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Preface

In 2012, my colleagues and I worked on a project from NASA on change detection 
using hyperspectral images. Since then, we have worked on a few other projects 
funded by DOE on land cover classification, NASA on Mars rover image processing, 
and DARPA on border monitoring. There are some common technical challenges in 
the above applications. For example, the images have either low spatial resolution or 
low spectral resolution. Through those projects, we have started to realize the power 
of some new technology breakthroughs in image restoration techniques and their 
impact on some real applications such as change detection, land cover classification, 
etc. For example, the demosaicing of NASA’s Mastcam images is still being done 
using a technology developed in 2004. After we applied the latest deep learning 
based demosaicing, we were able to dramatically improve the quality of demosaiced 
images. Similar breakthroughs in image processing have been ongoing in the past 10 
years. It is the above remarkable progress in image processing that motivated me to 
conceive the idea of editing this book.

I would like to thank all the contributors for spending their precious time to prepare 
these book chapters, which are by no means a thorough overview of the recent 
advances in image restoration, but rather a glimpse of this important research area. 
There are eight chapters divided into five sections in this book.

Section 1 contains Chapter 1, which provides a short overview of image restoration 
applications in recent years. Some interesting applications in Mars rover Curiosity 
are mentioned.

Section 2 contains Chapters 2 and 3 on image enhancement of multispectral and 
hyperspectral images. Chapter 2 presents some new results on the pansharpening 
of hyperspectral images using multi-platform data. This is a challenging problem 
because the high resolution images and the low resolution hyperspectral images 
come from different imagers that have different spectral characteristics such as 
viewing angles, collection times, bandwidths, etc. More research is needed in 
this area. Chapter 3 summarizes the application of some recently developed deep 
neural network models to enhance the left Mastcam images with help from the 
right Mastcam images. Actual Mastcam images were used to demonstrate the 
performance of the proposed algorithms.

Section 3 contains Chapters 4 and 5 on the application of generative adversarial 
network (GAN) in image enhancement. Chapter 4 addresses an important practi-
cal problem in machine learning/deep learning. The problem is about the lack 
of training data in target detection and recognition using infrared videos. Three 
performance metrics were used to compare the two conversion algorithms. It was 
concluded that CycleGAN consistently performed better than pix2pixGAN in all 
three metrics. Chapter 5 presents a novel unsupervised learning approach com-
bining a style-based generator with relativistic discriminator. The unsupervised 
approach is capable of improving the matching performance of widely used face 
recognition systems.

XII



II

Chapter 7 123
3D Reconstruction through Fusion of Cross-View Images
by Rongjun Qin, Shuang Song, Xiao Ling and Mostafa Elhashash

Section 5
Digital Terrain Model and Digital Surface Model Generation 147

Chapter 8 149
Practical Digital Terrain Model Extraction Using Image Inpainting  
Techniques
by Chiman Kwan, David Gribben, Bulent Ayhan  
and Jude Larkin

Preface

In 2012, my colleagues and I worked on a project from NASA on change detection 
using hyperspectral images. Since then, we have worked on a few other projects 
funded by DOE on land cover classification, NASA on Mars rover image processing, 
and DARPA on border monitoring. There are some common technical challenges in 
the above applications. For example, the images have either low spatial resolution or 
low spectral resolution. Through those projects, we have started to realize the power 
of some new technology breakthroughs in image restoration techniques and their 
impact on some real applications such as change detection, land cover classification, 
etc. For example, the demosaicing of NASA’s Mastcam images is still being done 
using a technology developed in 2004. After we applied the latest deep learning 
based demosaicing, we were able to dramatically improve the quality of demosaiced 
images. Similar breakthroughs in image processing have been ongoing in the past 10 
years. It is the above remarkable progress in image processing that motivated me to 
conceive the idea of editing this book.

I would like to thank all the contributors for spending their precious time to prepare 
these book chapters, which are by no means a thorough overview of the recent 
advances in image restoration, but rather a glimpse of this important research area. 
There are eight chapters divided into five sections in this book.

Section 1 contains Chapter 1, which provides a short overview of image restoration 
applications in recent years. Some interesting applications in Mars rover Curiosity 
are mentioned.

Section 2 contains Chapters 2 and 3 on image enhancement of multispectral and 
hyperspectral images. Chapter 2 presents some new results on the pansharpening 
of hyperspectral images using multi-platform data. This is a challenging problem 
because the high resolution images and the low resolution hyperspectral images 
come from different imagers that have different spectral characteristics such as 
viewing angles, collection times, bandwidths, etc. More research is needed in 
this area. Chapter 3 summarizes the application of some recently developed deep 
neural network models to enhance the left Mastcam images with help from the 
right Mastcam images. Actual Mastcam images were used to demonstrate the 
performance of the proposed algorithms.

Section 3 contains Chapters 4 and 5 on the application of generative adversarial 
network (GAN) in image enhancement. Chapter 4 addresses an important practi-
cal problem in machine learning/deep learning. The problem is about the lack 
of training data in target detection and recognition using infrared videos. Three 
performance metrics were used to compare the two conversion algorithms. It was 
concluded that CycleGAN consistently performed better than pix2pixGAN in all 
three metrics. Chapter 5 presents a novel unsupervised learning approach com-
bining a style-based generator with relativistic discriminator. The unsupervised 
approach is capable of improving the matching performance of widely used face 
recognition systems.



IV

Section 4 contains Chapters 6 and 7 on multiview imaging and 3D reconstruction. 
Chapter 6 discusses various spatio-temporal fusion methods for remote sensing 
images. Pixel, feature, and decision level fusion approaches were summarized. A 
few results from the authors’ past papers were also included. Chapter 7 presents a 
new framework for fusing results from cross-view images for 3D mesh reconstruc-
tion. Real satellite and ground-view images were used to demonstrate the proposed 
framework. It was found that the reconstruction accuracy has been improved by 
close to 1 meter in one of the areas.

Section 5 contains Chapter 8 on digital terrain and digital surface model genera-
tion. Chapter 8 summarizes the investigation of various inpainting algorithms for 
accurate digital terrain model generation. This is necessary because, in urban and 
sub-urban areas, the terrain may be covered by trees and manmade structures. A 
benchmark dataset was used in the investigation.

Chiman Kwan
Signal Processing, Inc.,

Rockville, Maryland, USA
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Chapter 1

Introductory Chapter: Recent 
Advances in Image Restoration
Chiman Kwan

1. Recent advances

In this chapter, we do not intend to provide a comprehensive survey of existing 
recent image restoration papers in the literature. Instead, we attempt to provide a 
glimpse of recent advances from our own perspectives and applications. In particular, 
we will focus on the following areas. Moreover, we will connect those research areas 
to some real-world applications.

1.1 Image enhancement

Images can be enhanced from several perspectives: spatial, spatial-spectral, 
spectral, and spatio-temporal.

1.1.1 Spatial domain

Here, we focus on methods that use only a single image to improve the spatial 
resolution. The simplest method is the bicubic interpolation, which does not utilize 
any external information such as point spread function (PSF) [1]. A total of 16 
neighbors are used to generate a prediction, and the performance is better than 
bilinear interpolation, which uses only four neighbors. Recently, there are some new 
developments. A notable one is the algorithm described in [2], which utilizes the 
PSF to improve the resolution of a single image. The super-resolution algorithm in 
[3] is based on edge interpolation. There is also a group of methods based on deep 
learning [4–6]. Vast amounts of training images are needed to train the algorithm. 
Another group is using dictionary-based approach [7, 8]. Both the deep learning 
and dictionary approaches require many training images, which may be difficult to 
obtain.

In Sidiya and Li’s chapter [9] in this book, a generative adversarial network 
(GAN)-based approach was introduced to face image enhancement. The key 
distinction from conventional GAN is that it is an unsupervised approach, meaning 
that no ground truth images are required for training. Experimental results showed 
that the proposed unsupervised approach is only 1–2 dBs inferior to state-of-the-art 
supervised algorithms. The chapter also pointed out some failure cases, which the 
authors knew the reasons and will further improve the results in the future.

In Qin et al.’s chapter [10], the authors present a new framework for fusing 
results from cross view images for 3D mesh reconstruction. Real satellite and 
ground-view images were used to demonstrate the proposed framework. It was 
found that the reconstruction accuracy has been improved by close to 1 meter in one 
of the areas.
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1.1.2 Spatial-spectral resolution enhancement: Pansharpening

In many applications, we may have a high-resolution (HR) image with only a few 
bands and another image having low resolution but many bands. Pansharpening is 
an image fusion approach that fuses one high spatial resolution image with another 
low-resolution (LR) multispectral (MS) image. Earlier pansharpening algorithms 
are limited to images where the panchromatic band overlaps with the MS bands. 
However, recent advancements have extended the approach to non-overlapping 
bands [11–13].

There are two recent survey papers in pansharpening [13–16]. In recent stud-
ies, pansharpened images were observed to improve the performance of some 
 applications [17].

Another chapter in this book by Qu et al. [18] summarizes a Dirichlet-Net for 
pansharpening. The algorithm was applied to Mastcam image enhancement.

In Restaino et al.’s chapter [19], the authors report an interesting study of using 
multi-platform data for pansharpening. That is, the low-resolution hyperspec-
tral data and the high-resolution pan or multispectral data come from different 
satellites.

1.1.3 Spectral enhancement using synthetic bands

In some applications, only MS images are available. It may be useful to syn-
thesize some hyperspectral images using those images so that the performance of 
some applications can be improved. Recently, there have been some new algorithms 
such as the Extended Morphological Attribute Profiles (EMAP) algorithm [20] for 
synthesizing spectral bands.

Here, rather than explaining the details of EMAP, we would like to mention a 
few recent applications of EMAP. The first one is to use EMAP for soil detection. 
The original MS images have eight bands. After applying EMAP, 80 synthetic 
bands were generated. The soil detection performance was improved quite sig-
nificantly. More details can be found in [21–23]. Another application is on change 
detection using heterogeneous images. That is, the images at two different times 
may not come from the same imager. In [24], we have demonstrated that EMAP 
has improved the change detection performance in 36 out of 50 cases. In a third 
application on land cover classification [25], we have observed that, with the help 
of EMAP, using only 4 bands (RGB and NIR) can achieve reasonably accurate land 
cover classification performance that is only a few percentage points lower than that 
of using 144 bands of data.

1.1.4 Spatio-temporal fusion

Here, we consider an interesting application scenario. At time t1, we have one 
high-resolution (HR) MS image and a LR MS image. However, at time t2, we only 
have a LR MS image. It will be important to use the aforementioned images and 
synthesize a HR MS image at t2.

Such scenarios do exist. As shown in Figure 1, one example is the fusion of 
Landsat (30 m spatial resolution with 16-day revisit period) and MODIS (500 m 
spatial resolution with almost daily revisit). More details can be found in [26, 27]. 
Another application scenario is the fusion of Worldview with Planet images [28]. 
A third temporal fusion study is for Landsat and Worldview images [29]. Once the 
fused images are available, more frequent change detection can then be performed 
for a given area.
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Albanwan and Qin’s chapter on spatio-temporal [30] discusses various spatio-
temporal fusion methods for remote sensing images. Pixel, feature, and decision 
level fusion approaches were summarized. A few past results from the authors’ past 
papers were also included.

1.2 Image denoising

Image noise can be introduced during the image acquisition process. For example, 
in low lighting conditions, pixel amplitude-dependent noise (Poisson noise) are 
introduced. In the past, people have investigated sparsity-based methods [31, 32] 
and deep learning methods [33, 34]. There are also joint denoising and demosaicing 
algorithms [35].

1.3 Image demosaicing

Many commercial cameras have incorporated the Bayer pattern [36], which is also 
known as color filter array (CFA) 1.0. An example of CFA 1.0 is shown in Figure 2a. 
There are many repetitive 2x2 blocks and, in each block, two green, one red, and one 
blue pixels are present. To save cost, the Mastcam onboard the Mars rover Curiosity 
[37–40] also adopted the Bayer pattern. Due to the popularity of CFA 1.0, Kodak 
researchers invented a red-green-blue-white (RGBW) pattern or CFA 2.0 [41, 42]. 
An example of the RGBW pattern is shown in Figure 2b. In each 4 × 4 block, eight 
white pixels, four green pixels, and two red and blue pixels are present. Having more 
white pixels is believed to help improve the sensitivity of the camera, which is impor-
tant in low lighting conditions. Numerous other CFA patterns have been invented in 
the past few decades [43–45].

Figure 1. 
Fusion of Landsat and MODIS images to create a high spatial and high temporal resolution image sequence.

Figure 2. 
Three CFA patterns. (a) CFA 1.0; (b) CFA 2.0.
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It will be good to illustrate the differences between a state-of-the-art method 
(Demonet [35]) and the NASA’s current demosaicing algorithm known as Malvar-
He-Cutler (MHC) [46]. From Figure 3, it can be seen that the demosaiced images 
by MHC contain some color distortion artifacts whereas the Demonet images do not 
have noticeable color distortions.

There are some new developments in demosaicing CFA 2.0 or RGBW. In [47], a 
new pansharpening approach was proposed to demosaic RGBW patterns. In [48], 
a further improved version by combining deep learning and pansharpening was 
proposed. In [49], a comparative study of the performance of CFA 1.0 and CFA 
2.0 for low lighting images was carried out. It was found that CFA 2.0 has advan-
tages over CFA 1.0 in low lighting conditions. It was also observed that denoising 
can further enhance the demosaicing performance. Finally, a new CFA 3.0 was 
proposed in [50] in which a comparative study among CFAs 1.0, 2.0, and 3.0 was 
conducted. It was observed that CFA 2.0 has better performance in terms of peak 
signal-to-noise ratio (PSNR) in low lighting conditions than CFAs 1.0 and 3.0. 
CFA 3.0 has better performance than CFA 1.0.

Figure 3. 
Comparative of demosaicing images. Left column: NASA’s existing software; right column: State-of-the-art 
deep learning approach.
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1.4 Image deblurring

Image blurring can be caused by camera motion and built-in factors such as 
point spread functions in various stages of image formation. In the book [51], a 
few PSFs are mentioned, including optical, motion, detector, and electronics. For 
motion-induced blurring, researchers have developed estimation methods [52] to 
restore the original images.

For NASA’s Mastcam application, an interesting approach was proposed in [53] 
to improve the left Mastcam images. The idea was to use the left and right Mastcam 
images to estimate the deblurring kernel, and then a deconvolution is applied to 
deblur the left images.

1.5 Image inpainting

Image inpainting is a well-known technique for image restoration. One can remove 
some image contents and then replace those missing contents with fictitious informa-
tion. Some conventional techniques include Field of Experts (FOE) [54], Laplacian 
method [55], Local Matrix Completion Sparse (LMCS) [56], and Transformic [57]. 
More recent methods used GAN for inpainting [58]. We briefly describe these meth-
ods below.

FOE: The Field of Experts method (FOE) was developed by Roth et al. [54]. This 
method uses pre-trained models that are used to filter out noise and obstructions 
in images.

Laplacian: This method [55] fills in each missing pixel using the Laplacian 
interpolation formula by finding the mean of the surrounding known values.

Local Matrix Completion Sparse (LMCS) [56]: In LMCS, which was devel-
oped by us, a search is performed for each missing pixel to find a pixel with the 
most similar neighbors. After the search, the missing pixel is replaced with the 
found pixel. This method performs very well with images containing repeating 
patterns.

Transformic [57]: The Transformic method was developed by Mansfield et al. [57]. 
It is similar to the LMCS in that it searches the whole image for a patch that is similar 
to the neighbors of the missing pixel. However, this method transforms and rotates 
the searched area to find a better match.

Generative Inpainting (GenIn) [58]: A new inpainting method, Generative 
Inpainting (GenIn), which is a deep learning-based method [58], was considered 
in our research. It was developed at the University of Illinois that aims to outper-
form typical deep learning methods that use convolutional neural network (CNN) 
models. GenIn builds on CNN and generative adversarial networks in an effort to 
encourage cohesion between created and existing pixels.

We briefly mention a few recent applications. In [59], the LMCS technique 
was applied to automatic target recognition. A recent application of LMCS, 
Transformic, and deep learning can be found in [60] for error concealment in 
infrared images.

In the chapter by Kwan et al. [61], a number of conventional and deep learning 
methods were applied to digital terrain model (DTM) extraction.

1.6 Compression artifact reduction

It is surprising that JPEG image compression codec is still being used in some 
applications nowadays. For instance, the Mars rover Curiosity has a number of 
imagers, which are all using JPEG for image compression. The current practice at 
NASA is to use low compression ratios, which can only achieve around three times 
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It will be good to illustrate the differences between a state-of-the-art method 
(Demonet [35]) and the NASA’s current demosaicing algorithm known as Malvar-
He-Cutler (MHC) [46]. From Figure 3, it can be seen that the demosaiced images 
by MHC contain some color distortion artifacts whereas the Demonet images do not 
have noticeable color distortions.

There are some new developments in demosaicing CFA 2.0 or RGBW. In [47], a 
new pansharpening approach was proposed to demosaic RGBW patterns. In [48], 
a further improved version by combining deep learning and pansharpening was 
proposed. In [49], a comparative study of the performance of CFA 1.0 and CFA 
2.0 for low lighting images was carried out. It was found that CFA 2.0 has advan-
tages over CFA 1.0 in low lighting conditions. It was also observed that denoising 
can further enhance the demosaicing performance. Finally, a new CFA 3.0 was 
proposed in [50] in which a comparative study among CFAs 1.0, 2.0, and 3.0 was 
conducted. It was observed that CFA 2.0 has better performance in terms of peak 
signal-to-noise ratio (PSNR) in low lighting conditions than CFAs 1.0 and 3.0. 
CFA 3.0 has better performance than CFA 1.0.

Figure 3. 
Comparative of demosaicing images. Left column: NASA’s existing software; right column: State-of-the-art 
deep learning approach.
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NASA is to use low compression ratios, which can only achieve around three times 



Recent Advances in Image Restoration with Applications to Real World Problems

8

of compression efficiency. Since the invention of JPEG in early 1990s, there have 
been quite a few newer and more powerful compression standards in the literature. 
In the past few years, there are studies on evaluating a number of compression 
codecs that can achieve perceptually lossless compression [62–64]. The findings 
showed that it is feasible to attain 10 to 1 compression with almost no loss of image 
quality.

2. Future directions

Although there are some encouraging progress in image restoration in recent 
years, there are still some tough problems ahead. We list a few directions below.

2.1 Image enhancement

Earlier, we have seen that temporal resolution can be enhanced by fusing two 
sequences of images: one with high revisit times but low resolution and another just 
the opposite. After fusion, a sequence of high spatial resolution and high temporal 
resolution images emerges. The new sequence of images can be used for more 
frequent change detection, land cover classification, etc. However, based on our 
investigations, the change detection performance is still limited [65]. The reason is 
that the enhanced images fail to capture the changes sometimes. More research is 
needed.

Moreover, spectral enhancement sometimes have mixed results. In some 
applications, we do not see improvement for some reasons [66]. This implies that 
more research is needed to determine that under what conditions the EMAP-based 
methods can provide improvement and under what conditions not.

2.2 Image deblurring

For real blurred images collected from cameras, we noticed that some of the 
open-source codes still could not get good deblurring results. This is perhaps due 
to the fact that the camera motion may be nonlinear (jerky motion) and existing 
kernel estimation methods cannot handle such nonlinear motions. Again, more 
research is needed in this area.

2.3 Image demosaicing

As mentioned earlier, color images using color filter arrays collected in low 
lighting environments contain Poisson noise that seriously affect the image quality. 
Image denoising needs to combine with demosaicing in order to yield high-quality 
images. We believe there is still room for improvement in this area. One possible 
direction is to investigate deep learning approaches.

2.4 Change detection using heterogeneous images

In many remote sensing applications, we may have high-resolution images at 
one time but may only have low-resolution images at another time. It will be good to 
perform change detection across multiple platforms. There are some recent advances 
[24, 67–72] in change detection using multimodal or heterogeneous images. For 
example, Ziemann et al. [68] studied change detection using a mixture of multi-
spectral and synthetic aperture radar (SAR) images. However, more research is still 
needed to yield consistent results.
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Resolution Enhancement of
Hyperspectral Data Exploiting
Real Multi-Platform Data
Rocco Restaino, Gemine Vivone, Paolo Addesso,
Daniele Picone and Jocelyn Chanussot

Abstract

Multi-platform data introduce new possibilities in the context of data fusion, as
they allow to exploit several remotely sensed images acquired by different combi-
nations of sensors. This scenario is particularly interesting for the sharpening of
hyperspectral (HS) images, due to the limited availability of high-resolution (HR)
sensors mounted onboard of the same platform as that of the HS device. However,
the differences in the acquisition geometry and the nonsimultaneity of this kind of
observations introduce further difficulties whose effects have to be taken into
account in the design of data fusion algorithms. In this study, we present the most
widespread HS image sharpening techniques and assess their performances by
testing them over real acquisitions taken by the Earth Observing-1 (EO-1) and the
WorldView-3 (WV3) satellites. We also highlight the difficulties arising from the
use of multi-platform data and, at the same time, the benefits achievable through
this approach.

Keywords: hyperspectral image sharpening, Hyperion data, WorldView-3 images,
data fusion, remote sensing

1. Introduction

Hyperspectral (HS) data often provide great insights in the field of Earth
Observing (EO) for the analysis and monitoring of the planet surface [1, 2]. As they
embed a very detailed spectral information of the observed scene, their employ-
ment has become necessary in many applications, including natural vegetation
classification and monitoring, geological map construction, chemical properties
detection, land cover observation, and water resources management [1, 2]. The
widespread use of hyperspectral data pushed toward the development of acquisition
devices with increasing capabilities, the most recent of which are characterized by a
ground spatial interval (GSI) even below 10 m [2].

However, this spatial resolution is still insufficient in many fields, as, for
instance, geology [3], agriculture [4], and land cover classification [5]. Data fusion
techniques provide a possible solution to this issue that has been validated in several
studies performed on both on real and simulated datasets [6–8]. In principle, high
spatial resolution improvement factors can be attained for hyperspectral data, but
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the scarcity of exploitable companion high-resolution (HR) data represents a major
issue. In fact, it is just possible to find very few examples of hyperspectral sensors
co-located onboard of the same platform with high spatial resolution devices, such
as panchromatic (PAN) and/or multispectral (MS) sensors. Since the Earth
Observing-1, which mounted both a panchromatic and a multispectral camera
onboard, is currently dismissed, the only remaining satellites to assure the avail-
ability of companion panchromatic sensors are the new Prisma and HypXIM, which
are characterized by a six and four times higher spatial resolution with respect to the
HS instrument, respectively.

The presence of a high-resolution sensor mounted on the same platform repre-
sents the ideal setting for the data fusion problem since the two images to combine
are almost simultaneously acquired from the same point of view. However, in
addition to the cited difficulty in finding platforms with this feature, the resolution
ratio between the HS images and the companion high-resolution image is
constrained to be very small, ranging from a value of 3 (EO-1 case) to 6 (Prisma
case). Further resolution enhancement would require an additional upsampling
procedure at one point in the algorithmic stack, thus strongly compromising the
quality of the final fused product.

An alternative is constituted by the fusion of data acquired by multiple plat-
forms, which, on the other hand, implies further difficulties related to the different
observation geometry and the unavoidable lack of simultaneity between the acqui-
sitions. Although this approach has been deeply investigated in the literature, the
studies have almost always utilized simulated data [9, 10], thus ignoring the two
cited issues that affect real data. A previous study based on real acquisitions was
performed in [11] with temporally aligned images acquired by drones and aircrafts.

The current study focuses on multi-platform real data and aims at illustrating
the state of the art of the, both classical and recent, low-level data fusion algorithms
applicable to these data. Classical algorithms were adapted from the pansharpening
literature, namely, from studies concerning the fusion of a panchromatic and a
multispectral image [12]. They can be straightforwardly applied to the HS/PAN
fusion problem [9, 12, 13], but they require a preliminary assignation phase when
the high-resolution image is constituted by a multispectral image [14]. Indeed, a
specific channel of the MS image has to be assigned to each hyperspectral band to
complete the fusion process by means of classical techniques. The assignation algo-
rithm (AA) significantly impacts the final results, and, for this reason, several
algorithms have been proposed for completing this task [14, 15]. The latter fusion
algorithms have been properly developed for the fusion of the HS and MS data and
thus can be straightforwardly applied to the problem at hand. They include proper
modifications of classical algorithms (hypersharpening) [16, 17] and applications of
more general statistical approaches, as, for instance, the Bayesian framework [18],
which is employed with naive [18, 19] and sparse Gaussian priors [20] and with
alternative regularization terms [21, 22].

Three different datasets collected form the Earth Observing-1 and the World-
View-3 (WV3) satellites were employed in this study to evaluate the performance
of the fusion algorithms. The tests were conducted according to the reduced reso-
lution (RR) assessment procedure, based on Wald’s protocol [23]. Specifically, the
available HS image is employed as reference (or ground truth (GT)), and the
images to fuse are constituted by properly degraded versions of the available data.
This facilitates the use of accurate indexes for evaluating the quality of the final
products thanks to the presence of a reference image. The availability of real data
allowed to draw conclusions about the behavior of the different types of fusion
algorithms and, in the case of classical pansharpening, about the assignation
approaches.
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The work is organized as follows. Section 2 describes the problem under consid-
eration, including some details on the main fusion techniques employed in
hyperspectral image sharpening. The conducted experimental analysis is detailed in
Section 3, whereas the outcomes are reported in Section 4. Finally, conclusions are
drawn in Section 5.

2. The hyperspectral sharpening framework

The data fusion procedure to sharp hyperspectral images consists in augmenting
the spatial information contained in a low-resolution (LR) hyperspectral image, by
injecting information from high-resolution data.

In the following, wewill denote a generic acquisition composed byNA channels as a
set of bidimensional matrices, as follows:A ¼ Akf gk¼1,… ,NA

. More in detail, the HS
datacube will be denoted byH ¼ Hkf gk¼1,… ,NH

, anMS acquisition byM ¼
Mkf gk¼1,… ,NM

, and a PAN image by P ¼ Pkf gk¼1. The enhancement ratio, namely, the
ratio between the spatial resolution of the original HS image and the desired spatial
resolution, is indicated by R.We restrict the analysis of the fusion problem to the
combination of two images, i.e., the details to be injected are extracted by a single image.

2.1 Classical pansharpening approaches

Classical pansharpening algorithms are designed to operate with a monochro-
matic image, which acts as source to extract details to be injected into the LR image.
Consequently, as long as the HR image is still monochromatic, the framework of
classical pansharpening can be directly applied to this scenario, with the straight-
forward adjustment of using the HS image as the LR source image to fuse. Con-
versely, when the details are extracted from a multichannel image, the application
of pansharpening approaches requires an assignment procedure between each HS
band and a specific channel of the high-resolution MS image.

Data fusion through classical pansharpening approaches can be formalized by
the following equation [24]:

bHk ¼ eHk þGk∘ Yk � YLP
k

� �
, (1)

which represents the sharpening procedure of a generic k-th channel of the HS
image. In Eq. 1, the estimated HR hyperspectral image is indicated by Ĥ, while ~H
denotes an upsampled (interpolated) version of the original imageH tomatch the scale
of Ĥ. The details, represented by the difference between the HR imageY and its low
pass versionYLP, are additively injected in the latter image by properly weighting them
through an element-by-element matrix product (indicated by the ∘ operator) by the
injection coefficientmatrixG. It is worth to remind that both the details and thematrix
G in (1) are band-dependent, since somemethods require a preliminary equalization of
the HR image andG is often optimized for each channel.

2.1.1 Component substitution and multi-resolution analysis algorithms

It is possible to specify different techniques of classical pansharpening methods
according to the particular definition of the injection gain matrix G and the method
used for calculating the low-resolution image YLP. In the literature, the key taxon-
omy for the macro-categorization is related to the techniques to YLP, as two
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images to fuse are constituted by properly degraded versions of the available data.
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algorithms and, in the case of classical pansharpening, about the assignation
approaches.

18

Recent Advances in Image Restoration with Applications to Real World Problems

The work is organized as follows. Section 2 describes the problem under consid-
eration, including some details on the main fusion techniques employed in
hyperspectral image sharpening. The conducted experimental analysis is detailed in
Section 3, whereas the outcomes are reported in Section 4. Finally, conclusions are
drawn in Section 5.

2. The hyperspectral sharpening framework

The data fusion procedure to sharp hyperspectral images consists in augmenting
the spatial information contained in a low-resolution (LR) hyperspectral image, by
injecting information from high-resolution data.

In the following, wewill denote a generic acquisition composed byNA channels as a
set of bidimensional matrices, as follows:A ¼ Akf gk¼1,… ,NA

. More in detail, the HS
datacube will be denoted byH ¼ Hkf gk¼1,… ,NH

, anMS acquisition byM ¼
Mkf gk¼1,… ,NM

, and a PAN image by P ¼ Pkf gk¼1. The enhancement ratio, namely, the
ratio between the spatial resolution of the original HS image and the desired spatial
resolution, is indicated by R.We restrict the analysis of the fusion problem to the
combination of two images, i.e., the details to be injected are extracted by a single image.

2.1 Classical pansharpening approaches

Classical pansharpening algorithms are designed to operate with a monochro-
matic image, which acts as source to extract details to be injected into the LR image.
Consequently, as long as the HR image is still monochromatic, the framework of
classical pansharpening can be directly applied to this scenario, with the straight-
forward adjustment of using the HS image as the LR source image to fuse. Con-
versely, when the details are extracted from a multichannel image, the application
of pansharpening approaches requires an assignment procedure between each HS
band and a specific channel of the high-resolution MS image.

Data fusion through classical pansharpening approaches can be formalized by
the following equation [24]:

bHk ¼ eHk þGk∘ Yk � YLP
k

� �
, (1)

which represents the sharpening procedure of a generic k-th channel of the HS
image. In Eq. 1, the estimated HR hyperspectral image is indicated by Ĥ, while ~H
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separate classes of methods arise with very distinguished properties. In particular,
YLP can be obtained either by properly combining the channels of ~H or by spatially
degrading the HR image Y. The first approach defines the so-called component
substitution (CS), or spectral, methods, whose name is to underline that the fusion
is obtained by substituting the HS intensity component with the HR image [25].
This class includes both archetypical methods, such as the Brovey transform (BT)
[26], the intensity-hue-saturation [27, 28], the principal component decomposition
[29–31], or the Gram-Schmidt (GS) expansion [32], and more recent approaches,
such as the Gram-Schmidt adaptive (GSA) method [33], which is able to achieve
state-of-the-art performance [24].

The second class of approaches is known in the literature as multi-resolution
analysis (MRA), or spatial, methods, since they operate directly in the spatial
domain to obtain YLP through a multi-scale decomposition. The MRA class includes
a wide plethora of methods, which exploit a variety linear filters (box filters
[34, 35], Gaussian filters [36], and à trous wavelet filters [37]) or nonlinear decom-
positions (morphological filters) [38].

The two classes have different characteristics, both in terms of visual aspect of
sharpened images and in terms of robustness against nonideal working conditions.
Specifically, methods belonging to the CS class usually yield final products featuring
an accurate reproduction of the spatial details with an intrinsic robustness to limited
spatial misalignments between the two images to fuse [39]. Images produced by
MRA approaches are instead characterized by a higher spectral coherence with the
original LR image, possibly even reducing temporal misalignments among data to
be combined [40].

2.1.2 Assignation algorithms

As seen in the previous section, in the case of HS/PAN fusion, the only possible
choice forHRdataY in (1) is represented by the PAN image. Conversely, for theHS/MS
fusion, any of theMS channels can act as HR data, demanding an assignation algorithm
to couple a specific MS band with a given HS channel. This problemwas addressed in
previous papers by defining a series of criteria for selecting themost suitableMS
channel [15, 41]. The possible approaches can be either data-independent, exclusively
utilizing the characteristics of the sensors, or data-dependent, forwhich the assignment
depends on the particular datasets. The analysis reported in [14] highlights the superior
performances of the second approach but at the cost of requiring an additional compu-
tational effort to evaluate the new assignation for each new dataset.

