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Chapter 1

Fundamentals of Narrowband
Array Signal Processing
Zeeshan Ahmad

Abstract

Array signal processing is an actively developing research area connected to the
progress in optimization theory, and remains the key technological development that
attracts prevalent attention in signal processing. This chapter provides an overview of
the fundamental concepts and essential terminologies employed in narrowband array
signal processing. We first develop a general signal model for narrowband adaptive
arrays and discuss the beamforming operation. We next introduce the basic perfor-
mance parameters of adaptive arrays and the second order statistics of the array data.
We then formulate various optimal weigh vector solution criteria. Finally, we discuss
various types of adaptive filtering algorithms. Besides, this chapter emphasizes the
theory of narrowband array signal processing employed in narrowband beamforming
and direction-of-arrival (DOA) estimation algorithms.

Keywords: Adaptive algorithms, Adaptive arrays, Array signal processing,
Beamforming

1. Introduction

Array signal processing [1, 2] is an indispensable technique in signal processing
with ubiquitous applications. The fundamental principles and techniques of array
signal processing are applicable in various fields such as sonar, radar, and wireless
communications etc. Antenna array processing manipulate and process each sensor
output according to a certain algorithm to achieve better system performance than
just a single antenna, and estimate the signal parameters from the data accumulated
over the spatial aperture of an antenna array. [3, 4]. These parameters of interest
include the signal content itself, their DOAs, and power. To get this information,
the sensor array data is processed using statistical and adaptive signal processing
techniques. These techniques include parameter estimation and adaptive filtering
applied to array signal processing. Meanwhile, it also plays an important role in the
multi-input multi-output (MIMO) communication system and a waveform diver-
sity MIMO radar system, by improving its performance, reducing the clutter, and
increasing the array resolution [1–4].

All in all, there are numerous potential advantages of array signal processing
techniques, such as improved system capacity, signal bandwidth, the space division
multiple access (SDMA), high signal-to-noise ratio (SNR), frequency reuse factor,
side-lobe offsets or nulls, degree of freedoms, and the resolution of the antenna
array [5]. In this chapter, we introduce the basic principle of array signal processing
techniques to further understand its implementation process and applications. We
begin by formulating the signal mathematical model used as a basis for discussing
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array signal processing in beamforming and direction-of-arrival (DOA) estimation
algorithms. We also provide some introductory materials about beamforming tech-
niques, performance analysis parameters, and a brief overview of some basic
beamforming algorithms.

2. Adaptive array signal model

Since the real signal transmission environment is complex, so a strict mathe-
matical model is the basis for adaptive beamforming and lays the groundwork for
the discussion of beamforming algorithms. To simplify the analysis of the model,
the signal source used in this chapter is a narrowband signal, that is, the bandwidth
of the received array signal is much smaller than the carrier frequency of the signal,
assuming that [6]:

a. Each array element is an ideal omnidirectional point source, and the inter-
element spacing is less than or equal to half-a-wavelength.

b. The number of received signals is known, and less than the number of array
elements.

c. The signal sources are assumed to be in the far-field so that the signals
impinging on the array can be regarded as a plane wave;

d. The spacing between array elements are equal, i.e., evenly spaced array;

e. The noise is zero-mean Gaussian white noise, and uncorrelated with the
signal source.

f. The effect of mutual coupling between array elements is assumed to be
negligible, i.e., the different element receives the same signal amplitude.

Although the above assumptions are not valid for wideband signal source, the
fundamental model used for them is very similar. Therefore, this chapter focuses on
the mathematical model based on narrowband signal beamforming principle.

Adaptive antenna arrays may have different geometrical configurations. Differ-
ent spatial distribution of array elements leads to different array configurations,
such as linear arrays, circular arrays, rectangular arrays, and triangular arrays etc.
[7, 8]. For an arbitrary array structure withM-elements as shown in Figure 1, θ and
ϕ denote the elevation angle and the azimuth angle, respectively. Vector a and pi
respectively denote the direction vector of the signal and the coordinates of the i�
th array element. Since the signal received by each array element has a certain delay
relative to the origin of the coordinates, the delay time [9] for the signal received at
the i� th array element is

τi ¼ aTpi

c
(1)

where c is the speed of light, and

a ¼
� sin θ cosϕ

� sin θ sinϕ

� cos θ

2
64

3
75: (2)
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pi ¼
xi
yi
zi

2
64

3
75, i ¼ 1, 2,⋯,M: (3)

The signal received by the first sensor located at the origin of the coordinates is

~x1 tð Þ ¼ x1 tð Þejωt: (4)

The overall signal received by the array can be expressed as

x tð Þ ¼

x1 tð Þ
x2 tð Þ
⋯

xM tð Þ

2
6666664

3
7777775
¼

x1 t� τ1ð Þejω t�τ1ð Þ

x2 t� τ2ð Þejω t�τ2ð Þ

⋯

xM t� τMð Þejω t�τLð Þ

2
6666664

3
7777775
: (5)

If the received signal is a narrowband, we can ignore its amplitude changes for
different elements. Consider the phase change only [10], the array received signal is
simplified to

x tð Þ ¼

x1 tð Þ
x2 tð Þ
⋯

xM tð Þ

2
666664

3
777775
¼ x1 tð Þ

ejω t�τ1ð Þ

ejω t�τ2ð Þ

⋯

ejω t�τMð Þ

2
666664

3
777775

(6)

Let us consider a uniform linear array (ULA) composed of M elements with
inter-element spacing d as shown in Figure 2. Assume the first array element
located at origin of coordinate as a reference element. Consider the far field source
with P signals s0 tð Þ, s1 tð Þ, … , sP�1 tð Þ, having the same center carrier frequency f c,
the narrowband signal si tð Þ impinges on the array at an angle θi relative to the
broadside, which refers to the direction normal to the array, where i ¼ 0, … ,P� 1
(without taking into account the azimuth angle, consider only the elevation angle).

Due to multipath propagation, each element receive the same signal with a
different time delay. Due to the fact that the incident signal is a narrowband signal,

Figure 1.
Geometry of array.
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the amplitude variation is negligible, and only phase delay is considered. This delay
is determined by the array element spacing d and the elevation angle of incidence.
Consider the signal received by the first array element as a reference signal, then the
analytical expression for the i� th signal received with respect to the reference
array element is

si tð Þ ¼ mi tð Þe j2π f ct, i ¼ 0, … ,P� 1 (7)

where mi tð Þ is the complex envelope of the i� thmodulated signal, and f c is the
carrier frequency.

The propagation delay of the received signal from reference array element to the
m� th array element can be expressed as

τm θið Þ ¼ d
c

m� 1ð Þ sin θi, m ¼ 1, … ,M: (8)

According to Eq. (7), the signal received at the m� th array element can be
expressed as the superposition of all the signals, that is

xm tð Þ ¼
XP�1

i¼0

mi t� τm θið Þð Þe j2π f c t�τm θið Þð Þ þ nm tð Þ, (9)

where nm tð Þ is the Gaussian noise signal received at the m� th array element
having zero mean and variance σ2.

Since we consider a narrowband signal source located in the far-field, the
bandwidth B of the signal satisfy the condition B< < f c, and mi tð Þ changes rela-
tively slowly because the signal delay is τm θið Þ< < 1

B . Therefore, complex envelope
of the signal can be approximated as mi t� τm θið Þð Þ≈mi tð Þ, that is, the difference in
the array received signal complex envelope can be neglected. Thus, Eq. (9) is
simplified as

xm tð Þ ¼
XP�1

i¼0

mi tð Þe j2π f c t�τm θið Þð Þ þ nm tð Þ: (10)

Since the carrier component in the system does not affect the analysis, and the
adaptive algorithm is often carried out in the baseband (complex envelope), so the
carrier part e j2π f ct in the Eq. (10) can be ignored. Eq. (10) can then be expressed as

Figure 2.
Structure of uniform linear array antenna.
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xm tð Þ≈
XP�1

i¼0

mi tð Þe�j m�1ð Þkd sin θi þ nm tð Þ: (11)

where k is the free-space wave number given by [11].

k ¼ 2π f c=c: (12)

At time t, the overall received signal can be expressed as

x tð Þ ¼

x1 tð Þ
x2 tð Þ
⋮

xM tð Þ

2
666664

3
777775
¼ Am tð Þ þ n tð Þ

¼

1 1 ⋯ 1

e�jkd sin θ0 e�jkd sin θ1 ⋯ e�jkd sin θP�1

⋮ ⋮ ⋮ ⋮

e�j M�1ð Þkd sin θ0 e�j M�1ð Þkd sin θ1 ⋯ e�j M�1ð Þkd sin θP�1

2
666664

3
777775

m1 tð Þ
m2 tð Þ
⋮

mP tð Þ

2
666664

3
777775
þ

n1 tð Þ
n2 tð Þ
⋮

nM tð Þ

2
666664

3
777775

(13)

where A ¼ a θ0ð Þ a θ1ð Þ ⋯ a θP�1ð Þ½ � is the direction matrix (also called the array
manifold matrix), a θið Þ is the direction vector for the i� th signal si tð Þ, and n tð Þ is
the noise vector, expressed as

a θið Þ ¼ 1 e�j2π f cτ1 θið Þ ⋯ e�j2π f cτM θið Þ� �T (14)

n tð Þ ¼ n1 tð Þ n2 tð Þ ⋯ nM tð Þ½ �T (15)

where the sign ½�T denotes the transpose operation.

3. Adaptive beamforming

Beamforming is a concept originating in array signal processing. The funda-
mental aim of beamforming is to estimate the desired signal properties by adjusting
the complex weights at each sensor applied to the received signal which result in
enhancement of desired signal and place nulls in the direction of interference.
Adaptive arrays are capable to adjust its weights automatically according to the
environment.

The beamforming can be classified into two types that are analog beamforming
and digital beamforming [12].

The analog beamforming is performed in the analog domain. The block diagram
of an analog beamformer is shown in Figure 3. The analog RF signal received by the
antenna array is converted to an intermediate frequency by the RF front end, which
is the analog intermediate frequency signal. The weight vector is calculated by the
weights update algorithm. The weighted sum of the analog IF signal is obtained, and
the array received signal is synthesized. At this point the signal is still analog signal;
then by analog-to-digitical converter (A/D) the analog signal is sampled and quan-
tized, and the analog IF signal is converted to a digital intermediate frequency signa.
Then the digital IF signal is given to the next - level processing.
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The digital beamforming is carried out in the digital domain, which is shown in
the Figure 4.

Adaptive beamforming is a subclass of digital beamforming. Usually adaptive
beamformer [13] comprises of RF Front-end, A/D converter module, and the signal
processing (beam-control formation) module. A basic adaptive beamformer is
shown in Figure 4 which is composed of antenna array elements and an adaptive
signal processor.

The antenna array elements receive the spatially-propagating desired signal and
interference signal at the array aperture. In the RF Front-end, the received signal is
down-converted to baseband signal [14], and then transformed into a digital signal
through A/D converter, which is then processed by the adaptive processor. In
adaptive processor, suitable adaptive filtering algorithm according to the require-
ments is applied to get the optimal weight vector. The weights are applied to the
received signal at each array element to obtain a weighted sum of the signal. After
the adaptive processing, the weighted signals are combined to get the output of the
beamformer, which direct the main lobe in the direction of the desired signal and
nulls in the directions of the interferers. The interference and noise are suppressed,

Figure 3.
The structure of analog beamforming.

Figure 4.
Structure diagram of adaptive beamforming.
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and the output signal-to-interference-plus-noise ratio (SINR) of beamformer is thus
improved.

Clearly, based on the adaptive beamformer structure shown in Figure 4, the
output of each element is multiplied by a complex weight and summed to form the
array output, y tð Þ, expressed as

y tð Þ ¼ wHx tð Þ ¼
XM
m¼1

w ∗
mxm tð Þ (16)

where the symbol ½�H represents the Hermitian (complex conjugate) transpose,
ðÞ ∗ indicates the conjugate, and w is the M� 1 dimensional optimal weight vector
computed by an adaptive filtering algorithm, given as

w ¼ w1 w2 ⋯ wM½ �T : (17)

In this way, the array output, y tð Þ, is obtained by combining the weighted sum of
each of the sensor signals. The different weight vectors for beamforming of signals
from different directions have different response, thus pointing to the desired signal
and suppress the interference signal.

Array output signal power is expressed as

Pout ¼ E y tð Þ ∗ y tð Þ½ � ¼ wHRw: (18)

where

R ¼ E x tð ÞxH tð Þ� �
, (19)

is the covariance matrix of the received signal, and E½� denotes the expectation
operator. Substitute Eq. (13) into Eq. (19), the covariance matrix can be
expressed as

R ¼
XP�1

i¼0

pia θið Þa θið ÞH þ σ2I, (20)

where pi is the power of signal si tð Þ, and I represents a identity/unit matrix. If the
input signal in space has only one desired signal s0 tð Þ, and P� 1 interference signals,
then the covariance matrix can be expressed as

R ¼ p0a θið Þa θið ÞH þ
XP�1

i¼1

pia θið Þa θið ÞH þ σ2I

¼ Rs þ Ri þ Rn,

(21)

where Rs is the covariance matrix of the desired signal, Ri is an interference
signal covariance matrix, and Rn is the covariance matrix of the noise. Substitute
Eq. (21) into Eq. (18), the output signal power can be expressed as a sum of desired
signal power Pos, interference power as Poi and noise power Pon.

Pos ¼ wHRsw (22)

Poi ¼ wHRiw (23)

Pon ¼ wHRnw (24)
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The output SINR, a performance parameter of the beamformer, is defined as the
ratio of the output desired signal power and the output power due to interference-
plus-noise, and can be expressed as

SINRout ¼ Pos

Poi þ Pon
¼ wHRsw

wHRiwþwHRnw
, (25)

Adaptive antenna array takes the output SINR as an index to compute the
optimal weights by maximizing the output SINR [15].

The most important performance indicator of the beamforming is the direction
of the beampattern. It can be quite obvious to determine whether the resolution of
any beamforming method is enough to enhance the desired signal and the extent
of the suppression of interference signal is large enough. Array beampattern is
defined as

B θð Þ ¼ wHa θð Þ�� ��: (26)

When using analog beamforming, the hardware circuit is very complex, and the
accuracy is low. In digital beamforming, the operations of phase shifting and
amplitude scaling for each antenna element, and summation of received signals, are
done digitally through a general-purpose DSP or dedicated beamforming chips.
Therefore, digital beamforming is more flexible and do not require modification of
the hardware structure.

Compared with analog beamforming, the digital beamforming has the following
advantages:

a. Under the condition that the output SNR is not reduced and the hardware is
not increased, digital beamforming can track multiple signals and form multi-
beam.

b. The digital beamforming can make full use of the information received by the
array antenna, real-time optimization of system performance, and achieve
the real-time tracking of the desired signal.

c. In theory, digital beamforming can be achieved by implementing various
algorithms.

d. Digital beamforming can achieve independent beamforming for each signal,
and each beamforming can be optimized.

4. Basic parameters of adaptive array antenna

The performance parameters of an adaptive array antenna are basically the same
as that of a single antenna, but because of the weight of the array, the specific values
of each parameter depend on the array element characteristics, the weight vector,
and geometry of the array [16].

4.1 Array pattern

The array pattern is the visual performance parameter of an antenna array.
According to the pattern multiplication theorem of array antenna, the overall array
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pattern is the product of the element pattern PE φ, θð Þ and the array pattern PA φ, θð Þ,
that is

P φ, θð Þ ¼ PE φ, θð ÞPA φ, θð Þ: (27)

Generally, it is assumed that the array elements are identical and omni-
directional, hence

PE φ, θð Þ ¼ 1: (28)

Thus, mostly adaptive array antenna patterns defined in the literature refers to
the array factor part only, and the relationship between the received signal and the
output signal is given as

y tð Þ ¼ wHx tð Þ: (29)

Let’s assume a single array element with the input signal power 1, the output
signal power can be expressed as

P φ, θð Þ ¼ wHa φ, θð Þ�� ��2: (30)

The above expression defines the power pattern of the array antenna. As can be
seen from Eq. (30), the antenna beampattern is determined by the value of the
weight vector; on the other hand, it also depends on the direction vector which is
determined by the array geometry. Since we define the power pattern P φ, θð Þ as the
squared magnitude of the beampattern, therefore

B φ, θð Þ ¼ wH θ0ð Þa θð Þ�� ��: (31)

4.2 Array directivity and directivity index

The directivity of an adaptive array is closely related to the pattern of the array,
which can be expressed as follows

D ¼ 4πPmax φ0, θ0ð ÞÐ π
0 dθ

Ð 2π
0 sin θP φ, θð Þdφ

, (32)

where Pmax φ0, θ0ð Þ is the maximum pattern that points to the direction of the
main lobe.

The directivity is usually expressed in dB and is called array directivity index (DI)
given by

DI ¼ 10 log 10D: (33)

4.3 Array gain

The purpose of antenna array is to improve the G=T (gain of an antenna divided
by its system temperature) ratio of the antenna. Array gain G is the main parameter
to measure the SNR of the array, which is defined as the ratio of the output signal to
noise ratio SNRo and the input signal to noise ratio SNRi.

G ¼ SNRo

SNRi
: (34)
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4.4 Sensitivity

The array beampattern is a function of weight vector and direction vector.
However, due to the influence of various errors, the weight vector and the direction
vector will have some errors, such as sensor position errors, covariance matrix
estimation errors, inconsistent channel errors, and the mutual coupling between the
array elements cause weight vector errors. Suppose the error-free weight vector w0

of the m� th element is

w0
m ¼ g0me

jφ0
m : (35)

The m� th element weight vector with error is

wm ¼ g0m þ Δgm
� �

e j φ0
mþΔφmð Þ, (36)

where the error Δgm and Δφm are zero mean Gauss random variables, and the
variance is

Var Δgm
� � ¼ σ2g (37)

Var Δφmð Þ ¼ σ2φ (38)

For the direction vector, the error is mainly derived from the array element
position errors. For the m� th element, if there is no error in the array element
position coordinates, then

p0
m ¼ pmx pmy pmz

� �T
: (39)

While the coordinate with the error can be expressed as

pm ¼ pmx þ Δpmx pmy þ Δpmy pmz þ Δpmz
� �T

, (40)

where the error quantity is Gauss random variable, which are zero mean, and
the variance is

Var Δpmx

� � ¼ Var Δpmy

� �
¼ Var Δpmz

� � ¼ σ2p: (41)

The array pattern at this instant is

P φ, θð Þ ¼ P0e� σ2φþσ2λð Þ þ
XM
m¼1

g0m
� �2

1þ σ2g � e� σ2φþσ2λð Þ� �
, (42)

where λ is the wavelength, and P0 denotes the error-free pattern given by

P0 ¼ w0a0
�� ��2, (43)

and the variance is

σ2λ ¼
2π
λ

� �2

σ2p: (44)

From Eq. (42), it is seen that the actual pattern consists of two parts. The first
part is the error free pattern, i.e., the first term of the equation, and the error in the
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second term. In the second term, the coefficient g0m is used to amplify the error, so
the sensitivity of the array is defined as

Ts ¼
XM
m¼1

g0m
� �2

: (45)

5. Optimal beamforming

In beamforming, the weight vector is computed by solving the optimization of
the cost function. The different cost functions corresponds to different criteria.
Some of the most frequently used performance criteria’s include minimum mean
squared error (MMSE), maximum signal-to-interference-and noise ratio (MSINR),
maximum likelihood (ML), minimum noise variance (MV), minimum output
power (MP), and maximum gain, etc. [17]. These criteria’s are often expressed as
cost functions which are typically inversely associated with the quality of the signal
at the array output. As the weights are iteratively adjusted, the cost function
becomes smaller and smaller. When the cost function is minimized, the perfor-
mance criterion is met and the algorithm is said to have converged.

5.1 Maximum signal-to-interferer-noise ratio

As can be seen from Eq. (21), the array output signal power consists of the
desired signal power, interference power and noise power, and they are mutually
uncorrelated. Since the interference signal and the noise is independent i.e.
mutually uncorrelated and zero mean, so, Ri þ Rn is a full rank and Hermite
positive definite matrix. By unitary transformation it can be converted into unitary
matrix as

U ∗ Ri þ Rnð ÞUT ¼ U ∗E
XP�1

i¼0

mi tð Þa θið Þ
 ! XP�1

i¼0

mi tð Þa θið Þ
 !H

2
4

3
5UT þ σ2I

¼ E U
XP�1

i¼0

mi tð Þa θið Þ
 ! ∗

U
XP�1

i¼0

mi tð Þa θið Þ
 !T

2
4

3
5þ σ2I

¼ σ2I

(46)

If we make

w ¼ UTŵ, (47)

the output SINR will be

SINRout ¼
ŵHE Um0a θ0ð Þð Þ ∗ Um0a θ0ð Þð ÞT

h i
ŵ

ŵHE U
PP�1

i¼0mia θið Þ
� � ∗

U
PP�1

i¼0mia θið Þ
� �T� �

ŵþ σ2I

¼
ŵHE m0Ua θ0ð Þð Þ ∗ m0U‘a θ0ð Þð ÞT

h i
ŵ

ŵk k2 :

(48)

According to Cauchy-Schwartz inequality

13

Fundamentals of Narrowband Array Signal Processing
DOI: http://dx.doi.org/10.5772/intechopen.98702



SINRo ≤ m0Ua θ0ð Þk k2 ¼ E m0j j2
h i

� U ∗ a θ0ð Þk k2: (49)

When the equality holds, then

ŵ ¼ U ∗a θ0ð Þ: (50)

The optimal solution for the weight vector

wMSINR ¼ UTU ∗ a θ0ð Þ ¼ Ri þ Rnð Þ�1a θ0ð Þ: (51)

The optimal weight vector solution of the MSINR has the following advantages:
only the DOA of the desired signal is required, and the DOA information for the
interference signals is not needed; Ri þ Rn can be obtained through sampling and
estimating the signal of each array element when the desired signal is interrupted;
taking into account the constraints of the interference and noise signal, the output
has a maximum SINR.

5.2 Minimum mean square error

Mean squared error refers to the mean squared difference between the
beamformer output and the desired signal. The MMSE algorithm minimizes the
error with respect to a reference signal d tð Þ. If the signal prior knowledge is known,
the receiver can generate a local reference signal which has a strong correlation with
the desired signal. The main idea of MMSE is to adjust the weight vector in real
time, so that the mean squared error between the array output signal and the
reference signal can be minimized. The estimator is of the form

y ¼ wHx: (52)

The cost function, i.e., the mean square value of the error signal is

J wð Þ ¼ E wHx� d
�� ��2h i

: (53)

Expanding the right-side of Eq. (53) and w should be taken out of the expecta-
tion operator, E �½ �, because it is not a statistical variable, we get

J wð Þ ¼ wHE xxH
� �

w� E dxH� �
w�wHE xd ∗½ � þ E dd ∗½ �: (54)

According to the Lagrange multiplier method, in order to minimize the mean
squared error function, taking the derivative with respect to w of the above
expression

∂

∂w
J wð Þ ¼ 2E xxH

� �
w� 2E xd ∗½ �

¼ 2Rw� 2rxd,
(55)

where rxd is the cross-correlation vector between the input signal and the
reference signal. Set the above result equal to 0 and solve for w, the optimal MMSE
weights are

wMMSE ¼ R�1rxd: (56)
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Since the reference signal is only related to the desired signal, and is not related
to the interference signal and noise, therefore

rxd ¼ E xd ∗½ � ¼ E m0a θ0ð Þd ∗½ � ¼ E m0d
∗½ �a θ0ð Þ ¼ p0a θ0ð Þ, (57)

and according to the matrix inversion formula

R‐1 ¼ Ri þ Rnð Þ�1

1þ p0a θ0ð ÞH Ri þ Rnð Þ�1a θ0ð Þ : (58)

Substitute Eq. (57) and Eq. (58) into Eq. (56), we get

wMMSE ¼ p0
1þ p0a θ0ð ÞH Ri þ Rnð Þ�1a θ0ð ÞwMSINR: (59)

From the above analysis, it can be seen that the received signal is correlated with
the desired signal. Therefore, it is not required to decompose the received signal
into the desired signal and interference signal, and the correlation of the received
signal and the reference signal can be estimated by sampling, so it is not difficult to
determine.

On the other hand, from Eq. (59) it can be shown that the MMSE beamformer
wMMSE is a scalar multiple of the Max-SINR beamformerwMSINR in Eq. (51), i.e., the
adaptive weights obtained by using the MMSE and Max-SINR criteria are propor-
tional to each other. Since the multiplicative constants in adaptive weights do not
matter, these two techniques are therefore equivalent.

5.3 Minimum variance

In the signal received by the array, the desired signal is the content of coopera-
tive communication, and the interference is often unpredictable, so the form of the
desired signal and DOA of the signal should be known. In this case, in order to
detect the desired signal more efficiently, it is necessary to eliminate the clutter
background. From Eq. (22)-(24) it is shown that the array output power includes
three parts: desired signal power, interference power and noise power, while the
interference and noise power can be considered as the variance of the desired signal
error. The smaller the variance is, the more close is it to the expectation. Interfer-
ence and noise power can be expressed as

Poi þ Pon ¼ wHRiwþwHRnw (60)

For array main-lobe (desired look direction), the unit gain is considered, that is

min
w

wHRiþnw

s:t: wHa θ0ð Þ ¼ 1

(
(61)

Therefore, the minimum interference and noise variance is the choice of the
appropriatew, using the Eq. (61) constraints, so that the Eq. (60) is minimized. The
weight vectorw that minimizes Eq. (60) subject to the constraint in Eq. (61) can be
selected by using a vector Lagrange multiplier to form the modified performance
measure. According to Lagrange multiplier method, the objective function is

L wð Þ ¼ wHRiwþwHRnwþ λ wHa θ0ð Þ � 1
� �

(62)
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Setting the derivative of the above expression Eq. (62) with respect tow equal to
zero to obtain optimal weight vector wMVbased on minimum variance criteria,
requiring wMV to satisfy the constraint in Eq. (61) to evaluate μ, and substituting
the resulting value of μ into wMV gives the minimum variance weight vector
solution

∂

∂w
L wð Þ ¼ 2 Ri þ Rnð Þwþ λa θ0ð Þ ¼ 0 (63)

Solution of the above equation yields the optimal weights vector by the mini-
mum interference and the noise variance criterion.

wMV ¼ μ Ri þ Rnð Þ�1a θ0ð Þ ¼ μwMSINR (64)

According to the constraint conditions of the main beam, using the property that
Ri þ Rnð Þ is the Hermitian matrix, can be obtained as

μ ¼ 1

aH θ0ð Þ Ri þ Rnð Þ�1a θ0ð Þ (65)

When the snapshot data used to estimate R contains only the noise and
interference environment, this processor is referred to as minimum variance
distortionless response (MVDR). In the event, the desired signal is also present in
the snapshot data, the same solution for the weight vector results, but is
sometimes referred to as minimum power distortionless response (MPDR) to
indicate the difference in the observed data [2]. In practice, the distinction makes
a significant difference in terms of the required snapshot support to achieve good
performance [18].

