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Preface

The theory of quantum computing and communication has made remarkable 
 progress over the years and has become a significant scientific discipline. It 
 encompasses many concepts related to quantum information technologies, includ-
ing quantum algorithms, quantum computers, quantum code, post-quantum 
cryptography, quantum key distribution, and quantum teleportation.

This book surveys the field of quantum computation and quantum communication 
from a fresh perspective, discussing its representative technologies and the latest 
research. The introductory chapter provides an overview of the topic and the book. 
Chapter 2, “Quantum Algorithms for Nonlinear Equations in Fluid Mechanics”, gives 
a narrative tutorial on quantum algorithms. Chapter 3, “A Novel Three-Input XOR 
Gate Based on Quantum Dot-Cellular Automata with Power Dissipation Analysis”, 
presents the “quantum code” notation and restates many of the examples and results 
of the preceding chapter. Chapter 4, “Topology in Photonic Discrete-Time Quantum 
Walks: A Comprehensive Review”, provides a comprehensive review of photonic 
implementations of discrete-time quantum walks in the spatial and temporal 
domains. Chapter 5, “Introduction to Quantum Computing”, explains how a 
quantum computer might be built. Chapter 6, “Multipoint-Interconnected Quantum 
Communication Networks”, discusses some quantum applications, including 
quantum key distribution and teleportation along with related development and 
research.

We would like to thank Dr. Rene Steijl, Professor Ismail Gassoumi, Professor 
Graciana Puentes, and Professor Surya Teja Marella for their help in writing 
some chapters. We also received help, support, and encouragement from many 
other individuals and institutes. We would also like to thank those physicists and 
computer scientists who have developed the field of quantum computation and 
quantum communication.

Yongli Zhao
Beijing University of Posts and Telecommunications,

Beijing, China
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Chapter 1

Introductory Chapter: Quantum 
Computing and Communications
Yongli Zhao, Yazi Wang and Xiaosong Yu

1. Introduction

1.1 The origin of quantum information

Quantum mechanics’ establishment and development triggered the first wave of 
quantum technology in the twentieth century. With the regulation and observation 
of microphysical quantity as the main feature of understanding and grasping the 
microphysical phenomena and laws, quantum information based on the principles 
of quantum mechanics was born. Quantum information, a new information 
method, that calculates, encodes, and transmits the physical information contained 
in the “state” of a quantum system. The most common unit of quantum information 
is the qubit, that is, intrinsically linked to each other and can be any combination of 
0 and 1 simultaneously.

2. The development history of quantum information

Quantum information technologies aim to use the natural characteristic of the 
atomic scale to accomplish tasks that cannot be achieved with existing technologies 
and use the characteristic of measuring or observing a quantum system to change the 
quantum information fundamentally. These technologies rely on qubits. Meanwhile, 
scientists are creating physical qubits from a variety of particles, such as atoms or light 
particles, or objects that mimic them, such as superconducting circuits. Scientists 
manipulate the quantum properties of each qubit and entangle multiple qubits with 
each other to create quantum technology from these qubits. These functions support 
two potential transformative applications, that is, quantum computing and quantum 
communications. However, quantum information is fragile and can be irreversibly 
lost through interactions with the environment, a process known as decoherence. 
Quantum error correction techniques have been proposed and proven, but are chal-
lenging to implement. Based on these, researchers began to explore the application of 
quantum information to quantum technologies in the twentieth century.

• In 1959, researcher Richard Feynman believed that manipulating matter at 
the atomic scale is possible, meaning that certain types of computation can be 
done more efficiently on quantum systems than on classical [1].

• In 1972, researchers showed that one qubit measurement could affect other 
qubits, which is the first proof of entanglement [2].

• In 1981, researchers observed that it might not be possible to effectively simu-
late the evolution of quantum systems on classical computers and proposed a 
basic model of quantum computing.
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• In 1984, researchers described a quantum key distribution scheme; in this 
scheme, eavesdroppers had a high probability of being detected when they 
tried to monitor an encrypted key exchange that used qubits to transmit infor-
mation. The scheme, often referred to as BB84, is considered the first quantum 
cryptography protocol [3].

• In 1987, researchers found the property necessary for photon entanglement by 
measuring the time interval between two photons and found these two  
photons were indistinguishable from each other [4].

• In 1991, researchers extended the BB84 protocol and introduced a different 
method of quantum key distribution that contains entanglement [5].

• In 1994, the well-known American physicist Peter Shor proposed the well-
known quantum algorithm, which is the Shor quantum decomposition 
algorithm. The Shor quantum decomposition algorithm is based on the 
Deutsch-Jozsa algorithm [6], following the laws and theories of quantum 
mechanics [7].

• In 1998, researchers demonstrated through principle experiments that quan-
tum error correction is possible, which is necessary for cost-effective quantum 
computing and communication because excessive noise can destroy quantum 
information.

In the twenty-first century, the theory and development of quantum comput-
ing and communications puts this significance on a firm footing and leads to some 
new profound and exciting insights into the natural world. From 2000 to 2005, 
a variety of time-efficient quantum algorithms were proposed, such as the semi-
product groups [8–10], the near-Hamiltonian groups [11], the normal subgroups 
[12, 13], the almost Abelian groups [14]. In 2006, Hayashi et al. [15] proposed the 
first quantum network coding scheme, which realized the cross transmission of 
two qubits in a full quantum channel butterfly network. Due to the constraints of 
quantum properties, such as the quantum unclonable theorem, this scheme cannot 
achieve lossless quantum transmission, that is, the fidelity is less than 1. In 2012, 
Satoh et al. [16] designed a novel quantum network coding scheme using quantum 
repeaters. In 2014, Nishimura [17] summarized the current state of quantum 
network coding, discussing the nature of quantum network coding schemes using 
entangled resources to communicate with classical. In 2020, Wu et al. [18] proposed 
a continuous-variable quantum network coding scheme based on a butterfly-
shaped network model.

3. Quantum revolution with quantum computing and communication

Among these, some quantum computing and communication technologies are 
available for use; for example, quantum computer, quantum cryptography, telepor-
tation, and quantum error correction. Quantum computer is the physical platform 
that realizes quantum computing to encode qubits so that different qubits can be 
coupled in a controllable manner and have a certain resistance to the influence of 
the noise environment. The main quantum computer solutions currently developed 
include superconductivity, ion traps, quantum dots, topologies, and diamond color 
centers. Quantum cryptography can take advantage of quantum states to enable 
classical information to be transmitted securely. Teleportation achieves reliable 
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transmission of quantum states by using entanglement. Quantum error correction 
keeps the possibility of maintaining quantum coherence when an irreversible noise 
process exists.

At present, the world is undergoing a new round of “quantum revolution”. 
Quantum computing and communication technologies are accelerating break-
throughs in key technologies. In the new stage, some technologies are gradually 
being integrated with the system. Breakthroughs have been made in key technolo-
gies, such as integration, engineering, and networking. The integration of quantum 
communication with classical communication networks, multi-bit operation, and 
computing of quantum computers show the application prospects of quantum 
information in the industry.

4. Brief introduction of the book

In this book, we will introduce some fundamental quantum computing and 
communication technologies that will form the basis for much of what follows. 
After this brief introduction, we will review the basic conception and relevance of 
quantum algorithms, quantum computer, quantum code, post-quantum cryptogra-
phy, quantum key distribution, and quantum teleportation respectively in detail.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 2

Quantum Algorithms for
Nonlinear Equations in Fluid
Mechanics
Rene Steijl

Abstract

In recent years, significant progress has been made in the development of
quantum algorithms for linear ordinary differential equations as well as linear partial
differential equations. There has not been similar progress in the development of
quantum algorithms for nonlinear differential equations. In the present work, the
focus is on nonlinear partial differential equations arising as governing equations in
fluid mechanics. First, the key challenges related to nonlinear equations in the
context of quantum computing are discussed. Then, as the main contribution of this
work, quantum circuits are presented that represent the nonlinear convection terms
in the Navier–Stokes equations. The quantum algorithms introduced use encoding
in the computational basis, and employ arithmetic based on the Quantum Fourier
Transform. Furthermore, a floating-point type data representation is used instead
of the fixed-point representation typically employed in quantum algorithms. A
complexity analysis shows that even with the limited number of qubits available on
current and near-term quantum computers (< 100), nonlinear product terms can
be computed with good accuracy. The importance of including sub-normal num-
bers in the floating-point quantum arithmetic is demonstrated for a representative
example problem. Further development steps required to embed the introduced
algorithms into larger-scale algorithms are discussed.

Keywords: partial differential equations, fluid mechanics, nonlinear equations,
quantum Fourier transform, floating-point arithmetic

1. Introduction

Quantum computing [1] and quantum communication are research areas that
have seen significant developments and progress in recent years, as is apparent
from the work covered in this book. In this chapter, the focus is on the development
of quantum algorithms for solving nonlinear differential equations, highlighting key
challenges that arise from the non-linearity of the equations to be solved. For this
application of quantum computing, progress has so far been relatively limited and
in this work, a promising approach to deriving efficient quantum algorithms is
proposed. Although the focus is on non-linear equations related to fluid mechanics,
the approach put forward here is applicable to a much wider range of problems.
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Furthermore, in developing the proposed method, efficient quantum circuits
involving floating-point arithmetic were created, in contrast to the more commonly
used fixed-point arithmetic employed in a range of quantum algorithms. This aspect
of the work described here should also be useful for a wider audience. In this work,
the development of quantum algorithms for the nonlinear governing equations for
fluid mechanics is described with a particular focus on representing the non-linear
product terms in the equations. A key aspect of the derived quantum circuits in the
present work is the (temporary) representation of the solution in the computational
basis, along with the the use of a floating-point data representation in the arithmetic
operations. The quantum circuits for obtaining the non-linear product terms are
new developments and form the main contribution of this work. In recent years, a
small number of works have considered quantum computing applications to fluid
mechanics [2–8]. A brief review of this previous work will be presented in Section 2
and will provide context to the proposed approach. Related work on algorithms
with representation in the computational basis is reviewed in this chapter. This
chapter is structured as follows. Section 2 describes the background to the current
work. Section 3 reviews the key challenges related to treating nonlinear differential
equations in a quantum computing context, followed by a discussion of the
nonlinear governing equations in fluids dynamics in Section 4. Section 5 then
describes how nonlinear terms in governing equations can be evaluated in quantum
algorithms using the computational basis. Section 6 and Section 7 discuss the quan-
tum circuits used for computing the square of a floating-point number and the
multiplication of two floating-point numbers, respectively. The simulation and
verification of the derived quantum circuits is presented in Section 8. The com-
plexity of the circuits is analyzed in Section 9. Finally, conclusions from this work
and suggestions for further work are presented in Section 10.

2. Background of present work

For a small number of applications, quantum algorithms have been developed
that display a significant speed-up relative to classical methods. Computational
quantum chemistry is proving to be one of the key areas of application. Important
developments for a wider range of applications include quantum algorithms for
linear systems [9, 10] and the Poisson equation [11]. Applications to computational
science and engineering problems beyond quantum chemistry have only recently
begun to appear [4–6, 12–14]. Despite this research effort, progress in defining
suitable engineering applications for quantum computers has been limited.

Significant progress has been made in recent years in the development of quan-
tum algorithms for linear ordinary differential equations (ODEs) as well as linear
partial differential equations (PDEs) [15–19]. However, in contract to this progress
for linear equations, there has not been similar progress in the development of
quantum algorithms for nonlinear ODEs and nonlinear PDEs. An early work by
Leyton and Osborne [20] presented an innovative and highly ambitious algorithm.
However, the computational complexity of this work involves exponential depen-
dency on the time interval used in the time integration. A small number of more
recent works have addressed nonlinear differential equations and typically algo-
rithms for very specific problems were obtained [8]. Therefore, much research
work is needed into quantum algorithms for a wider range of nonlinear problems.

Early work in quantum computing relevant to the field of Computational Fluid
Dynamics (CFD) mainly involved the work on quantum lattice-gas models by
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Yepez and co-workers [2, 3]. This work typically used type-II quantum computers,
consisting of a large lattice of small quantum computers interconnected in nearest
neighbor fashion by classical communication channels. In contrast to these quan-
tum lattice-gas based approaches, the present study focuses on quantum algorithms
designed for near-future ‘universal’ quantum computers. The potential of quantum
computing in the context of direct numerical simulation of flows was reviewed
recently by Griffin et al. [7], showing that a number of further developments are
needed to make this approach viable.

Typically, there are two methods of encoding the result of a quantum algorithm:
encoding within the computational basis of the quantum state and encoding within
the amplitudes of the quantum state. The widely-used Quantum Fourier Transform
(QFT) uses the second approach. The QFT with complexity O log 2 Nð Þ� �

for prob-
lem size N has exponential speed-up compared to the classical fast Fourier trans-
form (complexity O NlogNð Þ) and plays an important role in quantum computation
as an essential part of many quantum algorithms. The exponential speed-up realized
is due to superposition and quantum parallelism. However, in same quantum algo-
rithms, the Fourier coefficients may be needed in the computational basis [21].

Here, the two different encoding methods are illustrated using the discrete
Fourier Transform (DFT). The QFT performs the DFT in terms of amplitudes as,

XN�1

j¼0

x j jj i !
XN�1

k¼0

yk kj i (1)

The QFT performs a DFT on a list of complex numbers, and the result is stored
as amplitudes of a quantum state vector. In order to extract the individual Fourier
components, measurements need to be performed on the quantum state vector.
Therefore, the QFT is not directly useful for determining the Fourier-transformed
coefficients of the input state. However, the QFT is widely used as a subroutine in
larger algorithms. In contrast to the amplitude encoding in Eq. (1), Zhou et al. [21]
presented a quantum algorithm computing the Fourier transform in the computa-
tional basis (termed QFTC). This quantum algorithm encodes Fourier coefficients
with fidelity 1� δ and digit accuracy ε for each Fourier coefficient. Its time com-
plexity depends polynomially on log Nð Þ, and linearly on 1=δ and 1=ε. The QFTC,
enables the Fourier-transformed coefficient to be encoded in the computational
basis as follows,

kj i 0j i ! kj i yk
�� � (2)

where yk corresponds to the fixed-point binary representation of yk ∈ �1, 1ð Þ
using two’s complement format. In the algorithm proposed by Zhou et al. [21], the
input vector x! is provided by an oracle Ox such that,

Ox 0j i ¼
XN�1

j¼0

x j jj i (3)

which can be efficiently implemented if x! is efficiently computable or by using
the qRAM that takes complexity log Nð Þ under certain conditions [21]. Comparing
Eq. (1) and Eq. (2), it is clear that encoding in the computational basis requires a
number of additional qubits depending on the required fixed-point representation.
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3. Nonlinear problems on quantum computers

An early work by Leyton and Osborne [20] introduced a quantum algorithm to
solve nonlinear differential equations with an unfavorable complexity. Since then,
very few works have considered quantum algorithms for nonlinear equations. In
contrast, algorithms for linear differential equations have continued to receive
significant attention. As an example, advanced quantum spectral methods for dif-
ferential equations were published recently by Childs and Liu [19].

A key contributing factor to the limited progress in algorithms for non-linear
problems is the inherent linearity of quantum mechanics. For quantum algorithms
encoding information as amplitudes of a quantum state vector, nonlinear (prod-
uct) terms cannot be obtained by multiplying these amplitudes by themselves, as a
result of the no-cloning theorem that prohibits the copying of an arbitrary quan-
tum state. Furthermore, all quantum-gate operations (with the exception of mea-
surements) in the quantum-circuit model used here need to be unitary and
reversible. These requirements add further challenges to representing nonlinear
terms when using the amplitude-based encoding approach. Specifically, in a nor-
malized quantum state vector all amplitudes in the vector are ≤ 1 (unless only a
single amplitude is non-zero), therefore an operator performing products of the
amplitudes cannot be unitary since the resulting quantum state vector will no
longer have a unit norm.

One possible way around these problems associated with nonlinear terms would
be a hybrid quantum-classical approach where the nonlinear products are computed
on a classical computer. However, due to the complexity introduced by measuring
the quantum state (needed before each transfer of information to the classical
computer) and the cost of (re-)initialization of the quantum computer with the
result of these products, this is not a promising line of development. It is highly
unlikely to lead to a quantum speed-up. Recently, Variational Quantum Computing
(VQC) was introduced as an effective hybrid classical-quantum approach [22, 23],
firstly for applications in quantum chemistry and more recently for a wider range of
linear and nonlinear problems [24]. The VQC approach constructs the required
solution from a layered network, as illustrated in Figure 1. As shown in Figure 1(a),
multiple layers are used (4 in the illustration), each taking as input multiple qubits
(6 in example shown). Using depth 5 in the example, the quantum circuits defined

Figure 1.
Illustration of the Variational Quantum computing (VQC) approach (adapted from Lubasch et al. [24]).
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by U λð Þ involve 13 two-qubit gates as shown in Figure 1(b). Each of these gates has
a parameter λi ∈ 1, 13½ � associated with it. A classical computer is used to create
optimized parameters λ employing an iterative approach that takes the measured
state of the ancilla qubit as input. A further key part of the approach is the problem-
specific Quantum Nonlinear Processing Unit (QNPU). Recently, Lubasch et al. [24]
published an example for the QNPU for the nonlinear Burgers equation. In applica-
tions of the VQC approach, the efficiency strongly depends on the choice of the
number of parameters λ used in U λð Þ. The work by Lubasch et al. [24] showed that
exponential speed-up is only possible if the depth of U λð Þ scales with the number of
qubits and not with the overall problem size. It is clear that the proposed VQC
approach is an important development toward QC applications to nonlinear prob-
lems. It therefore constitutes a leading candidate for applications to fluid dynamics.
However, it is also clear that further investigation is needed to further assess its
suitability for a range of applications.

4. Nonlinear governing equations in fluid mechanics

The Navier–Stokes equations for an incompressible, Newtonian fluid can be
written as,

∂U
∂t

þ U � ∇xU ¼ � 1
ρ
∇xpþ νΔU ; ∇x �U ¼ 0 (4)

where U, p, ρ and ν are the velocity, pressure, density and kinematic viscosity,
respectively. x denotes the coordinate in space. The second term on the right-hand
side of Eq. (4) is the nonlinear convection term that poses a key challenge to devel-
oping efficient quantum algorithms for the Navier–Stokes equations. Efficient quan-
tum algorithms for linear convection equations discretized on regular Cartesian
meshes with periodic boundary conditions have been devised in recent years [6].
When studying numerical methods for the Navier–Stokes equations, it is often useful
to switch to Burgers’model equation, to obtain a single nonlinear partial differential
equation that retains a nonlinear convection term similar to the Navier–Stokes equa-
tions. Using the VQC approach, Lubasch and co-workers recently published example
quantum circuits to model the Burgers equation [24]. Griffin et al. [7] discuss two
approaches for treating the nonlinear term in the Navier–Stokes equations: the VCQ
approach of Lubasch et al. [24] and a linearized approach. These authors conclude
that, at present, VQC represents the most promising approach for Navier–Stokes
equations. Their study also highlights that much further research work is needed to
create efficient algorithms for fluid dynamics applications. It is relatively easy to show
that the linearization approach to solving non-linear governing equations on a Quan-
tum Computer is generally unfeasible. In applying linearization to nonlinear
governing equations, the idea is to use a linearization about the present state of the
solution, and then advance this linearized problem in time. This creates a lineariza-
tion error, which is small if the time step is small. However, even if this linearization
error can be tolerated, the linearization approach is problematic in a quantum com-
puting context. This is due to the need for repeated measuring of the quantum state
(so that the gates that implement the linear operator may be updated with the current
solution) and repeated re-initialization of the quantum state. The complexity associ-
ated with repeated measuring and re-initialization is so large that any benefit of a
quantum algorithm over a classical algorithm is very likely to vanish.
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The development of quantum algorithms for fluid dynamics is clearly at a very
early stage and therefore it is essential that different approaches are considered.

5. Representing nonlinear terms in computational basis

In the present work, an alternative approach to introducing the nonlinear terms
of nonlinear differential equations into a quantum algorithm is investigated.
Specifically, the assumption is made that in a large-scale quantum algorithm for the
solution of the nonlinear (partial) differential equations, the solution is encoded in
terms of amplitude in the quantum state vector, i.e. the approach used in a wide
range of algorithms including the QFT. Then, for the nonlinear terms of the equa-
tions, the following steps are suggested. First, within the larger quantum algorithm,
a quantum algorithm is embedded that converts the solution from the quantum-
amplitude representation to a representation in the computational basis. Recently,
quantum algorithms for this ‘analog-to-digital conversion’ were published by
Mitarai et al. [25]. Using the representation of the solution in the computational
basis, the required nonlinear terms are then efficiently evaluated using quantum
circuits presented later in this chapter. Once computed, a conversion back to
quantum-amplitude representation is to be used, enabling the rest of the quantum
algorithm to proceed. For this ‘digital-to-analog’ conversion, quantum algorithms
were recently studied and published by SaiToh [26]. For the representation in the
computational basis, a fixed-point approach is typically employed to represent real
or complex numbers in quantum algorithms. The number of additional qubits
required when using computational-basis encoding depends directly on the number
of qubits required to represent the real and complex numbers needed in the algo-
rithm. In the present work, a different approach is put forward: instead of using
fixed-point arithmetic, a floating-point representation is used.

In the literature, quantum arithmetic using floating-point numbers has received
very little attention so far. Haener et al. [27] described an investigation into quan-
tum circuits for floating-point addition and multiplications and compared auto-
matically generated circuits from Verilog implementations with hand-crafted
optimized circuits. Their study provides evidence that floating-point arithmetic is a
viable candidate for use in quantum computing, at least for typical scientific
applications, where addition operations usually do not dominate the computation.
Following on from these conclusions, the present work investigates the use of
floating-point arithmetic as part of evaluating nonlinear terms in the computational
basis.

5.1 Previous works on algorithms in computational basis

Quantum arithmetic in the computational basis constitutes an important com-
ponent of many quantum algorithms, and as a result reversible implementations of
algebraic functions (addition, multiplication, inverse, square root, etc.) have been
widely studied. In contrast, there is relatively little work on quantum algorithm
implementation of higher-level transcendental functions, such as logarithmic,
exponential, trigonometric and inverse trigonometric functions. Examples of appli-
cations of trigonometric and inverse trigonometric functions in the computational
basis can be found in the famous HHL algorithm [9] and in the state preparation
algorithm introduced by Grover and Rudolph [28]. More recently, a quantum
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algorithm for approximating the QR decomposition of a N �N matrix in the
computational basis was published by Ma et al. [29], with polynomial speed-up over
the best classical algorithm.