Among the data-independent approaches, acceptable performance can be
obtained by minimizing the distance between the centroid of the relative spectral
response (RSR) of the sensor acquiring the Hk channel and the centroids of the
RSRs of the HR sensor. This method, nicknamed CEN-AA, assigns toHk the channel
Mn that verifies the condition:

n ¼ argmin
j

∣μHk
� μM j

∣, (2)

wherein

μAi
¼
ð
f

RAi fð ÞÐ
RAi fð Þdf df (3)

defines the centroid of the generic relative spectral response (RSR) RAi fð Þ of a
given channel Ai.
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For the AA step, the overall best results in terms of data fidelity of the
reconstructed fused image are obtained by employing the algorithms proposed in
[15, 41]. The first consists in maximizing the cross correlation (CC) betweenHk and
the MS channels and is thus denoted in the following as CC-AA. Formally, it
consists in coupling Hk with the HR image Y ¼ Mn such that:

n ¼ argmax
j

CC Hk,M↓R
j

� �
¼ argmax

j

Hk,M↓R
j

D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hk,Hkh i M↓R

j ,M↓R
j

D Er (4)

where M↓R
j indicates the image obtained by degrading the resolution of M j by

means of a filter matched to the modulation transfer function (MTF) of the j-th MS
channel and a downsampling by a factor R; A j,Ak

� �
represents the scalar product

among the vectorized version of two generic channels A j and Ak.
The alternative approach, defined in [41] and assessed in [14], aims at evaluat-

ing the spectral coherence of each available HR channel if it acts as a substitute of
Hk. In order to quantify this criterion, let us build the supporting images R j,k by
substituting the M j bands at the place of Hk, which are compared to the original
image H. Formally, R j,k is defined as:

R j,k
i ¼ M kð Þ

j , i ¼ k,

Hi, i �¼ k,

(
(5)

where M kð Þ
j is obtained by equalizing the first two statistical moments of M↓r

j

w.r.t. Hk. The AA rule is defined by setting Y equal to the channel Mn that satisfies
the equation:

n ¼ argmin
j

SAM H,R j,k� �
, (6)

in which SAM A,B½ � denotes the spectral angle mapper (SAM) between A and B
[42]. Accordingly, this approach is named SAM-AA by the authors.

2.2 Methods designed for hyperspectral image sharpening

Several different option have been recently developed ad hoc for the sharpening
of HS data by using complementary images of different nature. A first option is to
modify the existing pansharpening algorithms to account for the specific character-
istics of the HS data. A different approach consists in developing a completely novel
method by resorting to a suitable mathematical framework, as the widely exploited
statistical Bayesian formalization.

2.2.1 Hypersharpening

A very effective method for sharpening HS images relies upon the construction
of a simulated HR image assigned for each channel and obtained as a certain
combination the available HR channels.

This approach proposed in [16] under the name of hypersharpening consists in
defining the synthetic HR image Yk to use in (1) for a given Hk through the
expression:
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Yk ¼
XNM

m¼1

wk,mMm, (7)

in which the weights wk,m are optimized through linear regression as described
in [16]. Equalizing the mean and variance of Yk with respect to Hk yields an
improved version of hypersharpening, as proposed in [17].

The term YLP
k in (1) is suggested to be obtained with the same strategies pro-

posed by MRA methods, by degrading Yk via an appropriate filter such as the MTF-
matched generalized Laplacian pyramid. The fusion formula (1) is completed by
defining the injection gain matrix that is derived through the regression-based
model. Namely, Gk is a constant matrix with entries:

gk ¼
cov ~Hk,YLP

k

� �

cov YLP
k ,YLP

k

� � , (8)

where cov �, �ð Þ denotes the covariance operator.

2.2.2 Bayesian approaches

Most novel methods for sharpening HS images exploit the Bayesian statistical
formalization of the fusion problem. In this approach, both the LR and HR available
data are modeled as transformations, operating, respectively, in the spatial and in
the spectral domains of an unknown ideal HR hyperspectral image denoted as Z [9].

Accordingly, the equation relating the target HR and the available LR image is
written as:

h ¼ zBSþ nH, (9)

where the lowercase letters denote the version of the matrices in lexicographic
order (obtained by concatenating the columns of each channel), B is the blurring
matrix, S is the downsampling matrix, and nH is the noise accounting for the
unmodeled effects corrupting the relationship. (9) is coupled either to:

p ¼ RPzþ nP, (10)

or to

m ¼ RMzþ nM, (11)

in the HS/PAN and HS/MS cases, respectively. They express the functional
models relating z to p or m and include the factors RP and RM that model the RSRs
of the HR sensors and the noise addends nP and nM, accounting for the inaccuracy
of the first terms.

The Bayesian approach based on the maximum a posteriori probability (MAP)
consists in estimating the target vector z through the formula:

ẑ ¼ argmaxzp zjh,vð Þ: (12)

in which we denote by v the available HR image (m or p). A reliable solution of
(12) can be found by regularizing the problem by adding a penalization term to the
quantity p zjh,vð Þ. Examples of widely employed regularization terms include
Gaussian priors [43, 44] or vector total variation (VTV) [22].
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3. Quality assessment of fusion products

In this section, we present the performance assessment setup procedure for
sharpening the HS data. The objective is to test the viability of fusion algorithms to
reach a resolution enhancement factor R that goes beyond the limitations of
single-platform setups. In the specific testbed, the HS data are constituted by
acquisitions taken by the Hyperion sensor, which is characterized by a GSI of
30 m. The satellite platform also features the a PAN sensor, called ALI, whose GSI
is 10 m, which corresponds to a nominal enhancement factor R ¼ 3. For more
ambitious factors, two extra scenarios are considered; in particular a very inter-
esting comparison can be taken at R ¼ 6 and R ¼ 12 by analyzing different behav-
iors for single- and multi-platform with a selection of 12 state-of-the-art fusion
algorithms. Specifically the single-platform case requires a preliminary interpola-
tion of the ALI images, here performed via a convolution with a 45-tap interpola-
tion kernel. The multi-platform case will employ, as companion source image, the
MS imagery acquired by the WorldView-3, which instead have to be downsized to
the target resolution, as it is characterized by a smaller GSI than the target one
reached by all the considered R. The decimation procedure is performed by
employing a filter, mimicking the modulation transfer function of the MS sensor
and a downsampling.

We want to remark here that this study will ignore the contribution of the ALI
MS and WV3 PAN sensors. The former has the same GSI of the Hyperion sensor,
making its information mostly redundant. Regarding the latter, we want to remark
that the native GSI of the MS WV3 sensors already exceeds that of the target
resolution characterized, for all R under examination. Consequently, it is preferable
to employ the MS sensor, as it is already characterized by a better spectral resolu-
tion, as shown in previous studies [14, 41].

3.1 Assessment procedure

The assessment procedure has been carried out at reduced resolution, namely, the
original HS image is used as reference, and the images to fuse are obtained by
degrading the available images by a factor equal to the resolution enhancement
factor R. The adopted Wald’s protocol [23] requires the reproduction of the charac-
teristics of the fusion problem at a lower resolution. Accordingly, all the available
images are degraded by using an MTF-shaped filter matched to the specific sensor
and a downsampling system with factor R.

The reduced resolution assessment protocol allows the use of many accurate
quality indexes, since the ground truth image is available. In this work we consider
the spectral angle mapper [42] for evaluating the spectral distortion and the erreur
relative globale adimensionnelle de synthèse (ERGAS) [45] for assessing the radiomet-
ric distortion. The vectorial Q2n-index [46] index is used for obtaining a compre-
hensive measure of the overall image quality. Finally, we employed the universal
image quality index (UIQI) or Q-index, proposed by Wang and Bovik [47], for
performing a band-by-band comparison of the final product with the reference
image.

3.2 Datasets

Three datasets are used for illustrating the capabilities of data fusion algorithms
in producing very high-resolution hyperspectral images. The images have been
acquired by the Earth Observing-1 and WorldView-3 sensors. The different settings

23

Resolution Enhancement of Hyperspectral Data Exploiting Real Multi-Platform Data
DOI: http://dx.doi.org/10.5772/intechopen.92795



Yk ¼
XNM

m¼1

wk,mMm, (7)

in which the weights wk,m are optimized through linear regression as described
in [16]. Equalizing the mean and variance of Yk with respect to Hk yields an
improved version of hypersharpening, as proposed in [17].

The term YLP
k in (1) is suggested to be obtained with the same strategies pro-

posed by MRA methods, by degrading Yk via an appropriate filter such as the MTF-
matched generalized Laplacian pyramid. The fusion formula (1) is completed by
defining the injection gain matrix that is derived through the regression-based
model. Namely, Gk is a constant matrix with entries:

gk ¼
cov ~Hk,YLP

k

� �

cov YLP
k ,YLP

k

� � , (8)

where cov �, �ð Þ denotes the covariance operator.

2.2.2 Bayesian approaches

Most novel methods for sharpening HS images exploit the Bayesian statistical
formalization of the fusion problem. In this approach, both the LR and HR available
data are modeled as transformations, operating, respectively, in the spatial and in
the spectral domains of an unknown ideal HR hyperspectral image denoted as Z [9].

Accordingly, the equation relating the target HR and the available LR image is
written as:

h ¼ zBSþ nH, (9)

where the lowercase letters denote the version of the matrices in lexicographic
order (obtained by concatenating the columns of each channel), B is the blurring
matrix, S is the downsampling matrix, and nH is the noise accounting for the
unmodeled effects corrupting the relationship. (9) is coupled either to:

p ¼ RPzþ nP, (10)

or to

m ¼ RMzþ nM, (11)

in the HS/PAN and HS/MS cases, respectively. They express the functional
models relating z to p or m and include the factors RP and RM that model the RSRs
of the HR sensors and the noise addends nP and nM, accounting for the inaccuracy
of the first terms.

The Bayesian approach based on the maximum a posteriori probability (MAP)
consists in estimating the target vector z through the formula:
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reach a resolution enhancement factor R that goes beyond the limitations of
single-platform setups. In the specific testbed, the HS data are constituted by
acquisitions taken by the Hyperion sensor, which is characterized by a GSI of
30 m. The satellite platform also features the a PAN sensor, called ALI, whose GSI
is 10 m, which corresponds to a nominal enhancement factor R ¼ 3. For more
ambitious factors, two extra scenarios are considered; in particular a very inter-
esting comparison can be taken at R ¼ 6 and R ¼ 12 by analyzing different behav-
iors for single- and multi-platform with a selection of 12 state-of-the-art fusion
algorithms. Specifically the single-platform case requires a preliminary interpola-
tion of the ALI images, here performed via a convolution with a 45-tap interpola-
tion kernel. The multi-platform case will employ, as companion source image, the
MS imagery acquired by the WorldView-3, which instead have to be downsized to
the target resolution, as it is characterized by a smaller GSI than the target one
reached by all the considered R. The decimation procedure is performed by
employing a filter, mimicking the modulation transfer function of the MS sensor
and a downsampling.
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that the native GSI of the MS WV3 sensors already exceeds that of the target
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The assessment procedure has been carried out at reduced resolution, namely, the
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degrading the available images by a factor equal to the resolution enhancement
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teristics of the fusion problem at a lower resolution. Accordingly, all the available
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and a downsampling system with factor R.
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quality indexes, since the ground truth image is available. In this work we consider
the spectral angle mapper [42] for evaluating the spectral distortion and the erreur
relative globale adimensionnelle de synthèse (ERGAS) [45] for assessing the radiomet-
ric distortion. The vectorial Q2n-index [46] index is used for obtaining a compre-
hensive measure of the overall image quality. Finally, we employed the universal
image quality index (UIQI) or Q-index, proposed by Wang and Bovik [47], for
performing a band-by-band comparison of the final product with the reference
image.

3.2 Datasets

Three datasets are used for illustrating the capabilities of data fusion algorithms
in producing very high-resolution hyperspectral images. The images have been
acquired by the Earth Observing-1 and WorldView-3 sensors. The different settings
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allow to examine the features of the sharpening algorithms in the presence of the
most common issues implied by multi-platform data fusion, namely, the different
points of view and the temporal changes in the illuminated scenes between the two
acquisitions. In this study we employ the visible near-infrared (VNIR) bands B09-
B57, acquired by the sensor Hyperion, as HS data. The single-platform companion
data are constituted by the PAN images collected by the ALI sensor, having a 10 m
spatial resolution. All EO-1 data share a radiometric resolution of 15 bits. The multi-
platform data have been acquired by the WV3 satellite. They are represented by an
MS image composed of eight channels (coastal, blue, green, yellow, red, red edge,
NIR1, and NIR2) with a radiometric resolution of 11 bits and an original spatial
resolution of 1.2 m.

The employed datasets are briefly described below:

• Harlem dataset: the images have been collected in New York, USA, in the
neighborhoods of the Harlem River. The size of the Hyperion and PAN ALI
data, acquired on July 21, 2016, is 144 � 144 pixels and 432 � 432 pixels,
respectively, while the native dimension of the WV3 MS image, acquired on
June 9, 2016, is 4320 � 4320 pixels.

• Agnano dataset: the images refer to the area of the Agnano Racecourse, next to
the city of Naples, Italy. The size of the Hyperion data is 144 � 72 pixels, and
thus the corresponding ALI andWV3 images are composed by 432� 216 pixels
and 4320 � 1660 pixels, respectively. The acquisition dates of the EO-1 and
WV3 sensors are May 20, 2015, and June 8, 2015, respectively.

• Capodichino dataset: the images refer to the east surrounding Naples, Italy,
around Capodichino Airport. The images are composed of the same number of
pixels of the Agnano dataset and were acquired on May 20, 2015, and on
February 4, 2002, by the EO-1 and WV3 satellites, respectively.

3.3 Fusion algorithms

We compare several fusion algorithms to fully assess the quality of HS products
achievable through data acquired by a single or multiple platforms. We firstly focus
on the use of classical pansharpening approaches, which constitute an almost ready-
to-use solution and then present the purposely designed methods. Among the wide
plethora of available pansharpening methods [24], we employed the following CS
and MRA methods: Brovey transform [26], Gram-Schmidt spectral sharpening [32],
and the Gram-Schmidt adaptive [33] belonging to the CS class, the additive wavelet
luminance proportional (AWLP) [37], the generalized Laplacian pyramid [48] with
MTF-matched filter [49] using both the high-pass modulation scheme [50] (GLP-
HPM), and the regression-based injection model (GLP-CBD) [51] belonging to the
MRA class.

Among the second group of approaches, we consider the hypersharpening
(Hyper) method, developed in [16, 17], and four Bayesian techniques, namely, the
coupled nonnegative matrix factorization (CNMF) [21], the naive Gaussian prior
(Bay-N) [43], the sparsity promoted Gaussian prior (Bay-S) [44], and the
hyperspectral superresolution (HySure) [22].

Finally, we report the results related to a method for upscaling the original
image at the target scale by a simple interpolation of the original HS image. We
denote as EXP this method that is carried out through a 45-tap interpolation filter
and that constitutes also the baseline for more complex sharpening methods
presented here.
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4. Experimental results

The performance of the fusion algorithms are evaluated both by calculating the
numerical values of the chosen quality indexes and by assessing the final products
by visual inspection.

The first proposed dataset is about Harlem that has the purpose of illustrating
the capabilities of producing a significant improvement of the spatial quality of the
original HS images through the compared algorithms. To this aim, we report in
Figure 1 the results related to all the tested enhancement factors (R = 3,6,12), using
one exemplary algorithm of each class. The RGB images are built by averaging a
group of channels in the red, green, and blue frequency ranges (B29–B33, B17–B22,
and B11–B15, respectively) to construct the required channels. Naturally, all the
reference images (or ground truth) coincide, since they are represented by the
original HS image; see Figure 1(a), (m), and (y). On the contrary, the simulated LR
HS images, whose upsampled versions (EXP) are reported in Figure 1(g), (s), and
(ae), get more and more degraded as the enhancement factor increases.

Some introductory considerations can be drawn from the images in Figure 1
obtained by using the SAM-AA for coupling the MS bands to the HS channels. In fact,
the first remarkable result is the high quality of the final products achievable also at
very high enhancement factors. More in detail, the images obtained by using classical
GLP-CBD and the Hyper approach (which constitutes a generalization of the former
approach, since both employ a regression-based injection scheme) produce the most
appealing sharpened image. They are able to greatly enhance the spatial content of the
original HS image, preserving an appreciable coherence of the colors.

On the other hand, the images achievable by using the ALI PAN have a satisfac-
tory aspect only for R=3, as it was arguable by the 10 m resolution of the employed
HR sensor. The effect of the interpolation is clearly visible in Figure 1(n) and (z),
and, thus, this approach could be preferable only when spatial or temporal mis-
alignments among the multi-platform data cannot be avoided.

Those results are perfectly matched to the index values contained in Table 1.
Actually, the numerical values point out that in most cases, the use of perfectly
aligned images coming from a different satellite can produce images with superior
quality also in the case of R=3. In this case, the closer correspondence between the
details extracted in the MS channel and the missing spatial information of the HS
image can justify the outcome.

Finally, we note that the comparison among the assignation algorithms mainly
underlines that the two methods optimizing the assignation according to the
specific dataset get almost the same results.

The other two scenes allow to gain more insight about the comparison of the
sharpening algorithms and of the assignation algorithms. The EO-1 data have been
extracted by the same images, while the multi-platform data have very different
characteristics. In fact, while the WV3 image of the Agnano dataset has been
acquired within a few days from the EO-1 data, the WV3 image of the Capodichino
was collected more than 10 years earlier. Accordingly, the layout of the object
present in the Capodichino scene is very different among the two passages, also
because the area contains rapidly changing objects. A comparison of the two images
can be achieved by having a look at Figure 2(a) and (b). The latter scene refers to
Naples Airport and contains a plane on the runway that is not detectable in the
corresponding WV3 MS image shown in Figure 3(d). Furthermore, different man-
made objects are present in the illuminated area at the two acquisition times.

The results related to the Agnano dataset (see Table 2) confirm the conclusions
drawn from the analysis of the Harlem dataset. They correspond to the most typical
situation in which the images to fuse are ordered to a data provider, minimizing as
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much as possible the difference between the passage times of the two satellites.
Accordingly, in both cases, the illuminated areas contain very similar features that
make the multi-temporal data particularly valuable. However, both also represent

Figure 1.
Close-ups of the products achieved by applying the pansharpening algorithms to the RR Harlem dataset (red,
green, and blue bands). The resolution enhancement factor is R = 3 (first two rows), 6 (3rd and 4th rows), 12
(5th and 6th rows). (WorldView-3 satellite images courtesy of the DigitalGlobe Foundation). The figure labels
indicate the fusion algorithm (see Section 3.3) and the high resolution data utilized.
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R = 3 R = 6 R = 12

SAM ERGAS Q2n SAM ERGAS Q2n SAM ERGAS Q2n

Optimum 0 0 1 0 0 1 0 0 1

EXP 3.5265 5.8326 0.7130 5.1319 3.8836 0.4504 6.5924 2.3097 0.1948

BT PAN 3.5265 6.5102 0.7966 5.1319 3.9027 0.6722 6.5924 2.2775 0.4588

MS-CEN 3.5803 5.2828 0.8226 4.2943 2.8664 0.7881 4.9775 1.6175 0.7234

MS-CC 3.3063 5.1159 0.8228 3.9316 2.7988 0.7893 4.6801 1.6036 0.7325

MS-SAM 3.2360 5.1028 0.8210 3.9316 2.7988 0.7893 4.6801 1.6036 0.7325

GS PAN 5.3862 7.0484 0.8087 6.6416 4.1369 0.6680 7.7176 2.3742 0.4410

MS-CEN 3.6328 5.2939 0.8230 4.3261 2.8723 0.7886 4.9842 1.6189 0.7235

MS-CC 3.2752 5.1224 0.8265 3.8607 2.7679 0.7929 4.5271 1.5734 0.7273

MS-SAM 3.2524 5.1175 0.8264 3.8607 2.7679 0.7929 4.5271 1.5734 0.7273

GSA PAN 3.2214 4.7124 0.8738 4.8934 3.3652 0.6894 6.6072 2.2022 0.4087

MS-CEN 3.5223 5.3652 0.8409 3.4018 2.5822 0.8428 3.8959 1.3216 0.8294

MS-CC 3.1317 4.9960 0.8560 2.9116 2.3978 0.8584 3.4708 1.2932 0.8209

MS-SAM 3.1743 4.9975 0.8561 2.9116 2.3978 0.8584 3.4708 1.2932 0.8209

AWLP PAN 3.7616 5.4225 0.8676 5.2760 3.4602 0.6878 6.6735 2.2121 0.3316

MS-CEN 2.8262 4.3152 0.8917 3.4476 2.5087 0.8453 4.6396 1.5423 0.7435

MS-CC 2.5918 4.0802 0.8964 3.1629 2.4025 0.8500 4.4146 1.5199 0.7475

MS-SAM 2.5858 4.0637 0.8957 3.1629 2.4025 0.8500 4.4146 1.5199 0.7475

GLP-
HPM

PAN 3.8136 5.4635 0.8586 5.4884 3.7330 0.6855 6.9504 2.2929 0.4577

MS-CEN 2.3843 3.8074 0.9040 3.1578 2.3075 0.8535 3.9734 1.3581 0.7813

MS-CC 2.1285 3.6578 0.9083 2.7886 2.2014 0.8592 3.5383 1.3000 0.7867

MS-SAM 2.1307 3.6586 0.9082 2.7886 2.2014 0.8592 3.5383 1.3000 0.7867

GLP-
CBD

PAN 3.1941 4.5103 0.8809 4.9075 3.3653 0.7091 6.7263 2.2100 0.4833

MS-CEN 2.4442 4.0778 0.8955 3.0302 2.3854 0.8653 3.3037 1.2603 0.8559

MS-CC 2.1961 3.9109 0.9007 2.6360 2.2524 0.8728 2.7772 1.1730 0.8643

MS-SAM 2.1949 3.9103 0.9007 2.6360 2.2524 0.8728 2.7772 1.1730 0.8643

Hyper PAN 3.1925 4.5103 0.8809 4.8948 3.3646 0.7091 6.5771 2.2062 0.4840

MS 2.1810 4.1296 0.8901 2.5145 2.3331 0.8631 2.4683 1.1685 0.8584

CNMF PAN 3.6166 4.9517 0.8486 5.1629 3.4878 0.6767 6.5140 2.1778 0.4502

MS 2.7434 5.0313 0.8244 3.0144 2.5666 0.8161 3.1548 1.2958 0.8152

Bay-N PAN 3.0726 4.1725 0.8832 5.5648 3.6632 0.6391 7.3189 2.2828 0.4263

MS 2.4412 4.2739 0.8741 3.7782 2.8095 0.8122 4.1716 1.4252 0.8083

Bay-S PAN 2.9726 4.1264 0.8857 5.4515 3.6479 0.6328 7.3540 2.2766 0.4241

MS 2.4381 4.2740 0.8741 3.7800 2.8104 0.8122 4.1295 1.4233 0.8085

HySure PAN 2.9758 4.2484 0.8864 6.6141 4.3498 0.6034 7.7052 2.3314 0.4497

MS 2.3304 4.5347 0.8634 3.7736 2.8694 0.8068 3.4966 1.3647 0.8187

For each algorithm, the best result among the HR options is in boldface.

Table 1.
Values of the quality indexes, related to the reduced resolution assessment procedure, using the Harlem dataset,
for resolution enhancement ratio R ¼ 3, 6, 12 .
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almost ideal cases, since the presence of rapidly changing objects, for example, the
aircrafts present in the Capodichino dataset, can vary also within very close pas-
sages. Accordingly, particularly interesting is the case of the Capodichino dataset,
which gives rise to somewhat unalike results, which are reported in Table 3. In fact,
in most cases, the single-platform setting almost always yields better results, even if
the visual appearance of the images related to the multi-platform approach is often
preferable in terms of quantity of injected details (see Figure 3). Actually, a more
accurate analysis evidences that multi-platform products yield a sharpened image in

Figure 2.
Close-ups of the products achieved by applying the pansharpening algorithms to the RR Agnano dataset (red,
green, and blue bands). The resolution enhancement factor is R ¼ 6 (WorldView-3 satellite images courtesy of
the DigitalGlobe Foundation). The figure labels indicate the fusion method (see Section 3.3), the high resolution
data and the assignation algorithm (see Section 2.1.2), utilized.
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which the plane is absent (especially in CS methods). Moreover, the spectral quality
of the final products is significantly compromised if the WV3 MS images are used.

The spatial quality differences among the various algorithms can be further
investigated by resorting to a quality index that allows a band-by-band analysis of
the quality of the algorithms output. To this aim, we report in Figures 4 and 5 the
behavior of the Q-index as a function of the HS band. The two images reveal both
similarities and discrepancies in the algorithms’ performance. In particular, we can
note that for the HS channels with support contained in the frequency range

Figure 3.
Close-ups of the products achieved by applying the pansharpening algorithms to the RR Capodichino dataset
(red, green, and blue bands). The resolution enhancement factor is R ¼ 6 (WorldView-3 satellite images
courtesy of the DigitalGlobe Foundation). The figure labels indicate the fusion method (see Section 3.3), the high
resolution data and the assignation algorithm (see Section 2.1.2), utilized.
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R = 3 R = 6 R = 12

SAM ERGAS Q2n SAM ERGAS Q2n SAM ERGAS Q2n

Optimum 0 0 1 0 0 1 0 0 1

EXP 2.6173 2.5563 0.8068 3.7601 1.7890 0.5523 4.6496 1.0807 0.2831

BT PAN 2.6173 3.0548 0.8058 3.7601 1.8723 0.6009 4.6496 1.0984 0.3604

MS-CEN 3.2295 2.8406 0.8228 3.6738 1.5425 0.7624 4.2802 0.9126 0.6314

MS-CC 2.8772 2.7482 0.8259 3.3037 1.4760 0.7778 3.9821 0.8829 0.6574

MS-SAM 2.8785 2.7545 0.8246 3.3167 1.4778 0.7771 3.9799 0.8831 0.6573

GS PAN 2.5586 2.9906 0.8245 3.5826 1.8154 0.6350 4.4993 1.0752 0.3833

MS-CEN 3.3566 2.9027 0.8164 3.7937 1.5864 0.7551 4.3747 0.9302 0.6257

MS-CC 2.8725 2.7552 0.8289 3.2766 1.4747 0.7795 3.9470 0.8804 0.6553

MS-SAM 2.8751 2.7627 0.8279 3.2827 1.4756 0.7792 3.9423 0.8803 0.6554

GSA PAN 2.0386 1.9146 0.9131 2.9847 1.4490 0.7389 4.0761 0.9754 0.4544

MS-CEN 3.5162 3.3626 0.8386 3.4506 1.5113 0.8447 3.5818 0.7576 0.8114

MS-CC 3.1628 3.2125 0.8467 2.6754 1.3571 0.8631 2.7824 0.6787 0.8335

MS-SAM 3.1205 3.2341 0.8434 2.6582 1.3579 0.8625 2.7882 0.6801 0.8343

AWLP PAN 2.8338 2.5814 0.8813 3.8646 1.6842 0.6804 4.7083 1.0524 0.3699

MS-CEN 2.7408 2.3775 0.9046 3.3902 1.3975 0.8461 4.2634 0.8638 0.7295

MS-CC 2.0621 1.9661 0.9277 2.4336 1.1492 0.8788 3.1755 0.7410 0.7617

MS-SAM 2.0383 1.9784 0.9257 2.4348 1.1512 0.8779 3.1781 0.7414 0.7613

HPM PAN 2.6258 2.3637 0.8801 3.7500 1.6695 0.6946 4.6745 1.0314 0.4644

MS-CEN 2.0732 1.8683 0.9279 2.7382 1.1754 0.8645 3.4479 0.7399 0.7318

MS-CC 1.6181 1.6259 0.9404 2.2147 1.0522 0.8808 3.0151 0.6926 0.7478

MS-SAM 1.6025 1.6284 0.9401 2.2211 1.0528 0.8806 3.0126 0.6927 0.7478

GLP-
CBD

PAN 1.9534 1.8586 0.9140 2.9661 1.4434 0.7528 3.7656 0.9312 0.5485

MS-CEN 2.1162 1.9590 0.9251 2.8919 1.2444 0.8807 3.5286 0.7418 0.8378

MS-CC 1.7546 1.8129 0.9340 2.1960 1.1043 0.9003 2.4993 0.6279 0.8699

MS-SAM 1.7344 1.8256 0.9323 2.1917 1.1067 0.8994 2.5042 0.6276 0.8699

Hyper PAN 1.9543 1.8586 0.9140 2.9688 1.4419 0.7530 3.7703 0.9171 0.5490

MS 1.5897 1.7214 0.9382 2.0229 1.0444 0.9080 2.6430 0.6815 0.8437

CNMF PAN 2.7720 2.6075 0.8584 3.8859 1.7337 0.7138 4.6329 1.0405 0.5231

MS 2.5088 2.7525 0.8413 2.6865 1.3843 0.8302 3.0105 0.7685 0.7988

Bay-N PAN 2.2560 2.1131 0.9017 3.8832 1.7313 0.6794 5.0346 1.1319 0.5224

MS 2.2126 2.3448 0.8934 3.4757 1.6422 0.8013 3.9694 0.9266 0.7793

Bay-S PAN 1.9858 1.8416 0.9190 3.7604 1.6862 0.6807 4.9424 1.1049 0.5233

MS 2.2130 2.3451 0.8934 3.4818 1.6433 0.8010 4.1745 0.9468 0.7705

HySure PAN 2.3509 2.2174 0.8922 4.5235 2.0695 0.6128 5.3742 1.2250 0.5362

MS 2.5649 2.7776 0.8513 3.1989 1.5863 0.7770 3.2956 0.8437 0.7707

For each algorithm, the best result among the HR options is in boldface.

Table 2.
Values of the quality indexes, related to the reduced resolution assessment procedure, using the Agnano dataset,
for resolution enhancement ratio R ¼ 3, 6, 12 .
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R = 3 R = 6 R = 12

SAM ERGAS Q2n SAM ERGAS Q2n SAM ERGAS Q2n

Optimum 0 0 1 0 0 1 0 0 1

EXP 2.9041 3.4640 0.7607 4.0809 2.3556 0.4930 5.1271 1.4488 0.2097

BT PAN 2.9041 4.1628 0.7804 4.0809 2.4750 0.6310 5.1271 1.4643 0.3702

MS-CEN 4.6792 5.7317 0.5938 4.9025 2.8810 0.5576 5.2432 1.5154 0.4746

MS-CC 4.4343 5.5489 0.5875 4.6256 2.8173 0.5608 4.8858 1.4960 0.4877

MS-SAM 4.4509 5.6304 0.5926 4.5951 2.8322 0.5656 4.8969 1.4970 0.4884

GS PAN 3.2286 4.2133 0.7758 4.6558 2.5912 0.5960 6.0683 1.5821 0.3326

MS-CEN 4.7700 5.7476 0.5942 5.0022 2.8997 0.5559 5.3204 1.5280 0.4738

MS-CC 4.4891 5.6363 0.6008 4.5862 2.8320 0.5674 4.8663 1.4973 0.4873

MS-SAM 4.4772 5.6713 0.6002 4.5710 2.8401 0.5688 4.8625 1.4977 0.4875

GSA PAN 2.4807 2.5976 0.8833 3.4450 1.8687 0.6998 4.7540 1.2970 0.3636

MS-CEN 7.0619 8.2274 0.5357 6.4658 3.6062 0.5650 6.2811 1.6761 0.5705

MS-CC 6.0976 6.8763 0.6001 5.1292 2.9285 0.6236 4.5374 1.3304 0.6124

MS-SAM 6.3286 7.3363 0.5718 5.1970 3.0603 0.6081 4.5366 1.3311 0.6116

AWLP PAN 3.1491 3.3732 0.8598 4.3651 2.1254 0.6899 5.3684 1.3789 0.3466

MS-CEN 3.5341 3.9606 0.7920 4.4168 2.4048 0.6799 5.3696 1.4223 0.5509

MS-CC 3.2680 3.6163 0.8090 3.9660 2.2291 0.7016 4.6378 1.3293 0.5765

MS-SAM 3.2595 3.6703 0.8095 3.9215 2.2381 0.7044 4.6313 1.3300 0.5770

HPM PAN 3.0965 3.1605 0.8526 4.4371 2.2155 0.6823 5.6302 1.4059 0.4234

MS-CEN 2.7198 3.1964 0.8373 3.5213 2.0407 0.7212 4.2637 1.2216 0.5688

MS-CC 2.5362 3.0548 0.8462 3.2128 1.9735 0.7323 3.8668 1.1926 0.5824

MS-SAM 2.5133 3.0672 0.8469 3.1841 1.9742 0.7343 3.8640 1.1927 0.5827

CBD PAN 2.4126 2.5037 0.8832 3.3688 1.8193 0.7261 4.5275 1.2246 0.4657

MS-CEN 2.6355 3.1271 0.8385 3.6260 2.1248 0.7234 4.7470 1.3681 0.6321

MS-CC 2.5513 3.0624 0.8432 3.4488 2.0790 0.7322 4.2992 1.3201 0.6488

MS-SAM 2.5421 3.0807 0.8436 3.4306 2.0895 0.7336 4.2828 1.3220 0.6487

Hyper PAN 2.4126 2.5037 0.8832 3.3684 1.8199 0.7259 4.5152 1.2254 0.4652

MS 2.7138 3.2570 0.8224 3.8293 2.2194 0.6966 4.6147 1.3181 0.6051

CNMF PAN 3.0309 3.2174 0.8361 4.1597 2.1199 0.7035 5.0892 1.3082 0.4882

MS 4.2695 5.4648 0.5984 3.7804 2.6307 0.6027 4.3318 1.4644 0.5163

Bay-N PAN 2.4809 2.5412 0.8897 4.2876 2.1478 0.6600 5.7306 1.4619 0.4276

MS 2.8266 3.3996 0.8173 4.3109 2.5638 0.6354 4.9158 1.5127 0.5777

Bay-S PAN 2.3080 2.3705 0.8981 4.1732 2.1120 0.6596 5.7597 1.4522 0.4304

MS 2.8267 3.3989 0.8173 4.3114 2.5637 0.6354 4.9126 1.5115 0.5780

HySure PAN 2.4928 2.7947 0.8754 5.3229 2.7732 0.6101 5.7868 1.4747 0.4592

MS 3.2759 4.3963 0.7367 4.1931 2.8471 0.5906 4.5497 1.5079 0.5723

For each algorithm, the best result among the HR options is in boldface.