5.4 Minimum power

The formulation of the MV can be derived by minimizing the total output power
of the array subject to the similar constraint of distortion-less response of Eq. (61).
The total power of the output signal is considered, if the gain of the desired signal is
kept fixed, that is the same as the constraint condition of Eq. (61), which is equiv-
alent to the received power of the signal under the condition of ensuring the normal
receiving of the desired signal while suppressing interference and noise power, the
resultant criterion is defined as the minimum total output power of the array (MP).
The cost function is

min
w

wHRw

s:t: wHa θ0ð Þ ¼ 1

8<
: (66)

Also using the method of Lagrange multiplier, the objective function to be
minimized is

L wð Þ ¼ wHRwþ λ wHa θ0ð Þ � 1
� �

(67)

Taking the complex gradient with respect to w and setting to zero

∂

∂w
L wð Þ ¼ 2Rwþ λa θ0ð Þ ¼ 0 (68)
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Under this criterion, the optimal weight vector is

wMP ¼ κR�1a θ0ð Þ (69)

where the constant (normalize the array main beam gain to unity) is

κ ¼ 1
aH θ0ð ÞR�1a θ0ð Þ (70)

This criterion (MP) compared with the previously defined criterion (MV) is
almost equivalent, since minimizing the total output power of the beamformer
while preserving the desired signal is equivalent to minimizing the output power
due to interference-plus-noise. The difference is only in the optimal weight vector
of the MP criterion, and it is not necessary to separate the interference and noise,
and only the covariance matrix of the received signal is estimated and thus the two
optimization problems in Eq. (61) and Eq. (66) are equivalent.

5.5 Maximum likelihood criterion

Assume the space has only one desired signal and number of interference
signals, the input signals can be expressed as

x ¼ m0a0 þ
XM
i¼1

miai þ n ¼ m0a0 þ
XM
i¼1

miai þ n

 !
(71)

If the interference signal and noise are zero mean Gaussian random process, the
above equation is a Gaussian random process, and its mean is the desired signal
m0a0. The output signal is defined as the likelihood function vector

L xð Þ ¼ � ln P x x ¼
XM
i¼1

miai þ n

�����

 ! !
(72)

The expression of the conditional probability can be further changed to

L xð Þ ¼ c x�m0a0ð ÞH Ri þ Rnð Þ�1 x�m0a0ð Þ (73)

where c is a constant independent of x and m0a0 . Taking derivative of the above
expression with respect to m0 and set the result equal to zero, we will get the
maximum likelihood estimation m0

∂

∂m0
L xð Þ ¼ �2aH0 Ri þ Rnð Þ�1xþ 2m0aH0 Ri þ Rnð Þ�1a0 ¼ 0 (74)

m0ML tð Þ ¼ aH0 Ri þ Rnð Þ�1

aH0 Ri þ Rnð Þ�1a0
x (75)

The optimal weight vector is obtained by the above equation of the maximum
likelihood criterion.

wML ¼ Ri þ Rnð Þ�1aH0
aH0 Ri þ Rnð Þ�1a0

(76)
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Compared with the weight vector solution under the Maximum Signal-to--
Interferer-Noise Ratio (MSINR) criterion, the above expression can be rewritten as

wML ¼ 1

aH0 Ri þ Rnð Þ�1a0
wMSINR (77)

From Eq. (77) it is clear that, the ML beamformer wML is a scalar multiple of the
Max-SINR beamformerwMSINR in Eq. (51). i.e., the adaptive weights obtained using
the ML and Max SINR criteria are proportional to each other. Since multiplicative
constants in the adaptive weights have no impact on the array beampattern, these
two techniques have no essential difference and are therefore equivalent.

6. Adaptive filtering algorithms

The expression of the optimal weight vector is obtained by solving the equations
based on the optimization theory. In practical engineering, the optimal weight
vector is obtained by the adaptive filtering algorithms. When there is a reference
signal available, the reference signal may be the training sequence of the desired
signal or the DOA information of the desired signal, the resultant technique is
categorized as a non-blind adaptive spatial filtering. These classical adaptive algo-
rithms include Direct Matrix Inversion (DMI) [19], Least Mean Square (LMS) [20–
22], Recursive Least Square (RLS) [23–25], Conjugate Gradient (CG) and its
improved algorithms [26, 27]. When there is no reference signal available, the
optimal weight vector solution can be obtained by using other characteristics of the
signal, the resultant techniques are categorized as blind adaptive spatial filtering.
Blind algorithm mainly includes Constant Modulus (CM) algorithm [28–30],
smooth circulation (Cyclo-stationary) algorithm [31], and High Order Cumulant
(HOC) algorithm [32].

6.1 Direct matrix inversion algorithm

The basic idea of DMI algorithm is to compute the optimal weight vector directly
instead of calculating it iteratively, based on an estimate of the correlation matrix
R ¼ E x tð ÞxH tð Þ� �

of the adaptive array output samples [33]. In communication
systems, the signal source consists of a desired signal, interference and noise,
therefore, the maximum SINR criterion, the minimum mean square error (MMSE)
criterion, the minimum variance (MV) criterion and the maximum likelihood (ML)
criterion need to know the covariance matrix of the interference signal and the
noise signal, and do not contain the covariance matrix of the desired signal. So these
criteria are not suitable for communication systems, and are suitable for radar
systems, because it is easy to realize the interference and noise superimposed signal
as long as the radar does not transmit the signal but only receives the signal.

For the MP criterion, the solution also needs the desired signal DOA, which is
based on Eqs. (68) and (69), thus obtaining the desired signal direction vector a θ0ð Þ.
On the other hand, unlike the MV criterion, the signal covariance matrix of MP
criterion is the sum of the covariance matrices of the desired signal, the interference
and the noise. Therefore, the MP criterion is suitable for the communication system.

Assume that there are P signals in the space, wherein, the desired signal is s0 ¼
m0a θ0ð Þ, the power is p0, and the interference signals are s1 ¼ m1a θ1ð Þ, … , sP ¼
mPa θP�1ð Þ with power p1, … , pP�1, respectively. The noise vector is n, and power is
σ2. According to the definition of covariance matrix
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R ¼ E
XP�1

i¼0

si þ n

 ! XP�1

i¼0

si þ n

 !H
2
4

3
5

¼ E
XP�1

i¼0

mia θið Þ þ n

 ! XP�1

i¼0

mia θið Þ þ n

 !H
2
4

3
5

(78)

Because the spatial separation between signal and interference is large enough,
they are spatially uncorrelated. When sources are uncorrelated

E a θið Þa θ j
� �Hh i

¼ 0 i 6¼ j (79)

At the same time

E m2
i a θið Þa θið ÞH

h i
¼ pi (80)

E nnH� � ¼ σ2 (81)

Obviously, in practical applications, it is very difficult to estimate the covariance
matrix by the respective amount of power, instead it can be estimated from samples
of the received signal. DMI algorithm assumes that the covariance matrix has been
estimated, and the expression R�1 is obtained by matrix inversion, combine with
the known DOA, calculate the direction vector a θ0ð Þ, and the optimal weight vector
solution is obtained by MP criterion.

Because the actual covariance matrix is not ideal, the performance of the DMI
algorithm is affected by the eigen-value spread of the covariance matrix. The
divergence is determined by the temporal and spatial correlation between the
desired signal and the interference or between the interference and interference.

The optimal weight vector by DMI algorithm can be computed as:
The K snapshots constitute data matrix X, the covariance matrix R is given as

R ¼ XXH

K
(82)

Directly estimate the covariance matrix and then by matrix inversion, obtain the
inverse matrix R�1 combined with the desired signal direction vector, and the
optimal weight vector is calculated according to Eq. (69).

w ¼ R�1a0
aH0R

�1a0
(83)

DMI algorithm needs to choose suitable number of sampling snapshots K. When
the number of snapshots K is sufficiently large, the covariance matrix R is more
accurate, but larger number of sampling snapshots increases the computing load [34].
The major disadvantage of DMI algorithm is its computational complexity which
makes it difficult to implement on FPGA and DSP. On the other hanf, the truncated
finite number of computation makes the matrix inverse operation instable.

extremely simple and numerically robust.

6.2 Least mean square algorithm

The least mean square (LMS) algorithm proposed by Widrow et al. [20] is the
most classical algorithm in signal processing. The LMS algorithm is extremely

19

Fundamentals of Narrowband Array Signal Processing
DOI: http://dx.doi.org/10.5772/intechopen.98702



simple and numerically robust. More detailed description about the LMS algorithm
is given in Ref. [18, 35]. The LMS algorithm is based on the method of steepest
descent, and therefore sometime it is referred to as a Stochastic Gradient Descent
(SGD) algorithm. The unconstrained LMS algorithm is a training sequence based
adaptive spatial filtering algorithm which recursively compute and update the opti-
mal weight vector. It uses the gradient search method to solve the weight vector,
thus avoiding the direct matrix inversion of the covariance matrix. Its iterative
equation is given as

w kþ 1ð Þ ¼ w kð Þ þ μg w kð Þð Þ (84)

where w kþ 1ð Þ represents the new weight vector computed at the kþ 1ð Þth
iteration, g w kð Þð Þ is the gradient vector of the squared error (objective function)
with respect to the weight vector w kð Þ, and the scalar constant μ is the step size
parameter which controls the rate of convergence [33]. The gradient vector is
given by

g w kð Þð Þ ¼ �2x kþ 1ð Þε ∗ w kð Þð Þ (85)

where x kþ 1ð Þ is the kþ 1 array snapshots, namely the kþ 1 array sample, and
ε ∗ w kð Þð Þ is the error between the array output and the reference signal [33]. Thus,
the estimated gradient vector is the product of the error between the array output
and the reference signal, and the array signal received at the k� th iteration. The
error ε ∗ w kð Þð Þ can be expressed as

ε x kð Þð Þ ¼ d kþ 1ð Þ �wH kð Þx kþ 1ð Þ (86)

where d kþ 1ð Þ is the reference signal at the kþ 1ð Þth iteration. As one of the
most classical adaptive filtering algorithms, ULMS has the advantage of computa-
tional simplicity and simple hardware requirement, but its convergence speed is
relatively slow. In order to ensure the convergence of the algorithm, the iterative
step size must meet the following condition [18, 20, 33–37].

0< μ<
2

λmax
(87)

where λmax denoted the largest eigenvalue of the received signal covariance
matrix.

The algorithm is based on the gradient of the adaptive algorithm, which is an
important feature of the gradient of the average value problem. The mean of the
gradient estimate is expressed as

g w kð Þð Þ ¼ 2Rw� 2rxd (88)

In the iterative process of the algorithm, the gradient vector can be obtained by
estimation. From the mean or expected value of the gradient estimate, the estimate
is unbiased. At the same time, the estimation of the variance has also an effect on
the performance of the algorithm. The variance is defined as

ξ w kð Þð Þ ¼ E d kð Þ �wH kð Þx kþ 1ð Þ�� ��2n o
(89)

whose value is the error between the reference signal and the array output
signal. From this, we can see that the Misadjustment of LMS algorithm is
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MA ¼ μtr I � μR½ ��1R
n o

(90)

The misadjustment defined as a ratio provides a measure of how close an adap-
tive algorithm is to optimality in the mean-square-error sense. The smaller the
misadjustment, the more accurate is the steady-state solution of the algorithm. In
other words, the difference between the weights estimated by the adaptive algo-
rithm and optimal weights is further characterized by the ratio of the average excess
steady-state MSE and the MMSE. It is referred to as the misadjustment. It is a
dimensionless parameter and measures the performance of the algorithm. The
misadjustment is a kind of noise and is caused by the use of noisy estimate of the
gradient [38, 39].

From the above analysis, we can see that the LMS algorithm has different
performance when choosing different steps and different covariance matrix esti-
mation methods.

The basic steps of the LMS algorithm are as follows:

1.First initialize, w 0ð Þ ¼ 0, k ¼ 0;

2.Iterative updates, so that k ¼ kþ 1;

e kþ 1ð Þ ¼ d kþ 1ð Þ �wT kð Þx kþ 1ð Þ
w kþ 1ð Þ ¼ w kð Þ þ μx kþ 1ð Þe kþ 1ð Þ

3.Stop iteration after the weight vector w kð Þ is convergent, so this time
definek ¼ K,w Kð Þ is the desired weight vector.

Figure 5 shows the learning curve of the LMS algorithm with different step size
parameters. It can be seen that when the step size parameter μ is small, the algo-
rithm converges slowly, while the large value of step size parameter μ make the
algorithm converge faster.

Figure 5.
Learning curve of the LMS algorithm.
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The least mean square algorithm requires the training sequence, if the training
sequence in the LMS algorithm is replaced by the DOA information of the desired
signal, the Frost LMS algorithm can be obtained [40].

Iterative equation of the Frost LMS algorithm is

w kþ 1ð Þ ¼ P w kð Þ � μg w kð Þð Þ� �þ a0
L

(91)

where the matrix

P ¼ I � a0 aH0 a0
� ��1

aH0 (92)

and g w kð Þð Þ is the gradient vector of the output signal power with respect to the
weight vector w kð Þ, and is given by

g w kð Þð Þ ¼ x kþ 1ð Þy ∗ kþ 1ð Þ (93)

In the above equation, the output signal is given as

y kþ 1ð Þ ¼ wH kð Þx kþ 1ð Þ (94)

Moreover, the initial value of the weights is given as

w 0ð Þ ¼ a0
L

(95)

In order to ensure the convergence of the iterative algorithm, the iterative step
size still needs to meet the following conditions μ< 2=λmax, where λmax is the largest
eigenvalue of the covariance matrix of the received signal.

Basic steps for the Frost LMS algorithm are as follows:

1.First initialize，w 0ð Þ ¼ a0
L，k ¼ 0

2.Iterative updates, so that k ¼ kþ 1;

y kþ 1ð Þ ¼ wH kð Þx kþ 1ð Þ;

w kþ 1ð Þ ¼ I� a0 aH0 a0
� ��1aH0

� �
w kð Þ � μx kþ 1ð Þy ∗ kþ 1ð Þf g þ a0

L ;

3.Stop iteration after the weight vector w kð Þ is convergent, so this time define
k ¼ K, w Kð Þis the desired weight vector.

The convergence rate of both the LMS algorithm and Frost LMS algorithm is
associated with the step size parameter. Since, the eigenvalues of the received signal
covariance matrix are not easy to obtain, the appropriate step size parameter cannot
be chosen easily.

If the step size is too larger than twice the reciprocal of the maximum eigenvalue
of the covariance matrix of the received signal, the weight vector diverges. Large μ’s
(step-size) speed up the convergence of the algorithm but also lower the precision
of the steady-state solution of the algorithm. It should be noted that value of the
step size must be less than twice the reciprocal of the maximum eigenvalue. Simi-
larly, when the step-size is much less than twice the reciprocal of the maximum
eigenvalue of the covariance matrix of received signals, the offset (steady state
error) is small but the weight vector converges slowly.
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Another variant of the LMS family is the normalized LMS (NLMS) algorithm.
This algorithm replaces the constant-step-size of conventional LMS algorithm with
a data-dependent normalized step size at each iteration. At the k-th iteration, the
step size is given by

μ kð Þ ¼ μ0
xH kð Þx kð Þ (96)

where μ0 is a constant. The .convergence of the NLMS algorithm is faster as
compared to the LMS algorithm due to the data-dependent step size. Figure 6
shows the convergence behavior of the NLMS algorithm with different μ0.

One major advantage of the LMS algorithm is its simplicity, and when the step
size is selected appropriately, the algorithm is stable (converged properly) and easy
to be realized [21]. However, the LMS algorithm is sensitive to eigenvalues of the
covariance matrix of received signals, and the convergence of the algorithm is poor
when the eigenvalues are dispersed.

Various other variants of LMS algorithm are briefly discusses in [21]. In recent
years, adaptive filtering algorithms have been extended into DOA estimation. DOA
estimation based on adaptive filtering algorithms can be found in [41, 42].

6.3 Conjugate Gradient Method

The Conjugate Gradient Method (CGM) [43–45] proposed by Hestenes and
Stiefel in 1952 (as direct method), is generally applied to the symmetric positive
definite linear systems equations of the form Aw ¼ b. In application of antenna
arrays, the the weight vector computation by conjugate gradient method is
discussed in [46]. Here, we have briefly outlined the conjugate gradient method
(CGM) in application to beamforming [47].

In array signal processing, w represent the array weight vector, A is a matrix
whose columns are corresponded to the consecutive samples obtained from array
elements, while b is a vector containing consecutive samples of the desired signal.
Thus, a residual vector

Figure 6.
Learning curve of the NLMS algorithm.
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r ¼ b�Aw (97)

refers to the error between the desired signal and array output at each sample,
with the sum of the squared error given by rHr.

The process is started with weight vector w 0ð Þ as an initial guess, to get a
residual

r 0ð Þ ¼ b�Aw 0ð Þ (98)

and the initial direction vector can be expressed as

g 0ð Þ ¼ AHr 0ð Þ (99)

Then moves the weights in this direction to yield a weight update equation

w kþ 1ð Þ ¼ w kð Þ þ μ kð Þg kð Þ (100)

where the step size μ kð Þ is

μ kð Þ ¼ AHr kð Þ�� ��2

AHg kð Þ�� ��2 (101)

The residual r kð Þ and the direction vector g kð Þ are updated using

r kþ 1ð Þ ¼ r kð Þ þ μ kð ÞAg kð Þ (102)

and

g kþ 1ð Þ ¼ AHr kþ 1ð Þ � α kð Þg kð Þ (103)

with

α kð Þ ¼ AHr kþ 1ð Þ�� ��2

AHr kð Þ�� ��2 (104)

A pre-determined threshold level is defined and the algorithm is stopped when
the residual falls below the threshold level.

It should be noted that the direction vector points in the direction of error
surface gradient rH kð Þr kð Þ at the k� th iteration, which the algorithm is trying to
minimize. The method converges to the error surface minimum within at most K
iterations for a K-rank matrix equation, and thus provides the fastest convergence
of all iterative methods [46, 48].

6.4 Recursive least square algorithm

In order to further improve the convergence rate, a more sophisticated algo-
rithm is recursive least square algorithm. RLS algorithm is based on the Recursive
Least Squares Estimation (RLSE), which uses time average instead of statistical
(ensemble) average or stochastic expectations. The RLS algorithm work well even
when the eigenvalue spread of the input signal correlation matrix is large [49, 50].
So RLS algorithm has an advantage of insensitivity to variations in eigenvalue
spread of the input correlation matrix [49, 50]. These algorithms have excellent
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performance when working in time-varying environments [49, 50]. Therefore, in
the practical application, the forgetting factor μ is usually taken into account, and
the optimal weight vector solution is slightly different. According to the optimal
weight vector solution of MP criterion, the covariance matrix estimation is
defined as

Φ kð Þ ¼
XK

k¼1

μK�kx kð ÞxH kð Þ (105)

where the parameter μ should be chosen in the range 0≪ μ≤ 1.
The above equation can also be expressed as

Φ kð Þ ¼ μΦ k� 1ð Þ þ x kð ÞxH kð Þ (106)

Using Matrix Inversion Lemma [14, 36, 51–54] (See Appendix A)

P kð Þ ¼ Φ�1 kð Þ

¼ μ�1Φ�1 k� 1ð Þ � μ�2Φ�1 k� 1ð Þx kð ÞxH kð ÞΦ�1 k� 1ð Þ
1þ μ�1xH kð ÞΦ�1 k� 1ð Þx kð Þ

(107)

Let

g kð Þ ¼ μ�1Φ�1 k� 1ð Þx kð Þ
1þ μ�1xH kð ÞΦ�1 k� 1ð Þx kð Þ (108)

then Eq. (106) can be expressed as

P kð Þ ¼ μ�1P k� 1ð Þ � μ�1g kð ÞxH kð ÞP k� 1ð Þ (109)

The iterative formula of the algorithm can be expressed as.

Figure 7.
Learning curve of the RLS algorithm.
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w kð Þ ¼ Λ kð Þ μ�1P k� 1ð Þ � μ�1g kð ÞxH kð ÞP k� 1ð Þ� �
a θ0ð Þ

¼ Λ kð Þ
μΛ kð Þ � 1

I � g kð ÞxH kð Þ� �� �
w k� 1ð Þ (110)

By taking different values of the K, the optimal weight vector recursion expres-
sion can be obtained. Compared with the LMS algorithm, RLS has a faster conver-
gence rate, which is also a closed-loop adaptive algorithm.

The implementation of the RLS algorithm is carried out with different values of
the forgetting factor μ. Figure 7 shows the learning curves of the RLS algorithm.
With the forgetting factor μ = 1, the algorithm requires only 50 iterations to
converge to its steady-state. It takes only 25 adaptation cycles to converge the RLS
algorithm with a lower forgetting factor of μ = 0.9.

7. Conclusion

In this chapter, we have introduced the basic principles and theoretical back-
ground of narrowband array signal processing. In particular, this chapter empha-
sized the fundamentals of narrowband signal processing exclusively used for the
narrowband beamforming and DOA estimation. Furthermore, we reviewed the
geometry of adaptive array antennas, the mathematical approaches for the devel-
opment of signal models of the receiver array, and the selection criteria of the
received signal processing technique, i.e. the criteria and guidelines related to
adaptive filtering algorithms for solving the optimal weights. Considering the far-
field narrowband signal using a uniform linear array as an example, the mathemat-
ical model is established in this chapter for the adaptive array antenna beamforming
system. The basic theory of this chapter also laid a foundation for the theory of the
wideband signal beamforming, which is then convenient for us to understand.

Appendix A

Matrix Inversion Lemma [52]: Let A and B be two positive-definite N �N
matrices, C a N �M matrix, and D a positive definite M�M matrix. If they are
related by

A ¼ Bþ CD�1CT,

then the inverse of the matrix A is

A�1 ¼ B�1 � B�1C DþCTB�1C
� ��1

CTB�1
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Chapter 2

Reconfigurable Filter Design
Tae-Hak Lee, Sang-Gyu Lee, Jean-Jacques Laurin and Ke Wu

Abstract

This chapter discusses recent development of reconfigurable filters. The technical
terminology reconfigurable means that a circuit is designed in a way to have
various electrical characteristics comparing with one which has a static feature.
For the filter design, the various electrical characteristics can be considered as the
filter can tune its operating frequency, bandwidth, and/or have multiple operational
modes, that is, bandstop or bandpass modes. Also, recently, the filters that can
exhibit an improved impedance matching performance over its stopband have
been reported. It provides more options for the filter designers to realize the
reconfigurable filters having reflective and/or absorptive frequency response types
to satisfy a prior given requirement. In this chapter, recently devised filter designs
will be covered and essential frequency tuning elements to realize the
reconfigurable characteristic will be introduced as well.

Keywords: resonant frequency, operational modes, reflective, absorptive,
frequency tuning elements

1. Introduction

Microwave filters play an important role in the chain of radio frequency (RF)
front end to transmit and receive the required signals or to block the undesired
ones. Most filter designs are dependent on the electrical length of the operating
frequency or the field configuration of the resonant modes inside a cavity so the
reconfigurable characteristic such as the capability to tune the operating frequency,
bandwidth, and operational modes can be obtained by controlling the dependent
design parameters. Recently, some researchers embarked on the development of
filters that have the better matching performance at its stopband region to avoid
using the isolators. The improved impedance matching characteristic is achieved in
a way the input signal not to be reflected back to the input port by absorbing the
input signal inside the filter structure so the devised circuits having the improved
impedance performance are often named as an absorptive or a reflectionless filter.

In this chapter, we will explore the recent development of reconfigurable filter
designs that can change their operating frequency, bandwidth, and operational
modes along with some tuning components. Besides, the filter designed to have
both reflective and absorptive characteristics will be shown. The frequency tunable
substrate integrated waveguide (SIW) resonators are used to change the operating
frequency of the reconfigurable filter and, to achieve frequency agility, the tuning
elements based on the piezoelectric disk or the electromagnet are also given. To
verify the tuning method using the electromagnet, frequency tunable filtering balun
is fabricated and tested using four electromagnets. In the following section, we first
start from the theoretical modelings of the frequency responses of the
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reconfigurable filter using coupling coefficients and equivalent circuits, and then
the circuit model with simulation and measurement results are given to support the
theoretical modelings.

2. Filter designs

The coupling coefficients and their array in form of a matrix containing the
inverter values are widely used to explain or represent the operation mechanism of
the filter structure. The fundamental theory and detailed concepts to establish the
coupling coefficients and matrix can be found from well-known textbooks [1, 2]. In
this section, we will briefly cover the definition of two coupling coefficients and the
experimental process to assess the coupling coefficients of the physical external, or
inter-resonator coupling structures. Both couplings essentially need to be defined
for the theoretical frequency responses and the associated coefficient to each
coupling structure should be realized from the coupling structures for the filter to
satisfy the requirements.

2.1 Coupling coefficients modeling

In this subsection, two kinds of the coupling coefficients, external and internal,
are explained and the way to obtain two different coefficients from the simulation
or measurement process with ease will be analytically given.