5.2 Fixed-point and floating-point arithmetic

A fixed-point number held in an nq qubit register can be defined as the following
quantum state,

wj i ¼ w nint�1ð Þ�� E
⊗ w nint�2ð Þ�� E

⊗ … ⊗ w 0ð Þ�� Ezfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{integer

⊗ w �1ð Þ�� E
⊗ … ⊗ w nint�nqð Þ���

Ezfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fractional

(5)

where w jð Þ ∈0, 1, j ¼ nint � nq, nint � nq þ 1, … , 0, … , nint�1 [30]. This state rep-
resents the number w ¼P jw

jð Þ2 j. The nint leftmost qubits are used to represent the
integer part of the number and the remaining nfrac ¼ nq � nint qubits represent its
fractional part. In this example, no sign qubit is used so that only positive numbers
can be represented (for most applications an additional sign qubit would be
required). Since fewer than nq bits may suffice for the representation of the input, a
number of the leftmost qubits in the register may be set to 0j i. Clearly, the fixed
point system is very limited in terms of the size of the numbers it can store.
Therefore, soon after computers were introduced for numerical computing the
switch to floating-point arithmetic was made. In a computer implementation of a
floating point number with base 2, a non-zero signed number x, defined through a
normalized representation, is expressed as,

x ¼ �S� 2E, where 1≤ S< 2 (6)

where the numbers S and E are the mantissa and the exponent, respectively. The
binary expansion of the mantissa is

S ¼ b0:b1b2b3 …ð Þ2 with b0 ¼ 1 (7)

Here, it is important to note that always b0 ¼ 1 for non-zero numbers in a
normalized representation. This will be used in the present work to achieve savings
in the number of required qubits, as detailed later. In the binary representation, the
bits following the binary point are the fractional part of the mantissa. Once floating-
point numerical computation on classical computers became commonplace, the
industry standard IEEE 754 was introduced [31]. A similar standard for floating-
point representations on a quantum computer does not yet exist, but is desirable
[30]. A key feature of the IEEE standard is that it requires correctly rounded
operations: correctly rounded arithmetic operations, correctly rounded remainder
and square root operations and correctly rounded format conversions. Typically,
rounding to the nearest floating pointing number available in the destination (out-
put register) is used. In the quantum circuits in the present work, rounding down to
nearest is used, for reasons of simplicity. Detailed analysis of quantum-circuits
developed here for squaring and multiplication operations shows that ‘correctly’
rounding to nearest involves a significant increase in circuit complexity (i.e. using
quantum equivalents of guard and sticky bits, that are well established in arithmetic
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on classical computers [31]). A key aspect of the IEEE 754 that has been incorpo-
rated in the present work is the definition of sub-normal numbers. To illustrate the
concept of subnormal numbers, the IEEE 754 standard representation of single
format numbers using a 32-bit word is considered. The first bit is the sign bit,
followed by 8 bits representing the exponent. Then, 23 bits are used to store a 24-bit
representation of the mantissa, i.e. b0 is not stored. Numbers with exponent bits
00000000ð Þ2 ¼ 0ð Þ10 and 11111111ð Þ2 ¼ 255ð Þ10 are defined special cases. The
smallest normalized number is 1:0…0ð Þ2 � 2�126 ¼ 2�126. Sub-normal numbers are
used to represent smaller numbers, i.e. in this case the exponent field has a zero
bit string but the fraction field has a nonzero bit string. Zero is represented with a
zero bit string for the fractional field. For all subnormal numbers, the 00000000ð Þ
used for the exponent represents 2�126 and by using the 23 fractional field bits,
equally-spaced numbers in the range 0:00…01ð Þ2 � 2�126 (with 22 zero bits after
the binary point) to 0:11… 11ð Þ2 � 2�126 (with 23 one bits after the binary point) are
encoded.

5.3 Quantum floating-point format used in present work

Based on the floating point representation defined in the IEEE standard,
the present work introduces a floating-point system with fewer bits (i.e. qubits in
this case) than the 32 used for single format numbers. This is the direct result of
the limited number of qubits available on current and near-term quantum
computers. To optimize the range of floating-point numbers that can be
represented with the approach used here, the following key aspects of the IEEE
standard were adopted:

• For the mantissa only the fractional part is stored,

• Exponent bit strings 00…00ð Þ2 and 11… 11ð Þ2 are used for special cases, i.e.
dealing with 0, subnormal numbers as well as cases with overflow,

• The remaining range of exponent bit strings is used for a range of exponential
centred around 20 ¼ 01… 11ð Þ2,

• Sub-normal numbers are used to extend the range of small numbers,

• Rounding down to nearest is used as rounding mode,

• Only unsigned numbers are considered for simplicity. Signed numbers can
easily be obtained by adding a further ‘sign’ qubit.

In this work, a floating-point number is represented as an nq ¼ NM þNE quan-
tum register. In the quantum-circuit implementation, the most significant (left-
most) mantissa qubit is not stored, using the hidden-bit approach used in the IEEE
754 standard. Therefore, NM � 1 qubits define the fractional part of the mantissa in
the developed quantum circuits. NE defines the number of qubits used to define the
exponent. In the following, examples with NE ¼ 3 and NE ¼ 4 and NM ∈ 3, 5½ � are
considered. For NE ¼ 3, the number 1:00 is defined by ∣00∣011i when NM ¼ 3.
Similarly, ∣000∣0111i defines the number 1:000 forNM ¼ 4 andNE ¼ 4. ForNE ¼ 3,
the smallest normalized number that can be represented is 1=4 independent of the

12

Quantum Computing and Communications



number mantissa qubits. Then, exponent state ∣000i defines zero and sub-normal
numbers, as shown in Table 1 for NM ¼ 3, NM ¼ 4 and NM ¼ 5.

Similarly, using 4 qubits for the exponent (NE ¼ 4) means that the smallest
normalized number is 1=64. For NM ¼ 4 and NM ¼ 5, Table 2 shows the
corresponding sub-normal numbers.

In line with the IEEE 754 standard, exponent state ∣1… 1i denotes numbers for
which an overflow has occurred. For NE ¼ 3, the largest normalized number avail-
able is ∣11… 1∣110iwhich equates to 14 and 15 for NM ¼ 3 and NM ¼ 4, respectively.
Similarly, for NE ¼ 4, the largest normalized number available is ∣11… 1∣1110i
which equates to 240 and 248 for NM ¼ 4 and NM ¼ 5, respectively.

6. Quantum circuits for squaring floating-point numbers

For a floating-point number defined by NM mantissa and NE exponent bits, a
total of NM � 1þNE qubits is needed to define the state in the quantum circuits

NM ¼ 3 NM ¼ 4 NM ¼ 5

∣011∣000i ¼ 3=16 ∣0111∣000i ¼ 7=32 ∣01111∣000i ¼ 15=64

∣010∣000i ¼ 1=8 ∣0110∣000i ¼ 3=16 ∣01110∣000i ¼ 7=32

∣001∣000i ¼ 1=16 ∣0101∣000i ¼ 5=32 ∣01101∣000i ¼ 13=64

∣0100∣000i ¼ 1=8 ∣01100∣000i ¼ 3=16

∣0011∣000i ¼ 3=32 ∣01011∣000i ¼ 11=64

∣0010∣000i ¼ 1=16 ∣01010∣000i ¼ 5=32

∣0001∣000i ¼ 1=32 ∣01001∣000i ¼ 9=64

⋮

∣00010∣000i ¼ 1=32

∣00001∣000i ¼ 1=64

Table 1.
Sub-normal numbers for floating-point numbers with 3 qubits as exponential.

NM ¼ 4 NM ¼ 5

∣0111∣0000i ¼ 7=512 ∣01111∣0000i ¼ 15=1024

∣0110∣0000i ¼ 3=256 ∣01110∣0000i ¼ 7=512

∣0101∣0000i ¼ 5=512 ∣01101∣0000i ¼ 13=1024

∣0100∣0000i ¼ 1=128 ∣01100∣0000i ¼ 3=256

∣0011∣0000i ¼ 3=512 ∣01011∣0000i ¼ 11=1024

∣0010∣0000i ¼ 1=256 ∣01010∣0000i ¼ 5=512

∣0001∣0000i ¼ 1=512 ∣01001∣0000i ¼ 9=1024

⋮

∣00010∣0000i ¼ 1=512

∣00001∣0000i ¼ 1=1024

Table 2.
Sub-normal numbers for floating-point numbers with 4 qubits as exponential.
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introduced here. An example with NM ¼ 3 and NE ¼ 3 will now considered, using
registers ∣imb1∣imb0i and ∣ieb2∣ieb1∣ieb1i to define the fractional part of the mantissa
and the exponent of the input number, respectively. For the multiplication opera-
tion described later a second input floating-point number is defined using
∣ima1∣ima0i and ∣iea2∣iea1∣iea1i. The output of the squaring and multiplication
operations is a floating-point number r defined by ∣imr1∣imr0i and ∣ier2∣ier1∣ier1i
(initialized at ∣0i). In addition to the input and output registers, the quantum
circuits will need additional qubits to hold results of intermediate results, e.g. for
NM ¼ 3 a 6-qubit sub-register ∣imp5∣… ∣imp0i is used. To facilitate the quantum-
multiplication operations, a further ancilla qubit ∣a0i is used. For quantum circuits
without measures to deal with sub-normal numbers and overflow, the quantum
state for NM ¼ 3 and NE ¼ 3 is defined in a 2� NM � 1þNEð Þ þ 2�NM þ 1 ¼ 17-
qubit register

∣ieb2∣ieb1∣ieb0∣imb1∣imb0∣a0∣imp5∣… ∣imp0∣ier2∣ier1∣ier0∣imr1∣imr0i (8)

For NM ¼ 4 and NE ¼ 4, the required number of qubits increases to 2�
NM � 1þNEð Þ þ 2�NM þ 1 ¼ 23. The quantum circuit performing the squaring
operation for NM ¼ 3 and NE ¼ 3 is detailed here as example (in realistic applica-
tions NM > 3 will typically be needed). Figure 2 shows the quantum circuit used in
the first step of computing the square of a quantum floating point with NM ¼ 3 and
NE ¼ 3. This step involves computing the square of the mantissa, with this result
temporarily stored in ∣imp5∣… ∣imp0i. In this circuit, QFT6 prepares this temporary
register for the three subsequent product steps denoted by P1, P2 and P3, involving
doubly-controlled phase operations. Specifically, three-qubit gates are used apply-
ing a phase rotation conditional on state of ∣a0i and either ∣imb1i or ∣imb0i. The Pi
steps are controlled-summation operations in the shift-and-add approach to com-
puting the products, i.e. the circuits in Pi are derived from quantum adders

Figure 2.
Quantum circuit used to compute square of mantissa (for NM ¼ 3 and NE ¼ 3).
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controlled by an additional qubit. Once the controlled phase changes in the circuits
P1, P2 and P3 have been applied, inverse QFT6 on ∣imp5∣… ∣imp0i creates the
desired output state. In case the square of the mantissa ≥ 2, i.e. ∣imp5 ¼ 1i, the
result exponent needs to be incremented by 1. This is achieved by apply a
controlled-NOT to ∣ier0i (which was initialized at ∣0i) with ∣imp5i as control. In the
next step, result mantissa qubits ∣imr1∣imr0i are set using temporary results in
∣imp5∣… ∣imp0i, where the required gate operations are conditional on the state
of ∣imp5i. Then the steps shown in Figure 2 are ‘uncomputed’ so that the sub-
register ∣imp5∣… ∣imp0i is set to ∣0i again. The next step is illustrated in Figure 3,
where the output exponent is obtained. This step involves the initialization of
the temporary register imp3∣… ∣imp0 with 2� Eb (i.e. twice the input exponent).
Then, the bias of 011ð Þ2 ¼ 3 is removed (denoted by �011). This bias removal uses
two’s complement to create a modified modulo-5 adder that removes a value
011ð Þ2 ¼ 3 from ∣imp4∣… ∣imp0i. Then, the result exponent sub-register
∣ier2∣ier1∣ier0i is prepared for the subsequent modulo-3 addition (denoted by
MADD3) by applying QFT3. Next, the modulo-3 adder is used to add the qubits
∣imp2∣imp1∣imp0i into ∣ier2∣ier1∣ier0i. By applying the inverse QFT3 on
∣ier2∣ier1∣ier0i the required state is obtained. The remaining steps shown in the
quantum circuit in Figure 3 are used to ‘uncompute’ and clean-up the temporary
register, e.g. using inverse QFT3 and a modified modulo-5 adder to re-apply the bias
011ð Þ2 ¼ 3. The circuits described so far do not take into account the special situa-
tion arising from creating sub-normal numbers as output as well as cases with
‘overflow’ results. This is discussed next.

Figure 3.
Quantum circuit used to obtain exponent for squaring operation (NM ¼ 3 and NE ¼ 3).
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Figure 4.
Quantum circuits used in obtaining output mantissa for squaring operation, including sub-normal numbers
and underflow/overflow protection (NM ¼ 3 and NE ¼ 3).

Figure 5.
Quantum circuit used to obtain exponent for squaring operation, including sub-normal numbers and under/
overflow protection (NM ¼ 3 and NE ¼ 3).
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For certain normalized input numbers the squaring operation leads to outputs
truncated to 0 or to the non-zero sub-normal numbers discussed in Section 5.3. The
quantum circuits discussed so far need to be modified in a number of ways to deal
with this possible sub-normal output. Figure 4 illustrates the required changes for
NM ¼ 3 and NE ¼ 3. Two additional qubits are needed. Qubit ∣isubi ¼ ∣0i is used as
indication that result is a sub-normal number. Qubit ∣icuti ¼ ∣0i is similarly used to
define cases with output truncated to 0. Both qubits are initialized to ∣1i. Then,
before the mantissa multiplication step takes place, a first modification is intro-
duced, shown on the left-hand side of Figure 4. For NE ¼ 3, only inputs with
exponent ∣000i will need truncating to 0, as shown in the first 4-qubit controlled-
NOT gate flipping ∣icuti to ∣0i. For NE ¼ 3, inputs with exponent ∣001i are
guaranteed to lead to sub-normal output (or 0), and for these cases ∣isubi is set to
∣0i, using the second 4-qubit controlled-NOT gate with ∣isubi as target. The
mantissa-multiplication step shown in Figure 2 remains unchanged (i.e. qubits
∣isubi and ∣icuti are not used). The next required modification relates to the ‘copy-
ing’ of the result of the mantissa multiplication to output register ∣imr1∣imr0i and
the application of increments to the output exponent. The additional logic needed is

Figure 6.
Quantum circuit used to set output mantissa for squaring operation, including sub-normal numbers and
underflow/overflow protection (NM ¼ 4 and NE ¼ 3).
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shown on the right-hand side of Figure 3. First, for ∣imp5i ¼ ∣1i, setting ∣ier0i ¼ ∣1i
becomes conditional of both ∣isubi ¼ ∣1i and ∣icuti ¼ ∣1i. The next two 4-qubit gates
are used to guarantee that correct output with exponent ∣111i is created for inputs
with exponents ∣101i and ∣110i. The remaining gate operations perform the ‘copy-
ing’ of the mantissa squared into ∣imr1∣imr0i taking into account the possible sub-
normal output (cases with ∣isubi ¼ ∣0i). The steps for ∣isubi ¼ ∣1i are the same as in
the corresponding circuit for squaring without the sub-normal number modifica-
tions. A further set of circuit modifications to deal with sub-normal numbers is
required in the quantum circuit used to obtain the output exponent. Figure 5 shows
the additional operations required relative to the original quantum circuit shown in
Figure 3. Three additional CNOT operations are introduced just before performing
the QFT3. For ∣isubi ¼ ∣0i and ∣icuti ¼ ∣0i the initialization of ∣imp1∣imp0i is
modified so that the subsequent steps will produce the correct result for the expo-
nent. The three CNOT operations also appear in the ‘uncompute’ stage at the right-
hand side of the circuit. Further changes comprise two 4-qubit controlled-NOT
operations on ∣ier2i and ∣ier1i required to create ∣111i exponents for inputs with
exponent ∣110i.

For a fixed value of NE it is important to note that the additional complexity
introduced by increasing NM is limited. In fact, the quantum circuit shown on the
left-hand side of Figure 4 does not depend on NM. Similarly, the quantum circuits
used to obtain the result exponent are independent of NM. The circuit shown on the
right-hand side of Figure 4, representing the definition of ∣imr1∣imr0i for cases
with normalized or sub-normal output requires modification. Figure 6 shows how
∣imr2∣imr1∣imr0i are set for NM ¼ 4 using a set of gate operations that has grown

Figure 7.
Quantum circuit used in multiplying the mantissa of two input numbers (NM ¼ 3 and NE ¼ 3).
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linearly with NM. The circuit shown accounts for sub-normal numbers and includes
underflow/overflow protection.

7. Quantum circuits for multiplication of floating-point numbers

In the interest of brevity, only the main features of the quantum circuits used for
multiplication of two quantum floating-point numbers are summarized here.
Figure 7 illustrates the quantum circuit used to compute the product of the man-
tissas of two inputs. Compared to the circuit shown in Figure 2 the main difference
is that ancilla qubit ∣a0i is now set using the mantissa of a second input. A further
difference relative to the squaring operation occurs in the circuit used to obtain the
result exponent. Here, instead of setting 2� the exponent using a bit shift, the sum
of the two input exponents needs to be computed employing a quantum full adder.

8. Results of simulation and verification of quantum circuits

The proposed quantum circuits for squaring and multiplying floating-point
numbers as part of the computational-basis representation, were systematically
verified by gate-level simulation of the circuits for a wide range of cases with and
without sub-normal numbers as well as cases with overflow results. The C++ quan-
tum computer simulator detailed in previous work [4] was used for this purpose. To
illustrate the process, the quantum algorithm used to square numbers with NM ¼ 3
and NE ¼ 3 is considered, with the following 19-qubit register (algorithm demon-
strated accounts for sub-normal numbers as well as underflow/overflow protection,
see Eq. (8) for reference):

∣ieb2∣ieb1∣ieb0∣imb1∣imb0∣a0∣imp5∣… ∣imp0∣ier2∣ier1∣ier0∣imr1∣imr0∣icut∣isubi (9)

where ∣ieb2∣ieb1∣ieb0i and ∣imb1∣imb0i define the exponent and the fractional
part of the mantissa of the input, respectively. Qubits ∣icuti and ∣isubi are initialized
as ∣1i, while all other qubits are initialized as ∣0i. The quantum state in the simula-
tion is then initialized with a single non-zero (unit) amplitude, with the index in the
quantum state vector defined by the binary representation of input exponent and
fractional part of mantissa. With the rounding mode fixed at rounding down to
nearest, the intended output can be easily computed before the quantum circuit is
simulated. In effect, this defines the index of the single non-zero (unit) amplitude
of the output quantum state that should be returned in case the circuit is correct.
Upon finalizing the quantum computer simulation the actual quantum state vector
obtained is compared against the previously-computed required output. For this
verification to be meaningful, the following range of possible inputs and outputs

Input Initial state Output state

7=2 (i) ψ init 1001100000000000011ð Þ2
� � ¼ 1 ψ out 1001100000001101011ð Þ2

� � ¼ 1

7=16 (ii) ψ init 0011100000000000011ð Þ2
� � ¼ 1 ψ out 0011100000000001110ð Þ2

� � ¼ 1

3=16 (iii) ψ init 0001100000000000011ð Þ2
� � ¼ 1 ψout 0001100000000000001ð Þ2

� � ¼ 1

6 (iv) ψ init 1011000000000000011ð Þ2
� � ¼ 1 ψ out 1011000000001110011ð Þ2

� � ¼ 1

Table 3.
Results from quantum circuit simulation for representative range of inputs (squaring NM ¼ 3, NE ¼ 3).
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were considered: (i) input and output are both normalized numbers, (ii) input is
normalized number and output is a sub-normal number, (iii) input is a
sub-normal number and result truncated to 0, (iv) input is a normalized number,
with output overflow. For NM ¼ 3 and NE ¼ 3, Table 3 summarizes the input
and output states for examples of each of the 4 categories considered. For inital
and output the single non-zero amplitudes are shown. Since the simulator employed
here stores the full 2nq state vector for nq qubits, only circuits with ≤ 28 qubits
were considered as a result of limited computational resources and the large number
of cases considered (> 100). For the squaring operation, NM ∈ 3, 6½ � and NE ∈ 3, 4½ �
were considered, while for multiplication the range of NM needed to be reduced,
i.e. NM ∈ 3, 4½ �.

NM NE L2 uð Þ L∞ uð Þ L2 pð Þ L∞ pð Þ
Rounding down - using sub-normal numbers

3 3 26:805 0:124741 13:2908 0:0623342

4 3 7:69964 0:0624983 3:79396 0:0310842

5 3 1:93069 0:0312483 0:883095 0:0154592

6 3 0:477862 0:0156233 0:233542 0:00780768

7 3 0:110358 0:00781078 0:0611784 0:00390143

8 3 0:0247615 0:00390453 0:0135501 0:00194831

4 4 6:36002 0:0624983 1:57508 0:0310387

5 4 1:62679 0:0312483 0:387261 0:0154137

6 4 0:409663 0:0156233 0:10847 0:00762945

7 4 0:0958982 0:00781078 0:0296086 0:0037232

8 4 0:0209894 0:00390453 0:00647854 0:00192175

Rounding down - without sub-normal numbers

3 3 86:8625 0:248583 111:896 0:249507

4 3 70:4413 0:248583 108:352 0:249507

5 3 65:8235 0:248583 107:359 0:249507

6 3 64:6349 0:248583 107:135 0:249507

7 3 64:3262 0:248583 107:069 0:249507

8 3 64:2529 0:248583 107:050 0:249507

4 4 6:3881 0:0624983 1:6114 0:0310387

5 4 1:65503 0:0312483 0:42405 0:0154137

6 4 0:437976 0:0156233 0:14534 0:0151248

7 4 0:124223 0:0147218 0:0665074 0:0151248

8 4 0:0493163 0:0147218 0:0433827 0:0151248

Table 4.
Approximation errors in Taylor-green vortex flow field due to reduced-precision floating-point representation.
L∞ and L2 norms of errors relative to IEEE double-precision representation for velocity (u) and pressure (p) for
different NM and NE. 100� 100 uniform mesh.
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9. Complexity analysis

Before analyzing the quantum circuits introduced here in terms of complexity,
first the choice of NM and NE for representing realistic flow fields is considered.

9.1 Representing Taylor-green vortex flow

In a two-dimensional flow field, the non-linear terms appearing in the Navier–
Stokes equations, shown in Eq. (4), involve the square of the velocity components
in x� and �y directions, i.e. u2 and v2, as well as, the product uv. Here, the example
flow field defined by the two-dimensional Taylor-Green vortex is considered,
where velocity and pressure are defined in a square domain 0, 2π½ �2 with periodic
boundary conditions as,

u ¼ cos xð Þ sin yð Þ ; v ¼ � sin xð Þ cos yð Þ ; p ¼ � 1
4

cos 2xð Þ þ cos 2yð Þ½ � (10)

Considering a 100� 100 uniform mesh, the effect of representing the flow
field variables with a reduced-precision floating-point format is analyzed first.

NM NE L2 u2
� �

L∞ u2
� �

L2 juvjð Þ L∞ juvjð Þ

Rounding down - using sub-normal numbers

4 4 0:801596 0:0351562 0:161925 0:0146484

5 4 0:3848 0:0244141 0:0520772 0:00732422

6 4 0:101035 0:013916 0:018016 0:00378418

7 4 0:0382158 0:00738525 0:0053449 0:00186157

8 4 0:0108621 0:00379944 0:00123537 0:000919342

Rounding down - without sub-normal numbers

4 4 0:87222 0:0351562 0:30511 0:0147705

5 4 0:461689 0:0244141 0:213756 0:0153809

6 4 0:18035 0:0151405 0:188371 0:0154495

7 4 0:119222 0:0151405 0:179671 0:0154495

8 4 0:0927176 0:0152609 0:177551 0:015553

Table 5.
Approximation errors of velocity products in Taylor-green vortex flow field due to reduced-precision floating-
point representation. L∞ and L2 norms of errors relative to IEEE double-precision representation for velocity
(u2) and pressure (uv) for different NM and NE. 100� 100 uniform mesh.