Table 3.
Values of the quality indexes, related to the reduced resolution assessment procedure, using the Capodichino
dataset, for resolution enhancement ratio R ¼ 3, 6, 12 .

31

Resolution Enhancement of Hyperspectral Data Exploiting Real Multi-Platform Data
DOI: http://dx.doi.org/10.5772/intechopen.92795



R = 3 R = 6 R = 12

SAM ERGAS Q2n SAM ERGAS Q2n SAM ERGAS Q2n

Optimum 0 0 1 0 0 1 0 0 1

EXP 2.6173 2.5563 0.8068 3.7601 1.7890 0.5523 4.6496 1.0807 0.2831

BT PAN 2.6173 3.0548 0.8058 3.7601 1.8723 0.6009 4.6496 1.0984 0.3604

MS-CEN 3.2295 2.8406 0.8228 3.6738 1.5425 0.7624 4.2802 0.9126 0.6314

MS-CC 2.8772 2.7482 0.8259 3.3037 1.4760 0.7778 3.9821 0.8829 0.6574

MS-SAM 2.8785 2.7545 0.8246 3.3167 1.4778 0.7771 3.9799 0.8831 0.6573

GS PAN 2.5586 2.9906 0.8245 3.5826 1.8154 0.6350 4.4993 1.0752 0.3833

MS-CEN 3.3566 2.9027 0.8164 3.7937 1.5864 0.7551 4.3747 0.9302 0.6257

MS-CC 2.8725 2.7552 0.8289 3.2766 1.4747 0.7795 3.9470 0.8804 0.6553

MS-SAM 2.8751 2.7627 0.8279 3.2827 1.4756 0.7792 3.9423 0.8803 0.6554

GSA PAN 2.0386 1.9146 0.9131 2.9847 1.4490 0.7389 4.0761 0.9754 0.4544

MS-CEN 3.5162 3.3626 0.8386 3.4506 1.5113 0.8447 3.5818 0.7576 0.8114

MS-CC 3.1628 3.2125 0.8467 2.6754 1.3571 0.8631 2.7824 0.6787 0.8335

MS-SAM 3.1205 3.2341 0.8434 2.6582 1.3579 0.8625 2.7882 0.6801 0.8343

AWLP PAN 2.8338 2.5814 0.8813 3.8646 1.6842 0.6804 4.7083 1.0524 0.3699

MS-CEN 2.7408 2.3775 0.9046 3.3902 1.3975 0.8461 4.2634 0.8638 0.7295

MS-CC 2.0621 1.9661 0.9277 2.4336 1.1492 0.8788 3.1755 0.7410 0.7617

MS-SAM 2.0383 1.9784 0.9257 2.4348 1.1512 0.8779 3.1781 0.7414 0.7613

HPM PAN 2.6258 2.3637 0.8801 3.7500 1.6695 0.6946 4.6745 1.0314 0.4644

MS-CEN 2.0732 1.8683 0.9279 2.7382 1.1754 0.8645 3.4479 0.7399 0.7318

MS-CC 1.6181 1.6259 0.9404 2.2147 1.0522 0.8808 3.0151 0.6926 0.7478

MS-SAM 1.6025 1.6284 0.9401 2.2211 1.0528 0.8806 3.0126 0.6927 0.7478

GLP-
CBD

PAN 1.9534 1.8586 0.9140 2.9661 1.4434 0.7528 3.7656 0.9312 0.5485

MS-CEN 2.1162 1.9590 0.9251 2.8919 1.2444 0.8807 3.5286 0.7418 0.8378

MS-CC 1.7546 1.8129 0.9340 2.1960 1.1043 0.9003 2.4993 0.6279 0.8699

MS-SAM 1.7344 1.8256 0.9323 2.1917 1.1067 0.8994 2.5042 0.6276 0.8699

Hyper PAN 1.9543 1.8586 0.9140 2.9688 1.4419 0.7530 3.7703 0.9171 0.5490

MS 1.5897 1.7214 0.9382 2.0229 1.0444 0.9080 2.6430 0.6815 0.8437

CNMF PAN 2.7720 2.6075 0.8584 3.8859 1.7337 0.7138 4.6329 1.0405 0.5231

MS 2.5088 2.7525 0.8413 2.6865 1.3843 0.8302 3.0105 0.7685 0.7988

Bay-N PAN 2.2560 2.1131 0.9017 3.8832 1.7313 0.6794 5.0346 1.1319 0.5224

MS 2.2126 2.3448 0.8934 3.4757 1.6422 0.8013 3.9694 0.9266 0.7793

Bay-S PAN 1.9858 1.8416 0.9190 3.7604 1.6862 0.6807 4.9424 1.1049 0.5233

MS 2.2130 2.3451 0.8934 3.4818 1.6433 0.8010 4.1745 0.9468 0.7705

HySure PAN 2.3509 2.2174 0.8922 4.5235 2.0695 0.6128 5.3742 1.2250 0.5362

MS 2.5649 2.7776 0.8513 3.1989 1.5863 0.7770 3.2956 0.8437 0.7707

For each algorithm, the best result among the HR options is in boldface.

Table 2.
Values of the quality indexes, related to the reduced resolution assessment procedure, using the Agnano dataset,
for resolution enhancement ratio R ¼ 3, 6, 12 .
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R = 3 R = 6 R = 12

SAM ERGAS Q2n SAM ERGAS Q2n SAM ERGAS Q2n

Optimum 0 0 1 0 0 1 0 0 1

EXP 2.9041 3.4640 0.7607 4.0809 2.3556 0.4930 5.1271 1.4488 0.2097

BT PAN 2.9041 4.1628 0.7804 4.0809 2.4750 0.6310 5.1271 1.4643 0.3702

MS-CEN 4.6792 5.7317 0.5938 4.9025 2.8810 0.5576 5.2432 1.5154 0.4746

MS-CC 4.4343 5.5489 0.5875 4.6256 2.8173 0.5608 4.8858 1.4960 0.4877

MS-SAM 4.4509 5.6304 0.5926 4.5951 2.8322 0.5656 4.8969 1.4970 0.4884

GS PAN 3.2286 4.2133 0.7758 4.6558 2.5912 0.5960 6.0683 1.5821 0.3326

MS-CEN 4.7700 5.7476 0.5942 5.0022 2.8997 0.5559 5.3204 1.5280 0.4738

MS-CC 4.4891 5.6363 0.6008 4.5862 2.8320 0.5674 4.8663 1.4973 0.4873

MS-SAM 4.4772 5.6713 0.6002 4.5710 2.8401 0.5688 4.8625 1.4977 0.4875

GSA PAN 2.4807 2.5976 0.8833 3.4450 1.8687 0.6998 4.7540 1.2970 0.3636

MS-CEN 7.0619 8.2274 0.5357 6.4658 3.6062 0.5650 6.2811 1.6761 0.5705

MS-CC 6.0976 6.8763 0.6001 5.1292 2.9285 0.6236 4.5374 1.3304 0.6124

MS-SAM 6.3286 7.3363 0.5718 5.1970 3.0603 0.6081 4.5366 1.3311 0.6116

AWLP PAN 3.1491 3.3732 0.8598 4.3651 2.1254 0.6899 5.3684 1.3789 0.3466

MS-CEN 3.5341 3.9606 0.7920 4.4168 2.4048 0.6799 5.3696 1.4223 0.5509

MS-CC 3.2680 3.6163 0.8090 3.9660 2.2291 0.7016 4.6378 1.3293 0.5765

MS-SAM 3.2595 3.6703 0.8095 3.9215 2.2381 0.7044 4.6313 1.3300 0.5770

HPM PAN 3.0965 3.1605 0.8526 4.4371 2.2155 0.6823 5.6302 1.4059 0.4234

MS-CEN 2.7198 3.1964 0.8373 3.5213 2.0407 0.7212 4.2637 1.2216 0.5688

MS-CC 2.5362 3.0548 0.8462 3.2128 1.9735 0.7323 3.8668 1.1926 0.5824

MS-SAM 2.5133 3.0672 0.8469 3.1841 1.9742 0.7343 3.8640 1.1927 0.5827

CBD PAN 2.4126 2.5037 0.8832 3.3688 1.8193 0.7261 4.5275 1.2246 0.4657

MS-CEN 2.6355 3.1271 0.8385 3.6260 2.1248 0.7234 4.7470 1.3681 0.6321

MS-CC 2.5513 3.0624 0.8432 3.4488 2.0790 0.7322 4.2992 1.3201 0.6488

MS-SAM 2.5421 3.0807 0.8436 3.4306 2.0895 0.7336 4.2828 1.3220 0.6487

Hyper PAN 2.4126 2.5037 0.8832 3.3684 1.8199 0.7259 4.5152 1.2254 0.4652

MS 2.7138 3.2570 0.8224 3.8293 2.2194 0.6966 4.6147 1.3181 0.6051

CNMF PAN 3.0309 3.2174 0.8361 4.1597 2.1199 0.7035 5.0892 1.3082 0.4882

MS 4.2695 5.4648 0.5984 3.7804 2.6307 0.6027 4.3318 1.4644 0.5163

Bay-N PAN 2.4809 2.5412 0.8897 4.2876 2.1478 0.6600 5.7306 1.4619 0.4276

MS 2.8266 3.3996 0.8173 4.3109 2.5638 0.6354 4.9158 1.5127 0.5777

Bay-S PAN 2.3080 2.3705 0.8981 4.1732 2.1120 0.6596 5.7597 1.4522 0.4304

MS 2.8267 3.3989 0.8173 4.3114 2.5637 0.6354 4.9126 1.5115 0.5780

HySure PAN 2.4928 2.7947 0.8754 5.3229 2.7732 0.6101 5.7868 1.4747 0.4592

MS 3.2759 4.3963 0.7367 4.1931 2.8471 0.5906 4.5497 1.5079 0.5723

For each algorithm, the best result among the HR options is in boldface.

Table 3.
Values of the quality indexes, related to the reduced resolution assessment procedure, using the Capodichino
dataset, for resolution enhancement ratio R ¼ 3, 6, 12 .
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covered by the ALI PAN, the use of single-platform data is always preferable,
except for the case of the Hyper algorithm applied to the Agnano dataset with R = 6.
Clearly, this consideration is all the more true in the experiment related to the
Capodichino dataset. Instead, different trends are experienced for the near-infrared
(NIR) bands. All the algorithms (except the GSA algorithm with R = 3) obtain better

Figure 4.
Q-index as a function of the HS band for the Agnano dataset. The curves refer to the data fusion of the
Hyperion images with the ALI PAN (black continuous), the MS-CEN (red dashed curve), MS-CC (green
dotted curve), and MS-SAM (blue continuous curve with circle marks).
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performance by using multi-platform data working on the Agnano dataset. On the
contrary, using the Capodichino dataset, the GSA algorithms always obtain superior
results by using the ALI PAN image, while the other two methods obtain a slightly
better performance in the NIR region that is not able to balance the scarce quality in
the visible range, thus resulting in an inferior overall performance of the multi-
platform approach. Finally, it is very clear from both Figures 4 and 5 that the

Figure 5.
Q-index as a function of the HS band for the Capodichino dataset. The curves refer to the data fusion of the
Hyperion images with the ALI PAN (black continuous), the MS-CEN (red dashed curve), MS-CC (green
dotted curve), and MS-SAM (blue continuous curve with circle marks).
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dotted curve), and MS-SAM (blue continuous curve with circle marks).
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performance by using multi-platform data working on the Agnano dataset. On the
contrary, using the Capodichino dataset, the GSA algorithms always obtain superior
results by using the ALI PAN image, while the other two methods obtain a slightly
better performance in the NIR region that is not able to balance the scarce quality in
the visible range, thus resulting in an inferior overall performance of the multi-
platform approach. Finally, it is very clear from both Figures 4 and 5 that the

Figure 5.
Q-index as a function of the HS band for the Capodichino dataset. The curves refer to the data fusion of the
Hyperion images with the ALI PAN (black continuous), the MS-CEN (red dashed curve), MS-CC (green
dotted curve), and MS-SAM (blue continuous curve with circle marks).
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CC-AA and the SAM-AA algorithms are able to obtain significant improvements
with respect to CEN-CC, especially in the NIR frequencies.

5. Conclusions

The aim of this work was to illustrate the recent advances in the field of
hyperspectral image sharpening through single-platform and multi-platform data.
The study was conducted on real data acquired by the Earth Observing-1 and the
WorldView-3 satellites in order to highlight the practical issues to be addressed
when fusing images acquired by different platforms. We focused on well-known
algorithms based on classical approaches borrowed from the pansharpening litera-
ture and on techniques developed on purpose. We evaluated the possibility of
completing the fusion process, both in the absence and presence of temporal mis-
alignments between the scenes illuminated by the sensors mounted on the two
satellites. The study highlighted the suitability of the employment of multi-platform
data especially in the presence of high-resolution enhancement factors. Actually, in
some cases, the use of multispectral images was also proven to be useful at low-
resolution enhancement factors, and this result can be easily justified by taking into
consideration that the details contained in the MS channels are able to provide more
specific spatial information for a given HS channel.
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CC-AA and the SAM-AA algorithms are able to obtain significant improvements
with respect to CEN-CC, especially in the NIR frequencies.

5. Conclusions

The aim of this work was to illustrate the recent advances in the field of
hyperspectral image sharpening through single-platform and multi-platform data.
The study was conducted on real data acquired by the Earth Observing-1 and the
WorldView-3 satellites in order to highlight the practical issues to be addressed
when fusing images acquired by different platforms. We focused on well-known
algorithms based on classical approaches borrowed from the pansharpening litera-
ture and on techniques developed on purpose. We evaluated the possibility of
completing the fusion process, both in the absence and presence of temporal mis-
alignments between the scenes illuminated by the sensors mounted on the two
satellites. The study highlighted the suitability of the employment of multi-platform
data especially in the presence of high-resolution enhancement factors. Actually, in
some cases, the use of multispectral images was also proven to be useful at low-
resolution enhancement factors, and this result can be easily justified by taking into
consideration that the details contained in the MS channels are able to provide more
specific spatial information for a given HS channel.
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Chapter 3

Application of Deep Learning 
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There are two mast cameras (Mastcam) onboard the Mars rover Curiosity. Both 
Mastcams are multispectral imagers with nine bands in each. The right Mastcam has 
three times higher resolution than the left. In this chapter, we apply some recently 
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help from the right Mastcam images. Actual Mastcam images were used to demon-
strate the performance of the proposed algorithms.
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1. Introduction

The Curiosity rover (Figure 1) has several instruments that are used to char-
acterize the Mars surface. For example, the Alpha Particle X-Ray Spectrometer 
(APXS) [1] can analyze rock samples collected from the robotic arm and extract 
compositions of rocks; the Laser Induced Breakdown Spectroscopy (LIBS) [2] can 
extract spectral features from the vaporized fumes and deduce the rock composi-
tions at a distance of 7 m; and the Mastcam imagers [3] can perform surface charac-
terization from 1 km away.

The two Mastcam multispectral imagers are separated by 24.2 cm [3]. As shown 
in Figure 2, the left Mastcam (34 mm focal length) has three times the field of view 
of the right Mastcam (100 mm focal length). In other words, the right imager has 
three times higher resolution than that of the left. To generate stereo image or con-
struct a 12-band image cube by fusing bands from the multispectral imagers from the 
left and right Mastcams [4–6], a practical solution is to downsample the resolution 
of the right images to that of the left images, which would avoid the artifacts caused 
by Bayer pattern [7] or the JPEG compression loss [8]. Although this approach has 
practical merits, it may restrict the potential ability of Mastcams. First, downsam-
pling the right images will throw away those high spatial resolution pixels in the 
right bands. Second, the lower resolution of the current stereo images may degrade 
the augmented reality or virtual reality experience of users. If one can apply some 
advanced pansharpening algorithms to the left bands, then one can have 12 bands of 
high-resolution image cube for the purpose of stereo vision and image fusion.

In the past two decades, there have been many papers discussing the fusion of a 
high resolution panchromatic (pan) image with a low-resolution multispectral image 
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by Bayer pattern [7] or the JPEG compression loss [8]. Although this approach has 
practical merits, it may restrict the potential ability of Mastcams. First, downsam-
pling the right images will throw away those high spatial resolution pixels in the 
right bands. Second, the lower resolution of the current stereo images may degrade 
the augmented reality or virtual reality experience of users. If one can apply some 
advanced pansharpening algorithms to the left bands, then one can have 12 bands of 
high-resolution image cube for the purpose of stereo vision and image fusion.
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(MSI) [10–14]. This is known as pansharpening. In our recent papers [15, 16], we 
proposed an unsupervised network structure to address the image fusion/super-res-
olution (SR) problem for hyperspectral image (HSI), referred to as HSI-SR, where 
a low-resolution (LR) HSI with high spectral resolution and a high-resolution (HR) 
MSI with low spectral resolution are fused to generate an HSI with high-resolution 
in both spatial and spectral dimensions. Similar to MSI, HSI has found extensive 
applications [17–21]. In this chapter, we adopt the innovative approaches designed in 
[15, 16], referred to as unsupervised sparse Dirichlet Network (uSDN), to enhance 
Mastcam images, where we treat the right Mastcam image as MSI with higher spatial 
resolution and the left Mastcam image as HSI with low spatial resolution.

In this chapter, we focus on the application of uSDN to enhance Mastcam 
images. In Section 2, we first introduce the problem of HSI-SR and then briefly 
summarize the key ideas of uSDN. In Section 3, we apply uSDN on actual Mastcam 
images. In Section 4, we include some further enhancements of uSDN and experi-
ments. In Section 5, we introduce a transition learning concept, which is a natural 
extension of uSDN. Some preliminary results are also included. Finally, we conclude 
the chapter with some remarks.

Figure 2. 
The two Mastcam imagers [9]. (a) Left Mastcam (b) Right Mastcam.

Figure 1. 
Curiosity rover and its onboard instruments [7].
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2. The uSDN algorithm for HSI-SR

In this section, we describe the uSDN algorithm developed in [15, 16]. For more 
details, please refer to the reference. First of all, we will formulate the problem of 
HSI-SR to facilitate the discussion of Mastcam enhancement. Table 1 summarizes 
the mathematical symbols used in this chapter.

The basic idea of uSDN is illustrated in Figure 3. First, the LR HSI, ´ ´Î m n L
hY R  

with its width, height, and number of spectral bands denoted as ,m ,n  and ,L  
respectively, is unfolded into a 2D matrix, ´Î mn L

hY R . Similarly, the HR MSI, 
´ ´Î M N l

mY R  with its width, height, and number of spectral bands denoted as ,M ,N  
and l , respectively, is unfolded into a 2D matrix ´Î MN l

mY R . And the SR HSI, 
´ ´Î ,M N LX R is unfolded into a 2D matrix ´Î MN LX R . Note that, generally, the spatial 

resolution of the MSI is much higher than that of the HSI, that is,  ,M m  ,N n  
and the spectral resolution of HSI is much higher than that of the MSI, that is, L l . 
The objective is to reconstruct the high spatial and spectral resolution HSI, 

´ ´Î M N LX R , with LR HSI and HR MSI.
Due to the limitation of hardware, each pixel in an HSI or MSI may cover more 

than one constituent materials, leading to mixed pixels. These mixtures can be 
assumed to be a linear combination of a few basis vectors (or source signatures). 
Both LR HSI hY  and HR MSI mY  can be assumed to be a linear combination of c  

HSI Hyperspectral image

MSI Multispectral image

HSI-SR HSI super-resolution

HR High-resolution

LR Low-resolution

hY / hY 3D/2D LR HSI

/m mY Y 3D/2D HR MSI

X / X 3D/2D Reconstructed HR MSI

Fh Spectral bases of HSI

Fm Spectral bases of MSI

hS Coefficients/Representations of HSI

mS Coefficients/Representations of MSI

R Transformation matrix


hY Reconstructed 2D HSI

,W b Network weights and bias

( )qm heE / ( )qm meE Encoder of the HIS/MSI

( )qh hdD Decoder of the HIS and MSI

qhe /qme Encoder weights of HIS/MSI

qhd Decoder weights of HSI and MSI

s Representations vector of a single pixel

b, ,v u Stick-breaking parameters

( )pH s Entropy function

( ),h mA S S Angular difference

Table 1. 
Symbols and abbreviations.
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basis vectors with their corresponding proportional coefficients (referred to as 
representations in deep learning), as expressed in Eqs. (1) and (2), where ´F Î c L

h R  
and ´F Î c l

m R  denote the spectral basis of hY  and mY , respectively. They preserve 
the spectral information of the images. ´Î mn c

hS R  and ´Î MN c
mS R  are the propor-

tional coefficients of hY  and mY , respectively. Since the coefficients indicate how 
much each spectral basis has in constructing the mixed pixel at specific spatial 
locations, they preserve the spatial structure of HSI. The relationship between HSI 
and MSI bases can be expressed in the right part of Eq. (2), where ´Î L lR R  is the 
transformation matrix given as a prior from the sensor [22–29].

 = Fh h hY S , (1)

 = F ,m m mY S F =F ,m hR  (2)

 = F .m hX S  (3)

With ´F Î c L
h R  carrying the high spectral information and ´Î MN c

mS R  carrying 
the high spatial information, the desired HR HSI, ,X is generated by Eq. (3). See 
Figure 3. Since the ground truth X  is not available, the problem has to be solved in 
an unsupervised fashion. In addition, the linear combination assumption enforces 
the representation vectors of HSI or MSI to be non-negative and sum-to-one, that 
is, =å =1 1,c

j ijs where is  is the row vector of either mS  or hS  [24, 29].

The uSDN unsupervised architecture is shown in Figure 4. It has three unique 
structures. First, the network consists of two encoder-decoder networks, to extract 
the representations of the LR HSI and HR MSI, respectively. The two networks share 
the same decoder, such that both the spectral and spatial information from multi-
modalities can be extracted with unsupervised settings. Second, the representations 
of both modalities, hS  and mS , are enforced to follow a Dirichlet distribution where 

Figure 3. 
General procedure of HSI-SR [15].
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the sum-to-one and non-negative properties are naturally incorporated into the 
network [30–34]. The solution space is further regularized with a sparsity con-
straint. Third, the angular difference of the representations from two modalities is 
minimized to preserve the spectral information of the reconstructed HR HSI.

3. Mastcam image enhancement using uSDN with improvements

3.1 Applying uSDN for Mastcam enhancement

uSDN has been thoroughly evaluated with two widely used benchmark datas-
ets, CAVE [35] and Harvard [36]. Details can be found in [15, 16]. Here, we adopt 
uDSN to enhance the resolution of Mastcam images. As mentioned earlier, the 
right Mastcam has high resolution than the left. Hence, we treat the right Mastcam 
images are HR MSI and the left images as LR HSI. Although uSDN was introduced 
to deal with the general HSI super-resolution problem, we can treat the Mastcam 
image enhancement simply as a special case of HSI-SR.

For quantitative comparison, the root mean squared error (RMSE) and spectral 
angle mapper (SAM) are applied to evaluate the reconstruction error and the 
amount of spectral distortion, respectively.

The results are shown in Figure 5. The reconstructed image is very close to the 
ground truth. Most methods require that the size of high-resolution image should 
be equal to an integer multiplication of the size of low-resolution image. Thus, we 
only compare the method with CNMF [29] which works for arbitrary image size. 
The results are shown in Table 2. We observe that uSDN is able to outperform 
the CNMF.

3.2 Improvement based on uSDN

In this section, we summarize some further improvement of uDSN by fine-
tuning the existing network structure in uSDN in order to further enhance the 
fusion performance.

Figure 4. 
Simplified architecture of uSDN [15].
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Figure 5. 
Results of Mastcam image enhancement using uSDN. The left column shows the six bands from the left camera. 
The middle column shows the corresponding reconstructed results. The right column shows the six bands from 
the right camera.
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The existing structure of uDSN described in Section 3.1 is improved in two 
ways. First, in Section 3.1, the architecture consists of two deep networks, for the 
representation learning of the LR HSI and HR MSI, respectively. And only the 
decoders of the LR HSI and HR HSI networks are shared. The spectral information 
(i.e., the decoder of the LR HSI network) is extracted through the LR HSI network. 
Then the representation layer of the HR HSI is optimized by enforcing the spectral 
angle similarity. However, this introduces additional cost function, that is, angular 
difference minimization, and the optimization procedure is time consuming. In 
the improved uDSN, for the HR HSI network, most of the encoder weights are 
shared with the weights of the LR HSI encoder. Only a couple of encoder weights 
are updated during the HR HSI optimization. In this way, both the representations 
of the LR HSI and HR HSI networks are reinforced to follow Dirichlet distributions 
with parameters following the same trends. And the representations extracted from 
the LR HSI matches the patterns of that extracted from the HR HSI as shown in 
Figure 6.

Second, to further reduce the spectral distortion of the estimated HR HSI, 
instead of using 2l  loss, we adopt the 21l  loss, which encourages the network to 
reduce the spectral loss of each pixel. Compared to the network with 2l  loss, the 
network with 21l  loss is able to extract spectral information of images more accu-
rately. The 21l  loss can not only reduce the spectral distortion of the estimated HR 
HSI, but also improve the convergence speed of the network.

The result of the proposed method on individual HSI is visualized in Figure 7. 
When we optimize the network with 21l  loss, we can observe that the difference 
between the estimated MSI and the ground truth MSI is very small, with RMSE of 
1.7428 and SAM of 0.25615.

Approaches RMSE SAM

CNMF 0.056 2.48

uSDN 0.033 2.09

Table 2. 
Evaluations for image enhancement from Mastcam.

Figure 6. 
Representations extracted from the LR HSI (top row) and the HR HSI (bottom row).
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4. Combination of Dirichlet-Net and U-Net

In this section, we propose to combine Dirichlet-Net with U-Net [37] to mitigate 
the mis-registration issue in the left and right Mastcam images.

Since in real scenarios, the images from the left and right cameras may not 
match each other perfectly even after registration, we propose a combination of 
Dirichlet-Net and U-Net to further improve the fusion performance using non-
perfectly registered patches. We propose an unsupervised architecture as shown in 
Figure 8, which consists of two deep networks, an improved Dirichlet-Net for the 
representation learning of the MSI, and a U-Net for switching the low-resolution 
spatial information patches with high-resolution spatial information patches. 
Then the HR MSI of the left Mastcam image is generated by combining its spectral 
information with the spatial information of improved resolution.

Figure 8. 
The architecture of the proposed approach that combines Dirichlet-net with U-Net.

Figure 7. 
The results using improved uSDN. The left column shows the first two bands from the left camera. The 
second column shows the corresponding reconstructed images from the improved uSDN. The third column 
shows the reference images from the right camera. The right column shows the absolute difference between the 
reconstructed images and the reference images.
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From the last step in Figure 8, we are able to extract both the spectral and spatial 
information from LR MSI (left Mastcam) and HR MSI (right Mastcam). Although 
the scenes from the left and right camera are not the same, we assume they share the 
same group of spectral bases. And if we could improve the spatial information of 
the LR MSI using HR MSI, the quality of the LR MSI can be enhanced.

The architecture of the U-Net is illustrated in the lower part of Figure 8. We first 
learn a U-Net to recover the extracted spatial information, ,mS  of HR MSI, ,mY  by 
convolution and deconvolution layers. The convolution layers extract HR spatial 
features from ,mS and the de-convolutional layers take these extracted features to 
rebuild the spatial information of mS . Then we extract features from the spatial patches 

hS  of the LR HSI hY  with the same convolution layers and switch these feature patches 
with their most similar feature patches in the HR spatial features [38]. Finally, the left 
Mastcam image with enhanced resolution, X, is generated by feeding the switching 
patches into de-convolutional layers of U-Net and the decoder of the Dirichlet-Net.

Here, we show experimental results from the proposed combination (Dirichlet-Net 
and U-Net) approach in Figures 9 and 10. We can observe that the reconstructed left 
Mastcam image is sharper than the raw MSI captured from the left camera directly and 
the spectral distortion of the recovered MSI is small, although only part of the high 
resolution MSI (right Mastcam image) is given from the right camera. Note that, due 
to the memory constraint, only a small patch can be recovered every time, thus there 
exist some disconnected parts in the results. This issue will be addressed in Section 5.

5. Spatial representation improvement with transition learning

High spatial resolution images have one natural property, that is, the transitions 
among pixel values are smooth. The patch-based method aims to replace the LR 

Figure 9. 
The results of test image MSL_0002_0114_M1. The top row shows the six bands of raw images from the left 
camera. The bottom row shows the corresponding reconstructed images from the proposed method.

Figure 10. 
The cropped results of test image MSL_0002_0114_M1. The top row shows the six bands of raw images from 
the left camera. The bottom row shows the corresponding reconstructed images from the proposed method.
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4. Combination of Dirichlet-Net and U-Net

In this section, we propose to combine Dirichlet-Net with U-Net [37] to mitigate 
the mis-registration issue in the left and right Mastcam images.

Since in real scenarios, the images from the left and right cameras may not 
match each other perfectly even after registration, we propose a combination of 
Dirichlet-Net and U-Net to further improve the fusion performance using non-
perfectly registered patches. We propose an unsupervised architecture as shown in 
Figure 8, which consists of two deep networks, an improved Dirichlet-Net for the 
representation learning of the MSI, and a U-Net for switching the low-resolution 
spatial information patches with high-resolution spatial information patches. 
Then the HR MSI of the left Mastcam image is generated by combining its spectral 
information with the spatial information of improved resolution.

Figure 8. 
The architecture of the proposed approach that combines Dirichlet-net with U-Net.

Figure 7. 
The results using improved uSDN. The left column shows the first two bands from the left camera. The 
second column shows the corresponding reconstructed images from the improved uSDN. The third column 
shows the reference images from the right camera. The right column shows the absolute difference between the 
reconstructed images and the reference images.
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Figure 12. 
The results of the test image MSL_0002_0114_M1. The left column shows the six bands of raw images from 
the left camera. The second, third, fourth and fifth columns show the corresponding reconstructed images from 
Bicubic, EnhanceNet, the proposed patch-based method and the residual-based transition-learning method, 
respectively.