Figure 1 shows an nth order filter circuit with serially connected LC resonators.
The couplings between the resonators and between a resonator and input/output
ports are shown with K-inverters and the values for the inverters are given using Ki,j

and K0,1, respectively. Note that the given nth order circuit consists of the serially
connected resonators and impedance inverters but the identical nth order frequency
response can also be realized using parallel connected LC resonators and admittance
inverters. In other words, in this chapter, we extract the theoretical frequency
responses using the series LC resonators with K-inverters but the same results can
be obtained with parallel resonators with J-inverters due to the duality theorem.

The inverter values for the required bandpass responses can be defined as
follows [3],

K0,1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0L1

g0g1
Δω

s
, Ki,j ¼

ffiffiffiffiffiffiffiffiffi
LiL j

gig j

s
Δω, Kn,nþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0Ln

gngnþ1
Δω

s
(1)

where the Δω represents the bandwidth of the filter and the lowpass prototype
elements are given using gn. When the series LC resonators are replaced with
generalized resonators which have the reactance slope parameter, xi, and the
inverter values given in Eq. (1) can be driven as Eq. (2),

Figure 1.
Nth order filter structure composed of series LC components.
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K0,1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0x1
g0g1

FBW

s
, Ki,j ¼

ffiffiffiffiffiffiffiffiffi
xix j

gig j

s
FBW, Kn,nþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0xn
gngnþ1

FBW

s
: (2)

where the FBW stands for the fractional bandwidth. In Eq. (2), port impedance
Z0 can be normalized and the lowpass prototype elements, g-parameters, can be
replaced using the normalized coupling coefficients, Mn,nþ1. As a result, the
K-inverter values of the nth order bandpass filter for the external and inter-
resonator coupling structures are given in Eq. (3).

K0,1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1FBW

p
M0,1, Ki,j ¼ ffiffiffiffiffiffiffiffiffi

xix j
p

FBWMi,j, Kn,nþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnFBW

p
Mn,nþ1: (3)

In a similar way, J-inverter values can be obtained with the susceptance slope
parameters of parallel resonators and those are given in Eq. (4).

J0,1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1FBW

p
M0,1, Ji,j ¼

ffiffiffiffiffiffiffiffiffi
bib j

q
FBWMi,j, Jn,nþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bnFBW

p
Mn,nþ1: (4)

The theoretical frequency responses based on the normalized coupling coeffi-
cients, Mn,nþ1, can be generated from the lowpass prototype g-parameters, gn.
Figure 2 shows the theoretical frequency responses of the second-order filtering
structures. The coupling coefficient matrices associated with the structure are given
in the inset of the figures. Note that the filter can produce either bandpass or
bandstop frequency response according to the coupling scheme. The theoretical
responses are generated with an assumption that the filters are designed and
realized with resonators having a quality factor of 350. The fractional bandwidth of
the filter is set as 0.023. Note that both frequency responses are designed to have
the 3-dB bandwidth at the normalized frequency of ω is equal to 1.

In order to meet the requirement regarding the frequency response of the
reconfigurable filter, the coupling structure should be designed based on the simu-
lation or measurement process to find a suitable value for each coupling structure.
With the given values for the normalized coupling coefficients and the fractional
bandwidth, the inverter values for both external and internal coupling structures
need to be determined to realize the required filtering responses.

Figure 3 shows a simulation or measurement setup for the external coupling and
its reflection coefficient result. The input impedance seen from the source and the
reflection coefficient, Γ, can be given in Eq. (5).

Figure 2.
Theoretical frequency responses.
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Zin ¼
K2

0,1

jω0L ω
ω0

� ω0
ω

� � , Γ ¼ Zin � Ra

Zin þ Ra
: (5)

The reflection coefficient can be reorganized with the input impedance, Zin, and
the frequency points at which the phase of the reflection coefficient meets �90°. In
other words, the reflection coefficient can be organized with respect to ω when its
phase is 90° or �90°, and two positive solutions are given in Eq. (6).

ωþ90 ¼
�k201 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k401 þ 4 Raw0Lð Þ2

q

2RaL
, ω�90 ¼

k201 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k401 þ 4 Raw0Lð Þ2

q

2RaL
: (6)

So, the difference between two frequency points can represent the inverter
value and, with the predefined form of Eq. (3), it can be summarized as Eq. (7)
when the source impedance, Ra, is the same as the port impedance, Z0.

f�90 � fþ90 ¼ Δf �M2
0,1: (7)

where Δf is the bandwidth in Hz.
It means that the physical external coupling structure can be tuned during

simulation or measurement process to meet the required design value. The design
goal can be calculated with the given values such as the normalized coupling coef-
ficient and bandwidth. As a result, the dimensions for external coupling structure
can be determined or fine-tuned to achieve the prescribed frequency responses.

In addition to the external coupling structure, the reconfigurable filter also
possesses the internal coupling structures and the inter-resonator coupling coeffi-
cients represent its coupling strength between resonators. Figure 4 shows the
equivalent circuit for the simulation or measurement setup for the inter-resonator
coupling and its transmission coefficient result. As shown in the figure, two reso-
nators are coupled each other through a coupling structure modeled with an
inverter whose value is Ki,j, and both resonators are fed from source or load with
loosely coupled through the inverters, K0 or K″. In other words, to minimize any
likely effects from input and output ports given with Z0 in Figure 4 on the inter-
resonator coupling coefficients, the simulation or measurement setup for the inter-
resonator coupling coefficients is designed to have small K0 or K 00 values. The input
impedance seen from the loosely coupled external ports is given in Eq. (8).

Zin ¼ jω0Li
ω

ω0
� ω0

ω

� �
þ K2

i,j

jω0L j
ω
ω0

� ω0
ω

� � : (8)

Figure 3.
Simulation setup for an external coupling coefficient and its phase response of the reflection coefficient.
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Since two resonant peaks in the transmission response given in Figure 4
coincide with the short-circuited frequencies, we can have frequency points by
calculating its zeros of Eq. (8) with respect to the ω. Each positive solution from two
different equations can be given as f 1 and f 2.

f 1 ¼
�Ki,j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

i,j þ 4w2
0LiL j

q

4π
ffiffiffiffiffiffiffiffiffi
LiL j

p , f 2 ¼
Ki,j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

i,j þ 4w2
0LiL j

q

4π
ffiffiffiffiffiffiffiffiffi
LiL j

p : (9)

Similar with the case for the external coupling coefficient design, the inter-
resonator coupling coefficient can also be estimated from the distance between two
frequency points and it can be calculated as Eq. (10) with the theoretical values of
Ki,j with ease.

f 2 � f 1 ¼ Δf �M1,2: (10)

Based on Eqs. (7) and (10), one can estimate the coupling structures for both
external and internal couplings and precisely optimize the dimensions of structures
to realize the required filter responses.

Up to this, we designed coupling structures for the external and inter-resonator
couplings, and it could be done by using both theoretical responses and simulation
or measurement processes. The reconfigurable characteristic can be obtained by
applying the electronic components such as the varactor or pin diodes to the static
coupling structures. For example, the shunt-connected varactor diodes can be
embedded in the inter-resonator coupling structure and it results in different cou-
pling coefficients comparing with the one without varactor diodes. The external
coupling coefficients can also be tuned with electronic components loading to
provide the proper impedance matching performance. In the following subsection,
the equivalent circuits of coupling structures with tuning elements are presented in
more detail.

2.2 Equivalent circuit modeling

In the previous subsection, the theoretical coupling values comprising a filter
structure are given and simulation or measurement setup to extract the coupling
coefficients is also provided. In order to realize the required filter responses with the

Figure 4.
Simulation setup for an inter-resonator coupling coefficient and its magnitude response of the transmission
coefficient.
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fabricated filter, we establish the equivalent circuits based on the theoretical values
and also perform the full-wave simulation process with commercial tools such as
Keysight Advanced Design System and Ansys High Frequency Structure Simulator.
In this subsection, two equivalent circuits for the different frequency responses,
frequency tunable bandpass and absorptive bandstop, are given to describe the
operation mechanism of a reconfigurable filter [4]. Both equivalent circuits consist
of the coupling structures that are covered in the previous section and those contain
the electronic components to achieve the required reconfigurable characteristic.
During the simulation, the capability of loaded electronic components that change
the coupling coefficients can be figured out and the detailed simulation results are
given in [4].

Figure 5 shows an equivalent circuit for a frequency tunable two-pole bandpass
response. It contains two LC resonators coupled each other through an iris which is
modeled using an inductor, Lc. A short-circuited microstrip line with shunt connected
capacitors also contributes the inter-resonator coupling at the same time. The input
and ouput lines are also coupled to the resonators. As mentioned in the previous
section, the reconfigurable characteristics can be realized by tuning the coupling
structures and, in this equivalent circuit, the short-circuited capacitors, Ci and Ce, are
placed to optimize the internal and external coupling coefficients, respectively. The
operating frequency agility is basically achieved by changing the value of Cr and the
passband bandwidth can mainly be tuned by Ci. A capacitor serially shunt-connected
to the input and output port using a short length of microstrip line lmð Þ can control
the matching performance. As a result, all features for the bandpass frequency
responses can be controlled with three different capacitors.

Figure 6 shows the simulation results for the operating and bandwidth tuning
performance of the bandpass equivalent circuit. The detailed circuit parameters can

Figure 5.
Equivalent circuit for bandpass frequency response of the reconfigurable filter.

Figure 6.
Simulation results for the operating frequency and bandwidth tuning performance of the bandpass equivalent
circuit.
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be initially decided when the coupling structures for external and inter-resonator
couplings are investigated using the full-wave simulation process as given in the
previous section. The initial circuit parameters except for the three capacitance
values are N1 = 1.05, N2 = 2.2, lm = 0.357 in, li = 0.315 in, Lr = 10.467 nH and Lc =
6.978 nH. The capacitance for resonators Cr is used from 22 pF to 70 pF and the
other two capacitance values are determined based on the reasonable values from
the commercial varactor diodes. The frequency tuning ratio of larger than 1.7:1 is
expected based on the simulation results. The different capacitance loading Ci
changes the resonant frequency of a resonant mode so it results in the bandwidth
control capability. Note that the simulation for the bandwidth tuning is performed
with a fixed Cr value and the similar tuning performance can be obtained over the
frequency tuning range of interest. The simulation results exhibit that one can tune
the center frequency and bandwidth of the filter maintaining the impedance
matching performance.

Figure 7 shows the equivalent circuit for the absorptive bandstop frequency
response. Similar to the one for the bandpass frequency response it can change the
operating frequency by changing the capacitance which is the part of resonators. In
order to realize the unity coupling value between source and load as given in the
inset of the theoretical frequency response, the microstrip line which is designed to
have an electrical length of 270∘ at 2.2 GHz is added between two ports. Except for
the microstrip line for Msl, the rest of the circuit parameters are the same as those
for the bandpass mode equivalent circuit. The absorptive frequency responses given
in Figure 8 can be characterized with the reduced reflection coefficients at the
stopband of the bandstop filtering response. The equivalent circuit shows the best
absorptive characteristic at 2.2 GHz of the predetermined center frequency but the
amount of the reflection coefficient increases as the operating frequency is tuned
from the predetermined one since the electrical length of the microstrip line devi-
ates from the center frequency. In other words, the frequency tuning range of the
absorptive bandstop mode is mainly limited by the electrical length of the filter
structures and, in this case, it is about 500 MHz with less than �10 dB reflection
coefficient.

Two equivalent circuits shown in Figures 5 and 7 are realized using frequency
tunable substrate integrated waveguide (SIW) resonators, varactor diodes, and
single pole double throw (SPDT) switches. Two frequency tunable resonators and
the microstrip line structure are placed at the different substrate and are coupled
through coupling slots. The commercial varactor diodes are embedded in the
microstrip line and are used to tune the coupling strength with different input
voltages. In order to realize both bandpass and absorptive bandstop responses using
a filter structure, two SPDT switches are also embedded in the microstrip line
designed to provide Msl coupling between source and load.

Figure 7.
Equivalent circuit for absorptive bandstop frequency response of the reconfigurable filter.

37

Reconfigurable Filter Design
DOI: http://dx.doi.org/10.5772/intechopen.97446



2.3 SIW resonator-based reconfigurable filter

Figure 9 shows the filter configuration and a photograph of the fabricated filter
with two frequency tuning elements [4]. At the top of the fabricated circuit, the
microstrip line for the RF input signal is etched together with direct current (DC)
bias lines for the electronic components. The coupling slots in the ground plane of
the microstrip line are used to control the external or internal coupling and their
size should be optimized in order to satisfy both bandpass and absorptive bandstop
frequency responses. In virtue of the shunt-connected varactor diodes embedded in
the microstrip, one can realize or achieve the coupling coefficient requirement over
the frequency tuning range of interest. The SIW resonator consists of conductive

Figure 8.
Simulation results of the equivalent circuit for the absorptive bandstop responses.

Figure 9.
Reconfigurable filter configuration and a photograph of the filter with frequency tuning elements.
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posts at the center of the resonator and, with a copper membrane attached at the
bottom of the resonator, high capacitance is loaded between the copper membrane
and a circular-shaped ground plane of the post. The frequency agility is achieved by
changing the loaded capacitance, and it means that the thickness of the air gap
determines the resonant frequency of the frequency tunable SIW resonator.
The frequency tuning elements attached at the bottom of the resonator are designed
to change the air-gap thickness with the movement of a shaft connected to a
piezoelectric disk actuator. More about the tuning element will be given in the
next section.

Figure 10 shows the measurement results of the bandpass mode of the
reconfigurable filter. The operating frequency is tuned from 1.86 to 3.3 GHz. The
resonant frequency is tuned using two piezo disk-based tuning elements and the
impedance matching performance of at least below �10 dB reflection coefficient is
maintained over the frequency tuning range thanks to the varactor diodes for the
external coupling optimization. As shown in the frequency tuning measurement
results, the filter exhibits the different passband bandwidth as its operating fre-
quency is tuned. Since the coupling strength generated from the coupling slots is
unavoidably frequency dependent, so the coupling coefficient from a coupling slot
with a fixed dimension can be different as the operating frequency of the filter is
tuned. As mentioned earlier, the passband bandwidth is mainly controlled with the
varactor diodes which have a capacitance value of Ci in Figure 5. The fabricated
filter can also maintain its passband bandwidth even though the operating fre-
quency is changed. In the right graph of Figure 10, the capacitance values are set to
realize 80 MHz constant bandwidth with about 640 MHz frequency tuning range.
Figure 11 shows the measurement results of the absorptive bandstop mode of the
fabricated filter. As expected from the simulation result given in Figure 8, the
absorptive characteristic is maintained over the frequency tuning range of interest
and the amount of reflection coefficient and attenuation performance get worse
when the operation frequency moves away from the frequency where the l2 given
in Figure 7 satisfies the electrical length of 270∘. The fabricated filter provides more
than 500 MHz of frequency tuning range when it operates as an absorptive
bandstop mode.

In the following section, the frequency tuning elements that can be applied to
the aforementioned frequency tunable SIW resonators will be given. First, the
piezoelectric disk-based tiny ultra-linear actuator will be introduced with its
detailed operating mechanism and then we will provide the recently proposed
tuning method based on the magnetically actuated tuning elements. Finally, a
filtering balun structure is fabricated and its frequency tunable characteristic is
tested using four electromagnets to verify the proposed magnetically actuated
tuning method.

Figure 10.
Measured bandpass mode frequency responses.
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3. Frequency tuning elements

In order to achieve frequency agility, one can exploit the tuning elements in the
filter structures. Those can be varactor or pin diodes when the filters are designed
with lumped or distributed elements such as microstrip lines since they can change
and perturb the electrical length or the electromagnetic fields in the structures [5]. In
this section, two different kinds of frequency tuning elements and their application to
the frequency tunable substrate integrated waveguide resonator will be covered.

3.1 Piezoelectric disk-based elements

The frequency tunable SIW resonator shown in the previous section utilizes a
piezoelectric disk-based actuator to change the thickness of an air gap in which the
electric field is strong [6]. The piezoelectric actuator can be applied to the SIW
resonator in two different ways.

Firstly, as shown in [6], the piezo disks can be directly attached to the copper
membrane and react to the applied DC voltage. The thickness of the disk can be
varied with the applied voltage so the different air-gap thicknesses result in the
resonant frequency tuning. However, there are two drawbacks in directly attaching
the piezo disk to the resonators. One is the size of the disk itself as it should cover
the whole of the copper membrane and supporting substrate to properly operate its
function and it can limit the size of the resonator as well. It means that the piezo
disk may not be large enough to cover the frequency tunable resonator designed to
operate at lower frequency bands. The second drawback is the large input voltage
range with the hysteresis effects. The applied input voltage is dependent on the
piezo disks, but it could be from �200 to +200 V to satisfy the sufficient frequency
tuning range requirements. In addition, the amount of changes in the thickness is
not identical when the applied voltage moves from low to high level or from low to
high level due to the hysteresis effect.

Figure 11.
Measured absorptive bandstop mode frequency responses.
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Secondly, the frequency tunable substrate integrated waveguide resonator
utilizes the tiny ultra-linear actuators, named TULA to tune the resonant frequency
[7]. The devised element shown in Figure 12 is comprised of a small piezo disk with
a post attached to and the input voltage is applied by using a small driver circuit that
can be controlled with commercial software. The applied voltage pulse has a form of
sawtooth and the post attached to the piezo disk moves upward or downward. The
reported linear actuator has an advantage over the disk type of piezoelectric actua-
tor as it can provide a predictable amount of movement per the amplitude of pulse
in spite of the hysteresis of the piezo disk. But these tuning elements can limit the
filter to be assembled with a neighboring circuit due to the size of the fixture with a
shaft. In addition, one end of the post should be glued to the copper membrane to
control the air-gap thickness, so during the fabrication process, especially in the
attachment of the post to the filter, there is a chance of serious damage to the copper
membrane. In addition, it is not a practical way to realize the frequency tunable
characteristic when low cost, compact volume designs are needed.

3.2 Magnetically actuated tuning elements

In this subsection, a recently reported frequency tuning method that can be
applied to the frequency tunable substrate integrated waveguide resonators will be
covered [8]. An electromagnet with a high permeability foil are utilized to tune the
resonant frequency without any contacts between the resonators and tuning ele-
ments. A foil sheet is glued on the copper membrane during the fabrication process
so the thickness of an air gap can be tuned with the applied magnetic flux from the
electromagnet. Based on this method, the resonant frequency of the filter can be
precisely tuned and the copper membrane can maintain its status as it was fabri-
cated since the frequency tuning element, electromagnet, does not contact the filter
circuit, unlike the piezoelectric actuator. A detailed explanation along with the
simulation and measurement results is given in the following.

Figure 13 shows simplified 3D and side view of the circular-shaped substrate
integrated waveguide resonator. A copper plate is circularly etched at the bottom of
the substrate and is also electrically connected to the top plate via conductive via-
holes. A large amount of capacitance is generated at the air gap between the copper

Figure 12.
A photograph of a piezoelectric disk-based tiny ultra-linear actuator.
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plate and the copper membrane so the resonant frequency tuning mainly can be
done by changing the thickness of an air gap. The relationship between the thick-
ness and resonant frequency as well as the quality factor is simulated and the results
are also given in Figure 13.

Based on the Eigen model simulation results, a single-frequency tunable resona-
tor is designed to support the electromagnet-based tuning method. As shown in the
upper left figure of Figure 14, two conductor-backed coplanar waveguide lines
which are designed to have 50 Ω characteristic impedance are used as input and
output lines. Two radial-shaped slots control the external couplings between 50 Ω
line and resonator so a tight coupling can be achieved with a larger coupling slot.
The side view is also given for the fabrication process, and it is noted that a high
permeability foil is glued at the bottom of the resonator with the same adhesive
used for the lamination of two substrates. The photograph of a fabricated resonator
with a high permeability foil is also shown in Figure 14. The high permeability sheet
glued to the frequency tunable SIW resonator for the magnetically actuated tuning
method is from Metglas, Inc.

Prior to the implementation of the proposed frequency tuning method to the
fabricated filter structure, the magnetic flux density and the current consumption
from an electromagnet need to be investigated and the measured results are given in
Figure 15. The magnetic flux density is measured using a Tesla meter and a probe as

Figure 13.
Simplified view of a frequency tunable circular SIW resonator and its electrical characteristics.

Figure 14.
Simulation model of frequency tunable SIW resonator, a side view drawing of the fabricated circuit, and
photographs of SIW resonator.

42

Adaptive Filtering - Recent Advances and Practical Implementation



shown in the inset of Figure 15. An electromagnet used for the measurement is a
readily available one from market and its rated input voltage is 12 V, so applying the
input voltage larger than the rated voltage for a long period of time can result in a
damage of the electromagnet.

The electromagnet is placed both upper and lower sides of the fabricated one-
pole frequency tunable SIW resonator to tune the resonant frequency as shown in
Figure 16. Since the electromagnet only generates an attraction force from the input
voltage, two electromagnets are used to move the high permeability foil in the
opposite direction. In order to maximize the frequency tuning range, the input
voltage to the electromagnet is applied to each at a time. The resonant frequency is
tuned from 1.3 to 3.7 GHz which is larger than the frequency tuning ratio of 2.8:1.

Figure 15.
Measured magnetic flux density and current consumption from an electromagnet.

Figure 16.
Photograph of the fabricated one-pole frequency tunable SIW resonator with electromagnets and its measured
frequency responses.
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In future research on the magnetically actuated tuning elements, the smaller elec-
tromagnetic that can generate two-way magnetic forces with lower input voltage to
satisfy the specific applications are expected.

3.3 Frequency tunable filtering balun with magnetically actuated tuning
method

In this subsection, a filtering balun design is provided and its resonant frequency
is tuned based on the aforementioned magnetically actuated tuning method. The
fundamental design theory for the frequency tunable filtering balun follows the one
reported in [9] except for the order of circuit structure and the required frequency
tuning range.

Figure 17 shows the exploded view of the frequency tunable filtering balun.
Similar to the reconfigurable filter given in [8], the filtering balun consists of two
different substrates and each substrate contains the microstrip lines or SIW resona-
tors, respectively. The couplings between two substrates are achieved through
coupling slots placed at the ground plane of the microstrip line. To meet the
requirement of balun, one port is designed in form of a single-ended microstrip
input line and the other two ports have differential output lines. The short-circuited
microstrip line fed the SIW resonator and the two ports connected to the other
microstrip line receive output signal having an equal magnitude and a phase differ-
ence of 180∘. This can be done by introducing a coupling slot at the center of the U-
shaped microstrip [9]. As shown in the photograph of the fabricated filtering balun,
two circular-shaped foils which have a high permeability are glued at the bottom of
the devised circuit. Two electromagnets are placed at both sides of the circuit for
each frequency tunable SIW resonator. To satisfy the required frequency tuning
range, the electromagnets are placed as close as possible by optimizing the height of
the plastic support. The electromagnets are the same as those used in Figure 16, so
the input voltage can also be swept from 0 V to 12 V.

Figure 19 presents the simulation results of the filtering balun. The required
frequency tuning is about 17% at the center frequency of 2.9 GHz with the proper
performance on the differential output line such as the amplitude and phased
imbalance. The mixed-mode S-parameters (Sds21, Scs21, and Sdd22) are calculated and

Figure 17.
Simulation model of the frequency tunable filtering balun and its detailed view with high permeability foils.
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Figure 18.
Simulation results of the frequency tunable filtering balun.

Figure 19.
Measurement results of the frequency tunable filtering balun.
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also given in Figures 18 and 19. The operating frequency of the fabricated filtering
balun is tuned from 2.65 to 3.15 GHz which satisfies the requirement and both
amplitude and phase imbalanced performance at the passbands are given. Some
discrepancies between the simulated and measured results are from some unex-
pected factors raised from fabrication or assemblies that can impact the electrical
characteristic of the differential output signal. In this section, the frequency tuning
method utilizing the electromagnets with high-permeability foil has been tested and
the measurement results show that it can provide a comparable performance with
the one with piezoelectric disks.

4. Conclusions

In this chapter, we explore the design process of the reconfigurable filter which
can exhibit both frequency tunable bandpass and absorptive bandstop frequency
responses. The coupling structures that can satisfy the predetermined requirements
are designed from the theoretical normalized coupling coefficients, and its simula-
tion/measurement models are also given. In order to realize the frequency tunable
characteristic, two different tuning elements which are based on the piezoelectric
disks or electromagnets are shown with the operation mechanism, and its
application to the fabricated filtering balun is implemented especially using the
electromagnets.
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Chapter 3

Kalman Filter Estimation
and Its Implementation
Erick Ulin-Avila and Juan Ponce-Hernandez

Abstract

In this chapter, we use the Kalman filter to estimate the future state of a system.
We present the theory, design, simulation, and implementation of the Kalman
filter. We use as a case example the estimation of temperature using a Resistance
Temperature Detector (RTD), which has not been reported before. After a brief
literature review, the theoretical analysis of a Kalman filter is presented along with
that of the RTD. The dynamics of the RTD system are analytically derived and
identified using Matlab. Then, the design of a time-varying Kalman filter using
Matlab is presented. The solution to the Riccati equation is used to estimate the
future state. Then, we implement the design using C-code for a microprocessor
ATMega328. We show under what conditions the system may be simplified. In our
case, we reduced the order of the system to that of a system having a 1st order
response, that of an RC system, giving us satisfactory results. Furthermore, we can
find two first order systems whose response defines two boundaries inside which
the evolution of a second order system remains.

Keywords: Kalman filter, prediction, Riccati equation

1. Introduction

A deterministic system is a system whose governing physical laws are specified
so that if the state of the system at some time is known, then one can precisely
predict the state at a later time. Nondeterministic systems are divided into two
categories: stochastic and random. A stochastic system has governing physical laws
that even if the state at some point in time is known precisely, it is impossible to
determine the state of the system at a later time precisely. It is possible to determine
the probability of a state, rather than the state itself. A random system is one which
has no apparent governing physical laws. Practically, we treat all unpredictable
systems, stochastic or random as stochastic systems, since we employ the same
methods to study them. While we are unable to predict the state of a random
process, we can evolve a strategy to deal with such processes. Such a strategy is
based on a branch of mathematics dealing with unpredictable systems, called
statistics.