CPHASE C2PHASE θmin

3� 3 9 27 2π=26

4� 4 14 66 2π=28

5� 5 20 130 2π=210

Table 6.
Number of controlled-phase gates (CPHASE) and doubly-controlled-phase (C2PHASE) for phase-addition
operator in quantum-multiplier. Also, smallest rotation angle is shown.
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Table 4 summarizes the results, highlighting the importance of including sub-
normal numbers in the floating-point representation. Since a sign bit is not used
here, the absolute values of u, v, p were actually used. Flow variables defined in
Eq. (10) are in the range �1, 1½ �, so that by increasing NE from 3 to 4, far fewer sub-
normal numbers are used to represent the flow field. As a result, removing the sub-
normal number capability (as shown in bottom half of table), results in smaller
errors for NE ¼ 4. For realistic applications of the proposed quantum floating point
format, the relatively small overhead incurred by introducing sub-normal numbers
in the quantum circuits clearly suggests that sub-normal numbers should be
included.

ForNE ¼ 4, the representation of u2 and ∣uv∣ is considered. Specifically, the error
shown is that introduced by the multiplication: the difference between the ‘exact’
product of the reduced-precision representation of ∣u∣ and ∣v∣ and the corresponding
reduced precision representation of the products is shown in Table 5. The results
highlight that although sub-normal numbers played a relatively smaller role in
representing velocity components, in the computation of the nonlinear terms, the
inclusion of sub-normal numbers is more important for the minimization of
approximation errors.

9.2 Mantissa multiplication step

QFT and inverse QFT are used involving 2NM qubits, so that the complexity in
terms of two-qubit (controlled-phase) gates scales as N2

M, where the well-known
complexity of the standard QFT implementation is used. The complexity of the
phase-addition steps involved in the multiplication are detailed in Table 6. For the
two-qubit gates the number can be seen to scale as N2

M, while the number of
three-qubit gates shows a N3

M scaling.

9.3 Computation of exponent

QFT and inverse QFT are used involving NE, NE þ 1 and NE þ 2 qubits,
representing a smaller complexity than the QFT used in mantissa multiplications.
The main contributions to complexity of exponent computation stems from the
modulo and full-adders involving a number of qubits scaling linearly with NE. The
polynomial complexity in terms of qubits for the adders implemented here is shown
in Table 7.

9.4 Discussion

The quantum circuits presented here for squaring two floating-point numbers
in the format proposed show that by accounting for sub-normal numbers and

CPHASE θmin CPHASE θmin

MADD3 6 2π=23 FADD3 9 2π=24

MADD4 10 2π=24 FADD4 14 2π=25

MADD5 15 2π=25 FADD5 20 2π=26

MADD6 21 2π=26

Table 7.
Number of controlled-phase gates (CPHASE) in phase-addition step for modulo adder (MADD) and full
adder (FADD). Also, smallest rotation angle is shown.
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under/overflow an additional number of multi-qubit controlled-NOT gates is
needed. However, for the examples analyzed a polynomial dependence on NM and
NE was observed. This means that in terms of quantum-algorithm complexity this
implementation has the desired efficiency. The relatively small complexity as com-
pared to circuits used for mantissa multiplication highlights that for most applica-
tions it is desirable to include the capability of using sub-normal numbers and
provide under/overflow protection in the quantum circuits. The analysis in this
section also shows that for a realistic application, a well-considered scaling of the
governing equations to O 1ð Þ variables is even more important here than in classical
implementations using IEEE single- or double-precision arithmetic. Using the lim-
ited number of qubits available on current and near-term quantum computers
(< 100), the proposed approach to introducing non-linearity is a good candidate in
cases where NM and NE can be chosen significantly smaller than in equivalent
classical floating-point representations.

10. Conclusions

The challenges associated with representing non-linear differential equations in
terms of quantum circuits were discussed in this chapter. In this work, a new
approach for representing product-terms in nonlinear equations suitable for near-
term (e.g. NISQ generation) quantum computers was proposed. A key aspect
discussed is the (temporary) representation of the variables in the computational
basis. Furthermore, the use of a suitably-chosen floating-point format was detailed.
The importance of including sub-normal numbers, such as defined in the IEEE 758
standard for floating-point arithmetic on classical computers, was demonstrated.
Based on the current findings, a number of suggestions for further work can be put
forward. The presented circuits performed arithmetic for a single set of input data,
i.e. equivalent to data for a single point in a computational domain. Extending the
approach to a multi-dimensional computational mesh is a first step to consider. A
complexity analysis will be needed to assess the potential speed-up relative to
classical discretization approaches for the considered equations. A further step
involves investigating how the proposed approach can be made part of a larger
quantum algorithm, where a mix of amplitude-based encoding and computational-
basis encoding occurs. A key aspect is therefore the development of efficient quan-
tum circuits to perform the required conversions between the two different
encoding approaches. Finally, further work is needed to establish how the approach
presented here can be used in a wider range of quantum computing applications.
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Chapter 3

A Novel Three-Input XOR Gate 
Based on Quantum Dot-Cellular 
Automata with Power Dissipation 
Analysis
Ismail Gassoumi, Lamjed Touil and Abdellatif Mtibaa

Abstract

Recently, Low power and reduced heat dissipation are an increasing demand for 
digital systems. Quantum Dot Cellular Automata (QCA) is a future generation 
solution based on nanotechnology for the digital systems. The QCA systems have 
advantages like the small size, ultralow power consumption and high switching 
frequency. The present research aims at introducing a novel three-input XOR gate 
containing 12 cells. The energy dissipation analysis of the proposed gate is verified 
using three different energy levels ( γ = γ =k k0.5E , 1.0, E  and κγ = Ε1.5 )  at 
T = 2 Kelvin temperature. Simulation is performed for the proposed gate using QCA 
Designer tool version 2.0.3. The proposed three-input XOR gate has less number of 
cells, area and energy dissipation as compared to the previous structures.

Keywords: nanotechnology, circuit design, quantum-dot cellular automata (QCA), 
three-input XOR gate

1. Introduction

The state of the art very large scale integrated circuits (VLSI) technology limits 
to doping fluctuations and high leakage current [1]. On one side, scaling down 
of CMOS technology has led to grave challenges in context of power consump-
tion, physical dimensions, and leakage current. These short falls have guided to 
significant efforts to look for suitable substitutes. On the other side, emerging 
nanotechnologies seems to be better choice for the future generation digital systems 
[2, 3]. Thereby, quantum computers promise dramatic improvements in our ability 
to efficiently solve classically intractable problems ranging from cryptosystems to 
simulation of quantum systems. Quantum computing has attracted attention in the 
past two decades because it was found that computers exploiting quantum mechan-
ics are able to outperform classical digital computers in certain areas like factoring 
integers and searching. Developments in the field of quantum computing have been 
strongly impacted by the paradigm of quantum-dot cellular automata (QCA), in 
which information is transmitted and processed through electrostatic interactions 
in an array of cells. QCA is one of the most significant computing technologies for 
the future. It will be the alternative candidate for CMOS technology that currently 
used in integrated circuits (ICs) [2, 3]. The logic function of QCA technology is to 
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implement circuits using movement of electrons rather than voltage level [3–6]. 
In fact, QCA technology is anticipated to offer higher density and lower power 
consumption and more flexible interconnection designs for future System on Chip 
(SoC). On the other hand, a number of QCA based digital devices have studied 
to date; designs of XOR gate, full adder, multipliers, dividers, memory circuits, 
counter QCA based memory cells, flip flops, and multiplexer [7–15]. Among 
theme, XOR gates are extensively employed in communication systems. So, there 
is emerging need to develop methods which involve less area and delay overheads 
to improve the complexity of digital circuits. With this motive, we have proposed a 
novel design of QCA based three-input XOR gate. The proposed gate has significant 
improvement compared to others design prestened in the literature.

2. Basics of QCA

No voltage or current is used. It is possible to replace the gate of a transistor by 
a molecular charge center and encode information in its charge state. The electrons 
residing in the diagonally opposite positions lead to two equivalent energy states 
representing logic ‘0’ and logic ‘1’ which are respectively called as cell polarizations 
P = +1.00 and P = −1.00 as shown in Figure 1b. The clocking is the key element of 
QCA circuitry as shown in Figure 1a. The two basic logic gates in QCA are inverter and 
majority voter as depicted in Figure 1d and e. A cell changes its polarization based on 
the fixed polarization of the cell placed by its side. This feature of QCA cell is exploited 
when QCA cells arranged in a series act similar to wire as shown in Figure 1c.

3. Related works

3.1 An overview of previous 3-input QCA XOR gates

Exclusive OR (XOR) is an applicable gate for designing the most of logic circuits. 
This gate has a wide range of applications, particularly in designing circuits such as 
full-adders, multipliers, dividers, and compressors. Until now, a number of XOR 
gates have been reported. Angizi et al. in [16] reported an XOR gate that required 
94 cells and occupied 0.073 μm2 area. Moreover, the time delay of this gate is 1.5 
clock cycles. One of the simplified structures of the XOR gate has been introduced 
by Ahmad et al., in [17], which requires 14 cells, occupies 0.022 μm2 area and 
output appears after 0.5 clock cycle. However, this gate cannot achieve the expected 

Figure 1. 
(a) Four stages of clock (b) logic “0” and “1” states (c) wires for circuit (d) 3-input MG (e) invert.
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optimization for the larger circuit. Bahar et al. have reported another compact XOR 
gate, in [18] that used 12 cells and occupied 0.012 μm2 area. However, this gate is not 
suitable for designing large scale circuits. Balali et al., in [19], proposed another 14 
cells XOR gate; however, the use of half-cell translation inverter gates make this gate 
more impractical in terms of physical realization. More recently, Bahar et al., in [20], 
claimed that the proposed E-shaped XOR gate is capable of achieving higher design-
ing optimization at a more extensive design paradigm. In the following, a unique 
ultra-efficient XOR gate is proposed. The QCA layout of this gate is simple, efficient 
and appropriate to design of all logical functions. In addition, Figure 2 depicts vari-
ous layouts of previously 3-input XOR gate in QCA presented in the literature.

4. The proposed three-input QCA XOR gate

Exclusive-OR (XOR) is the most fundamental component used in digital 
circuits including parity generator and checker, comparator, code converter, 
arithmetic and logic processing unit, and so on. QCA layout of the proposed 

Figure 2. 
The QCA representation of the previous 3-input XOR gate in (a) [20], (b) [19], (c) [17], (d) [18], (e) [16].

Figure 3. 
The QCA layout of the proposed three-input XOR gate and its power dissipation map.
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three-input XOR gate and its power dissipation map are shown in Figure 3(a) and (b)  
respectivly, which consists 12 cells with occupied area is 0.01 μm2 and requires two 
clock phases to generate the corrects output. It is clear in the suggested layout that 
there is no majority gate, resulting in reduced space and energy consumed. In fact, 
the presented layout utilize electrostatic interactions between cells within QCA 
configurations to perform desired function.

5. Results and discussions

Results of the simulation of the suggested QCA-gate is presented in this section 
obtained using the CAD tool QCADesigner. Coherence vector simulation engine and 
all other parameters set at default values are used. The essential QCA parameters 
are presented in Table 1. Reduction in the XOR gate size will result in a subsequent 
reduction of the scaled-up circuits. The simulation result of the proposed three input 

Figure 4. 
Output waveforms of the proposed gate.

Parameter Value

Number of samples 12800

Convergence tolerance 0.001000

Radius of effect 65,000000(nm)

Relative permittivity 12,900000

Clock low 3,800000e-023

Clock high 9,800000e-022

Clock shift 0,000000e+000

Clock amplitude factor 2,000000

Layer separation 11,500000

Maximum iterations per sample 100

Table 1. 
Bistable approximation parameters model.
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XOR gate is shown in Figure 4. The comparison outcomes of the number of con-
sumed cells (cell count), the occupied area, the gate count, and the latency of  
the suggested 3-input XOR with the previous coplanar 3-input XOR gate in  
Refs [16, 21, 22] are shown in Table 2. The proposed QCA XOR gate represents a 
14.28% improvement in cell consumption relative to the best-optimized gate in  
Ref. [16]. To estimate the power dissipation, we use the QCAPro software.  
Table 3 depicts the detailed power dissipation data of the proposed QCA XOR gate at 
a temperature of 2 K. As expected, the proposed XOR gate dissipates 71.18%, 75.63%, 
and 78.49% less energy at 0.5 Ek, 1 Ek, and 1.5 Ek, respectively, compared with the 
XOR gate in [20]. It can be seen from Table 3 that the proposed gate consumes the 
lowest amount of energy over previous designs, and therefore it is very appropriate 
for ultralow power devices.

6. Conclusions

The development of nano-scale quantum dot cellular automata (QCA) has been 
drivern by the immense need for high performance and energy-efficient compu-
tational systems. The present work proposed a new three-input QCA XOR gate 
consisting of 12 cells with an occupied space of 0.01 μm2. Hence, the proposed gate 
is superior than the existing XOR structures in literature. The designed gate dissipate 
less energy, has been verified using the QCAPro tool. Simulation results have been 
shown that the suggested gate is suitable techniques to implement efficient logic 
circuits for QCA.. In the future, we will strive to explore and construct more excellent 
QCA based-design in order to provide basic module for the larger scale arithmetic 
operation circuits.

Three-input XOR Area(μm2) Cell count Latency

Ref [18] 0.012 12 1

Ref [16] 0.017 22 1

Ref [20] 0.073 94 1.5

Ref [19] 0.022 14 0.5

Ref [17] 0.011 14 0.5

Proposed Design 0.010 12 0.5

Table 2. 
The comparison of the 3-input QCA XOR gates.

Three-input XOR gate Total energy dissipation

0.5 EK 1 EK 1.5 EK

Ref [18] 47.29 62.39 80.34

Ref [16] 146.44 171.57 204.47

Ref [20] 36.20 50.28 66.58

Ref [20] 49.81 63.49 80.83

Ref [17] 12.11 14.17 16.28

Proposed XOR 10.43 12.25 14.32

Table 3. 
Power analysis results of the proposed 3-input XOR gate and previously reported designs.
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Chapter 4

Topology in Photonic
Discrete-Time Quantum Walks:
A Comprehensive Review
Graciana Puentes

Abstract

We present a comprehensive review of photonic implementations of
discrete-time quantum walks (DTQW) in the spatial and temporal domains.
Moreover, we introduce a novel scheme for DTQWs using transverse spatial modes
of single photons and programmable spatial light modulators (SLM) to manipulate
them. We discuss current applications of such photonic DTQW architectures in
quantum simulation of topological effects in photonic systems.

Keywords: quantum walks, spatial-multiplexing, time-multiplexing,
spatial light modulators, geometric phase, Zak phase, topology

1. Introduction

Quantum computation is an interdisciplinary field that encompasses several
interconnected branches such as quantum algorithms, quantum information, and
quantum communication. There are several advantages associated with quantum
information processing that have positioned quantum computation as a key
resource in advanced modern science and technologies. Among the promising con-
jectures predicted by quantum information and communication, we find the devel-
opment of more powerful algorithms that may allow to significantly increase the
processing capacity and may enable the quantum simulation of complex physical
systems and mathematical problems for which we know no classical digital
computer algorithm that could efficiently simulate them at present.

Quantum algorithms are the main building blocks of quantum information and
quantum communication strategies. Nevertheless, building superior quantum
algorithms is a challenging task due to the complexities of quantum mechanics itself,
and because quantum algorithms are required to demonstrate that they can
outperform their classical counterparts, in order to be considered an evolutionary
advantage. Therefore quantum algorithms must be more efficient than any existing
classical protocol. In this context, quantum walks, i.e., the quantum mechanical
counterpart of classical random walks, can be regarded as a sophisticated tool for
building quantum algorithms for quantum information and quantum communication
that has been shown to constitute a universal model for quantum computation [1–13].

The quantum walk is one of the most striking manifestations of how quantum
interference leads to a strong departure between quantum and classical phenomena
[2, 3, 14]. In the discrete version of the quantum walk, namely the discrete-time
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quantum walk (DTQW) [15], the time evolution is described in terms of a series o
discrete time-steps. DTQWs provide for a flexible architecture for the investigation of a
large number of complex topological and holonomical effects, in the experimental
[16–18] and theoretical domains [19–31]. Moreover, DTQWs are robust algorithm for
modeling a large number of time-varying processes, ranging from energy transfer in
chains of spins [32, 33] to energy transport in biological systems [34]. Furthermore,
DTQWs allow to study multi-dimensional quantum interference effects [35–38] and
can outline a route for authentication of quantum complexity [39, 40] and universal
quantum computation [41]. In addition, quantum walks involving multiple particles
guarantee a relentless tool for encoding quantum information in an exponentially large
Hilbert space [42], as well as for simulations in quantum chemical, biological and
physical systems [43], in 1D and 2D geometries [44–46].

In this Chapter, we present a comprehensive review of photonic realizations of
DTQW in both, the spatial [47] and the temporal [48] realms, based on spatial-
multiplexing and time-multiplexing techniques, respectively. Moreover, we present
a novel scheme for photonic DTQW exploiting transverse spatial modes of photons
and programmable spatial light modulators (SLM) to manipulate the modes [3]. In
contrast to all previous multiplexed implementations, this novel approach warrants
quantum simulation of arbitrary discrete time-steps, only limited by the spatial
resolution of the SLM itself. We also deliberate about possible applications of such
photonic DTQW platforms in quantum simulation of topological phenomena in
photonic systems, and the implementation of non-local quantum coin operations,
based on two-photon hybrid entanglement. Part of this review is based on the work
by the Author, selected as the cover story of a Special Issue on Quantum Topology,
for the journal Crystals (MDPI) in 2017 [2].

2. Theoretical framework

As a starter, we describe the theoretical framework for the mathematical descrip-
tion of DTQWs, and applications in the generation and detection of non-trivial
geometric-phase structures, in 1D DTQW platforms. The basic discrete step in the
DTQW is mathematically described by a unitary quantum evolution operator U θð Þ ¼
TRn! θð Þ, with Rn! θð Þ a rotation operation along an arbitrary direction, represented by

the 3D vector n! ¼ nx, ny, nz
� �

, represented by the following expressions:

Rn! θð Þ ¼ cos θð Þ � inz sin θð Þ inx � ny
� �

sin θð Þ
inx þ ny
� �

sin θð Þ cos θð Þ þ inz sin θð Þ

 !

written in the well-known 2x2 Pauli basis [49]. We note that the rotation
operation acts on polarization in the case of photons, or on spin in the case of atoms
or ions. In the Pauli basis the y-rotation operation is expressed as:

Ry θð Þ ¼ cos θð Þ � sin θð Þ
sin θð Þ cos θð Þ

� �
:

This unitary operation is followed by a spin- or polarization-dependent transla-
tion T, which can be mathematically expressed by:

T ¼
X
x
∣xþ 1i xj⊗ jHh i Hj þ jx� 1h i xj⊗ jVh ihV∣,

with H ¼ 1, 0ð ÞT and V ¼ 0, 1ð ÞT.
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The quantum evolution operator for a discrete time-step is generated by a
Hamiltonian H θð Þ, such that U θð Þ ¼ e�iH θð Þ (ℏ ¼ 1), where:

H θð Þ ¼
ðπ
�π
dk Eθ kð Þn! kð Þ:σ!
h i

⊗∣kihk∣

and σ
! are the Pauli matrices, which readily reveals the spin-orbit coupling

workings in the system. The discrete-time quantum walk described by the unitary
operator U θð Þ has readily been experimentally implemented in a number of devices
such as photonic, cold-atom and trapped-ion devices [47, 48, 50–52]. It has been
shown to display chiral symmetry and exhibit a Dirac-like dispersion relation,
expressed as cos Eθ kð Þð Þ ¼ cos kð Þ cos θð Þ. In general, the spectrum of the system
will depend on the selected branch cut. Here, we select the branch cut to be at the
quasi-energy gap [53, 54].

3. Photonic DTQWs

3.1 Multiplexed DTQWs in the spatial domain

The original strategy for implementation of photonic DTQW via spatial-mode
multiplexing was first introduced by Broome et al. [47]. The dimension of the
Hilbert space for the spatial DTQW is determined by 2nþ 1 multiplexed longitudi-
nal spatial modes of single photons coupled to a coin operation encoded in the two-
dimensional spin or polarization subspace jHi, jVif g. The discrete spatial modes of
single photons j jif g are labeled as j ¼ � n� 2kð Þ with k ¼ 0, 1, … , ⌊n=2⌋, where n
denotes the walker’s discrete-time step. Single-photons created via SPDC (Sponta-
neous Parametric Down-Conversion) in a non-linear PPKTP crystals are injected
into a free-space reference spatial mode ∣ji ¼ ∣0i. This reference mode is sequen-
tially spatially multiplexed by a concatenation of calcite polarizing beam-displacers
(CBD). Arbitrary coin states are prepared by a polarizing beam-splitter in combi-
nation with a half- (HWP) and quarter wave-plates (QWP). In due course, a
combination of a HWP and a CBD implements a single discrete-step evolution. By
concatenating n of such unitary arrangements one can implement n steps of a
DTQW (see Figure 1(a) for reference). Coincident detection of photons at Ava-
lanche Photo Detectors (APDs) (4.4 ns time window) herald a successful run of the
walk. The typical number steps implemented with spatial-multiplexed schemes is of
order n≈ 10 [47].

3.2 Multiplexed DTQW in the temporal domain

The strategy for implementation of photonic DTQW via temporal-mode
multiplexing was first introduced in Ref. [48]. The dimension of the Hilbert space
for the DTQW is determined by a unique spatial mode ∣ji ¼ ∣0i and 2n multiplexed
temporal modes ∣ki (for k ¼ 1, 2, … , 2n), with n the discrete time-step number. The
spatial mode is coupled to a coin operator in a two dimensional polarization sub-
space jHi, jVið Þ (see Figure 1(b)). Analogue single-photon states (on average) are
generated via an attenuated pulsed diode laser. The initial states of the photons
injected in the DTQW are controlled by means of half-wave plates (HWPs) and
quarter-wave plates (QWPs), in order to produce eigenstates of the chirality oper-
ator ∣ψ�

0 i ¼ ∣0i⊗ jHi � ijVið Þ= ffiffiffi
2

p
. Inside the loop, the unitary rotation (Rn θð Þ) is

implemented by a HWP with its optical axis oriented in the direction θ=2. The
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polarization-dependent translation operator T is realized in the temporal domain
via a polarizing beam splitter (PBS) in addition to a calibrated temporal delay-line
using polarization preserving optical fibers, in which horizontally polarized light
follows a longer path. The resulting calibrated temporal delay between both polar-
ization components corresponds to a single step in the DTQW (x� 1). Polarization
controllers (PCs) are introduced to compensate for arbitrary polarization rotations
in the fibers. After implementing the polarization-dependent temporal difference,
the so-called “time-bins” are recombined in a single spatial mode by means of a
second PBS and they are directed into the fiber loops. Detection is accomplished by
coupling a portion of the photons out of the loop, via a beam sampler (BS) with a
probability of 5 % per step. Compensation HWPs (CHWPs) are introduced to
correct for unintended dichroism introduced by the beam sampler (BS). Single-
photon detectors (SPD) and avalanche photo-diodes (APDs) are employed to detect
the photon arrival-time and to determine its polarization component. The proba-
bility that a photon undergoes a full round-trip is given by the overall coupling
efficiency (> 70%) and the total losses in the system resulting in η ¼ 0:50. The
average number of photons per input pulse is determined by neutral density (ND)
filters, and is typically below nh i<0:003 to reduce contribution from multi-photon
events. Such a scheme enables for implementation of a large number of discrete-
time steps (typically n≈ 20) in a compact scheme, thus reducing the footprint
characterizing spatially multiplexed architectures.

