edge of the cover [9]. For PM$_{2.5}$ ambient samples were collected with a fine particulate dust sampler (APM 550, Envirotech) shown in Figure 3. The air inlet has a circular symmetrical hood designed to keep out of the rain, insects, and very large particles. The Inlet section leads to an Impactor stage, which traps particles larger than 10 microns aerodynamic diameter. The airstream down in the tube carries particles. For the monitoring of PM$_{2.5}$, WINS Impactor is attached. It is designed to trap medium size particles between 2.5 and 10 microns. To avoid sampling fault due to bouncing of small size particulates from the impaction surface, a 37 mm diameter GF/A paper engrossed in silicon oil is used. The airstream now leaving the WINS Impactor consists of only fine particles with an aerodynamic diameter smaller than 2.5 microns. APM 550 uses an oil-less rotary pump to produce the suction pressure and critical flow control orifice (as recommended by [10]) for maintaining a constant airflow rate of 16.7 L/ min.

Filter papers were weighed thrice before and after sampling using five digits microbalance. Before weighing the samples were homogenized in desiccators at 20-30°C with a standard relative humidity range of 30–40% 24 hours. Filter cassettes were utilized to transport weighed filter papers to the sampling site, their filters were shifted to filter holders and positioned on the sampling plate. The exposed filter and the filter holder was then enfolded with aluminum foil, and were later placed back in the desiccators (Figure 4). Field blank filters were collected to lessen gravimetric prejudice due to filter handling after and during sampling duration. After evaluating, samples were refrigerated at 4°C to prevent the loss of volatile components as per the USEPA, Compendium Method, 1999. Exposed filter paper after conditioning and weighing was cut into two equal pieces. One part was used for acid extraction and the other half was preserved for later analysis. The other half of the exposed filter paper was put in pre-washed Borosil beakers such that the exposed paper faces toward the bottom of the beaker, then added 6–8 ml analytical grade (Merck) HNO$_3$ and HCl in the ratio 1:3 and kept on a hot plate at the temperature of 40-60°C for 90 minutes [11]. The beakers were covered with a watch glass filled with water to avoid the loss of volatile compounds due to evaporation. The solution was then filtered with prewashed Whatman filter paper. The

![Figure 3.](image-url)
Personal environmental monitor (SKC Inc., USA) and fine particulate dust sampler (APM 550).

![Figure 4.](image-url)
Filter paper before and after sampling and atomic absorption spectrophotometer with schematic diagram (make: Perkin Elmer, AAnalyst 100).
Within two months of extraction, the wall of the beaker was washed 2–3 times with distilled water and allowed to stand for 30 min and then filtered without shaking. Finally, the extract was diluted up to 50 ml with distilled de-ionized water and stored in pre-washed polypropylene till analysis. Zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), chromium (Cr), Cadmium (Cd) manganese (Mn), copper (Cu), Barium (Ba), and Mercury (Hg) were analyzed with this extract. Analysis of these trace metals was done on AAS regularly within two months of extraction.

5. Questionnaire survey

A Questionnaire survey is a common way to relate illness prevalence with air quality for small groups of individuals targeted for a specific purpose. It also gives us an idea about the potential sources of indoor air pollution, lifestyle, and different human activities (Table 1). A questionnaire (respondent schedule) was prepared from the personal interview of occupants from homes, schools, and offices, in all 475 were filled (i.e. 300 children and 275 adults) in different sampling locations, i.e. (homes, schools, and offices) of the Agra region. The questionnaire contains questions, which inquired about the personal exposure parameters and the occupant’s perceptions of the air quality around them. The questionnaire includes daily time/ activity diary, age, sex, socio-demography, house/school/office characteristics, air exchange conditions, timing of different activities such as cooking in homes, cleaning, heating, number of occupants present near the source, other considerable characteristics. The information on the health-related issues of the occupants was also investigated like allergies, skin problems, cold and flu, vomiting or giddiness, eyes or nose annoyance, headache, and mental exhaustion. In the last part of the questionnaire survey, it was also investigated that the participants, if they were conscious of the harmful effects of polluted air? The results are discussed based upon the percentage of the data obtained below.

6. Health effects

Indoor air pollution is associated with a variety of health effects of both an immediate and long-term nature [12]. Short-term health effects may show up after single or repeated exposures (Table 1). They may include annoyance in the eyes, throat, and nose, headaches, cold, wooziness, and exhaustion. On the other hand, long-term health effects may appear or prevail after exposure has happened. These may comprise respiratory and heart diseases, and may also lead to cancer. As this study is of short term and limited to fifteen months, therefore only the short-term health-related issues are discussed as long-term exposure needs more years of study. According to the survey (Table 1), the most frequently occurring symptoms were headache (53% in the homes, 65% in the schools, and 52% in the offices), eyes, and nose irritation (53% in the homes, 60% in the schools and 48% in the offices), cold and flu (50% in the homes, 62% in the schools and 38% in the offices) allergies (35% in the homes, 45% in the schools and 20% in the offices) sinus, mental fatigue, nausea, and dizziness were at a somewhat lower percentage in the different microenvironments. The results show that these problems were more dominant in schools in comparison to homes and offices. The schools are also located near busy roads and streets of the city, vehicular emission causes the formation of fine particulate that penetrates indoors (higher values of r) and in turn is supposed to increase health-related problems [13, 14]. Table 1 also shows a higher percentage of smoking with 42% was reported from homes than in comparison to offices whereas,
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Homes</th>
<th>Schools</th>
<th>Offices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term health effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Headaches</td>
<td>53</td>
<td>65</td>
<td>52</td>
</tr>
<tr>
<td>2. Eyes and nose irritation</td>
<td>53</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>3. Cold and flu</td>
<td>50</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td>4. Allergies</td>
<td>35</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>5. Sinus</td>
<td>20</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>6. Mental fatigue</td>
<td>28</td>
<td>35</td>
<td>22</td>
</tr>
<tr>
<td>7. Nausea and dizziness</td>
<td>18</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Types of fuel used in homes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. L.P.G</td>
<td>95</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2. Wood</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3. Kerosene</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4. Cow dung cakes</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cooking activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Refined oil</td>
<td>25</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2. Mustard oil</td>
<td>70</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3. Ghee</td>
<td>5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Other activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Candles or diyas</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. Incense sticks</td>
<td>75</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>3. Mosquito Coils</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4. Smoking</td>
<td>42</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>Cleaning and Sweeping</td>
<td>Twice a day morning and evening</td>
<td>In evening after school hours</td>
<td>In evening after office hours</td>
</tr>
<tr>
<td>1. Ventilation acceptable</td>
<td>40</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>2. Ventilation not accepted</td>
<td>60</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>Ventilation inside the houses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Aware</td>
<td>55</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>2. Not aware</td>
<td>45</td>
<td>20</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 1.
Questionnaire survey analysis (in percentage).

The percentage reported from offices was also quite high with 35%. It was consistent with the results that health symptoms occurred more in indoor places where smoking was more common than in non-smoking [13, 15].

As the questionnaire data were collected from a different kind of socioeconomic status, family members living in different urban areas of the city, working in different places like offices, and their children studying in different schools. Their living stats are also different like the use of different kinds of fuels like wood, dung, and kerosene with the use of clean fuel like LPG (liquefied petroleum gas). As in the urban houses the per capita income increases, families generally shift to cleaner energy-efficient systems for their home energy needs. While particulate levels seem
to be closely associated with health effects, they normally seem in association with other contaminants. Thus, there is a need to distinguish different types of particles and how they can be best controlled [16].

7. PM2.5 results

The result obtained from the analysis, observation tables are drawn and presented below. PM$_{2.5}$ and its metal content in personal and ambient samples from homes, schools, and offices respectively during the sampling period from December 2013 to February 2015. During the study period, annual average concentration and standard deviations (SD) for PM$_{2.5}$ (personal and ambient) at homes were $132.88 \pm 43.28 \mu g^{-3}$ and $122.78 \pm 36.27 \mu g^{-3}$, at schools were $137.77 \pm 42.18 \mu g^{-3}$ and $127.19 \pm 36.18 \mu g^{-3}$ and at offices site $123.60 \pm 41.44 \mu g^{-3}$ and $127.19 \pm 36.18 \mu g^{-3}$ respectively. The concentration trend varied from 103.21 to $177.26 \mu g^{-3}$ and 79.18 to $185.57 \mu g^{-3}$ respectively. This indicates that air quality in schools and homes is more affected by PM$_{2.5}$ and at offices have relatively better air quality. On comparing the annual average PM$_{2.5}$ concentration with National Ambient Air Quality Standard (40 μg^{-3}) [17], It was found to be 3–4 times higher from personal and ambient concentration data collected from all the sampling places. We also compared our data with World Health Organization [18] standards (10 μg^{-3} annual means respectively), our results exceeded 12.3–13.3 times at homes for personal and ambient monitoring and 12.8–13.8 times at schools and 10.9–12.4 times at offices.

High concentrations at the sampling sites may be attributed to heavy vehicular traffic flow, especially at schools, emissions from nearby industries and re-suspension of road and soil dust, emission from solid waste incineration, and construction activities. In homes and offices, cooking and smoking are the dominant activities, which should have contributed to the formation of fine particulate emissions. In the case of ambient, concentration levels were found to be elevated depending upon the outdoor activities.

On applying the one-way Anova to the mean values of particulate concentrations at all the sites for each location significance values PM$_{2.5}$ were adjacent to 1 or were around 1. For the homes, it ranged from 0.951 to 0.999, for the offices they ranged from 0.911 to 0.997 and for the schools it ranged from 0.917 to 0.997 signifying that there is no substantial variance between the concentrations of two offices, homes and schools and thus have similar kind of sources which lead to the generation of particulate pollutant in their environment. Due to the above reason, the discussion made in this report is explained based on the average concentration of two homes, two schools, and two offices located in each microenvironment rather than two houses, two schools, and two offices at different sampling sites.

8. Chemical constituent of PM2.5

Characterization of PM components, including inorganic elements, is of central importance in proposing mechanisms for health effects and in source apportionment studies [19, 20]. Data obtained by chemical analysis for ten metals in, PM$_{2.5}$ collected from personal and ambient environments at homes, schools, and offices.

The sum of the average concentration of ten parameters determined in PM$_{2.5}$ personal and ambient was found to be $19.09 \mu g^{-3}$ and $12.12 \mu g^{-3}$ at homes and
it ranged from 0.03–10.98 μg m⁻³ and 0.03–5.68 μg m⁻³ respectively. At schools, the sum of the average concentration was 21.48 μg m⁻³ and 12.93 μg m⁻³ and it ranged from 0.04–12.40 μg m⁻³, 0.03–5.73 μg m⁻³ respectively; whereas at offices the sum of the average concentration was 16.93 μg m⁻³ and 11.05 μg m⁻³ and it ranged from

Table 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PM₂.₅ Personal (μg m⁻³)</th>
<th>PM₂.₅ Ambient Environment (μg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM Conc.</td>
<td>132.88 ± 43.28</td>
<td>122.78 ± 36.27</td>
</tr>
<tr>
<td>Ba</td>
<td>10.98 ± 4.33</td>
<td>5.68 ± 1.93</td>
</tr>
<tr>
<td>Fe</td>
<td>2.63 ± 1.99</td>
<td>1.33 ± 1.56</td>
</tr>
<tr>
<td>Pb</td>
<td>1.12 ± 0.66</td>
<td>1.12 ± 0.67</td>
</tr>
<tr>
<td>Mn</td>
<td>0.06 ± 0.07</td>
<td>0.22 ± 0.28</td>
</tr>
<tr>
<td>Cu</td>
<td>0.40 ± 0.35</td>
<td>0.36 ± 0.55</td>
</tr>
<tr>
<td>Ni</td>
<td>0.60 ± 0.58</td>
<td>0.68 ± 0.85</td>
</tr>
<tr>
<td>Cr</td>
<td>2.39 ± 1.35</td>
<td>1.03 ± 3.06</td>
</tr>
<tr>
<td>Zn</td>
<td>0.53 ± 0.51</td>
<td>1.75 ± 2.26</td>
</tr>
<tr>
<td>Cd</td>
<td>0.35 ± 0.09</td>
<td>0.35 ± 0.12</td>
</tr>
<tr>
<td>Hg</td>
<td>0.03 ± 0.01</td>
<td>0.03 ± 0.03</td>
</tr>
<tr>
<td>Schools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM Conc.</td>
<td>137.77 ± 42.18</td>
<td>127.19 ± 36.18</td>
</tr>
<tr>
<td>Ba</td>
<td>12.40 ± 4.85</td>
<td>5.73 ± 2.00</td>
</tr>
<tr>
<td>Fe</td>
<td>2.70 ± 2.09</td>
<td>1.51 ± 1.74</td>
</tr>
<tr>
<td>Pb</td>
<td>1.15 ± 1.19</td>
<td>1.37 ± 0.86</td>
</tr>
<tr>
<td>Mn</td>
<td>0.09 ± 0.08</td>
<td>0.23 ± 0.28</td>
</tr>
<tr>
<td>Cu</td>
<td>0.45 ± 0.32</td>
<td>0.39 ± 0.53</td>
</tr>
<tr>
<td>Ni</td>
<td>0.72 ± 0.60</td>
<td>0.70 ± 0.84</td>
</tr>
<tr>
<td>Cr</td>
<td>2.99 ± 1.70</td>
<td>0.71 ± 1.20</td>
</tr>
<tr>
<td>Zn</td>
<td>0.58 ± 0.57</td>
<td>1.84 ± 2.21</td>
</tr>
<tr>
<td>Cd</td>
<td>0.36 ± 0.10</td>
<td>0.42 ± 0.13</td>
</tr>
<tr>
<td>Hg</td>
<td>0.04 ± 0.02</td>
<td>0.03 ± 0.03</td>
</tr>
<tr>
<td>Offices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM Conc.</td>
<td>123.6 ± 41.44</td>
<td>109.20 ± 36.88</td>
</tr>
<tr>
<td>Ba</td>
<td>9.45 ± 4.85</td>
<td>4.35 ± 1.92</td>
</tr>
<tr>
<td>Fe</td>
<td>2.39 ± 1.73</td>
<td>1.36 ± 1.55</td>
</tr>
<tr>
<td>Pb</td>
<td>1.02 ± 1.09</td>
<td>1.12 ± 0.53</td>
</tr>
<tr>
<td>Mn</td>
<td>0.04 ± 0.06</td>
<td>0.20 ± 0.29</td>
</tr>
<tr>
<td>Cu</td>
<td>0.35 ± 0.33</td>
<td>0.34 ± 0.43</td>
</tr>
<tr>
<td>Ni</td>
<td>0.57 ± 0.64</td>
<td>0.63 ± 0.68</td>
</tr>
<tr>
<td>Cr</td>
<td>2.37 ± 1.45</td>
<td>0.55 ± 0.78</td>
</tr>
<tr>
<td>Zn</td>
<td>0.42 ± 0.45</td>
<td>1.68 ± 2.07</td>
</tr>
<tr>
<td>Cd</td>
<td>0.30 ± 0.10</td>
<td>0.30 ± 0.06</td>
</tr>
<tr>
<td>Hg</td>
<td>0.02 ± 0.01</td>
<td>0.01 ± 0.01</td>
</tr>
</tbody>
</table>

Average metal concentrations (μg m⁻³) in PM₂.₅ by personal and ambient monitoring at homes, schools and offices.
0.02–15.76 μgm⁻³, 0.01–4.86 μgm⁻³ in personal and ambient environment respectively. The total analyzed parameters contributed 13.69% to 14.36% and 9.87% to 10.16% for personal and ambient monitoring at homes, schools, and office sites. The unanalyzed part of the total PM₂.₅ mass collected from personal and ambient monitoring may include carbon, organics, silicates, and phosphates [21, 22] (Table 2).

9. Multivariate analysis

Global emissions reported by many authors [23–28] have revealed as anthropogenic and natural sources can contribute to the principal aerosol classes, but values variate rendering to the local scenario (coarse, fine and ultrafine) of atmospheric particulate matter. Approximately 10–20% of the aerosols can be categorized as anthropogenic on an international scale [20, 29], but these values may drastically change due to local scenarios, human activities, and the prevailing particle cut-off. Correlation analysis is the statistical procedure applied for this assessment. The levels of various elements in PM₂.₅ vary by diverse orders of scale and hence the correlation analysis was utilized. Correlation analysis was done to study the connection between ambient and personal sources among metallic species. Table 3 shows the interrelation between metallic species at the schools, homes, and offices, during the sampling period. The samples used for the analysis were (n = 90) and the eight variables in each sample of PM₂.₅. Fe presented the maximum concentration in indoor homes, schools, and offices followed by Cr, Pd, Zn, Ni, Cu, Cd, Mn, Ba, and Hg. The coefficient of variance was in the order of Fe > Ni > Zn > Cr > Mn > Cu > Ba > Cd > Pd > Hg. Comparable kinds of trends are found in trace metal concentrations in all three types of sites, indicating that there could be one or additional similar kinds of sources contributing to a somewhat similar kind of urban environment of the city area. Correlation analysis was done to achieve the association between individual trace metals and to show that two or more components may associate either due to common cause (Table 3) Zn and Ni showed good to strong correlation with Cr ($R^2 = 0.712$ and 0.824) and Mn ($R^2 = 0.758$ and 0.792) at homes sites, ($R^2 = 0.876$ and 0.996) and ($R^2 = 0.502$ and 0.687) at school sites and ($R^2 = 0.798$ and 0.975) and ($R^2 = 0.821$ and 0.946) at office sites. These correlations indicate smoking done by the occupants in the indoor working environment and incense burning could be the probable source of these trace metals [30]. Fe too showed strong correlation with Cu at these three sites ($R^2 = 0.913$, 0.921 and 0.902), followed by Cr with Mn ($R^2 = 0.736$, 0.826 and 0.872) and Ni with Cr ($R^2 = 0.824$, 0.501 and 0.821). Anthropogenic activities and the use of different mechanical and electrical apparatus like computers, printers, and photocopiers, etc. The work environment can give rise to emissions of such metals [29, 31]. Ni also showed a correlation with Cd ($R^2 = 0.512$ and 0.501) at homes and school sites which may be due to ambient sources. Ba showed a strong correlation with Fe and Cu ($R^2 = 0.645$ and 0.503) at home sites, ($R^2 = 0.678$ and 0.512) at school sites and, ($R^2 = 0.719$ and 0.567) at office sites, indicating outdoor sources like vehicles brake lining and other anthropogenic can contribute to it [32]. Whereas; Hg showed no significant correlation with any of the other metal species at any of the sampling sites.

10. Conclusion

Through this research work, we have been able to identify that personal exposure monitoring is a practical technique for improving knowledge about
Environmental Sustainability - Preparing for Tomorrow

The total analyzed parameters contributed 13.69% to 14.36% and 9.87% to 10.16% for personal and ambient monitoring at homes, schools, and office sites. The unanalyzed part of the total PM2.5 mass collected from personal and ambient monitoring may include carbon, organics, silicates, and phosphates [21, 22].