Estimation is the process of extracting information from data which can be used
to predict the behavior of state variables in a system. The estimation uses statistical
criteria to infer the actual value of unknown variables. Estimation models are used
to process noisy measurements, filter them, and detect inaccuracies. When random
signals are passed through a deterministic system, their statistical properties are
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modified. A deterministic system to which random signals are input, so that the
output is a random signal with desired statistical properties is called a filter. Filters
can be linear or nonlinear, time-invariant or time varying. However, for simplicity
we will usually consider linear, time-invariant filters. Linear, time-invariant filters
are commonly employed in control systems to reduce the effect of measurement
noise on the control system. In such systems, the output is usually a superposition of
a deterministic signal and a random measurement noise.

The output of a filter not only has a frequency content different from the input
signal, but also certain other characteristics of the filter, such as a phase-shift or a
change in magnitude. In other words, the signal passing through a filter is also
distorted by the filter, which is undesirable. A filter would produce an output signal
based upon its characteristics, described by the transfer-function, frequency or
impulse response, or a state-space representation of the filter. However, a filter can
be designed to achieve a desired set of performance objectives, i.e. the numerator
and denominator polynomials of the filter’s transfer function, or coefficient matri-
ces of the filter’s state-space model, can be selected by a design process to achieve
the conflicting requirements of maximum noise attenuation and minimum signal
distortion.

There are several prediction models to infer the system state, although, it can be
shown that of all estimation tools Kalman Filter (KF) is the one that minimizes the
variance of the estimation error which enables accurate estimation of the process.

1.1 Literature review

The first application of state estimation was in the aerospace field to solve
problems related to the prediction of position in aerospace vehicles. Nowadays,
estimation has been applied in several fields of engineering and control systems.
One common application is in data acquisition, to solve the problem of predicting
the state of a system that cannot be measured directly due to the characteristics and
complexity of the environment.

KF is an estimator proposed by Rudolph E. Kalman in 1960. It is an algorithm to
estimate the evolution of a dynamic system, especially when data has a lot of noise.
The principle of the filter is to find the probability of the hypothesis of predicted
state and using the data from the measurement to correct it and improve the future
estimation at each time. It is a suitable algorithm to apply in dynamic systems,
linking real-time measurements and predicting the state of system parameters
through time approaches. KF has been implemented in several fields, such as in
navigation systems [1–4], financial models [5–7], tracking vehicles [8, 9] and
image processing [10–12]; only to mention some of them. Nevertheless, this statis-
tical tool is useful for two main purposes: estimation and performance analysis of
estimators.

In the field of IC technology, it has been implemented for thermal estimation.
Multicore processors use a dynamic thermal management mechanism that use
embedded thermal sensors for monitoring the real-time thermal behavior of the
processor, this kind of sensors are susceptible to a variety of source of noise and this
causes the discrepancies between actual temperatures observed by on-chip thermal
sensors. Therefore, to fix the discrepancies in sensing, Kalman’s prediction is used
to estimate real values from noisy sensor readings [13]. Another novel application of
KF is in the electric vehicle industry, the estimation of the charge state of lithium-
ion battery is an important parameter in order to guarantee a safe operation of
them. The battery performance is influenced by aging; this fact makes difficult
to predict the battery state, to overcome this issue the application of KF in
combination with other methods is a suitable methodology [14–17].
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Recently, KF has been applied in several industrial applications. With the devel-
opment of manufacturing process, welding automation emerges as one important
tool to speed up the production rate in the assembly line in stronger and high-
quality welds. Nevertheless, there are several factors that could influence the
welding quality and the most important is the arc length, which could be influenced
by the irregular surface of the workpiece and the loss of the tungsten electrode. To
enhance the quality during the Gas-Tungsten Arc Welding (GTAW) process, KF is
applied in order to keep the arc length stable and minimize the external noise [18].
In the field of sensorless control, KF have been used in intelligence electrical drives.
To control induction motor drives without mechanical speed sensor at the motor
shaft allows reduced hardware complexity, and low costs. Additionally, the use of
induction motors without position sensor is useful for applications with abrasive
and hard surface. Thereby, the application of an estimation method it’s necessary in
order to predict the position and velocity of the shaft [19–21].

In applications related with radio astronomy, KF has been applied for the anal-
ysis of Very-Long-Baseline Interferometry (VLBI) data, in order to analyze param-
eters such as base line lengths, earth orientation parameters, radio source
coordinates and tropospheric delays. Nowadays, modern antennas are being
constructed and equipped with highly accurate broadband receiving systems.
Besides the accurate observations gotten by astronomic instruments, it is necessary
to implement estimation methods in order to optimize the models applied in data
analysis [22, 23]. In power systems, one of the main difficulties is power quality due
to total harmonics distortion (THD) that is mainly caused by nonlinear loads. THD
effects are strongly correlated with issues as device heating, break down electronic
components, network interference, etc. Several filters have been performed to
decrease the effect of harmonics; nevertheless, the application of KF has shown an
important reduction in the effect of harmonics [24–26]. In the field of biomedicine
KF is widely used over other estimation methodologies to overcome the different
sources of noise. Specifically, KF has been used to smooth and predict signals from
Electroencephalogram and Electrocardiogram signals [27, 28]. Recently in the liter-
ature there are reports on a new methodology to protect the confidentiality of the
transmitted data based on a Kalman filter. This strategy proposes the implementa-
tion of encrypted algorithm using KF, and is suggested to be used in Industrial
cyber–physical systems (ICPSs) to protected data privacy [29, 30].

As it has been mentioned above, KF has been used in diverse fields of science and
technology to predict specific parameters of interest according to the application.
Temperature evolution is an important parameter to measure and predict, in order to
study or control the temperature in an environment [31, 32], device [13, 33, 34] and
process [18]. It is well known that RTDs are commercial devices very useful to
monitor the temperature due their stability and accuracy. However, RTDs are self-
heating causing noisy readings making the RTD a suitable example to implement KF
for temperature estimation. Importantly, we searched in the literature and found no
evidence of previous work reporting the use of a KF to filter the noise and predict the
temperature behavior from RTD readings.

2. Theoretical analysis of a Kalman Filter

The final objective of this study is to obtain the specification of a linear dynamic
system (Wiener filter [35]) which accomplishes the prediction, separation, or
detection of a random signal [36]. With the state-transition method, a single deri-
vation covers a large variety of problems: growing and infinite memory filters,
stationary and non-stationary statistics, etc. Having guessed the “state” of the
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estimation (i.e., filtering or prediction) problem correctly, one is led to a nonlinear
difference (or differential) equation for the covariance matrix of the optimal esti-
mation error. From the solution of the equation for the covariance matrix we obtain
the coefficients characterizing the optimal linear filter [36]. The following is a
simplified derivation described previously in the references [37, 38].

2.1 Defining statistical quantities of use

The initial state, x(0), of a stochastic system is insufficient to determine its
future state, x(t). Thus, based upon a statistical analysis of similar systems, and
taking the average of their future states at a given time, t, we can calculate the mean
state-vector as follows:

xm tð Þ ¼ 1=Nð Þ
XN
i¼1

xi tð Þ (1)

Thus xm tð Þ is the expected state vector after studying N systems. It is also called
the expected value of the state-vector, xm tð Þ ¼ E x tð Þ½ �. Another statistical quantity
of use is the correlation matrix of the state-vector:

Px t, τð Þ ¼ l=Nð Þ
XN
i¼1

xi tð ÞxTi τð Þ (2)

The correlation matrix, Px t, τð Þ, is a measure of correlation, a statistical property
among the different state variables, and between the same state variable at two
different times. Two scalar variables, x1 tð Þ and x2 tð ), are said to be uncorrelated if
the expected value of x1 tð Þx2 τð ), i.e. E x1 tð Þx2 τð Þ½ � ¼ 0, where τ is different from t.

The correlation matrix is the expected value of the matrix xi tð ÞxT
i τð Þ, or

Px t, τð Þ ¼ E xi tð ÞxTi τð Þ� �
. When t = τ, the correlation matrix Px t, tð Þ ¼ E xi tð ÞxTi tð Þ� �

,
is called the covariance matrix. The covariance matrix, Px t, tð Þ, is symmetric. If
Px t, τð Þ is a diagonal matrix i.e. E xi tð Þx j τð Þ� � ¼ 0, where i 6¼ j, it implies that all the
state variables are uncorrelated.

2.2 Defining the filter in state space - discrete domain

Consider a plant which we cannot model accurately using only a deterministic
model, because of the presence of uncertainties called process noise and
measurement noise:

xkþ1 ¼ Axk þwk (3)

yk ¼ Cxk þ vk (4)

In the linear, time-varying state-space representation above, w is the process
noise vector which may arise due to modeling errors such as neglecting nonlinear
dynamics, and v is the measurement noise vector. The random noises, w and v, are
assumed to be stationary white noises. The covariance matrices of stationary white
noises, w and v, can be expressed as follows:

Q ¼ E wkwT
k

� �
(5)

R ¼ E vkvTk
� �

(6)
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Since we cannot predict the state-vector, x of a stochastic plant, an observer is
required for estimating the state-vector, based upon a measurement of the output, y
and a known input, u. We need an observer that calculates the estimated state-
vector, x̂, optimally, based upon statistical description of the vector output and
plant state. Such an observer is the Kalman Filter, which minimizes a statistical
measure of the estimation error, ek ¼ xk � x̂k. This statistical measure is the covari-
ance of the estimation error:

Pk ¼ E ekeTk
� � ¼ E xk � x̂kð Þ xk � x̂kð ÞT

h i
(7)

Since the state-vector, x, is a random vector and the estimated state x̂, is
based on the measurement of the output, y, for a finite time, say T, where t≥T
then a true statistical average of x would require measuring the output for an
infinite time.

If T < t, this is a data-smoothing (interpolation) problem. If T = t, this is called
filtering. If T > t, we have a prediction problem. Since the original treatment is
general enough, the collective term estimation is used [36].

Hence, the best estimate to obtain for x is not the true mean, but a conditional
mean, xm, based on only a finite time record of the output, y:

xm ¼ E x : y,T ≤ t
� �

(8)

Taking in consideration the deviation of the estimated state- vector, x̂, from the
conditional mean, xm, we can write the estimated state- vector as:

x̂ ¼ xm þ Δx (9)

Δx is the deviation from the conditional mean. The conditional covariance
matrix of the estimation error based on a finite record of the output is then:

Pk ¼ E ekeTk : y,T ≤ t
� � ¼ E xxT� �� xmxT

m þ ΔxΔxT (10)

The best estimate of state-vector happens if Δx ¼ 0, or x̂ ¼ xm, and would result
in a minimization of the conditional covariance matrix, or error covariance matrix,
Pk. In other words, minimization of Pk yields the optimal observer, which is the
Kalman filter.

2.3 Defining the Kalman gain

The state-equation of the Kalman filter is that of a time-varying observer, and
can be written as follows:

x̂kþ1 ¼ Ax̂k þ Buk þ Kk yk �Cx̂k
� �

(11)

Kk is the gain matrix of the Kalman filter. Assuming the prior estimate of x̂k

is called x̂0
k, gained by knowledge of the system. We write an update equation

for the new estimate, combing the old estimate with measurement data,
x̂0
k ¼ Ax̂k þ Buk and:

x̂k ¼ x̂0
k þ Kk yk �Cx̂0

k

� �
(12)

If we substitute Eq. (4) into Eq. (12) we get:
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x̂k ¼ x̂0
k þ Kk Cxk þ vk � Cx̂0

k

� �
(13)

Substituting Eq. (13) into Eq. (7)

Pk ¼ E I � KkCð Þ xk � x̂0
k

� �� Kkvk
� �

I � KkCð Þ xk � x̂0
k

� �� Kkvk
� �Th i

(14)

Here xk � x̂0
k

� �
is the error of the prior estimate. Since there is no correlation

among the input, process noise and measurement noise, then the expectation may
be re-written as;

Pk ¼ I � KkCð ÞE xk � x̂0
k

� �
xk � x̂0

k

� �Th i
I � KkCð ÞT þ KkE vkvkT

� �
KT

k (15)

Using Eqs. (6) and (7), we obtain:

Pk ¼ I � KkCð ÞP0
k I � KkCð ÞT þ KkRKT

k (16)

Eq. (16) is the error covariance update equation, where P0
k is the prior estimate

of Pk.
The trace of the error covariance matrix is the sum of the mean squared errors.

The mean squared error may be reduced by minimizing the trace of Pk. This
requires to differentiate the trace of Pk with respect to Kk, then the result set to zero
to find Kk that minimizes the trace of Pk.

We rewrite Eq. (16);

Pk ¼ P0
k � P0

kC
TKT

k � KkCP0
k þ KkCP0

kC
TKT

k þ KkRKT
k (17)

Taking the trace of this expression gives:

T Pk½ � ¼ T P0
k

� �� 2T KkCP0
k

� �þ T Kk CP0
kC

T þ R
� �

KT
k

� �
(18)

Then, we differentiate with respect to Kk;

dT Pk½ �
dKk

¼ �2T CP0
k

� �þ 2T Kk CP0
kC

T þ R
� �� �

(19)

Setting to zero and solving for Kk we obtain the Kalman gain equation:

Kk ¼ P0
kC

T CP0
kC

T þ R
� ��1

(20)

Substitution of Eq. (20) into [17], gives:

Pk ¼ I � KkCð ÞP0
k (21)

Eq. (21) is the update equation for the error covariance matrix with optimal
gain.

State projection is derived using;

x̂0
kþ1 ¼ Ax̂0

k þwk (22)
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To project the error covariance matrix into the next time interval, k + 1 we first
find an expression for the error based on the prior error;

e0kþ1 ¼ xkþ1 � x̂0
kþ1

¼ Axk þwk �Ax̂0
k

¼ Aek þwk

(23)

Eq. (7) in time k + 1 is;

P0
kþ1 ¼ E e0kþ1e

0
kþ1

T
h i

¼ E Aek þwkð Þ Aek þwkð ÞT
h i

(24)

Assuming that ek and wk have zero cross-correlation.

P0
kþ1 ¼ E e0kþ1e

0
kþ1

T
h i

¼ E AekekTAT þwkwk
T� �� �

¼ APkAT þQ

(25)

This completes the description of the filter.

2.4 Algorithm loop

An algorithm loop is required to make the program in MATLAB and in C-code
for the microprocessor. The loop is summarized in the Figure 1.

The KF assumes that the system model is linear and known, the system and
measurement noises are white, and the states have initial conditions with known
means and variances. The power spectral densities used can be treated as tuning
parameters to design an observer with excellent performance and robustness. The
linear Kalman filter can also be used to design observers for nonlinear plants, by
treating nonlinearities as process noise with appropriate power spectral density
matrix.

Figure 1.
Recursive algorithm for the Kalman filter.
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2.5 Derivation of the Riccati equation

Since the Kalman filter is an optimal observer the appearance of matrix Riccati
equation is not surprising. We are interested in a steady Kalman filter, i.e. the
Kalman filter for which the covariance matrix converges to a constant in the limit
t ! ∞. This happens when the plant is time invariant. The derivation goes as
follows [39, 40]:

From the projections into ∞ we get:

x̂0
∞þ1 ¼ Ax̂∞ (26)

P∞þ1 ¼ AP∞AT þQ (27)

P∞ ¼ I � K∞Cð ÞP0
∞ (28)

x̂∞ ¼ x̂0
∞ þ K∞ y∞ � Cx̂0

∞

� �
(29)

K∞ ¼ P0
∞C

T CP0
∞C

T þ R
� ��1

(30)

Using the Eqs. 26–29 we get:

x̂0∞þ1 ¼ Ax̂0
∞ þAK∞ y∞ �Cx̂0

∞

� �
(31)

P∞þ1 ¼ A I � K∞Cð ÞP0
∞A

T þQ (32)

Using Eq. 30 in Eqs. 31 and 32 we get:

x̂0∞þ1 ¼ Ax̂0
∞ þAP0

∞C
T CP0

∞C
T þ R

� ��1
y∞ �Cx̂0

∞

� �
(33)

P∞þ1 ¼ A I � P0
∞C

T CP0
∞C

T þ R
� ��1

C
� �

P0
∞A

T þQ (34)

Rewriting Eq. 34 we get:

P∞þ1 ¼ AP0
∞A

T �AP0
∞C

T CP0
∞C

T þ R
� ��1

CP0
∞A

T þQ (35)

When in steady state:

P∞þ1 ¼ P0
∞ ¼ P∞ (36)

Then we arrive at the Riccati equation:

AP∞AT �AP∞CT CP∞CT þ R
� ��1

CP∞AT � P∞ þQ ¼ 0 (37)

The iterative solution of the Riccati equation is not required in real time. The
observer gain is calculated off-line for predictive control applications [40]. Riccati
equations are mainly used to control large scale systems, estimation, and, detection
processes.

2.6 Solution to the Riccati equation using MATLAB

In this work the discrete-time algebraic Riccati equation (DARE) was solved to
obtain the covariance matrix P of the Kalman gain. The discrete-time algebraic
Riccati equation is represented by the next form [41]:
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X ¼ ATXAþQ � ATXB
� �

Rþ BTXB
� ��1

BTXA
� �

(38)

Where A,X,Q ¼ AT ∈n�n, B∈n�m, R∈m�m m≤ nð Þ, and R ¼ BT >0.
Eq. (38) can be written in the short form:

ATX Iþ SXð Þ�1A� Xþ Q ¼ 0 (39)

Where:

S ¼ BR�1BT (40)

The application of the Kalman filter implies solving the DARE, which can be
solved by several solution methods. Computational methods to solve Riccati equa-
tions can be categorized into three classes: invariant subspace methods, deflating
subspace methods, and Newton’s methods. The generalized Schur method that is
classified as a deflating subspace method is used to solve DARE. The generalized
Schur algorithm is a strong algebraic tool that allows computing classical decompo-
sitions of matrices, such as the QR and LU factorizations [42]. The next algorithm
was used to solve DARE [43]:

Input arguments:

A� An n� n matrix

B� An n�m matrix

Q � An n� n symetric matrix

R� An m�m symetrix matrix

Output arguments: X �DARE solution

1.Form the pencil PDARE � λNDARE, where

PDARE ¼ A 0

�Q I

� �
, (41)

NDARE ¼ I S

0 AT

� �
(42)

2.Transform the pencil PDARE � λNDARE to the generalized real Schur form apply
QZ algorithm, that is, find orthogonal matrices Q1 and Z1 such that:

Q1PDAREZ1 ¼ P1 ¼
P11 P12

0 P22

� �
, (43)

Q1NDAREZ1 ¼ N1 ¼
N11 N12

0 N22

� �
(44)

3.Using an orthogonal transformation and reorder the generalized real Schur
form. So that all the pencil P11 � λN11 has all the eigenvalues with moduli less
than 1. Find Qz and Z2 orthogonal matrices, such that:

59

Kalman Filter Estimation and Its Implementation
DOI: http://dx.doi.org/10.5772/intechopen.97406



Q2Q1PDAREZ1Z2 ¼ quasi� upper triangular (45)

Q2Q1NDAREZ1Z2 ¼ upper triangular (46)

4.Form the matrix:

Z ¼ Z1Z2 ¼
Z11 Z12

Z21 Z22

� �
(47)

5.Compute X ¼ Z21Z�1
11

3. Application example: resistive temperature detectors (RTD)

Resistive temperature detectors (RTD) have attracted attention to be employed
as thermal health monitors. As clinical thermometers they are stable and reliable
presenting high accuracy and resolution [44]. One of the most widely used RTD is
the emerging thin-film resistor which has minimal impact on complex circuits due
to its small size and due to their negligible mass.

The basic function of the sensor is determined by a proportional increment of
resistance when temperature is applied. RTDs can be employed on a rigid or flexible
substrate [45–47], the metal combination with a flexible o rigid substrate can cover
conformal applications. RTD fabrication can be done by metals like Pt [48–50], Cu
[51], Ag [52], and Ni [53], among other materials. Nickel presents a suitable option
for RTD fabrication due to its wide temperature linear range of operation and its
relatively low price.

Clinical thermometers require a high definition and reliability because less than
1°C difference can indicate a health problem. The thermometer signal can be
amplified by electronic means, but it is desirable to filter such readings. This work is
focused to the filtering and prediction of an highly sensitive Nickel based thin film
RTD (range, 273–325 K), to be incorporated to complex circuits [54], we present the
theoretical analysis about the relation sensibility-resistance that matches with
experimental results.

3.1 Theoretical analysis of an RTD

All metals produce an increase in its resistance to an increase in specific tem-
perature, which means that resistance is linearly proportional to temperature
change. This dependence between electrical resistance and temperature is the prin-
ciple of operation used by a resistance temperature detector (RTD). The relation
between temperature-resistance for Pt wire (RTD), is described by the equation
known as the Calendar-Van Dusen, Eq. 41) [50].

R Tð Þ ¼ R0°C 1þ αT þ βT2� �
(48)

Where R0°C is the resistance at 0°C, α and β are temperature coefficients and T is
temperature, the temperature coefficients depend only on material properties. In
addition, the RTD resistance depends on its geometrical design, according to Eq. 42.

R ¼ σ ∗L
A

¼ σ ∗L
w ∗ t

(49)
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Where “σ” is the resistivity, “L” length, “A” lateral area, “w” channel width, and
“t” channel height. Only by increasing the length “L” or decreasing the area “A”
that means reducing the “t” film thickness or the “w” channel wide, the resistance
can increase.

3.1.1 State-space description of an RTD

The estimation of the thermal system is represented by the linear stochastic
state-space description xk ¼ Axk�1 þ Buk�1 þ wk�1 and yk ¼ Cxk þ vk. Where A is
an nxn state transition matrix applied to the previous state vector xk�1, B is the
control-input matrix applied to the control vector uk�1, and wk�1 is the process noise
vector. The linear combination of the measurement noise and the signal value is
represented by yk, where C is the measurement matrix, and vk is the measurement
noise vector with covariances matrices represented by Q and R. The covariances are
assumed to be independent and are given by Q ¼ E wkwT

k

� �
and ¼ E vkvTk

� �
.

Generally, the RTD system is modeled as an RLC circuit, which consists of a
resistor a capacitor and an inductor in series with an input voltage. The output that
we analyzed is the voltage across the resistor which is related to temperature
change. The RLC circuit is represented by a second-order differential equation

L d2i tð Þ
dt2

þ R di tð Þ
dt þ 1

C i tð Þ ¼ 0. To solve the above equation we implement the next
matrix system:

A ¼ 0 1

�1=L � C �R=L

� �
B ¼ 0

1=L � C

� �
(50)

C ¼ 1 0ð Þ D ¼ 0

Also, we may simplify the response of the system to that of a first-order RC
circuit. This implies to solve a first-order ordinary differential equation: RC dq

dt þ
q ¼ VC . The dynamic model is defined by the following system:

A ¼ � 1
R � C

� �
B ¼ 1

R � C
� �

(51)

C ¼ 1 D ¼ 0

4. Design and simulations

4.1 Kalman filter in resistance thermal detectors (RTD)

In this work, a Kalman Filter is proposed to decrease the time response to
improve the speed feedback and filtering of the perturbations by signal noise from
physical signals as thermal detectors. In some instances, a reduced model is advis-
able to use in an embedded system due to easy implementation and low computa-
tional complexity [2].

Kalman filter can be embedded in a temperature system made by Resistance
Thermal Detectors (RTD).RTD’s are robust elements that require relatively easy
measurement, as a consequence are a useful thermal sensor for industry and med-
ical applications. Nevertheless, these devices are exposing to vibration, electrical
noise, and measurement errors generated by the thermoelectric effect caused by the
temperature difference between electrical contacts, which affects the response time
of the sensor. The implementation of the Kalman filter in a temperature system
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produces an optimal estimative of thermal behavior and decreases the uncertainties
about the prediction of the temperature.

In order to describe the system in the state space, it is necessary to apply system
identification methods using MATLAB. Then, after obtaining the system’s state
space model we are able to use the Kalman filter algorithm to estimate the future
output of the system.

To study the dynamics of our system, we used MATLAB functions etfe and spa
to firstly estimate the empirical transfer functions and then estimate the frequency
response with fixed frequency resolution using spectral analysis. The continuous
time-identified transfer function obtained is:

2:278 sþ 0:1711
s2 þ 2:488 sþ 0:1695

(52)

Using MATLAB we are able to acquire the Discrete-time identified state-space
model:

x tþ Tsð Þ ¼ A x tð Þ þ B u tð Þ þ K e tð Þ (53)

y tð Þ ¼ C x tð Þ þD u tð Þ þ e tð Þ

with:

A ¼ 0:8342 �0:08908

0:0942 �0:9716

� �
,B ¼ 0:01966

�0:03341

� �
, (54)

C ¼ 7:966 0:3005½ �,D ¼ 0,K ¼ 0:006289

�0:2834

� �

Estimated using N4SID on time domain data. Fit to estimation data: 90.27%
(prediction focus) with FPE: 0.4532 and MSE: 0.2292. Figure 2 shows the

Figure 2.
System ID using MATLAB. Input output model for a step response defined problem.
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Input–output model for which the input was set to a constant value of 38°C. The
output, the step response, is that of the second order system as can be seen in the
bode plot shown in Figure 3. Figure 4 shows the evolution of the measured versus
the modeled step responses.

Figure 3.
Bode diagram indicating the system is a second order system as described by the system transfer function.

Figure 4.
Systems model and measured evolutions in time. Fit to estimation data: 90.27%.
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4.2 Kalman filter

We modify the MATLAB example for the time-varying case found in [55] and
we code our own function to solve the Discrete Algebraic Riccati Equation.
MATLAB functions like predict or forecast were found useful to understand the
problem at hand, however they were not used in the code we present here.

4.2.1 Time-varying Kalman filter using MATLAB

w(1:n) = sqrt(Q)*randn(n,1);
v(1:n) = sqrt(R)*randn(n,1);
systv = ss(A,B,C,0,Ts);
ytv(1:n) = lsim(systv,U(1:n) + w(1:n)).
yvtv(1:n) = ytv(1:n) + v(1:n);
Ptv(:,:) = B(:,:)*Q*B(:,:)’; % Initial error covariance.
x = zeros(order,1); % Initial condition on the state.
order = 2;
yetv(1:n) = zeros(n,1);
ycov(1:n) = zeros(n,1);
for i = 1:n.
% Measurement update.