3.3 DTQW using spatial light modulators (SLM) and transverse spatial modes

We will identify the lattice points of a DTQW in a 1D geometry by the trans-
verse spatial modes of a single photon. More specific, for photonic propagation in
z-direction, the lattice sites in 1D will correspond to the position x (or y) of the

Figure 1.
Depicted architecture for experimental realization of DTQW (a) via spatial-mode multiplexing,
(b) via temporal-mode multiplexing (see text for details).
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transverse propagation plane. The Hilbert space of the quantum walker will be
given by the discrete basis j ji : j∈f g, where ∣0i corresponds to the spatial mode
aligned with the optical axis and j j>0if g ( j j<0if g) correspond to the upper
(lower) modes, as depicted in Figure 2(a). The use of transverse modes of photons
for DTQW has been demonstrated for a single step by Francisco et al. in an intricate
setup [55], encoding th subspace of the quantum coin in the upper and lower
regions of the x-axis. Here, we propose a physically more intuitive approach: the
quantum coin is encoded in the 2-Dimensional polarization degrees of the photon
that is in the horizontal/vertical basis, i.e., jHi, jVif g. In this manner, the polariza-
tion dependent translation operator T can be expressed as:

T ¼
X
j

∣jþ 1i jj⊗ jHh i Hj þ j j� 1h i jj⊗ jVh ihV∣: (1)

For an unbiased coin operator, we have:

R ¼ 1ffiffiffi
2

p 1 1

1 �1

� �
: (2)

Considering the following initial state for the quantum walker ∣ψ0i ¼ ∣0i∣Hi, the
temporal evolution of the initial quantum state after n steps will be given by:

∣ψni ¼ TRð Þn∣ψ0i ¼
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Xn
j¼0

eiϕn�2j ∣n� 2ji∣θn�2ji, (3)

with ϕn�2j ¼ 0 or π, and ∣θn�2ji ¼ cos θn�2j
� �

∣Hi þ sin θn�2j
� �

∣Vi the polarization
state of the coin in the n� 2jð Þ-th spatial mode. As an example, for n ¼ 4:

Figure 2.
(a) Discretization of a single-photon spatial amplitude profile in transverse modes along the x-direction. (b)
Sketch of the proposed optical setup for preparing the n-th step walker-coin state (3) encoded in the transverse
modes and polarization of a single-photon field: SMF, single mode fiber for spatial filtering; SLM,
programmable spatial light modulator (see text for details). (c) Phase masks addressed at the phase-only SLM
for preparing the state given by Eq. (6) with n ¼ 4 and 5. The dashed rectangles indicate empty transverse
modes. (d) Optical module that implements one step (∣ψni ! ∣ψnþ1i) of the 1D DTQW proposed here (see text
for details). (e) Numbering convention of the spatial modes exiting the beam-displacer [47].
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∣ψ4i∝∣þ 4i∣Hi þ ∣þ 2i 3∣Hi þ ∣Viffiffiffiffiffiffi
10

p
� �

þ ∣0i ∣Vi � ∣Hiffiffiffi
2

p
� �

� ∣� 2i ∣Vi � ∣Hiffiffiffi
2

p
� �

� ∣� 4i∣Vi:
(4)

Thus, the corresponding probability distribution characterizing the quantum
walker, after n steps, will be given by:

Pn jð Þ ¼ ∣ hH∣hj∣ð Þ ψnij j2 þ ∣ hV∣hj∣ð Þ ψnij j2: (5)

In order to analyze DTQW in 1D, within the framework described above, we
present a realistic optical setup which can be divided into two modules. The first
module is destined to prepare the initial state of Eq. (3) for an arbitrary value of n,
only limited, in principle, by the resolution of the SLM used to manipulate the
transverse spatial modes of photons. The second module, is destined to implement a
single step in the protocol, namely, the unitary operation U ¼ TR, with T and R
given by Eqs. (1) and (2), respectively. With such preparation module, the proba-
bility distributions given by Eq. (5) can be measured directly. In addition, by
concatenating it with the one-step propagation module, it will be possible to imple-
ment an arbitrary step in the quantum walk from n to nþ 1. Therefore, in principle
it is possible to simulate 1D DTQW for arbitrary steps n, (with n a large number)
surpassing the number of steps that can be implemented with time- or spatial-
multiplexing approaches. In what follows, we describe the proposed preparation
and propagation modules, in addition to the measurement module required to
estimates the probability Pn jð Þ.

3.3.1 DTQW preparation optical module

In Figure 2(b) a sketch of the optical module proposed in order to prepare the
input state of the quantum walker, corresponding to the n-th step of a DTQW
(Eq. (3)) employing polarization degrees of freedom and transverse spatial modes
of single photons. The preparation module is divided into two submodules: the first
submodule, is employed to prepare the spatial degrees of freedom of the input state,
and the second submodule, is employed to spatial modes with the polarization
degree of freedom. A key element for the appropriate implementation of such
preparation module are state-of-the-art programmable spatial light modulators
(SLMs). Such SLM devices, typically based on liquid crystal display (LCD)
technologies, consist of a two-dimensional array of pixels, which when properly
programmed, can control the phase, amplitude and polarization of the incident
light field [56]. Recently, they have been deployed in a vast number of quantum
information and communication protocols [57–60].

Let us consider
Ð
d r!ψ r!

� �
∣1 r!i⊗ ∣Hi as the quantum state of a monochromatic

single-photon multi-mode field horizontally polarized in the paraxial approxima-

tion, here r! ¼ x, yð Þ is the position coordinate in the transverse plane, and ψ r!
� �

is

the normalized transverse probability amplitude. Such single-photon states can be
generated, for example, from a spontaneous parametric down-conversion (SPDC)

single photon source. The transverse amplitude ψ r!
� �

can be manipulated using the

technique developed by Prosser et al. [61]. Within this approach, it is possible to

prepare arbitrary states of the form
P

jβ j∣jiwith
P

j β j

���
���
2
¼ 1, where j jif g represent
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the orthogonal transverse spatial modes, in the x-direction. In brief, this technique
utilizes an SLM which modulates the phase information of the incident profile

ψ r!
� �

while leaving unaffected its amplitude or polarization. For simplicity, such

phase information is assumed to be uniform across the entire surface of modulation.
Next, a phase mask based an array of d rectangular regions, each region
corresponding to a blazed diffraction grating, is displayed on the liquid crystal
screen (an example of phase mask for d ¼ 7 is depicted in the inset of Figure 2(b)).
The single photon phase profile is modulated by this mask and, in the far field, light
beam it is diffracted into different orders (0, � 1, … ) as it reaches regions with
blazed gratings; otherwise, the beam propagates straight to the zeroth order. By
choosing the first þ1 order to prepare the states, the modulus of its complex
coefficients will be evaluated according to the phase-modulation depth of each
grating, which determines the intensity diffracted to the selected order. In addition,
the phase of the coefficients will be a constant value added to the gratings. Finally,
the þ1 diffraction order is filtered by a slit diaphragm, such that the emerging
photon is in a coherent superposition of d transverse “slit” modes j jif g. More
specific, the states can be prepared as:

∣χni ¼
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Xn
j¼0

eiϕn�2j jn� 2ji
 !

⊗ ∣Hi, (6)

where ϕn�2j ¼ 0 or π, and n a positive integer. For a given n, one configures a
phase mask for the SLM with d ¼ nþ 1 slit/diffraction gratings, symmetrically
distributed starting from the highest modes j ¼ �n. Figure 2(c) shows typical
examples of masks for n ¼ 4 and n ¼ 5. As a technical remark, since the states we
intend to prepare are uniform in phase (see Eqs. (3) and (6)), the phase-modulation
depth of the gratings displayed a liquid crystal SLM will be a constant. Therefore,
we can set it to be equal to 2π, ideally achieving 100% of diffraction efficiency in þ1
order.

In order to prepare the state given by Eq. (3) starting by the input state given by
Eq. (6), it is required to implement polarization rotations conditioned on the
transverse-mode positions, as described by the unitary operator

Xn
j¼0

∣n� 2jihn� 2j∣ ⊗R ϑn�2j
� �

, (7)

where

R ϑð Þ ¼ cosϑ � sin ϑ

sin ϑ cos ϑ

� �
(8)

transforms ∣Hi into an arbitrary state of linear polarization. By applying this
rotation on ∣χni with the appropriate R ϑn�2j

� �
‘s, one generates the desired state

∣ψni using the preparation module.
Spatially-dependent polarization rotations can be implemented by means of an

SLM programmed for such task [62]. There are several different techniques for the
various types of existing SLMs, which enable each pixel of the SLM device to work
effectively as programmable polarization rotator [63, 64]. The details of these
techniques are beyond the scope of the present work. With such programmable
SLM, the transformation (7) onto the state (6) can be implemented by manipulat-
ing the transverse spatial modes of ∣χni on the liquid crystal display screen and
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applying proper modulation on the input polarization ∣Hi. As depicted in Figure 2(b),
this procedure is achieved using a 4f lens system which will image the filtered output
field of the phase-only SLM onto a polarization-rotator SLM.

This concludes the description of the proposed preparation optical module for
arbitrary walker-coin state in the n-th step of a 1D DTQW, encoded in polarization
and transverse spatial modes, respectively, of single photons. 9 As previously states,
the largest number of steps to be implemented n will be limited by the resolution of
SLM. To illustrate this, consider a phase-only SLM with 2N pixels in the direction
where the transverse modes are encoded (say x-direction). If each spatial mode is
encoded in a row, and separated by another row of pixels, both with one-pixel
width, it would be possible to define N distinguishable modes. In turn, this would
enable us, in principle, to prepare the walker-coin state (3) up to n ¼ ⌊N=2⌋. For a
standard SLM with 2N ¼ 1920 [56], then n ¼ 4808, which represents a much larger
figure than the maximum number of steps that can be implemented with
multiplexed schemes. After the preparation module, one can determine the proba-
bility distribution (5) by recording the photon count rates at each of the 2nþ 1
output transverse modes of the second SLM (see Figure 2(b)), appropriately nor-
malizing to the total number of counts. This can be achieved with an array of 2nþ 1
avalanche photo-diodes (APDs) or with a single-photon detector scanning along the
transverse modes. The detection apparatus has to be located right after the second
SLM, in order to prevent the diffracted modes to interfere and alter the probability
distribution. Alternatively, as will be described below, a transverse-to-longitudinal
mode conversion can be implemented which would enable to locate the detector at
greater distances from the preparation module.

3.3.2 DTQW one-step propagation module

The quantum coin operator is the quantum analogue of a walker throwing a
coin, and deciding whether to proceed to the left or to right, depending on whether
the coin falls heads or tail. By encoding the left and right information in the 2
dimensional photon polarization basis ∣Hi and ∣Vi, the quantum operator
corresponding to flipping a coin R, as presented in Eq. (2), can be readily
implemented by using a polarization half wave plate (HWP) oriented at π=4°.
Moreover, in order to implement the polarization-dependent translation operation
T, as described in Eq. (1), it is straightforward to employ a birefringent element.
However, this element, should also prevent the transverse modes from propagating
in free space, in order to limit unwanted diffraction and interference, which would
seriously hamper the characterization of the walker’s translation. To maintain the
discrete lattice structure of the protocol, while working with transverse modes which
are properly discretized in the plane of state preparation but which are not properly
discretized after the single-step due to free space propagation, one must apply a
discretization procedure along all propagation planes. This can eventually be achieved
by introducing a cylindrical lens with focal distance f , located at a distance f to the
second SLM utilized in the preparation module, this is schemed in Figure 2(d). In
this way, the transverse modes at the output preparation plane are transformed into
longitudinal modes, along all the remaining propagation planes. Once this transverse
to longitudinal model conversion is enforced, one can simply use a polarizing calcite
beam-displacer or a polarizing beam splitter in order to implement the polarization
translation T. As illustrated in the inset of Figure 2(d), such optical element may be
oriented transmit vertically polarized light (V) and introduce a lateral beam dis-
placement into the neighboring mode on horizontally polarized light (H). In sum-
mary, for an input state ∣ψni given by (3), the one-step propagation module TR
consists of a HWP oriented at π=4∘ and a calcite beam-displacer in order to
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implement R and T, respectively, in addition to a cylindrical lens which enables
transverse-to-longitudinal mode conversion. After this single-step propagation mod-
ule, it possible to detect the probability distribution Pnþ1 jð Þ (Eq. (5)), as described
above. The entire procedure is depicted in Figure 2(d). Furthermore, Figure 2(e),
describes our convention for labeling spatial modes after propagation through the
calcite beam-displacer.

4. DTQW: applications in topology and geometry

Geometric phases acquired during quantum evolution of a particle can have
different origins. The Berry phase [65] is a type of geometric phase that can be
assigned to quantum particles which return their initial state adiabatically, while
recording the path information on a geometric phase (Φ), defined as [65, 66]:

eiΦ ¼ ψ inijψ finalh i: (9)

A number of physical consequences can be attached to geometric phases, such as the
modification of material properties in solids, for example the conductivity in Graphene
[67, 68], the emergence of surface edge-states in topological insulators, whose surface
electrons experience a geometric phase [69], the modification of molecular chemical
reactions [70], andmore recently geometric phases have been predicted to have impli-
cations for quantum technology, via the elusiveMajorana particle [71].

In this review, we report on the progress in the characterization of geometry
and topology of DTQW architectures consisting of a unitary step U given by a
sequence of two non-commuting rotations in parameter space, followed by a spin-
dependent translation. The topological parameter space of the DTQW architec-
ture we analyze does not present continuous 1D topological boundaries. Unlike
the “split-step” quantum walk [16, 19], or other analogous systems recently stud-
ied in the literature, the platform we report only presents a discrete number of
Dirac points, where the quasi-energy gap closes. At these discrete Dirac points, the
Zak Phase difference is not defined; therefore, these discrete points represent
topological boundaries of zero dimension. Here we ascribe a topological boundary
at the set of points where the topological invariant is not defined, namely at the
discrete points where the quasi-energy gap closes. Such gapless points can be
considered topological defects in parameter space. Since the system has topologi-
cal defects, we argue the system is topologically non-trivial. We demonstrate the
non-trivia topological l landscape of the system by calculating different holonomic
and geometric quantities, such as the Zak phase, which corresponds to the Berry
phase in the Brillouin zone.

5. Topology and the geometric Zak phase

The physical concept of geometric phase, such as Berry or Zak phase, is
intimately linked to the concept of holonomy of a manifold. Holonomy from a
geometrical standpoint: within the framework of differential geometry, an
holonomy group Hx at a given point in space x for an oriented n-dimensional
manifold M endowed with a given metric gij can be assigned via the (parallel)
transport of a vector field V ∈TMx along all possible closed curves C, starting and
ending at the same point x. The condition for parallel transport is mathematically
represented by the following expression:
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tμ∇μV ¼ 0, (10)

here tμ is the tangent versor to the curve C and ∇μ the Levi–Civita connection of
(M, gij), representing a unique torsion free connection which satisfies ∇gμν ¼ 0. By
the Levi–Civita conditions together with (10), one can derive that:

tμ∇μ gijV
iV j

� �
¼ 0,

stating that the vector field norm kVk ¼ gijV
iV j is conserved upon travel along

the closed curve C. Nevertheless, the resulting vector VC after travel will not
necessarily coincide with V, in general it will be rotated in the form:

VC ¼ Rx Cð ÞV,

where R Cð Þ is an element of SO nð Þ. Therefore, a rotation matrix Rx Cð Þ
corresponding to any pair x,Cð Þ with C an arbitrary curve in the manifold can be
assigned. The set of rotations Rx Cð Þ at a fixed point x can be obtained by consider-
ing all possibles curves C forming a group, which turns out to be equal or smaller
than SO nð Þ. This set is known as the holonomy group Hx at the fixed point x. For
simply connected manifolds M, the holonomy groups at points x and y are isomor-
phic. In such cases, we refer to the holonomy H of M. Otherwise, the definition of
holonomy group becomes point dependent.

The geometric concept of holonomy can be depicted for a manifold M which is
embedded in space Rn. An illustrative example is the sphere S2 with its canonical
metric given by:

gS2 ¼ dθ2 þ sin 2θdϕ2: (11)

This sphere represents a surface x21 þ x22 þ x23 ¼ 1 embedded in a space R3. The
canonical metric gS2 is the distance element within this surface. For a given curve C,
the holonomy element H Cð Þ is a rotation R αð Þ where α Cð Þ is the solid angle
subtended by the curve at the center of the sphere. It can be instructive to verify
this explicitly. Consider a unit vector r in R3, which parameterizes the points of the
sphere in the form

r ¼ sin θ cosϕ, sin θ sinϕ, cos θð Þ:

By taking a vector ν∈TMx, with TMx the tangent plane to the manifold, to be
transported along a curve C in S2. By describing the travel by a parameter t, which
can be interpreted as the traveling “time” along the path, the parallel transport
condition can be expressed in a compact form. The vector will always be orthogonal
to r, with V � r ¼ 0; if not, it would have a component orthogonal to the surface.
Nevertheless, this condition is not enough since ν could reside in the tangent plane
TxS2 of any point x along the curve. In this case, a velocity Ω with non-zero
component in r-direction could make the vector rotate. In order to avoid such
rotations, it is customary to insure that Ω has no components in the r-direction, a
condition which be expressed as Ω� r ¼ 0. The resulting angular velocity Ω should
be different from zero; however, since ν has a conserved component in _r and _r
produces a rotation in R3 as well as V. These two conditions are mathematically
expressed as:

_ν ¼ Ω� ν, Ω ¼ r� _r: (12)
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For the applications in DTQW that we intend to consider, we can express the
condition above in terms of a complex unit vector ψ , defined by:

ψ ¼ 1
2

vþ iv0ð Þ, ν0 ¼ r� ν:

In order to find the solid angle α Cð Þ, it possible to define a local orthogonal basis,
with vector elements u and v.These elements are explicitly given as:

u rð Þ ¼ � sinϕ, cosϕ, 0ð Þ, (13)

v rð Þ ¼ � cos θ cosϕ,� cos θ sinϕ, sin θð Þ: (14)

On the other hand, the phase α of ψ can be expressed as:

ψ ¼ n exp iαð Þ, n ¼ 1
2

uþ ivð Þ:

Note that α depends on the choice of u and v, but the phase change due to the
transport along C does not. Such phase change is expressed as:

α Cð Þ ¼ ∮ Cdα ¼ ℑ ∮n ∗ � dn� � ¼ ℑ
ð ð

Int Cð Þ
dn∧ dn ∗ ,

the previous step makes use of the Stokes. It can be noted that the integrand is
invariant under the Gauge transformations, meaning:

n0 ¼ n exp iμ rð Þð Þ:

This integral can be written explicitly in terms of the coordinate system, obtaining:

α Cð Þ ¼ ℑ
ð ð

Int Cð Þ
dθdϕ ∂θn ∗ � ∂ϕn� ∂θn � ∂ϕn ∗� �

, (15)

α Cð Þ ¼
ð ð

IntC
sin θdθdϕ, (16)

which is the solid angle subtended by C.
Within the framework of quantummechanics, one can replace the mathematical

complex vector ψ θ,ϕð Þ by a quantum state vector ∣ψ Xð Þ> , where X s are the
coordinates describing the parameter space.

A complex basis ∣n Xð Þ> for any X can be introduced, and the relative phase of
∣ψ Xð Þ> can be defined:

∣ψi ¼ ∣n Xð Þi exp iγð Þ:

This phase is of course is base dependent, but the holonomy is independent from
that choice of basis. Holonomy can be defined by an adiabatic travel around a curve
C, in parameter space. Upon the travel, the resulting wave function accumulates an
additional phase due to the non-trivial holonomy of such space. In other words,

ψ inijψ finalh i ¼ exp iα Cð Þð Þ:

The phase α Cð Þ is known as the Berry phase [65]. The condition of parallel
transport becomes in this context
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ℑ ψ jdψh i ¼ 0:

By simple generalization of the arguments given above in the differential
geometrical context, it follows that this phase is simply

α Cð Þ ¼
ð ð

Int Cð Þ
ℑ< dn∣ ∧ ∣dn> : (17)

Note that the phase is dependent on the choice of path C.
The natural language for an holonomy in this context is in terms of principal

bundles. There exists a natural metric gij in the parameter space of the problem. This
issue was studied in [72], where the authors considered the following tensor

Tij ¼ < ∂in∣ 1�jn> < njð Þ∣∂ jn> :

This tensor is Gauge invariant

∣n Xð Þ> ! ∣n Xð Þ> exp �iμ rð Þð Þ:

One may define a “distance” between two states by

Δ12 ¼ 1� ∣<ψ1 ψ2 >j j2:

The interpretation of distance is as follows. For two states ∣ψ1 > and ∣ψ2 > which
differ only by a global phase are defined, we have Δ12 ¼ 0. Taking the limit 1 ! 2
and using the fact that the states are normalized we obtain

ds2 ¼ < dn∣ 1�jn> < njð Þ∣dn> ¼ TijdX
idX j ¼ gijdX

idX j, (18)

this follows from the fact that the product of a symmetric tensor by an antisym-
metric one is zero. Note that, for a 2-dimensional spin system:

∣þ > ¼
cos

θ

2
ei

ϕ
2

sin
θ

2
e�iϕ2

0
B@

1
CA, ∣� > ¼

sin
θ

2
ei

ϕ
2

� cos
θ

2
e�iϕ2

0
B@

1
CA

gives the canonical metric on S2 (18).
A subtle remark is in order, in relation to the coloquial use of the words geome-

try, holonomy, and topology. The holonomy of a manifold M in a geometry context
is geometrical, in the sense that the notion of parallel transport described above is
related to the Levi–Civita connection ∇i, which is constructed for a particular
metric tensor gij defined on the manifold M. Nevertheless, such holonomy in
general is not a topological invariant for M. More specific, two different complete
metrics gij and g0ij may exist, defined on the same manifold M, but possessing
different holonomy groups [2]. In the context of quantum physics, the Berry phase
or Zak phase may nevertheless describe topological phenomena. In fact, the
description of the Berry phase above has a formal analogy with the concept of
holonomy.

We can define such a geometric phase as the holonomy for an abstract connec-
tion in a principal bundle P U 1ð Þ,Xð Þ, where X the parameter space X. The curvature
of this connection is defined in (17), also known as the Berry curvature which is
Gauge invariant with flux given by Berry phase α Cð Þ. For closed manifolds, such
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fluxes describe a Chern class of the bundle. These classes take integer values and are
invariant under Gauge transformations. Such classes describe different bundles in
parameter space X and are topological invariant, basically meaning that they do not
depend on the choice of the metric in the underlying manifold X [65].

In the following section, we present applications of these mathematical concepts
within the context of quantum mechanical problems, in particular of DTQWs.

5.1 Applications via spatial multiplexing: split-step DTQW

In this Section we analyze in detail two cases of topologically non-trivial Zak
phase landscape, where thee Zak phase is the equivalent to the Berry phase across
the Brillouin zone. The first, the so-called split-step DTQW is implemented by
applying two consecutive conditional translations T and rotations R characterized
by rotation parameters θ1,2, such that the unitary step becomes U θ1, θ2ð Þ ¼
TR θ1ð ÞTR θ2ð Þ, as described in detail in [19]. The so-called “split-step” DTQW has
been demonstrated to exhibit non-trivial topology characterized by distinct topo-
logical sectors, which are in turn delimited by continuous linear 1D topological
boundaries. Such topological sectors are typically characterized by topological
invariants, for DTQWs this is typically the winding number W, which can take
binary integer values W ¼ 0, 1.