Figure 11. 
The architecture of the proposed transition learning approach.
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patches from the LR MSI representations hS  with the most similar HR patches from 
the HR MSI representation, mS . Since the LR MSI and HR MSI are unregistered and 
there is no ground truth of enhanced MSI, the patch-based improvement could not 
guarantee the smooth transitions in the reconstructed images, that is, the replaced 
patches may not match their neighbors. Therefore, in this section, we propose 
another structure based on transition-learning, to further improve the spatial 
resolution of LR HSI. The main structure is shown in Figure 11.

To learn smooth transitions between pixels, we first extract sub-images from the 
representations ,mS of HR MSI with stride 3, as shown in the lower part of 
Figure 11. For example, since the super-resolution factor is 3, we extract 9 sub-
images from mS . Then the network learns the transitions between the center 
sub-image with the other 8 sub-images. Since the LR MSI and HR MSI have similar 
statistic distributions, we assume that the transitions among pixels in both modali-
ties are the same. Therefore, the representations hS  of LR MSI can be treated as the 
center sub-image of enhanced MSI and the other 8 sub-images of enhanced MSI can 
be estimated by feeding the representations hS  of LR MSI into the network trained 
by .mS  There are still residuals between the reconstructed and the ideal representa-
tions of .mS  This time, we adopt the principle described earlier to add high fre-
quency residuals on the enhanced MSI.

Figure 13. 
The cropped results of the test image MSL_0002_0114_M1. The left column shows the six bands of raw images 
from the left camera. The second, third, fourth, and fifth columns show the corresponding reconstructed images 
from Bicubic, EnhanceNet, the proposed patch-based method and the residual-based transition-learning 
method, respectively.
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Here, the experimental results of the proposed approaches are compared with 
the results from Bicubic and the state-of-the-art single image super-resolution 
method EnhanceNet [39], as shown in Figures 12–14. Note that, since the 
EnhanceNet only offers the 4X pre-trained weights, we show its 4X reconstruc-
tion results for fair comparison, in case the down-sampling procedure reduces the 
quality of the reconstructed images. The Bicubic does not improve the resolution 
much. The EnhanceNet was trained on natural image dataset; thus it works poorly 
on remote sensing images. Compared to the bicubic or EnhanceNet methods, we 
can observe that the proposed methods can not only improve the spatial resolution 
of LR MSI, but also preserve the spectral information well, even though the images 
from the left and right camera are not registered. The transition-based approach 
works better than the patch-based one, because it learns the relationship between 
the reconstructed pixels.

6. Conclusions

In this chapter, we summarize the application of several deep learning-based 
image fusion algorithms to enhance Mastcam images from Mars rover. The first 

Figure 14. 
The cropped results of the test image MSL_0002_0114_M1. The left column shows the six bands of raw images 
from the left camera. The second, third, fourth, and fifth columns show the corresponding reconstructed images 
from Bicubic, EnhanceNet, the proposed patch-based method and the residual-based transition-learning 
method, respectively.
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Chapter 4

Generative Adversarial Networks
for Visible to Infrared Video
Conversion
Mohammad Shahab Uddin and Jiang Li

Abstract

Deep learning models are data driven. For example, the most popular
convolutional neural network (CNN) model used for image classification or object
detection requires large labeled databases for training to achieve competitive
performances. This requirement is not difficult to be satisfied in the visible domain
since there are lots of labeled video and image databases available nowadays.
However, given the less popularity of infrared (IR) camera, the availability of
labeled infrared videos or image databases is limited. Therefore, training deep
learning models in infrared domain is still challenging. In this chapter, we applied
the pix2pix generative adversarial network (Pix2Pix GAN) and cycle-consistent
GAN (Cycle GAN) models to convert visible videos to infrared videos. The Pix2Pix
GAN model requires visible-infrared image pairs for training while the Cycle GAN
relaxes this constraint and requires only unpaired images from both domains. We
applied the two models to an open-source database where visible and infrared
videos provided by the signal multimedia and telecommunications laboratory at
the Federal University of Rio de Janeiro. We evaluated conversion results by
performance metrics including Inception Score (IS), Frechet Inception Distance
(FID) and Kernel Inception Distance (KID). Our experiments suggest that
cycle-consistent GAN is more effective than pix2pix GAN for generating IR images
from optical images.

Keywords: image conversion, generative adversarial network,
cycle-consistent loss, IR image, Pix2Pix, cycle GAN

1. Introduction

Image-to-image conversion, such as data augmentation [1] or style transfer [2],
has been applied to recent computer vision applications. Traditional image conver-
sion models had been investigated for specific applications [3–14]. Since the crea-
tion of the GAN model [15], it opened a new door to train generative models for
image conversion. For example, computer vision researchers have successfully
developed GAN models for day-to-night and sketch-to-photograph image conver-
sions [16]. Two recent popular models that can perform image-to-image transla-
tions are Pix2Pix GAN [2] and Cycle GAN [16]. Pix2Pix GAN needs paired images
for training whereas Cycle GAN relaxes this constraint and can be trained with
unpaired images. In practice, paired images from different domains are often
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difficult to obtain. Therefore, Cycle GAN is a better choice for image to image
translation where paired images are not available.

IR image datasets are not largely available as compared to optical images. As a
result, we face the shortage of data when we train models for object detection in IR
domain. This problem can be mitigated by using the Cycle GAN model to covert
labeled optical images to IR images. In this chapter, we evaluate two models,
Pix2Pix GAN and Cycle GAN, for image conversion from optical domain to IR
domain. We used four different datasets to perform the conversion and three
metrics including Inception Score (IS), Frechet Inception Distance (FID) and
Kernel Inception Distance (KID) to assess quality of the converted IR images.

2. Image to image conversion models

2.1 Generative adversarial network

GAN consists of one generative model and one discriminative model to generate
images from noise as shown in Figure 1. The generator “G” tries to generate images
from the input noise “z” as realistic as possible to misguide the discriminator “D”

whereas “D” is trained to discriminate the fake image “G(z)” from the real one “x.”
During training, errors at output “D” are backpropagated to update parameters in
“G” and “D,” and the following loss function is optimized [15]:

min max
G D

V D;Gð Þ ¼ Ex�pdata xð Þ logD xð Þ½ � þ Ez�pz zð Þ log 1� D G zð Þð Þð Þ½ � (1)

where x and z represent training data and input noise, respectively. pdata(x) and
pz(z) are distributions of training data and input noise. The discriminator “D” is
trained to minimize the probability of the generated fake image to be real so that it
can correctly assign labels to “G(z)” and “x” in Figure 1. The generator “G” is
trained to maximize D(G(z)) or equivalently to minimize log 1� D G zð Þð Þð Þ�
in equ 1ð Þ, generating realistic images. Essentially, the generator learns to generate
real data’s distribution given by the training dataset. Once the goal is achieved, the
generator can be used to generate realistic images by sampling from the learned
probability distribution.

2.2 Conditional GAN

GAN can be converted into a conditional model with auxiliary information that is
used to impose condition on generator and discriminator [17]. In the conditional
GAN model, additional data are fed into the generator and discriminator so that data
generation can be controlled. The loss function in conditional GAN becomes [17].

Figure 1.
Structure of generative adversarial network.
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min max
G D

V D;Gð Þ ¼ Ey�pdataðyÞ logD yjx� �� �þ Ez�pz zð Þ log 1� D G zjxð Þð Þð Þ½ � (2)

where y and z are training data and input noise, respectively. The input noise z
combined with extra information x generate the output G(z|x). Figure 2 shows the
diagram of conditional GAN.

2.3 Pix2Pix GAN

The Pix2Pix GAN model is built upon the concept of conditional GAN and it has
been a common platform for various image conversion tasks. The diagram of Pix2Pix
GAN model is given in Figure 3. Pix2Pix GAN consists of a “U-Net” [18] based
generator and a “PatchGAN” discriminator [2]. The “U-Net” generator passes low
level information of input image to output image, and the “PatchGAN” discriminator
helps capture statistics of local styles. The loss function of pix2pix GAN is:

min max
G D

V D;Gð Þ ¼ Ex,y logD x, y
� �� �þ Ex,z log 1�D x,G x, zð Þð Þð Þ½ � þ Ex,y,z½ y� G x, zð Þ�� ��

1�
(3)

Pix2Pix GAN learns to map input image x and random noise z to output image y.
The generator tries to minimize the loss function while the discriminator tries to

Figure 2.
Architecture of conditional GAN. Extra information x is given to both G and D. the discriminator trains itself
to distinguish between real and fake image. The generator trains itself to fool discriminator by generating images
similar to real images. Here both G and D get x as input.

Figure 3.
Block diagram of Pix2Pix GAN.
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difficult to obtain. Therefore, Cycle GAN is a better choice for image to image
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maximize the loss function. The L1 loss between real image and fake one is included
to achieve pixel level matching. Pix2Pix GAN had been applied to many applica-
tions including edges-to-photo conversion, sketch-to-photo conversion, map-to-
aerial photo conversion etc. The main drawback of Pix2Pix GAN is that it needs
paired images in both domains for training, which is not always possible in practice.

2.4 Cycle GAN

In many cases, it is difficult to get paired images from different domains. Cycle
GAN [16] addressed this challenge by introducing the cycle-consistent loss function
as shown in Figure 4. There are two generator G and F in Cycle GAN along with
two adversarial discriminator Dx and Dy. X and Y are input domain and target
domain, respectively. While Dx helps G to generate images from X domain to Y
domain, F is trained to generate images from Y domain to X domain. G: X ! Y and
F: Y ! X are two mappings that are trained in Cycle GAN and these are kept
consistent by two cycle-consistency losses. The total loss function of Cycle GAN is
given by:

min max
G, F Dx,Dy

L G, F,Dx, Dy
� � ¼ LGAN G,DY, X, Yð Þ þ LGAN F,Dx, Y, Xð Þ þ λLcyc G, Fð Þ

(4)

where

LGAN G,DY, X, Yð Þ ¼ Ey�pdata yð Þ logDY y
� �� �þ Ex�pdata xð Þ log 1�DY G xð Þð Þð Þ½ � (5)

LGAN F,Dx, Y, Xð Þ ¼ Ex�pdata xð Þ logDX xð Þ½ � þ Ey�pdata yð Þ log 1�DX G y
� �� �� �� �

(6)

Figure 4.
Overall architecture of cycle GAN.
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Lcyc G, Fð Þ ¼ Ex�pdata xð Þ G F xð Þð Þ � xk k1
� �þ Ey�pdata yð Þ G F y

� �� �� y
�� ��

1

h ih
(7)

There are two terms in the loss function of Cycle GAN: adversarial losses and
cycle-consistency losses. LGAN(G, DY, X, Y) and LGAN(F, DX, Y, X) are the
adversarial losses for G: X!Y and F: Y!Xmapping, respectively, which ensure that
target images’ distribution and generated images’ distribution are close. The cycle-
consistency loss, Lcyc G, Fð Þ, ensures that the two mappings have no contradictions.
λ is a weight controlling balance between the two categories of losses.

Cycle GAN has been used in different applications including season transfer,
style transfer, etc. [16]. In addition, Cycle GAN has resolved the mode collapse
problem in training if only the adversarial loss is used [19]. Mode collapse happens
when the generator outputs the same image for different inputs. Though other
methods [2–10, 20–24] can also offer image-to-image translation with unpaired
images, Cycle GAN has become a common platform for many image translation
related tasks.

3. Experimental setups

3.1 Datasets

For training Pix2Pix GAN and Cycle GAN, we have used images pairs from the
open-source visible and infrared video database from the signal multimedia and
telecommunications laboratory at the Federal University of Rio de Janeiro [25]. IR
and visible-light video pairs in the database are synchronized and registered. We
utilized 80% of frames in the “Guanabara Bay_take_1” video pair for training and
the remaining 20% frames for testing. In addition, we evaluated the trained model
on other three image pairs named “Guanabara Bay_take_2”, “Camouflage_take_1”
and “Camouflage_take_2”. Detailed information of the four video pairs are listed in
Table 1 and some example pairs are shown in Figure 5.

Dataset Name Description [25]

Guanabara
Bay_take_1

• Contains scenes of “the Guanabara Bay and the Rio de Janeiro-Niteroi
bridge”.

• Taken during Nighttime.
• Contains 1 scene plane at approximately 500 m distance.

Guanabara
Bay_take_2

• Contains scenes of “the Guanabara Bay and the Rio de Janeiro-Niteroi
bridge”.

• Taken during nighttime.
• Contains 1 scene plane at approximately 500 m distance.

Camouflage_take_1 • Contains outdoor scenes.
• Taken during bright sunlight.
• Contains 2 scene planes at approximately 10 m and 300 m distances.
• Contains people who are hiding behind vegetation.

Camouflage_take_2 • Contains outdoor scenes.
• Taken during bright sunlight.
• Contains 2 scene planes at approximately 10 m and 300 m distances.
• Contains people who are hiding behind vegetation.

Table 1.
Detailed information of video pairs used in our experiments.
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3.2 Performance metrics

3.2.1 Inception score

Inception score (IS) is widely used for evaluating GANs [26]. IS considers
quality and diversity of generated images by evaluating the entropy of probability

Figure 5.
Visible-IR images from Guanabara Bay_take_1 video pair used for training Pix2Pix GAN and cycle GAN
models. (a) Visible images. (b) IR images.
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distribution outputted created by the pre-trained “Inception v3” model on the
generated data [27]. A large inception score represents high quality of the generated
images. One drawback of the inception score is that it does not consider information
in the real images used for training the GAN model. Therefore, it is not clear how
the generated images compare to the real training images.

3.2.2 Frechet inception distance

Frechet Inception Distance (FID) indicates the similarity between two sets of
datasets and is often used for evaluating GANs [28, 29]. FID is the Wasserstein-2
distance between feature representations of real and fake images computed by the

Figure 6.
Fake IR images generated by Pix2Pix GAN and cycle GAN from the visible images in the Guanabara
Bay_take_1 dataset. (a) Generated IR images by Pix2Pix GAN. (b) Generated IR images by cycle GAN.
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Metrics Datasets

Guanabara
Bay_take_1

Guanabara
Bay_take_2

Camouflage
take_1

Camouflage
take_2

IS Score PixPix
GAN

Cycle
GAN

PixPix GAN Cycle
GAN

PixPix
GAN

Cycle
GAN

PixPix
GAN

Cycle
GAN

2.70 2.88 1.85 3.61 1.02 2.72 1.02 2.66

FID 0.90 0.84 2.33 1.12 3.64 1.51 3.35 1.52

KID 4.24 2.42 24.00 7.10 48.61 9.13 43.55 9.15

Table 2.
Evaluation metrics on generated IR images of different datasets using Pix2Pix GAN and cycle GAN.

Figure 7.
Fake IR images generated by Pix2Pix GAN and cycle GAN from the visible images of Guanabara Bay_take_2
dataset. (a) Generated IR images by Pix2Pix GAN cycle GAN. (b) Generated IR images by cycle GAN.

64

Recent Advances in Image Restoration with Applications to Real World Problems

Inception v3 model [27]. We used the coding layer of the Inception model to obtain
feature representation of each image. FID is consistent with the human-judgment of
image quality and it can also detect intra-class mode collapse. A lower FID score
indicates that the two groups of images are similar so that the generated fake images
are of high quality.

3.2.3 Kernel inception distance

Kernel Inception Distance (KID) is another metric often used to assess quality of
GAN generated images relative to real images [30]. KID first uses the Inception v3
model to obtain representations of generated images. It then calculates the squared

Figure 8.
Fake IR images generated by Pix2Pix GAN and cycle GAN from the visible images of Camouflage_take_1
dataset. (a) Generated IR images by Pix2Pix GAN. (b) Generated IR images by cycle GAN.
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maximum mean discrepancy (MMD) between the representations of real training
images and generated images. KID score is also consistent with human judgment of
image quality. A small KID value indicates high quality of the generated images.

4. Results

4.1 Testing results on “Guanabara Bay_take_1”and “Guanabara Bay_take_2”

We trained the Pix2Pix GAN and Cycle GAN on 80% of the frames in
“Guanabara Bay_take_1” video pair and tested the trained models on the remaining

Figure 9.
Fake IR images generated by Pix2Pix GAN and cycle GAN from the visible images of Camouflage_take_2
dataset. (a) Generated IR images by Pix2Pix GAN. (b) Generated IR images by cycle GAN.
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20% frames. Some visible and IR images that we have used for training are shown in
Figure 5. After training, we also applied both models to the “Guanabara
Bay_take_2” dataset. Figures 6 and 7 show some generated IR images. By visual
inspection, Cycle GAN can generate better results than Pix2Pix GAN does. In
addition, we observe that IR images generated by Cycle GAN are similar to the real
IR images. Table 2 lists the quantitative performance metrics of the generated
images by the two models. Cycle GAN outperforms Pix2Pix GAN in terms of all the
metrics including IS, FID and KID on this dataset.

4.2 Testing results on “Camouflage_take_1”and “Camouflage_take_2”

We have applied the trained models to “Camouflage_take_1” and
“Camouflage_take_2” datasets and results are shown in Figures 8 and 9. Both
models did not generate good quality IR images though the quantitative metrics as
shown in Table 2. Cycle GAN is slightly better than Pix2Pix GAN. One possible
reason is that the data in the two sets have different distributions as those in the
training data, making both models failed.

5. Conclusion

In this chapter, we have investigated visible-to-IR image conversion using
Pix2Pix GAN and Cycle GAN. Cycle GAN is a better model than Pix2Pix GAN and
both can generate good visual quality IR images based on visible images, if training
data and test data are similar. Overall, IR images generated by Cycle GAN have
sharper appearances and better quantitative performance metrics than those by
Pix2Pix GAN. However, if testing data have significant distribution shift as com-
pared to training data, both models cannot generate quality IR images. Therefore,
our recommendations are 1). Cycle GAN appears to be a better tool to convert
optical images to IR images if training and testing datasets have similar distributions
and 2) Both models are sensitive to distribution shift and additional techniques are
needed to address the challenge.
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Chapter 5

Style-Based Unsupervised
Learning for Real-World Face
Image Super-Resolution
Ahmed Cheikh Sidiya and Xin Li

Abstract

Face image synthesis has advanced rapidly in recent years. However, similar
success has not been witnessed in related areas such as face single image super-
resolution (SISR). The performance of SISR on real-world low-quality face images
remains unsatisfactory. In this paper, we demonstrate how to advance the state-
of-the-art in face SISR by leveraging style-based generator in unsupervised settings.
For real-world low-resolution (LR) face images, we propose a novel unsupervised
learning approach by combining style-based generator with relativistic discrimina-
tor. With a carefully designed training strategy, we demonstrate our converges
faster and better suppresses artifacts than Bulat’s approach. When trained on an
ensemble of high-quality datasets (CelebA, AFLW, LS3D-W, and VGGFace2), we
report significant visual quality improvements over other competing methods
especially for real-world low-quality face images such as those in Widerface.
Additionally, we have verified that both our unsupervised approaches are capable
of improving the matching performance of widely used face recognition systems
such as OpenFace.

Keywords: single image super-resolution (SISR), unsupervised learning,
degradation modeling, real-world face images

1. Introduction

With recent advancements in deep learning algorithms [1], Single Image
Superresolution (SISR) has seen a significant advance in performance in terms of
objective metrics like peak signal-to-noise-ratio (PSNR). With generative adversar-
ial networks (GAN) such as improvements of objective quality metric have been
extended to the visual quality of super-resolved images [2]. However, most of the
existing deep learning algorithms for solving SISR problems are categorized as
supervised; in that they rely on paired high-resolution (HR) and low-resolution
(LR) images to optimize the neural network weights. The HR images are
downsampled using algorithms (like bicubic downsampling) to create the
corresponding LR ones. These artificially created LR data deviate significantly from
the complex real word degradation model and with that a rapid decrease in perfor-
mance is observed when neural networks trained on artificial LR that are tested on
real-world LR images [3].
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1. Introduction

With recent advancements in deep learning algorithms [1], Single Image
Superresolution (SISR) has seen a significant advance in performance in terms of
objective metrics like peak signal-to-noise-ratio (PSNR). With generative adversar-
ial networks (GAN) such as improvements of objective quality metric have been
extended to the visual quality of super-resolved images [2]. However, most of the
existing deep learning algorithms for solving SISR problems are categorized as
supervised; in that they rely on paired high-resolution (HR) and low-resolution
(LR) images to optimize the neural network weights. The HR images are
downsampled using algorithms (like bicubic downsampling) to create the
corresponding LR ones. These artificially created LR data deviate significantly from
the complex real word degradation model and with that a rapid decrease in perfor-
mance is observed when neural networks trained on artificial LR that are tested on
real-world LR images [3].
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In this chapter, we will focus on solving the problem of image superresolution
for face images. Super-resolving low resolution face images can help solve crucial
tasks such as person identification and recognition in the real world. To make our
solution work for real-world LR face images, we borrow ideas from recent advances
in style transfer [4] and image synthesis [5]. Style transfer refers to the task of
transforming one image from one style to another (e.g., photo to painting, daytime
to nighttime, and summer to winter). An important motivation behind our
approach is to treat SISR as a style transfer problem which does not require pairing
the HR-LR training data. In our unsupervised learning approach, we only assume
two uncorrelated datasets: one is a collection of real-world LR images and the other
HR images.

In the next sections, we will first review some related works including
convolutional neural network (CNN), generative adversarial networks (GAN),
image synthesis, and style transfer. We will then present an unsupervised approach
that works for real-world LR face images. The key idea is to combine style-based
generator [5] with relativistic discriminator [6] within a recently developed cycle-
consistent GAN (CycleGAN) framework [4]. We will show that both our
approaches outperform previous state-of-the-art ones.

2. Related works

In this section, we will first present to the reader the convolution neural net-
works and go through the different types of functions used in such networks. Our
focus will be on the main convolution operation. We will talk about the first paper
that showed that convolution neural networks can outperform model-based
approaches in the task of image super-resolution [7]. We will talk about generative
adversarial networks (GAN) and show that adding a discriminator can significantly
improve the visual quality of the superresolved image [2]. We will define image
synthesis task and present the latest advancements in the field. Finally, we will talk
about the style transfer problem and different architectures used to solve it; our
focus will be on the most popular one: CycleGAN [4].

2.1 Convolutional neural networks

2.1.1 Definition

Neural networks are a class of machine learning algorithms that are modeled
loosely on the mechanism of human brain (e.g., neocognitron [8]). It consists
of thousands or even millions of simple processing units that are densely
interconnected. Most existing neural networks are organized into layers of nodes
(simple processing units). They usually feed-forward information from input data
to the output in one direction. An individual node might be connected to several
nodes in the layer beneath it from which it receives data and several nodes in the
layer above it for which it sends data. Figure 1 shows an example of feed-forward
neural network. To each of its incoming connections, some nodes will assign a
number called “weight,” multiply the input coming from the connection with its
corresponding weights; other nodes will sum the results and add a value called bias.
In other nodes, a non-linearity called activation function is included which models
the biological firing of neurons in human brains [9].

The Convolutional Neural Network (CNN) are a type of neural networks that
are often designed to work on two-dimensional data such as image signals. In CNN,
the most basic operation is called “convolution” implementing a linear filter and
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modeling simple cells in human brains [10]. In the context of convolutional neural
networks, a convolution is a linear filtering operation that involves multiplying the
input with the weights similar to the traditional neural network. Given the nature of
2D inputs, the multiplication is done between an array of data and 2D array of
weights (often called filter or kernel).

The filter is smaller than the data and the multiplication operation between the
filter and the data is the dot product. The dot product is the element-wise multipli-
cation and summation resulting in one value. Having a filter or a kernel smaller than
the input data enables the sliding of the kernel over the whole input, therefore
giving the trained weights of the filter the ability to detect features anywhere in the
image. Convolutional neural networks might also consist of max-pooling opera-
tions, used to down-sample the input (modeling complex cells in human brain
[10]). Figure 2 shows a graphical representation of neural network.

2.1.2 Image super-resolution using convolutional neural networks

In [7], the authors present the first convolutional neural network called SRCNN
that outperforms traditional model-based approaches for the task of single image
super-resolution (SISR). The key idea underlying SRCNN is to learn a nonlinear
mapping from the space of LR images to that of HR ones. The work of SRCNN is
under the framework of supervised learning with the assumption of paired training
data (artificial LR images are generated by down-sampling of HR images). Their

Figure 1.
Graphical representation of feed-forward neural network.

Figure 2.
Example of convolution neural network.
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convolution neural network as shown in Figure 3 consists of two layers. Figure 4
shows the comparison between [7] and traditional model-based SR methods such as
sparse coding [11].

With advancements in deep neural networks, deeper architectures powered by
residual learning [12] has led to FSRCNN [13], DRCN [14], VDSR [15], EDSR [16]
and LapSRN [17], RDN [18], and RCAN [19]. With deeper and densely connected
networks, the performance of SISR has increased steadily at the price of higher
computational complexity. With millions of parameters, EDSR and RCAN have
advanced the state-of-the-art in supervised learning-based SISR. For face images,
SISR has also been studied in recent works (e.g., Super-FAN [20] and FSRNet [21]).

2.2 Generative adversarial networks (GAN)

2.2.1 Definition

In [22], Ian Goodfellow presented a novel system for the task of data generation.
This system is called generative adversarial network (GAN) consists of two
interacting subnetworks (generator and discriminator) as shown in Figure 5. A
generator subnetwork is responsible for generating synthetic data capturing the

Figure 3.
Convolution neural network architecture for [7].

Figure 4.
Comparisons between [7] and state-of-the-art model based methods.
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data distribution and a discriminator subnetwork for estimating the probability that
a sample comes from the real training data rather than synthetic. Through the
interplay between two subnetworks, the generator and discriminator networks can
be trained together by a minimax two-player game. The invention of GAN opens
the door to construct a whole new class of powerful generative models which have
found numerous applications in low-level vision including SISR, face image
synthesis, and style transfer.

2.2.2 Single image super-resolution using generative adversarial networks

In SRGAN [2], the authors showed that using a GAN-based architecture for the
task of single image super-resolution leads to noticeable improvements in terms of
subjective visual quality despite the sacrifice on traditional objective quality metric
such as PSNR. In the construction of SRGAN, residue network for SR-called
SRResnet is used as the generator; a separated discriminator inspired by Deep
Convolutional GAN (DCGAN) [23] is constructed to tell apart real SR from fake SR.
Figure 6 shows the visual quality improvement when using a GAN-based
architecture compared to using a generator without a discriminator.

2.3 Face image synthesis

Another successful application of GAN [2] is to generate high-fidelity face
images that do not even exist in the real world. Radford et al. designed a variation of
GAN architecture called Deep Convolutional GAN (DCGAN) [23] to generate face
images; however, their results suffered from noticeable artifacts in synthesized

Figure 5.
Architecture of GANs.

Figure 6.
Comparison between SRGAN and SRResnet.
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images. More recently, self-attention (SAGAN) [24] used an attention mechanism
to help minimize undesirable artifacts in generated images. Cleverly, designing loss
functions for both discriminator and generator has shown impressive improve-
ments in terms of convergence and artifacts suppression for the GAN networks.

Before 2017, most generated faces were still of low resolution, with the highest
resolution equal to 128� 128. In [5, 25], it was shown that progressively training the
generator network helped generate face images up to 1024� 1024 resolution.
Figure 7 shows an example of visual quality improvements in face image synthesis
in the past 5 years, for example, from Progressive GAN [25] to StyleGAN [5] and its
enhancement version StyleGAN2 [26].

Figure 7.
Example of the progression made in GAN-based face synthesis from 2014 to 2017 (cited from [27]).

Figure 8.
Results from pix2pix [28].
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2.4 Style transfer (CycleGAN)

Recently, GAN-based architectures were used for the task of style transfer, that
is, translating one image from one style to another style (e.g., from sketch to real
image). In [28], another GAN-based architecture called pix2pix was developed to
transfer images from one style into another. Figure 8 shows the example of trans-
lating sketch images of hand bags into real images. These works are based on an
architecture called conditional GAN (cGAN) [30] in which the data instead of
random noise are fed to (provided as the condition) both the generator and dis-
criminator. However, pix2pix [28] is a supervised learning technique, and it
requires the existence of groundtruth data.

To extend the style transfer to the domain where groundtruth is unavailable, an
unsupervised architecture called cycle-consistent GAN (CycleGAN) was proposed
in [29]. In CycleGAN [29], two parallel GAN architectures are trained concurrently:
the first one to map from source domain to target domain and the second one to
map from target domain back to source domain. The new insight brought by
CycleGAN [29] is the enforcement of cycle-consistency, that is, when an image X is
translated from source domain to target domain via forward mapping f and then
translated back to the original domain via background mapping g, the result should
approach the original image (x≈g f xð Þð Þ). Figure 9 shows an example of the
CycleGAN [29] architecture with two generators and two discriminators.

3. Unsupervised approach

3.1 Overview of the method

We are interested in solving the problem of image face super-resolution for real
world LR data. Unlike artificial LR data, the ground-truth is unavailable for real-
world LR data. For such blind SR problem, we propose to tackle it as style transfer,
that is, the transfer between LR and HR image data. We mainly focus on an
asymmetrical formulation of style transfer problem in one direction: from LR to HR.

Figure 9.
CycleGAN [29] architecture.
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Based on this observation, we do not need to enforce the cycle consistency for the
direction of low-to-high transfer. Our overall network architecture is shown in
Figure 10, consisting of two generative adversarial networks called high-to-low and
low-to-high, respectively. The high-to-low GAN takes a HR face as the input and
project it into the style of the real world LR faces. The low-to-high GAN takes the
output of high-to-low generator as the input and try to reconstruct the original HR
faces.

3.2 Dataset collection

High Resolution (HR) data:We have created our HR dataset by combining
several publicly available HR face datasets: CelebA [31], AFLW [32], LS3D-W [33],
and VGGFace2 [34]. For the reason of consistency, we have used S3fd [35] to crop
the face region in each image. We ended up with a total of 229,041 training images
and 8892 testing images. All images are resized to 128� 128. Real Low Resolution
Data (RLR):We created our real LR dataset from Widerface [36] and we crop the
face region using [35]. We have ended up with a total of 156,557 LR training images
and 8241 LR testing images. All images have been resized to 16� 16 (i.e., a scaling
factor of 8).

Artificial Low Resolution (ALR) data: To create this dataset, we downsample
our HR images by a factor of 8 using the “bilinear” method provided by Matlab.
Note that the use of ALR is only for supervised learning experiences which require
paired HR-LR training data.

3.3 Details of network architecture

In this section, we go through the detailed of the convolution neural networks
that form our unsupervised architecture in Figure 10. We have two generators and
two discriminators.

3.3.1 Building blocks

Our generators are made up of a number of blocks that we call residual +
attention [37] (Figure 11). We use self attention layers as defined in [38] as part of

Figure 10.
Architecture of our unsupervised approach for real-world face superresolution.
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both low-to-high and high-to-low discriminators. The details of self-attention layer
are shown in Figure 12.

3.3.2 High-to-low generator

High-to-low generator has an encoder-decoder type architecture [39]: with the
encoder consisting of five residual + attention blocks each followed by average

Figure 11.
Residual + attention block.

Figure 12.
Self-attention layer.
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pooling layer and the decoder consisting of four residual + attention blocks where
the first two are followed by bilinear upsampling layer. Therefore, the input is
downsampled by a factor of 32 and upsampled by a factor of 4, which produces a
down-sampled image by a factor of 8 but with more flexibility of modeling degra-
dation (e.g., unknown blur [40]). We also concatenate a noise vector to the input
image of the network using a fully connected layer, which contributes to the
robustness of the proposed degradation modeling. The details of the high-to-low
generator architecture is shown in Figure 13.

3.3.3 Low-to-high generator

Low to high generator subnetwork consists of four sections of 6, 3, 2, and 1
successive residual attention blocks separated by bilinear upsampling of 2 (similar
to the strategy of progressive growing GAN [25]); overall the input 16� 16 patch is
up-sampled by a factor of 8. The details of the architecture are shown in Figure 14.

3.3.4 High-to-low discriminator

High-to-low discriminator subnetwork consists of three convolution layers
followed by a leaky relu layer and a last convolutional layer. We have added two
self-attention layers at the end of the network (refer to Figure 15).

3.3.5 Low-to-high discriminator

Low-to-high discriminator consists of four convolution layers followed by a
leaky relu layer and a last convolution layer. Similarly, we have also added two self-
attention layers. The details of the architecture are in Figure 16.