Multivariate analysis

Global emissions reported by many authors [23–28] have revealed as anthropogenic and natural sources can contribute to the principal aerosol classes, but values vary rendering to the local scenario (coarse, fine, and ultrafine) of atmospheric particulate matter. Approximately 10–20% of the aerosols can be categorized as anthropogenic on an international scale [20, 29], but these values may drastically change due to local scenarios, human activities, and the prevailing particle cut-off.

Correlation analysis is the statistical procedure applied for this assessment. The levels of various elements in PM2.5 vary by diverse orders of scale and hence the correlation analysis was utilized. Correlation analysis was done to study the connection between ambient and personal sources among metallic species.

Table 3

<table>
<thead>
<tr>
<th>Home</th>
<th>Zn</th>
<th>Pd</th>
<th>Ni</th>
<th>Fe</th>
<th>Cr</th>
<th>Cd</th>
<th>Mn</th>
<th>Cu</th>
<th>Ba</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>0.455</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.687*</td>
<td>0.264</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.211</td>
<td>0.421</td>
<td>0.475</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.712*</td>
<td>0.487</td>
<td>0.824*</td>
<td>0.664*</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.216</td>
<td>0.124</td>
<td>0.512*</td>
<td>0.227</td>
<td>0.427</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.758*</td>
<td>0.348</td>
<td>0.792*</td>
<td>0.216</td>
<td>0.736*</td>
<td>0.178</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.372</td>
<td>0.367</td>
<td>0.218</td>
<td>0.913*</td>
<td>0.689*</td>
<td>0.246</td>
<td>0.215</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.116</td>
<td>0.123</td>
<td>0.216</td>
<td>0.645*</td>
<td>0.056</td>
<td>0.187</td>
<td>0.114</td>
<td>0.503*</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>0.009</td>
<td>0.050</td>
<td>0.079</td>
<td>0.010</td>
<td>0.098</td>
<td>0.102</td>
<td>0.008</td>
<td>0.009</td>
<td>0.004</td>
<td>1.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School</th>
<th>Zn</th>
<th>Pd</th>
<th>Ni</th>
<th>Fe</th>
<th>Cr</th>
<th>Cd</th>
<th>Mn</th>
<th>Cu</th>
<th>Ba</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>0.368</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.497</td>
<td>0.168</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.318</td>
<td>0.336</td>
<td>0.587*</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.876*</td>
<td>0.421</td>
<td>0.501*</td>
<td>0.478</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.325</td>
<td>0.248</td>
<td>0.501*</td>
<td>0.246</td>
<td>0.416</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.996*</td>
<td>0.485</td>
<td>0.226</td>
<td>0.364</td>
<td>0.826*</td>
<td>0.325</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.116</td>
<td>0.167</td>
<td>0.697*</td>
<td>0.921**</td>
<td>0.348</td>
<td>0.348</td>
<td>0.139</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.120</td>
<td>0.131</td>
<td>0.203</td>
<td>0.678*</td>
<td>0.045</td>
<td>0.201</td>
<td>0.128</td>
<td>0.512*</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>0.010</td>
<td>0.061</td>
<td>0.062</td>
<td>0.012</td>
<td>0.078</td>
<td>0.117</td>
<td>0.009</td>
<td>0.006</td>
<td>0.005</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Table 3.
Correlation matrix at home, school and office sites.

<table>
<thead>
<tr>
<th></th>
<th>Zn</th>
<th>Pd</th>
<th>Ni</th>
<th>Fe</th>
<th>Cr</th>
<th>Cd</th>
<th>Mn</th>
<th>Cu</th>
<th>Ba</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>0.358</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.826*</td>
<td>0.276</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.296</td>
<td>0.331</td>
<td>0.379</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.798*</td>
<td>0.167</td>
<td>0.821*</td>
<td>0.334</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.058</td>
<td>0.256</td>
<td>0.428</td>
<td>0.387</td>
<td>0.342</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.975**</td>
<td>0.428</td>
<td>0.946**</td>
<td>0.421</td>
<td>0.872*</td>
<td>0.315</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.018</td>
<td>0.348</td>
<td>0.167</td>
<td>0.902*</td>
<td>0.216</td>
<td>0.246</td>
<td>0.216</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.118</td>
<td>0.136</td>
<td>0.198</td>
<td>0.719*</td>
<td>0.044</td>
<td>0.201</td>
<td>0.103</td>
<td>0.567*</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>0.007</td>
<td>0.072</td>
<td>0.045</td>
<td>0.0013</td>
<td>0.045</td>
<td>0.110</td>
<td>0.010</td>
<td>0.005</td>
<td>0.008</td>
<td>1.000</td>
</tr>
</tbody>
</table>

*Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

The table above summarizes the elemental characterization, correlation analysis, and health risks concomitant with fine particle PM2.5 that is generated during different activities at homes, schools, and offices.
individual-level exposure to environmental stressors. This exploration work summarizes the elemental characterization, correlation analysis, and health risks concomitant with fine particle PM$_{2.5}$ that is generated during different activities at homes, schools, and offices.

Acknowledgements

This work was supported by the DST/SERB Project no.SR/FTP/ES-58/2012. The authors like to thank Principal Prof. S. P. Singh and Dr. Susan Jaison. Head Department of Chemistry, St. John’s College, Agra for providing the necessary facility.

Author details

Mahima Habil*, David D. Massey* and Ajay Taneja2

1 Department of Chemistry, St. John’s College, Agra, India

2 Department of Chemistry, Dr. B.R. Ambedkar University, Agra, India

*Address all correspondence to: mahi.habil@gmail.com and davidmassey22@gmail.com

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[8] Nigam AN. Department of Registration for Birth and Death. Agra: M.G.road; 2009

Influence of Microenvironments and Personal Activities on Personal PM$_{2.5}$ Exposures...
DOI: http://dx.doi.org/10.5772/intechopen.95116

Chapter 13
Fossil Fuel Fires: A Forgotten Factor of Air Quality
Łukasz Kruszewski

Abstract
Spontaneous fossil fuel fires, especially coal fires, are known worldwide. They occur in numerous sites, both completely natural (coal seam outcrops) and anthropogenic (burning mining waste heaps, or BMWHs). Coal and waste/barren rock fires produce gaseous emanations, acting within exhalative processes. This factor is rarely being considered as influencing quality of the atmospheric air. The paper shortly discusses most important available methods for field gas analysis, with an emphasis on a portable FTIR spectrometer. It summarizes results of gas analyses from Polish BMWHs, using a multi-tool approach. It also lists a number of additional analyses from 53 vents of these environmentally important objects, with the main purpose of enlarging the knowledge of the span of concentrations of the particular compounds. This is especially true for formaldehyde, pyridine, CO, 1,1,1-trichloroethene, 1,1-dichloroethene, cumene, SO2, and, to a lesser extent, NO2, CCl4, ethane, propane, ethene, and thiophene. The latter, and DMS, are confirmed as gaseous S source more frequent and rich than SO2.

Keywords: natural spontaneous coal fires, combustion gas emissions, in situ FTIR gas analysis

1. Introduction
Spontaneous fires of fossil fuels – mainly coals but also bituminous shales and oil shales – are known worldwide. They both concern natural environments and their anthropogenic analogues – burning mining waste heaps (BCWH). The CWHs are, more or less, permanent elements of the environment of coal basins. Although sometimes under reclamation, their recultivation procedures may also negatively influence the surroundings. The phenomena taking place in the BCWH are described, e.g., in Nasdala & Pekov [1], Cebulak et al. [2], Sokol et al., [3], Stracher [4], and papers of Ł. K. The later largely characterize complex products of gaseous emissions related to both coal and barren rock – mutually known as mining waste – burning. This chapter characterizes the composition of these emissions, by juxtaposing published concentrations and their related mean values with new data obtained for new BCWH-type object. As such, the chapter extends knowledge about the geochemical charge of the BCWH gaseous emissions and, as such, their potential atmospheric input.

2. Environmental gas emission measurement methods
Numerous methods of gas analysis in the environment exist. One of the most simple one, based on colorimetric chemical reactions, uses indicatory tubes (IT).
Chapter 13

Fossil Fuel Fires: A Forgotten Factor of Air Quality

Łukasz Kruszewski

Abstract

Spontaneous fossil fuel fires, especially coal fires, are known worldwide. They occur in numerous sites, both completely natural (coal seam outcrops) and anthropogenic (burning mining waste heaps, or BMWHs). Coal and waste/barren rock fires produce gaseous emanations, acting within exhalative processes. This factor is rarely being considered as influencing quality of the atmospheric air. The paper shortly discusses most important available methods for field gas analysis, with an emphasis on a portable FTIR spectrometer. It summarizes results of gas analyses from Polish BMWHs, using a multi-tool approach. It also lists a number of additional analyses from 53 vents of these environmentally important objects, with the main purpose of enlarging the knowledge of the span of concentrations of the particular compounds. This is especially true for formaldehyde, pyridine, CO, 1,1,1-trichloroethene, 1,1-dichloroethene, cumene, SO2, and, to a lesser extent, NO2, CCl4, ethane, propane, ethene, and thiophene. The latter, and DMS, are confirmed as gaseous S source more frequent and rich than SO2.

Keywords: natural spontaneous coal fires, combustion gas emissions, in situ FTIR gas analysis

1. Introduction – fossil fuel fires

Spontaneous fires of fossil fuels – mainly coals but also bituminous shales and oil shales – are known worldwide. They both concern natural environments and their anthropogenic analogues – burning mining waste heaps (BCWH). The CWHs are, more or less, permanent elements of the environment of coal basins. Although sometimes under reclamation, their recultivation procedures may also negatively influence the surroundings. The phenomena taking place in the BCWH are described, e.g., in Nasdala & Pekov [1], Cebulak et al. [2], Sokol et al., [3], Stracher [4], and papers of Ł.K. The later largely characterize complex products of gaseous emissions related to both coal and barren rock – mutually known as mining waste – burning. This chapter characterizes the composition of these emissions, by juxtaposing published concentrations and their related mean values with new data obtained for new BCWH-type object. As such, the chapter extends knowledge about the geochemical charge of the BCWH gaseous emissions and, as such, their potential atmospheric input.

2. Environmental gas emission measurement methods

Numerous methods of gas analysis in the environment exist. One of the most simple one, based on colorimetric chemical reactions, uses indicatory tubes (IT).
This method is based on colorimetric interaction of measured gaseous species with a chemical filler. In particular, Dräger tubes allow to detect and measure amounts of gases like O₂, CO₂, CO, NO₂, SO₂, NH₃, PH₃ (phosphine), acetic acid, acetone, propane, benzene, toluene, styrene, o-xylene, butadiene, total mercaptans (thiols), methanol, i-propanol, trichloroethene (TCE), vinyl chloride, methyl tert-butyl ether (MTBE), and others. However, the IT method brings large errors due to cross-sensitivity and numerous coincident reactions of the emanation-contained gaseous species, and humidity. Positive determinations for the BCWHs gases were thus single, and the following substances were observed (with semi-quantitative due to the above factors): H₂S (up to 1140 ppm), HCN (single determination (s.d.), 16 ppm), acetaldehyde (possibly up to 1150 ppm), diethyl ether (up to 1100 ppm), trimethylamine (and/or other amines; ca. 57 ppm), ethyl formate (s.d., <23 ppm), and I₂ (s.d., 1.7 ppm). Gas Chromatography (GC) is a method of choice for the analysis of environmental organics. A sample is put into specialized columns, where retention time of a particular molecule, related to its mass and charge (m/z parameter), is measured. However, it is relatively rarely used for gas analysis due to a need of a more sophisticated sample loader. This is overcome by a method of Colman et al. [5], where a sample sucked into a steel can and sent to laboratory (here: overseas) is reheated (to the temperature measured in situ), divided into aliquots with various pre-treatments including (1) passing heated aliquots over a glass for low-volatile compounds exerting and (2) water-immersion-driven revolatization, and (3) chromatographic separation. Analyses of such portioned sample using 3 detection methods: Mass Spectrometry (MS), Flame Ionization (FI), and Electron Capture (EC), both shown in Kruszewski et al. [6] and this chapter, proven to be problematic, as explained below.

The GC method is, however, useful in the environmental gas analyses if coupled with tools like Nitrogen-Phosphorus-Detector and cryo-focusing. A good example is a work of Wickenheiser et al. [7], who analyzed gases emitted from Italian wetland bogs. The compounds included PH₃, ethane, ethene, and NOₓ. GC coupled with Inductively Coupled Plasma – Mass Spectroscopy (ICP-MS) allowed them to address heavy organo(semi/non)metallic gases like trimethylarsine (TMA), (CH₃)₃As, and trimethylstibine (TMS), (CH₃)₃Sb, and also metallic Hg, emitted from algal mats. The same method allowed to Feldmann et al. to detect (via cryotrapping) trimethylbismuthine, (CH₃)₃Bi, as a common gas in municipal solid waste and sewage gas. Traces of tetramethylin and TMS were also detected this way (vide [8]). Another method mentioned by the latter author is hydride generation. The use of tedlar bags, a gas trapping solution (with HNO₃ and H₂O₂), charcoal sorbent tubes, preconcentrators, and analysis with GC–MS and GC-PID (GC with photo-ionization detection) is also widely exploited, e.g., to measure TMA and propanethiol [9]. A method to be exploited by the author (Ł.K.) is a GC in conjunction with Atomic Emission Spectroscopy (AES). This two-step method involved very-low-detection-limit analysis, both qualitative and quantitative, of mainly (semi)metals in a gas sample, followed by analysis of their immediate surroundings for proposing types of organic and inorganic (semi)metal forms (R. Stasiuk, pers. comm.).

3. Mining waste heaps and products of their fires

A large number of coal mining waste heaps bear numerous spontaneous fire foci. In these burning coal-mining waste heaps (BCWHs), the fire incidents are due to criss-crossing influence of coal petrography (i.e., maceral composition), sulfide mineral content (especially pyrite), coal rank, and microbial activity. The fires
induce three types of mineral-forming phenomena: a high-temperature solid–solid and gas–solid transformation of the waste, known as pyrometamorphism (up to \(\sim 1200^\circ\text{C}\) in the coal case; [3]); medium-temperature exhalative processes; and low-temperature supergene weathering processes ([6, 10–12], and references therein). Of the Air Quality interest is, of course, the second group of processes, involving both gas emission and gas-waste interface reactions. The latter include direct gas desublimation (condensation) and pneumatolysis-like gaseous extraction of various waste-contained metals followed by hydrothermal mineralization. The first process mainly produces minerals like native sulfur (\(S_n\)), salammoniac (\(NH_4Cl\)), and a number of less frequent species like kremersite, (\(NH_4K\))\(_2\)[FeCl\(_5\)(H\(_2\)O)] and other chlorides. The second one is responsible for vast, thick sulfate crusts mainly comprising godovikovite-sabieite solid solution, (\(NH_4\))(Al,Fe)(SO\(_4\))\(_2\), millosevichite-mikasaite solid solution, (Al,Fe)_2(SO\(_4\))\(_3\), steklite, KAl(SO\(_4\))\(_2\), tschermigite, (\(NH_4\))Al (SO\(_4\))\(_2\)·12H\(_2\)O (natural ammonium aluminum alum), alunite-supergroup minerals, and many others. Pyrometamorphic processes and their product in Polish BCWH – within both the Upper and Lower Silesian Coal Basins (USCB and LSCB, respectively) was extensively studied, e.g., by Kruszewski [13, 14] and Kruszewski et al. [15, 16], with process imitation experiments described, e.g. by Kruszewski [10]. Mineralogy of the exhalative processes and gas phase composition of the local fumaroles was largely addressed by Kruszewski [6, 12, 17–19]. Fabiańska et al. [20] and Lewińska-Preis et al. [21] addressed some environmental aspects of the gas emissions in question. Supergene mineralogy was described in Kruszewski [11]. Presentation of the BCWH as models of various natural environments, including extraterrestrial ones, was shown by Kruszewski et al. [22, 23]. Biological aspects of the BCWH environment were brought up by Kruszewski & Matlakowska [24].