The dispersion relation, which expresses the quasi-energy E as a function of the
quasi-momentum k and the DTQW parameters θ1,2 for the split-step DTQW,
results in [19]:

cos Eθ,ϕ kð Þ� � ¼ cos kð Þ cos θ1ð Þ cos θ2ð Þ � sin θ1ð Þ sin θ2ð Þ:

In order to decompose the DTQW Hamiltonian of the system in terms of Pauli
matrices HQW ¼ E kð Þn! � σ! becomes [16], we require to know (x,y,z) components of
the 3D-norm [19]:

nxθ1,θ2 kð Þ ¼ sin kð Þ sin θ1ð Þ cos θ2ð Þ
sin Eθ1,θ2 kð Þð Þ ,

nyθ1,θ2 kð Þ ¼ cos kð Þ sin θ1ð Þ cos θ2ð Þ þ sin θ2ð Þ cos θ1ð Þ
sin Eθ1,θ2 kð Þð Þ ,

nzθ1,θ2 kð Þ ¼ � sin kð Þ cos θ2ð Þ cos θ1ð Þ
sin Eθ1,θ2 kð Þð Þ :

(19)

We now turn to our second example of topologically non-trivial DTQW.

5.2 Applications via temporal multiplexed: DTQW with non-commuting
rotations

As a second non-trivial example, we introduce a DTQW consisting of two
sequential non-commuting rotations R1 and R2, which constitute the main building
block of the unitary step U in the DTQW [2]. While the first rotation R1 is
performed along the y-direction by an angle θ, the second rotation R2 is performed
along the x-direction, by an angle ϕ. In this manner, the unitary step becomes
U θ,ϕð Þ ¼ TRx ϕð ÞRy θð Þ, where Rx ϕð Þ is also given in the Pauli basis [49] by:

Rx ϕð Þ ¼ cos ϕð Þ i sin ϕð Þ
i sin ϕð Þ cos ϕð Þ

� �
:
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The 3D-norm required for expressing the Hamiltonian in the Pauli basis,
results in:

nxθ,ϕ kð Þ ¼ � cos kð Þ sin ϕð Þ cos θð Þ þ sin kð Þ sin θð Þ cos ϕð Þ
sin Eθ,ϕ kð Þ� � ,

nyθ,ϕ kð Þ ¼ cos kð Þ sin θð Þ cos ϕð Þ þ sin kð Þ sin ϕð Þ cos θð Þ
sin Eθ,ϕ kð Þ� � ,

nzθ,ϕ kð Þ ¼ � sin kð Þ cos θð Þ cos ϕð Þ þ cos kð Þ sin θð Þ sin ϕð Þ
sin Eθ,ϕ kð Þ� � :

(20)

The dispersion relation for the DTQW with non-commuting rotations results in:

cos Eθ,ϕ kð Þ� � ¼ cos kð Þ cos θð Þ cos ϕð Þ þ sin kð Þ sin θð Þ sin ϕð Þ, (21)

it cam be easily verified that we recover a Dirac-like dispersion relation for
ϕ ¼ 0, as expected.

As readily mentioned, the described system exhibits a non-trivial phase diagram
consisting of a large number of discrete gapless points for different quasi-momenta.
Such singular points can be regarded as topological defects in parameter space. Each
gapless points represent topological boundaries of dimension zero, where topologi-
cal invariant, such as the winding number W, are not defined. As anticipated, in
contrast to the “split-step” DTQW described in previous sections, this system does
not contain continuous topological boundaries. We calculated analytically the
gapless Dirac points and zero-dimension topological boundaries for the system by
using basic trigonometric considerations. It can be readily demonstrated that there
are 13 discrete points for different values of quasi-momentum k where the gap
closes. This is depicted in Figure 3. Different symbols correspond to different values

Figure 3.
Phase diagram for DTQW with non-commuting rotations. The symbols indicate gapless Dirac points where
quasi-energy gap closes for different values of quasi-momentum: Squares (k ¼ 0), pentagons (∣k∣ ¼ π),
romboids (k ¼ þπ=2), and circles (k ¼ �π=2). The discrete Dirac points represent topological boundaries of
dimension zero, and endow the system with a non-trivial topology [2].
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of quasi-momenta. Namely, pentagons correspond to Dirac points for ∣k∣ ¼ π,
romboids correspond to Dirac points for k ¼ þπ=2, squares correspond to Dirac
points for k ¼ 0, and circles correspond to Dirac points for k ¼ �π=2. Such
holonomic structure in itself is topologically non-trivial, and was studied in [2] for the
first time.

6. Geometric phase calculation

We now provide expressions for the geometric phase, the so-called Zak phase
acquired due to quantum evolution across the Brillouin Zone, in the two aforemen-
tioned scenarios. These two scenarios are characterized by a generic Hamiltonian of
the form:

H � nxσx þ nyσy þ nzσz: (22)

The specific Hamiltonians for each scenario differ by a constant factor, and by
the specific expressions of the normal vector ni (with i ¼ x, y, z). Since the eigen-
vectors of the Hamiltonian are the only quantities of interest for the present
problem, overall constants can be safely ignored.

In general the Hamiltonian in the Pauli basis is given by the following matrix:

H ¼ nz nx � iny
nx þ iny � nz

� �
(23)

and is characterized by the eigenvalues, which represent the eigenenergies of the
system:

λ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

q
: (24)

By diagonalizing this generic Hamiltonian, we find thee normalized eigenvectors
for the generic Hamiltonian are given by:

∣V�i ¼

nx þ inyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2x þ 2n2y þ 2n2z∓2nz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

qr

nz∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2x þ 2n2y þ 2n2z∓2nz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

qr

0
BBBBBBBB@

1
CCCCCCCCA
: (25)

It is to be noted that the scaling factor ni ! λni does not affect the result. As
mentioned, this results from the fact that two Hamiltonians differing by a constant
have the same eigenvectors.

The geometric Zak phase (ΦZak ¼ Z) for the positive and negative bands (�), is
expressed as:

Z� ¼ i
ðπ=2
�π=2

dk V�j∂kV�h i: (26)

We will now apply these concepts to the specific examples reviewed in the
previous sections.

49

Topology in Photonic Discrete-Time Quantum Walks: A Comprehensive Review
DOI: http://dx.doi.org/10.5772/intechopen.95111



6.1 Split-step DTQW

We will calculate the Zak phase for two types of DTQW, the first one is the so-
called split-step DTQW [19, 73]. It consists of a DTQW with unitary step U given
by the following expression U θ1, θ2ð Þ ¼ TR θ1ð ÞTR θ2ð Þ. Such unitary step can be
readily implemented via spatial multiplexing, as described in [19, 73]. For the
unitary step characterizing the split-step DTQW, the components of the normal
vector ni for decomposing the Hamiltonian in terms of Pauli operators can be
written in the following manner:

nxθ1,θ2 kð Þ ¼ sin kð Þ sin θ1ð Þ cos θ2ð Þ
sin Eθ1,θ2 kð Þð Þ ,

nyθ1,θ2 kð Þ ¼ cos kð Þ sin θ1ð Þ cos θ2ð Þ þ sin θ2ð Þ cos θ1ð Þ
sin Eθ1,θ2 kð Þð Þ ,

nzθ1,θ2 kð Þ ¼ � sin kð Þ cos θ2ð Þ cos θ1ð Þ
sin Eθ1,θ2 kð Þð Þ :

(27)

In particular, we consider the case in which the normal vector n ¼ nx, ny, nz
� �

is
fully transversal, meaning that nz ¼ 0. By setting the angle parameters such that
nz ¼ 0, it can be easily demonstrated that the normalized Hamiltonian eigenvectors
are of the form:

∣V�i ¼ 1ffiffiffi
2

p e�iϕ kð Þ

∓1

 !
, tanϕ kð Þ ¼ ny

nx
: (28)

There are two possible angle choices that lead to nz ¼ 0, these are θ1 ¼ 0 or
θ2 ¼ 0. For either of these angle choices, the Zak phase for the positive and negative
band take equivalent values, of the form [2]:

Z ¼ Z� ¼ i
ðπ=2
�π=2

dk V�j∂kV�h i, (29)

Z ¼ i
ðπ=2
�π=2

dk V�j∂kV�h i ¼ ϕ �π=2ð Þ � ϕ π=2ð Þ, (30)

from where it follows that

Z ¼ tan θ2ð Þ
tan θ1ð Þ : (31)

A numerical simulation of the Zak phase for the split-step DTQW is depicted in
Figure 4a.

6.2 DTQW with non-commuting rotations

The particular DTQW with non-commuting rotations presented in previous
Sections can be readily implemented via temporal multiplexing approaches. To this
end, we recall that the unitary step results in U θ,ϕð Þ ¼ TRx ϕð ÞRy θð Þ. The Cartesian
components of the 3D-norm ni (i ¼ x, y, z) are as follows:

nx ¼ � cos kð Þaþ sin kð Þb, (32)
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ny ¼ cos kð Þbþ sin kð Þa, (33)

nz ¼ cos kð Þc� sin kð Þd, (34)

where

a ¼ sin ϕð Þ cos θð Þ, (35)

b ¼ cos ϕð Þ sin θð Þ, (36)

c ¼ sin ϕð Þ sin θð Þ, (37)

d ¼ cos ϕð Þ cos θð Þ, (38)

angular functions as defined above. N1 is can be expressed as:

N1 ¼ nx þ iny ¼ � exp �ikð Þ a� ibð Þ: (39)

In this scenario, calculation of Zak phase in terms of the Hamiltonian eigenvec-
tors (∣V�i) for each band (positive and negative) can be accomplished, resulting in:

Z ¼ Z� ¼ i
ðπ=2
�π=2

dk V�j∂kV�h i,

Making use of expression (41), the geometric Zak phase results in:

Z� ¼
ð

a2 þ b2
� �

dk
D2

�
, (40)

D� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2x þ 2n2y þ 2n2z∓2nz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

qr

¼ a2 þ b2 þ c2 cos 2 kð Þ þ d2 sin 2 kð Þ � sin 2kð Þcd�

∓ cos kð Þc� sin kð Þdð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2 cos 2 kð Þ þ d2 sin 2 kð Þ � sin 2kð Þcd

q �1
2

:

(41)

Figure 4.
(a) Non-trivial geometric Zak phase landscape for DTQWwith non-commuting rotations obtained by numeric
integration, (b) Geometric Zak phase landscape for “split-step” DTQW obtained analytically [2].
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Note that, for the case of DTQW with non-commuting rotations, the conse-
quences of setting the norm to be fully transverse (i.e., nz ¼ 0) are quite different
than in the case of the split-step DTQW. More specific, nz ¼ 0 returns a trivially
constant Zak phase Z ¼ π, since the k-dependence vanishes. For this system, there
is no analytic expression for the Zak phase, and the Zak phase landscape can only be
obtained by numerical integration. Note that, at the Dirac points indicated in
Figure 5, the Zak phase is ill defined. A numerical simulation of the Zak phase ΦZak
by numeric integration in Wolfram Mathematica is depicted in Figure 4,
corresponding to parameter values of the form θ1,2 ¼ �π, π½ � and ϕ ¼ �π, π½ �—(a -
left) Zak phase for split-step DTQW, given by the analytic expression Z ¼ tan θ2ð Þ

tan θ1ð Þ;
(b-right) Zak phase for DTQW with non-commuting rotation, obtained by numer-
ical integration of expression Eq. (41).

A brief discussion is in order, it is well known that the Zak phase is Gauge
dependent —that is, it depends on the particular choice of origin of the unit cell
[74]. Therefore, in general it is not uniquely defined and cannot be considered a
topological invariant. Nevertheless, a related topological invariant quantity can be
defined in terms of the Zak phase difference between two states (∣ψ1i, ∣ψ2i) differing
by a geometric phase only. The Zak phase difference between two such states can be
expressed as ψ1jψ2

� � ¼ ei∣Φ
1
Zak�Φ2

Zak∣. More explicit, the term geometric invariance
refers to geometric properties that do not depend on the choice of origin of the
Brillouin zone, and only depend on relative distances between geometric points in
the Brillouin zone.

A time-multiplexed experimental scheme, which can be readily implemented to
obtain the Zak phase difference between two states at a given time-step N is
suggested. For a given choice of origin of the Brillouin zone, the system is charac-
terized by a unitary evolution operator consisting of rotation parameters
corresponding to either of the four adjacent Dirac points, where the gap closes. A
different geometric phase will be accumulated at each adjacent Dirac point. Such
phase difference can be experimentally determined by coherently recombining the

Figure 5.
Graphic depiction of the geometric phase Φ acquired along propagation in a closed trajectory. The spin or
polarization (yellow arrows) remains perpendicular to the direction of propagation (black arrows). See section
4 and section 5 for further details on topology and holonomy in quantum systems.
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states. More specific, in the photonic case, by interfering the states by using a
Mach-Zehnder interferometer. A suitable experimental scheme for detection of the
Zak phase difference in a photonic system is readily presented in [2, 75].

7. Conclusions

In this Book Chapter, we reported a review of novel approaches to photonic
discrete-time quantum walk (DTQW) platforms. Namely, we discussed
implementations via spatial-multiplexing or temporal-multiplexing schemes, and
we introduced a novel scheme for implementations based on transverse spatial
modes of photons, which are in turn controlled by spatial light modulators (SLMs).
While the number of discrete time-steps (n) that can be experimentally
implemented via mode multiplexed approaches is typically limited by the mode
scaling of the multiplexed technique itself, i.e., 2nþ 1 for spatial mode multiplexing
and 2n for temporal-mode multiplexing, realizations using transverse modes can in
principle enable experimental simulation of an arbitrary temporal step n, only
limited by the resolution of the SLM itself. We present several relevant applications
of DTQWs in quantum simulation. Namely, for the simulation of topological
effects, ascribed to each DTQW platform. Specifically, in the context of mode-
multiplexed DTQWs, we presented in detail the calculation of the Zak Phase,
corresponding to the Berry phase across the Brillouin zone, for the case of the
split-step DTQW and for the case of DTQW with non-commuting rotations, which
are implemented via spatial and temporal mode-multiplexing, respectively.
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Introduction to Quantum 
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Abstract

Quantum computing is a modern way of computing that is based on the science 
of quantum mechanics and its unbelievable phenomena. It is a beautiful combina-
tion of physics, mathematics, computer science and information theory. It provides 
high computational power, less energy consumption and exponential speed over 
classical computers by controlling the behavior of small physical objects i.e. micro-
scopic particles like atoms, electrons, photons, etc. Here, we present an introduction 
to the fundamental concepts and some ideas of quantum computing. This paper 
starts with the origin of traditional computing and discusses all the improvements 
and transformations that have been done due to their limitations until now. Then it 
moves on to the basic working of quantum computing and the quantum properties 
it follows like superposition, entanglement and interference. To understand the full 
potentials and challenges of a practical quantum computer that can be launched 
commercially, the paper covers the architecture, hardware, software, design, types 
and algorithms that are specifically required by the quantum computers. It uncovers 
the capability of quantum computers that can impact our lives in various viewpoints 
like cyber security, traffic optimization, medicines, artificial intelligence and many 
more. At last, we concluded all the importance, advantages and disadvantages of 
quantum computers. Small-scale quantum computers are being developed recently. 
This development is heading towards a great future due to their high potential 
capabilities and advancements in ongoing research. Before focusing on the signifi-
cances of a general-purpose quantum computer and exploring the power of the new 
arising technology, it is better to review the origin, potentials, and limitations of 
the existing traditional computing. This information helps us in understanding the 
possible challenges in developing exotic and competitive technology. It will also give 
us an insight into the ongoing progress in this field.

Keywords: quantum computing, real-time systems, program processors

1. Introduction

1.1 History of computing

Evolution in one region of science and technology leads to the discovery of a 
new one. In less than a century, research and development of functional computing 
technologies have renovated science, technology, and nation massively. The first 
practical computer around the 20th century was not capable of doing mathematical 
computations, on its own. Practical devices need a solid physical implementation 
of theoretical concepts. Nowadays, computers are solving problems instantly 
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and accurately provided the input is relevant, and a set of instructions given are 
favorable. It all started from World War II when Alan Turing created a real general-
purpose computer with a storable program model and is known as the ‘Universal 
Turing Machine’. It was redesigned by Von Neumann and is now the most important 
architecture for almost every computer. The computers and their physical parts kept 
improving with time in terms of performance and their strengths. And gradually, 
the industry of computers became larger than the military department which initi-
ated it. The advancement in control and understanding of humans over nature and 
physical systems has given us the latest electronic devices we are utilizing today [1].

2. A new kind of computing

Today’s computers are smaller, cheaper, faster, greatly efficient, and even more 
powerful as compared to early computers that used to be huge, costly, and more 
power-consuming. It becomes possible due to improvements in architecture, hard-
ware components, and software running on them. Electronic circuits used in com-
puters are getting smaller and smaller day by day. Transistors are small semiconductor 
devices that are used to amplify and also switch electric or electronic signals. They 
were used to be fabricated on a piece of silicon. The circuit was made by connecting 
these transistors together into a single silicon surface. The shape of circuits in an IC 
was printed together in all layers of silicon at the same time. This process takes the 
same amount of time even if the number of transistors in the circuit was increased. 
The cost of production of IC was decided by the size of silicon and not the number 
of transistors. This reduced the price of products due to which manufacturing and 
selling of IC increased and thus benefits and sales also. From the idea of connecting 
individual transistors to the collection of these transistors (Logic Gates) and finally, 
the collection of these Logic Gates used to get connected into a single integrated 
circuit (IC). Nowadays, a single IC can even integrate small computers onto it.

Gordon Moore, co-founder of Intel, in 1965, discovered that the number of 
transistors on a silicon microprocessor chip had made twice as much every year 
while the prices were reduced to half since their invention. This is known as Moore’s 
Law. Moore’s Law is considerable because it means that computers and their com-
puting power get smaller and faster over time. Though this law is putting the brakes 
on now and consequently, the improvement in classical computers is not like before 
it used to be [2].

This leads to the idea of the smallest computer by reducing the size of the circuit 
up to the size of an atom. But then these circuits will not be able to act as a switch 
as electrons inside an atom can become invisible from one side of a barrier and 
appear on another side, i.e. they can exist in more than one place at the same time. 
This is due to the teleporting phenomena in quantum mechanics called “Quantum 
Tunneling”. It shows that the size of the circuits of the classical computer after 5–7 
nanometers has reached their limit. The representation and processing of these 
computers can be illustrated by the law of classical physics that gives us an only 
deterministic justification of the Universe. But it fails to forecast all noticeable 
phenomena occurring in nature and this led to the discovery of quantum mechan-
ics, the biggest changeover in physics. Thus, there is a need for new computing 
other than current classical computing to put its state into some physical informa-
tion rather than a circuit. Since the quantum phenomena are bringing up more 
constraints on the design of the computers. It changes the basic building blocks 
of a computer that not only expects new type of hardware creation but also a new 
design, software, and layers of abstraction to facilitate the designers to create and 
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exploit these systems even if their complexities scale over time. The design of the 
hardware components has to be governed by quantum properties [3].

Quantum Computing is a new kind of computing based on Quantum mechan-
ics that deals with the physical world that is probabilistic and unpredictable in 
nature. Quantum mechanics being a more general model of physics than classical 
mechanics give rise to a more general model of computing- quantum computing 
that has more potential to solve problems that cannot be solved by classical ones. To 
store and manipulate the information, they use their own quantum bits also called 
‘Qubits’ unlike other classical computers which are based on classical computing 
that uses binary bits 0 and 1 individually. The computers using such type of com-
puting are known as ‘Quantum Computers’. In such small computers, circuits with 
transistors, logic gates, and Integrated Circuits are not possible. Hence, it uses the 
subatomic particles like atoms, electrons, photons, and ions as their bits along with 
their information of spins and states. They can be superposed and can give more 
combinations. Therefore, they can run in parallel using memory efficiently and 
hence is more powerful. Quantum computing is the only model that could disobey 
the Church-Turing thesis and thus quantum computers can perform exponentially 
faster than classical computers.

3. Need for quantum computers

Quantum computers can solve any computational problem that any classical 
computer can. According to the Church-Turing thesis, the converse is also true that 
classical computers can solve all the problems of quantum computers too. It means 
they provide no extra benefit over classical computers in terms of computability but 
there are some complex and impossible problems that cannot be solved by today’s 
conventional computers in a practical amount of time. It needs more computational 
power. Quantum computers can solve such problems in reasonably and exponen-
tially lower time complexities, also known as “Quantum Supremacy” [4].

Peter Shor in 1993 showed that Quantum computers can help to solve these 
problems considerably more efficiently like in seconds without getting overheated. 
He developed algorithms for factoring large numbers quickly. Since their calcula-
tions are based on the probability of an atom’s state before it is actually known. 
These are having the potential to process data in an exponentially huge quantity. 
It also explains that a practical quantum computer could break the cryptographic 
secret codes. It can risk the security of encrypted data and communication. It can 
expose private and protected secret information. But the advantages of quantum 
computers are also kept in mind that is significantly more than its flaws. Hence, 
they are still needed and further research is going towards a brighter future.

4. Fundamentals of quantum computing

While designing the conventional computer, it was kept in mind that transistors’ 
performance especially when getting smaller, will be affected by noise if any type of 
quantum phenomenon takes place. They tried to avoid quantum phenomena com-
pletely for their circuits. But the quantum computer adapts a different technique 
instead of using classical bits and even works on the quantum phenomenon itself. It 
uses quantum bits that are analogous to classical bits and have two quantum states 
where it can be either 0 or 1 except it follows some quantum properties where it can 
have both values simultaneously leading to a concept of superposed bits.
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5. Where the concept of bits came from?

Transistors are the fundamental construction blocks for an IC which are con-
nected through wires in a circuit. They conduct electric signals between devices. 
The communication between transistors within an IC takes place through electric 
signals. The behavior of the signals is analog in nature. Therefore, their values are 
real numbers that change smoothly between 0 and 1. These electric signals can also 
interact with the environment resulting in noise. Therefore, a little change from 0 to 
0.1 due to temperature or vibrations from the environment can drastically change the 
system’s behavior. There are two types of noise present in the environment. The first 
type of noise results from energy instabilities occurring suddenly within the object 
like temperature above absolute zero Kelvin. These are fundamental in nature. Other 
types of noise are the consequences of signal interactions. This type of noise could 
have corrected or designed. But neither of them got designed nor corrected or maybe 
left intentionally uncorrected at the hardware layer. They are systematic in nature [5].

To overcome these noises in analog circuits, the IC is built with transistors in 
such a way that it could work on digital signals (binary bits) instead of analog 
signals. These circuits are called ‘Logic Gates’. They perceive the electric signals con-
taining values of real numbers as a binary digit or ‘bit’ of either 0 (low voltage) or 1 
(high voltage). Registers are another type of Gate which stores a bit or the number 
of bits present in an input value to process further. Gates can remove noise from a 
signal by limiting the set of values a signal can hold. Constructing IC using logic 
gates rather than transistors simplifies the designing by creating a powerful circuit 
that is not sensitive to design and fabrication issues and facilitates abstraction to 
designers so that they can focus only on gate functions (Boolean functions) rather 
than circuit issues. Boolean functions are defined by the rules of Boolean algebra. 
They can use an automated design tool for mapping the required logic gates. A 
standard library containing a set of tested logic gates is integrated into the silicon 
chip design with the help of their manufacturing technology. Negligible error rates 
can be achieved using digital logic and standard libraries. This helps in making 
the design robust. Also, the data is encoded by adding some redundant bits in the 
memory using an error correction code. This code is checked at regular intervals to 
detect the error. It also helps in other traits of design like testing and debugging.