Figure 13.
Architecture of the high to low generator.

Figure 14.
Architecture of the low to high generator.
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3.4 Loss functions

The generator loss, in both high-to-low and low-to-high GANs, is the
weighted sum of the content loss and the GAN loss, as shown in Eq. (1) where α ¼ 1
and β ¼ 0:001.

LG ¼ αLpixel þ βLG
GAN (1)

The GAN losses and the pixel loss function follow the formula in Eqs. (2)
and (3).
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3.4.1 High-to-low GAN loss functions

Generator loss: As mentioned above, the generator loss is the weighted sum of
the content loss and the GAN loss, Eq. (1), where LG

GAN ¼ f IRLR, IFLRð Þ and Lpixel ¼
g IALR, IFLRð Þ.

Discriminator loss: The discriminator is defined as follows: LD
GAN ¼ f IFLR, IRLRð Þ.

IALR is the artificial low resolution image, IFLR the fake low resolution image

Figure 15.
Architecture of the high to low discriminator.

Figure 16.
Architecture of the low-to-high discriminator.
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dation (e.g., unknown blur [40]). We also concatenate a noise vector to the input
image of the network using a fully connected layer, which contributes to the
robustness of the proposed degradation modeling. The details of the high-to-low
generator architecture is shown in Figure 13.
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successive residual attention blocks separated by bilinear upsampling of 2 (similar
to the strategy of progressive growing GAN [25]); overall the input 16� 16 patch is
up-sampled by a factor of 8. The details of the architecture are shown in Figure 14.

3.3.4 High-to-low discriminator

High-to-low discriminator subnetwork consists of three convolution layers
followed by a leaky relu layer and a last convolutional layer. We have added two
self-attention layers at the end of the network (refer to Figure 15).

3.3.5 Low-to-high discriminator

Low-to-high discriminator consists of four convolution layers followed by a
leaky relu layer and a last convolution layer. Similarly, we have also added two self-
attention layers. The details of the architecture are in Figure 16.

Figure 13.
Architecture of the high to low generator.

Figure 14.
Architecture of the low to high generator.
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3.4 Loss functions

The generator loss, in both high-to-low and low-to-high GANs, is the
weighted sum of the content loss and the GAN loss, as shown in Eq. (1) where α ¼ 1
and β ¼ 0:001.

LG ¼ αLpixel þ βLG
GAN (1)

The GAN losses and the pixel loss function follow the formula in Eqs. (2)
and (3).
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3.4.1 High-to-low GAN loss functions

Generator loss: As mentioned above, the generator loss is the weighted sum of
the content loss and the GAN loss, Eq. (1), where LG

GAN ¼ f IRLR, IFLRð Þ and Lpixel ¼
g IALR, IFLRð Þ.

Discriminator loss: The discriminator is defined as follows: LD
GAN ¼ f IFLR, IRLRð Þ.

IALR is the artificial low resolution image, IFLR the fake low resolution image

Figure 15.
Architecture of the high to low discriminator.

Figure 16.
Architecture of the low-to-high discriminator.
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generated by the high to low generator, and IRLR the real world low resolution images.
Functions f and g are defined, respectively, in Eqs. (2) and (3).

3.4.2 Low-to-high GAN loss functions

Generator Loss: Similarly, the generator loss is the weighted sum of the content
loss and the GAN loss in Eq. (1), where LG

GAN ¼ f IHR, IFHRð Þ and Lpixel ¼ g IHR, IFHRð Þ.
Discriminator loss: The discriminator is defined as follows: LD

GAN ¼ f IFHR, IHRð Þ.
IFHR is the fake high resolution image generated by the low to high generator and
IHR the real world high resolution image. Functions f and g are defined, respec-
tively, in Eqs. (2) and (3).

3.5 Training strategy

It is worth mentioning that we have not augmented the data during training
by standard techniques such as image flipping, scaling, and rotation. Our experi-
ence suggests that for unsupervised learning, data augmentation does not help
improve the accuracy of face SR reconstruction but increase the computational
burden as well as the risk of introducing artifacts (due to unpaired LR-HR train-
ing data). We have also found that the popular normalization tricks (e.g., batch
normalization [41] and spectral normalization [42]) do not help in the
unsupervised scenario but have the tendency of introducing artifacts to super-
resolved images.

We have used a batch of size 32, and the total training requires about 20 epochs
or �143,000 generators and discriminators updates. The learning rate is kept at
0:001 throughout the training process, and the overall architecture is trained in an
end-to-end manner. We also use Adam optimizer [43] with β1 ¼ 0 and β2 ¼ 0:9 and
adopt a PyTorch-based implementation [44].

4. Experimental results

In this section, we present a comparison between our style-based approaches
toward SISR of face images and state-of-the-art supervised (FSRNET [21]) and
unsupervised ones (Bulat’s [3]). First, we use extensive ablation studies to show the
effect of removing the low-to-high discriminator (Figure 16) from the architecture
and demonstrate the output of our degradation model. As an extension of our
ablation study, we also present a supervised approach for ALR face images based on
using GAN composed of our low-to-high generator (Figure 14) and low-to-high
discriminator (Figure 16) but without any cycle involved. Finally, we will report
our unsupervised learning results on real-world LR face images and compare them
against other competing approaches.

4.1 Ablation study

4.1.1 Importance of the discriminator

We have compared the outputs of our unsupervised architecture with and with-
out the high-to-low discriminator. The image comparison results are shown in
Figure 17. It is obvious that discriminator plays a significant role in improving the
visual quality of super-resolved images.
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4.1.2 Degradation modeling

We next show the capability of high-to-low network on learning real-world
degradation models. Figure 18 includes several typical examples of learned LR
images from HR inputs. It is important to note that our high-to-low network has
managed to learn a variety of degradation models including varyimg poses and
severe blurs.

4.1.3 Deep features visualization

We also visualize the feature maps of the low-to-high generator in Figure 14. In
this visualization experiment, we have plotted the output from Sections 2, 3, and 4
as shown in Figure 19. It can be observed that as section/layer number increases,
the learned feature representations have a larger field of view as well as more
sophisticated semantic information related to faces.

4.2 Supervised approach

We have experimented with a GAN-based supervised approach toward SISR as
an extension of our ablation study. Such experiment is included to demonstrate a
degeneration of network architecture from unsupervised (Figure 10) to supervised
(Figure 20) setting. We have used the same architecture for the low-to-high

Figure 18.
Effectiveness of degradation model learning: exemplar synthetic LR images from the high-to-low network (note
the rich variability and similarity to the real-world Widerface dataset [36]).

Figure 17.
Comparison between our unsupervised method with and without the discriminator on Widerface dataset [36].
First row without discriminator; second row with discriminator. Please zoom in for better visualization.
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generated by the high to low generator, and IRLR the real world low resolution images.
Functions f and g are defined, respectively, in Eqs. (2) and (3).
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We next show the capability of high-to-low network on learning real-world
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images from HR inputs. It is important to note that our high-to-low network has
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as shown in Figure 19. It can be observed that as section/layer number increases,
the learned feature representations have a larger field of view as well as more
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(Figure 20) setting. We have used the same architecture for the low-to-high

Figure 18.
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the rich variability and similarity to the real-world Widerface dataset [36]).
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Comparison between our unsupervised method with and without the discriminator on Widerface dataset [36].
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generator and discriminator as in Figures 14 and 16. To get paired LR and HR
images; we downsample the original high resolution faces by a scaling factor of 8 to
create artificial low resolution (ALR) images as explained in Section 3.2. The overall
architecture of this reduced supervised approach is detailed in Figure 20.

4.2.1 Loss functions

Similar to Section 3.4, the loss functions for our supervised approach are defined
as follows:

Generator loss: the generator loss is the weighted sum of the content loss and
the GAN loss, Eq. (1) where LG

GAN ¼ f IFHR, IHRð Þ and Lpixel ¼ g IHR, IFHRð Þ.
Discriminator loss: LD

GAN ¼ f IHR, IFHRð Þ where IHR denotes the high resolution
image and IFHR is the reconstructed high resolution one generated by our network.
Functions f and g are defined, respectively, in Eqs. (2) and (3).

4.2.2 Training strategy

We have used a batch of size 32 and trained for 20 epochs or �143,000 updates
of generator and discriminator. The learning rate is kept at 1e� 4 throughout the

Figure 19.
Feature maps for low-to-high generator. From left to right: �2-upsampling, �4-upsampling, �8-upsampling,
and the output image.

Figure 20.
Architecture of the supervised approach.
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training process. We have used Adam optimizer [43] with β1 ¼ 0 and β2 ¼ 0:9 and
implemented our supervised learning SR using Pytorch [44].

4.3 Comparison with other supervised approaches

We compare our unsupervised face super-resolution approach with two super-
vised approaches; FSRNET [21] and our own approach outlined in Section 4.2.
FSRNET [21] uses geometric priors to estimate (e.g., facial landmark heat maps and
parsing maps) to facilitate the procedure of supervised learning.

4.3.1 Performance on artificial low resolution test data

We report our experimental results for ALR data and compare them against the
current state-of-the-art FSRNet/FSRGAN [22]. Despite being synthetic, ALR
images are still useful because they have ground-truth (HR) available and appro-
priate for gauging the performance of supervised learning (with paired HR-LR
training data).

Subjective quality comparisons: Figure 21 shows the qualitative comparisons
between our supervised/unsupervised approaches and state-of-the-art supervised
method FSRGAN [21]. It can be easily verified that ours can produce visually more
convincing and pleasant HR results than FSRGAN (e.g., sharper contrast, more
natural hair, and fewer artifacts around earrings).

Figure 21.
Visual quality comparisons among competing methods on artificial low resolution face images. Rows top-down:
bicubic, FSRGAN [21], ours (supervised), ours (unsupervised) and groundtruth. Please zoom in for better
visualization.

Method PSNR

FSRGAN [21] 22.840

Ours (Supervised) 23.65

Ours (Unsupervised) 21.97

Table 1.
Objective quality results of different methods on ALR images in terms of PSNR (dB) (highest PSNR is
highlighted by bold-face).

85

Style-Based Unsupervised Learning for Real-World Face Image Super-Resolution
DOI: http://dx.doi.org/10.5772/intechopen.92320



generator and discriminator as in Figures 14 and 16. To get paired LR and HR
images; we downsample the original high resolution faces by a scaling factor of 8 to
create artificial low resolution (ALR) images as explained in Section 3.2. The overall
architecture of this reduced supervised approach is detailed in Figure 20.

4.2.1 Loss functions

Similar to Section 3.4, the loss functions for our supervised approach are defined
as follows:

Generator loss: the generator loss is the weighted sum of the content loss and
the GAN loss, Eq. (1) where LG

GAN ¼ f IFHR, IHRð Þ and Lpixel ¼ g IHR, IFHRð Þ.
Discriminator loss: LD

GAN ¼ f IHR, IFHRð Þ where IHR denotes the high resolution
image and IFHR is the reconstructed high resolution one generated by our network.
Functions f and g are defined, respectively, in Eqs. (2) and (3).

4.2.2 Training strategy

We have used a batch of size 32 and trained for 20 epochs or �143,000 updates
of generator and discriminator. The learning rate is kept at 1e� 4 throughout the

Figure 19.
Feature maps for low-to-high generator. From left to right: �2-upsampling, �4-upsampling, �8-upsampling,
and the output image.

Figure 20.
Architecture of the supervised approach.

84

Recent Advances in Image Restoration with Applications to Real World Problems

training process. We have used Adam optimizer [43] with β1 ¼ 0 and β2 ¼ 0:9 and
implemented our supervised learning SR using Pytorch [44].

4.3 Comparison with other supervised approaches

We compare our unsupervised face super-resolution approach with two super-
vised approaches; FSRNET [21] and our own approach outlined in Section 4.2.
FSRNET [21] uses geometric priors to estimate (e.g., facial landmark heat maps and
parsing maps) to facilitate the procedure of supervised learning.

4.3.1 Performance on artificial low resolution test data

We report our experimental results for ALR data and compare them against the
current state-of-the-art FSRNet/FSRGAN [22]. Despite being synthetic, ALR
images are still useful because they have ground-truth (HR) available and appro-
priate for gauging the performance of supervised learning (with paired HR-LR
training data).

Subjective quality comparisons: Figure 21 shows the qualitative comparisons
between our supervised/unsupervised approaches and state-of-the-art supervised
method FSRGAN [21]. It can be easily verified that ours can produce visually more
convincing and pleasant HR results than FSRGAN (e.g., sharper contrast, more
natural hair, and fewer artifacts around earrings).

Figure 21.
Visual quality comparisons among competing methods on artificial low resolution face images. Rows top-down:
bicubic, FSRGAN [21], ours (supervised), ours (unsupervised) and groundtruth. Please zoom in for better
visualization.

Method PSNR

FSRGAN [21] 22.840

Ours (Supervised) 23.65

Ours (Unsupervised) 21.97

Table 1.
Objective quality results of different methods on ALR images in terms of PSNR (dB) (highest PSNR is
highlighted by bold-face).

85

Style-Based Unsupervised Learning for Real-World Face Image Super-Resolution
DOI: http://dx.doi.org/10.5772/intechopen.92320



Objective quality comparisons:We report the comparison results in terms of
peak signal-to-noise ratio (PSNR) in Table 1. Our supervised learning outperforms
FSRGAN [21] by as much as 0:8dB.

4.3.2 Performance on real world wider test data

We tested both our supervised and unsupervised methods on the popular real-
world LR dataset Widerface [36]. This dataset is particularly challenging for face
detection and SR because its 393,703 faces contain a high degree of variability in
scale, pose, and occlusion. Due to lack of groundtruth images (HR counterparts) for
this dataset, we have to count on visual quality comparison alone for performance
evaluation (without PSNR comparisons). We report our visual quality comparison
between our methods and current state-of-the-art supervised (FSRGAN [22]).
Figure 22 shows the results; we can see that the unsupervised approach outper-
forms supervised ones in case of real world low resolution images.

4.4 Comparison with state-of-the-art unsupervised approach

We compare our unsupervised method with Bulat’s [45]. We show that our
methods are able to better preserve facial features Figure 23.

One can observe that the SR image produced by Bulat’s [45] method has the
following problems: age variation (third), gender swapping (fourth and seventh),
and artifacts (second and seventh).

4.5 Performance in term of receiver operating curve (ROC)

Using Openface [46] matching algorithm, we plot the ROC curve for three types
of degradation models: artificial degradation (or ALR), jpeg compression, and our
high-to-low degradation model. We show that our proposed supervised approach
outperform all previous ones in case of artificial degradation and our unsupervised
approach performs the best when it comes to the other two degradation models.

Figure 22.
Qualitative comparisons with FSRGAN on Widerface test data. Rows are respectively: Bicubic, FSRGAN, ours
(supervised), and ours (unsupervised). Please zoom in for better visualization.

Figure 23.
Qualitative comparisons with Bulat’s method [3] on Widerface test data. Rows are respectively: Bicubic, Bulat’s
method, and ours (unsupervised). Please zoom in for better visualization.
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4.5.1 Performance on artificial low resolution data

We have compared our supervised and unsupervised approach with FSRNET
[21] and Bulat’s [45] in terms of ROC curve results. We use our Artificial Low
Resolution (ALR) test data. Figure 24 shows that our supervised method outper-
forms all other methods. On the other hand, our unsupervised method performs
worse than FSRNET [21] but still performs significantly better than previous
unsupervised state-of-the-art approach Bulat’s [45].

Figure 24.
ROC curve for ALR test data.

Figure 25.
ROC curve for compressed test data.
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4.5.2 Performance on compressed data

We compressed our Artificial Low Resolution (ALR) test data using JPEG lossy
compression. We used this compressed data to plot the ROC curve for our super-
vised and unsupervised approach as well as Bulat’s [3]. Our unsupervised approach
outperforms better than the other ones, as shown in Figure 25.

4.5.3 Performance on generated low resolution data

We also plotted the ROC curve using the data generated by passing high resolu-
tion test data to our trained high-to-low generator. We show here that our
unsupervised approach performs better than our supervised one; Figure 26.

Figure 26.
ROC curve for our high-to-low degradation model.

Figure 27.
Exemplar failure cases of our unsupervised method on Widerface test data. Top-row: Input LR; bottom-row:
our SR result (unsupervised).
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4.6 Failure cases

As mentioned above, our approach intentionally skips the step of data augmen-
tation. It turns out that our method is still sensitive to extreme variations of face
pose such as as those shown in Figure 27. Due to severe occlusions and large pose
variations, those LR examples are often rare even among Widerface dataset. This is
within our expectation because high-to-low network simply does not have suffi-
cient training data to learn the challenging degradation model. Note that similar
findings have been reported for Bulat’s method in [3] (refer to Figure 9 in that
paper).

5. Conclusions

We have studied the problem of SISR for real-world face images in this chapter
and presented an unsupervised learning approach toward such blind reconstruction
of SR images. The challenging scenario of real-world LR low-quality images defies
conventional approaches based on paired HR-LR training data because groundtruth
HR images are generally unavailable for real-world LR images. By pairing style-
based generator with relativistic discriminator, we demonstrate an unsupervised
learning approach with GAN-based end-to-end optimization that is capable of
advancing the state-of-the-art in blind SR reconstruction of real-world LR face
images. We have compared our degradation modeling against previous Bulat’s
method as well as their ROC performance on artificial LR dataset. Extensive exper-
imental results have shown favorable performance for the proposed method over
Bulat’s method.
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Chapter 6

Spatiotemporal Fusion
in Remote Sensing
Hessah Albanwan and Rongjun Qin

Abstract

Remote sensing images and techniques are powerful tools to investigate earth’s
surface. Data quality is the key to enhance remote sensing applications and
obtaining clear and noise-free set of data is very difficult in most situations due to
the varying acquisition (e.g., atmosphere and season), sensor and platform (e.g.,
satellite angles and sensor characteristics) conditions. With the increasing
development of satellites, nowadays Terabytes of remote sensing images can be
acquired every day. Therefore, information and data fusion can be particularly
important in the remote sensing community. The fusion integrates data from
various sources acquired asynchronously for information extraction, analysis, and
quality improvement. In this chapter, we aim to discuss the theory of spatiotempo-
ral fusion by investigating previous works, in addition to describing the basic
concepts and some of its applications by summarizing our prior and ongoing works.

Keywords: spatiotemporal fusion, satellite images, depth images,
pixel-level spatiotemporal fusion, feature-level spatiotemporal fusion,
decision-level spatiotemporal fusion

1. Introduction

1.1 Background

Obtaining a high-quality satellite image with a complete representation of earth’s
surface is crucial to get clear interpretability of data, which can be used for moni-
toring and managing natural and urban resources. However, because of the internal
and external influences of the imaging system and its surrounding environment, the
quality of remote sensing data is often insufficient. The internal imaging system
conditions include the spectral characteristics, resolution and other factors of the
sensor, algorithms used to calibrate the images, etc. The surrounding environment
refers to all external/environmental influences such as weather and season. These
influences can cause errors and outliers within the images; for instance, shadow and
cloud may cause obstructions in the scene and may occlude part of the information
regarding an object. These errors must be resolved in order to produce high-quality
remote sensing product (e.g., land-cover maps).

With the rapid and increasing development of satellite sensors and their capabil-
ities, studies have shown that fusion of data frommultisource, multitemporal images,
or both is the key to recover the quality of a satellite image. Image fusion is known as
the task of integrating two or more images into a single image [1–3]. The fusion of
data essentially utilizes redundant information from multiple images to resolve or
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minimize uncertainties associated with the data, with goals such as to reject outliers,
to replace and fill missing data points, and to enhance spatial and radiometric resolu-
tions of the data. Fusion has been used in a wide range of remote sensing applications
such as radiometric normalization, classification, change detection, etc. In general,
there are two types of fusion algorithms: spatial-spectral [4–7] and spatiotemporal
fusion [8–10]. Spatial-spectral fusion uses the local information in a single image to
predict the pixels’ true values based on spectrally similar neighboring pixels. It is used
for various types of tasks and applications such as filling missing data (also known as
image inpainting) and generating high-resolution images (e.g., pan-sharpening [11]
and super-resolution [12]). It can include filtering approaches such as fusing infor-
mation within a local window using methods such as interpolation [13, 14], maxi-
mum a posteriori (MAP), Bayesian model, Markov random fields (MRFs), and
Neural Networks (NN) [4, 12, 15–18]. Although spatial-spectral fusion is efficient, it
is not able to incorporate information from temporal images, which produce dramatic
radiometric differences such as those introduced by meteorological, phenological, or
ecological changes. For instance, radiometric distortions and impurities in an image
due to metrological changes (e.g., heavy cloud cover, haze, or shadow) cannot be
entirely detected and suppressed by spatial-spectral fusion since it only operates
locally within a single image. To address this issue, researchers suggested spatiotem-
poral fusion, which encompasses spatial-spectral fusion and offers a filtering algo-
rithm that is invariant to dynamic changes over time, in addition to being robust
against noise and radiometric variations. Identifying spatiotemporal patterns is the
core to spatiotemporal fusion, where the patterns are intended to define a correlation
between shape, size, texture, and intensity of adjacent pixels across images taken at
different times, of different types, and from different sources.

Spatiotemporal fusion has been an active area of study over the last few decades
[9]. Many studies have shown that maximizing the amount of information through
integrating the spatial, spectral, and temporal attributes can lead to accurate stable
predictions and enhance the final output [8, 9, 19–21]. Spatiotemporal fusion can be
applied within local and global fusion frameworks, where locally it can be
performed using weighted functions and local windows around all pixels [22–24],
and globally using optimization approaches [25, 26]. Additionally, spatiotemporal
fusion can be performed on various data processing levels depending on the desired
techniques and applications to be used [3]. It also can depend on the type of data
used; for instance, per-pixel operations are well suited for images acquired from the
same imaging system (i.e., same sensor) since they undergo similar calibration
process and minimum spectral differences in terms of having the same number of
bands and bandwidth ranges in the spectrum, whereas feature- or decision-level
fusion is more flexible and able to handle heterogeneous data such as combing
elevation data (e.g., LiDAR) with satellite images [27]. Fusion levels include:

Pixel-level image fusion: This is a direct low-level fusion approach. It involves
pixel-to-pixel operation, where the physical information (e.g., intensity values,
elevation, thermal values, etc.) associated with each pixel within two or more
images is integrated into a single value [2]. It includes methods such as spatial and
temporal adaptive reflectance fusion model (STARFM), Spatial and Temporal
Reflectance Unmixing Model (STRUM), etc. [22–24].

Feature-level image fusion: It involves extracting and matching distinctive fea-
tures from two or more overlapping images using methods such as dimensionality
reduction like principal component analysis (PCA), linear discriminant analysis
(LDA), SIFT, SURF, etc. [2, 28]. Fusion is then performed using the extracted
features and the coefficients corresponding to them [2, 29]. Some other common
methods that include spatiotemporal fusion on feature-level are sparse representa-
tion and deep learning algorithms [10, 30–38].
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Decision-level image fusion is a high-level of fusion method that requires each
image to be processed individually until an output (e.g., classification map). The
outputs are then postprocessed using decision-level fusion techniques [2, 39]. This
level of fusion can include the previous two levels of fusion (i.e., per-pixel opera-
tions or extracted features) within its operation [40, 41].

In this chapter, we will focus on the concept, methods, and applications of the
spatiotemporal-based fusion at all levels of fusion. We will discuss all aspects of
spatiotemporal fusion starting from its concepts, preprocessing steps, the
approaches, and techniques involved. We will also discuss some examples that
apply spatiotemporal fusion for remote sensing applications.

1.2 Contributions

This book chapter introduces the spatiotemporal analysis in fusion algorithms to
improve the quality of remote sensing images. We will explore spatiotemporal
fusion advantages and limitations, as well as, their applications and associated
technicalities under three scenarios:

1.Pixel-level spatiotemporal fusion

2.Feature-level spatiotemporal fusion

3.Decision-level spatiotemporal fusion

1.3 Organization

The organization of this chapter is as follows: Section 2 describes remote sensing
data and acquisition and generation processes and necessary preprocessing steps for
all fusion levels. Section 3 talks about spatiotemporal fusion techniques under the
three levels of fusion: pixel-level, feature-level, and decision-level, which can be
applied to either multisource, multitemporal, or multisource multitemporal satellite
images. Section 4 describes some applications applying spatiotemporal fusion, and
finally Section 5 concludes the chapter.

2. Generic steps to spatiotemporal fusion

Spatiotemporal analysis allows investigation of data from various times and
sources. The general workflow for any spatiotemporal fusion process is shown in
Figure 1. The process description toward a fused image is demonstrated in
Figure 1(a), where it describes the process of input acquisition, preprocessing
steps, and finally the fusion. Data in remote sensing are either acquired directly
from a sensor (e.g., satellite images) or indirectly generated using algorithms (e.g.,
depth image from dense image matching algorithms [42]) (see Figure 1(b)). It also
includes data from single or multiple sources (see Figure 1(b)); however, combing
multisource and multitemporal images requires preprocessing steps to assure data
consistency for analyses. The preprocessing steps can include radiometric and geo-
metric correction and alignment (see Figure 1(a)). The main spatiotemporal fusion
algorithm is then performed using one or more of the three levels of fusion as a base
for their method. In this section, we will discuss the most common preprocessing
steps in spatiotemporal fusion, as well as, the importance and previous techniques
used in spatiotemporal fusion in the three levels of fusion to improve the quality of
images and remote sensing applications.
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minimize uncertainties associated with the data, with goals such as to reject outliers,
to replace and fill missing data points, and to enhance spatial and radiometric resolu-
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such as radiometric normalization, classification, change detection, etc. In general,
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finally Section 5 concludes the chapter.
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Spatiotemporal analysis allows investigation of data from various times and
sources. The general workflow for any spatiotemporal fusion process is shown in
Figure 1. The process description toward a fused image is demonstrated in
Figure 1(a), where it describes the process of input acquisition, preprocessing
steps, and finally the fusion. Data in remote sensing are either acquired directly
from a sensor (e.g., satellite images) or indirectly generated using algorithms (e.g.,
depth image from dense image matching algorithms [42]) (see Figure 1(b)). It also
includes data from single or multiple sources (see Figure 1(b)); however, combing
multisource and multitemporal images requires preprocessing steps to assure data
consistency for analyses. The preprocessing steps can include radiometric and geo-
metric correction and alignment (see Figure 1(a)). The main spatiotemporal fusion
algorithm is then performed using one or more of the three levels of fusion as a base
for their method. In this section, we will discuss the most common preprocessing
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used in spatiotemporal fusion in the three levels of fusion to improve the quality of
images and remote sensing applications.
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2.1 Data acquisition and generation

Today, there exists a tremendous number of satellite sensors with varying
properties and configurations providing researchers with access to a large amount of
satellite data. Remote sensing images can be acquired directly from sensors or indirectly
using algorithms. It is also availablewith awide range of properties and resolutions (i.e.,
spatial, spectral, and temporal resolutions), which are described in detail inTable 1.

2.1.1 Data acquisition

Generally, there exist two types of remote sensing sensor systems: active and
passive sensors [43]. Active sensors record the signal that is emitted from the sensor
itself and received back when it reflects off the surface of the earth. They include
sensors like Light Detection and Ranging (LiDAR) and Radar. Passive sensors record
the reflected signal off the ground after being emitted from a natural light source
like the Sun. They include satellite sensors that produce satellite images such as
Landsat, Satellite Pour l’Observation de la Terre (SPOT), MODIS, etc.

2.1.2 Data generation

Sometimes in remote sensing, the derived data can be also taken as
measurements. Examples include depth images with elevation data derived through

Figure 1.
The general workflow for spatiotemporal fusion. (a) The generic steps in spatiotemporal fusion, and (b) fusion
based on type of data.
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photogrammetric techniques on satellite stereo or multi-stereo images [42], classi-
fication maps, change detection maps, etc. In this section, we will discuss two
important examples of the commonly fused remote sensing data and their genera-
tion algorithms:

2.1.3 Depth maps (or digital surface model (DSM))

3D geometric elevation information can either be obtained directly using LiDAR
or indirectly using dense image matching algorithms such as Multiview stereo
(MVS) algorithms. However, because LiDAR data are expensive and often
unavailable for historic data (before 1970s when LiDAR was developed), generating
depth images using MVS algorithms is more convenient and efficient. MVS algo-
rithms include several steps:

Images acquisition and selection to perform MVS algorithm requires having at
least a pair or more of overlapping images captured from different viewing angles
that assure selecting an adequate number of matching features. Specifically, this
refers to the process of feature extraction and matching, where unique features
are being detected and matched in pairs of images using feature detectors and
descriptors methods such as Harris, SIFT, or SURF [44].

Dense image matching and depth map generation: Dense image matching refers
to the process of producing dense correspondences between two or among multiple
images, and with their pre-calculated geometrical relationship, depth/height infor-
mation can be determined through ray triangulation [45]. The dense correspon-
dences problem, with pre-calculated image geometry, turns to a 1-D problem in
rectified image (also called epipolar image) [46], called disparity computation,
which is basically the difference between the left and right views as shown below:

Type of
resolution

Spatial resolution Spectral resolution Temporal resolution

Definition Describes the ground area
covered by a single pixel in
the satellite images. It is also
known as the ground
sampling distance (GSD)
and can range from a few
hundreds of meters to sub-
meters. Satellite sensors like
Moderate Resolution
Imaging Spectroradiometer
(MODIS) produce coarse-
resolution images with 250,
500, and 1000 meters,
while fine-resolution
images are produced by
satellites like very high-
resolution (VHR) satellites
at the sub-meter level [43].

Refers to the ability of
satellite sensors to capture
images with wide ranges of
the spectrum. It includes
hyperspectral (HS) images
with thousands of bands or
multispectral (MS) images
with few numbers of bands
(up to 10–15 bands) [43]. It
may also include task-
specific bands that are
beneficial to study the
environment and weather,
like the thermal band as in
Landsat 7 thematic mapper
plus (ETM+) [43]. Spectral
resolution also refers to the
wavelength interval in the
spectral signal domain; for
instance, MODIS has 36
bands falling between 0.4
and 14.4 μm, whereas
Landsat 7 (ETM+) has 7
bands ranging from 0.45 to
0.9 μm.

It is the ability of satellite
sensors to capture an object
or phenomena in certain
periods of time, also known
as the revisiting time of
sensor at a certain location
on the ground. Today,
modern satellite systems
allow monitoring earth’s
surface over short and
regular periods of time; for
instance, MODIS provides
almost a daily coverage,
while Landsat covers the
entire earth surface every
16 days.

Table 1.
Satellite sensors’ characteristics and resolutions.
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photogrammetric techniques on satellite stereo or multi-stereo images [42], classi-
fication maps, change detection maps, etc. In this section, we will discuss two
important examples of the commonly fused remote sensing data and their genera-
tion algorithms:

2.1.3 Depth maps (or digital surface model (DSM))

3D geometric elevation information can either be obtained directly using LiDAR
or indirectly using dense image matching algorithms such as Multiview stereo
(MVS) algorithms. However, because LiDAR data are expensive and often
unavailable for historic data (before 1970s when LiDAR was developed), generating
depth images using MVS algorithms is more convenient and efficient. MVS algo-
rithms include several steps:

Images acquisition and selection to perform MVS algorithm requires having at
least a pair or more of overlapping images captured from different viewing angles
that assure selecting an adequate number of matching features. Specifically, this
refers to the process of feature extraction and matching, where unique features
are being detected and matched in pairs of images using feature detectors and
descriptors methods such as Harris, SIFT, or SURF [44].

Dense image matching and depth map generation: Dense image matching refers
to the process of producing dense correspondences between two or among multiple
images, and with their pre-calculated geometrical relationship, depth/height infor-
mation can be determined through ray triangulation [45]. The dense correspon-
dences problem, with pre-calculated image geometry, turns to a 1-D problem in
rectified image (also called epipolar image) [46], called disparity computation,
which is basically the difference between the left and right views as shown below:
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covered by a single pixel in
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known as the ground
sampling distance (GSD)
and can range from a few
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Moderate Resolution
Imaging Spectroradiometer
(MODIS) produce coarse-
resolution images with 250,
500, and 1000 meters,
while fine-resolution
images are produced by
satellites like very high-
resolution (VHR) satellites
at the sub-meter level [43].