The fumaroles bear numerous minerals rich in trace and toxic elements, like zinc, copper, nickel, arsenic, thallium, lead, bismuth, selenium, bromine, iodine, indium, silver, and others. The mineral segregations are, obviously, related to the gas phase composition. Analyzing the latter was somewhat pioneering, as we could not find any literature sources showing the use of a portable FTIR (Fourier-Transformed InfraRed) spectroscopy for in situ analyzing of gaseous emissions, at least in the BCWH or the coal-fire environment in general. The IR method is a type of spectroscopy where vibrations of chemical bonds in molecules are being addressed, and depicted by their interaction with IR laser (a similar method is Raman spectroscopy). Various types of vibrations (i.e., stretching, bending, rocking, and other types) are responsible for various peaks in the spectra observed. Most compounds show response to the IR light (i.e., IR laser), by a pattern more or less characteristic for the particular molecule. Some exceptions include H\(_2\)S (hydrogen sulfide), which – in the variation of the IR method described here – gives only weak signals, thus making the aforementioned IT method somewhat more useful. The main components were shown (in [6]) to be H\(_2\)O and CO\(_2\), with minor but variable add of CH\(_4\) and CO. However, the composition was shown to be much more complex. The portable FTIR GASMET DX-4000 (OMC ENVAG) system was thoroughly characterized in Kruszewski et al. [6, 12]. It system a tool of choice for analysis of complex, hot, chemically aggressive and char- and ash-rich emanations, including combustion/exhaust gases. It comprises a probe with stainless-steel tip, connected with special wires with gas conditioning system (with a pressure control, pump, and system of 2 μm filters for catching any solid and liquid contaminants) and then the FTIR spectrometer. The interferometer has a ZnSe beam splitter; the sample cell has its path length of 5.0 m, volume is 0.4 L; Viton gaskets, MgF\(_2\) protective coating, and BaF\(_2\) window are present, too. The whole sampling system is internally coated by protective layers of rhodium and, gold and nickel.
FTIR results obtained for total 52 fumaroles in four BCWHs located in Pszów, Rybnik-Rymer, Radlin, and Rydultowy (USCB), respectively, showed up to [in ppm, unless noticed; whole-range maximums underlined]: H2O 57.5, 19.3, 12.5, 36.2 vol.%; CO2 67.2, 7.63, 6.82, 30.6 vol.%; CO 2690, 694, 21, 347; NO 434, 38, 123, 151; N2O not observed (n.o.), 0.42, 1.2, 8.7; NO2 16430, 116, 24, 191; NH3 1715, 646, 14, 98; SO2 582, 74, 64, 226; HCl 58, 23, 2.4, 8.9; CCl4 22, 1.5, 6.0, 14; HF 4.0, 2.2, n.o., 5.1; SiF4 1890, 228, 504, 1980; AsH3 8.2, 0.49, 0.18, 0.64; CH4 82970, 1050, 838, 888; ethane 511, 306, 42, 316; propane 1446, 100, 16, 284; hexane 921, 123, n.o., 262; ethene 92, 28, 21, 21; dichloromethane (DCM) 5472, 1730, 241, 1980; 1,1-dichloroethane (1,1-DCE) 2110, 580, 175, and 742; 1,2-DCE 573, 28, 7.4; n.o.; 1,1,1-trichloroethane (1,1,1-TCE) 7.7, n.o., 40, 23; 1,2-dichloropropane (1,2-DCP) 4900, 12, n.o., 44; 1,1-dichloroethene (1,1-DCEe) 51, 3.3, 34, 140; vinyl chloride 1700, 809, n.o., 1980; chlorobenzene 416, 71, 92, 100; cumene (i-propylbenzene) 194, 84, 35, 75; phenol 43, 348, 37, and 103; o-cresol (2-methylphenol) 1620, 99, n.o., 99; furan 27, 29, 130, 12; tetrahydrofuran (THF) 598, 372, n.o., 2830; thiophene 781, 578, 773, 550; acetic acid 7000, 12, 12, 650; dimethyl sulfide (DMS) 6650, 2230, n.o., 6780; dimethyl disulfide (DMDS) 518, 36, n.o., 97; formaldehyde 5.7, n.o., n.o., and 3.1. Pyridine was observed only in Radlin, in very constant amounts, 10–11 ppm. Although certified (as in the case of other compounds in the calibration library), the maximum contents of germanium tetrachloride, GeCl4, i.e., 3130, 209, 333, and 2098 should be treated with care due to possible coincidence as yet unresolvable by the Calcmet software. Geometric means of the concentration values (Pszów, Rybnik-Rymer, Radlin, Rydultowy, whole series) are: H2O 31, 12, 3.0, 21, and 19 (n_{total} = 46); CO2 31, 4.0, 0.22, 11, and 7.0 (n_{total} = 50) [vol.%]; CO 84, 186, 9.6, 81, and 81 (n_{total} = 41); NO 87, 15, 14, 66, and 42 (n_{total} = 24); NO2 334, 38, 14, 42, and 41 (n_{total} = 26); N2O -, 0.10, 0.66, 4.3, and 0.83 (n_{total} = 17); NH3 287, 22, 3.4, 59, and 88 (n_{total} = 18); SO2 110, 18, 17, 48, and 56 (n_{total} = 31); HCl 7.4, 4.2, 0.56, 3.0, and 3.8 (n_{total} = 46); CCl3 3.2, 0.18, 0.91, 2.5, and 1.6 (n_{total} = 51); HF 4.0, 2.2, −, 3.3, and 3.4 (n_{total} = 9); SiF4 16, 114, 92, 184, and 65 (n_{total} = 29); AsH3 1.1, 0.19, 0.17, 1.0, and 0.58 (n_{total} = 26); CH4 1945, 500, 23, 537, and 457 (n_{total} = 47); ethane 46, 114, 15, 75, and 59 (n_{total} = 37); propane 148, 70, 16, 27, and 46 (n_{total} = 27); hexane 160, 25, −, 15, and 38 (n_{total} = 26); ethene 7.9, 7.3, 11, 8.3, and 8.2 (n_{total} = 28); DCM 230, 119, 160, 295, and 214 (n_{total} = 45); 1,1-DCE 235, 190, 98, 99, and 139 (n_{total} = 32); 1,2-DCE 153, 28, 7.4, −, and 91 (n_{total} = 9); 1,1,1-TCE 5.4, −, 40, 9.5, and 7.7 (n_{total} = 19); 1,2-DCP 1038, 5.7, −, 20, and 166 (n_{total} = 9); 1,1-DCEe 19, 2.6, 31, 25, and 20 (n_{total} = 35); vinyl chloride 329, 38, −, 394, and 289 (n_{total} = 32); chlorobenzene 24, 36, 92, 32, and 32 (n_{total} = 12); cumene 28, 30, 35, 15, and 22 (n_{total} = 38); phenol 14, 36, 3.8, 32, and 19 (n_{total} = 32); o-cresol 115, 21, −, 99, and 73 (n_{total} = 15); furan 11, 9.8, 72, 12, and 31 (n_{total} = 18); THF 126, 372, −, 643, and 195 (n_{total} = 10); thiophene 251, 200, 90, 156, and 186 (n_{total} = 40); formaldehyde 3.5, −, −, 0.54, and 0.82 (n_{total} = 8); acetic acid 189, 6.6, 8.1, 83, and 54 (n_{total} = 22); DMS 517, 433, −, 921, and 533 (n_{total} = 16); DMDs 68, 11, −, 31, and 41 (n_{total} = 35); and pyridine −, −, 11, −, and 11 (total 8 records).

GC results were also published in the paper, with confirmed occurrence of carbonyl sulfide, COS, carbon disulfide, CS2, freons (CCl3F, CCl2F2, CHClF2), i-butane, n-butane, i-pentane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, propene, i-butene, trans- and cis-2-butene, trans- and cis-2-pentene, ethyne, 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethylbutane; 2- and 3-methylpentanes; benzene, toluene, m/p- and o-xylene, styrene, ethylbenzene, n- and i-propylbenzene; 2-, 3-, and 4- (or m-, p- and o-) ethyltoluene; 1,2,3-, 1,2,4-, and 1,3,5-trimethylbenzenes; and α- and β-pinene. As shown in the paper, the GC results may be quite unreliable due to their non-in situ character and possible intra-gas and gas-steel interactions, and are thus not resumed.
here. In turn, we have later used a second and third mode of the FTIR spectra reading. The first one is an external library search, where the spectra are read and calculated using libraries containing other compound sets, thus reporting semiquantitative results with fit factor (R^2, in %), as described in Kruszewski et al. [12]. Any misfits are due to recording the standards in different conditions than in the DX-4000 calibration library case. Applying this method allowed to detect additional compounds for the previously listed 4 BCWH sites [in ppm, with results for fit $\geq 90\%$, 75–90%, 50–75%, and $< 50\%$, and whole-data maximums underlined]:

- acetylene, C$_2$H$_2$ (up to 0.81; up to 27; up to 38; up to 288), n-butane (\(-; -; 7.1; 1.5\)), i-butane (\(-; -; 9.7; 0.25\)), propene (\(-; -; 101; up to 30\)), n-pentane (\(-; -; 4.0; 1.9\)), i-pentane (\(-; -; 11; 0.91\), heptane (\(-; -; up to 2.1; -\)), octane (\(-; -; up to 2.3; -\)), nonane (\(-; -; up to 2.1; -\)), decane (\(-; -; up to 2.0; -\)), undecane (\(-; -; up to 2.0; -\)), 1,3-butadiene (3.2; -; up to 144; up to 169), cyclohexane (\(-; -; up to 2.7; -\)), α-pinene (\(-; -; up to 4.0; up to 1.1\)), limonene (C$_{10}$H$_{16}$ \(-; -; up to 4.9; 2.7\)), 3-carene (C$_{15}$H$_{26}$ \(\frac{512}{2.2}\)), benzene (8.8; up to 5.1; up to 5700), toluene (\(-; -; up to 74; up to 18\), styrene (\(-; 88; 0.76; up to 154\), m-xylene (\(-; -; 19; up to 51\), p-xylene (\(-; -; up to 23\), ethylbenzene (\(-; -; up to 8.4\), 1,3,5-TMB (\(-; -; up to 729; up to 32\), 1,2,4-TMB (\(-; -; up to 1610; up to 27\), 1,2,3-TMB (\(-; -; up to 1360; up to 23\), tetrachloroethene (\(-; -; up to 4.3; up to 28; up to 27\), methanol (11; 5.4; up to 18; up to 75), ethanol (16; 5.4; up to 38; up to 126), i-propanol (isopropanol) (\(-; -; up to 16\), i-butanol (isobutanol) (\(-; -; 5.4\), n-propanol (\(-; 982; -\), methanethiol (methylmercaptan), CH$_3$SH (\(-; -; up to 55\), ethanethiol (ethylmercaptan), C$_2$H$_5$SH (\(-; -; up to 2500\), HCN (up to 8.4; up to 16; up to 88; up to 65), acrylonitrile (prop-2-enenitrile, CH$_2$=CHCN; \(-; -; 6.0\; up to 63; up to \(\frac{823}{1.7}\)), isocyanic acid (\(-; -; up to 717\), formic acid, HCOOH (3.0; 8.7; up to 29; up to 48), trimethylamine, (C$_2$H$_5$)$_3$N (\(-; -; up to 1.5\), acetaldehyde (up to 45; up to 97; up to 1810; up to 6270), propionaldehyde (propanal), (C$_2$H$_3$)$_3$CHO (\(-; -; up to 24\), 2-ethylhexaldehyde (C$_4$H$_7$CH(C$_2$H$_3$)$_2$CHO) (\(-; -; up to 342; -\), acrolein (propenal, CH$_2$=CHCHO; \(-; up to 57; up to 25\), acetone (propan-2-one) (\(-; -; up to 98\), methyl ethyl ketone (MEK, or butan-2-one), CH$_3$C(O)C$_2$H$_5$ (\(-; -; up to 28\), methyl isobutyl ketone (MIBK, or 4-methylpentan-2-on), (CH$_3$)$_2$C$_2$H$_5$C(O)CH$_3$ (\(-; -; up to 2.6\), diethylether (ethoxyethane, (C$_2$H$_5$)$_2$O; \(-; -; up to 17\); up to 24), MTBE (\(-; -; up to 9.4\), 2-ethoxyethanol, (C$_2$H$_5$O)O(CH$_2$O)(C$_2$H$_5$) (\(-; -; up to 47; up to 32\), 2-ethoxyethyl acetate (\(-; -; up to 19\), butyl acetate (\(-; -; up to 15\), 2-(2-butoxyethoxy) ethyl acetate (\(-; -; up to 13\), methyl metacrylate (methyl 2-methylprop-2-enolate) (\(-; -; up to 10\), PH$_3$ (phosphine; \(-; up to 43; up to 152\), COS (up to 0.88; up to 6.1; up to 0.40; -), and last but not least SF$_6$ (\(-; -; up to 1.6\; up to 1.5\). The last compound is environmentally very important, as it is said – by the Intergovernmental Panel on Climate Change – to be the most potent greenhouse gas [25]. The measured BCWH emanation concentrations are also much higher (over 170000 times) than the highest ones measured at Mauna Loa fumaroles [26].}

Calculated geometric means (whole series; with values for fit $\geq 50\%$ in the parentheses): 13 (2.3) for acetylene (n = 14 (31)), 25 (51) for propene (n = 9 (3)), 17 (29) for 1,3-butadiene (n = 15 (5)), 0.76 for α-pinene (n = 6), 3.5 for limonene (n = 3), 6.2 for 3-carene (n = 4), 55 (9.7) for benzene (n = 34 (14)), 7.4 (21) for toluene (n = 11 (3)), 9.6 for styrene (n = 9), 9.9 (10) for m-xylene (n = 11 (8)), 13 for p-xylene (n = 7), 13 (13) for 1,3,5-TMB (n = 11 (8)), 11 for 1,2,4-TMB (n = 10), 4.5 for 1,2,3-TMB (n = 6), 15 (5.5) for methanol (n = 24 (4)), 32 (8.6) for ethanol (n = 26 (7)), 6.9 for i-propanol (n = 7), 23 for ethanethiol (n = 4), 4.2 (1.4) for tetrachloroethene (n = 31 (9)), 7.2 (5.9) for HCN (n = 47 (33)), 293 for isocyanic acid (n = 18), 1.2 for trimethylamine (n = 3), 47 (47) for acrylonitrile (n = 12 (9)), 15 (12) for formic acid (n = 35 (7)), 62 (28) for acetaldehyde (n = 50 (45)), 9.4 for propionaldehyde...
(n = 4), 37 for 2-ethylhexylaldehyde (n = 3), 23 (28) for acrolein (n = 13 (9)), 21 for acetone (n = 22), 5.2 for diethyl ether (n = 10), 6.8 for 2-ethoxyethanol (n = 10), 7.7 for 2-ethoxyethyl acetate (n = 20), 4.8 for butyl acetate (n = 8), 5.1 for methyl metacrylate (n = 9), 12 for MEK (n = 8), 2.0 for MIBK (n = 5), 2.7 for MTBE (n = 4), 0.37 (0.41) for COS (n = 16 (13)), 72 (40) for PH3 (n = 28 (10)), and 1.1 for SF6 (n = 10). As such, acetaldehyde, HCN, PH3, tetrachloroethene, ethanol, benzene, COS, methanol, acetylene, and 1,3-butadiene, isocyanoic acid, acrolein, and likely acetone and 2-ethoxyethyl acetate seem to be the most frequent admixing gases in the BCWH exhausts studied.

The third operation mode is qualitative analysis of residual spectra, as thoroughly described in both my previous papers. This method allowed to list proposals of additional, very interesting, admixing gases, many of which were likely first documented in the nature. They include neutral hydroxides of Ca, Mg, Al, Fe(II), Fe (III), Zn, Cu; nitrosyls and carbonyls of Ti, V, Mn, Fe, Ag, Mo, Fe, Cu; hydrides of Al, Cu, Zn, Ge, Mo, Sb, and Hg; nitriles, azo and related compounds (azacyclopropenylidene, dicyanoacetylene, cyanogen isocyanate, cyanogen N-oxide, diazomethyl radical, hydrogen isocyanide, isocyanic acid, m-hydroxybenzonitrile, phenyl(nitrine) radical; 2,4,6-trinitriline-1,3,5-triazine); amines (methyl(nitrosomethyl)amine); hypobromous and hydroiodic acids; hydrocarbons and halocarbons (cyclohexene, radical; 2,4,6-trinitrene-1,3,5-triazine); amines (methyl(nitrosomethyl)amine); hypobromous and hydroiodic acids; hydrocarbons and halocarbons (cyclohexene, dibenz[a,h]anthracene, difluorovinyldiene, hexachlorobenzene, hexachloroethane, 5-methyl-1,3-didehydrobenzene, pentacene, phenanthrene, triphenylene); nitrosyl chloride and iodide, phosgene; organoboron compounds (fluoroisocyanatoborane) and compounds like CBrO and B2O2; organosulfurs (thiirene, thioacetaldehyde, methyl-1,3-didehydrobenzene, phenylnitrene); nitriles, azo and related compounds (azacyclopropenylidene, dicyanoacetylene, cyanogen isocyanate, cyanogen N-oxide, diazomethyl radical, hydrogen isocyanide, isocyanic acid, m-hydroxybenzonitrile, phenyl(nitrine) radical; 2,4,6-trinitriline-1,3,5-triazine); amines (methyl(nitrosomethyl)amine); hypobromous and hydroiodic acids; hydrocarbons and halocarbons (cyclohexene, dibenz[a,h]anthracene, difluorovinyldiene, hexachlorobenzene, hexachloroethane, 5-methyl-1,3-didehydrobenzene, pentacene, phenanthrene, triphenylene); nitrosyl chloride and iodide, phosgene; organoboron compounds (fluoroisocyanatoborane) and compounds like CBrO and B2O2; organosulfurs (thiirene, thioacetaldehyde, thioxoethenylidyne radical), organophosphorus compounds (methylphosphine), and organosilicons (difluorosilane, disilane, silanenitrile, tribromosilane), organoiodine compounds (iodosomethane – an I3+-bearing compounds; iodocyanoacetylene), HAlCl2, ClO2, and dimeric NO, to mention some. Due to multiple coincidence possible these results should, however, be treated with care.

4. New in situ FTIR gas analysis results of the USCB heaps

Results presentation within this chapter has its main goal in enlarging the span of the knowledge on the concentration range of various (major and minor) components of the BCWH combustion gases, both by pFTIR and GC methods. Table 1 shows data from Czerwionka-Leszczyny (18, that is, 10 vents / vent zones from zone CLD and 8 from the CL one). Table 2 juxtaposes data for 10 additional, differently mineralized vents from the Radlin heap (RD), with that from a BCWH in Bytom (BTM, 7 vents / vent zones). Table 3, in turn, juxtaposed data for vents in a BCWH in Świętochłowice (SWC, 11 vents / vent zones), “Starzykowiec” heap in the Chwałowice part of Rybnik (RCH, 1 vent, surface and deep part), and “Ruda” heap in Zabrze-Biskupice (ZBB, 5 vents / vent zones). In total, data for additional 53 vents is reported. As in the case of the data presented in Kruszewski et al. [6, 12], gases were probed at the surface and from deeper parts of the vents, whenever possible. Temperatures were measured using an IR pyrometer.

Following are values describing maximum and geometric-mean concentrations of gaseous species as detected within fumarolic vents of the CLD, CL, RD, BTM, SWC, and ZBB sites (whole-series-maximums are underlined): H2O, 18.12, 14.74; 7.30, 2.83; 27.14, 23.04; 11.15, 9.83; 6.42, 4.68; 25.63, 23.19; CO2, 2.85, 2.29; 27.00, 2.0, 2.0; 368, 155, 2.0, 2.0; 1430, 1430; 72, 44, 22; 66, 45, N2O, 3.5, 2.3; 0.06, 0.02; 4.4; 4.4; 2.8, 2.8; 1.3, 1.3; 2950, 244; 65, 55, 4.1, 2.4; 8.3, 234

DOI: http://dx.doi.org/10.5772/intechopen.96294

Environmental Sustainability - Preparing for Tomorrow

Fossil Fuel Fires: A Forgotten Factor of Air Quality
<table>
<thead>
<tr>
<th>vent</th>
<th>CLD1</th>
<th>CLD1o</th>
<th>CLD2</th>
<th>CLD3</th>
<th>CLD5</th>
<th>CLD5S</th>
<th>CLD5o</th>
<th>CLD6o</th>
<th>CLD6o2</th>
<th>CLD7</th>
<th>CldA</th>
<th>CldAr</th>
<th>Cl.dU</th>
<th>Cl.d</th>
<th>Cl1</th>
<th>Cl.do</th>
<th>Cl2a</th>
<th>CL2aA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T [°C]</td>
<td>40</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>60</td>
<td>90</td>
<td>90</td>
<td>82</td>
<td>82</td>
<td>50</td>
<td>82</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

pFTIR

<table>
<thead>
<tr>
<th>inorganics, vol.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O²</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>inorganics, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
</tr>
<tr>
<td>N₂O</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>NO₂</td>
</tr>
<tr>
<td>NH₃</td>
</tr>
<tr>
<td>SO₂</td>
</tr>
<tr>
<td>HCl</td>
</tr>
<tr>
<td>CCl₄</td>
</tr>
<tr>
<td>HF</td>
</tr>
<tr>
<td>SiF₄</td>
</tr>
<tr>
<td>AsH₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>aliphatic and aromatic hydrocarbons and their derivatives, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
</tr>
<tr>
<td>ethane</td>
</tr>
<tr>
<td>propane</td>
</tr>
<tr>
<td>hexane</td>
</tr>
<tr>
<td>Compounds</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Ethene</td>
</tr>
<tr>
<td>DCM</td>
</tr>
<tr>
<td>1,1-DCE</td>
</tr>
<tr>
<td>1,2-DCE</td>
</tr>
<tr>
<td>1,1,1-TCE</td>
</tr>
<tr>
<td>1,2-DCP</td>
</tr>
<tr>
<td>1,1-DCEe</td>
</tr>
<tr>
<td>CIB</td>
</tr>
<tr>
<td>Cumene</td>
</tr>
<tr>
<td>Phenol</td>
</tr>
<tr>
<td>O-cresole</td>
</tr>
<tr>
<td>Heterocyclic organic compounds, ppm</td>
</tr>
<tr>
<td>Furan</td>
</tr>
<tr>
<td>THF</td>
</tr>
<tr>
<td>Py</td>
</tr>
<tr>
<td>TPH</td>
</tr>
<tr>
<td>Other organic compounds, ppm</td>
</tr>
<tr>
<td>FM</td>
</tr>
<tr>
<td>DMS</td>
</tr>
<tr>
<td>DMDS</td>
</tr>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>(\text{CH}_2\text{Cl})</td>
</tr>
<tr>
<td>ethylene</td>
</tr>
<tr>
<td>propene</td>
</tr>
<tr>
<td>i-butane</td>
</tr>
<tr>
<td>n-butane</td>
</tr>
<tr>
<td>1-butene</td>
</tr>
<tr>
<td>i-butene</td>
</tr>
<tr>
<td>t(^2)-bu</td>
</tr>
<tr>
<td>c-2-bu</td>
</tr>
<tr>
<td>i-pentane</td>
</tr>
<tr>
<td>n-pentane</td>
</tr>
<tr>
<td>t-2-pte</td>
</tr>
<tr>
<td>c-2-pte</td>
</tr>
<tr>
<td>n-heptane</td>
</tr>
<tr>
<td>n-octane</td>
</tr>
<tr>
<td>n-decane</td>
</tr>
<tr>
<td>2,3-DMBu</td>
</tr>
<tr>
<td>2-MPT</td>
</tr>
<tr>
<td>vent</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>3-MPT</td>
</tr>
<tr>
<td>cpt</td>
</tr>
<tr>
<td>benzene</td>
</tr>
<tr>
<td>toluene</td>
</tr>
<tr>
<td>EtB</td>
</tr>
<tr>
<td>m/p-X</td>
</tr>
<tr>
<td>o-X</td>
</tr>
<tr>
<td>styrene</td>
</tr>
<tr>
<td>i-PrB</td>
</tr>
<tr>
<td>n-PrB</td>
</tr>
<tr>
<td>m-EtT</td>
</tr>
<tr>
<td>p-EtT</td>
</tr>
<tr>
<td>o-EtT</td>
</tr>
<tr>
<td>1,3,5-TMB</td>
</tr>
<tr>
<td>1,2,4-TMB</td>
</tr>
<tr>
<td>1,2,3-TMB</td>
</tr>
</tbody>
</table>

Values in parentheses denote overrun of the upper measurement range.