Quantum Bit or Qubit is the fundamental unit of quantum information that 
represents subatomic particles such as atoms, electrons, etc. as a computer’s memory 
while their control mechanisms work as a computer’s processor. It can take the value 
of 0, 1, or both simultaneously. It is a million times more powerful than today’s stron-
gest supercomputers. Production and management of qubits are tremendous chal-
lenges in the field of engineering. They acquire both, digital as well as analog nature 
which gives the quantum computer their computational power. Their analog nature 
indicates that quantum gates have no noise limit and their digital nature provides a 
norm to recover from this serious weakness. Therefore, the approach of logic gates 
and abstractions created for classical computing is of no use in quantum computing. 
Quantum computing may adopt ideas only from classical computing. But this com-
puting needs its own method to overcome the variations of processing and any type 
of noise. It also needs its own strategy to debug errors and handle defects in design.

Qubit has two quantum states similar to the classical binary states. The qubit can 
be in either state as well as in the superposed state of both states simultaneously. 
There is a representation of these quantum states also known as Dirac notation [6].

In this notation, the state label is kept between two symbols | and ⟩. Therefore, 
states are written as |0⟩ and |1⟩ which are literally having analog values and both 
are participating to give any value between 0 and 1 given that sum of probability 
of occurrence of each state must be 1. Thus any quantum bit wave function can be 
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expressed as a two-state linear combination each with its own complex coefficient 
i.e. |w⟩ = x |0⟩ + y |1⟩ where x and y are coefficients of both the states. The probabil-
ity of the state is directly proportional to the square of the magnitude of its coeffi-
cient. |x|2 is the probability of identifying the qubit state 0 and |y|2 is the probability 
of identifying the qubit state 1. These probabilities when summed up must give a 
total of 1 or say 100% mathematically, i.e. |x|2 + |y|2 = 1.

6. Properties of quantum computing

In quantum physics, the quantum object does not exist in an entirely determined 
state. It looks like a particle but behaves like a wave when not being observed. This 
dual nature of particles leads to interesting physical phenomena. The state of any 
quantum object is expressed as a sum of possible participating states or a wave- 
function. Such states are coherent due to the interference of all the participating 
states either in a constructive or a destructive manner. Observation of quantum 
objects when they interact with some larger physical system results in the extraction 
of information. Such observation of quantum objects is called quantum measure-
ment. Measurement can also result in the loss of information by disrupting the quan-
tum state. These are some of the properties of quantum objects. Quantum objects 
referred here are the qubits in the case of quantum computing. The progress of any 
quantum system is regulated by Schrodinger’s equation that tells us about the change 
in the wave-function of the system due to the energy environment. This environment 
is the system Hamiltonian which is a mathematical description of energies experi-
encing from all forces felt by all components of the system. To control any quantum 
system, there is a need to control this environment by isolating the system from the 
forces of the universe that cannot be controlled easily and by assigning energy within 
this isolated area only. A system cannot be completely isolated. However, energy and 
information exchanges can be minimized. This interaction with the outside environ-
ment can lead to loss of coherence and can result in “Decoherence” [7].

The properties are the conceptual rules and mathematical manifestations that 
describe the behavior of the particles. Quantum computers use three fundamental 
properties of quantum mechanics to store, represent, and perform operations on 
data in such a way so that it can compute exponentially faster than any classical 
computer. The three properties are given as follows [8]:

• Superposition

Superposition in quantum mechanics states that any two quantum states can be 
summed up (superposed) resulting in another valid quantum state. It is a funda-
mental principle of quantum mechanics. Oppositely we can say that any quantum 
state is the sum of two or more than two other unique states.

Superposition in quantum computing refers to the ability of a quantum system 
where quantum particle or qubit can exist in two different positions or say, in 
multiple states at the same time. It provides high-speed parallel processing in an 
unbelievable way and is very different from their classical equivalents that have 
binary constraints. The quantum computer system holds the information that exists 
in two states simultaneously. Qubits are brought into a superposition by influenc-
ing them with the help of lasers so that it can simultaneously store 0 and 1 at the 
same time. In classical computing, if there are 2 bits, the total possible values after 
combining we get are 4, out of which only 1 value is possible at any instant. But on 
the other hand, if there are 2 qubits in the quantum computer. The total possible 
values after combination are 4 and all are possible at once. It looks like unthinkable 
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because it is not like gravity that can be proved easily just by looking at the falling of 
an apple. The laws of classical physics fail here because superposition only exists in 
the territory of quantum particles.

For example, when solving a puzzle-like maze, a quantum particle can decide to 
take the various paths at the same time using superposition. This process matches 
the function of the parallel computer. Due to this property, the qubit is able to 
navigate the maze in exponentially less time than a classical bit

• Entanglement

Entanglement in quantum mechanics is a physical phenomenon where two or 
more quantum objects are inherently linked such that measurement of one rules 
the possible measurement of another. In other words, a pair or a group of particles 
interacts or share spatial locality such that the quantum state of each particle cannot 
be characterized independently of the other particle’s state in the same group even 
when they are separated by a large distance.

Entanglement is one of the important properties of quantum computing. It refers 
to the strong correlation existing between two quantum particles (physical proper-
ties of systems) or qubits. Qubits are linked together in a perfect instantaneous con-
nection, even if they are isolated at any large distances such as located at the opposite 
ends of the Universe. They are entangled or defined with reference to each other. The 
fact is that the state of one particle influences the state of the other. It creates strong 
communication between qubits. Once they got entangled, they will stay connected 
even after separated at any distance. In classical computers, if bits are doubled, com-
putational power also gets doubled. But in the case of Entanglement, adding extra 
bits to a quantum computer can increase its computational power exponentially. 
Quantum computer uses this property in a sort of quantum daisy chain.

Some examples of entanglement can be seen in nature such as electrons separated 
from each other at some distance inside an electron cloud are massively entangled 
with one another. If one electron is at both the states of spin-up and spin-down with 
each state having a probability of ½, a similar case is with the other electron.

• Interference

The property of interference in quantum computers is similar to wave interfer-
ence in classical physics. Wave interference happens when two waves interact with 
each other in the same medium. It forms a resultant wave with either their ampli-
tudes added together when they are aligned in the same direction known as con-
structive interference or a resultant wave with their amplitudes canceled out when 
waves are in opposite direction known as destructive interference. The net wave can 
be bigger or smaller than the original wave depending on the type of interference. 
Since all subatomic particles along with light pose dual nature, i.e. particle and wave 
nature both. The quantum particle may experience interference. If each particle 
goes through both the slits (Young’s double-slit experiment) simultaneously due to 
superposition, they can cross its own path interfering with the path direction. The 
idea of interference allows us to intentionally bias the content of the qubit towards 
the needed state. However, it can also result in a quantum computer to combine its 
various computations into one making it more error-prone [9].

7. The topography of quantum technology

The quantum phenomena are not limited to just quantum computing but they 
apply to other technologies also including quantum information science, quantum 
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communication, and quantum metrology. The progresses of all these technologies 
are mutually dependent on each other and can control as well as transform the 
entire quantum system. They share the same theory of physics, common hardware 
and related methods [10].

Quantum Information Science seeks the methods of encoding the information 
in a quantum system. It includes statistics of quantum mechanics along with their 
limitations. It provides a core for all other applications such as quantum computing, 
communications, networking, sensing and metrology.

Quantum Communication and networking concentrates on the conversation or 
exchange of information by encoding it into a quantum system to facilitate com-
munication between quantum computers. Quantum cryptography is the subset of 
quantum communication in which quantum properties help to design the secure 
communication system.

Quantum sensing and metrology is the study and development of quantum 
 systems. The drastic sensitivity of such a system to environmental nuisances can 
be utilized in order to measure important physical properties (e.g. electric and 
 magnetic fields, temperature, etc.) more accurately than classical systems. Quantum 
sensors are based on qubits and are carried out using the experimental quantum 
systems.

Quantum computing is the central focus of this research which exploits the 
quantum mechanical properties of superposition, entanglement and interference 
to enact computations. In common, a quantum computer is a physical system that 
comprises a collection of qubits that must be isolated from the environment for 
their quantum state to stay coherent until it performs the computation. These qubits 
are organized and manipulated in order to enforce an algorithm and to achieve a 
result with high probability from the measurement of its final state.

Difference between classical computers and quantum computers [11].

Comparison key Classical computer Quantum computer

Basis of 
computing

Large scale integrated multipurpose 
computer based on classical physics

High speed parallel computer based on 
quantum mechanics

Information 
storage

Bit based information storage using 
voltage/ charge

Quantum bit (qubit) based information 
storage using electron spin

Bit values Bits having a value of either 0 or 1 and 
can have a single value at any instant

Qubits having a value of 0,1 or 
sometimes negative and can have both 
values at the same time

Number of 
possible states

The number of possible states is 2 which 
is either 0 or 1

The number of possible states is infinite 
since it can hold combinations of 0 or 1 
along with some complex information

Output Deterministic- (repetition of 
computation on the same input gives the 
same output)

Probabilistic- (repetition of 
computation on superposed states gives 
probabilistic answers)

Gates used for 
processing

Logic gates process the information 
sequentially, i.e. AND, OR, NOT, etc.

Quantum logic gates process the 
information parallel

Scope of possible 
solutions

Defined and limited answers due to the 
algorithm’s design

probabilistic and multiple answers are 
considered due to superposition and 
entanglement properties

Operations Operations use Boolean Algebra Operations use linear algebra and are 
represented with unitary matrices.

Circuit 
implementation

Circuits implemented in macroscopic 
technologies (e.g. CMOS) that are fast 
and scalable

Circuits implemented in microscopic 
technologies (e.g. nuclear magnetic 
resonance) that are slow and delicate
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8. The architecture of quantum computer

Architecture can be seen as a blueprint. The architecture of the quantum com-
puter is a combination of classical and quantum parts and can be divided into 5 layers 
where each layer is represented as the functional part of the computer (Figure 1).

• Application Layer- It is not a part of a quantum computer. It is used for 
representing a user interface, the operating system for a quantum computer, 
coding environment, etc. that are needed for formulating suitable quantum 
algorithms. It is hardware-independent.

• Classical Layer- It optimizes and compiles the quantum algorithm into micro-
instructions. It also processes quantum-state measurement returned back from 
hardware in the below layers and gives it to a classical algorithm to produce results.

Figure 1. 
The architecture of a practical quantum computer. It can be divided into five layers, each performing different 
types of processing [12].
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• Digital Layer- It interprets microinstructions into signals (pulses) needed 
by qubit which act as quantum logic gates. It is the digital description of the 
required analog pulses in the below layers. It also gives quantum measurement 
as feedback to the above classical layer for merging the quantum outcomes to 
the final result.

• Analog Layer- It creates voltage signals which are having a phase and 
 amplitude modulations like in wave, for sending it to the below layer so that 
qubit operations can be executed.

• Quantum Layer- It is integrated with the digital and the analog processing 
layer onto the same chip. It is used for holding qubits and is kept at room 
temperature (absolute). Error correction is handled here. This layer determines 
how well the computer performs.

Quantum Processing Unit (QPU) is made up of three layers including the 
 digital processing layer, analog processing layer, and quantum processing layer. 
QPU and classical layer together constitute the Quantum Computer. Digital and 
Analog layers operate at room temperature.

9. Hardware and software of quantum computers

There should be an interface between the quantum computer and conventional 
computers for tasks related to data, networks, and users. In order to function use-
fully, the quantum qubit system needs organized control that can be managed by a 
conventional computer. The necessary hardware components for analog quantum 
computers are designed in 4 conceptual layers. First is the “quantum data plane” 
where qubit is present. Second is the “control and measurement plane” which is 
liable for performing operations and measurement on qubits as needed. The third 
is the “control processor plane” which defines the sequence of those operations and 
measurement outcomes to inform successive quantum operations required by the 
algorithm. And the last one is “host processor” which is a classical computer run-
ning a conventional operating system that handles user interfaces, network access, 
and big storage data structures. The processor is controlled using a high bandwidth 
connection that it provides [13].

A functional Quantum computer also requires software components in addi-
tion to the hardware. It is comparable to classical computers. Various new tools 
including programming languages are needed to substantiate quantum operations 
so that programmers can formulate algorithms, compilers that can map them to 
the hardware used by quantum computers and some other supports which can 
evaluate, optimize, debug and test programs. The programming language must 
be designed for any targeting quantum architecture. Some preparatory tools have 
been developed to support quantum computers and are accessible on the web [14]. 
These tools must be designed in an abstract way so that software developers can 
think more algorithmically without much concern for details of quantum mechan-
ics. This software must be flexible enough to adapt to the changes in hardware and 
algorithms. This is one of the biggest challenges in quantum computing to develop 
complete software architecture. Other than programming languages, there must 
be simulation tools for modeling quantum operations and tracking quantum states 
and optimization tools for evaluating needed qubit resources so that it can perform 
different quantum algorithms in an efficient manner. The main goal is to minimize 
the number of qubits and the operations required for the hardware [15].
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10. What is quantum algorithm?

An algorithm is a sequence of instructions or a set of rules to be followed to 
perform any task or calculation. It is a step-by-step process for solving a problem, 
especially by a computer. Any algorithm that can be executed on a quantum com-
puter is called the Quantum algorithm. Generally, it is possible to execute all clas-
sical algorithms on quantum computers. However, the algorithms should contain 
at least one unique quantum step due to the property of either superposition or 
entanglement to be called a Quantum algorithm.

Quantum algorithms are characterized by a quantum circuit. A quantum circuit 
is a prototype for quantum computation that includes each step of the quantum 
algorithm as a quantum gate. A quantum gate is an operation that can be performed 
on any number of qubits. It changes the quantum state of the qubit. It can be 
divided into a single-qubit or multi-qubit gate, depending on the number of qubits 
on which it is applied at the same time. A quantum circuit is determined with qubit 
measurement [16].

An algorithm executing on a simulator rather than hardware is very profitable 
in terms of execution time by replacing the measurement overhead at the end of 
the algorithm. It is also known as simulation optimization. A quantum algorithm 
is always reversible when compared to the classical algorithm. It implies that if the 
measurement is not considered, a quantum circuit can be traversed back which can 
undo all the operations done by a forward traversing of the circuit. According to the 
undecidability problem, all problems that are unsolvable by a classical algorithm 
cannot be solved by quantum algorithms too. But these algorithms can solve prob-
lems significantly faster than classical algorithms. Some examples of the quantum 
algorithm are Shor’s algorithm and Grover’s algorithm. The Shor’s algorithm can 
do factorization of very large numbers in exponentially faster than best-known 
classical algorithms [17], whereas, Grover’s algorithm is used for searching large 
unordered list or unstructured databases that is four times faster than the classic 
algorithm [18].

There are various quantum algorithms available so far are as follows [19]:

• Fourier transform-based quantum algorithms

• Amplitude amplification-based quantum algorithms

• Quantum walks based algorithm

• BQP-complete problems

• Hybrid quantum/classical algorithms

11. Design limitations of quantum computer

The exponential computing power of quantum computers can be accomplished 
by assessing and rectifying any kind of design limitation which helps to avoid their 
quality degradation. There are four major design limitations. The first limitation is 
that the number of coefficients in Dirac notation that defines the state of a quantum 
computer rise exponentially with the rise in the number of qubits, only when all 
the qubits get entangled with each other. To obtain the full potential of quantum 
computing, qubits must follow the property of entanglement where the state of any 
qubit must be linked with states of other qubits. It cannot be achieved directly since 
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it is hard to generate a direct relation between qubits. But it can be decomposed into 
a number of simple fundamental operations directly aided by the hardware. One 
can also perform indirect coupling which is known to be an overhead in machines 
in classical computing and is crucial at the early stages of development especially 
when qubits and gate operations are confined.

The second limitation is that it is impossible to copy an entire quantum system 
because of a principle called a no-cloning principle [20]. There is a risk of deletion 
of arbitrary information from the original qubits since the state of qubits or set of 
qubits are moved to another set of qubits rather than being copied. The generation 
and storage of copies of intermediate states or partial outcomes in memory is a 
necessary aspect of classical computing. But quantum computers need a different 
strategy. There are quantum algorithms that help to access classical bits from the 
storage so that it can be known which bits are loaded and being queried into the 
memory of the quantum system to perform its task successfully.

The third limitation is due to the absence of noise protection of qubit opera-
tions. The small deformities in gate operations or input signals are collected over 
time disturbing the state of the system because they are not discarded by the 
fundamental gate operations. This can highly affect the calculation preciseness, 
measurements and coherence of the quantum systems and lessen the qubit opera-
tions integrity [21].

The final limitation is the incapability of the quantum machine to identify its 
full state even after it has finished its operation. Assume quantum computer has 
introduced an initial set of qubits with the superposition of all states combination. 
After applying a function to this state, the new quantum state will have informa-
tion about the function value for each possible input and measuring this quantum 
system will not give this information. Therefore, a successful quantum algorithm 
can be achieved by manipulating the system in such a way so that states after finish-
ing the operations have a higher probability of getting measured than any other 
probable result.

12. Approaches to quantum computing

If we can design each gate slightly different from others, then the generated 
electric signals on communicating with each other produce periodic noise in each 
other. Thus, the noise immunity of gates used will be adequate to cancel the impact 
of various noise origins. Therefore, the concluding system will produce the same 
outcome as the logical gate model, even with millions of gates operating in parallel. 
The goal of the design is to minimize the noise in qubit that can prevent the qubit 
state to pass through noisy channels. The qubit state can be changed by changing its 
physical energy environment.

Thus, it leads to 2 approaches to quantum computing. In the first approach, the 
energy environment representing Hamiltonian is frequently changed smoothly 
as qubits operations are analog in nature and smoothly changes from 0 to 1 which 
cannot be completely corrected. It initializes the quantum state and then uses 
Hamiltonian directly to develop the quantum state. This is known as ‘Analog 
Quantum Computing’. It includes quantum annealing, quantum simulation and 
adiabatic quantum computers.

The second approach is similar to the classical computer approach where the 
problem is decomposed into a sequence of fundamental operations or gates. These 
gates have adequately defined digital outcomes for some input states. The set of 
fundamental operations of quantum computing is different from that of classical 
computing. This approach is referred to as ‘Gate-based quantum computing’.
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13. Different categories of quantum computer

13.1 Analog quantum computer

This type of system performs its operation by manipulating the analog values 
in the Hamiltonian representation. It does not use quantum gates. It includes 
quantum annealing, quantum simulation and adiabatic quantum computing. The 
quantum annealing is done using some initial set of qubits that gradually changes 
the energy encountered by the system until the problem parameters are defined by 
Hamiltonian. This is done in order to get the highest probability final state of the 
qubits that corresponds to the solution of that problem. The adiabatic quantum 
computer performs computation using some initial set of qubits in the Hamiltonian 
ground state and then Hamiltonian is changed slowly enough such that it stays in its 
ground state or lowest possible energy while the process takes place. It has process-
ing power similar to a gate-based computer but still cannot perform full error 
correction.

There are three basic types of analog quantum computing. These are divided on 
the basis of the required amount of processing power (number of qubits) and time 
to become practically and commercially available.

• Quantum Annealing

A basic rule of physics is that everything inclines towards a minimum energy 
state of a problem. This behavior is also true in the world of quantum physics. 
Quantum annealing is naturally used for real low-energy solutions such as optimi-
zation problems [22]. It is useful where the best solution is needed out of all possible 
solutions available. However, it is least powerful among all the types available. An 
example of this demonstrates an experiment to optimize traffic flows in a crowded 
city. Such an algorithm could successfully decrease traffic by choosing a convenient 
path. Volkswagen performs this with Google and D-wave system partnership. Such 
an experiment can be applied on a universal scale for all to get the cost-productive 
travel. This method can be applied to a collection of industry problems. For exam-
ple, optimization of the flight route, petroleum price, weather and temperature 
information and passenger details, developing commercial aircraft.

Quantum annealing is also used for digital modeling, sampling problems and 
other science fields. This will take only a couple of hours to model all the individual 
atoms of air flowing over an airplane’s wing at every tilts and speeds to formulate 
an optimized wing design. Using a sampling problem from energy-based distribu-
tion, the shape of energy can be characterized and is useful in machine learning 
problems. The samples improve the model using information about the state of the 
model for the given parameters.

• Quantum Simulation

Quantum simulations examine certain problems in quantum mechanics that 
are beyond classical physics. Simulating quantum phenomena that are complex in 
nature is one of the most important applications of quantum computing such as 
quantum chemistry. It includes modeling of chemical reactions on a large number 
of quantum subatomic particles. Quantum simulators can be used to simulate the 
misfolded protein structure [23]. Diseases like Alzheimer’s are caused by misfolded 
proteins. Using random computer simulation, researchers test new treatment drugs 
and learn reactions. To achieve correctly folded protein structure and study all 
drug-induced effects, sequential sampling is done which could take more than a 
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million years. Quantum computers can help evaluate it for making more effective 
treatments and medicines and it would be a significant healthcare improvement. In 
the future, quantum simulations will facilitate quick drug designing and testing by 
evaluating every possible drug combinations of protein.

• Adiabatic Quantum Computing

Adiabatic quantum computing is the most dominant, commonly applicable 
and hardest to create. A truly adiabatic quantum computer will use over a million 
of qubits. The maximum qubits we can access is less than 128 today. The basic idea 
behind this is that the machine can be directed at any complex calculation and 
obtain an immediate solution. This comprises analyzing the annealing equations, 
quantum phenomena simulation, etc. [24]. At least fifty unique algorithms other 
than Shor’s and Grover’s algorithm have been formulated to run on this quantum 
computer.

There is a possibility that quantum computers could revolutionize the area of 
artificial intelligence and machine learning. Some work has been done on algo-
rithms that would operate as building blocks of machine learning but the hardware 
and software for quantum AI are still not practically accessible.

13.2 NISQ gate-based computer

NISQ stands for Noisy Intermediate-Scale Quantum. It is also known as the 
Digital NISQ computer. These type of systems are gate-based and operates on a col-
lection of qubits without full error correction and cannot restrict all the errors. The 
computations must be designed in a way so that they remain practical on a quantum 
system with little noise and can be finished in fewer and sufficient steps so that 
Decoherence and gate errors do not hide the outcomes [25].

13.3 Gate-based quantum computer with full error correction

Such computers also perform gate-based operations on a set of qubits with 
the implementation of the Quantum Error Correction algorithm. It reduces or 
corrects the noise in the system occurring during the computation period. Errors 
may include inadequate signals, device forgery or undesired bonding of qubits to 
the environment or with each other. The error is reduced to such a limit that the 
system seems valid and precise for all computations. Such quantum computers can 
have various realizations and they must fulfill some conditions such as there must 
be an availability of a well-defined two-level system that can be used as qubits, a 
potential to initialize those qubits, a sufficiently extended amount of Decoherence 
time which can perform error correction and computation, quantum gates (a set 
of quantum operations) common for every quantum computation and a capabil-
ity of measuring each quantum bit individually without bothering others [26]. 
The analog quantum computers and digital NISQ computers are in progress while 
the gate-based computers with full error corrections are much more difficult and 
demanding.

14. Advantages of quantum computing

1. According to researchers, quantum computers will be able to solve those com-
plex mathematical problems that traditional computers find impossible to solve 
in a practical timeframe.
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2. It provides that computing power which can sufficiently process excessively 
large amounts of data (2.5 Exabyte daily i.e. equal to 5 million laptops) created 
all around the world to extract meaning from it.

3. Due to the teleportation phenomenon known as ‘quantum tunneling,’ it can 
work in parallel and use less amount of electricity, hence, reducing the power 
consumption up to 100 to 1000 times.