Refers to the ability of
satellite sensors to capture
images with wide ranges of
the spectrum. It includes
hyperspectral (HS) images
with thousands of bands or
multispectral (MS) images
with few numbers of bands
(up to 10–15 bands) [43]. It
may also include task-
specific bands that are
beneficial to study the
environment and weather,
like the thermal band as in
Landsat 7 thematic mapper
plus (ETM+) [43]. Spectral
resolution also refers to the
wavelength interval in the
spectral signal domain; for
instance, MODIS has 36
bands falling between 0.4
and 14.4 μm, whereas
Landsat 7 (ETM+) has 7
bands ranging from 0.45 to
0.9 μm.

It is the ability of satellite
sensors to capture an object
or phenomena in certain
periods of time, also known
as the revisiting time of
sensor at a certain location
on the ground. Today,
modern satellite systems
allow monitoring earth’s
surface over short and
regular periods of time; for
instance, MODIS provides
almost a daily coverage,
while Landsat covers the
entire earth surface every
16 days.

Table 1.
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Disparity ¼ Δx ¼ xl � xr ¼ f T
z

(1)

where xl and xr are distance of pixel in the left and right images accordingly, f is
the focal length, T is the distance between the cameras, and z is the depth. The
depth (z) is then estimated from Eq. [1] by taking the focal length times the
distance between the cameras divided by the disparity as follows:

Depth ¼ Z ¼ ft
∣xl � xr∣

(2)

In addition, it is noted that assessing and selecting good pairs of images can
improve the dense image matching and produce a more accurate and complete 3D
depth map [47, 48].

2.1.4 Classification maps

Image classification can be divided into two categories: 1) Supervised
classification is a user-guided process, where classification depends on a prior
knowledge about the data that are extracted from the predefined training samples
by the user; some popular supervised classification methods include support vector
machine (SVM), random forest (RF), decision trees DT, etc. [49–51]. 2)
Unsupervised classification is a machine-guided process, where the algorithms
classify the pixels in the image by grouping similar pixels to come up with specific
patterns that define each class. These techniques include segmentation, clustering,
nearest neighbor classification, etc. [49].

2.2 Preprocessing steps

2.2.1 Geometric correction

Image registration and alignment is an essential preprocessing step in any
remote sensing application that processes two or more images. For accurate
analyses of multisource multitemporal images, it is necessary that overlapping
pixels in the images correspond to the same coordinates or points on the earth’s
surface. Registration can be performed manually by selecting control points (CPs)
between a pair of images to determine the transformation parameters and wrap the
images with respect to a reference image [52]. An alternative approach is an auto-
mated CP extraction that operates based on mutual information (MI) and similarity
measures of the intensity values [52]. According to [53], there are a few common
and sequential steps for image registration including the following steps:

Unique feature selection, extraction, and matching refers to the process where
unique features are detected using feature extraction methods, then matched to
their correspondences in a reference image. A feature can be a shape, texture,
intensity of a pixel, edge, or an index such as vegetation and morphological index.
According to [54, 55], features can be extracted based on the content of a pixel (e.g.,
intensity, depth value, or even texture) using methods such as SIFT, difference of
Gaussian (DOG), Harris detection, and Histogram of oriented gradient (HOG)
[53, 56–58] or based on patch of pixels [59–61] like using deep learning methods
(e.g., convolutional neural networks (CNNs)), which can be used to extract com-
plete objects to be used as features.

Transformation refers to the process of computing the transformation parame-
ters (e.g., rotation, translation, scaling, etc.) necessary to convolve an image to a
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coordinate system that matches a reference image. The projection and transforma-
tion methods include similarity, affine, projective, etc. [53].

Resampling is the process where an image is converted into the same coordinate
system as the reference image using the transformation parameters; it includes
methods such as interpolation, bilinear, polynomial, etc. [53].

2.2.2 Radiometric correction

Radiometric correction is essential to remove spectral distortion and radiometric
inconsistencies between the images. It can be performed either using absolute
radiometric normalization (ARN) or relative radiometric normalization (RRN)
[62–64]. ARN requires prior knowledge of physical information related to the scene
(e.g., weather conditions) for normalization [63, 65–67], while, RRN radiometri-
cally normalizes the images based on a reference image using methods such as dark
object subtraction (DOS), histogram matching (HM), simple regression (SR),
pseudo-invariant features (PIF), iteratively re-weighted MAD transformation, etc.
[62, 64, 68].

3. Data analysis and spatiotemporal fusion

Pixels in remote sensing data are highly correlated over space and time due to
earth’s surface characteristics, repeated patterns (i.e., close pixels belong to the
same object/class), and dynamics (i.e., season). The general algorithm for spatio-
temporal fusion is demonstrated in Figure 2, where all levels of fusion follow the
same ideology. The minimum image requirement for spatiotemporal fusion is a pair
of images whether they are acquired from multiple sources or time, the input
images are represented with t1 to tn in Figure 2. The red square can be either a single

Figure 2.
The general concept of spatiotemporal fusion to process patch of pixels (the red square) spatially across different
times (t).
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raw pixel, an extracted feature vector, or processed pixel with valuable information
(e.g., probability value indicating the class of a pixel). The fusion algorithm then
finds the spatiotemporal patterns over space (i.e., the coordinates (x, y), and pixel
content) and time (t) to predict accurate and precise values of the new pixels (see
Figure 2). In this section, we will provide an overview of some previous works
regarding spatiotemporal image fusion that emphasize on the importance of space-
time correlation to enhance image quality and discuss this type of fusion in the
context of three levels of fusion: pixel-level, feature-level, and decision-level.

3.1 Pixel-level spatiotemporal fusion

As mentioned in the introduction, pixel-based fusion is the most basic and direct
approach to fuse multiple images by performing pixel-to-pixel operations; it has
been used in a wide range of applications and is preferred because of its simplicity.
Many studies performing pixel-level fusion algorithms realized the power of spa-
tiotemporal analysis in fusion and used it in a wide range of applications such as
monitoring, assessing, and managing natural sources (e.g., vegetation, cropland,
forests, flood, etc.), as well as, urban areas [9]. Most of the pixel-level spatiotem-
poral fusion algorithms operate as a filtering or weighted-function method; they
process a group of pixels in a window surrounding each pixel to compute the
corresponding spatial, spectral, and temporal weights (see Figure 3). A very popu-
lar spatiotemporal fusion method that set the base for many other fusion methods is
spatial and temporal adaptive reflectance fusion model (STARFM); it is intended to
generate a high-resolution image with precise spectral reflectance by merging
multisource fine- and coarse-resolution images [22]. Their method resamples the
coarse-resolution MODIS image to have a matching resolution as the Landsat TM
image, after that it computes the overall weight by calculating the spectral and
temporal differences between the images. STARFM is highly effective in detecting
phenological changes, but it fails to handle heterogeneous landscapes with rapid
land-cover changes and around mixed pixels [22]. To address this issue, [20] have
proposed Enhanced STARFM (ESTARFM); it applies a conversion coefficient to
assess the temporal differences between fine- and coarse-resolution images. In [69],
Hilker also addressed the problem of drastic land-cover change by proposing Spatial
Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH),
which applies Tasseled cap transformation [70] to detect the seasonal changes over

Figure 3.
Pixel-based fusion process diagram.
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a landscape. For further improvement of these algorithms, studies have suggested
using machine learning methods to identify similar pixels by their classes [71]. The
authors also show an example on using machine learning unsupervised classifica-
tion within the spatiotemporal fusion to enhance its performance. They used clus-
tering on one of the images using the ISODATA method [72], where pixels are
considered similar if the difference between the current and central pixel in the
window is less than one standard deviation of the pixels in the cluster. Other
methods use filtering algorithms to enhance the spatial and spectral aspects of
images, in addition to embedding the temporal analysis to further enhance the
quality and performance of an application. For instance, [73] proposed a method
that combines the basic bilateral filter with STARFM to estimate land surface
temperature (LST). In [19], they proposed a 3D spatiotemporal filtering as a
preprocessing step for relative radiometric normalization (RRN) to enhance the
consistency of temporal images. Their idea revolves around finding the spatial and
spectral similarities using a bilateral filter, followed by assessing the temporal sim-
ilarities for each pixel against the entire set of images. The temporal weight, which
assesses the degree of similarity, is computed using an average Euclidean distance
using the multitemporal data. In addition to the weighted-based functions,
approaches such as unmixing-based and hybrid-based methods are also common in
spatiotemporal fusion [74]. The unmixing-based methods predict the fine-
resolution image reflectance by computing the mixed pixels from coarse-resolution
image [75], while hybrid-based methods use a color mapping function that com-
putes the transformation matrix from the coarse-resolution image and apply it on
the finer resolution image [76].

3.2 Feature-level spatiotemporal fusion

Feature-level fusion is a more complex level of fusion, unlike pixel-based oper-
ations, it can efficiently handle heterogeneous data that vary in modality and
source. According to [2], feature-based fusion can either be conducted directly
using semantically equivalent features (e.g., edges) or through probability maps
that transform images into semantically equivalent features. This characteristic
allows fusion to be performed regardless of the type and source of information [27].
Fusion can then be performed using arithmetic (e.g., addition, division, etc.) and
statistical (e.g., mean, median, maximum, etc.) operations; the general process of
feature-based fusion is shown in Figure 4. The approach in [27] demonstrates a

Figure 4.
Feature-based fusion diagram.
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time correlation to enhance image quality and discuss this type of fusion in the
context of three levels of fusion: pixel-level, feature-level, and decision-level.

3.1 Pixel-level spatiotemporal fusion
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been used in a wide range of applications and is preferred because of its simplicity.
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forests, flood, etc.), as well as, urban areas [9]. Most of the pixel-level spatiotem-
poral fusion algorithms operate as a filtering or weighted-function method; they
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generate a high-resolution image with precise spectral reflectance by merging
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Figure 3.
Pixel-based fusion process diagram.
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a landscape. For further improvement of these algorithms, studies have suggested
using machine learning methods to identify similar pixels by their classes [71]. The
authors also show an example on using machine learning unsupervised classifica-
tion within the spatiotemporal fusion to enhance its performance. They used clus-
tering on one of the images using the ISODATA method [72], where pixels are
considered similar if the difference between the current and central pixel in the
window is less than one standard deviation of the pixels in the cluster. Other
methods use filtering algorithms to enhance the spatial and spectral aspects of
images, in addition to embedding the temporal analysis to further enhance the
quality and performance of an application. For instance, [73] proposed a method
that combines the basic bilateral filter with STARFM to estimate land surface
temperature (LST). In [19], they proposed a 3D spatiotemporal filtering as a
preprocessing step for relative radiometric normalization (RRN) to enhance the
consistency of temporal images. Their idea revolves around finding the spatial and
spectral similarities using a bilateral filter, followed by assessing the temporal sim-
ilarities for each pixel against the entire set of images. The temporal weight, which
assesses the degree of similarity, is computed using an average Euclidean distance
using the multitemporal data. In addition to the weighted-based functions,
approaches such as unmixing-based and hybrid-based methods are also common in
spatiotemporal fusion [74]. The unmixing-based methods predict the fine-
resolution image reflectance by computing the mixed pixels from coarse-resolution
image [75], while hybrid-based methods use a color mapping function that com-
putes the transformation matrix from the coarse-resolution image and apply it on
the finer resolution image [76].

3.2 Feature-level spatiotemporal fusion

Feature-level fusion is a more complex level of fusion, unlike pixel-based oper-
ations, it can efficiently handle heterogeneous data that vary in modality and
source. According to [2], feature-based fusion can either be conducted directly
using semantically equivalent features (e.g., edges) or through probability maps
that transform images into semantically equivalent features. This characteristic
allows fusion to be performed regardless of the type and source of information [27].
Fusion can then be performed using arithmetic (e.g., addition, division, etc.) and
statistical (e.g., mean, median, maximum, etc.) operations; the general process of
feature-based fusion is shown in Figure 4. The approach in [27] demonstrates a

Figure 4.
Feature-based fusion diagram.
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simple example on feature-level spatiotemporal fusion to investigate and monitor
deforestation; in their method, they combined data from meduim-resolution syn-
thetic aperture radar (SAR) and MS Landsat data, they extracted features related to
vegetation and soil location (using scattering information and Normalized Differ-
ence Fraction Index (NDFI) respectively), finally, fusion was performed through
decision tree classifier. Both [26, 62] point out to the most popular methods in
feature-level fusion, which include Laplacian pyramid, gradient pyramid, morpho-
logical pyramid, high-pass filter, and wavelet transform methods [77–81]. A very
famous fusion example in this category is inverse discrete wavelet (IDW) trans-
form, which is a wavelet transform fusion approach; it uses temporal images with
varying spatial resolutions to down-sample the coarse-resolution image. It basically
extracts the wavelet coefficients from the fine-resolution image and uses them to
down-sample the coarse-resolution image [82]. Sparse representation is another
widely used learning-based method in feature-level fusion due to its good perfor-
mance [8, 10, 30, 31]. All sparse representation algorithms share the same concept
and core idea, where the general steps include: 1) dividing the input images into
patches, 2) extracting distinctive features from the patches (e.g., high-frequency
feature patches), 3) generating coefficients from the feature patches, 4) training
jointly using dictionaries to find similar structures by extracting and matching
feature patches, and finally, 5) fusion using the training information and extracted
coefficients [8, 10, 30, 79, 83, 84].

Another state-of-the-art approach in feature- and decision-level fusion is deep
learning or artificial neural networks (ANNs). They are currently a very active area
of interest in many remote sensing fields (especially image classification) due to
their outstanding performance that surpasses traditional methods [32–38, 76,
82–84]. They are also capable of dealing with multi-modality like images from
varying sources and heterogeneous data, for instance, super-resolution and pan-
sharpening images from different sensors, combining HS and MS images, combin-
ing images with SAR or LiDAR data, etc. [32–38]. In feature-level fusion, the ANN
is either performed on the images for feature extraction or to learn from the data
itself [38]. The extracted features from the temporal images or classification map
are used as an input layer, which are then weighted and convoluted within several
intermediate hidden layers to result in the final fused image [32–35, 37, 79]. For
instance, [85] uses neural networks (CNN) to extract features from RGB image and
a DSM elevation map, which are then fed into the SVM training model to generate
an enhanced semantic labeling map. ANNs have also been widely used to solve
problems related to change detection of bi-temporal images such as comparing
multi-resolution images [86] or multisource images [87], which can be solved in a
feature-learning representation fashion. For instance, the method in [87] directly
compares stacked features extracted from a registered pair of images using deep
belief networks (DBNs).

3.3 Decision-level spatiotemporal fusion

The decision-level fusion operates on a product level, where it requires images to
be fully and independently processed until the meaningful output is obtained (e.g.,
classification or change detection maps) (see Figure 5). Decision-level fusion can
adapt to different modularities like combing heterogeneous data such as satellite
and depth images, which can be processed to common outputs (e.g., full/partial
classification maps) for fusion [88]. Additionally, the techniques followed by this
fusion type are often performed under the umbrella of Boolean or statistical opera-
tions using methods like likelihood estimation, voting (e.g., majority voting,
Dempster-Shafer’s estimation, fuzzy Logic, weighted sum, etc.) [88–90]. In [88],
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they provide an example on the mechanism of decision-level fusion; they developed
a fusion approach to detect cracks and defects on ground surface, they first convert
multitemporal images into spatial density maps using kernel density estimation
(KDE), then, fused the pixels density values using a likelihood estimation method.
In general, most of the decision-level fusion techniques rely on probabilistic
methods, where they require generating an initial label map with each pixel
upholding a probability value and indicating its belonging to a certain class, which
can be generated using traditional classification methods like the supervised (e.g.,
random forest) or unsupervised (e.g., clustering or segmentation) classification (see
Section 2.1.2.). Another advantage of the decision-level fusion is that it can be
implemented while incorporating both levels of fusion, the pixel- and feature-level
fusion. The method in [41] shows a spatiotemporal fusion algorithm that includes
all levels of fusion, where they propose a post-classification refinement algorithm to
enhance the classification maps. First, they generate probability maps for all tem-
poral images using random forest classifier (as an initial classification map); then
they use a recursive approach to iteratively process every pixel in the probability
maps by fusing the multitemporal probability maps with the elevation from the
DSMs using a 3D spatiotemporal filtering. Similarly, [40] have also proposed fusion
of probability maps for building detection purposes, where they first generate the
probability maps, then fuse them using a simple 3D bilateral filter.

Recently, more focus has been driven toward using spatiotemporal fusion to
recover the quality of 3D depth images generated from MVS (e.g., DSM fusion).
Median filtering is the oldest and most common fusion approach for depth images;
it operates by computing the median depth of each pixel from a group of pixels at
the same location in the temporal images [91]. The median filtering is robust to
outliers and is efficient in filling missing depth values. However, the median filter
only exploits the temporal domain; to further enhance its performance and the
precision of the depth values, studies suggest spatiotemporal median filtering. In
[92], the authors have proposed an adaptive median filtering that operates based on
the class of the pixels; they use an adaptive window to isolate pixels belonging to the
same class, then choose the median pixel based on the location (i.e., adaptive
window) and temporal images. In [93], the authors also show that spatiotemporal
median filtering can be improved by adopting an adaptive weighing-filtering func-
tion that involves assessing the uncertainty of each class in the spatial and temporal
domains in the depth images using standard deviation. The uncertainty will then be
used as the bandwidth parameter to filter each class individually. The authors in
[47] also suggested a per-pixel fusing technique to select the depth value for each

Figure 5.
Feature-based fusion diagram.
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simple example on feature-level spatiotemporal fusion to investigate and monitor
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ence Fraction Index (NDFI) respectively), finally, fusion was performed through
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form, which is a wavelet transform fusion approach; it uses temporal images with
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extracts the wavelet coefficients from the fine-resolution image and uses them to
down-sample the coarse-resolution image [82]. Sparse representation is another
widely used learning-based method in feature-level fusion due to its good perfor-
mance [8, 10, 30, 31]. All sparse representation algorithms share the same concept
and core idea, where the general steps include: 1) dividing the input images into
patches, 2) extracting distinctive features from the patches (e.g., high-frequency
feature patches), 3) generating coefficients from the feature patches, 4) training
jointly using dictionaries to find similar structures by extracting and matching
feature patches, and finally, 5) fusion using the training information and extracted
coefficients [8, 10, 30, 79, 83, 84].

Another state-of-the-art approach in feature- and decision-level fusion is deep
learning or artificial neural networks (ANNs). They are currently a very active area
of interest in many remote sensing fields (especially image classification) due to
their outstanding performance that surpasses traditional methods [32–38, 76,
82–84]. They are also capable of dealing with multi-modality like images from
varying sources and heterogeneous data, for instance, super-resolution and pan-
sharpening images from different sensors, combining HS and MS images, combin-
ing images with SAR or LiDAR data, etc. [32–38]. In feature-level fusion, the ANN
is either performed on the images for feature extraction or to learn from the data
itself [38]. The extracted features from the temporal images or classification map
are used as an input layer, which are then weighted and convoluted within several
intermediate hidden layers to result in the final fused image [32–35, 37, 79]. For
instance, [85] uses neural networks (CNN) to extract features from RGB image and
a DSM elevation map, which are then fed into the SVM training model to generate
an enhanced semantic labeling map. ANNs have also been widely used to solve
problems related to change detection of bi-temporal images such as comparing
multi-resolution images [86] or multisource images [87], which can be solved in a
feature-learning representation fashion. For instance, the method in [87] directly
compares stacked features extracted from a registered pair of images using deep
belief networks (DBNs).

3.3 Decision-level spatiotemporal fusion

The decision-level fusion operates on a product level, where it requires images to
be fully and independently processed until the meaningful output is obtained (e.g.,
classification or change detection maps) (see Figure 5). Decision-level fusion can
adapt to different modularities like combing heterogeneous data such as satellite
and depth images, which can be processed to common outputs (e.g., full/partial
classification maps) for fusion [88]. Additionally, the techniques followed by this
fusion type are often performed under the umbrella of Boolean or statistical opera-
tions using methods like likelihood estimation, voting (e.g., majority voting,
Dempster-Shafer’s estimation, fuzzy Logic, weighted sum, etc.) [88–90]. In [88],
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they provide an example on the mechanism of decision-level fusion; they developed
a fusion approach to detect cracks and defects on ground surface, they first convert
multitemporal images into spatial density maps using kernel density estimation
(KDE), then, fused the pixels density values using a likelihood estimation method.
In general, most of the decision-level fusion techniques rely on probabilistic
methods, where they require generating an initial label map with each pixel
upholding a probability value and indicating its belonging to a certain class, which
can be generated using traditional classification methods like the supervised (e.g.,
random forest) or unsupervised (e.g., clustering or segmentation) classification (see
Section 2.1.2.). Another advantage of the decision-level fusion is that it can be
implemented while incorporating both levels of fusion, the pixel- and feature-level
fusion. The method in [41] shows a spatiotemporal fusion algorithm that includes
all levels of fusion, where they propose a post-classification refinement algorithm to
enhance the classification maps. First, they generate probability maps for all tem-
poral images using random forest classifier (as an initial classification map); then
they use a recursive approach to iteratively process every pixel in the probability
maps by fusing the multitemporal probability maps with the elevation from the
DSMs using a 3D spatiotemporal filtering. Similarly, [40] have also proposed fusion
of probability maps for building detection purposes, where they first generate the
probability maps, then fuse them using a simple 3D bilateral filter.

Recently, more focus has been driven toward using spatiotemporal fusion to
recover the quality of 3D depth images generated from MVS (e.g., DSM fusion).
Median filtering is the oldest and most common fusion approach for depth images;
it operates by computing the median depth of each pixel from a group of pixels at
the same location in the temporal images [91]. The median filtering is robust to
outliers and is efficient in filling missing depth values. However, the median filter
only exploits the temporal domain; to further enhance its performance and the
precision of the depth values, studies suggest spatiotemporal median filtering. In
[92], the authors have proposed an adaptive median filtering that operates based on
the class of the pixels; they use an adaptive window to isolate pixels belonging to the
same class, then choose the median pixel based on the location (i.e., adaptive
window) and temporal images. In [93], the authors also show that spatiotemporal
median filtering can be improved by adopting an adaptive weighing-filtering func-
tion that involves assessing the uncertainty of each class in the spatial and temporal
domains in the depth images using standard deviation. The uncertainty will then be
used as the bandwidth parameter to filter each class individually. The authors in
[47] also suggested a per-pixel fusing technique to select the depth value for each
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pixel by using a recursive K-median clustering approach that generates one to eight
clusters until it reaches the desired precision.

Other complex yet efficient methods used in decision-level fusion are deep
learning algorithms as mentioned previously in Section 2.3.2. [94]. They are either
used as postprocessing refinement approaches or to learn end-to-end from a model
[38]. For example, the method in [95] used a postprocessing enhancement step for
semantic labeling, where they first generate probability maps using two different
methods, RF and CNN using multimodal data (i.e., images and depth images), then
they fused the probability maps using Conditional random fields (CRFs) as
postprocessing approach. In [96], on the other hand, the authors used a model
learning-based method, where they first semantically segment multisource data
(i.e., image and depth image) using a SegNet network, then fuse their scores using a
residual learning approach.

4. Examples on spatiotemporal fusion applications

4.1 Spatiotemporal fusion of 2D images

4.1.1 Background and objective

A 3D spatial-temporal filtering algorithm is proposed in [19] to achieve relative
radiometric normalization (RRN) by fusing information from multitemporal
images. RRN is an important preprocessing step in any remote sensing application
that requires image comparison (e.g., change detection) or matching (e.g., image
mosaic, 3D reconstruction, etc.). RRN is intended to enhance the radiometric con-
sistency across set of images, in addition to reducing radiometric distortions that
result due to sensor and acquisition conditions (as mentioned in Section 1.1.).
Traditional RRN methods use a single reference image to radiometrically normalize
the rest of the images. The quality of the normalized images highly depends on the
reference image, which requires the reference image to be noise-free or to have
minimum radiometric distortions. Thus, the objective of [19] is to generate high-
quality radiometrically consistent images with minimum distortion by developing
an algorithm that fuses the spatial, spectral, and temporal information across a set
of images.

4.1.2 Theory

The core of the 3D spatiotemporal filter is based on the bilateral filter, which is
used to preserve the spectral and spatial details. It is a weighting function that
applies pixel-level fusion on images from multiple dates (see Figure 4(a)). The
general form of this filter is as follows:

Ii ¼
ð

Ω
wj,i:I j:dj (3)

where the original and filtered images are indicated using I and I. The weight for
every pixel at point j into the fused pixel i is indicated using wj,i. The filtering is
carried out on the entire space of the set of images Ω including all domains, that is,
the spatial (i.e., pixels’ coordinates (x, y)), the spectral (i.e., intensity value), and
temporal (i.e., intensity of temporal images). The spatial and spectral weights are
described by [97] and are indicated in Eqs. (4) and (5) respectively
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where, I is the pixel value at x and y locations, and σx! and σI are the spatial and
spectral bandwidths respectively that set the degree of filtering based on the spatial
and spectral similarities between the central pixel and nearby pixels. The novelty of
this filter is in the design of the temporal weight, where it computes the resem-
blance between every image and the entire set of images using an average Euclidean
distance as the follows

wspectral ¼ exp � jt � it
�� ��2

σT

 !
, j, i∈Ω (6)

where jt � it
� �

are the difference between the current image being processed
and all other images and σT is the degree of filtering along the temporal direction.
Eq. (6) allows all images to contribute toward each other in enhancing the overall
radiometric characteristics and consistency without requiring a reference image for
the RRN process.

4.1.3 Experimental results and analysis

The 3D spatial-temporal filter was conducted on three experiments with
varying resolutions and complexities. Experiments 1 and 2 were applied on
urban and sub-urban areas respectively; each experiment had five medium-
resolution images from Landsat 8 satellite (with 15- to 30- m spatial resolution).
Experiment 3 was on a fine-resolution image from Planet satellite (with 3-m spatial
resolution).

Figure 6(b) and (c) shows an example of the input and results of the filter using
the data from experiment 1 (i.e., the urban area). The input images show a signifi-
cant discrepancy in the radiometric appearance (see Figure 6(b)); however, the
heterogeneity between multitemporal images is reduced after the filtering process
(see Figure 6(c)). By comparing the original and filtered images in Figure 6(c), we
can notice that the land covers are more similar in the filtered images than in the
original images. For instance, the water surface (shown in Figure 6(c) in blue bold
dashed line) used to have a clear contrast in intensity in the original images, but
after the filtering process, they become more spectrally alike in terms of intensity
looks and ranges.

The experiments are also validated numerically using transfer learning classifi-
cation (using SVM) to test the consistency between the normalized filtered images.
The transfer learning classification uses a reference training data from one image
and applies it to the rest of the images. The results in Table 2 indicate that the
filtered images have higher accuracy than the nonfiltered original images, where the
average improvement in accuracy is �6%, 19%, and 2% in all three experiments
respectively. Reducing the uncertainty in the filtering process by not requiring a
reference image for normalization was the key to this algorithm. The algorithm was
formulated to take advantage of the temporal direction by treating all images in the
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pixel by using a recursive K-median clustering approach that generates one to eight
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used as postprocessing refinement approaches or to learn end-to-end from a model
[38]. For example, the method in [95] used a postprocessing enhancement step for
semantic labeling, where they first generate probability maps using two different
methods, RF and CNN using multimodal data (i.e., images and depth images), then
they fused the probability maps using Conditional random fields (CRFs) as
postprocessing approach. In [96], on the other hand, the authors used a model
learning-based method, where they first semantically segment multisource data
(i.e., image and depth image) using a SegNet network, then fuse their scores using a
residual learning approach.

4. Examples on spatiotemporal fusion applications

4.1 Spatiotemporal fusion of 2D images

4.1.1 Background and objective

A 3D spatial-temporal filtering algorithm is proposed in [19] to achieve relative
radiometric normalization (RRN) by fusing information from multitemporal
images. RRN is an important preprocessing step in any remote sensing application
that requires image comparison (e.g., change detection) or matching (e.g., image
mosaic, 3D reconstruction, etc.). RRN is intended to enhance the radiometric con-
sistency across set of images, in addition to reducing radiometric distortions that
result due to sensor and acquisition conditions (as mentioned in Section 1.1.).
Traditional RRN methods use a single reference image to radiometrically normalize
the rest of the images. The quality of the normalized images highly depends on the
reference image, which requires the reference image to be noise-free or to have
minimum radiometric distortions. Thus, the objective of [19] is to generate high-
quality radiometrically consistent images with minimum distortion by developing
an algorithm that fuses the spatial, spectral, and temporal information across a set
of images.

4.1.2 Theory

The core of the 3D spatiotemporal filter is based on the bilateral filter, which is
used to preserve the spectral and spatial details. It is a weighting function that
applies pixel-level fusion on images from multiple dates (see Figure 4(a)). The
general form of this filter is as follows:
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wj,i:I j:dj (3)

where the original and filtered images are indicated using I and I. The weight for
every pixel at point j into the fused pixel i is indicated using wj,i. The filtering is
carried out on the entire space of the set of images Ω including all domains, that is,
the spatial (i.e., pixels’ coordinates (x, y)), the spectral (i.e., intensity value), and
temporal (i.e., intensity of temporal images). The spatial and spectral weights are
described by [97] and are indicated in Eqs. (4) and (5) respectively
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Eq. (6) allows all images to contribute toward each other in enhancing the overall
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the RRN process.

4.1.3 Experimental results and analysis

The 3D spatial-temporal filter was conducted on three experiments with
varying resolutions and complexities. Experiments 1 and 2 were applied on
urban and sub-urban areas respectively; each experiment had five medium-
resolution images from Landsat 8 satellite (with 15- to 30- m spatial resolution).
Experiment 3 was on a fine-resolution image from Planet satellite (with 3-m spatial
resolution).

Figure 6(b) and (c) shows an example of the input and results of the filter using
the data from experiment 1 (i.e., the urban area). The input images show a signifi-
cant discrepancy in the radiometric appearance (see Figure 6(b)); however, the
heterogeneity between multitemporal images is reduced after the filtering process
(see Figure 6(c)). By comparing the original and filtered images in Figure 6(c), we
can notice that the land covers are more similar in the filtered images than in the
original images. For instance, the water surface (shown in Figure 6(c) in blue bold
dashed line) used to have a clear contrast in intensity in the original images, but
after the filtering process, they become more spectrally alike in terms of intensity
looks and ranges.

The experiments are also validated numerically using transfer learning classifi-
cation (using SVM) to test the consistency between the normalized filtered images.
The transfer learning classification uses a reference training data from one image
and applies it to the rest of the images. The results in Table 2 indicate that the
filtered images have higher accuracy than the nonfiltered original images, where the
average improvement in accuracy is �6%, 19%, and 2% in all three experiments
respectively. Reducing the uncertainty in the filtering process by not requiring a
reference image for normalization was the key to this algorithm. The algorithm was
formulated to take advantage of the temporal direction by treating all images in the
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dataset as a reference. Therefore, it will have higher confidence to distinguish
between actual objects and radiometric distortions (like clouds) in the scene when
processing each pixel.

Figure 6.
Pixel-level fusion using 3D spatiotemporal bilateral filter to combine multitemporal images [19].
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4.2 Spatiotemporal fusion of multisource multitemporal images

4.2.1 Background and objective

Multitemporal and multisource satellite images often generate inconsistent clas-
sification maps. Noise and misclassifications are inevitable when classifying satellite
images, and the precision and accuracy of classification maps vary based on the
radiometric quality of the images. The radiometric quality is a function of the
acquisition and sensor conditions as mentioned in the background in Section 1.1.
The algorithm can also play a major role in the accuracy of the results; some
classification algorithms are more efficient than others, while some can be sensitive
to the spatial details in the images like complex dense areas and repeated patterns,
which lead objects of different classes to have similar spectral reflectance. The
acquisition time, type of algorithm, and distribution of objects in the scene are huge
factors that can degrade the quality and generate inconsistent classification maps
across different times. To address these issues, the authors in [41] proposed a 3D
iterative spatiotemporal filtering to enhance the classification maps of
multitemporal very high-resolution satellite images. Since the 3D geometric infor-
mation is more stable and is invariant to spectral changes across temporal images,
[41] proposed combining the 3D geometric information in the DSM with
multitemporal classification maps to provide spectrally invariant algorithm.