1“A”– samples taken from the depth of 0.8–1 m; “a” and “o” – nearby vents; “r” – repeated analysis; “S” – sulfur-mineralized vent.
3Notable (>100 ppm) enrichment given in bold.
4GC data for a nearby vent.

Table 1.
Results of the pFTIR and GC gas analyses of BCWH in Czerwionka-Leszczyny.
<table>
<thead>
<tr>
<th>vent(^4)</th>
<th>RD07</th>
<th>RD07A</th>
<th>RD08N</th>
<th>RD08NA</th>
<th>RD08kr</th>
<th>RD08krA</th>
<th>RD08o</th>
<th>RD11L</th>
<th>RD11U</th>
<th>RD11o</th>
<th>BTM1</th>
<th>BTM1A</th>
<th>BTM1o</th>
<th>BTM1o2</th>
<th>BTM1o3</th>
<th>BTM1o4</th>
<th>BTM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T °C</td>
<td>60</td>
<td>90</td>
<td>133</td>
<td>187</td>
<td>77</td>
<td>107</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>115</td>
<td>144</td>
<td>73</td>
<td>150</td>
<td>79</td>
<td>115</td>
<td>60</td>
</tr>
</tbody>
</table>

pFTIR

main components, vol.%

	H\(_2\)O\(^2\)	CO\(_2\)	CO	N\(_2\)O	NO	NO\(_2\)	NH\(_3\)	SO\(_2\)	HCl	CCl\(_4\)	HF	SiF\(_4\)	AsH\(_3\)	methane	ethane	propane	hexane	ethene
vent\(^4\)	RD07	RD07A	RD08N	RD08NA	RD08kr	RD08krA	RD08o	RD11L	RD11U	RD11o	BTM1	BTM1A	BTM1o	BTM1o2	BTM1o3	BTM1o4	BTM2	
T °C	60	90	133	187	77	107	76	76	76	76	115	144	73	150	79	115	60	

inorganics, ppm

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>NO</th>
<th>HCl</th>
<th>CCl(_4)</th>
<th>HF</th>
<th>SiF(_4)</th>
<th>AsH(_3)</th>
<th>methane</th>
<th>ethane</th>
<th>propane</th>
<th>hexane</th>
<th>ethene</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O(^2)</td>
<td>19.99</td>
<td>25.00</td>
<td>1580</td>
<td>6.3</td>
<td>0.12</td>
<td>15</td>
<td>3190</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>71</td>
<td>bdl</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>24.62</td>
<td>29.89</td>
<td>2430</td>
<td>5.1</td>
<td>bdl</td>
<td>13</td>
<td>3470</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>70</td>
<td>bdl</td>
</tr>
<tr>
<td>CO</td>
<td>26.02</td>
<td>20.21</td>
<td>923</td>
<td>4.4</td>
<td>0.71</td>
<td>21</td>
<td>1120</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>90</td>
<td>bdl</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>18.26</td>
<td>13.94</td>
<td>502</td>
<td>6.8</td>
<td>1.4</td>
<td>0.93</td>
<td>713</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>67</td>
<td>bdl</td>
</tr>
<tr>
<td>NO</td>
<td>27.14</td>
<td>26.16</td>
<td>813</td>
<td>6.9</td>
<td>0.56</td>
<td>0.49</td>
<td>1120</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>22.25</td>
<td>21.16</td>
<td>327</td>
<td>6.2</td>
<td>1.7</td>
<td>1.2</td>
<td>1140</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>26.61</td>
<td>21.32</td>
<td>673</td>
<td>2.6</td>
<td>1.4</td>
<td>1.2</td>
<td>500</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>CO</td>
<td>26.65</td>
<td>21.24</td>
<td>1030</td>
<td>2.3</td>
<td>0.81</td>
<td>0.56</td>
<td>1150</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>NO</td>
<td>24.80</td>
<td>19.94</td>
<td>1300</td>
<td>2.7</td>
<td>1.7</td>
<td>1.4</td>
<td>285</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>9.94</td>
<td>4.19</td>
<td>1830</td>
<td>3.3</td>
<td>1.3</td>
<td>1.4</td>
<td>437</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>11.04</td>
<td>11.15</td>
<td>2340</td>
<td>3.6</td>
<td>0.95</td>
<td>0.59</td>
<td>421</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>CO</td>
<td>11.67</td>
<td>11.02</td>
<td>2830</td>
<td>5.4</td>
<td>1.1</td>
<td>1.1</td>
<td>359</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>NO</td>
<td>10.41</td>
<td>10.02</td>
<td>1150</td>
<td>4.1</td>
<td>0.79</td>
<td>0.79</td>
<td>808</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>11.15</td>
<td>9.43</td>
<td>1500</td>
<td>9.43</td>
<td>2.9</td>
<td>2.9</td>
<td>919</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>1440</td>
<td>7.49</td>
<td>3920</td>
<td>2.8</td>
<td>0.79</td>
<td>0.79</td>
<td>1298</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>64</td>
<td>bdl</td>
</tr>
</tbody>
</table>

aliphatic and aromatic hydrocarbons and their derivatives, ppm

<table>
<thead>
<tr>
<th></th>
<th>methane</th>
<th>ethane</th>
<th>propane</th>
<th>hexane</th>
<th>ethene</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD07</td>
<td>3190</td>
<td>3470</td>
<td>387</td>
<td>71</td>
<td>bdl</td>
</tr>
<tr>
<td>RD07A</td>
<td>1120</td>
<td>1120</td>
<td>601</td>
<td>139</td>
<td>bdl</td>
</tr>
<tr>
<td>RD08N</td>
<td>713</td>
<td>1160</td>
<td>291</td>
<td>70</td>
<td>bdl</td>
</tr>
<tr>
<td>RD08NA</td>
<td>1120</td>
<td>1140</td>
<td>230</td>
<td>70</td>
<td>bdl</td>
</tr>
<tr>
<td>RD08kr</td>
<td>1140</td>
<td>500</td>
<td>213</td>
<td>53</td>
<td>bdl</td>
</tr>
<tr>
<td>RD08krA</td>
<td>500</td>
<td>1120</td>
<td>230</td>
<td>90</td>
<td>bdl</td>
</tr>
<tr>
<td>RD08o</td>
<td>1150</td>
<td>1150</td>
<td>213</td>
<td>67</td>
<td>bdl</td>
</tr>
<tr>
<td>RD11L</td>
<td>285</td>
<td>437</td>
<td>195</td>
<td>71</td>
<td>bdl</td>
</tr>
<tr>
<td>RD11U</td>
<td>437</td>
<td>421</td>
<td>249</td>
<td>71</td>
<td>bdl</td>
</tr>
<tr>
<td>RD11o</td>
<td>421</td>
<td>359</td>
<td>249</td>
<td>67</td>
<td>bdl</td>
</tr>
<tr>
<td>BTM1</td>
<td>808</td>
<td>819</td>
<td>694</td>
<td>39</td>
<td>bdl</td>
</tr>
<tr>
<td>BTM1A</td>
<td>554</td>
<td>819</td>
<td>429</td>
<td>84</td>
<td>bdl</td>
</tr>
<tr>
<td>BTM1o</td>
<td>819</td>
<td>554</td>
<td>694</td>
<td>78</td>
<td>bdl</td>
</tr>
<tr>
<td>BTM1o2</td>
<td>554</td>
<td>819</td>
<td>429</td>
<td>78</td>
<td>bdl</td>
</tr>
<tr>
<td>BTM1o3</td>
<td>819</td>
<td>554</td>
<td>694</td>
<td>78</td>
<td>bdl</td>
</tr>
<tr>
<td>BTM1o4</td>
<td>554</td>
<td>819</td>
<td>429</td>
<td>78</td>
<td>bdl</td>
</tr>
<tr>
<td>BTM2</td>
<td>819</td>
<td>554</td>
<td>694</td>
<td>78</td>
<td>bdl</td>
</tr>
<tr>
<td>vent</td>
<td>RD07</td>
<td>RD07A</td>
<td>RD08N</td>
<td>RD08NA</td>
<td>RD08kr</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>DCM</td>
<td>8.3</td>
<td>18</td>
<td>126</td>
<td>29</td>
<td>104</td>
</tr>
<tr>
<td>1,1-DCE</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>1,2-DCE</td>
<td>39</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>1,1,1-TCE</td>
<td>29</td>
<td>15</td>
<td>21</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>1,2-DCP</td>
<td>124</td>
<td>384</td>
<td>75</td>
<td>42</td>
<td>264</td>
</tr>
<tr>
<td>1,1-DCEe</td>
<td>81</td>
<td>30</td>
<td>195</td>
<td>101</td>
<td>164</td>
</tr>
<tr>
<td>ViCl</td>
<td>416</td>
<td>96</td>
<td>276</td>
<td>187</td>
<td>248</td>
</tr>
<tr>
<td>CIB</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>cumene</td>
<td>94</td>
<td>126</td>
<td>119</td>
<td>36</td>
<td>101</td>
</tr>
<tr>
<td>phenol</td>
<td>bdl</td>
<td>15</td>
<td>49</td>
<td>bdl</td>
<td>21</td>
</tr>
<tr>
<td>o-cresole</td>
<td>37</td>
<td>65</td>
<td>25</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>heterocyclic organic compounds, ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THF</td>
<td>43</td>
<td>96</td>
<td>bdl</td>
<td>3.1</td>
<td>bdl</td>
</tr>
<tr>
<td>tph</td>
<td>164</td>
<td>257</td>
<td>337</td>
<td>385</td>
<td>363</td>
</tr>
<tr>
<td>other organic compounds, ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fm</td>
<td>bdl</td>
<td>bdl</td>
<td>2.6</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>acac</td>
<td>bdl</td>
<td>9.1</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>DMS</td>
<td>131</td>
<td>126</td>
<td>47</td>
<td>401</td>
<td>bdl</td>
</tr>
<tr>
<td>GC – additional compounds, ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vent</td>
<td>RD07</td>
<td>RD07A</td>
<td>RD08N</td>
<td>RD08NA</td>
<td>RD08kr</td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>0.001</td>
<td>0.05</td>
<td>1.4</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>COS</td>
<td>7.4</td>
<td>0.78</td>
<td>2.6</td>
<td>0.88</td>
<td>0.16</td>
</tr>
<tr>
<td>vent</td>
<td>RD07</td>
<td>RD07A</td>
<td>RD08N</td>
<td>RD08NA</td>
<td>RD08kr</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>ethyne</td>
<td>0.01</td>
<td>0.01</td>
<td>0.001</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>propene</td>
<td>0.47</td>
<td>0.91</td>
<td>0.93</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>i-butane</td>
<td>3.3</td>
<td>1.7</td>
<td>0.08</td>
<td>0.005</td>
<td>0.13</td>
</tr>
<tr>
<td>n-butane</td>
<td>8.7</td>
<td>3.6</td>
<td>0.21</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>1-butene</td>
<td>0.01</td>
<td>0.02</td>
<td>0.13</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>i-butene</td>
<td>0.06</td>
<td>0.08</td>
<td>0.51</td>
<td>0.002</td>
<td>0.01</td>
</tr>
<tr>
<td>t-2-bu</td>
<td>0.01</td>
<td>0.06</td>
<td>0.16</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>c-2-bu</td>
<td>0.01</td>
<td>0.03</td>
<td>0.12</td>
<td>0.0005</td>
<td>0.003</td>
</tr>
<tr>
<td>i-pentane</td>
<td>2.0</td>
<td>0.77</td>
<td>0.04</td>
<td>0.004</td>
<td>0.09</td>
</tr>
<tr>
<td>n-pentane</td>
<td>3.3</td>
<td>1.1</td>
<td>0.07</td>
<td>0.005</td>
<td>0.06</td>
</tr>
<tr>
<td>isoprene</td>
<td>bdl</td>
<td>0.002</td>
<td>0.03</td>
<td>0.0003</td>
<td>0.001</td>
</tr>
<tr>
<td>1,3-budi</td>
<td>bdl</td>
<td>0.02</td>
<td>0.0002</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>t-2-pte</td>
<td>0.12</td>
<td>0.01</td>
<td>0.06</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>c-2-pte</td>
<td>0.05</td>
<td>0.003</td>
<td>0.03</td>
<td>0.0004</td>
<td>0.002</td>
</tr>
<tr>
<td>n-heptane</td>
<td>0.44</td>
<td>0.18</td>
<td>0.03</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>n-octane</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.0007</td>
<td>0.004</td>
</tr>
<tr>
<td>n-nonane</td>
<td>0.03</td>
<td>0.46</td>
<td>0.02</td>
<td>0.0003</td>
<td>0.001</td>
</tr>
<tr>
<td>n-decane</td>
<td>0.003</td>
<td>0.02</td>
<td>0.01</td>
<td>0.0001</td>
<td>0.0002</td>
</tr>
<tr>
<td>2,3-DMB</td>
<td>0.12</td>
<td>0.04</td>
<td>0.003</td>
<td>0.0002</td>
<td>0.004</td>
</tr>
<tr>
<td>2-MPT</td>
<td>0.64</td>
<td>0.22</td>
<td>0.01</td>
<td>0.001</td>
<td>0.02</td>
</tr>
<tr>
<td>3-MPT</td>
<td>0.26</td>
<td>0.10</td>
<td>0.02</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>cpt</td>
<td>0.70</td>
<td>0.25</td>
<td>0.01</td>
<td>0.0004</td>
<td>0.003</td>
</tr>
<tr>
<td>vent</td>
<td>RD07</td>
<td>RD07A</td>
<td>RD08N</td>
<td>RD08NA</td>
<td>RD08kr</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>benzene</td>
<td>5.3</td>
<td>3.2</td>
<td>4.3</td>
<td>0.13</td>
<td>0.46</td>
</tr>
<tr>
<td>toluene</td>
<td>0.16</td>
<td>0.27</td>
<td>0.66</td>
<td>0.005</td>
<td>0.13</td>
</tr>
<tr>
<td>EtB</td>
<td>0.01</td>
<td>0.08</td>
<td>0.08</td>
<td>0.0003</td>
<td>0.02</td>
</tr>
<tr>
<td>m/p-X</td>
<td>0.03</td>
<td>0.11</td>
<td>0.28</td>
<td>0.001</td>
<td>0.05</td>
</tr>
<tr>
<td>o-X</td>
<td>0.01</td>
<td>0.05</td>
<td>0.13</td>
<td>0.0004</td>
<td>0.01</td>
</tr>
<tr>
<td>styrene</td>
<td>0.001</td>
<td>0.01</td>
<td>0.005</td>
<td>0.00003</td>
<td>0.001</td>
</tr>
<tr>
<td>i-PrB</td>
<td>0.001</td>
<td>0.02</td>
<td>0.01</td>
<td>bdl</td>
<td>0.001</td>
</tr>
<tr>
<td>n-PrB</td>
<td>0.002</td>
<td>0.01</td>
<td>0.04</td>
<td>0.0001</td>
<td>0.002</td>
</tr>
<tr>
<td>m-EtT</td>
<td>0.01</td>
<td>0.05</td>
<td>0.11</td>
<td>0.0001</td>
<td>0.003</td>
</tr>
<tr>
<td>p-EtT</td>
<td>0.002</td>
<td>0.02</td>
<td>0.05</td>
<td>0.00003</td>
<td>0.001</td>
</tr>
<tr>
<td>o-EtT</td>
<td>0.004</td>
<td>0.02</td>
<td>0.04</td>
<td>0.00005</td>
<td>0.001</td>
</tr>
<tr>
<td>1,3,5-TMB</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.0001</td>
<td>0.001</td>
</tr>
<tr>
<td>1,2,4-TMB</td>
<td>0.01</td>
<td>0.08</td>
<td>0.17</td>
<td>0.0001</td>
<td>0.003</td>
</tr>
<tr>
<td>1,2,3-TMB</td>
<td>0.01</td>
<td>0.05</td>
<td>0.07</td>
<td>0.0001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Values in parentheses denote overrun of the upper measurement range.

1The "A" add denotes samples taken from the depth of 0.8–1 m (below the ground level), while "a" and "o" denote nearby vents; "r" – repeated measurement; "P" – pyrometamorphic zone, "S" – sulfur-mineralized vent.

2Abbreviations explained under Table 1: ViCl – vinyl chloride; furan, pyridine and DMDS were analyzed but were below their detection limits.

3Notable (>100 ppm) enrichment given in bold.