Mn(:,:) = Ptv(:,:)*C(:,:)’/(C(:,:)*Ptv(:,:)*C(:,:)’ + R);
x = x + Mn(:,:)*(yvtv(i)-C(:,:)*x); % x[n|n].
Ptv(:,:) = (eye(order)-Mn(:,:)*C(:,:))*Ptv(:,:); % P[n|n].
yetv(i) = C(:,:)*x;
errcov(i) = C(:,:)*Ptv(:,:)*C(:,:)’;

% Time update.
x = A(:,:)*x + B(:,:)*U(i); % x[n + 1|n].
Ptv(:,:) = A(:,:)*Ptv(:,:)*A(:,:)’ + B(:,:)*Q*B(:,:)’; P[n + 1|n].

end
%% DARE. We coded our own dare function [X,L,G] = sdare(A,B,Q,R).
[P_inf,L,M_inf] = sdare(atv,ctv’,Q,R);
for i = 1:p
% Measurement update.

x = x + M_inf’*(yvtv(i)-ctv*x); % x[n|n].
yetv_inf(i) = ctv*x;
errcov_inf(i) = ctv*P_inf*ctv’;
% Time update.
x = atv*x + btv*U(i); % x[n + 1|n].
P_inf = atv*P_inf*atv’ + btv*Q*btv’; % P[n + 1|n].
end

function [SD] = sdare(A,B,Q,R).
At = transpose(A);
Bt = transpose(B);
S1 = size(A);
E = eye(S1);
Z = zeros(S1);
Ri = inv.(R);
S = B*Ri*Bt;
Pdare = [A Z; �Q E];
Ndare = [E S; Z At];
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[AA,BB,L,Z] = qz(Pdare,Ndare);
[AAS1,BBS1,QS1,ZS1] = ordqz(AA,BB,L,Z,‘udi’);
O = ZS1(1:2,1:2);
P = ZS1(3:4,1:2);
H = inv.(O);
SD = P*H;
end

5. Simulations

Matlab was used to simulate the response of an RTD modelled as a second order
system. In Figure 5(A) we show the plot of the true response y (cyan line) and the
filtered response (red line). In Figure 5(B) the plot compares the measurement
error with the estimation error. As can be seen in Figure 5(C) the time-varying
filter also estimates the covariance errcov of the estimation error at each sample
which shows when the filter reached steady state. As it can be seen, we have the
possibility to predict the state after approximately 8 seconds. Also, we show the
evolution of the estimated temperature response showing an error of �0.0948°C in
the best of the cases and less than 1°C in the worst of the cases after 45 seconds.

6. Implementation

The unit step response depends on the roots of the characteristic equation. If
both roots are real-valued, the second-order system behaves like a chain of two
first-order systems, and the step response has two exponential components. If the
roots are complex, the step response is a harmonic oscillation with an exponentially
decaying amplitude [56]. In our case, the roots of the characteristic polynomial:
s2 þ 2:488 sþ 0:1695 are �2.4179 and � 0.0701. Thus our system behaves like two
first order systems in series.

The state description for an RC system is described above. From there, we know
that the dynamics are dependent only on the RC constant. In addition, there is an
amplificator in the system electronics that has a gain of 260. To solve for the RC
constant of the system we use the least-squares method (Chi square minimization).
The system has a solution of the form y ¼ eBx and we take n data points to
form the vectors xi and Yi. The problem is to minimize the error function,
err ¼Pn

i¼1 Yi � AeBxi
� �2. The trick on the algorithm goes as follows:

Yni ¼ ln Yi ¼ ln AeBxi
� � ¼ lnAþ ln eBxi

� � ¼ Cþ Bxi (55)

Which is a linear equation. Using a linear fitting program:

B ¼ n
P

xiyi �
P

xi
P

yi
n
P

x2i �
P

xið Þ2 and c ¼
P

xi2
P

yi �
P

xi
P

xiyi
n
P

x2i �
P

xið Þ2 (56)

We obtain B and A ¼ exp cð Þ. We coded two Kalman filters with different
calibration parameters (Q and R) as is written below. The KF was implemented in
an ATMEGA328 microprocessor. Code for an Arduino was generated using C lan-
guage which is available in the following section. Only the relevant portion is
written.
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6.1 Arduino code

readings[readIndex] = analogRead(inputPin); // read from the sensor.
total = total + readings[readIndex]; // add the reading to the total.
readIndex = readIndex +1; // advance to the next position in the array.

Figure 5.
(A) Evolution of the estimated temperature response showing an error of �0.0948°C in the best of the cases and
less than 1°C in the worst of the cases. (B) Evolution of the measurement and estimation errors. (C) Evolution of
the covariance of the error showing the possibility to predict the state after approximately 8 seconds.
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time_equis_readings[time_equis_readIndex] = time_equis_readIndex;
time_equis_readIndex = time_equis_readIndex +1;
if (readIndex > = numReadings) // if we’re at the end of the array.
{

for(i = 0;i < =numReadings-1;i++).
{
Y[i] = log(readings[i]);
time1[i] = time_equis_readings[i];
sumx = (sumx +time_equis_readings[i]);
sumx2 = (sumx2 + time_equis_readings[i]*time_equis_readings[i]);
sumy = (sumy +Y[i]);
sumxy = (sumxy +time_equis_readings[i]*Y[i]);
}

den = (numReadings*sumx2-sumx*sumx);
a = (sumx2*sumy -sumx*sumxy)/den;
Bc = (n*sumxy-sumx*sumy)/den;

// State description.
A = -Bc;B=Bc;C = 260;D = 0;

//wrap around to the beginning:
readIndex = 0;time_equis_readIndex = 0;
}

// KALMAN.
errcov = C*P*C;
for(i = 0;i < =numReadings-1;i++).
{
Mn = P*C/((C*P*C + R)); // initial estimate.
X = X + Mn*(readings[i]-C*X); // update estimate Average_readings[i].
P = (1-Mn*C)*P; // update covariance.

y_e[i] = C*X;
errcov = C*P*C;

X = A*X + B*U; // project into k + 1.
P = A*P*A + B*Q*B; // project into k + 1.

}
timer0_millis = millis();
// Solution to the Riccati equation.
F = -Bc;H = 260;
SQ = sqrt((H*H*Q*R) + (F*F*R*R));

SR = F * R;
P_inf = (SQ + SR)/(H*H);
M_inf = P_inf*C/(C*P_inf*C + R);
for(i = 0;i < =numReadings-1;i++).

{
// Measurement update.
// M_inf;
x_inf = x_inf + M_inf*(readings[i]-C*x_inf); // % x[n|n].

//P_inf; % P[n|n].
y_e_inf = C*x_inf;

errcov_inf = C*P_inf*C;
// Time update.
x_inf = A*x_inf + B*U;
P_inf = A*P_inf*A + B*Q*B;

}
}
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7. Results

The experiments were performed in a thermal bath giving step responses to the
desired setup temperature. Figure 6 depicts the upward and downward evolution
of the temperature, the Kalman filter and the two predictors (using two different Q
and R settings). As can be seen the predictors follow the Temperature of the sensor
closely, especially for the upward way, while the Kalman filter lags behind.

8. Boundary layer

Sliding control [57] is an additional tool to predict the behavior of a second order
system basically smoothing the system by boundary layers. The prediction of the
system state trajectory is given using an uncertain model of the system. The sub-
space which represents the quantity of uncertainties in the prediction process,
forces the estimate state trajectory to switching gain to converge the estimates to
within a boundary of the real state values. To predict the state trajectory of our RLC
system it’s possible to switch its gain by the subspace represented by a first-order
RC model. The estimated state trajectory is forced to keep a switch back and forth

Figure 6.
Implemented system. Step response for the upwards and downwards evolution. Two different Kalman filters
were used to predict (by solving the DARE equation) the evolution of the future state with different Q and R to
calibrate the desired response. In blue the evolution of the RTD sensor analog input, in Yellow and red the two
Kalman predictors and the Kalman estimation in cyan color.

Figure 7.
Ascending and descending step responses of the Kalman filter and two Predictors which function in real time. In
blue the RTD sensor response, in cyan the estimator response, in yellow and in red the two differently calibrated
Kalman predictors.
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within the boundary layer represented in our case by a RC model. By creating a
boundary layer, the system is further constrained to have a solution existing in
between two RC model solutions.

In Figure 7 it can be clearly seen that the use of two estimators may help predict
the behavior of the RTD in a much better way. The system needs to be calibrated
first in order to have the two Kalman filters enveloping the required solution. As can
be seen in the upward direction, both predictors (yellow and red) envelope the
desired response (blue), that of the RTD sensor improving the response of the
Kalman filter without boundaries (cyan). Unfortunately, this is not the case in the
downward evolution. From the nonlinear control systems point of view these two
evolutions demark a region where the RTD stands thus making possible to program
a better estimator. It is left as an outlook to program a third estimator using this
boundary layer in order to have a better predictor, especially for the downward
evolution.

9. Conclusions

As it can be shown the implementation of the Kalman filter brings the opportu-
nity to estimate the forecast in real time of a second order system using first,
MATLAB and second that of two first order systems using a simple RC system
coded in C-language for a microprocessor. It has been shown that the program is
able to predict the evolution of temperature for a RTD system. Even if the system is
implemented using a first order system we can find evolving solutions for our
estimation and prediction to be good enough. We predict the state after approxi-
mately 8 seconds showing an error of �0.0948°C in the best of the cases. In
addition, a boundary layer may be programmed using two first order Kalman pre-
dictors which may be tuned by setting Q and R properly. We believe this is the first
report on the use of a Kalman filter to predict the evolution of temperature from
a RTD.
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Chapter 4

A Constant Gain Kalman Filter
for Wireless Sensor Network
and Maneuvering Target Tracking
Peeyush Awasthi, Ashwin Yadav, Naren Naik
and Mudambi Ramaswamy Ananthasayanam

Abstract

One of the well-known approaches to target tracking is the Kalman filter. The
problem of applying the Kalman Filter in practice is that in the presence of unknown
noise statistics, accurate results cannot be obtained. Hence the tuning of the noise
covariances is of paramount importance in order to employ the filter. The difficulty
involved with the tuning attracts the applicability of the concept of Constant Gain
Kalman Filter (CGKF). It has been generally observed that after an initial transient
the Kalman Filter gain and the State Error Covariance P settles down to steady state
values. This encourages one to consider working directly with steady state or constant
Kalman gain, rather than with error covariances in order to obtain efficient tracking.
Since there are no covariances in CGKF, only the state equations need to be propa-
gated and updated at a measurement, thus enormously reducing the computational
load. The current work first applies the CGKF concept to heterogeneous sensor based
wireless sensor network (WSN) target tracking problem. The paper considers the
Standard EKF and CGKF for tracking various manoeuvring targets using nonlinear
state and measurement models. Based on the numerical studies it is clearly seen that
the CGKF out performs the Standard EKF. To the best of our knowledge, such a
comprehensive study of the CGKF has not been carried out in its application to
diverse target tracking scenarios and data fusion aspects.

Keywords: Constant Gain Kalman Filter, INS, GPS, Wireless Sensor Network,
Tracking

1. Introduction

The Kalman Filter (KF) is one of the most fundamental and widely used esti-
mation schemes in tracking application. While the KF formalism is very powerful
we need to keep in mind that the solution scheme can be considered to be formal
and a fundamental prerequisite for accurate results is the a prioiri knowledge of the
initial state (X0), initial state noise covariance (P0), system noise covariance (Q),
measurement noise covariance (R). Good values of X0, P0, Q and R are imperative
for the filter to perform optimally. Tuning of the KF is defined as the process to
obtain precise values of P0,Q, and R. A detailed review of filter tuning has been given
by Ananthasayanam et al. in [1]. A main theme of filter covariance tuning schemes is
the notion of the innovation sequence being white and Gaussian for filter optimality.

75



One class of schemes obtains the unknown covariances that maximize the likelihood
[2–5]. Another important class of filter covariance tuning schemes is the covariance
matching methodology [6–8]. The idea of an innovations based cost function being
minimized by the optimal covariances is also used in [7, 8] to tune process system
noise (Q) and state error covariances (P) respectively.

An alternate approach to tuning is via the direct setting of the Kalman gain as
carried out in the work of Ananthasayanam et al. [9] and Ashwin et al. [10]. It is
often observed that the Kalman gain converges to a steady state value which coin-
cides with the convergence of the state error covariance P. The premise for working
with the steady state or constant gain is well explained in the thesis work by Bohn
[11]. The work of Anil Kumar et al. [9], optimizes the innovations likelihood cost
function [5] for the (constant) Kalman gain in a space craft reentry problem. This
CGKF approach works directly with the Kalman gain and does not utilize any
knowledge of the filter covariances.

Our present work is about the application and sensitivity study of the CGKF
traget tracking scheme in sensor networks scenarios and maneuvering target track-
ing. We look at target tracking problems in wireless sensor networks using passive
infrared (PIR), acoustic and seismic sensors in stand alone (SA) and data fusion
(DF) modes as given by Raol [12] for the discrete white noise acceleration (DWNA)
traget motion model. We further demonstrate the capability of the CGKF to track
maneuvering targets [13, 14] from acquired range and direction data for a class of
coordinated turn (CT) maneuver models. The CGKF with linear measurement
model was validated in [10, 15]. The present study applies the CGKF to a non linear
measurement models and further demonstrates its robustness through sensitivity
studies. The results obtained with respect to homogeneous and heterogeneous data
fusion further demonstrate the range of applicability of the CGKF. These extensive
tracking and sensitivity studies for a wide range of state and measurement models
are to the best of our knowledge, unique to this paper and provide the reader with a
comprehensive reference. These results also provide a firm base for application of
the CGKF concept to other areas. In the sequel, Section 2 describes the CGKF
concept. Section 3 introduces the various tracking scenarios based on PIR, acoustic
and seismic measuerement models in SA and DF modes. In addition maneuvering
targets based on CT models are discussed, since these have the potential to demon-
strate the flexibility of the CGKF. Section 4 details the tracking and sensitivity
studies on the above mentioned models, and Section 5 gives the conclusion of the
present work.

2. Constant gain Kalman filtering

The KF algorithm [16] is based on the least squares principle with recursive time
updates. It is a fact that optimal filter performance needs apriori knowledge of the
filter statistics in terms of the state-error, system and measurement noise covari-
ances (P, Q and R respectively). A central theme in the optimality of the KF is the
requirement of the innovations being white at convergence [17, 18]. Mehra [17]
shows that the settling of the filter gain value to a steady state value coincides with
the state error covariance also similarly settling (Figure 1).

The observation that the gain (reflecting P,Q,R) reaches a steady state, prompts
us to consider working directly with the steady state gain rather than the tuning
dependant P,Q,Rmatrices to determine the gain. The way we accomplish this is via
an innovations cost function minimization approach. We use the whiteness of the
innovations at KF convergnce in order to construct the likelihood based function of
the innovations sequence [5].
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J K,Rð Þ ¼ 1
N

XN
t¼1

vTt Rvt þ log jRjð Þ� �
(1)

where vt represents the innovations, R represents the innovations covariance, |.|
represents the determinant and N is the number of measurement time steps. We
obtain the steady state gain K ∗ and innovation covariance R ∗ by solving the
following optimization problem

K ∗ ,R ∗ð Þ ¼ argminK,RJ K,Rð Þ (2)

The following is the estimation scheme based on a predict and update mode.

2.1 The estimation scheme

The generic KF updates are

x̂t ¼ xt þ Ktvt (3)

where the the innovations sequence is vt ¼ yt � Cxt. C is the measurement
matrix, xt is the predicted state matrix and x̂t is the filtered state matrix. The
standard KF computes the gain matrix Kt using P, Q and R while we proceed to
estimate this constant gain K ∗ for the CGKF, by solving the optimization problem
described by (2) above. The optimization problem can be solved using local gradi-
ent based methods (such as Newton type schemes) [19] or global schemes such as
Genetic Algorithm (GA) [20] applied to problems as in [9]. As the filter tracks the
target, the gain K is seen to stabilize to a value given by the solution of the above
problem. Once we have computed the optimal filter gain Kt (denoted henceforth by
K ∗ , representative of the constant gain) for the CGKF, the KF recursions become.

Figure 1.
Gain K vs. error covariance matrix P.
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Predict

xtþ1 ¼ Ax̂tþ1 þ utþ1 (4)

Update

x̂tþ1 ¼ xtþ1 þ K ∗ ytþ1 � Cxtþ1
� �

(5)

Thus it is evident that once the optimal gain K ∗ is computed using GA to solve
the optimization problem, the filter algorithm reduces to a simple predict and
update model given by (4) and (5) above. This is obviously more compact com-
pared to the standard KF which is implemented in five steps involving computation
and propagation of the State Error Covariance P using Q and R. The advantage is
speed of operation because we circumvent the tedious calculations of the costly
covariance matrices P,Q,R and instead work directly with the optimal gain for the
set of measurements.

We observe that the typically expensive covariance time update step is not
needed in the constant gain approach.The CGKF is found to work quite well even
with state models moderately different from that for which the gains are computed
[25], suggesting a robustness of the gains calculated (Refer Tables 6 and 7). It is to
be noted that the present problem is a non linear problem, in so far as the measure-
ment model is concerned so that the filter used is the CGKF. This is one unique
advantage of the CGKF over the standard KF/EKF wherein the EKF requires line-
arization of the measurement model via use of the JacobianH. The reconstruction in
CGKF case employing the GA as the optimization tool, does not rely on the Jacobian
in computation of the optimum Constant Filter Gain K ∗ .

3. Sensor models and modes

The focus of our study is the application of the CGKF to a variety of 2D sensor
models such as those in unattended ground sensor (UGS) and Intelligence, Surveil-
lance and Reconnaissance (ISR) systems. Sensors such as passive infrared (PIR)
[21], acoustic, seismic [22] and radar have been studied. The sensor system might
consist of single or multiple data inputs as required in different scenarios. They may
consist of single type of sensor or multiple type of sensor nodes, as required in
situations. Homogeneous and heterogeneous DF aspects of certain combination of
sensors will be analyzed. We outline the regular and CGKF schemes and their
application to the above mentioned systems.

3.1 State variable models in stand alone mode

Non Maneuvering or Discrete White Noise Acceleration (DWNA) Model.
The state model for 2D target is comprised of x and y direction displacement and

their corresponding velocities wherein the state vector is represented as Xt ¼
xt, yt, _xt, _yt
� �t with xt, yt representing X,Y coordinates respectively of the target and
_xt, _yt representing velocities in X, Y directions.

State Equation.
The state equation for the DWNA is

Xtþ1 ¼ AXt þ Bwt (6)

78

Adaptive Filtering - Recent Advances and Practical Implementation



where

A ¼

1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA,B ¼

0:5T2
s 0

0 0:5T2
s

Ts 0

0 Ts

0
BBB@

1
CCCA (7)

with A and B being the state - transition and acceleration matrices respectively,
wt being an uncorrelated Gaussian process.

Measurement equation: The measurement at time t of nth sensor g nð Þ
t

g nð Þ
t ¼ h nð Þ Xt, tð Þ þ v nð Þ

t (8)

where h nð Þ Xt, tð Þ is typically a nonlinear function of the states v nð Þ is the
corresponding measurement noise (assumed to be white Gaussian) of nth sensor.
The measurement equations for the respective sensors are given below.

Sensor Measurement model for PIR sensor [21]

g nð Þ
t ¼ log

_x2t þ _y2t

xt � r nð Þ
x

� �2
þ yt � r nð Þ

y

� �2 þ v nð Þ
t (9)

Sensor Measurement model for Acoustic sensor [22]

g nð Þ
t ¼ tan �1 yt � r nð Þ

y =xt � r nð Þ
x

� �
þ v nð Þ

t (10)

Sensor Measurement model for Seismic sensor [22]

g nð Þ
t ¼

xt � r nð Þ
x

� �2
þ yt � r nð Þ

y

� �2� �0:5

þ v nð Þ
t

tan �1 yt � r nð Þ
y =xt � r nð Þ

x

� �
þ v nð Þ

t

0
BBB@

1
CCCA (11)

where r nð Þ ¼ r nð Þ
x , r nð Þ

y

h i
is the position of the nth sensor in network.

Estimation Scheme.
We now outline the estimation scheme by an EKF as well as a CGKF. The EKF

has the following steps. For t = 0,1,2......
Prediction

Xtþ1 ¼ AX̂t (12)

Ptþ1 ¼ AP̂tA0 þ Q (13)

where Xtþ1 is the predicted estimate based on the filtered estimate X̂t, where Ptþ1

and P̂t being the state error covariances corresponding to the predicted Xtþ1 and
filtered X̂t estimates respectively. and Q ¼ BE ww0ð ÞB0.

Update/Correction: The update of the states and covariances as per the EKF
scheme are

X̂tþ1 ¼ Xtþ1 þ Ktþ1 gtþ1 � h Xtþ1, t
� �� �

(14)
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where

Ktþ1 ¼ Ptþ1Htþ1
0 Htþ1Ptþ1Htþ10 þ R
� ��1

(15)

where Htþ1 is the Jacobian corresponding to h :ð Þ at time tþ 1 and R ¼ E vv0ð Þ.

P̂tþ1 ¼ I � Ktþ1Htþ1ð ÞPtþ1 (16)

Table 1 gives measurement Jacobians for all three sensors. In the table
�

dt ¼ xt � r nð Þ
x

� �2
þ yt � r nð Þ

y

� �2
is used for sake of brevity of space.

The CGKF on the other hand has the following two steps.

Prediction

Xtþ1 ¼ AX̂tþ1 (17)

Update/Correction.

Once the optimized Kalman gain K has been calculated via equations - 1,2 The
following Eq. (17) updates the state parameters.

X̂tþ1 ¼ Xtþ1 þ K gtþ1 � h Xt, t
� �� �

(18)

In our work the optimized value of K is calculated via the application of the
genetic algorithm to the innovation cost function Eqs. (1) and (2).

3.2 Homogeneous data fusion

In homogeneous fusion the fusion is based on the data from multiple sensors of
similar type, at every time instant. Here in this section we have used mainly the
centralized approach to DF in respect of the KF. The data obtained from various
nodes (similar type of sensors) is combined together then applied to EKF and CGKF
for tracking the target. This approach has been used as measurement fusion [12]
approach in WSN of UGSs.

Measurement fusion techniques combine the raw measurements of the target
obtained from the Individual Sensor Node (ISN) at the Cluster Head Node (CHN)
Level. The ISN is a tier 1 node while the CHN is a tier 2 node which is capable of
running a complex fusion algorithm based on KF framework. So ISNs are considered
to have minimal computation capability compared to the CHNs. The two approaches
which have been implemented in our work with respect to the CGKF under the

Sensors
Type

Measurement Equation Jacobian H

PIR h ¼ log _x
2
tþ _y

2
t

xt�r nð Þ
xð Þ2þ yt�r nð Þ

yð Þ2. H ¼ �2 xt�r nð Þ
xð Þ

d
2
t

,
�

�2 yt�r nð Þ
yð Þ

dt
2 , 2 _xt

_x
2
tþ _y

2
t

, 2 _yt
_x
2
t þ _y

2
t

�

ACO-
USTIC

h ¼ tan �1 yk � r nð Þ
y =xk � r nð Þ

x

� �
H ¼ r nð Þ

y �ytð Þ
dt

�
, xt�r nð Þ

x

dt
, 0, 0

�

SEISMIC

h ¼
xt � r nð Þ

x

� �2
þ yt � r nð Þ

y

� �2� �0:5

þ v nð Þ
t

tan �1 yt � r nð Þ
y =xt � r nð Þ

x

� �
þ v nð Þ

t

0
BB@

1
CCA

H ¼ xt�r nð Þ
x

d
0:5
t

�
, yt�r nð Þ

y

d
0:5
t

, 0, 0;

r nð Þ
y �ytð Þ
dt

,
r nð Þ
x �xtð Þ
dt

, 0, 0
�

Table 1.
Jacobians for sensors measurement models.
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homogeneous DF are Maximal Kalman filter (MKF) [12] and Weighted fusion (WF)
[12] approaches. The state model is the DWNAmodel of the previous sub section.

3.2.1 Maximal Kalman filter (MKF) method

This method is based on fusing all measurements of the ISN by incorporating
them in a fused measurement vector and the corresponding measurement noise
covariance and measurement matrices as described below

g f
t ¼ g1t , g

2
t , :… … gmt

� �
(19)

H f
t ¼ H1

t ,H
2
t , :… …Hm

t

� �
(20)

R f
t ¼ diag R1

t ,R
2
t , :… …Rm

t

� �
(21)

where g f
t in (16) is the fused measurement vector, by combining the measure-

ments of m sensors (ISNs) at time instant t. Similarly H f
t is the corresponding value

of the Jacobian of the respective ISNs. In (21) R f
t is the measurement error covari-

ance. Note that no modification measurements of the ISNs is carried out here and
pure measurements of the target are being fused at the CHN to obtain the final state
vector and state error covariance.

3.2.2 WF method

This method is based on combining the m measurements in a different manner
than MKF. A weighing factor ϖ is allotted to each of the corresponding measure-
ments of the ISNs, which represents the degree of correctness or confidence that
one has regarding the measurement obtained from a specific ISN. The weight factor
has been applied to Eqs. (19)–(21) as follows

gt ¼
PN

m¼1 ϖm
t g

m
t

� �
PN

m¼1wm
t

(22)

Ht ¼
PN

m¼1 ϖm
t H

m
t

� �
PN

m¼1wm
t

(23)

Rt ¼
PN

m¼1 ϖm
t R

m
t

� �
PN

m¼1ϖ
m
t

(24)

where gt, Ht and Rt are the composite measurement vector, measurement-
matrix/Jacobian and measurement noise covariance matrix respectively obtained by
combining respective components from the m sensors sensing the target at that
specific time instant. The ϖm

t is the weight alotted to the mth sensor at tth time
instant. Possible choices for the weights are

ϖm
t ¼ 1

Rm
t

(25)

ϖm
t ¼ 1

dmt
� �r (26)

where Rm
t represents the measurement noise of the mthsensor, dmt the distance of

the mth sensor from the target and r represents the path loss exponent. In our
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simulations we have used Eq. (25). We utilize the above weighted - fused quantities
in the EKF and the CGKF.