4. A general quantum computer is “thousands of times” faster than any classical 
computer. For example, Google has made a quantum computer [27] that is 100 
million times faster than any classical computer present in its lab.

5. It can solve complex problems without being overheated since for its stability it 
kept cold up to 0.2 Kelvin inside the quantum system.

6. It can easily solve optimization problems such as finding the best route and 
scheduling trains and flights. It would also be able to compute 1 trillion moves 
in chess per second. Quantum computers will be able to crack the highest 
security unbreakable encryption techniques. However, it would also build 
 hack-proof alternates.

7. It can bring up revolution from drugs to petroleum industries. The invention of 
new drugs will become possible. The marketable algorithms of financial orga-
nizations can be improved. The field of artificial intelligence can be improved 
soon.

15. Disadvantages of quantum computing

1. Due to advancements in quantum computers, the security of the existing Inter-
net of Things (IoT) would fall down. Cryptographic techniques, Databases of 
government and private large organizations, banks, and defense systems can 
be hacked. Considering these facts, quantum computers can be terrible for our 
future.

2. The Quantum Computer will work as a different device and cannot replace 
classical computers entirely. Since, classical computers are better at some chores 
than quantum computers like email, excel, etc.

3. It has not been invented completely yet as only parts are being implemented and 
people are still imagining how it would look.

4. It is very delicate and error-prone. Any kind of vibrations affects subatomic 
particles like atoms and electrons. Due to which noise, faults, and even 
failures are possible. It leads to “Decoherence” which is a loss of coherence in 
quantum.

5. Quantum processors are very unstable and are very hard to test even. For the 
stability of the quantum computer, it is kept at 0.2 Kelvin (absolute Kelvin) 
which is nearly below the universe temperature [28]. It is very hard to maintain 
and regulate such temperature. The main problem is to really develop it as a 
personal computer with the price range in the budget of consumers. They will 
be firstly accessible to large scale industry then come to retail markets.



75

Introduction to Quantum Computing
DOI: http://dx.doi.org/10.5772/intechopen.94103

16. Applications of quantum computing

Many quantum algorithms have been evolved for quantum computers that 
deliver speedup which is a result of some fundamental mathematical methods like 
Fourier transform, Hamiltonian simulation, etc. Most algorithms require a large 
number of qubits of the best quality and some error correction to provide use-
ful functionalities. These algorithms are formed in blocks rather than as a whole 
combined application since it is not practical. Therefore, it is a great challenge to 
create quantum applications that are really practically useful along with providing 
speedup with no error. The potential utility or say useful application of a quantum 
computer is an area of ongoing research. It is predicted that those applications 
require fewer qubits and can be carried out with a lesser amount of codes. It is pos-
sible to build algorithms that can run faster on quantum computers because of the 
distinct features of the qubit. Below are some of the primary applications that we 
will see soon in the upcoming era:

• Cryptography

Many important elements of IT security and online security such as e-commerce 
and electronic secrecy depend on encryption and mathematical algorithms which 
are difficult to break such as factoring very huge numbers into primes (RSA tech-
nique). It is done by traversing through every possible factor using conventional 
computers which takes a significant amount of time. Also, some modern algorithms 
other than RSA like AES, ECDSA, etc. cannot be cracked using even high com-
puting power. It makes it costly and cracking them even less practical. Quantum 
computers can do all these kinds of stuff in exponentially less amount of time. 
New quantum algorithms (e.g. Shor’s algorithm) are able to do it and more unique 
algorithms will develop [29]. But before that, new encryption techniques are being 
made to resist the quantum ones. Since the already running techniques and digital 
applications security are at greater risks.

• Optimization Problems

Optimizing a problem implies finding the best solution to that problem out of all 
the possible solutions. It can be done by minimizing the error and even minimizing 
the steps available. Quantum computers are best in solving optimization problems. 
There are a lot of quantum algorithms out of which quantum optimization algo-
rithms might improve the already existing optimization problems which are solved 
using conventional computers currently. Some of them are quantum semi-definite 
programming, quantum data fitting, and quantum combinatorial optimization. 
Some of the examples include simulating the molecular model like protein behavior 
for medical research which can lead to the new discovery of drugs for serious dis-
eases like cancer, lung disease, etc. Another example is the Simulation of the cellular 
structure of batteries for improving battery power and life in electric vehicles. It 
could also solve travel-related problems in real traffic just like traveling salesman 
problems to find the shortest path between many cities, going to each city once and 
returning back, modeling the entire finance market, and many more. Traveling 
optimization is the major work under Volkswagen recently [30].

• Artificial Intelligence

Artificial Intelligence counts on processing large and complex datasets. It is 
responsible for learning, inferring, and understanding. It learns until it stops 
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mistaking and making errors in its task. It takes a significant amount of time in 
learning too. But quantum computing can make it easy and more accurate. Since 
conventional computers are only training the learning model from a specific size 
of the dataset to restrict the computation time. Quantum computers can train 
these models over a huge dataset without sticking into the exponential time. The 
more data it uses to train, the more accurate it will be. Generative models generate 
output such as image, audio, etc. that can be fed to quantum computers to improve 
its quality and accuracy. Natural Language processing is another example that can 
understand complete sentences. Quantum computers can make it understand all the 
phrases and speech in real-time with improved quality, which is computationally 
costly with today’s computer.

• Quantum Simulation

It is an important utility in the field of quantum chemistry and material science 
[31]. This problem needs solving ground state energies of electrons and their wave 
functions, with or without the presence of some external electric or magnetic field. 
From the structure of atoms and electrons in chemistry to the rate at which chemi-
cal reactions are taking place, everything can be simulated very well. The classical 
computer when applied to this problem often fails to reach the level of precision 
needed to predict the rate of the chemical reaction.

It could also have commercial applications in areas such as medical and health-
care fields, chemical catalysts, storage of energy, pharmaceutical advancement and 
device displays.

17. Major challenges in quantum computing

The good news is that at any instant of time, the quantum state with the same 
number of quantum bits can stretch over all possible states as compared to classical 
computers and thus works in an exponentially massive space. However, to be able to 
use this space requires all qubits to remain interconnected. Even after such progress, 
improvements are still needed. The bad news is that making new and high-quality 
qubits does not guarantee the creation and efficient use of fault-tolerant quantum 
computers and is still having challenges in its path [32].

Qubits cannot naturally ignore the noise. Hence, the quantum system is more 
error-prone. It suffers from Decoherence. The biggest challenge is how it can handle 
any undesirable deviations or noise in quantum computers. Classical comput-
ers can produce clean noise-free outcomes by simply putting its state as off or 
‘0’, which is not possible for quantum computers where errors occur in physical 
circuits. Qubits will gradually lose its information as well as interconnection 
(entanglement) between each other. The error rate is seen as a design parameter 
for such systems which should be improved in large qubit systems also. However, 
to make the qubits stable and error-free, they are being insulated from the outside 
environment in super-refrigerated fridges or vacuum chambers and accurately 
handled [33].

Qubits are neither completely binary nor digital. It is having analog properties 
also. Gate can reject noise by dealing with the input signal value of 0.8 and treating 
it as 1. But in the analog signal, every value between 0 and 1 is permitted since they 
have their meanings. Signals cannot be checked for any kind of noise or corruption. 
Since 0.8 can be 1 with some error or 0.8 without error. Presuming the error as 0 
like Gates do or taking some noise value even if it was not present there can affect 
the adherence of the resulting quantum computation. Hence, there is a need for 
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algorithms like quantum error correction similar to the logical error correction in 
classical computers. These algorithms can be run on a noisy gate-based quantum 
computer to eliminate the errors and noises present in them [34].

It is possible to employ a Quantum Error Correction algorithm on a quantum 
system. But quantum error correction requires dealing with the overhead such as a 
large number of qubits and their fundamental operations and generally needs more 
resources. Also, problems with large data inputs require a large amount of time to 
create the input quantum state that would monopolize the computation time lessen-
ing the quantum benefits.

Quantum algorithm development is another challenge since achieving quantum 
speedup expects entirely new types of algorithm design as the speed of computa-
tion depends on the design of the algorithm. The design of the algorithm should be 
corresponding to the number of qubits used.

Further development of software tools in addition to hardware, is required to cre-
ate and debug quantum systems to help explain unknown issues and push towards 
designs.

Debugging quantum hardware and software is of utmost importance which 
depends on memory and intermediate machine states in classical computers. 
But in the case of quantum computing, states cannot be copied directly for later 
evaluation, and directly measuring intermediate state can bring it to halt. Hence, new 
strategies for debugging are essential for their development.

18. Importance of quantum computing

It is clearly possible to build a quantum computer that could perform computa-
tions that would run a lifetime on a classical computer. Practical applications of 
quantum computing need controlling the quantum phenomena and thus the quan-
tum world to an exceptional level. This job requires substantial engineering and 
research to build, manage and employ a noiseless quantum system. The experiment 
with quantum supremacy is an important test of the theory of quantum mechanics 
that will help to improve the support of quantum theory and leads to unexpected 
discoveries. The development of aspects and components of quantum information 
technology and computing has already started to influence the area of physics. The 
quantum error correction theory to attain the fault-tolerant quantum system has 
proven important. The quantum information theory is practically useful to study 
physics and dynamics of multibody systems like a massive number of quantum 
subatomic particles and even in blackhole and related concepts. Advancement in 
this area is important for an accurate understanding of various physical structures. 
It has contributed to many other engineering fields like physics, mathematics, 
chemistry, computer science, material science, etc. It has also advanced classical 
computing. Strategies to develop a quantum computing algorithm have helped 
in improving the classical computing algorithm also. Research in the quantum 
algorithm has answered many questions in the computer science area. It can help to 
evaluate the safety of cryptographic systems, clarifying the limitations of physical 
computational and advancing computational methods. It will help to advance the 
human’s understanding of the universe. The qubits that are recently being used in 
quantum computing is also used for building sensors, precision clocks, and other 
applications. Quantum communication is used for communicating two quantum 
systems at distance. There is an increased risk of asymmetric cryptography as well 
as the entire security system. Hence, the actions are being taken towards new quan-
tum cryptography. The development of quantum information, science, technology 
and computing is a global area now.
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19. Future scope of quantum computing

A significant amount of struggle is remaining before a practical quantum 
computer can be launched. There are some future advancements that are needed. 
Some of the future needs are enabling a Quantum Error Correction algorithm that 
requires low overhead and decreases the error rates in qubits, developing more 
algorithms with lesser qubits for solving problems, reducing circuit thickness so 
that NISQ computers can be operated, the advancement of methods which can 
verify, debug, and simulate the quantum computers, scaling the number of qubits 
per processor in such a way so that error rate is maintained or can be improved if 
possible, interleaving of operations in a qubit, recognizing more algorithms that can 
reduce the computation time and creating input–output for the quantum processor.

Such ‘Quantum games’ are predicted in the future that will give unexpected 
situations and results that a player can experience because quantum computers will 
take all the possible operations and throws them into the game randomly due to its 
quantum properties like superpositioning and entanglement of qubits. It will be a 
never-ending experience.

‘Quantum computing in Cloud’ has the potential to overtake business initiatives 
like in other emerging technologies such as cryptography and artificial Intelligence. 
Since the classical simulation of fifty qubits is equal to the memory of one Petabyte 
that doubles with every single qubit added [35], the memory required should also be 
large enough to provide an environment for application development and testing for 
multiple developers to simulate quantum computers using suitable shared resources.

AI and machine learning problems could be solved in a practical amount of time 
that can be reduced from hundreds of thousands of years to seconds. Several quan-
tum algorithms have been developed such as Grover’s algorithm for searching and 
Shor’s algorithm for factoring large numbers. More quantum algorithms are coming 
soon. Google has also declared that it would produce a workable quantum computer 
in the following 5 years with a 50-qubit quantum computer and will achieve quan-
tum supremacy. IBM is also offering commercial quantum computers soon.

The progress of development in the field of quantum computers depends on 
many factors. Interest and financial support from the private sector can help devel-
oping commercial applications for NISQ computers. It depends on the progress of 
quantum algorithm development, availability of enough investment in the quantum 
technology field from government and the exchange of ideas within researchers, 
scientists and engineers [36]. To illuminate the limitations of quantum technology, 
a defensive result is also beneficial. It can help in overcoming those negative results 
which can lead to a new discovery.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

As quantum computers with sufficient computational power are becoming 
mature, the security of classical communication and cryptography may compromise, 
which is based on the mathematical complexity. Quantum communication technol-
ogy is a promising solution to secure communication based on quantum mechanics. 
To meet the secure communication requirements of multiple users, multipoint-
interconnected quantum communication networks are specified, including quantum 
key distribution networks and quantum teleportation networks. The enabling 
technologies for quantum communication are the important bases for multipoint-
interconnected quantum communication networks. To achieve the better connection, 
resource utilization, and resilience of multipoint-interconnected quantum commu-
nication networks, the efficient network architecture and optimization methods are 
summarized, and open issues in quantum communication networks are discussed.

Keywords: multipoint-interconnected, quantum communication networks, 
quantum key distribution, quantum teleportation

1. Introduction

Quantum communication such as Quantum Key Distribution (QKD) and 
Quantum Teleportation (QT) is capable of exploiting the principles of quantum 
mechanics to transport classical, or even quantum, bits of information. quantum 
communication networks extend the concept of quantum communications, since 
they can transport, elaborate, and store quantum information (qubits) between 
different node pairs. Quantum communication networks leverage the principles of 
quantum mechanics including no-cloning, quantum measurement, entanglement, 
and teleporting. Hence, the new networking and computing capabilities emerge. 
At the same time, new and challenging constraints are imposed on the design and 
operations of quantum communication networks. This chapter firstly introduces 
the quantum communication enabling technologies including QKD and QT; then 
focuses on the research about QKD networks and QT networks to enable multipoint 
interconnection such as the architecture and service provisioning algorithms; 
finally, pays attention to problems and challenges of QT networking.
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2. Quantum communication enabling technologies

The realizations of quantum communication network mainly include quantum 
key distribution technology and quantum teleportation technology.

2.1 Quantum key distribution

Quantum cryptography, which applies quantum properties to design the secure 
communication system, is the subset of quantum communication. QKD technology 
is a realization of quantum cryptography. It generates and distributes symmetrical 
cryptographic keys with information theoretical security based on the fundamental 
laws of quantum physics, i.e., the security is independent of all future advances of 
algorithm or computational power. QKD has the characteristic of “point-to-point” 
implementation. Thanks to the developments of quantum relay and switching tech-
nologies, the long-distance QKD is enabled. The following two subsections briefly 
introduce the QKD implementation and the related quantum relay and switching 
technologies to realize long-distance quantum communication.

2.1.1 Quantum key distribution implementation

The first quantum key distribution (QKD) protocol, the famous BB84 protocol, 
was proposed by Charles Bennett and Gilles Brassard in 1984 [1]. Since then, a 
series of QKD protocols such as E91, B92, SARG04, COW, DPS, GG02, MDI-QKD 
have been proposed one after another. There are three main implementation 
technologies of QKD: Discrete-Variable Quantum Key Distribution (DV-QKD), 
Continuous-Variable Quantum Key Distribution (CV-QKD), and Measurement 
Device-Independent Quantum Key Distribution (MDI-QKD). DV-QKD encodes 
information on a single photon and uses a single-photon detector for detection. 
DV-QKD originated earlier and is more mature, with a longer safe transmission 
distance. Besides, multi-node quantum network has been successfully established. 
The disadvantage is that single-photon sources are tricky to prepare [2]. Unlike DV 
or qubit-based QKD, the secret keys in CV-QKD are encoded in quadrature of the 
quantized electromagnetic field and decoded by coherent detections, which is lower 
cost and more practical. Under the same conditions, the output key rate of CV-QKD 
is much higher than that of the DV-QKD, and it is highly integrated with traditional 
optical communication networks. However, the current CV-QKD technology is not 
as good as the DV-QKD technology in terms of safe transmission distance, and the 
problem of working bandwidth also needs to be further resolved [3]. The security 
of MDI-QKD does not depend on whether the quantum device is trusted or not. 
MDI-QKD completely removes all security loopholes in the detection system and 
ensures a QKD network security with untrusted relays. Compared with CV-QKD, 
MDI-QKD can obtain higher security key rate, but the communication distance is 
shorter, and the channel is required to be asymmetric (that is, the measurement 
equipment is required to be close to the user on one side) [4].

In the past 10 years, a series of small-scale QKD technology verification net-
works have been built abroad, covering local area networks, metropolitan area 
networks, and intercity networks [5–9]. At the same time, a number of major 
technical research studies have been carried out in China to address quantum 
secure communication. Local area networks, metropolitan area networks, inter-
city networks, and wide area networks have carried out related work, including 
the quantum communication Beijing-Shanghai trunk line project for connecting 
metropolitan area networks, and the planned satellite-ground integrated wide-area 
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quantum communication network. To keep faint quantum signals apart from 
intensive classical data signals, traditional QKD networks utilize low-noise dedi-
cated fibers, such as dark fibers, which will significantly increase QKD deployment 
cost. Also, researchers have studied how to combine QKD deployment onto existing 
optical networks [10].

2.1.2 Quantum relay and switching

There are two main ways to achieve long-distance QKD, namely quantum relay 
technology and quantum switching technology. On the one hand, quantum relay 
technology can solve the problem of exponential attenuation of photon signal 
transmission in optical fiber for long-distance QKD. There are currently two types 
of quantum relay technologies. One is based on trusted relay, and the other is based 
on quantum relay. The trusted relay scheme is to cache the key generated by the 
point-to-point link in the trusted relay node and then transmit the end-to-end 
key required by the user hop-by-hop through the multi-hop link using one-time 
pad. This scheme breaks through the transmission distance limitation of the QKD 
link, but the relay node for key transmission must be trusted [11]. The quantum 
relay scheme is to use the principle of quantum entanglement to realize the storage 
and forwarding of quantum states, so as to realize the long-distance distribution 
of quantum states [12]. In order to overcome the fading of quantum information 
during quantum channel transmission, using quantum nodes instead of optical 
nodes to transform quantum information can effectively increase the transmission 
distance. Quantum nodes with this function are usually called quantum repeaters. 
This technology does not require trustworthy relay nodes, but it is still in the stage 
of theoretical research. On the other hand, in quantum switching technology, 
trusted relay is mainly used by switching nodes of quantum secure communication 
network based on single core fiber. Through relay nodes, the “Beijing-Shanghai 
trunk line” passes through Beijing, Jinan, Hefei, and Shanghai, connecting Beijing 
and Shanghai’s quantum key distribution metro-network, which can provide 
data transmission based on quantum encryption for government affairs, finance, 
and other fields [13]. In 2018, Travis S. Humble et al. designed and implemented 
software-defined quantum networking protocol and soft switch to support the inte-
gration of quantum communication and existing optical communication [14]. In 
2020, by integrating the fiber and free-space QKD links, the QKD network in China 
has been extended to a total distance of 4600 km, where any user in the network is 
able to communicate with any other [9].

2.2 Quantum teleportation

QT involves the transportation of an unknown quantum state from one location 
to another, without physical transfer of the information carrier [15]. It is one of the 
main technologies for constructing quantum communication networks.

2.2.1 Quantum teleportation implementation

QT is a quantum information transmission method using the uncertainty of 
quantum entanglement to realize the remote transmission of quantum states, which 
is one of the main technologies for constructing quantum communication network 
[15]. In 1993, Bennett et al. first proposed a theoretical protocol based on Einstein-
Podolsky-Rosen entangled photons for teleportation [16]. The main idea is that the 
communication parties share a pair of entangled particles to establish a quantum 
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channel, and the sender will transmit the unknown. After the quantum state and 
the shared particle perform a specific measurement on the local particle, the mea-
surement result is notified to the receiving end, and the receiving end user performs 
a quantum gate operation on the particles owned based on the measurement result 
to obtain the quantum state to be transmitted by the sending end. It is worth noting 
that in the process of QT, the physical particles at the sender are not transmitted to 
the receiver but always stay in the sender. What is transmitted is only the quantum 
state, and the sender can even have nothing to do with this quantum state.

In 1997, the Zeilinger Research Group in Austria first reported the QT experi-
ment in “Nature” [17]. The experimental results confirmed the feasibility of QT 
with a success rate of 25%. Since then, many scholars have developed theories of 
QT, exploring how to use different entangled states to construct quantum channels 
in the process of teleportation or how to transmit multi-qubit quantum states. In the 
current teleportation network experiment, the challenge is taken and a 30 km opti-
cal-fiber-based quantum network distributed over a 12.5 km area is constructed, 
which is robust against noise in real world with active stabilization strategies, allow-
ing us to realize QT with all the ingredients simultaneously [18]. In Calgary fiber 
network, QT is reported from a telecom photon at 1532 nm wavelength, interacting 
with another telecom photon onto a photon at 795 nm wavelength. It improves the 
teleportation distance to 6.2 km [19].

2.2.2 Entanglement swapping and quantum repeaters

Quantum entanglement is a unique property of quantum systems, and it is also 
an important communication resource in QCNs. In principle, quantum entangle-
ment is based on quantum superposition state [20]. Since quantum superposition 
experiments only reflect the indistinguishability of physical processes and are not 
limited to any specific physical quantities (such as momentum, energy, position, 
polarization, etc.), quantum entanglement is essentially not necessarily related to 
any specific physical quantities. The characteristics of quantum superposition have 
led many scholars to use a variety of methods to successfully prepare entangled 
states in experiments. For example, there are two typical methods for entangled 
photon generation technology based on parametric down conversion. The first type 
of entanglement source is the II-type phase-matched nonlinear crystal entangle-
ment source [21]. The second entanglement source uses collinear nonlinear crystals 
to generate entanglement [22]. In addition, there is also the use of photonic crystal 
fibers to generate entangled photon pairs [23].

3. Quantum key distribution network

QKD generates and distributes symmetrical cryptographic keys with informa-
tion theoretical security based on the fundamental laws of quantum physics, i.e., 
the security is independent of all future advances of algorithm or computational 
power. Quantum key distribution network (QKDN) is a network comprising two or 
more QKD nodes connected through QKD links, which allows sharing keys between 
the QKD nodes by key relay when they are not directly connected by a QKD link.

Although the international research on QKD is getting more and more in-depth, 
the research focus has always been on the performance improvement of the “point-
to-point” QKD system, that is, how to increase the rate of quantum key generation, 
reduce the qubit error rate, and improve quantum key transmission distance, etc. 
It is difficult to use point-to-point QKD technology to support encryption require-
ments of various services from many nodes, and the security of services cannot be 
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guaranteed. Therefore, it is urgent to establish a QKDN that supports multipoint 
interconnection. This part will introduce the existed research about QKDNs, includ-
ing the QKDN architecture, trusted repeater node structure, routing and resource 
allocation, key pool construction, resilience, and machine learning application.

3.1 The QKDN architecture

Optical networks today represent a fundamental infrastructure for data trans-
port in the Internet, with more than 2 billion km of fiber deployed globally. To 
integrate QKD into existing optical networks, an architecture of QKD-enabled 
optical network with software-defined networking technology is proposed [24], as 
shown in Figure 1. It satisfies the needs of key resource pooling, network openness, 
and pipeline flexibility. The architecture consists of four planes: application (app) 
plane, control plane, QKD plane, and data plane, in top-down order.

The application plane generates connection requests. It is at the top of this 
architecture and is the destination of the final application of quantum keys. It 
uses the shared key pair provided by QKDN to perform encrypted communica-
tion between users. It mainly includes two application types: key application and 
network application.