Table 2.
Results of the pFTIR and GC gas analyses of the "Marcel" mine BCWH in Radlin (RD, second gas study) and a heap in Bytom (BTM).
<table>
<thead>
<tr>
<th>vent</th>
<th>SWC1</th>
<th>SWC1r</th>
<th>SWC1oP</th>
<th>SWC1oSW</th>
<th>SWC1oB</th>
<th>SWC2</th>
<th>SWC2o</th>
<th>SWC2o2</th>
<th>SWC2o3</th>
<th>SWC3</th>
<th>SWC3A</th>
<th>RCH1</th>
<th>RCH1A</th>
<th>ZBB1</th>
<th>ZBB1A</th>
<th>ZBB2</th>
<th>ZBB2o</th>
<th>ZBB3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T [°C]</td>
<td>45</td>
<td>45</td>
<td>100</td>
<td>100</td>
<td>45</td>
<td>180</td>
<td>180</td>
<td>65</td>
<td>65</td>
<td>43</td>
<td>300</td>
<td>30</td>
<td>49</td>
<td>150</td>
<td>210</td>
<td>86</td>
<td>86</td>
<td>100</td>
</tr>
</tbody>
</table>

pFTIR

<table>
<thead>
<tr>
<th>Main components, vol. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
</tr>
</tbody>
</table>

Inorganics, ppm

<table>
<thead>
<tr>
<th>Component</th>
<th>CO</th>
<th>92</th>
<th>143</th>
<th>166</th>
<th>164</th>
<th>144</th>
<th>1090</th>
<th>1070</th>
<th>1060</th>
<th>1040</th>
<th>172</th>
<th>176</th>
<th>21</th>
<th>21</th>
<th>1220</th>
<th>12600</th>
<th>938</th>
<th>952</th>
<th>26700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N₂O</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>2.6</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>12</td>
<td>15</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>19</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>100</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td></td>
<td>NO₂</td>
<td>bdl</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>NH₃</td>
<td>1.5</td>
<td>3.1</td>
<td>4.1</td>
<td>3.1</td>
<td>3.0</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>2.0</td>
<td>1.4</td>
<td>12</td>
<td>bdl</td>
<td>8.3</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td></td>
<td>SO₂</td>
<td>bdl</td>
<td>15</td>
<td>46</td>
<td>bdl</td>
<td>14</td>
<td>79</td>
<td>59</td>
<td>58</td>
<td>53</td>
<td>39</td>
<td>47</td>
<td>129</td>
<td>172</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td></td>
<td>HCl</td>
<td>0.48</td>
<td>0.73</td>
<td>2.9</td>
<td>2.7</td>
<td>0.94</td>
<td>8.4</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>3.7</td>
<td>3.9</td>
<td>0.71</td>
<td>1.2</td>
<td>4.3</td>
<td>1.2</td>
<td>5.6</td>
<td>5.9</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>CCl₄</td>
<td>0.57</td>
<td>0.03</td>
<td>0.06</td>
<td>bdl</td>
<td>0.11</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>0.34</td>
<td>0.34</td>
<td>bdl</td>
<td>bdl</td>
<td>6.0</td>
<td>8.5</td>
<td>8.5</td>
<td>8.2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>HF</td>
<td>0.19</td>
<td>bdl</td>
<td>bdl</td>
<td>1.1</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>0.34</td>
<td>0.34</td>
<td>bdl</td>
<td>bdl</td>
<td>6.0</td>
<td>8.5</td>
<td>8.5</td>
<td>8.2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>SiF₄</td>
<td>bdl</td>
<td>0.08</td>
<td>2.4</td>
<td>2.5</td>
<td>0.18</td>
<td>48</td>
<td>48</td>
<td>47</td>
<td>47</td>
<td>3.0</td>
<td>3.5</td>
<td>0.42</td>
<td>bdl</td>
<td>25</td>
<td>15</td>
<td>28</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>AsH₃</td>
<td>0.04</td>
<td>0.09</td>
<td>0.40</td>
<td>bdl</td>
<td>0.28</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>0.38</td>
<td>0.37</td>
<td>bdl</td>
<td>bdl</td>
<td>0.88</td>
<td>2.9</td>
<td>0.19</td>
<td>bdl</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Aliphatic and aromatic hydrocarbons and their derivatives, ppm

<table>
<thead>
<tr>
<th>Component</th>
<th>Methane</th>
<th>propane</th>
<th>1,1-DCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5</td>
<td>bdl</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>bdl</td>
<td>47</td>
</tr>
<tr>
<td>vent</td>
<td>SWCI</td>
<td>SWC1r</td>
<td>SWC1oP</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1,2-DCE</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>1,1,1-TCE</td>
<td>bdl</td>
<td>bdl</td>
<td>1.8</td>
</tr>
<tr>
<td>1,2-DCP</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>1,1-DCEe</td>
<td>7.2</td>
<td>bdl</td>
<td>27</td>
</tr>
<tr>
<td>VC</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>CIB</td>
<td>9.5</td>
<td>bdl</td>
<td>51</td>
</tr>
<tr>
<td>cumene</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>phenol</td>
<td>2.4</td>
<td>1.6</td>
<td>5.6</td>
</tr>
<tr>
<td>o-cresole</td>
<td>2.4</td>
<td>1.6</td>
<td>5.6</td>
</tr>
<tr>
<td>heterocyclic organic compounds, ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THF</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>py</td>
<td>178</td>
<td>202</td>
<td>19</td>
</tr>
<tr>
<td>tph</td>
<td>bdl</td>
<td>146</td>
<td>26</td>
</tr>
<tr>
<td>other organic compounds, ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fm</td>
<td>1.8</td>
<td>0.21</td>
<td>7.1</td>
</tr>
<tr>
<td>DMS</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>DMDS</td>
<td>380</td>
<td>289</td>
<td>bdl</td>
</tr>
<tr>
<td>GC–additional compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vent</td>
<td>SWCI</td>
<td>SWC1r</td>
<td>SWC1oP</td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>0.001</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>COS</td>
<td>0.001</td>
<td>0.0004</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>SWC1</td>
<td>SWC1r</td>
<td>SWC1oP</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>propene</td>
<td>bdl</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>i-butane</td>
<td>0.002</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>n-butane</td>
<td>0.004</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>1-butene</td>
<td>bdl</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>i-butene</td>
<td>bdl</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>t-2-bu</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>c-2-bu</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>i-pentane</td>
<td>0.003</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>i-pentane</td>
<td>0.003</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>n-pentane</td>
<td>0.002</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>isoprene</td>
<td>bdl</td>
<td>0.003</td>
<td>bdl</td>
</tr>
<tr>
<td>1,3-budi</td>
<td>bdl</td>
<td>0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td>t-2-pte</td>
<td>0.0002</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>c-2-pte</td>
<td>0.0001</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>n-heptane</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>n-octane</td>
<td>0.0002</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>n-nonane</td>
<td>0.0003</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>n-decane</td>
<td>0.0003</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>2,3-DMBu</td>
<td>0.02</td>
<td>bdl</td>
<td>0.01</td>
</tr>
<tr>
<td>2-MPT</td>
<td>0.26</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>3-MPT</td>
<td>9.9</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>cpt</td>
<td>0.0005</td>
<td>0.0002</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.
Results of the pFTIR and GC gas analyses of a BCWH in Świętochłowice (SWC), “Starzykowiec” heap of the “Chwałowice” mine in Rybnik (RCH), and “Ruda” heap in Zabrze-Biskupice (ZBB).

<table>
<thead>
<tr>
<th>vent</th>
<th>SWC1</th>
<th>SWC1r</th>
<th>SWC1oP</th>
<th>SWC1oSW</th>
<th>SWC1oB</th>
<th>SWC2</th>
<th>SWC2o</th>
<th>SWC2o2</th>
<th>SWC2o3</th>
<th>SWC3</th>
<th>SWC3A</th>
<th>RCH1</th>
<th>RCH1A</th>
<th>ZBB1</th>
<th>ZBB1A</th>
<th>ZBB2</th>
<th>ZBB2o</th>
<th>ZBB3</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzene</td>
<td>0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
<td></td>
<td>0.50</td>
<td>1.7</td>
<td>0.003</td>
<td></td>
<td>0.46</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>toluene</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.005</td>
<td></td>
<td>0.22</td>
<td>0.41</td>
<td>0.002</td>
<td></td>
<td>0.002</td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>EtB</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
<td>0.03</td>
<td>0.04</td>
<td>0.001</td>
<td></td>
<td>0.001</td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>m/p-X</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
<td></td>
<td>0.07</td>
<td>0.15</td>
<td>0.002</td>
<td></td>
<td>0.002</td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>o-X</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
<td>0.03</td>
<td>0.06</td>
<td>0.001</td>
<td></td>
<td>0.001</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>styrene</td>
<td></td>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
<td></td>
<td></td>
<td>0.0002</td>
<td></td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>i-PrB</td>
<td>0.0002</td>
<td></td>
<td>0.002</td>
<td>0.004</td>
<td>0.0002</td>
<td></td>
<td>0.0002</td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>n-PrB</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0004</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.0001</td>
<td></td>
<td>0.0003</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>m-EtT</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0002</td>
<td></td>
<td>0.01</td>
<td>0.02</td>
<td>0.0003</td>
<td></td>
<td>0.001</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>p-EtT</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0001</td>
<td></td>
<td>0.004</td>
<td>0.01</td>
<td>0.0001</td>
<td></td>
<td>0.001</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>o-EtT</td>
<td>0.0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0001</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.0001</td>
<td></td>
<td>0.0004</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>1,3,5-</td>
<td>0.001</td>
<td></td>
<td>0.001</td>
<td></td>
<td>0.01</td>
<td>0.0001</td>
<td></td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>TMB</td>
<td></td>
<td></td>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
<td></td>
<td>0.02</td>
<td>0.03</td>
<td>0.0005</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>1,2,4-</td>
<td>0.0004</td>
<td></td>
<td>0.0002</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.0002</td>
<td></td>
<td>0.001</td>
</tr>
</tbody>
</table>

Values in parentheses denote overrun of the upper measurement range.
1The “A” add denotes samples taken from the depth of 0.8–1 m (below the ground level), while “a” and “o” denote nearby vents; “r” – repeated measurement; “P” – pyrometamorphic zone, “S” – sulfur-mineralized vent.
2Abbreviations explained under Table 1: ethane, furan and acetic acid were analyzed but were below their detection limits.
3Notable (>300 ppm) enrichment given in bold.
Environmental Sustainability - Preparing for Tomorrow

<table>
<thead>
<tr>
<th>Substance</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.0001</td>
<td>0.03</td>
<td>0.50</td>
<td>1.7</td>
<td>0.003</td>
<td>0.46</td>
<td>12</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.01</td>
<td>0.005</td>
<td>0.22</td>
<td>0.41</td>
<td>0.002</td>
<td>0.002</td>
<td>2.7</td>
</tr>
<tr>
<td>1-chloro-2,4-dinitrobenzene</td>
<td>0.0004</td>
<td>0.001</td>
<td>0.03</td>
<td>0.04</td>
<td>0.001</td>
<td>0.001</td>
<td>0.09</td>
</tr>
<tr>
<td>o-chloro-2,4-dinitrobenzene</td>
<td>0.0004</td>
<td>0.0001</td>
<td>0.03</td>
<td>0.01</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.02</td>
</tr>
<tr>
<td>p-chloro-2,4-dinitrobenzene</td>
<td>0.0004</td>
<td>0.0004</td>
<td>0.01</td>
<td>0.01</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Values in parentheses denote overrun of the upper measurement range.

1 The "A" denotes samples taken from the depth of 0.8 m (below the ground level), while "b" and "a" denote nearby vents; "r" repeated measurement; "P" pyrometamorphic zone, "-" and "e" denote enrichment given in bold.

Table 3. Results of the pFTIR and GC gas analyses of a BCWH in Łowice (SWC), Starzykowiec heap of the Chwałowice mine in Rybnik (RCH), and heap in Zabrze-Biskupice (ZBB).

Fossil Fuel Fires: A Forgotten Factor of Air Quality
DOI: http://dx.doi.org/10.5772/intechopen.96294

5. Discussion

In general, the data provided for additional vents from additional BCWH probed allows to enlarge the span of the maximum observed values of only some compounds. They include (with excess in parentheses) CO (10x), SO2, 1,1,1-TCE (12x), 1,1-DCEE (2.5x), cumene (2x), formaldehyde (3x), and pyridine (21x). Higher than previously observed geometric mean values are also observed for NO2, CCl4, ethene, and thiophene. This is clearly seen in the case of the latter two compounds, with more frequent positive determinations than within the previous studies. Similar levels of geometric means are found for HCl, AsH3, chlorobenzene, phenol, and DMDS. As formerly observed, concentration ranges are usually extremely variable. Cumene is a good example of a compound with very high maximum but very low geometric mean. So is true, though less clearly, for, e.g., o-cresol. Some compounds often show large contents but single records. For many BCWHs there are large discrepancies between the geometric mean values and maximums, while for less number of the objects studied the amounts emitted are at very steady level. Some constituents, like vinyl chloride and even methane, may show very high concentrations (>100 ppm) but may be "absent" (below detection limits) at other BCWHs or vents. As explained in the former papers, this results from very high dynamics of the local combustion processes. The ex situ GC values obtained are, again, usually much lower than those observed by in situ FTIR, thus confirming their uncertain and, possibly, semi-quantitative value. On the other hand, two compounds not observed within the previous GC data are now determined: CH2Cl (chloromethane or methyl chloride) and cyclopentane.
At the time of the BCWH gas analyses the author could not find paper showing the usage of FTIR for environmental studies. Stockwell et al. [27] used this method to measure H_2O, CO_x, NO_x, HCl, SO_2, NH_3, methane, acetylene, ethene, propane, formaldehyde, formic acid, methanol, acetic acid, HCN, furan, glycolaldehyde, and HONO (the latter also initially reported in [6]) in biomass emissions, though in a Fire Lab at Missoula Experiment. A more in situ type of work, engaging airborne FTIR, is by Yokelson et al. [28] who measured African savanna fires, with 14 compounds analyzed.

It is noteworthy that numerous organic and organo(semi)metallic compounds (or similar ones) detected in the BCWHs exhausts are also detected in volcanic fumaroles (mainly via GC, or modeled, as summarized by Wahrenberger [29]) or algal emissions (by GC–MS; [30]). Examples of interesting species include CO_2, COS, CS_2, S_2, SO_2, AsH_3, HCL, HF, HBr, CHCl$_3$, NO$_2$, propanal, methanol, acetaldehyde, 1,1,2-trichlorotrifluoroethane, hexafluoropropene, tetrachloroethene, vinyl chloride, i-butene, hexane, octane, octane, butadiene, benzene, toluene, α-pinene, i- and n-propanol, methylacrolein, MEK, acetone, 1,4-dioxane, dimethyl difluorosilane, thioformaldehyde, ethylthiophene, trimethylborane, methylphosphine, and uncertain [N-(phenyl-2-pyridinylmethylene)benzeneamine-N,N']-irontricarbonyl and silver benzoate; geosmin, cyclopentane, cyclohexane, acetic acid, acetamide, glucopyranose, dibutyl phthalate, cholest-5-en-22-one, benzaldehyde, hydrazine, 8-amino-2-naphthalenol, ethanethioimide, thiourea, 1,3-oxathian-2-one, tetrahydro-2,5-dimethylthiophene, 6-methylbenzo[6]thiophene, 3,3,5,5-tetramethyl-1,2,4-trithiolane, thiirane, C$_9$H$_7$O$_3$B borane, trimethylsilane, butyltrimethylsilane, or undecanoic acid 11-chloro- and 11-fluorotrimethylsilylesters.

Acknowledgements

This work was financed by the NCN (Narodowe Centrum Nauki, or National Science Centre) grant no. 2013/11/B/ST10/04960.

Author details

Łukasz Kruszewski
Institute of Geological Sciences, Polish Academy of Sciences, Warszawa, Poland

*Address all correspondence to: lkruszewski@twarda.pan.pl

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

248
References

Chapter 14
Evaluation of Particulate Matter Pollution in Micro-Environments of Office Buildings — A Case Study of Delhi, India
Saurabh Mendiratta, Sunil Gulia, Prachi Goyal and Sanjeev Kumar Goyal

Abstract
High level of particulate matter in an office building is one of the prime concerns for occupants' health and their work performance. The present study focuses on the evaluation of the distribution pattern of airborne particles in three office buildings in Delhi City. The study includes the Assessment of PM10, PM2.5 and PM1 in the different indoor environments, their particle size distribution, I/O ratio, a correlation between pollutants their sources and management practices. The features of buildings I, II, and III are old infrastructure, new modern infrastructure, and an old building with good maintenance. The results indicate that the average concentrations of PM10, PM2.5, and PM1 are found in the range of 55 – 150 μgm⁻³, 41 – 104 μgm⁻³ and 37 – 95 μgm⁻³, respectively in Building I, 33 – 136 μgm⁻³, 30 – 84 μgm⁻³ and 28 – 73 μgm⁻³, respectively in Building II and 216 – 330 μgm⁻³, 188 – 268 μgm⁻³ and 171 – 237 μgm⁻³, respectively in Building III. The maximum proportion of the total mass contributed by PM0.25 – 1.0 i.e., up to 75%, 86%, and 76% in the meeting room of Building I, II and III, respectively. The proportion of ultrafine particles was found higher in the office area where the movement was minimum and vice versa. The higher I/O indicates the contribution of the presence of indoor sources for ultra-fine and finer particles. Further, possible strategies for indoor air pollution control are also discussed.

Keywords: ultrafine particulate matter, size segregated particles, distribution pattern, indoor sources, indoor/outdoor ratio, office buildings

1. Introduction
Indoor Air Quality (IAQ) refers to the level of air pollutants and thermal (temperature and relative humidity) conditions that affects the health, comfort, and performance of the occupants inside a building. The high concentration of air pollutants indoor is a major concern in Delhi city, which has been many times reported as one of the polluted cities of the world [1]. The major sources in an office building are infiltration of ambient air pollutants; emissions from office equipment like printers, xerox. Etc.; emission of VOCs from building materials, re-suspension of floor dust; emission from cleaning chemicals among them [2]. In addition to the sources, poor ventilation builds the pollutant level indoors [3]. The increasing level of pollutants 253
Chapter 14
Evaluation of Particulate Matter Pollution in Micro-Environments of Office Buildings—A Case Study of Delhi, India

Saurabh Mendiratta, Sunil Gulia, Prachi Goyal and Sanjeev Kumar Goyal

Abstract

High level of particulate matter in an office building is one of the prime concerns for occupant’s health and their work performance. The present study focuses on the evaluation of the distribution pattern of airborne particles in three office buildings in Delhi City. The study includes the Assessment of PM$_{10}$, PM$_{2.5}$ and PM$_{1}$ in the different indoor environments, their particle size distribution, I/O ratio, a correlation between pollutants their sources and management practices. The features of buildings I, II, and III are old infrastructure, new modern infrastructure, and an old building with good maintenance. The results indicate that the average concentrations of PM$_{10}$, PM$_{2.5}$, and PM$_{1}$ are found in the range of 55–150 $\mu g m^{-3}$, 41–104 $\mu g m^{-3}$ and 37–95 $\mu g m^{-3}$, respectively in Building I, 33–136 $\mu g m^{-3}$, 30–84 $\mu g m^{-3}$ and 28–73 $\mu g m^{-3}$, respectively in Building II and 216–330 $\mu g m^{-3}$, 188–268 $\mu g m^{-3}$ and 171–237 $\mu g m^{-3}$, respectively in Building III. The maximum proportion of the total mass contributed by PM$_{0.25-1.0}$ i.e., up to 75%, 86%, and 76% in the meeting room of Building I, II and III, respectively. The proportion of ultrafine particles was found higher in the office area where the movement was minimum and vice versa. The higher I/O indicates the contribution of the presence of indoor sources for ultra-fine and finer particles. Further, possible strategies for indoor air pollution control are also discussed.