3.3 Heterogeneous DF

Heterogeneous DF differs from the homogeneous variety in that we fuse data
from different types of sensors in combinations: such as, PIR and acoustic or PIR
and seismic or PIR, acoustic and seismic together [12]. We have tried the architec-
tures of centralized (measurement fusion) as well as decentralized (state fusion)
data fusion. There are several methods in practice for DF but for nonlinear mea-
surement models, it has been found that only a few models have been able to
maintain the accuracy against catastrophic fusion [23]. The state model applied is
the DWNA (Eq. (6)) of the subsection A.

3.3.1 Centralized DF

This architecture mainly follows the measurement fusion. The
measurements (data) are obtained from all ISNs and then fused at cluster head
node CHNs. In our case the data obtained is nonlinear from all three sensors
with different size of measurement models. The only possible approach to
collate data effectively is the MKF since weighted fusion applies only to sensors
based on similar measurement model. The method has been applied to both EKF
and CGKF.

The MKF is an effective way to combine data from dissimilar type of sensor
measurement models. At the cost of computational complexity owing to matrix size
this is overall an effective method considering WF can combine data from only
similar group of sensors.

3.3.2 Decentralized data fusion

The method has been explicitly used to bring out the fact the CGKF did
perform better as against any of these methods of combining state parameters
and covariances. This method has been cited as state fusion concept [12] or
hierarchical data fusion. This is based on a two tier system wherein state
estimation of the target is carried out at ISNs which forms tier 1 and these states are
then fused at tier 2 in the CHNs. The global state estimate and global state error
covariance calculated at CHNs and these are then fed to ISNs. The KF algorithm
runs in the ISN to obtain fresh state and error covariance estimates, which are again
fed at the CHN and the cycle continues. There are mainly two approaches of track
to track fusion as given by Raol [12] in Eq. (27) and (28) and Durrant whyte [24] in
Eqs. (29) and (30). Most of the methods surveyed in this category feature a scheme
where in we have to combine error covariances and state vectors to produce new
covariance and state vectors. The only difference between the two methods below is
the way state estimates and error covariances are used to compute fused global

values of state estimate X
f
tþ1 and state error covariance P

f
tþ1 at tþ 1 time instant.

The symbols used in the equations below P1and P2 are the covariances with

respect to two different sensors. X̂
1
t and X̂

2
t are the target state vector as

computed by the EKF at ISNs. X f
tþ1 and P f

tþ1 are the finally computed target state
vector and state error covariances respectively at CHNs. This is fed back to every
ISN after every iteration. In the present work we use the Global fusion method of
Raol [12].
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Global Fusion

X
f
tþ1 ¼ X̂

1
t þ P̂

1
t P̂

1
t þ P̂

2
t

� ��1
X̂

2
t � X̂

1
t

� �
(27)

P
f
tþ1 ¼ P1

t � P1
t P̂

1
t þ P̂

2
t

� ��1
P1T
t (28)

Track to Track Fusion

P f
tþ1 ¼

XN
i¼1

P�1
it

" #�1

(29)

X
f
tþ1 ¼ P

f
tþ1

XN
i¼1

P�1
it Xit (30)

3.4 Maneuvering target

The class of maneuvering targets yield particularly challenging tracking prob-
lems. The challenges include choosing a system model close to the actual target
maneuvers in addition to often having to give real time solutions. In our work we
now aim to demonstarate the efficacy of the CGKF framework to RADAR- mea-
surement based coordinated turn (CT) models. We reiterate that the non necessity
of prior knowledge of the system and measurement noise characteristics (often
representing the nature of maneuver) make the CGKF particularly attractive. The
present work builds on [15] where the CGKF algorithm has been applied to a variety
of maneuvering targets based on a linear measurement model. Currently a non
linear measurement model (RADAR based) has been employed in order to move a
step closer to a more realistic scenario. We have applied the CGKF to the highly
maneuvering class of CT models with known as well as unknown turn rates [13, 14].
In the simulation studies the turn rate is represented by ω.

The present part is divided into the following parts.

3.4.1 CT state variable model

A two dimensional model for the target tracking problem (maneuver in
horizontal 2D plane) is described as follows.

State Equation: CT known ω.

Xtþ1 ¼ AXt þ Bwt (31)

where state vector is Xt ¼ x tð Þ _x tð Þ y tð Þ _y tð Þð ÞT, state transition matrix

A ¼ A1 �A2

A2 A1

� �
, B ¼ B1 B2

B2 B1

� �
.

where A1 ¼
1 Sin ωΔtð Þ=ω
0 Cos ωΔtð Þ

� �
, A2 ¼

0 1� Cos ωΔtð Þð Þ=ω
0 Sin ωΔtð Þ

� �
,

B1 ¼ Δt2=2 0

Δt 0

� �
, B2 ¼

0

0

� �
and wt represents system noise which is Gaussian

and Δt is a time step. Here we have considered the state vector to include X and Y
coordinates of the target as well as the speed in the two coordinates.

State Equation: CT with unknown ω

Xtþ1 ¼ A Xtð ÞXt þ Bwt (32)
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A two dimensional model for the target tracking problem (maneuver in
horizontal 2D plane) is described as follows.

where state vector is Xt ¼ x tð Þ _x tð Þ y tð Þ _y tð Þ ω tð Þð ÞT, state transition

matrix A Xtð Þ ¼
A1 �A2 B2

A2 A1 B2

B3 B3 1

0
B@

1
CA, B ¼

Δt2=2 0 0

Δt 0 0

0 Δt2=2 0

0 0 Δt
0 0 Δt

0
BBBBBB@

1
CCCCCCA

where B3 ¼ 0 0ð Þ,

A1,A2,B2,B3 are as described above and wt represents system noise which is white
Gaussian. Inclusion of the angular speed ω in the state vector makes the state
equation non linear for thecase of CT with unknown ω.

Measurement Equation:

gt ¼
x tð Þ2 þ y tð Þ2
� �:5

tan �1 y tð Þ=x tð Þð Þ

0
@

1
Aþ vt (33)

where gt is the measurement vector and vt is measurement noise which is
assumed to be white Gaussian.

4. Results and sensitivity studies

4.1 Stand alone mode

The tabulated result of all sensors for EKF and CGKF are given below with their

respective PFE (Percentage Fit Error). The error metric PFE ¼ ∣Xt�Xt∣
∣Xt∣ � 100 which

represents the normalized difference between the estimated and actual track,
achieved by CGKF and EKF. The PIR sensor gives the least error with CGKF. All the
results in this section and subsequent sections are out of a minimum of 500
Montecarlo runs. The plots for EKF (Left) and CGKF (Right) have been combined
together. The figures appear as top and bottom, top one is the true trajectory and
bottom one is the true trajectory super imposed with estimated trajectory. The PFE
is also mentioned on the graph itself for every case. This is same for all the cases
given below.Where ever the error is negligible, the estimated track (green)
completely takes over the actual track (black). Following are the deductions based
on the simulation results. It is to be noted that the plots are based on one of the 500
runs used to compute the PFE metric (refer Table 2). This applies to the present
and all subsequent sections also.One example of each sensor performance is
displayed in the Figures 2–4 respectively. The PFE, RMSPE metric (representative
of the error in range calculation based on x, y coordinates of the target and
expresssed as) in the plots correspond to that of the CGKF for a particular run.

Sensor Type No of Sensors EKF (PFE) % CGKF (PFE) %

PIR 1 3.77076 1.03723

Acoustic 1 2.497723 1.9393

Seismic 1 4.622587 2.614668

Table 2.
Stand alone mode.
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4.2 Homogeneous fusion mode of sensors

The results from both, MKF and Weighted fusion have been tabulated
seperately as shown in the first six enteries of Table 3. Settings of the simulations

Figure 3.
Stand alone mode:-acoustic sensor.

Figure 2.
Stand alone mode:-PIR sensor.
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including the number of Monte Carlo runs is same as that for the Stand Alone method
described above. An example of the method is illustrated in Figures 5 and 6. The PFE,
RMSPE metrics (as defined in Section 4.1) metric in the plots correspond to that of
the CGKF for the coresponding run.

4.3 Heterogeneous fusion mode of sensors

The results in last three entries of Table 3, are those corresponding to the
measurement fusion based method of heterogeneous fusion. Settings of the
simulations including the number of Monte Carlo runs is same as that for the
Stand Alone and homogeneous fusion method described above. One example each

Sensor Type EKF (PFE) % CGKF (PFE)% Fusion Type

PIR 6.32816 2.81109 Maximal

Acoustic 5.76208 5.61651 Maximal

Seismic 5.54418 2.38094 Maximal

PIR 0.580869 0.579842 Homogeneous Weighted

Acoustic 1.47602 1.33768 Homogeneous Weighted

Seismic 1.7170850 1.0956019 Homogeneous Weighted

PIR & Acoustic 18.5708 9.3724 Maximal

PIR, Acoustic & Seismic 19.9958 1.34023 Maximal

PIR & Seismic 10.9576 3.42436 Maximal

Table 3.
Measurement fusion:-4 sensor set.

Figure 4.
Stand alone mode:- Sesimic sensor.
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of the two sensor (PIR and seismic case) and three sensor (all three combined) is
illustrated in Figures 7 and 8 repectively. The PFE, RMSPE metrics (as defined in
Section 4.1) in the plots correspond to that of the CGKF for the coresponding run
(refer Table 4).

Figure 5.
Homogeneous fusion (MKF):- seismic sensor.

Figure 6.
Homogeneous fusion (weighted):- acoustic sensor.
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4.4 Maneuvering target

The 2-D frame work study has been carried out on a set of seventy data points in
order to generate a smooth trajectory. The following system and measurement
covariances matrices are used to generate the simulated track Q ¼ :01I, R ¼ :1I for

Figure 7.
Heterogeneous fusion (maximal):-PIR and seismic sensors.

Figure 8.
Heterogeneous fusion (maximal):- PIR, seismic and acoustic sensors.
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all models, choice of the initial value of ω in the CT model has been obtained by via
standard fighter aircraft (eg F-16) data available on the internet. This value of ω has
been set to .5, which corresponds to approx 28.6 degrees/s (which happens to be the
maximum instantaneous turn rate of any current generation fighter aircraft). Here
the PFE is based on sum total PFE obtained along X and Y coordinates respectively.
The error metric shown in tables is the average value computed over 500 runs while
the plots correspond to one specific run wherein results are presented in the form of
2D plots of the simulated target trajectory, simulated measurements and the esti-
mated track against time. Table 5 shows the typical constant gain average values
computed using GA over 500 runs corresponding to each of the models.
Corresponding to a certain gain there is a transient and steady state behavior. If the
gain is large the transient is short with the steady state fluctuating error being large.
When the gain is small as in the present case there is a large transient with small
steady state error. If the filter is run backwards from the end then the whole actual
trajectory will be wrapped around by the estimated values. In a nutshell the filter
gain values K, can be tuned manually to provide optimal tracking results in a
constant gain framework. The filter gain values will be of typical nature as per
Table 5 corresponding to specific target state models. Figures 9 and 10 illustrate the
performance of the CGKF versus the standard KF model. The PFE, RMSPE metrics
(as defined in Section 4.1) in the plots correspond to that of the CGKF for a
particular run.

4.5 Sensitivity studies on constant gain in case of maneuvering targets
(CT (known ω))

Under this heading we demonstrate the robustness of the constant gain in so far
as the application of gain variations to the maneuvering target tracking scenario for

MODEL EKF % CGKF % K matrix

CT(known ω) 56.75 10.11 :0005 :0013
:0013 :0013

:0013 :0013

:0013 :0013

0
BBB@

1
CCCA

CT(unknown ω) 24 14.78 :0013 :00007

:0012 0
0 :0013

:00007 :0013

:0013 :0004

0
BBBBBB@

1
CCCCCCA

Table 5.
Percentage fit error comparison:-non linear case and typical K matrix values.

Sensor Type Fusion Type(State-Fusion) EKF (PFE)%

PIR & Acoustic Global Fusion [12] 2.29092

PIR, Acoustic & Seismic Global Fusion [12] NaN(Not a Number)*

PIR, Acoustic & Seismic Whyte Method [24] 1.1158

*:- Due to lack of convergence.

Table 4.
Heterogeneous fusion (state fusion).
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the CT (known ω) is concerned. In the tables below are mentioned different PFE/
RMSPE metrics achieved as per specified variation in the constant gain values are
concerned. In Table 6 we show variation as per additive increments to the constant
gain while in Table 7we show variation as per fractional values to the constant gain.

Figure 9.
CT(known ω).

Figure 10.
CT(unknown ω).
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The tables show that the constant gain is robust to minor additive and fractional
increments, thereby demonstrative of the fact that the achieved constant gain
provides good tracking results as far as achieved PFE values indicate.

5. Conclusion

We believe that these are the only studies of a CGKF applied to tracking targets
in WSN environments and maneuvering target models based on non linear mea-
surement models. As seen the EKF is unable to effectively track the targets in WSN
and for the maneuvering target case compared to the CGKF. This is a significant
finding and supports the fact that CGKF effectively circumvents, or in other words
trades the gains with the filter statistics which are more difficult to obtain and
therein gives optimal tracking results by working directly with the Kalman Gain.
The present results prove that the CGKF is successful in target tracking applications
wherein the constant gain approach overcomes uncertainty regarding noise statis-
tics that exist in the framework of the problem. The CGKF has been employed for
tracking maneuvering targets and those in a WSN. The present work firmly estab-
lishes the CGKF framework thereby enabling its applicability to a wider variety of
problems as deemed fit by the reader.

5.1 Analysis of results and future work

5.1.1 Stand alone mode

Following are the deductions based on the simulation studies as summarized in
Table 2.

1.The results and plots bring out clearly the novelty of CGKF, the overall
performance of which is better than the EKF as per the PFE values.

Additive variations (K) PFE% RMSPE%

K(1 + .1 randn) 10.9506 13.3848

K(1 + .2 randn) 9.02807 9.8478

K(1 + .3 randn) 11.4343 13.3211

K(1 + .4 randn) 11.4565 13.77

K(1 + .5randn) 8.68005 9.92213

K(1 + .6 randn) 10.3575 10.5219

K(1 + .7 randn) 13.1419 18.0384

K(1 + .8 randn) 10.4037 12.4931

Table 6.
Constant gain robustness to additive variations (CT(known ω)).

Fractional Variations (K) K/8 K/4 K/2 2 K 4 K 8 K

PFE% 11.1569 9.34031 12.7851 13.0054 11.6087 9.11502

RMSPE% 14.2031 11.0111 15.2803 15.1227 13.0654 10.1699

Table 7.
Constant gain robustness to fractional variations (CT(known ω)).
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2.In the case of the EKF the Acoustic sensor performs the best.

3. In case of the CGKF the PIR performs the best.

5.1.2 Homogeneous fusion mode

Following are deductions based on the simulation studies as summarized in
Table 3 [16].

1.The overall performance of the CGKF is better than the EKF for both the MKF
and Weighted methods.

2.Considering the CGKF case the PIR and seismic sensors peroform better than
the acoustic sensor, with the PIR performing the best overall.

3.Amongst the various fusion methods the overall performance of the weighted
fusion is better compared to the MKF, for all types of sensors.

5.1.3 Heterogeneous Fusion mode

Following are the deductions based on the simulation studies as summarized in
Table 4.

1.Overall the CGKF performance is better than the EKF for heterogeneous
fusion method.

2.With reference to heterogeneous fusion of PIR, acoustic and seismic sensors
the Durrand Whyte method [24] gives better results compared to Global
fusion method [12]. Here we note that a comparison with the CGKF is not
possible since the CGKF works with purely measurements and not by
propagation of state error covariances which is fundamental to these
techniques. The Global fusion method [16] does not provide convergence in
tracking when using PIR, acoustic and seismic sensors together.

3.The CGKF heterogeneous fusion model of PIR, Acoustic and seismic sensors
gives optimum performance better than its EKF counterpart.

4.PIR based weighted fusion gives better results than the heterogeneous fusion.
However we must keep in mind the fact that the simulations for heterogeneous
fusion are based only one sensor of each type unlike the homogeneous fusion
case where four sensor of each type are considered. The plots and result have
been mentioned under. All the result has been obtained through Montecarlo
simulation with runs of average of 500.

5.1.4 Maneuvering target

Following are the deductions of the simulations.

1.Figures 9 and 10 and Table 5, clearly show that the performance of the CGKF
is very much better than that of the EKF.

2.The results obtained show the CGKF performing better than the EKF in three
models (ie. DWPA and both CT models).
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3.The results obtained for the CT models including those of sensitivity analysis
(Refer Tables 6 and 7) demonstrates the viability of applying the CGKF to this
category of problems.

5.2 Conclusions and Suggestions for Further Studies

The efficacy of the CGKF has been demonstrated wherein a single approach yields
optimal results for a varierty of linear [10] as well as non linear models in WSN and
maneuvering target scenarios [15]. The extensive numerical studies establish the fact
that the CGKF performs better that the conventional EKF.

Actual implementation of a target tracking application in the WSN environment
shall require optimal routing, deployment, design, communication protocols and
other such associated integral characteristics mentioned in the introduction.
Though not directly within the purview of the scope of the work, these aspects are
very important.

It would be very useful to apply this CGKF to variants of the Kalman Filter such
as particle filter, ensemble filter and other formulations.

Finally CGKF could be tried out for massive data based problems like numerical
weather prediction. The constant gains can be pre computed using earlier data and
since the gains are robust they can be expected to handle newer data quiet
efficiently similar to space debris as in [1].

Author details

Peeyush Awasthi1, Ashwin Yadav2*, Naren Naik3 and
Mudambi Ramaswamy Ananthasayanam4

1 Graduate Research Scholar, Florida International University, USA

2 Geomatics Engineering, Department of Civil Engineering, Indian Institute of
Technology, Roorkee, India

3 Department of Electrical Engineering, Indian Institute of Technology Kanpur,
India

4 Department of Aerospace Engineering, Indian Institute of Science, Bangalore,
India

*Address all correspondence to: ashwiny77@gmail.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

93

A Constant Gain Kalman Filter for Wireless Sensor Network and Maneuvering Target Tracking
DOI: http://dx.doi.org/10.5772/intechopen.98700



References

[1] Mudambi R. Ananthasayanam
(November 23rd 2018). Tuning of the
Kalman Filter Using Constant Gains,
Introduction and Implementations of the
Kalman Filter, Felix Govaers,
IntechOpen, DOI: 10.5772/
intechopen.81795. Available from:
https://www.intechopen.com/books/
introduction-and-implementations-
of-the-kalman-filter/tuning-of-the-
kalman-filter-using-constant-gains

[2] Mehra, R.K. , “Approaches to
adaptive filtering,” in IEEE Symposium
on Adaptive Processes (9th) Decision and
Control , vol.9, no., pp.141, 7-9 Dec.
1970

[3] Robert H Shumway, David S Stoffer;
“Time series Analysis and its
applications” (Springer Text in
Statistics)

[4] Bavdekar, V. A., Deshpande, A. P.
and Patwardhan, S. C. (2011)
Identification of process and
measurement noise covariance for state
and parameter estimation using
extended Kalman filter. Journal of
Process control, 21 : 585-601.

[5] A. H. Mohamed, K. P. Schwartz,
“Adaptive Kalman filtering for INS/
GPS,” Journal of Geodesy, vol 73(2),
pp. 193-203,1999.

[6] Myers, K.; Tapley, B.; , “Adaptive
sequential estimation with unknown
noise statistics,” , IEEE Transactions on
Automatic Control , vol.21, no.4, pp. 520-
523, Aug 1976

[7] R.M.O Gemson and M.R.
Ananthasayanam, “Importance of Initial
State Covariance Matrix for the
parameter estimation using an Adaptive
Extended Kalman Filter”,in American
Institute of Aeronautics and
Astronautics, vol. 4153,
pp. 94-104,1998.

[8] Akita, T.; Takaki, R,; Shima, E, “A
new adaptive estimation method of
spacecraft thermal mathematical model
with an ensemble Kalman filter”, Acta
Astronautica, vol. 73, April-May 2012,
pp 144-155

[9] A.K. Anil Kumar,M.R.
Ananthasayanam,P.V. Subba Rao, “A
Constant Gain Kalman Filter Approach
for the prediction of the re-entry of risk
objects”,in Acta Astronautica , vol 61
(10), vol-25,pp. 831-839,2007.

[10] Yadav, A.; Naik, N.;
Ananthasayanam, M. R.; Gaur, A.;
Singh, Y. N., " A constant gain Kalman
filter approach to target tracking in
wireless sensor networks," Industrial
and Information Systems (ICIIS), 2012
7th IEEE International Conference on ,
vol., no., pp.1,7, 6-9 Aug. 2012

[11] Christian Bohn., “Recursive
Parameter Estimation Of Non Linear
Continuous-Time Systems through
Sensitivity-Model-Based Adaptive
Filter”,2000

[12] Jitendra.R.Raol, Multi Sensor Data
Fusion with MATLAB, CRC Press,2010.

[13] X. Rong Li; Vesselin P Jilkov; , “A
Survey of Maneuvering Target
Tracking: Dynamic Models”, SPIE
conference on Signal and Data
processing of small targets, April 2000
(4048-22)

[14] Yaakov Bar-Shalom; Peter K Willet;
Xin Tian,Tracking and datafusion A
handbook of algorithms, YBS Press,2011.

[15] Yadav, A.; Awasthi, P.; Naik, N.;
Ananthasayanam, M.R., " A constant
gain Kalman filter approach to track
maneuvering targets," Control
Applications (CCA), 2013 IEEE
International Conference on , vol., no.,
pp.562,567, 28-30 Aug. 2013

94

Adaptive Filtering - Recent Advances and Practical Implementation



[16] R.E Kalman, “A new approach to
Linear Filtering and Prediction
Problems”, in Transactions of the ASME-
Journal of Basic Engineering, vol. 82, pg-
35-45., 1960

[17] Mehra, R.K., " On the Identification
of variances and and adaptive Kalman
filtering," Automatic Control, IEEE
Transactions on , vol. AC-15, No. 2,
April 1970

[18] Kailath, T., " An innovations
approach to least-squares estimation–
Part I: Linear filtering in additive white
noise," Automatic Control, IEEE
Transactions on , vol.13, no.6,
pp.646,655, Dec 1968

[19] Viswanath. Study of constant gain
Kalman filter for basic systems with
preliminary study of ISAR problem
[MTech thesis]. India: IIT Kanpur; 2018

[20] Kalyanmoy Deb, Multi-Objective
Optimization using Evolutionary
Algorithms, Wiley India , 2010.

[21] Nithya V.S.;Sheshadri K; Kumar A;
Hari K.V.S; “Model based target tracking
in a wireless network of passive infrared
sensor nodes” International Conference
on Signal Processing and Communications
(SPCOM), 2010, 18-21 July 2010

[22] Stefano Coraluppi, Craig Carthel,
Mahendra Mallick; “Multi-Target
tracking with Unattended Ground
Sensors (UGS) Data; ALPHATECH,Inc

[23] H.B.Mitchell; Multi-Sensor Data
Fusion, An Introduction 2007

[24] Hugh Durrant-Whyte Lecture notes
on “Multi Sensor Data Fusion”

[25] Grimble M J, Jukes K A and D P
Goodall, “ Nonlinear filters and
operators and the constant gain
extended Kalman filter,” IMA Journal of
Mathematical Control and Inf., vol. 1,
pp. 359-386, 1984.

95

A Constant Gain Kalman Filter for Wireless Sensor Network and Maneuvering Target Tracking
DOI: http://dx.doi.org/10.5772/intechopen.98700





Section 3

Practical Implementations
and Applications
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Chapter 5

Parameter Estimation of Weighted
Maxwell-Boltzmann Distribution
Using Simulated and Real Life
Data Sets
Javaid Ahmad Reshi, Bilal Ahmad Para
and Shahzad Ahmad Bhat

Abstract

This paper deals with estimation of parameters of Weighted Maxwell-Boltzmann
Distribution by using Classical and Bayesian Paradigm. Under Classical Approach, we
have estimated the rate parameter using Maximum likelihood Estimator. In Bayesian
Paradigm, we have primarily studied the Bayes’ estimator of the parameter of the
Weighted Maxwell-Boltzmann Distribution under the extended Jeffrey’s prior,
Gamma and exponential prior distributions assuming different loss functions. The
extended Jeffrey’s prior gives the opportunity of covering wide spectrum of priors to
get Bayes’ estimates of the parameter – particular cases of which are Jeffrey’s prior
and Hartigan’s prior. A comparative study has been done between the MLE and the
estimates of different loss functions (SELF and Al-Bayyati’s, Stein and Precautionary
new loss function). From the results, we observe that in most cases, Bayesian Esti-
mator under New Loss function (Al-Bayyati’s Loss function) has the smallest Mean
Squared Error values for both prior’s i.e., Jeffrey’s and an extension of Jeffrey’s prior
information. Moreover, when the sample size increases, the MSE decreases quite
significantly. These estimators are then compared in terms of mean square error
(MSE) which is computed by using the programming language R. Also, two types of
real life data sets are considered for making the model comparison between special
cases of Weighted Maxwell-Boltzmann Distribution in terms of fitting.