4.2.2 Theory

The 3D iterative spatiotemporal filter is a fusion method that combines infor-
mation from various types, sources, and times. The algorithm is a combination of
feature and decision levels of fusion; it is described in detail in Algorithm 1. The first
step is to generate initial probability maps for all images using random forest
classification. The inference model is then built to recursively process every pixel in
the probability maps using a normalized weighing function that computes the total

weight W3D x j, y j, tn
� �

based on the spatial (Wspatial), spectral (Wspectral), and

temporal (Wtemproral) similarities. The temporal weight is based on the elevation
values in the DSMs. The probability value for every pixel is computed and updated

Transfer learning classification

Image 1 2 3 4 5

Exp. I Suburban

Without filter 80.88 74.14 93.30 93.59 91.97

With filter 91.99 91.96 93.95 86.08 94.30
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Without filter 72.61 67.91 81.00 50.21 93.75

With filter 89.29 90.60 91.35 77.82 93.10

Exp. II

Without filter 66.48 74.14 68.35 67.17 73.30
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The bold numbers indicate an increase in the accuracy, and the numbers highlighted in gray indicate the reference
image used for the training in the transfer learning classification.
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dataset as a reference. Therefore, it will have higher confidence to distinguish
between actual objects and radiometric distortions (like clouds) in the scene when
processing each pixel.

Figure 6.
Pixel-level fusion using 3D spatiotemporal bilateral filter to combine multitemporal images [19].
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using W3D x j, y j, tn
� �

and the previous iteration until it satisfies the convergence

condition, which requires the difference between the current and previous itera-
tions to be under a certain limit.

Algorithm 1: Pseudo code of the proposed 3D iterative spatiotemporal filter [41]

4.2.3 Experimental results and analysis

The proposed filter was applied to three datasets that include an open area,
residential area, and school area. The input data include multisource and
multitemporal very high-resolution images and DSMs; the probability maps were
created for six types of classes: buildings, long-term or temporary lodges, trees, grass,
ground, and roads (see Figure 7(a) for more details about the input data). Figure 7
(b) shows a sample of the filtering results. We can see that the initial classification of
the building (circled with an ellipse) is mostly incorrectly classified to long-term
lodge; however, it keeps improving as the filtering proceeds through the iterations.

The overall accuracy was reported, and it indicates that the overall enhancement
in the accuracy is about �2–6% (see Table 3). We can also notice that dense areas
such as the residential area have the lowest accuracy range (around 85%), while the
rest of the study areas had accuracy improvement in the 90% range. It indicates that
the filtering algorithm is dependent on the degree of density and complexity in the
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scene, where objects are hard to distinguish in condensed areas due to mixed pixel
and spectral similarity of different objects.

4.3 Spatiotemporal fusion of 3D depth maps

4.3.1 Background and objective

Obtaining high-quality depth images (also known as depth maps) is essential for
remote sensing applications that process 3D geometric information like 3D

Figure 7.
3D iterative spatiotemporal filtering for classification enhancement [41].
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reconstruction. MVS algorithms are widely used approaches to obtain depth images
(see Section 2.1.2.); however, depth maps generated using MVS often contain noise,
outliers, and incomplete representation of depth like having missing data, holes, or
fuzzy edges and boundaries. A common approach to recover the depth map is by
fusing several depth maps through probabilistic or deterministic methods. How-
ever, most fusion techniques in image processing focus on the fusion of depth
images from Kinect or video scenes, which cannot be directly applied on depth
generated from satellite images due to the nature of images. The difference between
depth generated from satellite sensors and Kinect or video cameras include:

1.Images captured indoor using Kinect or video cameras have less noise, since they
are not exposed to external environmental influences like atmospheric effects.

2.Kinect or video cameras generate a large volume of images, which can improve
dense matching, while the number of satellite images is limited due to the
temporal resolution of the satellite sensor.

3.The depth from satellite images is highly sensitive to the constant changes in the
environment and the spatial characteristics of the earth surface like the repeated
patterns, complexity, sparsity, and density of objects in the scene, which can
obstruct or create mismatching errors in the dense image matching process.

Most depth fusion algorithms for geospatial data focus on median filtering (see
Section 4.3.), but it still needs some improvement in terms of robustness and
adaptivity to the scene content. To address the aforementioned problems, [90]
proposed an adaptive and semantic-guided spatiotemporal filtering algorithm to
generate a single depth map with high precision. The adaptivity is implemented to
address the issue of varied uncertainty for objects of different classes.

4.3.2 Theory

The adaptive and semantic-guided spatiotemporal filter is a pixel-based fusion
method, where the depth of the fused pixel is inferred using multitemporal depths
and a prior knowledge about the pixel class and uncertainty. A reference orthophoto

Date Test region 1 Test region 2 Test region 3

Before
(%)

After
(%)

Δ
(%)

Before
(%)

After
(%)

Δ
(%)

Before
(%)

After
(%)

Δ
(%)

2007 91.04% 95.21 +4.17 83.47 88.14 +4.67 91.12 95.85 +4.73

2010/1 93.21 96.45 +3.24 81.50 85.67 +4.17 93.06 96.82 +3.76

2010/6 91.93 96.26 +4.33 83.52 89.79 +6.27 88.82 94.87 +6.05

2010/12 89.08 95.57 +6.49 80.81 87.59 +6.78 88.58 94.86 +6.28

2012/3 92.19 95.92 +3.73 81.43 86.92 +5.49 91.44 97.08 +5.64

2013/9 90.40 96.56 +6.16 81.03 87.29 +6.26 94.99 97.54 +2.55

2014/7 95.11 97.27 +2.16 82.19 88.90 +6.17 90.39 96.58 +6.19

2015 92.74 96.35 +3.61 83.22 85.69 +2.47 94.61 97.19 +2.58

Average 92.09 96.20 4.24 82.15 87.50 5.29 91.63 96.35 4.72

Table 3.
The overall accuracy for classification results using the method in [41].
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is classified using a rule-based classification approach that uses normalized DSM
(nDSM) with indices such as normalized difference vegetation index (NDVI). The
uncertainty is then measured for all four classes (trees, grass, buildings, and ground
and roads) using the standard deviation. The uncertainty is measured spatially
using the classification map and also across the temporal images. The adaptive and
semantic-guided spatiotemporal filter is intended to enhance the median filter, thus
it uses height h i, j, tð Þmed as the base to the fused pixel, where the general form of the
filter is expressed as

DSM f i, jð Þ ¼ 1
WT

∗
XWidth

i¼1

XHeight

j¼1

Wr ∗Ws ∗Wh ∗ h i, j, tð Þmed (7)

where DSMf is the fused pixel; i, j are the pixel’s coordinates; hmed is the median
height value from the temporal DSMs; and the spectral, spatial, and temporal height
weights are expressed as Wr, Ws, and Wh respectively. The Wr and Ws are
described in Eqs. (4) and (5) that measure the spectral and spatial components from
the orthophoto. The Wh is a measure of similarity for the height data across
temporal images, and it can be computed using the following formula:

Wh i, jð Þ ¼ exp
� hmed�h i,j,tð Þj jj j2

2 σ2
h (8)

where σhis the adaptive height bandwidth, which varies based on the class of
pixel as follows:

σh ¼

σBuilding ! if pixel i, jð Þ is building
σGround=road ! if pixel i, jð Þ is ground=road
σtree ! if pixel i, jð Þ is tree
σgrass ! if pixel i, jð Þ is grass
σwater ! if pixel i, jð Þ is water

8>>>>>>>><
>>>>>>>>:

(9)

Figure 8.
Process description of adaptive and semantic-guided spatiotemporal filtering [93].
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4.3.3 Experimental results and analysis

The method in [90] was experimented on three datasets with varying
complexities. The satellite images are taken from the World-View III sensor, and
depth is generated using MVS algorithm on every image pair using RSP (RPC Stereo
Processor) software developed by [95] and semi-global matching (SGM) algorithm
[42]. Figure 8 describes the procedures followed by the fusion algorithm, in
addition to the visual results where it shows that noise and missing elevation points
were recovered in the fused image. The validation of three experiments shows that
this fusion technique can achieve up to 2% increase in the overall accuracy of the
depth map.

5. Conclusions

Spatiotemporal fusion is one of the powerful techniques to enhance the quality
of remote sensing data, hence, the performance of its applications. Recently, it has
been drawing great attention in many fields, due to its capability to analyze and
relate the space-interaction on ground, which can lead to promising results in terms
of stability, precision, and accuracy. The redundant temporal information is useful
to develop a time-invariant fusion algorithm that leads to the same inference from
the multitemporal geospatial data regardless of the noise and changes that occur
occasionally due to natural (e.g., metrology, ecology, and phenology) or instru-
mental (e.g., sensor conditions) causes. Therefore, incorporating spatiotemporal
analysis in any of the three levels of fusion can boost their performance, where it
can be flexible to handle data from multiple sources, types, and times. Despite the
effectiveness of spatiotemporal fusion, there are still some issues that may affect the
precision and accuracy of the final output. These considerations must be taken into
account while designing the spatiotemporal fusion algorithm. For example, spatio-
temporal analysis for per-pixel operations is highly sensitive to mixed pixels espe-
cially for coarse-resolution images where one pixel may contain the spectral
information of more than one object. The accuracy of the spatiotemporal fusion can
also be sensitive to the complexity of the scene, where in densely congested areas
such as cities the accuracy may be less than open areas or sub-urban areas (as
mentioned in the examples in Section 4.). This is due to the increase in the hetero-
geneity of the images in these dense areas. This issue can be solved using adaptive
spatiotemporal fusion algorithms, which is a not widely investigated area of study
in current practices. Feature and decision levels of fusion can partially solve this
problem by learning from patches of features or classified images, but their accu-
racy will also be under the influence of the feature extraction algorithm or the
algorithm to derive the initial output. For instance, mismatching features can result
in fusing unrelated features or data points, thus produce inaccurate coefficients for
the feature-level fusion model. Another observation is the lack of studies that relates
the number of temporal images and the fusion output accuracy, which is useful to
decide the optimal number of input images for fusion. Additionally, it is rarely seen
that the integrated images are picked before fusion, where assessing and choosing
good images can lead to better results. Spatiotemporal fusion algorithms are either
local or global approaches, the local algorithms are simple and forward like pixel-
level fusion or local filtering like the methods in [19, 22], while global methods tend
to perform extensive operations for optimization purposes like in [25]. In future
works, we aim to explore how these explicitly modeled spatiotemporal fusion algo-
rithms can be enhanced by the power of more complex and inherent models such as
deep learning-based models to drive more important remote sensing applications.
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Chapter 7

3D Reconstruction through Fusion
of Cross-View Images
Rongjun Qin, Shuang Song, Xiao Ling and Mostafa Elhashash

Abstract

3D recovery from multi-stereo and stereo images, as an important application of
the image-based perspective geometry, serves many applications in computer
vision, remote sensing, and Geomatics. In this chapter, the authors utilize the
imaging geometry and present approaches that perform 3D reconstruction from
cross-view images that are drastically different in their viewpoints. We introduce
our project work that takes ground-view images and satellite images for full 3D
recovery, which includes necessary methods in satellite and ground-based point
cloud generation from images, 3D data co-registration, fusion, and mesh genera-
tion. We demonstrate our proposed framework on a dataset consisting of twelve
satellite images and 150 k video frames acquired through a vehicle-mounted Go-pro
camera and demonstrate the reconstruction results. We have also compared our
results with results generated from an intuitive processing pipeline that involves
typical geo-registration and meshing methods.

Keywords: cross-view 3D fusion, photogrammetry, remote sensing,
mesh reconstruction, 3D modeling

1. Introduction

3D data generation often requires expensive data collection such as aerial
photogrammetric or LiDAR flight [1, 2]. Depending on the required accuracy,
resolution and other specs of the final products, the efforts in data collection and
processing can exponentially grow. Alternative and low-cost data sources are of
particular interest for wide-area 3D modeling [3]. Satellite sensors running 24/7
offer overview images covering large regions with single scans, which compara-
tively come with lower cost than aerial flights and do not require physical access to
the area of interest [4]. On the other hand, there exist many ground-view images
coming either from crowdsourcing platforms or collected using relatively low-cost
equipment (e.g., video frames from low-cost cameras) that provides high-
resolution information of objects. Both the overview and the ground-view data are
complementary to each other and their view differences being approximately 90°
forms cross-view dataset, a fusion of which may yield a low-cost solution for
city-scale 3D modeling. This chapter describes our ongoing work (an earlier work is
described in [5]) in an attempt to address this challenging task by proposing an
integrated framework to fuse the 3D results of satellite overview and ground-view
video frames to generate 3D textured mesh models presenting both top and side
view features.
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The available commercial satellite images often have 0.3–0.5 m GSD (ground
sampling distance) and ground-view images can easily reach a GSD of a few
millimeters. With significantly different resolution, the resulting 3D geometry may
be associated with different uncertainties, which adds additional challenges for the
fusion task of these two types of data, which include:

1.The quality of 3D output separately generated from satellite images and
ground-view images are scene-specific and may differ in terms of
completeness and accuracy. Algorithms and basic principles for addressing
image-based 3D modeling are relative standard, thus the image quality and
their respective characteristics play a major role in the reconstruction results,
such as the photo-consistency/temporal differences/illumination among
images, their geometric setup, completeness in terms of coverage, intersection
angles, etc.

2.Due to the large view differences, the overview and ground-view dataset may
share very limited region in common, and additionally the 3D output from the
ground-view dataset may come with no geo-referencing information and may
contain non-rigid topographic distortions (e.g., trajectories drift or distortions
due to inaccurate interior/exterior orientation estimation), which further add
challenges in 3D geo-registration of the dataset.

3.The combined 3D point clouds are from two sources with different resolution,
uncertainty, and radiometric properties of textures, which present difficulties
in both the geometric reconstruction of meshes and the texture mappings.
Thus, obtaining visually consistent textured meshes the preserve information
to the maximal extent is extremely challenging.

We introduce in our proposed method major contributions to address the above-
mentioned challenges to form a complete fusion pipeline. These contributions are:
(1) we introduce a monocular video-frame-based 3D reconstruction pipeline to
achieve the minimal geometric distortion by leveraging the speed and accuracy in a
photogrammetric reconstruction pipeline called MetricSFM. (2) We introduce a
cross-view geo-registration and fusion algorithm that takes point clouds generated
from satellite multi-view stereo (MVS) images and from ground-view videos, to co-
register the ground-view point clouds to the overview point clouds; (3) we extend a
view-based meshing approach to accommodate point clouds with images coming
from different cameras. The rest of this chapter is organized as follows: Section 2
introduces related works and the overview of the proposed pipeline; Section 3
introduces our methodologies of the components of the pipeline in details, Section 4
describes the experiment dataset and the results of the 3D reconstruction; and
Section 5 concludes this chapter by discussing potential works moving forward.

2. Related works and an overview of the proposed pipeline

The uses of multi-source 3D data have been attempted for different purposes,
such as for localization, geo-registration, image synthesis, cartographical model
generation [6–9], and planetary applications using different types of sensors
[10–14]. For example, [8] utilized a combination of UAV (Unmanned Aerial
Vehicles) images and mobile LiDAR (Light Detection and Ranging) for 3D model
generation, where the geo-registrations are performed using manually measured
ground control points (GCP) from the LiDAR data, followed by a Bundle
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Adjustment [15] of the UAV images. All were performed following a surveying-
grade processes, thus minimal topographical distortions needed to be addressed in
critical or non-optimally collected data (e.g., monocular video collection with a
single trajectory).

Correlating the satellite overview and ground view images is extremely
challenging because the areas in common can sometimes be barely the ground or
even less (due to vegetations and moving objects). There are two types of
approaches to address relevant tasks, such as (1) cross-view images localization
[9, 16, 17] and (2) cross-view image synthesis [6, 7]. Since the traditional
feature-based matching methods fail in cross-view data, the major technical
approaches for cross-view data instead are to learn deep representations between
cross-view data, with various strategies for learning scene-level descriptors used to
match cross-view data, combing learned semantics and geometric transformation.
A few early works also explored the use of manually crafted features for such a task
[16, 18]. Most of the existing methods exploring 3D data co-registration require a
certain common regions, and the transformation is often assumed to be simple
models such as similarity or rigid transformations [19, 20]. Thus, exploring
methods for registering wide-area, cross-view dataset potentially with complex
geometric distortions are particularly of interest and can offer tangible solutions for
low-cost 3D data generation.

Meshing point clouds seems to be a standard practice with many applicable
algorithms available [21]. However, for image-based point clouds, meshing requires
the use of the visibility information between the view and each point [22, 23] which
sometimes are not easily available for multi-source data as first of all, they may
share different camera model, and second of all, standard software packages gener-
ating point clouds from images do not offer such visibility information. As a result,
a standard practice of using multi-source image-based point clouds only takes
point-cloud-based meshing methods [21], which are designed for very dense point
clouds and do not necessarily work well for point clouds with the level of uncer-
tainty and complexity as the image-based point clouds.

Despite these challenges, we consider the problem of turning the MVS satellite
images and ground-view Go-pro data to be approachable, if scenario-specific infor-
mation and intermediate results of the stereo reconstruction pipeline are available.
To achieve, we have the following three considerations:

1.Monocular ground-view video frames taking alongside the street do not offer
an optimal camera network, thus it is possible that the results of the 3D
reconstruction contain geometric distortion, for example, trajectory drifts, or
topographic distortion due to the incorrectly estimated interior/exterior
orientations [24], which will further add challenges to the geo-registration, we
therefore consider to optimize our photogrammetric reconstruction workflow
by considering self-calibration for each incremental reconstruction to
minimize the potential trajectory drift.

2.We observed that in an urban environment, the boundary of objects from the
satellite point clouds, for example, buildings, might coincide well with the
boundary produced by projecting the façade point clouds to the ground;
therefore it can be seen as a view-invariant feature for co-registering the
satellite point clouds and ground-view point clouds.

3.Meshing methods will unlikely to work well on the combined point clouds
(from satellite and ground-view point clouds) without the use of visibility
information. Although theoretically possible, re-implementing a meshing
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algorithm considering different camera models can be painstakingly trivial.
We consider the satellite point clouds to be associated with an orthophoto
under a parallel projection, thus the visibility can be easily computed and
incorporated into an image-based meshing [23] and texture mapping
pipeline [25].

To sum, our proposed data generation pipeline considers three major compo-
nents. As shown in Figure 1, which includes separate 3D data generation (for MVS
satellite images and ground-level video frames), geo-registration, and meshing.

The MVRSP (based on [4, 26, 27]) and MetricSFM are, respectively, our devel-
oped system for processing the satellite data and ground-level video frames. A
cross-view registration method is performed for overview and ground-view point
cloud registration, which utilize the boundary information derived from both types
of point clouds. Finally, the co-registered point clouds are processed by a modified
meshing and texture mapping algorithm that innovatively consider both perspec-
tive and parallelly projected image (satellite orthophoto) in an integrated optimiza-
tion framework.

3. Methodology

3.1 Multi-view (MVS) satellite image processing

The MVS satellite processing follows methods in [4, 26], which takes a pair-wise
reconstruction followed by a DSM (Digital Surface Model) fusion as shown in
Figure 2. Given a set of images, we will first apply an analysis algorithm presented

Figure 1.
The general workflow of our processing pipeline.

Figure 2.
A workflow of the multi-view satellite image processing [28].
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in [28] to rank the matchability of the satellite stereo pairs (enumerated from the
existing images), and then we take the top five stereo pairs to perform relative
orientation and stereo dense matching using a software called RPC stereo processor
[4, 27]. The core matching algorithm uses a hierarchical semi-global matching [29]
with modifications to accommodate large-format images [30]. The use of multiple
stereo pairs enables sufficient redundancies for high-quality 3D reconstruction, and
the images consist of bothWorldview I/II images (data will be introduced in Section
4). The produced individual DSMs resulting from different stereo pairs are co-
registered with a shift-based registration which search for translation parameters in
reference to one of the pairs (which is used to be the first pair in the pair ranking),
and the co-registered DSMs are fused following an adaptive depth-fusion method
[26] that utilizes the color information of the orthophoto, which were shown to
achieve better accuracy than a simple median depth filtering. The readers may refer
to specific details of the reconstruction in [4, 26, 28].

A typical digital surface model generated using our pipeline is shown in
Figure 3, which indicates a 3D reconstruction result of the central area of the city of
London. Worldview-III images with a 0.3-m resolution are used, thus the resulting
surface models are with the same resolution.

3.2 3D reconstruction from ground-view monocular image sequences

Monocular 3D reconstruction refers to the process of recovering shape of objects
using images taken from a single video camera. As compared to typical
stereo/multi-stereo images captured from well-distributed angles, such video
sequences present sub-optimal camera network in which the pose estimation is
often inaccurate for metrically correct 3D reconstruction. Oftentimes, the structure
from motion and SLAM (simultaneous localization and mapping) approaches are
used to compute the camera poses and generate 3D semi-dense or dense point
clouds. These methods although provide visually pleasant trajectories and point
clouds, they may often be metrically incorrect and present drifting problems. In this
section, we introduce a monocular 3D reconstruction system that leverages the
speed of a typical SLAM system and rigorous photogrammetric optimization. We
first present typical components for 3D reconstruction and then briefly introduce
the processing workflow of the system.

Figure 3.
3D reconstruction of the central area in London (ca. 50 km2). Left: overview of part of the area; right: top,
enlarged RGB (red, green, blue) color image, bottom, pseudo color image (near infrared, red, green).
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algorithm considering different camera models can be painstakingly trivial.
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under a parallel projection, thus the visibility can be easily computed and
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Figure 1.
The general workflow of our processing pipeline.

Figure 2.
A workflow of the multi-view satellite image processing [28].
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in [28] to rank the matchability of the satellite stereo pairs (enumerated from the
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achieve better accuracy than a simple median depth filtering. The readers may refer
to specific details of the reconstruction in [4, 26, 28].

A typical digital surface model generated using our pipeline is shown in
Figure 3, which indicates a 3D reconstruction result of the central area of the city of
London. Worldview-III images with a 0.3-m resolution are used, thus the resulting
surface models are with the same resolution.

3.2 3D reconstruction from ground-view monocular image sequences

Monocular 3D reconstruction refers to the process of recovering shape of objects
using images taken from a single video camera. As compared to typical
stereo/multi-stereo images captured from well-distributed angles, such video
sequences present sub-optimal camera network in which the pose estimation is
often inaccurate for metrically correct 3D reconstruction. Oftentimes, the structure
from motion and SLAM (simultaneous localization and mapping) approaches are
used to compute the camera poses and generate 3D semi-dense or dense point
clouds. These methods although provide visually pleasant trajectories and point
clouds, they may often be metrically incorrect and present drifting problems. In this
section, we introduce a monocular 3D reconstruction system that leverages the
speed of a typical SLAM system and rigorous photogrammetric optimization. We
first present typical components for 3D reconstruction and then briefly introduce
the processing workflow of the system.
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3.2.1 A 3D reconstruction pipeline

Figure 4 presents a typical image-based 3D reconstruction pipeline. Raw images
or undistorted images (through pre-calibrated parameters) are taken as the input
and follow a series steps named feature extraction and matching, relative orienta-
tion, bundle adjustment and dense image matching, and output intrinsic and
extrinsic orientation parameters and dense point clouds. Among these steps, the
GPS (global positioning system) or IMU (inertial measurement unit) can be
optionally taken as observations to bring global datum. Below we briefly introduce
these components and their specifics in a ground-view image sequence scenario:

Camera intrinsic and extrinsic parameters: the camera intrinsic parameters
refer to the internal geometry of the camera and often considered as focal length,
principal points, and lens distortions. The extrinsic parameters refer to the poses
(position and facing) of each image, normally represented by six parameters: three
for a point in Euclidean coordinate (camera perspective center) and three rotation
angles (sometimes are represented directly as rotation matrix).

Pair selection: pair selection tells the system what are the images that are likely to
observe the same object, such that a connected graph can be built [31, 32] to
formulate observations to recover 3D geometry. In the ground-view scenario, this
can be simply formulated using the timestamp of the frames.

Feature extraction and matching: features represent areas or points of interest
in images and denote special pieces of information. In 3D reconstruction, points are
the most popular feature representations due to their simplicity and flexibility.
Point features can be understood as corners or spots that are distinctive and easily
identifiable across different images with various levels of perspective differences
and typical features are SIFT (Scale-Invariant Feature Transform) [33], SURF
(Speeded up robust features) [34], ORB (Oriented FAST and Rotated BRIEF) [35],
etc. Once these points are extracted, feature matching aims to associate identical
points across different images, which essentially represents corresponding rays
from different images. Typically done with an exhaustive search, feature matching
in a ground-view video frame scenario can be speed up by considering the fact of
horizontal moving thus to reduce the search space [36].

Incremental relative orientation/pose estimation: the incremental relative
orientation refers to the process starting with a two-view relative orientation,
followed by sequentially orienting the rest of the images given the feature point
correspondences. Often the estimation process needs to address blunders in the
observations and the state-of-the-art procedure takes RANSAC (random sampling
consensus) [37] for robust and automated relative pose estimation. RANSAC used a
random sampling strategy that starts with randomly sampled feature matches
(observations) instead of all the observations for relative orientation (model esti-
mation), runs the same process for multiple times, and selects the model (estimated
orientation parameters) accounting for most of the observations with reasonable
residual. This has dramatically improved the automation in relative orientation and
subsequently the incremental procedure, as it theoretically only requires the error

Figure 4.
A typical 3D reconstruction pipeline, dark-gray blocks indicate optional steps.
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rate of the matches be larger than 50%, while apparently the state-of-the-art feature
extractors and matchers do much better with images in most of the applications.

Bundle adjustment: is a refinement process for the intrinsic and extrinsic
camera parameters simultaneously with the 3D coordinated of the scene points
since the measurements are prone to errors [38]. It involves a global minimization
scheme using robust nonlinear least-squares algorithm such as Levenberg-
Marquardt [39]. This often comes with a procedure called self-calibration [40] that
simultaneously estimates the lens distortions of the camera. In a ground-view video
frame scenario, because the bundle adjustment is particularly time consuming, it
may sometimes be simplified to only perform local bundle adjustment instead of
considering all available images.

3.2.2 3D reconstruction using ground-view image sequences

Ground-view image sequences formulate a specific scenario in which a typical
3D reconstruction pipeline can be customized to accommodate the need for speed
and accuracy. Our general workflow is presented in Figure 5. It is similar to a SLAM
pipeline [36] with the differences that the local and full bundle adjustment con-
siders the estimation of camera lens distortion parameters. Typically, the system
starts with an initialization module that aims at estimating the camera pose for the
two images used in the initialization by utilizing the matched features between
them, this is in line with the first half of incremental relative orientation as men-
tioned above. Moreover, this module generates initial 3D points of the scene by
triangulating the matched feature points from the two images. After generating the
initial reconstruction, the tracking module (in dashed box) starts to localize every
image by finding its pose, which is similar to the second half of the relative orien-
tation which sequentially add image frames to the system. In this module, the
temporal relation between the images is used by assuming a constant velocity
motion model so that we can get an initial estimate of the current image pose. Thus,
using the estimated pose, we can directly project the 3D points into the current
image and perform window-based search for the potential feature matches with the
projected points. Consequently, we can save computations by searching correspon-
dences only inside this window instead of searching in the whole image. Then, using
these correspondences, the current camera pose can be estimated. It should be
noted that the concept of keyframes are used to identify important frames in which
the poses will be optimized through bundle adjustment, because frames that are
estimated through a constant velocity are considered to close enough to interpolate.
For images that fail the constant velocity motion model, the tracking module per-
forms full feature matches to find feature in previous frames that have an associated
map point using a spatial resection (i.e., a Perspective-n-Point (PnP) algorithm)
[41] by taking existing 3D points and 2D correspondences to compute their pose,
and such images are then taken as the new keyframes, in the meantime features
with no 3D correspondences will be triangulated as candidates of 3D map points.

Figure 5.
A 3D reconstruction pipeline using ground-view video frames.
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random sampling strategy that starts with randomly sampled feature matches
(observations) instead of all the observations for relative orientation (model esti-
mation), runs the same process for multiple times, and selects the model (estimated
orientation parameters) accounting for most of the observations with reasonable
residual. This has dramatically improved the automation in relative orientation and
subsequently the incremental procedure, as it theoretically only requires the error
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rate of the matches be larger than 50%, while apparently the state-of-the-art feature
extractors and matchers do much better with images in most of the applications.

Bundle adjustment: is a refinement process for the intrinsic and extrinsic
camera parameters simultaneously with the 3D coordinated of the scene points
since the measurements are prone to errors [38]. It involves a global minimization
scheme using robust nonlinear least-squares algorithm such as Levenberg-
Marquardt [39]. This often comes with a procedure called self-calibration [40] that
simultaneously estimates the lens distortions of the camera. In a ground-view video
frame scenario, because the bundle adjustment is particularly time consuming, it
may sometimes be simplified to only perform local bundle adjustment instead of
considering all available images.

3.2.2 3D reconstruction using ground-view image sequences

Ground-view image sequences formulate a specific scenario in which a typical
3D reconstruction pipeline can be customized to accommodate the need for speed
and accuracy. Our general workflow is presented in Figure 5. It is similar to a SLAM
pipeline [36] with the differences that the local and full bundle adjustment con-
siders the estimation of camera lens distortion parameters. Typically, the system
starts with an initialization module that aims at estimating the camera pose for the
two images used in the initialization by utilizing the matched features between
them, this is in line with the first half of incremental relative orientation as men-
tioned above. Moreover, this module generates initial 3D points of the scene by
triangulating the matched feature points from the two images. After generating the
initial reconstruction, the tracking module (in dashed box) starts to localize every
image by finding its pose, which is similar to the second half of the relative orien-
tation which sequentially add image frames to the system. In this module, the
temporal relation between the images is used by assuming a constant velocity
motion model so that we can get an initial estimate of the current image pose. Thus,
using the estimated pose, we can directly project the 3D points into the current
image and perform window-based search for the potential feature matches with the
projected points. Consequently, we can save computations by searching correspon-
dences only inside this window instead of searching in the whole image. Then, using
these correspondences, the current camera pose can be estimated. It should be
noted that the concept of keyframes are used to identify important frames in which
the poses will be optimized through bundle adjustment, because frames that are
estimated through a constant velocity are considered to close enough to interpolate.
For images that fail the constant velocity motion model, the tracking module per-
forms full feature matches to find feature in previous frames that have an associated
map point using a spatial resection (i.e., a Perspective-n-Point (PnP) algorithm)
[41] by taking existing 3D points and 2D correspondences to compute their pose,
and such images are then taken as the new keyframes, in the meantime features
with no 3D correspondences will be triangulated as candidates of 3D map points.
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Once the tracking module accumulates frames to a pre-defined number, a full
bundle adjustment is used interchangeably with local bundle adjustment to refine
the estimated measurements. These aforementioned processes are implemented in
an in-house software package called MetricSFM. A sample from the 3D reconstruc-
tion results is shown in Figure 6.

3.3 Cross-view 3D point co-registration and fusion

Non-rigid distortion of the ground-view data (e.g., trajectory drift) and very
limited overlapping region among cross-view data make them difficult to be regis-
tered without significant manual effort. Based on the assumption that the object
boundaries (e.g., buildings) from the over-view data should coincide with foot-
prints of façade points from ground-view, we tackle these problems by proposing a
fully automated geo-registration method for cross-view data, which utilizes seman-
tically segmented object boundaries as view-invariant features under a global opti-
mization framework. Taking the over-view point clouds generated from satellite
stereo/multi-stereo images and the ground-view point clouds frommonocular video
frames as the input, the proposed method takes a “two-step” strategy to solve the
non-rigid cross-view registration problem using object boundaries, which is further
optimized through a constrained bundle adjustment to keep 2D-3D consistencies.