Keywords: ultrafine particulate matter, size segregated particles, distribution pattern, indoor sources, indoor/outdoor ratio, office buildings

1. Introduction

Indoor Air Quality (IAQ) refers to the level of air pollutants and thermal (temperature and relative humidity) conditions that affects the health, comfort, and performance of the occupants inside a building. The high concentration of air pollutants indoor is a major concern in Delhi city, which has been many times reported as one of the polluted cities of the world [1]. The major sources in an office building are infiltration of ambient air pollutants; emissions from office equipment like printers, xerox. Etc.; emission of VOCs from building materials, re-suspension of floor dust; emission from cleaning chemicals among them [2]. In addition to the sources, poor ventilation builds the pollutant level indoors [3]. The increasing level of pollutants
needs to be managed as it can affect occupant's health, comfort, and work output. Researchers in the past showed evidence that the air within residential and other commercial buildings including offices can be more polluted than the outdoor air even in the largest and most industrialized cities [4–7]. It is also reported that the health risks may be greater due to exposure of air pollutants indoor than outdoor as people spend more time in indoor environment, be it office or at home.

There are no specific criteria pollutants and standards defined to categorize classes of indoor air quality i.e. satisfactory or hazardous. Generally, researchers focus on the CO₂ level and thermal comfort parameters for Indoor air quality, which are indicators of sick building syndrome [8, 9]. There is limited information available on the high exposure of indoor particulate matter in buildings, especially working offices, where people spend almost 8–9 hours daily and are exposed. Limited research is carried out on size segregated PM in indoor air in cities of developing countries where outside PM levels are higher [10–12]. Researchers also observed that fine and ultrafine particles are more harmful than coarse particles irrespective of indoor or ambient environments [13].

In the past, Wargocki et al. [14] have experimented in a typical office environment in which two exposure conditions were produced i.e., with and without emission source where the same office staff worked for 5 h in each condition. The productivity of the staff was found 6.5% less in poor air quality and experienced significantly increased incidences of headache i.e., a symptom of sick building syndrome [15]. Fisk [16] concluded relatively strong evidence of relationships among characteristics of buildings and indoor environments, which influence the occurrence of communicable respiratory illness, allergy and asthma symptoms, sick building symptoms, and worker performances. It is also reported that any improvement in IAQ by a factor of 2–7 can increase occupant's productivity in offices.

In the recent past, some studies are carried out to assess the Indoor PM₁₀ and PM₂.₅ levels in school buildings and residential buildings in different Indian cities (Table 1). The major objectives of these studies were to assess PM exposure on children, who are more sensitive [22, 23, 26]. Kulshreshtha and Khare [21] have found average PM₁₀ concentrations in the range of 373–894 μg m⁻³ in winter and 107–199 μg m⁻³ during summer in a residential building in Delhi. The PM₂.₅

<table>
<thead>
<tr>
<th>Author/City</th>
<th>Type of Building</th>
<th>Pollutant Concentration</th>
<th>Study Period/Sampling duration</th>
<th>Key Findings of the Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saraga et al. [17] / Goudi, Athens</td>
<td>Museum</td>
<td>PM₂.₅: 20.3 ± 2.69 μg/m³ (Summer)</td>
<td>Jun 22 - Jul 2, 2007/24 hr</td>
<td>The higher number of occupants and re-suspension of PM leads to elevated fine particles levels.</td>
</tr>
<tr>
<td></td>
<td>Smoker's Office</td>
<td>PM₂.₅: 37.6 ± 27.3 μg/m³ (Summer)</td>
<td>July 16–22, 2007/24 hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Smoker's Office</td>
<td>PM₂.₅: 30.7 ± 6.7 μg/m³ (Summer)</td>
<td>July 23–27, 2007/24 hr</td>
<td></td>
</tr>
<tr>
<td>Razali et al. [18] / Malaysia</td>
<td>School</td>
<td>PM₂.₅: 22 ± 6 μg/m³ (Summer) PM₁₀: 35 ± 11 μg/m³ (Summer)</td>
<td>June 14–July 1, 2011/8 hr., day time</td>
<td>The classroom location and the movement of students in and out of the classrooms influence the PM concentrations.</td>
</tr>
<tr>
<td></td>
<td>School</td>
<td>PM₂.₅: 59.8 ± 21.6 μg/m³ (Winter) and 13.5 ± 4.1 μg/m³ (Summer)</td>
<td>Winter (Dec.09 – Jan. Mar, 10) Summer (Apr. – Jun., 10)/08 hr.</td>
<td>Fine and coarse particles were generated by indoor sources i.e. dust re-suspension due to children activities</td>
</tr>
</tbody>
</table>
Table 1.

Indoor air quality in different types of buildings.

<table>
<thead>
<tr>
<th>Author/ City Type of Building</th>
<th>Pollutant Concentration</th>
<th>Study Period/ Sampling duration</th>
<th>Key Findings of the Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Rural & Urban</td>
<td>PM$_{10}$: 245 µg/m3 (rural) and 339 µg/m3 (urban)</td>
<td>Oct. 04 – Dec. 05/ 24 hr</td>
<td>The concentrations of PM${2.5}$ and PM${10}$ were higher inside during the winter. Coarse particles were generated by indoor sources i.e. cooking, burning, etc.</td>
</tr>
<tr>
<td>Residential Homes</td>
<td>PM${10}$: 373–894 µg/m3 (Winter) and 107–199 µg/m3 (Summer), PM${2.5}$: 197–713 µg/m3 (winter) and 34–60 µg/m3 (Summer), PM$_{10}$: 169–623 µg/m3 (winter) and 23–36 µg/m3 (Summer)</td>
<td>Winter and Summer season of 2008, Hourly average</td>
<td>The PM concentrations were significantly higher during the winter period. Emission from the kitchen is the dominant source of Indoor particles in small houses with poor ventilation.</td>
</tr>
<tr>
<td>School</td>
<td>PM${2.5}$: 30–160 µg/m3 (Non Winter); 110–789 µg/m3 (Winter) PM${10}$: 19.5–110.6 µg/m3 (Non Winter) and 77.3–713.1 µg/m3 (Winter)</td>
<td>(Aug., 06, Sep. 06, Apr., 07); (Nov., 06, Dec., 06, Jan.- Feb., 07)/ 6 hr</td>
<td>The results of this study indicated that the concentration of pollutants particularly PM is influenced by the occupant's activity.</td>
</tr>
<tr>
<td>School</td>
<td>PM${2.5}$: 61 ± 29 µg/m3 (Winter) and 32 ± 16 µg/m3 (Summer) PM${10}$: 149 ± 69 µg/m3 (Winter) and 95 ± 61 µg/m3 (Summer)</td>
<td>Winter (Jan.- Mar. 11) Summer (Apr.- May 11)/24 hr</td>
<td>A strong seasonal variability with poor IAQ was observed during winter. Human activity seems to be an important factor influencing the coarse particle level.</td>
</tr>
<tr>
<td>Office & School</td>
<td>PM$_{2.5}$: 43.8 µg/m3 (Office) - 22.8 µg/m3 (School) (Summer)</td>
<td>June-July 2015/ 8 hr., day time</td>
<td>The study indicates that the occupant density in the air-conditioned non-residential buildings plays a vital role in controlling indoor air pollution levels inside the building.</td>
</tr>
<tr>
<td>Office</td>
<td>PM$_{2.5}$: 116.5 ± 67 µg/m3 (Winter)</td>
<td>Jan.- Feb., 18</td>
<td>A higher concentration of PM${2.5}$ in the building could be due to its maximum proximity to urban busy roads and poorly maintained HVAC ducting system, which may lead to infiltration and more leakages of PM${2.5}$ from outdoors.</td>
</tr>
</tbody>
</table>
concentrations in the range of 197–713 μg m\(^{-3}\) in winter and 34–60 μg m\(^{-3}\) in summer while PM\(_1\) found in the range of 169–623 μg m\(^{-3}\) in winter and 23–36 μg m\(^{-3}\) in summer, respectively in a low and medium-income group house where emissions from kitchen are generally high due to Indian cooking style. The results indicate a higher level of PM concentration during the winter season. However, the level of PM\(_{2.5}\) and PM\(_{10}\) in western cold countries is comparatively very less [19, 25].

Recently, Gupta et al. [25] have reported PM\(_{2.5}\) concentration level as 116 in one of the office buildings in Delhi during the winter period. The higher level of PM\(_{2.5}\) might be due to the penetration of ambient PM\(_{2.5}\), which is generated from nearby high traffic roads.

The high level of indoor PM (PM\(_{10}\), PM\(_{2.5}\), and PM\(_{1.0}\)) in the office building is an emerging issue in view of its adverse effects on working productivity and health. There is a need to assess it comprehensively at different locations in the city for different types of office buildings.

The present study is an attempt to assess the size of fractioned PM in different sections of the office buildings. The study has monitored the different size PM in different building sections like staff cabin, meeting/conference room, office halls, accountant room, and outside building in Delhi city. PM monitoring is carried out in three different types of buildings. The particle size distribution plot of each monitoring location has been carried out and compared to further correlate with the sources. The correlation between sites for a particular size PM is calculated along with the Indoor/outdoor ratio.

2. Materials and methods

2.1 Site description

Three different types of office buildings are considered in the present study to assess the PM levels in the indoor environment. The buildings are named Building I,
Recently, Gupta et al. [25] have reported PM2.5 concentration level as 116 μg/m³. In western cold countries, the concentration of PM2.5 and PM10 is comparatively very less [19, 25]. During the winter season, there is a higher level of PM concentration from outdoor sources. The results indicate a significant increase in PM levels during the winter months, especially from kitchen sources due to Indian cooking style. The indoor concentrations of PM2.5 might be due to the penetration of ambient PM2.5, which is generated from nearby high traffic roads.

2.1 Site description

The present study is an attempt to assess the size of fractioned PM in different types of office buildings. The high level of indoor PM (PM10, PM2.5, and PM1.0) in the office building is an emerging issue in view of its adverse effects on working productivity and health. There is a need to assess it comprehensively at different locations in the city for emerging issues.

Types of Building/ Features/ Old or New (approx. age)

<table>
<thead>
<tr>
<th>Locations</th>
<th>Direction wrt Centre of Delhi</th>
<th>Types of Building/ Features/ Old or New (approx. age)</th>
<th>Surrounding Landuse features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building I/ Site I</td>
<td>South Delhi</td>
<td>Typical office building, lots of old files, close cabins, poor ventilation, congested place, approach, 30–40 years old, etc.</td>
<td>Located in the institutional area, Medium density traffic road outside building, residential area on one side of the building, and green forest area on the other side</td>
</tr>
<tr>
<td>Building II/ Site II</td>
<td>South Delhi</td>
<td>Modern office building, clean and spacious Hall, New infrastructure, 1–2 years old building, no open files, located at the lower ground floor, Office is part of a shopping mall having eateries, offices, coffee shops and retail shops etc.</td>
<td>High-density traffic road, Car parking outside the building, covered by Residential area on three sides and open land on one side</td>
</tr>
<tr>
<td>Building III/ Site III</td>
<td>Central Delhi</td>
<td>Old and very well maintained building hall, high movement of people for meeting/discussions, no public dealing office, daily cleaning activities through cleaning reagents, etc.</td>
<td>Smooth traffic movement outside, commercial area nearby and lots of green areas</td>
</tr>
</tbody>
</table>

Table 2. Building types and surrounding features at site I, II, and III in Delhi.

Building II and Building III located at sites I, II and III, respectively. Sites I and II represent South Delhi, while site III represents Central Delhi, as shown in Figure 1. Building I is a traditional office building with old infrastructure, Building II is a newly constructed office space (with Modern Infrastructure) and Building III is an old Building, but maintained very well. The details of the buildings and surrounding site features are described in Table 2.

3. Instrumentation and monitoring protocol

PM monitoring was carried out using a laser aerosol monitor (GRIMM Aerosol Technik Gmbh & Co. KG, Ainrig, Germany, Mini-LAS Model 11R) [27]. The instrument captures every single particle ranging from 0.25 to 32 μm and classifies it into 31 size range channels. The instrument was calibrated before monitoring. The data were recorded and stored at every 6-second interval. The monitor provides concentration levels at the cut of point of PM_{1.0}, PM_{2.5}, and PM_{10} which are generally monitored for health exposure and from a regulatory compliance point of view.

Monitoring was carried out for 1 day each at all the three sites in December 2018 (Winter) on different dates. At each location of the building at all three selected sites, 15 minutes of measurement was recorded. The monitor was placed in the center of each room (about 1 m above the floor), which corresponds to the breathing zone of the sitting occupants, and the outdoor monitor was placed at least 1.5 m away from any obstacle at a height of 1 m above the ground. The details of the monitoring protocol followed are summarized in Table 3. The photographs of monitoring locations for Buildings I and II are shown in Figure 2, whereas photographs were not taken at site III due to security reasons. Based on the discussion with the office staff about their comfort and visualizing the situations of the Heating, Ventilating and Air Condition (HVAC) system, in each compartment of all three buildings, building I am categorized as poor ventilated, however, buildings II and III as good ventilated. Kulshreshtha and Khar [21] have correlated the
ventilation parameters with the comfort level of occupants in a residential building where poor indicate inadequate ventilation and a high potential for complaints and Good indicate satisfaction for all occupants.

4. Results and discussion

4.1 Status of indoor PM$_{10}$, PM$_{2.5}$, and PM$_{1}$ concentration

Generally, the particles are monitored in terms of PM$_{10}$ (particles having aerodynamic diameter \leq 10 μm), PM$_{2.5}$ (particles having aerodynamic diameter \leq 2.5 μm), and PM$_{1}$ (particle having aerodynamic diameter \leq 1.0 μm) for regulatory as well as health exposure assessment in ambient as well as in the indoor environment. Additionally, the particles are defined as Ultrafine ($<$1 μm), Fine or accumulation mode (1 to 2.5 μm) and Coarse particle ($>$ 2.5 μm) as described by Tiwary & Williams [28]. A similar assessment was carried out in the present study as well to evaluate the level of these particles. The monitored data of PM$_{10}$, PM$_{2.5}$, and PM$_{1.0}$ concentrations were analyzed statistically and are summarized in graphical form in Figures 3 to 5 for Buildings I to III, respectively.
ventilation parameters with the comfort level of occupants in a residential building where poor indicate inadequate ventilation and a high potential for complaints and Good indicate satisfaction for all occupants.

4. Results and discussion

4.1 Status of indoor PM10, PM2.5, and PM1 concentration

Generally, the particles are monitored in terms of PM10 (particles having aerodynamic diameter $\leq 10 \mu m$), PM2.5 (particles having aerodynamic diameter $\leq 2.5 \mu m$), and PM1 (particle having aerodynamic diameter $\leq 1.0 \mu m$) for regulatory as well as health exposure assessment in ambient as well as in the indoor environment. Additionally, the particles are defined as Ultrafine ($< 1 \mu m$), Fine or accumulation mode (1 to 2.5 μm) and Coarse particle ($> 2.5 \mu m$) as described by Tiwary & Williams [28]. A similar assessment was carried out in the present study as well to evaluate the level of these particles. The monitored data of PM10, PM2.5, and PM1.0 concentrations were analyzed statistically and are summarized in graphical form in Figures 3 to 5 for Buildings I to III, respectively.

Location Monitoring Details Monitoring Locations

Building I

1. Halls A-I mainly occupied by staffs (Vol. 315–350 m3 of each)
2. Account department (Vol. 84 m3)
3. Meeting rooms (150 m3)
4. Conference room (294 m3)
5. Common area at entrance (360 m3)
6. Outdoor air in front of the entrance gate.

PM monitor was placed at an average height of 1 m above ground.

Building II

1. Halls mainly occupied by clerical/technical staffs, (Vol. 210–280 m3)
2. Staff Cabin (Vol. 27 m3)
3. Conference (315 m3)
4. Meeting room (215 m3)
5. Cafeteria/Pantry (60 m3)
6. A common indoor area at the entrance and Reception (60 m3)
7. Outdoor air at entrance.

PM monitor was placed at an average height of 1 m above ground.

Building III

Monitoring was carried out during the last week of December 2018 from 10 am to 1 pm for one day. The monitoring was carried out for a period of 15 minutes each at the selected locations.

1. Meeting Room/Hall (Vol. 12000 m3)
2. Common Indoor area. (3000 m3)

PM monitor was placed on the table of an average height of 1.2 m in the meeting room and chair of height 0.40–0.45 m in the common area.

Good Ventilation System

Note: Vol. – Volume of indoor space where monitoring was carried out. These volumes are calculated based on tentative measures of length, width, and height of indoor compartments.

Table 3. Monitoring protocol adopted in each building.

The average concentrations of PM$_{10}$, PM$_{2.5}$, and PM$_{1.0}$ in Building I were found to be 101 μg m$^{-3}$ (range 55–150 μg m$^{-3}$), 72 μg m$^{-3}$ (range 41–104 μg m$^{-3}$) and 64 μg m$^{-3}$ (range 37–95 μg m$^{-3}$), respectively. The concentration of particulate matter was found higher in the account’s department compartment and Halls E and

Figure 3.
Average PM concentration in different indoor rooms at building I.
The possibility of bio-aerosols in indoor spaces, which needs to be assessed and managed. Filtration vents as described in number of doors, frequency of closing and opening, and the number of units of air and about 60 doors from the entrance gate to the lobby area and then the lobby gate to outside. The difference might be due to the penetration of PM due to the opening and closing of visitors in the office compared to other office areas. A and B (next to the reception area) might be due to the high movement of staff and 260 that move here and there on daily basis along with the staff.

Figure 4. Average PM concentration in different indoor rooms at building II.

Figure 5. Average PM concentration in different indoor rooms at building III.

Hall A, which might be due to higher activities and deposition of particles on files that move here and there on daily basis along with the staff.

At Building II, the average levels of PM$_{10}$, PM$_{2.5}$, and PM$_{1}$ were 88 μg m$^{-3}$ (range 33–136 μg m$^{-3}$), 70 μg m$^{-3}$ (range 30–84 μg m$^{-3}$) and 63 μg m$^{-3}$ (range 28–73 μg m$^{-3}$), respectively. The concentrations of all three fractions of PM were found higher at the reception area and in the cafeteria/pantry area, which is directly correlated with the high activity area. The high level of PM$_{10}$ at reception and halls A and B (next to the reception area) might be due to the high movement of staff and visitors in the office compared to other office areas.

At Building III, the concentrations of PM$_{10}$, PM$_{2.5}$, and PM$_{1}$ were found in the range of 119–129 μg m$^{-3}$, 102–106 μg m$^{-3}$ and 90–99 μg m$^{-3}$, respectively during non-meeting hours, however, these values during meeting hours were found to be high as 216–330 μg m$^{-3}$, 188–268 μg m$^{-3}$ and 171–237 μg m$^{-3}$, respectively. This difference might be due to the penetration of PM due to the opening and closing of doors from the entrance gate to the lobby area and then the lobby gate to outside due to the high movement of people. The meeting was going during the monitoring and about 60–70 persons were present in the meeting hall.