Keywords:Weighted Maxwell-Boltzmann Distribution, prior distributions, loss
functions, R Software

1. Introduction

In Statistical Mechanics, there are a lot of applications ofMaxwell-Boltzmann
Distribution. TheMaxwell-Boltzmann distribution forms the basis of the kinetic
energy of gases, which explainsmany fundamental properties of gases, including
pressure and diffusion. This distribution is sometimes called as the distribution of
velocities, energy andmagnitude ofmomenta ofmolecules. Tyagi andBhattacharya [1]
who considered theMaxwell distribution as a lifetimemodel and discussed the Baye’s
andminimumvariance unbiased estimation procedures for its parameter and reliabil-
ity function. Chaturvedi and Rani [2] estimated the classical and Baye’s estimators for
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theMaxwell distribution, after generalization it by adding another parameter. Empir-
ical Baye’s estimation for theMaxwell distribution was also obtained by Bekker and
Roux [3]. Kazmi et al. [4] derived the Bayesian estimation for two componentmixture
ofMaxwell distribution, assuming censoreddata. TheMaxwell-Boltzmanndistribution
can be used to find the distribution of particle’s kinetic energy which is related to
particle’s speed by the formulaE ¼ mv2=2, provided the distribution of speed is known.
The PDF ofMaxwell-Boltzmann distribution is given byMaxwell [5]:

f w xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=πð Þ

p
θ3=2x2e�θ x2=2 (1)

And the CDF of Maxwell Distribution is given as:

Fw xð Þ ¼ 1� Γ αþ 3ð Þ=2, θx2=2� �
Γ αþ 3ð Þ=2ð Þ (2)

Recently, Aijaz et al. [6] estimates and analyze the Bayes’ Estimators of
Maxwell-Boltzmann Distribution under various Loss functions and prior Distribu-
tions. Other Contributions in Maxwell Distribution are Huang and Chen [7],
Krishna and Malik [8], Tomer and Panwar [9], Zhang et al. [10], and Monisa [11].

Various Statisticians and Mathematicians have carried out the Bayesian
paradigm of Maxwell-Boltzmann distribution by using loss functions and prior
distributions, see Al-Baldawi [12], Dey et al. [13], Podder and Roy [14], Rasheed
[15], and Spiring and Yeung [16].

The concept of weighted distributions introduced by Fisher [17] and later it was
formulated in general terms by Rao [18] in connection with modeling statistical
data. These Distributions are applicable, when each and every observation is given
an equal chance of being recorded. These distributions arise, when the probability
of selecting an observation varied from observation to observation. In this context,
the authors generalize the Maxwell Distribution and is known as Weighted
Maxwell-Boltzmann distribution. The PDF of Weighted Maxwell-Boltzmann
Distribution was introduced by Aijaz et al. [19].

f w x; θ, αð Þ ¼ θ αþ3ð Þ=2x αþ2ð Þe�θ x2=2

2 αþ1ð Þ=2Γ αþ 3ð Þ=2ð Þ (3)

Where θ is the rate parameter and ω is the weight parameter (ω>0).
Also, CDF of the Weighted Maxwell Distribution is given by:

Fw xð Þ ¼ 1� Γ αþ 3ð Þ=2, θx2=2� �
Γ αþ 3ð Þ=2ð Þ (4)
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The Reliability function and Hazard Rate of the Weighted Maxwell Distribution
is given by:

Rw xð Þ ¼ Γ αþ 3ð Þ=2, θx2=2� �
Γ αþ 3ð Þ=2ð Þ (5)

hw xð Þ ¼ θ αþ3ð Þ=2ð Þx αþ2ð Þ exp �θx2=2
� �

2 αþ1ð Þ=2ð ÞΓ αþ 3ð Þ=2ð ÞΓ αþ 3ð Þ=2, θx2=2� � (6)

The, rth moments about zero of Weighted Maxwell-Boltzmann Distribution is
given by:

μ0r ¼ 2=θð Þr2Γ αþ rþ 3ð Þ=2ð Þ=Γ αþ 3ð Þ=2ð Þ,Where r ¼ 1, 2, 3, 4, … (7)
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In comparison to classical approach, Bayesian approach is considered to be fair
enough in estimating the parameters of a distribution provided that the prior dis-
tribution describes nicely the random behavior of a parameter. Very often, priors
are chosen according to one’s subjective knowledge and beliefs that is why Bayesian
approach is sometimes called as subjective approach. However, Aslam [20] have
shown an application of prior predictive distribution to elicit the prior density.
A number of symmetric and asymmetric loss functions have been shown to be
functional, see Kasair et al. [21], Norstrom [22], Reshi et al. [23], Zellner [24],
Reshi et al. [25], Dey and Maiti [26], Alkutbi [27], Wald [28], etc.

2. Estimation of parameters

In this Section, the authors estimated the parameters of Weighted Maxwell-
Boltzmann Distribution under Classical and Bayesian Paradigm.

2.1 Maximum likelihood estimation

Let x ¼ x1, x2, x3, … , xnð Þ be a random sample of size n from Weighted Maxwell
Distribution Therefore the likelihood function will be given by:

L θ,ω=xð Þ ¼ θn
ωþ3
2ð ÞP xiωþ2

2n
ωþ1
2ð ÞΓ ωþ3

2

� �n exp � θ

2

Xn

i¼1
xi2

� �
(8)

The, the Log likelihood function is given by:

logL θ,ω=xð Þ ¼ n ωþ 3ð Þ
2

log θð Þ � n ωþ 1ð Þ
2

log 2ð Þ � n logΓ
ωþ 3
2

� �

þ ωþ 2ð Þ
Xn

i¼1
log xi � θ

2

Xn

i¼1
xi2

(9)

After, differentiating the log likelihood w.r.to θ, and equate to zero, we have:

θ̂mle ¼ nωþ 3nPn
i¼1xi2

(10)

2.2 Bayesian Estimation of Weighted Boltzmann Maxwell Distribution using
different loss functions

2.2.1 Estimation using extension of Jeffery’s prior

The Joint Probability Density Function of θ and x is given by:

f 1 x, θð Þ ¼ θ
nωþ3n

2 �2c1
P

xiωþ2

2n
ωþ1
2ð ÞΓ ωþ3

2

� �n exp � θ

2

X
xi2

� �
(11)

And, the marginal distribution function of θ and x is given by:

f 1 xð Þ ¼
P

xiωþ2

Γ ωþ3
2

� �n
Γ nωþ3n�4c1þ2

2

� �
2
2n�4c1þ2

2

P
xi2ð Þ

nωþ3n�4c1þ2
2

(12)
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Substituting the above two Eqs. (11) and (12), we get the Posterior Probability
Density function of θ and x is given by:

π1 θ=xð Þ ¼
θ

nωþ3n�4c1
2

P
xi2
2

� �nωþ3n�4c1þ2
2

Γ nωþ3n�4c1þ2
2

� � exp � θ

2

X
xi2

� �
(13)

2.2.1.1 Bayes’ estimator under squared error loss function

The Risk Function Under SELF is given as:

R Sq,EJð Þ θ̂
� � ¼ cθ̂

2 þ 4c nωþ3n�4c1þ4
2

� � nωþ3n�4c1þ2
2

� �
P

xi2ð Þ2: � 4cθ̂ nωþ3n�4c1þ2
2

� �
:
P

xi2ð Þ (14)

After solving the above risk function, we get the Baye’s estimator:

θ̂ Sq,EJð Þ ¼ nωþ 3n� 4c1 þ 2P
xi2ð Þ (15)

2.2.1.2 Baye’s estimator under precautionary: Loss function

The Risk Function Under Precautionary Loss Function is given as:

R pr,EJð Þ θ̂
� � ¼ cθ̂ þ 4c nωþ3n�4c1þ4

2

� � nωþ3n�4c1þ2
2

� �

θ̂
P

xi2ð Þ2: � 4c nωþ3n�4c1þ2
2

� �
P

xi2ð Þ (16)

After solving the above risk function, we get the Baye’s estimator:

θ̂ pr,Ejð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nωþ 3n� 4c1 þ 4ð Þ nωþ 3n� 4c1 þ 2ð Þp

P
xi2ð Þ2 (17)

2.2.1.3 Baye’s estimator under the Al-Bayyati’s loss function

The Risk function under Al-Bayyati’s Loss Function is given as:

R Al,EJð Þ θ̂
� � ¼

2c2 θ̂
2
Γ

nωþ 3n� 4c1 þ 2c2 þ 2
2

� �

Γ
nωþ 3n� 4c1 þ 2

2

� � P
xi2ð Þc2 :

þ
2 c2þ2ð ÞΓ

nωþ 3n� 4c1 þ 2c2 þ 6
2

� �

Γ
nωþ 3n� 4c1 þ 2

2

� � P
xi2ð Þ c2þ2ð Þ

�
2 c2þ2ð Þθ̂ Γ

nωþ 3n� 4c1 þ 2c2 þ 4
2

� �

Γ
nωþ 3n� 4c1 þ 2

2

� � P
xi2ð Þ c2þ1ð Þ

(18)

After solving the above risk function, we get the Baye’s estimator:

θ̂ Al,EJð Þ ¼ nωþ 3n� 4c1 þ 2c2 þ 2ð ÞP
xi2ð Þ (19)
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2.2.1.4 Baye’s estimator under the combination of Stein’s loss function

The Risk function under the Stein’s Loss function is given as:

R St,Ejð Þ θ̂
� � ¼

θ̂
P

xi2
2

� �

nωþ3n�4c1
2

� log θ̂
� �þ e�t � 1 (20)

After solving the above risk function, we get the Baye’s estimator:

θ̂ St,Ejð Þ ¼ nωþ 3n� 4c1P
xi2ð Þ (21)

2.2.2 Bayesian estimation under gamma (α, β) prior distributions

The Joint Probability Density Function of Maxwell-Boltzmann Distribution
Using Gamma Prior Distribution is given as:

f 2 x, θð Þ ¼ θ
nωþ3n

2ð ÞP xiωþ2

2n
ωþ1
2ð ÞΓ ω̂þ3

2

� �n exp � θ

2

X
xi2

� �
βα

Γ αð Þ exp �βθð Þ θ α�1ð Þ (22)

Also, the Marginal density function of x is given by:

f 2 xð Þ ¼
P

xiωþ2

2n
ωþ1
2ð ÞΓ ωþ3

2

� �n
βα

Γ αð Þ
Γ nωþ3nþ2α

2

� �
P

xi2
2 þ β

� � nωþ3nþ2α
2ð Þ (23)

Using above Two Results (22) and (23), we get the posterior Probability Density
Function:

π2 θ=xð Þ ¼
θ

nωþ3nþ2α�2
2

P
xi2
2 þ β

� � nωþ3nþ2α
2ð Þ

Γ nωþ3nþ2α
2

� � exp �θ

P
xi2
2

þ β

� �� �
(24)

2.2.2.1 Under squared-error loss function

The Risk function under Squared Error Function is given as:

R Sq,gpð Þ θ̂
� � ¼ cθ̂

2 þ c nωþ3nþ2αþ2
2

� �
nωþ3nþ2α

2

� �
P

xi2
2 þ β

� �2 � 2cθ̂ nωþ3nþ2α
2

� �
P

xi2
2 þ β

� � (25)

After solving the above Risk function, we get the Baye’s estimator:

θ̂ Sq,gpð Þ ¼ nωþ 3nþ 2αP
xi2 þ 2β

(26)

2.2.2.2 Under precautionary loss function

The Risk function under precautionary Loss function is given as:
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R Pr,gpð Þ θ̂
� � ¼ cθ̂ þ cθ̂

�1
nωþ3nþ2αþ2

2

� �
nωþ3nþ2α

2

� �
Γ nωþ3nþ2α

2

� �

Γ nωþ3nþ2α
2

� � P
xi2
2 þ β

� � 4
2ð Þ � 2c

nωþ3nþ2α
2

� �
P

xi2
2 þ β

� � 2
2ð Þ

(27)

After solving the above Risk function, we get the Baye’s estimator:

θ̂ Pr,gpð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nωþ 3nþ 2αþ 2ð Þ nωþ 3nþ 2αð Þp

P
xi2 þ 2βð Þ (28)

2.2.2.3 Under Al-Bayyati’s loss function

The Risk function under Al-Bayyati’s Loss function:

R Al,gpð Þ θ̂
� � ¼ θ̂

2

Γ
nωþ 3nþ 2α

2

� �
Γ

nωþ 3nþ 2αþ 2c2
2

� �

P
xi2
2 þ β

� � c2ð Þ þ
Γ

nωþ 3nþ 2αþ 2c2 þ 4
2

� �

Γ
nωþ 3nþ 2α

2

� � P
xi2
2 þ β

� � c2þ2ð Þ

� 2θ̂

Γ
nωþ 3nþ 2α

2

� �
Γ

nωþ 3nþ 2αþ 2c2 þ 2
2

� �

P
xi2
2 þ β

� � c2þ1ð Þ

(29)

After solving
∂R Al,gpð Þ θ̂ð Þ

∂θ̂
¼ 0 for θ̂, we will have the Baye’s estimator given by:

θ̂Al,gpÞ ¼ nωþ 3nþ 2αþ 2c2P
xi2 þ 2β

(30)

2.2.2.4 Under Stein’s loss function

The Risk function under Stein Loss Function is given by:

R St,gpð Þ θ̂
� � ¼

ð∞
0

θ̂

θ
� log

θ̂

θ
� 1

 ! θ
nωþ3nþ2α�2

2

P
xi2
2 þ β

� � nωþ3nþ2α
2ð Þ

Γ nωþ3nþ2α
2

� � exp �θ

P
xi2
2

þ β

� �� �
dθ

R St,gpð Þ θ̂
� � ¼ θ̂

Γ nωþ3nþ2α�2
2

� � P
xi2
2 þ β

� �

nωþ3nþ2α�2
2

� �
Γ nωþ3nþ2α�2

2

� � � log θ̂
� �þ e�t � 1 (31)

After solving the above Risk function, we will have required Baye’s estimator:

θ̂ St,gpð Þ ¼ nωþ 3nþ 2α� 2P
xi2 þ 2βð Þ (32)

2.2.3 Bayesian estimation under exponential (α) prior distributions

The Joint Probability Density Function of Weighted Maxwell-Boltzmann
Distribution Using Exponential Prior Distribution is given as:
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f 2 x, θð Þ ¼ θ
nωþ3n

2ð ÞP xiωþ2

2n
ωþ1
2ð ÞΓ ω̂þ3

2

� �n exp � θ

2

X
xi2

� �
1

Γ αð Þ exp �θð Þ θ α�1ð Þ (33)

Also, the Marginal density function of x is given by:

f 2 xð Þ ¼
P

xiωþ2

2n
ωþ1
2ð ÞΓ ωþ3

2

� �n
1

Γ αð Þ
Γ nωþ3nþ2α

2

� �
P

xi2
2 þ 1

� � nωþ3nþ2α
2ð Þ (34)

Using above Two Results (33) and (34), we get the posterior Probability Density
Function:

π2 θ=xð Þ ¼
θ
nωþ3nþ2α�2

2

P
xi2
2 þ 1

� � nωþ3nþ2α
2ð Þ

Γ nωþ3nþ2α
2

� � exp �θ

P
xi2
2

þ 1
� �� �

(35)

2.2.3.1 Under squared-error loss function

The Risk function under Squared Error Function is given as:

R Sq,Epð Þ θ̂
� � ¼ cθ̂

2 þ c nωþ3nþ2αþ2
2

� �
nωþ3nþ2α

2

� �
P

xi2
2 þ 1

� �2 � 2cθ̂ nωþ3nþ2α
2

� �
P

xi2
2 þ 1

� � (36)

After solving the above Risk function, we get the Baye’s estimator:

θ̂ Sq,epð Þ ¼ nωþ 3nþ 2αP
xi2 þ 2

(37)

2.2.3.2 Under precautionary loss function

The Risk function under precautionary Loss function is given as:

R Pr,epð Þ θ̂
� � ¼ cθ̂ þ cθ̂

�1
nωþ3nþ2αþ2

2

� �
nωþ3nþ2α

2

� �
Γ nωþ3nþ2α

2

� �

Γ nωþ3nþ2α
2

� � P
xi2
2 þ 1

� � 4
2ð Þ � 2c

nωþ3nþ2α
2

� �
P

xi2
2 þ 1

� � 2
2ð Þ

After solving the above Risk function, we get the Baye’s estimator:

θ̂ Pr,epð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nωþ 3nþ 2αþ 2ð Þ nωþ 3nþ 2αð Þp

P
xi2 þ 2ð Þ (38)

2.2.3.3 Under Al-Bayyati’s loss function

The Risk function under Al-Bayyati’s Loss function:
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R Al,epð Þ θ̂
� � ¼ θ̂
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(39)

After solving the above Risk Function, we will have the Baye’s estimator
given by:

θ̂Al,EpÞ ¼
nωþ 3nþ 2αþ 2c2P

xi2 þ 2
(40)

2.2.3.4 Under Stein’s loss function

The Risk function under Stein Loss Function is given by:

R St,epð Þ θ̂
� � ¼

ð∞
0

θ̂

θ
� log

θ̂

θ
� 1

 ! θ
nωþ3nþ2α�2

2
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P
xi2
2

þ 1
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dθ

R St,epð Þ θ̂
� � ¼ θ̂

Γ nωþ3nþ2α�2
2

� � P
xi2
2 þ 1

� �

nωþ3nþ2α�2
2

� �
Γ nωþ3nþ2α�2

2

� � � log θ̂
� �þ e�t � 1 (41)

After solving the above Risk function, we will have required Baye’s estimator:

θ̂ St,epð Þ ¼ nωþ 3nþ 2α� 2P
xi2 þ 2ð Þ (42)

3. Simulation study of weighted Maxwell-Boltzmann distribution

In this section, we conduct the simulation studies of weighted Maxwell-
Boltzmann distribution to examine the performance of the MLEs and Bayesian
estimators under different prior’s like extension of Jeffrey’s’ prior, Gamma prior and
Exponential prior under different loss functions in terms of expected estimates,
biases, variances and mean squared errors by considering different parameter com-
binations. For the simulation study, sample size is taken as n = (25, 100, 300) to
observe the effect of small, moderate and large samples on the estimators. We have
conducted the simulation procedure for different random parameter combinations
and the process was repeated 2000 times. From the simulation results, it is con-
cluded that the performances of the Bayesian and MLEs become better when the
sample size increases. In terms of MSE, the Bayesian estimators under Gamma prior
perform better (see Table 1). In specific, from Table 2, extension of Jeffery’s prior
under Al-Bayyati’s error loss function and stein’s loss function gives smaller MSE’s
as compared to other loss functions.

From Table 1, we can see that the performances of the Bayesian and MLEs
become better when the sample size increases. For large samples, Gamma prior
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n θ ω c1 c2 Criterion θ̂ml θ̂sq θpre θ̂alb θste

25 0.5 0.5 0.5 0.5 E θð Þ 0.504550 0.508841 0.519292 0.520839 0.525694

Bias 0.004550 0.008841 0.019292 0.020839 0.025694

Variance 0.004979 0.005660 0.008970 0.006678 0.009465

MSE 0.004999 0.005738 0.009342 0.007112 0.010125

100 0.5 0.5 0.5 0.5 E θð Þ 0.505610 0.508184 0.501928 0.492615 0.501255

Bias 0.005610 0.008184 0.001928 �0.007385 0.001255

Variance 0.001313 0.001677 0.001707 0.001318 0.001377

MSE 0.001344 0.001744 0.001710 0.001372 0.001379

300 0.5 0.5 0.5 0.5 E θð Þ 0.495559 0.503048 0.503241 0.500495 0.504760

Bias �0.004441 0.003048 0.003241 0.000495 0.004760

Variance 0.000391 0.000500 0.000467 0.000532 0.000487

MSE 0.000411 0.000510 0.000478 0.000533 0.000510

25 1.6 0.5 0.5 0.5 E θð Þ 1.656361 1.652441 1.590889 1.596342 1.624334

Bias 0.056361 0.052441 �0.009111 �0.003658 0.024334

Variance 0.072186 0.080721 0.048146 0.046070 0.052856

MSE 0.075363 0.083471 0.048229 0.046084 0.053448

100 1.6 0.5 0.5 0.5 E θð Þ 1.584041 1.592563 1.627598 1.617623 1.621388

Bias �0.015959 �0.007437 0.027598 0.017623 0.021388

Variance 0.013766 0.013701 0.012200 0.011394 0.014179

MSE 0.014021 0.013756 0.012961 0.011704 0.014636

300 1.6 0.5 0.5 0.5 E θð Þ 1.595942 1.621590 1.615841 1.605064 1.600224

Bias �0.004058 0.021590 0.015841 0.005064 0.000224

Variance 0.006184 0.006401 0.005696 0.003994 0.005462

MSE 0.006200 0.006867 0.005947 0.004020 0.005462

25 2.5 1.0 1.5 0.5 E θð Þ 2.479248 2.477210 2.416603 2.493049 2.428281

Bias �0.020752 �0.022790 �0.083397 �0.006951 �0.071719

Variance 0.128038 0.127245 0.113067 0.149621 0.111466

MSE 0.128468 0.127765 0.120022 0.149670 0.116610

100 2.5 1.0 1.5 0.5 E θð Þ 2.498178 2.502858 2.527984 2.482989 2.488065

Bias �0.001822 0.002858 0.027984 �0.017011 �0.011935

Variance 0.037896 0.029747 0.030859 0.020501 0.023293

MSE 0.037899 0.029756 0.031642 0.020791 0.023436

300 2.5 1.0 1.5 0.5 E θð Þ 2.510585 2.500611 2.490367 2.507471 2.477393

Bias 0.010585 0.000611 �0.009633 0.007471 �0.022607

Variance 0.010037 0.009817 0.007991 0.008569 0.012196

MSE 0.010149 0.009818 0.008083 0.008625 0.012707

25 2.5 1.0 0.5 1.5 E θð Þ 2.566472 2.690959 2.607021 2.559121 2.582644

Bias 0.066472 0.190959 0.107021 0.059121 0.082644

Variance 0.133694 0.132587 0.132802 0.133658 0.156276

MSE 0.138112 0.169052 0.144256 0.137153 0.163106
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under squared error loss function and Al-Bayyati’s loss function gives smaller MSE’s
as compared to other loss functions and MLEs.

From Table 3, we can see that the performances of the Bayesian and MLEs
become better when the sample size increases. Exponential prior under squared
error loss function and stein’s loss function gives smaller MSE’s as compared to other
loss functions. Thus, Exponential prior under squared error loss function and stein’s
loss function can be preferred for parameter estimation.

4. Applications of weighted Maxwell-Boltzmann distribution

In this section, we present the goodness of fit of weighted Maxwell-Boltzmann
distribution (WMB). For testing the goodness of fit of weighted Maxwell-
Boltzmann distribution over Maxwell-Boltzmann (MB), length biased Maxwell-
Boltzmann (LBMB) and area biased Maxwell-Boltzmann (ABMB) distributions,
following two data sets have been considered.

Data set I is regarding tensile strength, measured in GPA, of 69 carbon fibers
tested under tension at gauge lengths of 20 mm, Bader and Priest [29].

From Table 4, it has been observed that weighted Maxwell-Boltzmann distri-
bution have the lesser AIC, AICC, �logL and BIC values as compared to Maxwell-
Boltzmann, length biased Maxwell-Boltzmann and area biased Maxwell-Boltzmann
distributions. Hence we can conclude that the Weighted Maxwell-Boltzmann dis-
tribution leads to a better fit than the Maxwell-Boltzmann, length biased Maxwell-
Boltzmann and area biased Maxwell-Boltzmann distributions in case of analyzing
the data set I.

Data set II is regarding the strength data and it represents the strength measured
in GPA for single carbon fibers and impregnated 1000-carbon fiber tows. Single
fibers were tested under tension at gauge lengths of 10 mmwith sample sizes n = 63;
see Bader and Priest [29] and Surles and Padgett [30].

From Table 5, it has been observed that weighted Maxwell-Boltzmann distribu-
tion have the lesser AIC, AICC, �logL and BIC values as compared to Maxwell-
Boltzmann, length biased Maxwell-Boltzmann and area biased Maxwell-Boltzmann
distributions. Hence we can conclude that the Weighted Maxwell-Boltzmann dis-
tribution leads to a better fit than the Maxwell-Boltzmann, length biased Maxwell-
Boltzmann and area biased Maxwell-Boltzmann distributions in case of analyzing
the data set II.

n θ ω c1 c2 Criterion θ̂ml θ̂sq θpre θ̂alb θste

100 2.5 1.0 0.5 1.5 E θð Þ 2.505612 2.535815 2.524166 2.489736 2.514349

Bias 0.005612 0.035815 0.024166 �0.010264 0.014349

Variance 0.042607 0.029863 0.029906 0.031724 0.032759

MSE 0.042639 0.031146 0.030490 0.031829 0.032965

300 2.5 1.0 0.5 1.5 E θð Þ 2.499279 2.508299 2.510490 2.490229 2.487861

Bias �0.000721 0.008299 0.010490 �0.009771 �0.012139

Variance 0.011396 0.009322 0.011898 0.011426 0.011835

MSE 0.011397 0.009391 0.012008 0.011522 0.011982

ml, maximum likelihood; sq, squared error loss function; pre, precautionary loss function; alb, Al-Bayyati’s loss
function; ste, Stein’s loss function.

Table 2.
Average estimate, bias, variance and mean squared error for θ̂

� �
under extension of Jeffery’s prior.
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5. Conclusions

1.From the simulation Study, it was observed that the performances of the
Bayesian and MLEs become better, when the sample size increases.

2. In terms of MSE, the Bayesian estimators under Gamma prior perform better.
In specific, extension of Jeffery’s prior under Al-Bayyati’s error loss function
and stein’s loss function gives smaller MSE’s as compared to other loss
functions.

3.For large samples, Gamma prior under squared error loss function and
Al-Bayyati’s loss function gives smaller MSE’s as compared to other loss
functions and MLEs. Exponential prior under squared error loss function and
stein’s loss function gives smaller MSE’s as compared to other loss functions.

4.Thus, Exponential prior under squared error loss function and stein’s loss
function can be preferred for parameter estimation.