The control plane is implemented using an SDN controller and is in charge of 
resource management and allocation for the QKD plane and data plane. The control 
plane is the core module of the QKDN architecture. It controls the key distribution 
behavior of the QKD plane through the south-bound interfaces between the control 
plane and the QKD plane and communicates with the application layer. Introducing 
SDN is beneficial for managing the entire network’s resources via logically central-
ized control. The north-bound interfaces of control plane open up network capa-
bilities to the application plane. At the same time, the control plane can control the 
key supply strategies and complete the information interaction. Specifically, func-
tions in the control plane of QKDN include QKDN topology acquisition, network 
virtualization, QKDN path calculation and resource allocation, QKD application 
registration, QKD service configuration, link control, policy control, notification 
processing, and quality of service control. The control plane also supports connec-
tion control, network optimization, and the ability to provide third-party applica-
tions in multi-domain, multi-technology, multi-level, and multi-vendor QKDN. 
In order to realize the scalability of the control plane, the control plane should also 
support hierarchical structure, multiple control domain division, and controller 
hierarchical nesting, etc.

Figure 1. 
The architecture of QKD-enabled optical network [24].
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For each optical connection to be established in the network, in addition to the 
data channel (DCh), QKD requires a quantum channel (QCh) and a public channel 
(PCh) for secure key synchronization [25]. The QKD plane and data plane share fiber 
spectrum resources using WDM technology to construct QSCh, PICh, and TDCh. 
Figure 1 shows a possible distribution of different channels in the fiber C-band. PICh 
and TDCh belong to the data plane. They can use general transmitters and receivers. 
Quantum communication node (QCN) has quantum switching functions: quantum 
signal sending and quantum signal receiving. It can use existing technologies for 
quantum switches, quantum transmitters, and quantum receivers [26]. Physically, an 
optical cross-connect (OXC) and a QCN are co-located at one node.

There are two types of connection requests in QKDNs including connection 
requests with and without security requirements. For example, when a connection 
request arrives with security requirements from node 1 to node 5 shown in Figure 1 
using black solid lines, SDN controller computes and allocates resources for chan-
nels including TDCh, PICh, and QSCh. In contrast, when the connection request 
arrives without security requirements from node 6 to node 4 shown in Figure 1 
using red solid lines, it is served by TDCh in data plane. The procedures of signals 
for configuring the two requests are delineated using black and red dashed lines in 
Figure 1, respectively. For the connection request with security requirement, the 
construction of QSCh and PICh for secure key synchronization is completed (steps 
2–4), and the construction of TDCh is completed (steps 5–7).

3.2 Trusted repeater nodes structure

To overcome the distance limitation of QKD, either quantum repeaters or trust 
repeater nodes (TRNs) are required. However, the feasibility of quantum repeat-
ers has yet to be demonstrated in practical long-distance QKD networks [27]. The 
TRN technique is a solution to construct long-distance QKD, and it has been widely 
adopted for the deployed QKD networks such as the deployed 2000 km QKD 
backbone network between Beijing and Shanghai in China recently.

An example of long-distance QKD based on TRNs is illustrated in Figure 2 [28]. 
QBNsrc and QBNdest act as the source and destination QKD backbone nodes (QBNs) 
of two QKD users. TRN1 and TRN2 are deployed between QBNsrc and QBNdest. Three 
QKD links are separately established between QBNsrc and TRN1, TRN1 and TRN2, 
and TRN2 and QBNdest, while secret keys Ks1, K12, and K2d are separately produced 
on the three QKD links. To enable long-distance QKD between QBNsrc and QBNdest, 
four steps are performed as follows.

1. TRN1 uses secret key K12 to encrypt secret key Ks1 and obtains the encrypted 
message K12 ⊕ Ks1.

2. TRN1 sends the encrypted message K12 ⊕ Ks1 to TRN2. TRN2 uses secret key K12 
to decrypt K12 ⊕ Ks1 and obtains secret key Ks1.

3. TRN2 uses secret key K2d to encrypt secret key Ks1 and obtains the encrypted 
message K2d ⊕ Ks1.

4. TRN2 sends the encrypted message K2d ⊕ Ks1 to QBNdest. QBNdest uses secret 
key K2d to decrypt K2d ⊕ Ks1 and obtains secret key Ks1.

Finally, QBNsrc and QBNdest can share the secret key Ks1. To guarantee the ITS of 
secret keys, one-time pad cryptosystem is required to be used for encryption. To 
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extend the distance of QKD, a number of TRNs can be applied. Note that, each TRN 
is required to be trustworthy.

3.3 Routing and resource allocation in QKDN

With the expansion of the network scale, the number of users, and the continu-
ous increase of security services, the problems of insecure key distribution process 
and low resource utilization in the key scheduling process in the prior art have 
become more and more prominent. To accomplish the key supply for services in 
QKDN effectively, the QKDN needs an efficient routing and resource allocation 
algorithm.

To accomplish the key supply for services, the concept of key as a service (KaaS) 
is proposed in [29]. Its meaning is providing secret keys as a service in a timely 
and accurate manner to satisfy the security requirements. The typical functions of 
KaaS are secret-key deployment and employment. To enable these functions, two 
secret-key virtualization steps are proposed including key pool (KP) assembly and 
virtual key pool (VKP) for secret-key deployment. For the KP assembly, the secret 
keys stored in each pair of key storages can be virtualized into a KP to facilitate 
secret-key resource management (e.g., KPA-B between KS-A and KS-B). For VKP 
assembly, a portion of secret keys in a KP can be virtualized into a VKP to enhance 
the security of dedicated service transmission (e.g., VKPA-B-1 or VKPA-B-2 abstracted 
from KPA-B). Hence, with the combined two steps, the secret keys can be deployed 
and employed for securing different services in QKDNs.

Given that only finite wavelength resources can be reserved as QKD links, the 
time-scheduled technique can be applied to increase efficiency by dividing each 
wavelength channel for QCh/PCh into multiple time slots. Then, through the 
sharing of QCNs and QKD links in different time slots, the assembly of KPs can 
be realized between node pairs. The granularity of a time slot, which is denoted by 
t, is the synchronization time to produce a fixed number N of secret keys after KP 
assembly between two directly interconnected nodes. Note that, the synchroniza-
tion time includes the time for channel estimation and calibration, qubit exchange, 
key sifting, and key distillation. Considering the constant consumption of the secret 
keys in KPs by the services for encrypting and decrypting data, the periodical KP 
assembly is needed to compensate for secret-key consumption. The period of KP 
assembly is denoted by T. Note that t < T, which ensures that KP assembly can be 
realized within a period.

As shown in Figure 3, a static time-shared KP assembly strategy for efficient 
secret-key deployment based on the Dijkstra and first fit (FF) algorithms is 

Figure 2. 
Example of long-distance QKD based on TRNs [28].
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presented. The KP assembly request is denoted by KP(sk, dk, N), where sk and dk 
denote the source and destination nodes of the KP assembly request. The number 
of KPs is calculated by n(n – 1)/2 since that KP is assembled between any pair of 
nodes. Here, n is the number of nodes in a QKDN. To compute and select the short-
est QKD path between two nodes efficiently, the Dijkstra algorithm is utilized. The 
number nh of hops is also computed, which aims to determine the required number 
of time slots. Then, to allocate available time slots for the assembly of different KPs, 
the FF algorithm is utilized.

After KP assembly, secret-key resource becomes a novel resource dimension 
in QKDNs, which can be virtualized. The virtualized KP is denoted as VKP. By 
assembling VKPs, the confidential services can be secured. Considering the differ-
ent security requirements of services, different VKPs can require different numbers 
of secret keys. The type of VKPs with different secret-key resource requirements is 
denoted by V. The VKP assembly for secret-key employment is needed to satisfy the 
specific secret-key requirement of each VKP. The required secret keys for the assem-
bly of a VKP are denoted by KV. Secret keys will be updated and reallocated for VKP 
assembly when the KPs are assembled again. The updating and reallocating secret 
keys are necessary to enhance the security of confidential services.

Figure 3 presents a static on-demand VKP assembly strategy for efficient 
secret-key employment. The VKP assembly request is denoted by VKP(sv, dv, KV), 
where sv and dv are the source and destination nodes of the VKP assembly request. 
Secret-key resources cannot be reutilized, which are different from conventional 
computing, switching, and wavelength resources. Accordingly, some complicated 
resource allocation algorithms in conventional network scenarios such as most-used 
and load-balanced algorithms are not suitable for allocating secret keys in QKDNs. 
But the FF algorithm, which has high feasibility, can be utilized to allocate secret 
keys for the VKP assembly. The secret-key resources can be efficiently utilized and 
allocated using the on-demand VKP assembly strategy.

The simulations show the benefits of KaaS for efficiently deploying and employ-
ing secret keys as well as for security enhancement, where the balance of KPs’ 
secret-key resources and VKPs’ secret-key requirements can be achieved.

3.4 Key pool construction in QKDN

Aiming at the problem of low utilization of key resources in QKDNs, and the 
need to balance the inflow and outflow of key resources, a construction mecha-
nism of virtual quantum key pools (QKPs) in QKDN is proposed [30], which 
achieves reasonable scheduling and efficient use of channel resources and key 
resources.

Figure 3. 
KP and VKP assembly strategies for key supply [29].
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The extension of QKD from point-to-point systems to network-wide 
 multipoint-interconnected systems requires to enhance the secret-key synchroniza-
tion, storage, and provision, which improves the resource management and security 
performance. QKP construction in QKDNs is a potential solution to satisfy these 
requirements. In each node, there is a secret-key memory (SKM), which stores 
the synchronized secret keys. To improve the secret-key management, secret keys 
between each pair of SKMs are virtualized into a QKP, which is also denoted as VKP. 
QKP between the two nodes dynamically provides different numbers of secret keys 
for encrypting data according to different security requirements. Figure 4 shows 
an example of QKP in point-to-point QKD system including QKD enhancements in 
secret-key synchronization, storage, and provision.

There are three main steps for constructing QKPs [30]:

• QCN-A encodes and transmits quantum signals to QCN-B via QCh.

• QCN-A and QCN-B interchange public information via PCh, so as to accom-
plish secret-key synchronization.

• After synchronization, SKM-A and SKM-B store secret keys between QCN-A 
and QCN-B respectively. The secret keys between SKM-A and SKM-B are 
virtualized to construct QKPAB, which enables key supply on demand between 
Node-A and Node-B according to different security requirements through the 
CCh or DCh.

As for the support techniques for QKPs, QKPs are constructed on the control 
plane to manage the secret keys between QKD node pairs. They are all controlled by 
the SDN controller and can manage secret-key exchange, storage, assignment, and 
destruction. The SDN controller with programmable and flexible network control 
capabilities can also provide the effective implementation technique for QKPs.

4. Resilience of QKDN

The occurrence of failure is inevitable in QKDNs. Resilience of QKDN is very 
important. The key distribution on the corresponding routes will be disrupted, and 
key provisioning services will be affected by the failure of a single link. The security 
demands of users are intuitively violated. Apart from that, a high recovery time 
and capital expenditure will be indirectly induced further by such interruption. 

Figure 4. 
QKP in point-to-point QKD system [30].
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Recovering and protecting failures for key provisioning services in QKDNs are an 
indispensable and vital problem to be solved.

In order to recover the key provisioning services affected by the failures in 
QKDNs, a Secret-Key Reallocation Strategy (SKRS) shown in Figure 5(a)-(c) is 
proposed including One-Path Method (OPM), Multi-Path Method (MPM) and 
Time-Window-based Method (TWM)) [31]. The strategy is to reallocate secret keys 
in QKPs and find available wavelengths, which are able to recover secret keys. By 
allocating the secret keys in QKPs over other paths, the security demand in failure-
affected links will be satisfied. Multiple paths will try to provide keys simultane-
ously in case that the secret keys in one path are not enough. If multiple paths still 
fail to provide secret keys to meet the security demands, time division multiplexing 
technology can be considered. Simulation results verified that three proposed 
methods in the strategy can recover the failure-affected key provisioning services in 
different degree. Three methods of the strategy are as follows.

• One-Path Method (OPM): The secret-key provisioning capability of a path 𝑃𝑃 
is denoted by secret-key volume (𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙) provided in 𝑃𝑃. The two failure-affected 
nodes are taken as the source and destination. Multiple paths are calculated as 
set 𝑃𝑃 for the recovery. For each 𝑝𝑝 in 𝑃𝑃, 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙 is calculated, and whether path 𝑃𝑃 
can satisfy the security demands (𝐾𝐾𝑑𝑑) is checked. Here, the unqualified paths 
will be removed from 𝑃𝑃, and the rest of the paths will be sorted in the decreas-
ing order of 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙. Then, the strategy tries to find wavelength resources that 
are able to recover, and it stops once the enough required resources are found, 
when the link between QN1 and QN5 fails, path QN1- > QN4- > QN5 will be 
chosen to provide the secret-key and wavelength resources, which is shown in 
Figure 5(a). If no path is found, go to MPM.

• Multi-Path Method (MPM): MPM uses multiple paths as a group to recover 
the failed key distribution services. Different from OPM, MPM needs to check 
whether the sum of 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙 in set 𝑃𝑃 can meet the security demands 𝐾𝐾𝑑𝑑. If so, OPM 
takes the paths that satisfy the 𝐾𝐾𝑑𝑑 as the candidate recovery paths; otherwise, 
go to TWM. In case that no single path has secret-key provisioning capabil-
ity, two paths QN1- > QN4- > QN5 and QN1- > QN2- > QN3- > QN5 jointly 
provide secret keys, which is shown in Figure 5(b).

• Time-Window-based Method (TWM): TWH retries the steps in the 
OPM and MPM since the volume of existing secret keys changes over time. 
The OPM and MPM are executed during the time window until they are 
successful.

Figure 5. 
Three methods. (a) OPM, (b) MPM, and (c) TWM [31].
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4.1 Machine learning application in QKDN

Machine learning (ML) is an application of artificial intelligence (AI) that 
provides systems the ability to automatically learn and improve from experience 
without being explicitly programmed. In recent years, a huge amount of attention 
on ML has been attracted from both the academia and the industry. There has been 
much development related to ML technologies in both hardware and software. More 
on-board acceleration chips for neural networks are implemented by new low-
power devices.

Due to the advantages of ML, ML can help to solve several problems in QKDN. 
In terms of parameter optimization for QKD, ML can greatly improve the efficiency 
of parameter optimization and allow it to be performed in real time on low-power 
devices, making it a highly useful tool for both free-space QKD and QKD networks. 
In terms of key resource utilization, the effectiveness of using reinforcement learn-
ing to realize resource allocation in QKD networks is verified, which was published 
by Asia Communications and Photonics Conference (ACP) 2020 and honored as the 
best paper award in industry innovation [32]. As for the standardization activities, 
𝑃𝑃 recommendation ITU-T Y.QKDN-qos-ml-req “Requirements of machine learning 
based QoS assurance for quantum key distribution networks” specifies the func-
tional mechanisms of machine-learning-based quality of service (QoS) assurance 
for QKDN; the supplement ITU-T Y.supp.QKDN-mla “ITU-T Y.3800-series -  
Quantum key distribution networks - Applications of machine learning” specifies 
different application scenarios of ML in QKDN. In detail, the applications of ML in 
QKDN include the applications in the quantum layer, key management layer, and 
QKDN control and management layers of QKDN.

• The applications of ML in the quantum layer of QKDN represent applying the 
ML to improve the performance of the quantum layer such as the quantum 
channel performance: (1) ML-based quantum channel performance predic-
tion method will predict the quantum channel performance according to dif-
ferent channel environments. Through the predictions, the quantum channel 
will be in the optimal performance state in real time. Measures can be taken 
in advance to improve the channel environment to reduce unnecessary losses. 
(2) ML-based QKD system parameter optimization solution will optimize the 
QKD system quickly and accurately based on the real-time changing environ-
ment, maintaining the QKD system in the optimal performance state in real 
time. (3) ML-based RUL prediction of components in a QKD system solution 
will accurately estimate the RUL of components, which greatly improves the 
operability of the components and provides a guarantee for the normal QKD 
system operations.

• The applications of ML in the key management layer of QKDN represent 
applying the ML in the key management layer and improving the key man-
agement efficiency and stability: (1) ML-based key formatting solution will 
reduce the time cost and the risk of key synchronization failure during the 
key consumption by guiding the key formatting with the awareness of service 
characteristics before storing keys. (2) ML-based key storage management 
solution will evaluate and predict health state of key storage and help to realize 
the efficient utilization of key resources. (3) ML-based suspicious behavior 
detection in the key management layer will improve the efficiency of suspi-
cious behavior detection and achieve great authentication accuracy.
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• The applications of ML in the control and management layers of QKDN 
represent applying the ML in the control and management layers and improv-
ing the QKDN management and control efficiency: (1) The ML-based data 
collection and data preprocessing will collect and preprocess multi-source, 
heterogeneous QKDN data in an efficient way. The collected and preprocessed 
data will be transformed into understandable, unified, and easy-to-use struc-
tures and optimized in the form of balanced characteristics for subsequent 
procedures. (2) ML-based routing solution will improve the routing effective-
ness and the key resources utilization. (3) The ML-based QKDN fault diagnosis 
solution will reduce the loss and avoid the risk of QKDN faults by realizing 
fault location and fault prediction.

5. Quantum teleportation network

Quantum teleportation (QT) is a quantum information transmission method 
that uses the uncertain properties of quantum entanglement to realize the remote 
transmission of quantum states. This part will introduce the existing research about 
QTNs briefly, including the point-to-point QT mechanism and multi-Hop QT 
networking mechanism.

5.1 Point-to-point QT mechanism

Point-to-Point QT mechanism [33] is based on quantum entanglement exchange 
[34]. The basic principle of quantum entanglement exchange is as follows: The 
purpose of quantum entanglement exchange is to generate quantum entanglement 
between quantum systems that have never directly interacted through certain phys-
ical processes. Entanglement swapping has great application prospects in quantum 
communication and quantum information networks, such as preparing entangle-
ment and extending the distance of quantum communication [35]. As Figure 6 
shows, suppose particles A, B and particles C, D are two sets of EPR entangled 
pairs, respectively. Performing the Bell basis joint measurement of particles B and 
C, particles A and D is also in an entangled state and is in the same entangled state 

Figure 6. 
Example of a one-hop, first-generation quantum repeater [36].
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as particles 2 and 3, so that the entanglement exchange is successfully realized, and 
the point-to-point QT mechanism is completed.

5.2 Multi-hop QT networking mechanism

In a QTN based on teleportation, the necessary conditions for the transmission 
of information-carrying quantum states between two nodes are: a quantum chan-
nel composed of entangled particle pairs must exist between the source node and 
the destination node. However, it is impossible for any two nodes in the network to 
share entangled particle pairs, which means that the source node may not be able to 
directly transmit information to any other node in the network. In order to achieve 
communication between remote nodes, intermediate nodes are introduced to 
assist in the transmission of information [18]. Therefore, when the sender and the 
receiver directly share the entangled particle pair, the two nodes can directly trans-
mit the quantum state; otherwise, there needs to be at least a quantum path estab-
lished between the sender and the receiver—a quantum path established through an 
intermediate node. Entangled particle pairs are shared between neighboring nodes. 
The method of using teleportation technology to achieve quantum information 
transmission through intermediate nodes is called multi-hop QT [37].

In the traditional multi-hop QT system, the hop-by-hop QT scheme is often 
used. In the hop-by-hop QT transmission process, it is necessary to measure the 
entanglement of the nodes on the path one by one. According to the measurement 
result of the previous node, perform a unitary transformation on the particles held 
by the node to restore to the quantum state to be transmitted. The transmission of 
quantum information is from the source node to the destination node. An efficient 
multi-hop QT scheme is proposed [37]. The measurement results of the source node 
and the intermediate node are uniformly transmitted to the destination node, and 
only the unitary transformation is performed at the destination node.

6. Open issues in quantum communication networks

In recent years, the experimental research [15, 20, 38, 39] of quantum entangle-
ment has mainly focused on how to expand the entanglement distribution distance, 
and the construction of quantum communication networks is mostly based on simple 
network topologies, mainly point-to-point network topologies, and a small number 
of star or bus network topology containing several nodes. There is little research on 
quantum communication networks under complex network structures, and research 
work should also be concentrated in the field of network security and quantum state 
transmission. Few works [40] have studied entanglement distribution from the level 
of quantum communication networks, so it is urgent and challenging to realize the 
connectivity of quantum communication network, repeating, switching, and routing 
quantum communication network and multi-layer quantum communication network.

• Connectivity of quantum communication network. How to deploy entangled 
particles and the location of distribution nodes play a vital role in the connectivity 
of the network. However, most of the current quantum communication network 
construction work is based on simple network topologies, mainly point-to-point 
network topologies, and a small number of star or bus network topologies that 
contain several nodes. There is little research on quantum communication net-
works under complex network structures, and research work is mainly focused on 
the field of network security and quantum state transmission, and the research on 
how to improve network connectivity is still insufficient.
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• Repeating, switching, and routing quantum communication network. For the 
collaborative planning of the QT network, the main goal is to create relays, 
switches, and routes for quantum entanglement. The physical and software 
solutions in traditional networks are not suitable for quantum networks. The 
challenges they face include different forms of quantum entanglement genera-
tion and exchange, multi-user purification protocols, fusion and coordinated 
control, operation of traditional networks and quantum networks. To dis-
tribute entangled pairs between fixed target pairs, quantum repeaters need 
to be used to extend the distribution distance of entangled pairs. Unlike the 
operation of classical repeaters, quantum repeaters do not amplify photons in 
an entangled state during photon transmission. On the contrary, the quantum 
repeater can “jump” the entanglement property in the extra distance interval 
by consuming the resources of the second entangled pair. The innovation to 
achieve this is the quantum process of entanglement swapping.

• Multi-layer quantum communication network. The current quantum com-
munication experiments rely on a set of devices with limited functionality and 
performance. However, to create wide-area and operational quantum networks, 
we need more capable devices with additional functionality. The devices are 
required to satisfy suitable requirements for reliability, scalability, and mainte-
nance. Essential network devices to construct QTN include quantum memory, 
quantum switches, multiplexing technologies, transducers for quantum sources. 
Quantum memory should be improved with efficient optical interface and 
satellite-to-fiber connections; quantum switches should have high speed and low 
loss; transduction including microwaves is required, which is from optical and 
telecommunications regimes to quantum computer-relevant domain. Designing 
a quantum internet prototype capable of performing the aforementioned tasks 
will require developing a new quantum-updated version of the network stack.

7. Conclusions

In this chapter, the technologies to realize multipoint-interconnected quantum 
communication networks are summarized. Quantum communication enabling 
technologies including point-to-point QKD technologies and QT technologies are the 
basis to construct multipoint-interconnected quantum communication networks. As 
two typical quantum communication networks, quantum key distribution network 
(QKDN) and QT network are introduced respectively. In order to interconnect multiple 
points in QKDN, four sub-problems (i.e., architecture of QKDN, key supply in QKDN, 
resilience of QKDN, and machine learning in QKDN) are addressed. The architecture 
in QKDN consists of four planes: application (app) plane, control plane, QKD plane, 
and data plane, in top-down order. Key supply in QKDN needs a reasonable quantum 
key pooling mechanism and a balanced key resource scheduling strategy. Resilience of 
QKDN includes three methods to recover the failure-affected key provisioning services 
in different degrees. In order to interconnect multiple points in QT network, the existed 
research mainly pays attention on point-to-point QT mechanism and multi-hop QT 
networking mechanism, only few works have studied entanglement distribution from 
the multipoint interconnection of QT networks. Some open issues in quantum commu-
nication networks are also discussed, such as connectivity of quantum communication 
networks and how to plan quantum communication networks collaboratively.
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