Each of the compartments of respective buildings varied notably in dimension, number of doors, frequency of closing and opening, and the number of units of air filtration vents as described in Tables 2 and 3. The combination of these variables provided highly variable ventilation conditions and huge differences in indoor PM concentrations. A higher proportion of ultrafine particles also indicates the possibility of bio-aerosols in indoor spaces, which needs to be assessed and managed from a health impact point of view.

Further, the correlation between the size of the room/halls (indoor volume, m3) and size segregated particulate concentrations were estimated for Building I and II.
The correlation coefficient (r^2) values for PM$_{10}$, PM$_{2.5}$ and PM$_{1}$ were estimated to be -0.35, -0.55, and -0.54, respectively at Building I and -0.19, -0.28, and -0.28 at Building II. The negative correlation means larger halls/rooms increase the dispersion of particles, which results in low concentrations. It is also important to note that particulate concentrations at Building I (Old infrastructure and poor ventilation) have a good negative correlation with the size (volume) of the indoor compartments/rooms as compared to Building II (Modern infrastructure and good ventilation). It might be due to the impact of a good ventilation system, which dominated the impact of room size. Further, the fine and ultra-fine particles have a good correlation with the size of the room compared to coarser particles.

4.2 Particle size distribution in indoor work environment

The particles in the atmosphere may be primary or secondary, solid, or liquid depending upon their formation/sources. In the air, particles remain in suspended form for a longer time depending upon their sizes, which vary from very ultra-fine particles (nm) to coarse fine particles (μm). In literature, it is reported that ambient air particles below 2.5 μm are called fine particles which are further divided into transient nuclei (<0.1 μm) and accumulation range (0.1–2.5 μm). The fine particles are mainly generated due to primary emissions (controlled combustion activities, bio-aerosols, secondary aerosol, room air freshener, room cleaner spray, and indoor environment etc.). The particles in the size range of 2.5–100 μm are called coarse particles and are generated from wind-blown dust, sea spray etc. [29, 30].

In the present study, particle size between 0.25 μm to 32 μm is monitored at different 31 intervals. The fraction of different sized particle mass is compared between different indoor work environments and then with the ambient air. The fraction of total mass (%) contributed by different size range particles are described in Tables 4–6 and Figure 6.

In Building I, the maximum mass was contributed by particles of size range 0.25–1.0 μm, in the range of 33–55% in Halls (Staff sitting area with half-sized individual cabin). These values for meeting rooms were even higher, being in the range of 60–75% (empty room during monitoring). The second dominant particle size range was 2.5–10 μm, which contributed 27–40% of the total mass in Halls, 12–21% in meeting rooms, however, the contribution at the common building entrance was 38%. The proportion of particle size 10–32 μm was between 11 and 24% (except Hall D, 5% only), 4–7% in meeting rooms, and 18% at the common entrance gate. In ambient air the mass contribution by particles of size 0.25–1.0 μm, 2.5–10 μm and 10–32 μm was found as 7%, 48%, and 41% respectively, which seems to be opposite to the trend of mass distribution in the different indoor environment except for the common entrance area.

In Building II, which is a modern office and located in the lower ground floor of a shopping mall (no direct opening in the ambient environment), the trend of particle size distribution was more or less similar with more percentage of ultrafine particles (0.25–1.0 μm); in the range of 36–64% in Office Halls, 82–86% in conference/meeting rooms, 30% at Main entrance of the Mall. In this building, the pantry area is near to the office staff sitting area and where the dominant particle size range was 2.6–10 μm with 40% of the total mass.

In Building III, a similar trend was observed for the meeting hall and common Indoor lobby area during non-meeting hours. However, during meetings, the proportion of ultrafine particles decreased from 78–64%, whereas particles of 2.6–10 μm increased from 13–22%. This indicates the re-suspension of particles due to the movement of people in the indoor environment. In the meeting hall, approx. 60–70 people were present during the meeting, which enhanced the particle concentrations even in the presence of sufficient ventilation systems.
It is observed that the proportion of finer particles is maximum in the indoor environment where the activity level is minimum (meeting rooms), followed by staff sitting area and then common building entrance (high people movement). It indicates that ambient air particles are more influenced by windblown dust particles from road and construction dust and natural dust. The particle size distribution indoor indicates the possibility of accumulated particles and bio-aerosol which are generally found in the range of fine particle size ($< 1 \mu m$).
It is observed that the proportion of finer particles is maximum in the indoor environment where the activity level is minimum (meeting rooms), followed by staff sitting area and then common building entrance (high people movement). It indicates that ambient air particles are more influenced by windblown dust particles from road and construction dust and natural dust. The particle size distribution indoor indicates the possibility of accumulated particles and bio-aerosol which are generally found in the range of fine particle size (diameter < 1 μm).

Table 6.
Proportion of mass (%) contributed by different size particles in different indoor compartments of building III.

<table>
<thead>
<tr>
<th>Particle Size Range (μm)</th>
<th>Meeting Hall (No meeting)</th>
<th>Common Area (No meeting)</th>
<th>Meeting Hall (With Meeting)</th>
<th>Common Area (With meeting)</th>
<th>Ambient Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25–1.0</td>
<td>78</td>
<td>62</td>
<td>64</td>
<td>73</td>
<td>39</td>
</tr>
<tr>
<td>1.1–2.5</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2.6–10</td>
<td>13</td>
<td>25</td>
<td>22</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>10.1–32</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>19</td>
</tr>
</tbody>
</table>

Figure 6.
Proportion of mass (%) contributed by different size particles in building I, II, and III.
Norhidayah et al. [31] also found a dominant particle size range 0.3–0.5 \(\mu \text{m} \) in an office building in Malaysia and reported printing and photocopier machines as the major source of particles which is supported by work carried out by Massey and Taneja [13]. They have found that photocopier and printer machines generated accumulation phase particles i.e., 0.25–1.0 \(\mu \text{m} \), and air freshener and cleaner generate particles of size 1 \(\mu \text{m} \). Similarly, Tang et al. [32] reported a significant increase in fine and ultra-fine particle concentration in 43 out 62 office’s rooms. They reported the average size of emitted particles in the range from 0.23 and 20 \(\mu \text{m} \).

4.3 The ratio of Indoor/Outdoor (I/O) PM Concentrations

The I/O ratio of a pollutant is generally calculated to evaluate the possibility of intrusion of outdoor pollution inside the building. In the present study, the I/O ratio of size segregated PM (range 0.25–1.0 \(\mu \text{m} \), 1.1–2.5 \(\mu \text{m} \), 2.6–10 \(\mu \text{m} \), and 10.1–32 \(\mu \text{m} \)) is calculated for each compartment of each building where monitoring was carried out as shown in Figure 7.

Figure 7.
Indoor/outdoor (I/O) ratio of size segregated PM in building I, II, and III.
In Building I, the I/O of ultrafine particles (0.25-1 \(\mu \text{m} \)) was found higher as compared to fine and coarse sized particles in all indoor compartments of the building. The I/O ratio of ultra-fine particles in the meeting/conference room (non-active area) was found maximum in the range of 1.6-1.7 when compared to other compartments of the building where office staff movement was more (0.5-1.1). Secondly, particles of size 1.1-2.5 have a higher I/O ratio in the range of 0.1-0.4. The I/O of coarse sized particles in the range of 10.1-32 \(\mu \text{m} \) is lowest in all building compartments (up to 0.1).

In Building II, the I/O of ultrafine particles was found higher in the range of 0.6-1.2 (except Hall C of 0.2) compared to fine and coarse sized particles in all indoor compartments of the building. The particle size of 1.1-2.5 \(\mu \text{m} \) and 2.6-10 \(\mu \text{m} \) was more or less similar in the range of 0.1-0.4 except the cafeteria/pantry and main entrance. The values at the cafeteria/pantry were 0.5 for both sizes ranged particles and 1.2 and 1.5 for the main entrance area. The I/O of coarse sized particles in the range of 10.1-32 \(\mu \text{m} \) is lowest in all building compartments (up to 0.2).

The I/O ratio pattern of Building III is more or less similar to Building I during non-meeting hours which is found to be 0.8, 0.3, 0.2, and 0.1 in the meeting hall for particle sizes of 0.25-1 \(\mu \text{m} \), 1.1-2.5 \(\mu \text{m} \), 2.6-10 \(\mu \text{m} \) and 10.1-32 \(\mu \text{m} \), respectively. However, during meeting hours, these I/O values were found to be higher as 1.9, 1.4, 0.7 and 0.3, respectively. The occupants found the I/O ratio in Building III higher because of the opening and closing of the door many times during the monitoring period.

It is inferred that fine and ultrafine particles have higher I/O at all three sites, which might be due to the presence of indoor sources and/or poor ventilation. Building II and III are well maintained, ventilated, and have modern infrastructure compared to Building I. This is reflected by low I/O values in all indoor compartments of Building II compared to Building I for ultrafine and fine particles. At Building III, there were no open files on desks, no cafeteria activities like Building II, however, still I/O was found >1 for the finer particles. Based on the discussions, it was found that regular cleaning of the tables, chairs and other areas was carried out through cleaning spray in the meeting room, which might generate fine aerosols. Similar observations were found by Goyal and Kumar [33], they found that I/O ratio for PM\(_{10}\), PM\(_{2.5}\) and PM\(_{1.0}\) varied from 0.37–3.1, 0.2–3.2 and 0.17–2.9 respectively, at a commercial building in Delhi city. In one of the office buildings in Delhi, the I/O ratio of PM\(_{2.5}\) was found to be 0.28–1.07 \(\mu \text{g m}^{-3} \), which indicates that indoor PM\(_{2.5}\) sources exist in the building apart from infiltration from outdoors [25]. The findings in developed countries also indicate average I/O ratios of PM\(_{2.5}\) between 0.4 and 0.9 in an office room in Beijing and Xi’an cities in China [34, 35] and 0.62 \pm 0.14 in Milan, Italy [36].

The analysis indicates that fine and ultrafine particles are dominantly generated from indoor activities at the monitoring location, which is not directly connected with outdoor gate (e.g. reception area, common entrance area etc). High I/O ratio for ultrafine and fine particles neglect the hypothesis of intrusion of outside PM in a mechanical ventilated building as coarse particles do not have such trend in I/O ratio.

5. IAQ management approach

Adequate and properly designed ventilation systems are the most effective strategies for achieving IAQ objectives. Smart planning of building uses and internal layout may help prevent many unnecessary IAQ problems. The mixed-use buildings having common facilities like Xerox facilities, pantry area among others should be properly ventilated and disconnected from the main office sitting area by the
air-filter. There should be proper storage spaces for the old office records. The partitioning of the layout may affect the effectiveness of air distribution resulting in stagnant zones with poor air quality, which needs to be taken care of by architectural planning and ventilation engineering. Housekeeping is important in preventing IAQ problems as it keeps dust levels down and removes dirt, which could otherwise become sources of contamination, including mold growth. The cleaning schedule should be arranged according to occupancy patterns and activity levels. Daily cleaning of surfaces and vacuuming of floors is advisable for areas with high occupancy or which are in constant use during the day. The use of eco-friendly or non-toxic chemicals for cleaning also improves IAQ.

Numerous studies are available that strongly suggest that foliage plants in offices may improve health and reduce discomfort symptoms [37, 38] Kobayashi et al. [39] tested more than 20 plants to improve indoor air quality. Gawrońska, & Bakera [40] concluded that Spider plants (*Chlorophytum comosum* L.) phytoremediation particulate matter from indoor air. Torpy & Zavattaro [41] tested *Chlorophytum comosum* (Spider Plant) and *Epipremnum aureum* (Pothos) and concluded that indoor green plants can significantly reduce particulate matter concentration and hence improve Indoor Environment Quality (IEQ).

6. Conclusion

The study has focussed on the assessment of size segregated particulate matter (PM) in different indoor environments of three office buildings located in different parts of Delhi city. The PM concentrations were found higher in the indoor environment where activities were high but had poor ventilation. The levels of PM in the old building were found higher compared to the newly built office building having the modern infrastructure and well-maintained activities/files etc. The presence of people and activities generated re-suspended particles greater than 2.5 μg m⁻³, which is noticed when compared PM concentration in the common area, reception area with office cabin area and meeting room with and without meeting hours. The indoor/outdoor ratios were greater for ultrafine and fine particles than coarser particles, which indicates presence of sources of finer particles indoors in all three buildings. Further, the meeting room/conference hall has a higher portion of ultra-fine particles of the total PM concentration. Further, correlation between room size (Indoor volume) and size segregated PM concentration found good negative correlation with finer particles in both buildings. This helps the indoor air quality managers to decide the suitable technology for the improvement of IAQ in different compartments of an office building.

Currently, the country does not have any IAQ standards nor have any monitoring protocol for Indoor air quality assessment. Therefore, it is suggested that country should come out with regulatory framework for IAQ assessment in different types of buildings. The findings of the present study suggest that any proposed IAQ standards should cover ultrafine (PM₁) and fine particle (PM₂.₅) instead of coarser particles especially in office buildings.

Authors’ contribution

Saurabh Mendiratta: Monitoring and Original writing, Sunil Gulia: Methodology, Data Analysis, Review, and Re-writing, Prachi Goyal: Monitoring and review, S.K. Goyal: Concept, Methods and Review.
air-filter. There should be proper storage spaces for the old office records. The partitioning of the layout may affect the effectiveness of air distribution resulting in stagnant zones with poor air quality, which needs to be taken care of by architectural planning and ventilation engineering. Housekeeping is important in preventing IAQ problems as it keeps dust levels down and removes dirt, which could otherwise become sources of contamination, including mold growth. The cleaning schedule should be arranged according to occupancy patterns and activity levels. Daily cleaning of surfaces and vacuuming of floors is advisable for areas with high occupancy or which are in constant use during the day. The use of eco-friendly or non-toxic chemicals for cleaning also improves IAQ.

Numerous studies are available that strongly suggest that foliage plants in offices may improve health and reduce discomfort symptoms [37, 38] Kobayashi et al. [39] tested more than 20 plants to improve indoor air quality. Gawrońska, & Bakera [40] concluded that Spider plants (Chlorophytum comosum) phytoremediation particulate matter from indoor air. Torpy & Zavattaro [41] tested Chlorophytum comosum (Spider Plant) and Epipremnum aureum (Pothos) and concluded that indoor green plants can significantly reduce particulate matter concentration and hence improve Indoor Environment Quality (IEQ).

6. Conclusion

The study has focussed on the assessment of size segregated particulate matter (PM) in different indoor environments of three office buildings located in different parts of Delhi city. The PM concentrations were found higher in the indoor environment where activities were high but had poor ventilation. The levels of PM in the old building were found higher compared to the newly built office building having the modern infrastructure and well-maintained activities/files etc. The presence of people and activities generated re-suspended particles greater than 2.5 $\mu g m^{-3}$, which is noticed when compared PM concentration in the common area, reception area with office cabin area and meeting room with and without meeting hours. The indoor/outdoor ratios were greater for ultrafine and fine particles than coarser particles, which indicates presence of sources of finer particles indoors in all three buildings. Further, the meeting room/conference hall has a higher portion of ultra-fine particles of the total PM concentration. Further, correlation between room size (Indoor volume) and size segregated PM concentration found good negative correlation with finer particles in both buildings. This helps the indoor air quality managers to decide the suitable technology for the improvement of IAQ in different compartments of an office building.

Currently, the country does not have any IAQ standards nor have any monitoring protocol for Indoor air quality assessment. Therefore, it is suggested that country should come out with regulatory framework for IAQ assessment in different types of buildings. The findings of the present study suggest that any proposed IAQ standards should cover ultrafine (PM1) and fine particle (PM2.5) instead of coarser particles especially in office buildings.

Author details

Saurabh Mendiratta, Sunil Gulia*, Prachi Goyal and Sanjeev Kumar Goyal
CSIR-National Environmental Engineering Research Institute, Delhi Zonal Centre, Naraina, New Delhi, India

*Address all correspondence to: s_gulia@neeri.res.in; sunilevs@gmail.com

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References

Chapter 15

Abstract

Correlation between Air Quality and Wastewater Pollution

Karzan Mohammed Khalid

1. Introduction

Air pollution has always been a problem that affects human health and comfort. Environmental Science and Pollution Research, 25(36), 36087–36101.

2. Environmental Sustainability – Preparing for Tomorrow

Health effects due to air pollution are a big concern for the World Health Organization. Air pollution does not only cause toxicological effects on human health, it has also significantly degraded the environment in the last years [5, 6]. Now importantly, the improvements in wastewater treatment plants to eliminate the threat of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization importantly, the improvements in wastewater treatment plants to eliminate the threat of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarified. Urbanization persistently development urbanization and industrialization as the wastewater crisis of emissions on environment and human health is also clarify...
Chapter 15

Correlation between Air Quality and Wastewater Pollution

Karzan Mohammed Khalid

Abstract

Recently, air pollution is a universal problematic concern which adversely affects global warming and more importantly human body systems. This chapter focuses on the importance of air quality, and indicates the negative effects of emissions originated from both municipal and industrial wastewaters to atmosphere. More importantly, the improvements in wastewater treatment plants to eliminate the crisis of emissions on environment and human health is also clarified. Urbanization and distribution of industrials in urban areas influence the air pollution via releasing pollutants and contaminants to environment. The pollutant emissions from wastewaters are volatile organic compounds, Greenhouse gases and other inorganic pollutants (heavy metals) which are causes to many reactions through atmosphere, then products detriment whole environment and living organisms including human. Moreover, contaminants are also released into air from influents of municipal wastewaters and they are considered as the main resources of most threatened infections in human and other animals. As conclusion, because of the persistently development urbanization and industrialization as the wastewater pollutant sources, the environmental technology regarding wastewater treatments must depend on prevention of emissions to air before thinking on cost and good quality effluents.

Keywords: air pollution, municipal wastewater, pollutant emission, infectious agents, industrial wastes, promised techniques

1. Introduction

The world recognizes air pollution as detrimental issue that significantly affects public health. There has been intensive studies and documentation of the effects of air pollution around the world [1, 2]. Sustainable development in any society provides a good living standard for the individuals. Also, these include social progress and equality, environmental protection, conservation of natural resources, and stable economic growth [3]. Industrial and transportation emissions and their burden in regional and global harm on health, climate and vegetation have been well studied in last few decades [4].

Health effects due to air pollution are a big concern for the World Health Organization. Air pollution does not only cause toxicological effects on human health, it has also significantly degraded the environment in the last years [5, 6]. Now a day, wastewater treatment plants (WWTPs) are definitely known as one of the most crises on air quality and availability of gases, chemical pollutants and biological contaminants in environment directly resourced from sewage wastewaters [7].
Moreover, municipal wastewater drastically increased, and due to household waste contents and draining to trunk canals close to the urban areas, they adversely affect human health rather than environmental damage.

Water pollution is a problematic on humanity and the aquatic life, and increase catalyzes climatic changes [8]. For instance, various human activities as well as the release of greenhouse gases by industries greatly contributes to global warming, planet temperature enhancement, and lowering of atmospheric air quality.