5.It has been observed that weighted Maxwell-Boltzmann distribution have the
lesser AIC, AICC, �logL and BIC values as compared to Maxwell-Boltzmann,
length biased Maxwell-Boltzmann and area biased Maxwell-Boltzmann
distributions. Hence we can conclude that the Weighted Maxwell-Boltzmann
distribution leads to a better fit than the Maxwell-Boltzmann, length biased
Maxwell-Boltzmann and area biased Maxwell-Boltzmann distributions in case
of analyzing the data set I and II.
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Distribution αml θml �2 log lð Þ AIC BIC AICC

WMB 9.079 1.923 50.393 104.787 109.255 104.968

MB 0 0.478 74.633 151.265 153.499 151.325

LBMB 1 0.637 66.713 135.426 137.660 135.485

ABMB 2 0.796 61.385 124.770 127.004 124.829

Table 4.
Model comparison using AIC, AICC, BIC and -logL criterion for data set 1.

Distribution αml θml �2 log lð Þ AIC BIC AICC

WMB 9.971 1.332 57.656 119.311 123.598 119.511

MB 0 0.308 81.585 165.170 167.313 165.235

LBMB 1 0.411 74.165 150.330 152.473 150.395

ABMB 2 0.513 69.111 140.222 142.366 140.288

Table 5.
Model comparison using AIC, AICC, BIC and -logL criterion for data set II.
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Chapter 6

Averaging Indoor Localization
System
Eman Shawky Abd El-Fattah Amer

Abstract

This chapter aims at improving the accuracy of estimation the localization by
using the RSS method to estimate the positions and take into account the effects of
both LOS propagation. The proposed system is depending on developing a mathe-
matical model for the noisy VLC positioning system. For improving the results,
adopting the KF is combined with the proposed system, which is considered an
optimal estimator. The performance of the proposed technique is determined by
evaluating the positioning errors in a typical room. Also this chapter develops the
accuracy of the positioning system by using different ideas with average techniques.
The discussion of the results for averaging technique is displayed.

Keywords: RSS, KF, VLC, localization

1. Introduction

This chapter aims at improving the accuracy of estimation the localization by
using the Received Signal Strength (RSS) method to estimate the positions and take
into account the effects of both line of sight (LOS) and non-line of sight (NLoS)
propagations. The proposed system is depending on developing a mathematical
model for the noisy Visible light communication (VLC) positioning system. For
improving the results, adopting the Kalman filter (KF) is combined with the pro-
posed system, which is considered an optimal estimator. The performance of the
proposed technique is determined by evaluating the positioning errors in a typical
room. Also, this chapter develops the accuracy of the positioning system by using
different ideas with average techniques.

The remaining of this chapter is organized as follows: Section 2 discusses the
optical channel in indoor systems. Section 3 is devoted to explaining the methodol-
ogy of localization using RSS techniques. A mathematical derivation for perfor-
mance evaluation is developed in the same section as well. In Section 4, The
proposed KF algorithm is presented with explaining its algorithm for estimation
correction. There is an average technique aiming to use the average method as
shown in Section 5. Using both effects of LOS and the first reflection of NLoS
propagation is done in the average proposed system. Adopting KF with averaging is
shown in Section 6. The discussion of the results for averaging technique is
displayed in Section 7. Section 8 shows the comparison between the results with
some recent references. Finally, the concluding remarks are given in Section 9.
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2. Optical channel model

The characteristics of the channel modeling have been analyzed with the effects
of the channel distortions in [1]. The power associated with the channel is separated
into two factors, these being optical path loss (PL) and multipath dispersion. The PL
is calculated from the knowledge of the receiver size, the transmitter beam diver-
gence, and separation distance. However, a NLoS configuration (diffuse systems)
mainly used in the indoor environment, uses reflections of the room surfaces and
furniture. These reflections could be seen as unwanted signals or multi-path distor-
tions which predict the PL more complex. The OW channel transfer function is
defined by

H ¼ HLoS þHNLoS (1)

According to Figure 1, it describes HloS as the contribution due to the LoS, which
is independent of the modulation frequency and it depends on the distance between
transmitter and receiver. In a VLC system, the direct current (DC) gain of a VLC
channel is expressed by.

Hi
LOS ¼

mþ 1

2πd2i
cos m ϕið ÞAR cos ψ ið ÞTs ψ ið Þg ψ ið Þ, (2)

The received power therefore becomes

Pr ¼ HLOS:Pt, (3)

where Pt is a transmitted power m is the Lambertian order, di is the distance
between transmitter i and the receiver, ϕi is the irradiance angle, ψ i is the incidence
angle, Ts �ð Þ and g �ð Þ are the gains of the optical filter and concentrator at the receiver
(assumed here as unity gain), and AR is the detector effective area. Where the
channel DC gain HNLOS of the first reflection is shown as in the following equation
related to Figure 1.

Figure 1.
The channel model of VLC system.
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dHip
NLOS ¼ mþ 1

2πD2
ip,1D

2
p,2

cos m ϕip

� �
cos αip
� � � dAp

�ρ cos βp

� �
cos ψp

� �
Ts ψp

� �
g ψp

� �
AR,

(4)

where Dip,1 is the distance between transmitter i and reflection point p, Dp,2 is
the distance between reflection point p and receiver RX, ϕip and ψp are the NLoS
irradiance and incidence angles with respect to point p, respectively, αip and βp
are the incidence and irradiance angles at reflection point p on the wall, respec-
tively, ρ is the wall reflectivity, and dAp represents the area of the reflection point
on the wall.

The total NLoS channel gain for i th transmitter Hi
NLOS is given by collecting the

reflections from the 4 walls [2]:

Hi
NLOS ¼

X4
j¼1

Hi
NLOS,wallj, (5)

where Hi
NLOS,wallj is the collection of reflections from transmitter i to wall j, and

can be obtained by integrating (4) over x, zð Þ or y, zð Þ based on the wall location,
such that

Hi
NLOS,wallj ¼

ZZ

x, zð Þor
y, zð Þ

mþ 1
2πD2

ip,1D
2
p,2

cos m ϕip

� �
cos αip
� �

ρ

� cos βp

� �
cos ψp

� �
Ts ψp

� �
g ψp

� �
ARdAp:

(6)

The determination of the parameters for the previous equation is as follows:

Dip,1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TX,i � pð Þ TX,i � pð ÞT

q

Dp,2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� RXð Þ p� RXð ÞT

q
,

(7)

where ðÞT is the transpose operator for row vector a. By using triangle calcula-
tions, the angles ϕip, αip,ψp, and βp can be found as follows:

cos ϕip

� �
¼ jzi � zj

Dip,1
, αip ¼ π

2
� ϕip,

cos ψp

� �
¼ jz� z0j

Dp,2
, βp ¼ π

2
� ψp:

(8)

The simulation of the power distribution is done for two cases, first case is using
four transmitters which are distributed in different positions (1.25, 1.25, 3) m, (1.25,
3.75,3) m, (3.75, 1.25, 3) m, (3.75, 3.75, 3) m in room with size (5,5,3) m, as shown in
Figure 2. Second case is using only one transmitter that is located in the center of
the ceiling. This power distribution is shown in Figure 3. The simulation is done
with using some parameters where FOV ¼ 70o and assume the filter gain = 1, the
number of LEDs by array 60x60. The concentrator gain = 1 where the active area of
photo diode (PD) = 1cm2.
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3. RSS mathematical analysis

The proposed technique depends on estimating the receiver position using RSS
method, then further improving the acquired estimation by adopting the Kalman
filtering algorithm. In the initial estimation, RSS technique is used taking into
account the effect of LoS. Specifically, A mathematical model is developed for the
noisy VLC positioning system and estimate both the angular and horizontal-
distance errors. Because of the dependence of horizontal-distance error on the
irradiance angle error. The performance of the proposed technique is determined by
evaluating the positioning errors in a typical room. Also, the results are compared to
that of the traditional RSS system. Depending on Figure 1; the analysis assumes that

Figure 2.
The power distribution for 4 LEDs.

Figure 3.
The power distribution for one LED centered in the ceiling.
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ψ i ¼ ϕi for any i∈ 1, 2, 3, 4f g. Assume that the light emitted from each LED is
distinguishable at the receiver. Accordingly, The index i is dropped from the
developed equations.

If the transmitter and receiver are aligned together, then ψ ¼ ϕ ¼ 0, d ¼ V,
where d is a direct distance between transmitter and receiver and V is the horizontal
distance of the transmitter, using Ts ψ ið Þ ¼ 1, and g ψ ið Þ ¼ 1 as shown in Figure 1. In
this case, the power of LoS can be approximated as the following:

PR0 ¼ mþ 1ð ÞAR

2πV2 PT: (9)

In the general case (ϕ 6¼ 0) as view in (2), and by using Figure 1 where
cos 2 ϕð Þ ¼ V2

d2
and by multiplying the equation by V2

V2, then, the received power can
be modeled as:

PR ¼ cos mþ3 ϕð ÞPR0, (10)

The last equation expresses the ideal system case, which means there is no noise
affecting the system. From which:

ϕ ¼ cos �1

ffiffiffiffiffiffiffiffi
PR

PR0

k

r
, (11)

where k ¼ mþ 3. In the previous works, PRo is known while here, PRo is not
known exactly with noise power Pn. Assuming constant noise power in the room
then the noise add to both the receiver power and irradiance angle. Neglecting the
effect of NLoS (as it is very small), include the noise effect to (10) as follows:

PR þ Pn ¼ cos mþ3 ϕþ Δϕð Þ PR0 þ Pnð Þ, (12)

where Pn and Δϕ are the receiver power and irradiance angle noises,
respectively. Substituting ϕ from (11):

Δϕ ¼ cos �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PR þ Pn

PR0 þ Pn

k

r
� cos �1

ffiffiffiffiffiffiffiffi
PR

PR0

k

r
: (13)

From Figure 1, the horizontal distance without any noises is given by

dL ¼ V tan ϕð Þ: (14)

In the case of a noisy channel, the horizontal-distance error ΔdL is estimated
from:

dL þ ΔdL ¼ V tan ϕþ Δϕð Þ: (15)

The value of the horizontal-distance error ΔdL is used to determine the localiza-
tion more accurate after calculating the position of the receiver by trilateration
method as shown in the next section.

According to the RSS method, the positioning error is simply obtained from the
distance errors. The positioning algorithm uses three maximum power levels to
determine the location of the user [3]. Here, RSS algorithm is used to estimate
x0, y0
� �

, the position coordinates of the receiver. Let xi, yi
� �

, i∈ 1, 2, 3f g, be the
three coordinates of three transmitters. From ΔdL find the positioning estimate:
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x0 � xið Þ2 þ y0 � yi
� �2 ¼ d̂

2
L,i, (16)

where

d̂
2
L,i ¼ dL þ ΔdL, (17)

for any i∈ 1, 2, 3f g, where dL,i is the horizontal distance of the receiver from the
transmitter i. This method can be clear as shown in Figure 4, where RSSI is received
signal strength indicator.

4. Proposed KF algorithm

In this section, a KF algorithm is proposed to further improve the previous
estimation (introduced in the last section) of the receiver position. Specifically, the
estimation of the irradiance angle developed in the last section is further improved
by adopting a KF algorithm.

The proposed system with KF is shown in Figure 5 where the PD collects the
received power and inserts it into the proposed system. The process of the proposed
system is analyzing the mathematical equations to calculate the irradiance angle ϕ
and the error of the irradiance angle Δϕ. Both of the two calculated values insert
into the Kalman filtering process. The optimal value of the estimated irradiance
angle is obtained after using the KF algorithm. The estimated irradiance angle
inserted into the RSS process to calculate the estimated horizontal distance d̂. The
trilateration method has been applied to calculate the estimated position of the
receiver by using the estimated horizontal distance d̂. KF algorithm recursively

Figure 4.
A trilateration method for RSS to calculate the position of a receiver by using three transmitters.

Figure 5.
The block diagram of the proposed system with KF.
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estimates the state of variables in the system in two phases; prediction and mea-
surement [4, 5].

4.1 Predict step

We denote the state vector by x ¼ xa, xbð ÞT, where xa represents a measured
angle, xb is the error in the angle, and T is the transpose operator. Based on the
estimate at iteration k� 1, the state xk�1∣k�1. The next step k of the system dynamics
xk∣k�1 is evaluated as:

xk∣k�1 ¼ Fkxk�1∣k�1, (18)

where Fk is the state transition matrix. The corresponding state covariance
matrix is given by:

Pk∣k�1 ¼ FkPk�1∣k�1FT
k þ Qk, (19)

where Qk is the process noise covariance.

4.2 Measurement step

The updated state variable xk∣k and updated state covariance matrix Pk∣k are
given by

xk∣k ¼ xk∣k�1 þ Kkyk
Pk∣k ¼ I � KkHkð ÞPk∣k�1,

(20)

respectively, where Kk is the Kalman gain, yk is is the error vector, and Hk is is
the observation model.

Kk ¼ Pk∣k�1HT
k S

�1
k

yk ¼ zk �Hkxk∣k�1:
(21)

Here z denotes the measurement vector, given by:

zk ¼ Hkxk þ Rk (22)

where Rk is the measurement noise matrix. Also Sk is the innovation matrix,
which relates the covariance of state variables to measurement vector:

Sk ¼ HkPk∣k�1HT
k þ Rk: (23)

Finally, after getting the estimated angle then recalculate the positioning error
using equations developed in Section 3.

5. Proposed localization methodology using an averaging RSS technique

Second technique contains the averaging localization method and Kalman filter-
ing with averaging schemes. For the averaging technique, the position of the
receiver has been estimated by RSSI technique for multiple times (e.g., N samples)
and the acquired estimations are averaged over all samples.
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To enhance the results of improving the localization, The algorithm of Kalman
filtering has been adopted for estimation the received power over N samples,
followed by using RSS technique on the average received power. These techniques
have been analyzed mathematically, with respect to the effects of both LoS and
first-reflection from NLoS propagation.

Typical room is considered for evaluating the positioning performances for
proposed techniques and the results of them are compared with the traditional RSS
system.

For determining the receiver location, the trilateration method is used with the
RSS from three LEDs transmitters having the maximum received levels [3]. Our
techniques depend on the average of estimated receiver position over a certain
number of measurements to decrease the localization error. This decreasing in error
gets at the cost of exceeding the system mathematical complexity. Figure 6 shows a
simple block diagram that demonstrates this approach.

5.1 RSS technique

Using (2), the received LoS power from transmitter i∈ 1, 2, 3, 4f g can be
written as:

PR,i ¼ mþ 1

2πd2i
cos mþ1 ϕið ÞAR

 !
PT,i, (24)

where PT,i is the transmitted power of i th LED. Here, assume that ψ i ¼ ϕi,
which is determined from Figure 1 as:

cos ϕið Þ ¼ V
di
, (25)

where V is the vertical distance between transmitter and receiver, assumed
constant. Accordingly, the distance between transmitter i and receiver can be
evaluated as:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1ð ÞVmþ1ARPT,i

2πPR,i

mþ3

s
: (26)

Figure 6.
Block diagram of proposed averaging positioning scheme.
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If consider the effect of NLOS as well, the total power collected at the receiver is
obtained by modifying (24) to:

PR,i ¼ Hi
LOS þHi

NLOS

� �
PT,i: (27)

5.2 Linear LS method

To estimate the receiver location, the linear LS estimation is commonly used. Let
xi, yi
� �

, i∈ 1, 2, 3f g, be the horizontal coordinates of transmitter i and dL,i be the
horizontal distance of the receiver from transmitter i. The range equation can be
written in the form:

x̂� xið Þ2 þ ŷ� yi
� �2 ¼ d2L,i, i∈ 1, 2, 3f g, (28)

where x̂, ŷð Þ is the estimated horizontal location of receiver. The last system of
equations can be written in matrix form as:

AX̂ ¼ B, (29)

where

X̂ ¼ x̂ ŷ½ �T

A ¼
x2 � x1 y2 � y1

x3 � x1 y3 � y1

" #

B ¼ b21 b31½ �T:

(30)

Here for any m∈ 2, 3f g,

bm1 ¼ x̂� x1ð Þ xm � x1ð Þ þ ŷ� y1
� �

ym � y1
� �

: (31)

The solution of (29) is:

X̂ ¼ ATA
� ��1

ATB: (32)

5.3 Complexity analysis

The complexity of proposed averaging RSS technique can be analyzed by
counting the number of mathematical operations required to solve the LS method
once and then multiplying the resulting by the number of samples. Specifically, the
total number of floating-point operations is 39N þ 1 flops, where N is the number
of samples. That is, the complexity increases linearly with the number of samples.

6. Kalman filtering with averaging

KF estimates the states of a linear system from the noisy measurements then
produces the estimation of unknown variables that aim to get more accurate than
those which based on a single measurement value.

At this section, a KF algorithm is adapted to enhance the estimation performance
of the receiver positioning system. In the first, KF estimates several samples of
measured received powers. Then, the average of these estimated power values is
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evaluated. Using the output of KF which is the estimated average power, the
position of the receiver can be calculated by using RSS technique. The block
diagram of the proposed Kalman filtering with averaging technique is shown in
Figure 7.

KF algorithm is shown in the previous chapter in Section 4 recursively estimates
the state of variables in the system in two phases; prediction and measurement
[4, 5]. We denote the state vector by x. This state vector represents measured
received power and number of samples which are used in the process. Based on the
estimate at iteration k� 1, and have state xk�1∣k�1.

7. Simulation and discussion for averaging technique

In this section, The simulation results are presented and compared them to that
of traditional systems. Table 1 shows the main parameters used in the simulation.

In case of demonstrating the relation between the SNR and the average posi-
tioning error, Figure 8 shows that using five different positions of the receiver and
the average positioning error in a meter. This figure shows that the proposed system
outperform the traditional RSS method by nearly 1 cm at SNR=10 dB while
adopting KF decreases the error by 11.5 cm that means improvement by 52.27%.

Figures 9 and 10, plot the true path with three different methods. The simula-
tion is done at a FoV of 70∘ and an SNR of 20 dB. These figures are simulated as a
plan view to show the estimation position of the receiver in the room. The proposed
RSS technique achieves a tiny improvement while the proposed RSS with KF is the
closest to the true path.

Figure 7.
Block diagram of proposed Kalman filtering technique.

Parameter Value

Room dimensions 5� 5� 3 m3

Number of transmitters 4

Transmitted power 30 W

Locations of LEDs 1:25, 1:25, 3ð Þ, 1:25, 3:75, 3ð Þ, 3:75, 1:25, 3ð Þ, 3:75, 3:75, 3ð Þ m
FoV of photodetector 70∘f g
The active area of the photodetector 1 cm2

Table 1.
Main parameters in VLC.
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The pedestrian is moving in random directions inside the room. In Figure 11,
compare between three techniques: Traditional RSS, proposed RSS, and proposed
RSS with Kalman filtering. The comparison is done at a FoV of 70∘ and an SNR of 20
dB. It is clear from the figure that adopting KF estimation further reduces the
positioning error and provides an estimate that is very close to reality.

In the second technique, simulation results for the proposed system are
presented and compared with that of traditional systems. The main parameters used
in the simulations for the VLC link are listed in Table 2.

7.1 Positioning error

In the simulation, the performance measure is determined by the positioning
error:

Figure 8.
The relation between average positioning error in meter with SNR for different positions.

Figure 9.
Positioning error for traditional proposed, and KF correction RSS techniques at a FOV of 70∘ and an SNR of 20
dB for a y path.

131

Averaging Indoor Localization System
DOI: http://dx.doi.org/10.5772/intechopen.97531



εposition ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂� x0ð Þ2 þ ŷ� y0

� �2q
, (33)

where x0, y0
� �

is the receiver horizontal location and x̂, ŷð Þ is its estimated
location. Figure 12 shows the average error in receiver positioning for different
number of samples. It is clear that the error can be reduced to less than 10% of its
maximum value by averaging over 50 samples. This reduction comes at the cost of

Figure 11.
Relation between positioning error and number of pedestrian steps at a FOV of 70∘ and an SNR of 20 dB.

Figure 10.
Positioning error for traditional, proposed, and KF correction RSS techniques at FOV of 70∘ and an SNR of 20
dB for a x path.
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increasing the mathematical complexity of the system as shown in Figure 13. The
complexity is calculated according to the number of operations, which increases as
the number of samples increases.

7.2 Averaging RSS and traditional RSS techniques

The RSS variations of the positioning error at every sample are shown in
Figure 13 for receiver position x0, y0

� � ¼ 1, 1ð Þ, considering the effect of LoS only.
The positioning error using the proposed averaging RSS technique (with 100

samples) is plotted in same figure as well. The improvement using proposed tech-
nique is clear from the figure. The traditional RSS errors are more than 0.6 m
(42.4%), where the error when employing the proposed averaging RSS is only
0.217 m (15.3%). That is, an improvement of about 27.1% is getting when adapting
the proposed system. Both LoS and NLoS effects are studied for position of the
receiver x0, y0

� � ¼ 1, 1ð Þ as well and the results are plotted in Figure 14. Traditional
RSS errors are more than 0.7 m (49.5%), where the errors when using proposed

Parameter Value

Room dimensions 5� 5� 3 m3

Number of transmitters 4

Total transmitted power 30 W

Locations of LEDs 1:25, 1:25, 3ð Þ, 1:25, 3:75, 3ð Þ, 3:75, 1:25, 3ð Þ, 3:75, 3:75, 3ð Þ m
FOV of photodetector 70∘

SNR 20

Active area of photodetector 1 cm2

Wall reflectivity ρ 0.8

Number of samples 50

Range of receiver in room (1–3.5) m over both x, y axes

Table 2.
Simulation parameters.

Figure 12.
Comparison between average positioning errors versus number of samples in averaging RSS technique.
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averaging RSS are only 0.255 m (18%). The improvement of nearly 31.5% is achiev-
able by using the proposed scheme.

8. Kalman filtering, averaging RSS, and traditional RSS techniques

In this section, different comparisons are shown between the performance of
three methods; The traditional RSS technique, proposed averaging RSS technique,
and the proposed Kalman filtering with averaging. We use same values which given
for the VLC link of Table 2.

8.1 LoS propagation

The effects of LoS only on two tracks’ estimations for both x and y paths are
presented in Figures 14 and 15 for both x and y paths, respectively.

From the figures, both tracksâ€™ estimations are the nearest to the real one
when employing the proposed techniques. Also, The results show that adopting KF
estimation reduces the positioning error and improve the estimation. Table 3 for
three techniques summarizes the error and improving percentages.

8.2 Both LoS and NLoS propagations

The effect of both LOS and NLOS on Kalman filtering tracks’ estimations for
both x and y paths are presented in Figures 16 and 17 for both x and y paths,
respectively. It is clear that the track estimation gets slightly worse when including
the effect of NLoS.

8.3 Kalman filtering response

The response for a random position estimation for the KF is shown in Figure 18.
The filter input is a measured value of received power, while the filter output is the
corresponding estimated value at different number of samples. The filter response
(estimated value) is near to the actual value where the samples are greater than 11.

Figure 13.
Complexity of the averaging RSS method.
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8.4 Position estimation accuracy comparison

As mentioned in the introduction, several techniques have been proposed for
indoor localization based on VLC technology. In this section, a comparison is

Figure 14.
Positioning error for both traditional RSS and averaging RSS techniques at position 1, 1ð Þ, considering the
effects: (a) LOS only, (b) both LOS and NLOS.
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Figure 15.
Track estimations using traditional and proposed techniques for: (a) an x path, (b) an y path.

Localization method Average positioning error Percentage improvement

Traditional RSS 18 cm —

Averaging RSS 12 cm 33.3%

Kalman filtering 5 cm 72.2%

Table 3.
Accuracy for different techniques.

136

Adaptive Filtering - Recent Advances and Practical Implementation



provided between the position estimation accuracy and that of previous works for
same simulation parameters. The results of this comparison are summarized in
Table 4.

It is clear from the Table 3 that both proposed averaging RSS and Kalman
filtering with averaging techniques achieve better accuracy than that proposed in
[6–8]. Since the authors in [9, 10] have adopted Kalman filtering, they have
better accuracy than the proposed averaging method. However, employing Kalman
filtering with averaging gives a better accuracy.

Figure 16.
Comparison between Kalman filtering track estimation for both LOS and NLOS propagations for an x path.

Figure 17.
Comparison between Kalman filtering track estimation for both LOS and NLOS propagations for an y path.
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9. Concluding remarks

First, the proposed techniques have been analyzed mathematically, taking into
account the effects of LoS propagation. The positioning estimation accuracy of
proposed techniques has been evaluated in a typical room. The results reveal that an
improvement of about 52% in the average positioning error is achievable using the
proposed technique with KF, when compared to that of the traditional RSS.

Secondly, both averaging and Kalman filtering by averaging schemes are
adapted to improve the positioning system. Specifically, in the averaging technique,
the receiver position has been determined by using the average of the samples of
RSS estimations. The position is determined by RSS estimation of a Kalman filtered
averaged multiple received power samples in the second proposed system, Kalman
filtering with averaging algorithm.

Simulation results reveal that an improvement of about 33.3% in estimation
accuracy is achievable when using the averaging scheme as compared to that of
traditional RSS scheme. This improvement increases to 72.2% when adopting
proposed Kalman filtering with averaging scheme.

Figure 18.
Response of Kalman filtering technique.

Reference Sys. parameters Ref.
acc.

Present
work

Present
work

AVG sys.
Acc.

KF acc.

[6] LoS, FoV ¼ 80∘, PT ¼ 10 W, AR ¼ 0:5 cm2, 5, 5, 3ð Þ m3 5 cm 3.7 cm 3.1 cm

[7] LoS/NLoS, FoV¼ 10–180∘, PT ¼ 1:9W, AR ¼ 0:81 cm2,
ρ ¼ 60%, 4, 4, 3:5ð Þ m3

13.95 cm 9.1 cm 4.8 cm

[8] LoS, FoV ¼ 85∘, PT ¼ 1 W, AR ¼ 0:81 cm2, 5, 4, 3ð Þ m3 10 cm 6.17 cm 1.75 cm

[9] LoS, FoV ¼ 80∘, PT ¼ 17 W, AR ¼ 1 cm2, 3:6, 3:26, 2:5ð Þ
m3

14.5 cm 17.4 cm 3.5 cm

[10] LoS, FoV ¼ 25∘, PT ¼ 17 W, AR ¼ 1 cm2, 6, 6, 3ð Þ m3 5 cm 11 cm 2.3 cm

Table 4.
Position estimation accuracy comparison.
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