Sustainability of environment among different societies is importantly developed as an initiation of living standard improvement for individuals. And It aimed to solve the challenges faced to environment, economy and society) without effects on human and environment in the future. Sustainability is also important to progression and equality of social, environmental safety, preservation of natural resources and economic growth [3].

The main contributors of air pollution and their cooperativeness cause to increase risks on air quality. For instance, With the growth of population, there is also a growth in demand for gas, oil, and other energy sources. This has also increased the number of refineries and petroleum wastewater treatment plants [9]. The pollutants are mostly chemicals which present in items used by individuals, chemicals containing preservative compounds, dyes, hydrocarbons, proteins as nutrients, etc. In last few decades, the demand on synthetic chemical products increased and products easily delivered to homes, due to advertisement and evolution in lifestyle such as; internet availability and easily contact in society. On the other hand, more urbanization around the world leads to increase wastes per individuals, however, this is different among various countries while still considered as one of the most reasons of developed more and more liquid and soil wastes (municipal wastewater).

Fortunately, along all society wastewater treatment plants (WWTPs), purification seems to be familiar and properly applicable to remediate municipal and industrial wastes and there are good understandings in this aspect. However, the wastewater treatment systems are variously performed within different society, while the all of them are targeted for one reason of improvement air quality and human health. Thus, all organization including WHO and governments hardly work to be far from wastewater emission impacts and improvement of air quality.

This chapter is aimed to better understanding in adverse impacts of wastewater effluents on air quality via emission process which is directly and indirectly affects human health via respiratory and skin diseases. It is also aimed to keep air emission in line level in recent technologies, however the risks associated with exposure to emissions from WWTPs are uncertain and require more research, stronger regulatory frameworks and safer design consideration.

2. Wastewater pollutants emitted to air

Generally, the presence of high concentrations of pollutants in atmosphere are results from unsustainable regional policy and lack of affordable green technology transfer [10]. There are different pollutants and contaminants emissions, the diversity of chemical pollutants leads to classify emissions according to their etiological agent within different types of wastewaters. The design of constructed sewage channels also affects the emission rate into the atmosphere. Open wastewaters are more efficiently exhaust emissions than close box or underground constructed wastewaters, as a result of abiotic effects which leads to warm the water and stimulate more volatilize and release. The followings are the air pollutants which are also originated from wastewaters effluents and easily releasable:
2.1 Hydrocarbons

Hydrocarbon pollutants are defined as one of the great serious emissions that effects all life forms [11]. Aliphatic and aromatic hydrocarbons are released into the air from industrial outlets rather than solid wastes which are directly emitted into the air, particularly from petroleum industries [12]. Recently, in developed countries industrial wastes undergo several processes of purification such as; conversion, separation and treatment, while during processing hydrocarbon emission persistently occur and adversely affect air quality. Despite of the above occurrence of emission, transportation of refined or purified products through tanks and pipelines can also leakage to water bodies and additional hydrocarbon emission occurs through wastewater treatment plants [12]. According to Aljuboury et al., the effluents/outlets from petroleum industries containing pollutant products with easily emission [13]. Therefore, auxiliary emissions arise when volatile organic compounds are stripped off from the contaminated wastewater in aeration basins, drains, and ponds which are all considered as indirect emissions [12]. The pollution via hydrocarbons sometimes due to the accidents during over sea transportations, when crude oil and gasses leak and release on the surface of water body. Finally, these pollutants directly and indirectly reach human, animals and plants and adversely affect them [12].

2.2 Volatile compounds

Volatile compounds are chemical substances; they have low boiling points and are immediately released into the air after contact. The concentration and identity of volatile compounds in wastewater and their emission to air varies according to the wastewater resources, transport system, characteristics of the employed treatment plant and the weather (physical) conditions. The aeration process and mechanism involved in oxygen diffusion in wastewater treatment plant states transfer characteristics between air and wastewater. And several organic substances in wastewater are either adsorbed, biodegraded or volatilized [14].

The emission of volatile organics from municipal wastewater plants is the main problem for wastewater treatment systems. Different types of pollutants (solvents and chemicals) that originated from municipal wastewater considered as a major source of VOCs. They are also presence in gaseous forms and leads bad odors/toxicity, they are crises on natural environment and air pollution resulted in the availability of VOCs [15]. In addition, VOCs also released during the composting of different organic wastes [16]. According to He and his colleagues, volatile organic compounds are also released during bio-drying of municipal solid waste. Biodegradation of wastes causes the production of these compounds in composting sites. During the process of biological decomposition, a huge quantity of VOCs is released from the organic matrix as well [17]. Because of the close relationship between wastewater streams and landfills and high occurrence of leaking from solid wastes of landfills to water streams, it is important to discuss the efficiency of landfills in VOCs emissions. Gases are also produced in landfills when household chemical products are vaporized in the landfill sites [18]. Landfills in many countries closed to municipal wastewaters, therefore solid wastes from this site certainly drained to wastewaters. The abandoned landfills had volatile organic compounds over the permissible limits, and their release to wastewater and directly for atmosphere is estimated over the permissible levels. Benzene, toluene, ethylbenzene, and xylene were the major volatile organic compounds detected in the air [19].

Petroleum as highly pollutant in environment contains high concentration of VOCs. Controlling the release of volatile organic compounds into the air is a big
challenge for petroleum and the oil refining industries [12]. Malakar and Saha (2015) had concluded that, High concentrations of VOCs are derived from streams effluents of petroleum industries and refineries [20]. Moreover, the applicable fossil fuels in treatment plants (desalination) are noticed to release about 16,000 tons of VOCs. Thus, there may be a constitution fuel for desalination process [21]. Despite the anthropogenic or municipal wastes, emissions of VOCs from industrial wastes are also defined, and different industrial sectors are presented in the Figure 1.

2.3 Greenhouse gases

Municipal wastewater treatment plants are known to be one of the minor sources of greenhouse gases that are distributed in the atmosphere. Generally, there are three major sources of greenhouse gases (methane, carbon dioxide, and nitrous oxide) which are easily and frequently emitted into space, they are also found to cause indirect emissions from energy generation process [23, 24]. Aerobic biological treatment plants produce very large amounts of greenhouse gases as they require a large amount of energy to carry out various processes. The quantities of the resulted gasses depend on the influent of the wastewater, off-site treatments, and treatment processes in WWTPs [25]. According to United State Environmental Protection Agency (USEPA) in 2018, the three gasses emission in United States of America were ~ 81%, 10% and 7% for CO₂, methane and N₂O, respectively. With the remained 3% of emitted Fluorinated gases [26] (Figure 2).

Effect of wastewater treatments coming out of refineries and petrochemical industries is definitely problematic to environment and human health. Nevertheless, they are also known to cause large-scale emission of greenhouse gases into the atmosphere. According to Li et al., (2016), in United States of America around 0.40% of the total greenhouse gasses are emitted by wastewater treatment plants of refineries and petroleum industries [27]. Logistical pollutants which are frequently rely on fossil fuel consumption are considered as main reason of CO₂ and GHG emissions, and they are classified as significant contributor which affects environmental sustainability [28, 29].

2.4 Airborne microbial contaminants

Another critical issue that negatively affect air quality is the availability of microorganisms in atmosphere termed as microbial air pollution. The emission of
bio-aerosols from wastewater to environment resulted from pollution of main sewage streams by human excreta (urine and feces) which containing a lot of microorganisms specifically bacteria (gram negative bacteria) [30]. The most common bacterial types released from municipal wastewaters are mostly include mesophilic pathogenic bacteria and psychrophiles, among them; S. aureus, Coliform bacteria, Pseudomonas fluorescens [31]. Salmonella sp., Shigella sp., Pseudomonas aeruginosa, Clostridium perfringens, Bacillus anthracis, Listeria monocytogenes, Vibrio cholerae, Mycobacterium tuberculosis, Streptococcus faecalis, Proteus vulgaris [32]. It is worthy to note that, many pathogenic microorganisms died and removed, while still some of them can survive in sewage sludge for the period of months [33]. Wastewater treatment plants are also known to release aerosols into the atmosphere and cause health issues to people working with the plants and living in the surrounding areas. The droplets from WWTPs documented to carry ten to thousand times more bacteria into the atmosphere than the sources of water pollution. The release and emission of microorganisms mainly depend on the temperature, wind velocity, humidity, smog, and other factors. Importantly, the available humidity triggers microorganism’s proliferation, as it eliminates the solar efficiency to eradicate microorganisms [34]. The presence and absence of microorganisms in wastewater also related to the quality and climate of the site, even in purified wastewaters depend on the employed method of purification [35]. During purification processes, the microorganisms can get atmosphere via aerosols, particularly when the wastewater undergo aeration process by using air diffuser and biological bioreactor chamber [36].

The basic nutrients in wastewater (N, C and P) directly affects microbial life, due to this, their availability in wastewaters and any other sites leads to increase microbial activity. Furthermore, the presence of abundant microbial community in environment commonly sensed around the world, particularly in highly polluted
zones. Microorganisms either contaminate atmosphere by themselves or involved in degradation of chemical compositions and finally a part of produced pollutants in the form of gasses (Volatile compounds) emitted into the air.

2.5 Nitrogen oxides and sulfur oxides

There are various processes that take place in the wastewater treatment plants. These processes lead to the production of oxides of sulfur and oxides of nitrogen. Nitrous oxide emission from wastewaters is known as a problematic contaminant which needs to be addressed. During this several years, dramatic increase of N2O was noticed. However, N2O is threatened but the emitted value is less than other chemical pollutants [37]. Particularly, the design of the sewers and their operational conditions potently facilitate N2O emission into surrounding environment. Domestic wastewater which is originated from household activities by human also known to contain high concentrations of different nitrogen forms rather than phosphorus and other chemical pollutants. The plants which take more efforts in nitrogen removal emit a less amount of nitrous oxide into the air [37]. The released nitrous oxide in atmosphere interact with other VOCs to make products such as tropospheric ozone [38]. The flux of atmospheric GHGs directly increases with the input nutrients, and it is also different from one type of wastewater to another one [23]. For instance, N2O emissions are related to nitrification and denitrification processes which is triggered by some particular microorganisms. Denitrification of NO3 and NO2 as a result of metabolism of Nitrobacter more N2O emitted into the air (Figure 3).

Combustion of fuel to run these plants also leads to the large-scale production of oxides of sulfur and nitrogen [10]. Continuously, sulfur dioxide (SO2) emission is a detrimental issue in many developing countries, especially from influents of coal fired power plants and the coal industries. It is a pollutant that is directly emitted from the source and released into air, unlike tropospheric ozone which is indirectly produced from combination of chemical pollutants in atmosphere. The consumption of coal in human activities in form of wood, dung and crop residues for domestic energy at home also contributes to ambient SO2 concentrations and adversely affect the children and adults who are exposed to high levels of this pollutant [39]. Sulfur oxide may create acidic forms of sulfuric and sulfurous as a result of presence vaporized water, then acid rain precipitation occurs [40]. On the other hand, the precipitated acid rain causes disturbance fresh water and vegetation on earth. Both nitrogen oxides and sulfur dioxide considered as the biggest sources of pollutants from desalination plants for wastewaters [41]. Desalination plants are known as producers of NOx and SOx with values about 60,000 and 200,000 tons per year, respectively [21].

2.6 Heavy metals

Heavy metals are listed at the top of inorganic pollutant with wide range of negative effects on organisms, plants, and human [42]. Heavy metals released into the environment via different routes such as industries, domestic, mining activities, agricultural activities and etc. [43]. Heavy metals are not degradable and accumulated in living systems [44]. Thus, air pollution by heavy metals is considerable even at low concentrations and the long-term cumulative is threatened for human health [45].

The effects on human health and the environment from exposure to the three most common heavy metal pollutants (mercury, lead and cadmium) include:
Mercury is known as one of the toxic forms of metals that can harm different systems from human body (the brain, heart, kidneys and lungs), and lowering immune response against foreign objects of all ages. Moreover, childhoods affected in central nervous system and causes to less able to think and learn [46]. The mercury cycle is particularly important for understanding how it can reach atmosphere from different sources within wastewater, specifically illustrates how this metal that can be methylated. There are many compounds which are widely used in industrial processes and big demand on this metal observed around the world. Inorganic mercury that concentrated at the bottom muds of the water was methylated by anaerobic bacteria of the genus Desulfovibrio (in Figure 4 below).

Collaboration among each of atmosphere, apical aerobic water layer and anaerobic sediment is seriously affecting Hg cycle. Some anaerobic microorganisms at the bottom, can convert free mercury to methylated forms that can be transported to water and the atmosphere such as Desulfovibrio as an example of bacteria. Methylated mercury processed through biomagnification. The produced volatile elemental mercury (HgO) is easily distributed into upper oxygenated water body
and even atmosphere, and then to waters and the atmosphere. Ionic mercury can react with sulfide in anaerobic sediment and resulted in less soluble HgS.

The produced methylated mercury is characterized as volatile and lipid soluble, and the mercury concentrations increased in the food chain (by the process of biomagnification) and also increased in atmosphere. For example, the directly emitted Hg into atmosphere is evaluated by 2500 tons/year, which is accounting for about 31% of the overall emissions [47].

Lead as a non-essential heavy metal causes to late neuro-developmental in children, even at trace levels of exposure. Other effects include cardiovascular, renal, gastrointestinal, hematological and reproductive effects. Children six years old and under are most at risk. Currently, the thresholds of Pb are unknown. Lead frequently reaches human, animal and plant bodies and accumulates as a toxic substance [48].

Cadmium as a toxic metal and it is presence can make many problematic issues including: pulmonary irritation, kidney disease and cancer, bone weakness and prostate. Among the Cd sources, food and cigarette smoke are the common which easily exposure for the general population. About 90% of Cd exposure from dairy sources into the environment and to people who are not smoking.

Cadmium (Cd) as a toxic metal to plants, animals and microorganism. It may cause lowering growth rate of plants and many serious diseases for human as a result Cd accumulation, mainly in the kidney and liver of vertebrates and in aquatic invertebrates and algae. Severe toxic effects on fish, birds and other animals may include death or fetal malformations [49].

The availability of Pb, Hg and Cd was studied by Du and his team in Heilongjiang City- China, samples were collected from 27 WWTPs with intervals monthly during 2015. And the results ensured the removal of heavy metals from wastewater is highly affective as they released to environment which finally adversely affects humanity [7].

3. Effects of polluted air on human health

According to the investigation published by the World Health Organization, the number of died people was estimated by 7 million as a result of air pollution exposure in 2012 [50]. This number indicates one out of eight total global deaths and confirming that air pollution is the world’s largest health risk. Thus, the mortality rate much higher than that caused by malaria and AIDS. Air pollution is not only the concern of one nation or country, while it is increasing daily along with increase urbanization and industrialization. The universal cooperation is the only solution to overcome this critical issue (air pollution) which has crisis on humanity, and air is a natural resource without geopolitical boundaries [4]. Individuals are affected by different types of emissions directly and indirectly via inhalation of pollutants and climate change (for instance; when solar radiation gets trapped by gaseous and suspended particulate matters in atmospheric layers, respectively [51].

Many people exposed to these emissions and microorganisms may show unhealthy signs of respiratory problems and digestive system issues [34]. Bio-aerosols are known to contain various types of microorganisms that can cause disorders of the respiratory system, digestive system, and skin. Bio-aerosols also affect the quality of air in the surrounding. Moreover, it was found that domestic sewage containing animal and human excreta contains the highest amounts of microorganisms. They are usually treated and released by municipal wastewater plants which cause various micro-organisms to enter the atmosphere [52]. The spread of microorganisms in atmosphere depends on the weather and season [53].
Chronic obstructive pulmonary disease, acute lower respiratory illness, ischemic heart disease and lung cancer have been contributed to most air pollution related cases and even deaths. Inhalation of fine particles from air (particulate matter) and produced ozone are detected as the origin of those diseases [50]. All studies agreed on the presence of correlation between green technology improvement and environmentally sustainable. For instance, Khan and his colleagues (2020) have prepared two important hypotheses, which are “…(1. Greater environmental performance reduces the health expenditure) and (Country environmental performance has a positive correlation with economic growth)” [28].

4. How to keep air pollution in line from wastewater emissions?

The previous wastewater treatment plants were afforded only to obtain large purified effluents from wastewaters and cost-effective protocol, while no consideration about the emissions as a result of biological reactions. Now a day, global attempts considered to increase environmental sustainability which is derived from greenhouse gasses (GHGs), organic and inorganic compounds that directly emitted into the atmosphere and air quality disruption.

To minimize GHG emissions from wastewater treatment plants, the following recommendations can improve the practical systems with lowering gasses emissions. To minimize N₂O emissions, biological wastewater treatment plants should be operated at high solid retention times (SRT) to preserve low ammonia and nitrite concentrations. Moreover, big bioreactors are suggested to dispose of systems able to large volume loading buffer and to decrease the risk of transient oxygen depletion. The emissions N₂O can be reduced (if nitrous oxide stripping by aeration is limited since microorganisms would have more time to consume it) [19]. On the other hand, application of anammox processes can be used to remove ammonia. On the basis of the metabolism of anammox bacteria, N₂O is not directly produced [54], and therefore, it is considered as a promised process to emission N₂O in the WWTPs as a constitute of the conventional nitrification–denitrification processes.

Methane (CH₄) emissions can be reduced into a minimum value by properly covering sludge tank and sludge disposal tanks, to prevent gas leakages and emitted CH₄ captured by hoods which could be undergo through burning with excess biogas in a torch [51]. Methane gas usually produced within WWTP itself and from it is sources. Methane is mainly undergo oxidation by approximately 80% in the activated sludge tanks, which could be exploited to further decline methane emissions to atmosphere from WWTPs [55].

The SRT as a promised invention applied to the biological reactor which triggers GHG emissions to atmosphere. The activated sludge system, especially when SRT value seems to be high, improves biomass endogenous respiration, which stimulates the COD oxidization to CO₂ and reduces the produced sludge. The lower sludge production indicates CH₄ decline, thus any reduction of CO₂ release correlated to its combustion [56].

5. Conclusions

Air quality is not less important than any pandemic diseases throughout the world, due to uncontrolled emissions from anthropogenic wastes. The reports indicated that wastewaters are considered as one of the detrimental sources of pollutants in environment specifically within atmosphere. And the emissions from wastewater to air directly increase with urbanization and industrialization, which
are known as the main sources of wastewater pollution. Any additions of VOCs and GHGs in air directly and indirectly harm environment and human health. The priority of wastewater treatment plant systems must be changed from cost effective and good effluent quality to emission prevention then follow other aspects.

Conflict of interest

It is my pleasure to do further studies on environmental technologies, particularly bioremediation, phytoremediation and air quality in advance laboratories. Hope to get offers from different parts of the world to do whatever I want in my specialization.

Author details

Karzan Mohammed Khalid
Faculty of Science, Soran University, Soran-Erbil, Kurdistan Region of Iraq

*Address all correspondence to: karzan.khalid@soran.edu.iq
References

This book examines the global challenges of air pollution and its consequences at domestic and international levels. Industrialization and logistical operations are the critical factors of carbon emissions, damaging fauna and flora. In addition, air pollution adversely affects human health. As such, this book discusses possible solutions to mitigate air pollution both domestically and internationally.