3.3.1 Building boundary extraction from ground-view and over-view point clouds

The building extraction on the over-view point cloud is achieved by converting
the point cloud into a digital surface model (DSM), on which the well-developed
morphological top-hat [42, 43] can be used to extract a binary mask for all the high
objects like tree and building. For satellite orthophoto containing multi-spectral
information, the NDVI (Normalized Difference Vegetation Index) [44] can be
extracted to further remove the trees from the binary masks. The ground-view
building detection is based on the observation that the building façade points are
usually vertical to the horizontal ground plane. We therefore determine the vertical
direction by calculating the normal vector for all the points and then selecting the
direction with the largest number of normal vectors pointing to the vertical direc-
tions. Once the vertical direction is obtained, all the ground-view points are
projected onto the horizontal plane, which is followed by a classical region growing
method [45] to extract point cloud segments. Finally, those segments with the
number of points greater than a threshold are kept as the extracted ground-view
buildings. The results of building boundary extraction from both over-view and
ground-view data can be seen in Figure 7.

Figure 6.
The 3D reconstruction result, left: ground truth trajectory from mobile LiDAR, right: our result without loop
closure (7500 frames).
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3.3.2 Individual building segment matching

In order to efficiently search for accurate registration parameters locally to
address potential topographical errors of the point clouds (e.g., drifted trajectory
resulting metrically incorrect point clouds), we developed a simple 2D point cloud
registration algorithm that performs sampled exhaustive search. Given the over-
view point set Pd of size nd as the reference point cloud, and the ground-view point
set Ps of size ns as the matching point cloud, with the scale difference s between two
point sets. Firstly, the distance map (as Figure 8(b) shows) for Pd is calculated
using distance transformation [46, 47], in which the distance of each pixel (colored
in gray-level, darkest referring to the closest distance) to the region of interest (in
our scenario this refers to the boundary from the overview data). Ps is centralized
by subtracting the central point for each point from Ps. Assuming a fixed scale
determined by sparse known observations such as GPS positions, we perform an
exhaustive-search through the rotation and translation space to find the optimal
parameters. The final rotation parameter and translation parameter were found as
ones that minimize the co-registration error in the distance map, and an example
result is shown in Figure 8(c).

Figure 7.
Illustration of building boundary extraction results from (a) over-view and (b) ground-view data.

Figure 8.
Exhaustive search-based local matching algorithm. Given the over-view building boundary points Pd as
destination in (a), the distance map in (b) is calculated where the intensity of pixel denotes the closest distance
to Pd, then the global solution in (c) is obtained by our proposed method. Red points represent the ground-view
point Ps.
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the point cloud into a digital surface model (DSM), on which the well-developed
morphological top-hat [42, 43] can be used to extract a binary mask for all the high
objects like tree and building. For satellite orthophoto containing multi-spectral
information, the NDVI (Normalized Difference Vegetation Index) [44] can be
extracted to further remove the trees from the binary masks. The ground-view
building detection is based on the observation that the building façade points are
usually vertical to the horizontal ground plane. We therefore determine the vertical
direction by calculating the normal vector for all the points and then selecting the
direction with the largest number of normal vectors pointing to the vertical direc-
tions. Once the vertical direction is obtained, all the ground-view points are
projected onto the horizontal plane, which is followed by a classical region growing
method [45] to extract point cloud segments. Finally, those segments with the
number of points greater than a threshold are kept as the extracted ground-view
buildings. The results of building boundary extraction from both over-view and
ground-view data can be seen in Figure 7.
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closure (7500 frames).
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3.3.2 Individual building segment matching

In order to efficiently search for accurate registration parameters locally to
address potential topographical errors of the point clouds (e.g., drifted trajectory
resulting metrically incorrect point clouds), we developed a simple 2D point cloud
registration algorithm that performs sampled exhaustive search. Given the over-
view point set Pd of size nd as the reference point cloud, and the ground-view point
set Ps of size ns as the matching point cloud, with the scale difference s between two
point sets. Firstly, the distance map (as Figure 8(b) shows) for Pd is calculated
using distance transformation [46, 47], in which the distance of each pixel (colored
in gray-level, darkest referring to the closest distance) to the region of interest (in
our scenario this refers to the boundary from the overview data). Ps is centralized
by subtracting the central point for each point from Ps. Assuming a fixed scale
determined by sparse known observations such as GPS positions, we perform an
exhaustive-search through the rotation and translation space to find the optimal
parameters. The final rotation parameter and translation parameter were found as
ones that minimize the co-registration error in the distance map, and an example
result is shown in Figure 8(c).
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Illustration of building boundary extraction results from (a) over-view and (b) ground-view data.

Figure 8.
Exhaustive search-based local matching algorithm. Given the over-view building boundary points Pd as
destination in (a), the distance map in (b) is calculated where the intensity of pixel denotes the closest distance
to Pd, then the global solution in (c) is obtained by our proposed method. Red points represent the ground-view
point Ps.
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3.3.3 Global optimization for consistent building segment matching using graph-cut

In the previous building segment matching step, a list of transformations T ¼
Ti, i ¼ 1, 2, …f g is generated, which constitutes the final hypotheses for each

building segments. We consider that the transformation hypothesis for neighboring
building segments to be similar, therefore, we consider formulating this constrain in
an energy minimization problem (Eq. (1)):

E Tð Þ ¼
X
B

D B,Tð Þ þ
X
Bi, B j

VBi,B j TBi ,TB j

� �
, (1)

where D B,Tð Þ is the data term for teach building segment B with a transforma-

tion T in T , and VBi,B j TBi ,TB j

� �
is the smooth term that penalizes differences of

two transformations TBi and TB j of the building segments Bi and B j.

3.3.3.1 Data term

Given a building B and a transformation T, we first collect its k-adjacent
buildings (including B), measured using distance between barycentric coordinates.
These segments after transformation are used to verify how close they are to the
over-view building segments. To robustify the evaluation, we consider counting the
number of points that are close enough to the overview building segments, as
follows (Eq. (2)):

D B,Tð Þ ¼
X
p∈B

c p, p0ð Þ ¼
0, if d p, p0ð Þ<dth

1, otherwise

8<
: (2)

where c p, p0ð Þ is the cost of a point p that belongs to the building B, which equals
to 0 if the distance d p, p0ð Þ between p and its closest point p0 in the over-view
building boundaries is smaller than dth, and equals to 1 otherwise. This formulation
can effectively keep the value range of the data term limited. For example, the value
of d p, p0ð Þ can be very large if an incorrect transformation converts the point p far
away from p0; however, c p, p0ð Þ can eliminate the influence of this mistake to
generate more reasonable cost value.

3.3.3.2 Smooth term

The smooth term VBi,B j TBi ,TB j

� �
penalizes the transformation associate with

two neighboring buildings being too different, shown in Eq. (3):

VBi,B j TBi ,TB j

� �
¼

p1, if θBi � θB j

�� ��< θth and tBi � tB j

�� ��< tth

p2, otherwise

8<
: (3)

where θ is the rotation angle in 2D and t is translation, and we assign a small
penalty p1 to neighboring segments with transformation different smaller than a
given threshold, otherwise we assign a larger penalty. The weights and thresholds
can be determined based on the noise level of data. The solution Eq. (1) can be
achieved efficiently through graph-cut algorithm [48].
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3.3.4 Bundle adjustment for pose refinement

The co-registration is further performed in the vertical direction using the
overlapping ground points, and this is followed by a bundle adjustment of all image
poses such that they are consistent with the registered ground-view point clouds.
This is achieved by weighting the unknown poses to be close to the poses after the
transformation. An additional bundle adjustment benefits the poses to be strictly
following the epipolar constraints thus offers consistent 2D-3D relationship for
further processing such as texture mapping.

Both the overview and ground-view point clouds are then combined, and their
overlapping point clouds were fused as follows: for areas where both satellite point
clouds and ground-view point clouds exist, we take the ground-view point clouds
as it with a resolution presents higher accuracy and certainty. An example of
co-registered cross-view point clouds is shown in Figure 9.

3.4 Meshing and texture mapping of cross-view fused point clouds

3.4.1 Mesh reconstruction of cross-view fused point cloud

As mentioned in Section I (Introduction), a point cloud-based meshing method
[21] is unlikely to yield visually consistent meshes (an example is shown in
Figure 14). Therefore, our solution considers the use of image information for mesh
reconstruction. The base method [23] takes the constructed Delaunay tetrahedra of
the point clouds as the input to extract the surface. These tetrahedra can be viewed
as a connected graph, in which the tetrahedra are the nodes and shared/common
faces are edges. Figure 10 shows the procedure: black triangles denote cameras,
dash arrows denote visual rays, each point in 3D space can be determined by at least
two rays, which connect the object points and camera centers, here we call it ray
visibility. Based on ray visibility, tetrahedra intersected with rays are evaluated by
their probability to be in a free space (outer space), and tetrahedra behind the ray
endpoint are evaluated by their probability belonging to the full space (inner
space). Such a graph labeling can be casted to a s-t minimal cut problem and solved
with maxflow algorithms [49]. The final surfaces are the common faces of the
tetrahedra labeled as free and full spaces (Figure 10).

Our pipeline extends from this base algorithm by incorporating point clouds
generated from the satellite images. The following steps give streamline from source
points to surface mesh model.

Delaunay 3D triangulation: 3D triangulation or tetrahedralization is extended
from 2D triangulation, which partitions a polyhedron into non-overlapping basic
3D elements, where the vertices of tetrahedra take the vertices of the original

Figure 9.
Co-registered cross-view point clouds are fused (left: before; right: after) by only keeping the high resolution
results. Non-textured points are over-view satellite point clouds.
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In the previous building segment matching step, a list of transformations T ¼
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Given a building B and a transformation T, we first collect its k-adjacent
buildings (including B), measured using distance between barycentric coordinates.
These segments after transformation are used to verify how close they are to the
over-view building segments. To robustify the evaluation, we consider counting the
number of points that are close enough to the overview building segments, as
follows (Eq. (2)):

D B,Tð Þ ¼
X
p∈B

c p, p0ð Þ ¼
0, if d p, p0ð Þ<dth

1, otherwise

8<
: (2)

where c p, p0ð Þ is the cost of a point p that belongs to the building B, which equals
to 0 if the distance d p, p0ð Þ between p and its closest point p0 in the over-view
building boundaries is smaller than dth, and equals to 1 otherwise. This formulation
can effectively keep the value range of the data term limited. For example, the value
of d p, p0ð Þ can be very large if an incorrect transformation converts the point p far
away from p0; however, c p, p0ð Þ can eliminate the influence of this mistake to
generate more reasonable cost value.

3.3.3.2 Smooth term

The smooth term VBi,B j TBi ,TB j

� �
penalizes the transformation associate with

two neighboring buildings being too different, shown in Eq. (3):

VBi,B j TBi ,TB j

� �
¼

p1, if θBi � θB j

�� ��< θth and tBi � tB j

�� ��< tth

p2, otherwise

8<
: (3)

where θ is the rotation angle in 2D and t is translation, and we assign a small
penalty p1 to neighboring segments with transformation different smaller than a
given threshold, otherwise we assign a larger penalty. The weights and thresholds
can be determined based on the noise level of data. The solution Eq. (1) can be
achieved efficiently through graph-cut algorithm [48].
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3.3.4 Bundle adjustment for pose refinement

The co-registration is further performed in the vertical direction using the
overlapping ground points, and this is followed by a bundle adjustment of all image
poses such that they are consistent with the registered ground-view point clouds.
This is achieved by weighting the unknown poses to be close to the poses after the
transformation. An additional bundle adjustment benefits the poses to be strictly
following the epipolar constraints thus offers consistent 2D-3D relationship for
further processing such as texture mapping.

Both the overview and ground-view point clouds are then combined, and their
overlapping point clouds were fused as follows: for areas where both satellite point
clouds and ground-view point clouds exist, we take the ground-view point clouds
as it with a resolution presents higher accuracy and certainty. An example of
co-registered cross-view point clouds is shown in Figure 9.

3.4 Meshing and texture mapping of cross-view fused point clouds

3.4.1 Mesh reconstruction of cross-view fused point cloud

As mentioned in Section I (Introduction), a point cloud-based meshing method
[21] is unlikely to yield visually consistent meshes (an example is shown in
Figure 14). Therefore, our solution considers the use of image information for mesh
reconstruction. The base method [23] takes the constructed Delaunay tetrahedra of
the point clouds as the input to extract the surface. These tetrahedra can be viewed
as a connected graph, in which the tetrahedra are the nodes and shared/common
faces are edges. Figure 10 shows the procedure: black triangles denote cameras,
dash arrows denote visual rays, each point in 3D space can be determined by at least
two rays, which connect the object points and camera centers, here we call it ray
visibility. Based on ray visibility, tetrahedra intersected with rays are evaluated by
their probability to be in a free space (outer space), and tetrahedra behind the ray
endpoint are evaluated by their probability belonging to the full space (inner
space). Such a graph labeling can be casted to a s-t minimal cut problem and solved
with maxflow algorithms [49]. The final surfaces are the common faces of the
tetrahedra labeled as free and full spaces (Figure 10).

Our pipeline extends from this base algorithm by incorporating point clouds
generated from the satellite images. The following steps give streamline from source
points to surface mesh model.

Delaunay 3D triangulation: 3D triangulation or tetrahedralization is extended
from 2D triangulation, which partitions a polyhedron into non-overlapping basic
3D elements, where the vertices of tetrahedra take the vertices of the original

Figure 9.
Co-registered cross-view point clouds are fused (left: before; right: after) by only keeping the high resolution
results. Non-textured points are over-view satellite point clouds.
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polyhedron. Delaunay tetrahedron reconstruction [51] divides the convex hull of
points into compact simplices, where neither extremely long edge nor extremely
sharp angle is included. Many well-known commercial packages and open source
projects have implemented the algorithm that creates Delaunay tetrahedron from
point set, here we use CGAL [52] an open source computational geometric
algorithm library to construct tetrahedra.

Visibility: each ray will propagate its confidence to intersected nodes (tetrahedra)
and edges (triangle faces) of the tetrahedra graph. The algorithm was implemented
by an open-sourced project OpenMVS [53]. Dense points and their associated
images with poses are the most common source of visibility in our framework, often
under a perspective geometry. However, the geometric model of satellite camera
sensors is different (e.g., rational polynomial coefficients) [4]. By considering that
the point clouds can be associated with the orthophoto through a parallel projection,
we proposed a two-step method: (1) project satellite point on to grid, only the
highest point is recorded in each cell. (2) Create vertical visual rays from those
points.

Assigning weights for the graph: our method follows a so-called soft visibility
weighting model that was used by the base algorithm. The readers may refer to the
original paper [23] for more detail.

Solving min-cut problem: once weighting procedure for the edges is done, we
use IBFS (incremental breadth first search) [54] maximum flow algorithm to solve
minimum s-t cut problem. And finally, the common faces between source and sink
tetrahedra are extracted to build up optimum surface model.

3.4.2 Texture mapping of cross-view fused point cloud

Our texture mapping framework is based on Waechter’s work [25] which has
been well practiced and widely used by rather popular open source projects, for
example, OpenMVS [53]. Texturing a 3D model from multiple registered images is
typically performed in a two steps approach: (1) select view(s) should be used to
texture each face yielding a preliminary texture and (2) optimize the texture to
avoid seams between adjacent texture patches.

Best view selection: the base method [25] determines face visibility (distinct
from ray visibility) for all combinations of views and faces by first performing back
face and view frustum culling, then renders faces onto images, using depth buffer
to determine the nearest faces. Lempitsky et al. [51, 52, 55] compute a labeling that
assign a view to be used as texture for each mesh face using a pairwise Markov
random field energy formulation. We consider the ground-view images are
perspective, and the satellite orthophotos are in parallel projection. Our texture

Figure 10.
Left: Green network is Delaunay triangulation, yellow region (free space) is tetrahedra which intersected with
rays (dash arrows), and white region is tetrahedra labeled as full space. Right: red lines are surfaces between
full and free space, which are common faces shared by those tetrahedra (artwork from [50] with minor edit).
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mapping considers the orthophoto as one of the images with only few simple
modifications: we balanced data term of ortho images to compensate resolution gap
and make ortho images as the default sources for texturing.

Seamless texture fusion: in Waechter et al.’s method [25], they proposed a
global and local color adjustment method to blur the seams, which extended
Lempitsky and Ivanov’s [55] color adjustment approach. The original approach only
accounts for color difference on vertices to measure color difference along the seam
line, called global adjustment. The extended method added a local adjustment with
Poisson editing [56] affect border strip of image patches. In our case, since the
resolution of orthophoto is way lower than the ground-view images, prior to apply-
ing the fusion of image patches, we up-sampled orthophoto to the same resolution
as that of the ground-view images. After color balancing and Poisson editing, color
differences can be well-adjusted and seams are successfully been blurred.

4. Data description

We take the Ohio State University (OSU) Columbus Campus as our test site, of
which we have collected 12 overlapping satellite images consisting of WorldView-I
and WorldView-II images (information shown in Table 1). These images selec-
tively form 31 pairs used for the reconstruction based on the method of [28], and
many of these images are not from the same year thus creating challenges for the
reconstruction. Table 2 provides an overview of the first 10 pairs used from the
acquired images: not all of these pairs form in-track stereo, while the large redun-
dancy does provide the advantage in producing more accurate surface model.
Figure 11 shows the generated digital surface model. The achieved RMSE (root-
mean-squared-error) is 1.26 m evaluated through LiDAR point clouds, and the
RMSE reached 0.60 m by excluding changed buildings, rivers, and trees.

We have also collected approximately 300 GB of Go-pro videos covering a
trajectory equivalent to 33 km, and the reconstruction for the ground-view images
take 150 k frames (with a resolution of 1500 � 2000 pixels per frame) out of these
videos. Figure 12 shows the reconstructed point clouds of approximately two thirds

Acquisition
time

Sensor Off nadir
(degree)

Sun elevation
angle (degree)

Resolution
(meter)

Cloud cover
percentage (%)

1 2009-04-01 WorldView-01 1.80 52.40 0.50 0.00

2 2010-04-15 WorldView-01 15.40 58.20 0.52 0.00

3 2010-09-25 WorldView-02 13.00 48.30 0.49 0.04

4 2010-09-25 WorldView-02 19.20 48.30 0.52 0.01

5 2011-10-08 WorldView-02 4.30 43.80 0.47 0.00

6 2012-01-09 WorldView-01 20.00 26.10 0.55 0.00

7 2012-01-09 WorldView-01 32.70 26.20 0.67 0.00

8 2013-08-06 WorldView-02 15.80 64.20 0.50 0.00

9 2013-12-28 WorldView-01 22.90 24.50 0.57 0.00

10 2014-06-06 WorldView-02 23.50 70.80 0.54 0.00

11 2015-04-17 WorldView-02 25.60 56.80 0.56 0.00

12 2019-01-05 WorldView-02 19.90 26.60 0.52 0.00

Table 1.
Twelve overlapping satellite images used for satellite-based 3D reconstruction.
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polyhedron. Delaunay tetrahedron reconstruction [51] divides the convex hull of
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sharp angle is included. Many well-known commercial packages and open source
projects have implemented the algorithm that creates Delaunay tetrahedron from
point set, here we use CGAL [52] an open source computational geometric
algorithm library to construct tetrahedra.

Visibility: each ray will propagate its confidence to intersected nodes (tetrahedra)
and edges (triangle faces) of the tetrahedra graph. The algorithm was implemented
by an open-sourced project OpenMVS [53]. Dense points and their associated
images with poses are the most common source of visibility in our framework, often
under a perspective geometry. However, the geometric model of satellite camera
sensors is different (e.g., rational polynomial coefficients) [4]. By considering that
the point clouds can be associated with the orthophoto through a parallel projection,
we proposed a two-step method: (1) project satellite point on to grid, only the
highest point is recorded in each cell. (2) Create vertical visual rays from those
points.

Assigning weights for the graph: our method follows a so-called soft visibility
weighting model that was used by the base algorithm. The readers may refer to the
original paper [23] for more detail.

Solving min-cut problem: once weighting procedure for the edges is done, we
use IBFS (incremental breadth first search) [54] maximum flow algorithm to solve
minimum s-t cut problem. And finally, the common faces between source and sink
tetrahedra are extracted to build up optimum surface model.

3.4.2 Texture mapping of cross-view fused point cloud

Our texture mapping framework is based on Waechter’s work [25] which has
been well practiced and widely used by rather popular open source projects, for
example, OpenMVS [53]. Texturing a 3D model from multiple registered images is
typically performed in a two steps approach: (1) select view(s) should be used to
texture each face yielding a preliminary texture and (2) optimize the texture to
avoid seams between adjacent texture patches.

Best view selection: the base method [25] determines face visibility (distinct
from ray visibility) for all combinations of views and faces by first performing back
face and view frustum culling, then renders faces onto images, using depth buffer
to determine the nearest faces. Lempitsky et al. [51, 52, 55] compute a labeling that
assign a view to be used as texture for each mesh face using a pairwise Markov
random field energy formulation. We consider the ground-view images are
perspective, and the satellite orthophotos are in parallel projection. Our texture
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mapping considers the orthophoto as one of the images with only few simple
modifications: we balanced data term of ortho images to compensate resolution gap
and make ortho images as the default sources for texturing.

Seamless texture fusion: in Waechter et al.’s method [25], they proposed a
global and local color adjustment method to blur the seams, which extended
Lempitsky and Ivanov’s [55] color adjustment approach. The original approach only
accounts for color difference on vertices to measure color difference along the seam
line, called global adjustment. The extended method added a local adjustment with
Poisson editing [56] affect border strip of image patches. In our case, since the
resolution of orthophoto is way lower than the ground-view images, prior to apply-
ing the fusion of image patches, we up-sampled orthophoto to the same resolution
as that of the ground-view images. After color balancing and Poisson editing, color
differences can be well-adjusted and seams are successfully been blurred.

4. Data description

We take the Ohio State University (OSU) Columbus Campus as our test site, of
which we have collected 12 overlapping satellite images consisting of WorldView-I
and WorldView-II images (information shown in Table 1). These images selec-
tively form 31 pairs used for the reconstruction based on the method of [28], and
many of these images are not from the same year thus creating challenges for the
reconstruction. Table 2 provides an overview of the first 10 pairs used from the
acquired images: not all of these pairs form in-track stereo, while the large redun-
dancy does provide the advantage in producing more accurate surface model.
Figure 11 shows the generated digital surface model. The achieved RMSE (root-
mean-squared-error) is 1.26 m evaluated through LiDAR point clouds, and the
RMSE reached 0.60 m by excluding changed buildings, rivers, and trees.

We have also collected approximately 300 GB of Go-pro videos covering a
trajectory equivalent to 33 km, and the reconstruction for the ground-view images
take 150 k frames (with a resolution of 1500 � 2000 pixels per frame) out of these
videos. Figure 12 shows the reconstructed point clouds of approximately two thirds

Acquisition
time

Sensor Off nadir
(degree)

Sun elevation
angle (degree)

Resolution
(meter)

Cloud cover
percentage (%)

1 2009-04-01 WorldView-01 1.80 52.40 0.50 0.00

2 2010-04-15 WorldView-01 15.40 58.20 0.52 0.00

3 2010-09-25 WorldView-02 13.00 48.30 0.49 0.04

4 2010-09-25 WorldView-02 19.20 48.30 0.52 0.01

5 2011-10-08 WorldView-02 4.30 43.80 0.47 0.00

6 2012-01-09 WorldView-01 20.00 26.10 0.55 0.00

7 2012-01-09 WorldView-01 32.70 26.20 0.67 0.00

8 2013-08-06 WorldView-02 15.80 64.20 0.50 0.00

9 2013-12-28 WorldView-01 22.90 24.50 0.57 0.00

10 2014-06-06 WorldView-02 23.50 70.80 0.54 0.00

11 2015-04-17 WorldView-02 25.60 56.80 0.56 0.00

12 2019-01-05 WorldView-02 19.90 26.60 0.52 0.00

Table 1.
Twelve overlapping satellite images used for satellite-based 3D reconstruction.
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Pair Intersection angle
(degree)

Sun difference angle
(degree)

Time difference
(days)

Left image
ID

Right
image ID

1 6.20 0.00 0 3 4

2 12.70 0.10 0 6 7

3 13.60 5.80 379 1 2

4 2.90 1.60 719 6 9

5 9.80 1.70 719 7 9

6 8.70 4.50 378 3 5

7 14.90 4.50 378 4 5

8 7.70 6.60 304 8 10

9 2.10 14.00 315 10 11

10 5.70 30.20 1359 11 12

Table 2.
Examples of metadata of pairs used for satellite-based 3D reconstruction. These data come in level 1. The image
ID refers to those in Table 1.

Figure 11.
The generated digital surface models of the OSU campus using our satellite data processing pipeline. The top-
row shows enlarged views.
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of the region. The pose estimation time takes approximately 20 hours and dense
matching takes 4 h in a normal i-7 desktop computer.

5. Experiment results

We demonstrate that the resulting geometry shows completeness in terms of the
rooftop and façade information (for places where ground-view images are avail-
able). Figure 13 provides an overview of the registered point clouds and a compar-
ison showing the mis-registration using a typical point cloud based algorithm [20].

With the registered point clouds, we can generate the meshes using our pro-
posed meshing pipeline introduced in Section 3.4. Figure 14 shows the
reconstructed meshes (shaded and textured) using our pipeline, and we have also
included the results from a pure point cloud-based meshing method, which visually
demonstrates much worse results. In Figure 15, we have also included the recon-
struction results of a relatively larger region using our reconstructed pipeline.

5.1 Accuracy evaluation

We have compared the resulting combined model with the ground truth Air-
borne LiDAR data as shown in Figure 16, in which we include two sample areas
(top and bottom row of Figure 16). Since the airborne LiDAR does not cover the
façade information, we evaluate the accuracy of the results using resampled DSM to
the same grid. It is expected that the combined model with the incorporated street-
view point clouds should have better accuracy given the more accurate point clouds
of the (partial) ground and building boundaries. From Figure 16, we can observe that
the satellite DSM (left column), due to the lower resolution, shows blurred object
boundaries, as compared to the combined model (middle column). Figure 17 plots
the error distributions, and it evidences our observations in Figure 16: the object
boundaries in the satellite DSM show larger errors than the combined model, and it
can be also seen in some regions of the ground that the combined model presents less
error due to the captured fine ground structures (marked in red circle of Figures 16
and 17, bottom row). Table 3 calculates the RMSE (root mean squared error) of these
two areas, and it shows that the combined model improves at 0.20 m in accuracy for

Figure 12.
Dense reconstruction using our processing pipeline for two thirds of the campus region, totaling 7 billion color
points.
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rooftop and façade information (for places where ground-view images are avail-
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ison showing the mis-registration using a typical point cloud based algorithm [20].
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reconstructed meshes (shaded and textured) using our pipeline, and we have also
included the results from a pure point cloud-based meshing method, which visually
demonstrates much worse results. In Figure 15, we have also included the recon-
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We have compared the resulting combined model with the ground truth Air-
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of the (partial) ground and building boundaries. From Figure 16, we can observe that
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area 1 and 1 m for area 2. This shows significant improvement in terms of data
accuracy, and we should note that this evaluate is only on the DSM and it is expected
that if the façade data evaluation is considered (if ground truth of the façade geom-
etry is available), the accuracy improvement can be significantly more.

6. Conclusion

In this chapter, we propose a framework for fusing results from cross-view images
for 3D mesh reconstruction. We present our processing framework (Figure 1) that

Figure 13.
Registration result of ICP (a) and our method (b) on the distorted ground-view trajectory. (c) Part of the
registered ground-view point clouds generated on 150 k Go-Pro images.
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consists of three major components: (1) 3D reconstruction separately from the top-
view satellite images and ground-level images; (2) cross-view geo-registration between
the satellite point clouds and ground-view point clouds; 3) meshing reconstruction
based on the combined satellite and ground point clouds. In each of these components,
we present our developed systems and on-going research efforts in addressing the
potential challenges (introduced in Section 1.1) and the in-progress results. We dem-
onstrate that our proposed pipeline can achieve visually more consistent textured
meshes, in comparison to a standard and intuitive processing method. The proposed
framework and the attempts for integrating satellite and ground-view images and

Figure 14.
Left: shaded mesh model. Right: textured mesh model. (a) Reconstructed mesh using Poisson reconstruction.
(b) Reconstructed mesh using our reconstruction method.

Figure 15.
A screenshot of the generated textured mesh of the OSU campus area using our proposed pipeline, which
includes information from the top-view and details on the facades.
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Figure 16.
DSM from satellite stereo (left column)/combined model (middle column)/airborne LIDAR (right column).
Top and bottom row indicates two difference samples (sample area 1 and sample area 2). The red-circled
region shows that a ground structure is well compared in the combined model, as compared to the satellite DSM.

Figure 17.
Error maps of satellite model (left column) and combined model (right column) evaluated against the LiDAR
DSM. Top and bottom row indicates two difference samples (sample area 1 and sample area 2). The red circled
region shows smaller errors in the combined model due to that the ground structure is well captured.
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converting them to textured models can be of particular interest for data collection in
areas where standard datasets such as aerial/UAV (unmanned aerial vehicle) photo-
grammetric/LiDAR flights. We have demonstrated that DSM generated from the
combined model using our workflow can be 1-m more accurate than the satellite DSM
and is expected to be much more accurate if the evaluation on the façade is considered
(as the satellite DSM does not have façade information at all). Our future works
include further optimizing individual modules of our processing pipeline and part of
these modules will be made available once they are optimized for practical uses.
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RMSE (m) – Area 1 RMSE (m) – Area 2

Satellite model 4.315 3.505

Combined model 4.138 2.532

Table 3.
Error evaluation.
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RMSE (m) – Area 1 RMSE (m) – Area 2

Satellite model 4.315 3.505

Combined model 4.138 2.532

Table 3.
Error evaluation.
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Chapter 8

Practical Digital Terrain Model 
Extraction Using Image Inpainting 
Techniques
Chiman Kwan, David Gribben, Bulent Ayhan  
and Jude Larkin

Abstract

In some applications such as construction planning and land surveying, an 
accurate digital terrain model (DTM) is essential. However, in urban and sub-urban 
areas, the terrain may be covered by trees and man-made structures. Although 
digital surface model (DSM) obtained by radar or LiDAR can provide a general 
idea of the terrain, the presence of trees, buildings, etc. conceals the actual ter-
rain elevation. Normally, the process of extracting DTM involves a land cover 
classification followed by a trimming step that removes the elevation due to trees 
and buildings. In this chapter, we assume the land cover types have been classified 
and we focus on the use of image inpainting algorithms for DTM generation. That 
is, for buildings and trees, we remove those pixels from the DSM and then apply 
inpainting techniques to reconstruct the terrain pixels in those areas. A dataset with 
DSM and hyperspectral data near the U. Houston area was used in our study. The 
DTM from United States Geological Survey (USGS) was used as the ground truth. 
Objective evaluation results indicate that some inpainting methods perform better 
than others.

Keywords: digital terrain model (DTM), digital surface model (DSM), image 
inpainting, vegetation extraction, land classification

1. Introduction

There are several ways to obtain DTM. The oldest method is to do this manually 
by measuring the terrain elevations of some selected points of a given area. The 
process is time-consuming, tedious, and prone to human errors. In recent years, 
people have started to use LiDAR to generate DTM. The obtained DTM is in general 
satisfactory even though the point density may not be very dense as compared to 
optical stereo imaging approach [1]. Radar has been used as well. It is well known 
that LiDAR and radar equipment are expensive. Due to availability of low-cost 
drones, stereo imaging has been gaining popularity. Near infrared (NIR) together 
with color imagers have been used in recent years to generate DSM. However, due 
to the presence of vegetation and buildings, some additional processing steps are 
needed in order to obtain DTM from DSM.
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There are several ways to obtain DTM. The oldest method is to do this manually 
by measuring the terrain elevations of some selected points of a given area. The 
process is time-consuming, tedious, and prone to human errors. In recent years, 
people have started to use LiDAR to generate DTM. The obtained DTM is in general 
satisfactory even though the point density may not be very dense as compared to 
optical stereo imaging approach [1]. Radar has been used as well. It is well known 
that LiDAR and radar equipment are expensive. Due to availability of low-cost 
drones, stereo imaging has been gaining popularity. Near infrared (NIR) together 
with color imagers have been used in recent years to generate DSM. However, due 
to the presence of vegetation and buildings, some additional processing steps are 
needed in order to obtain DTM from DSM.
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In recent years, hyperspectral images [2–4] are gaining popularity in various 
applications, including anomaly detection [5–7], target classification [8, 9], search 
and rescue operations [10], and many others. Due to the availability of hundreds of 
contiguous spectral bands, accuracies of anomaly detection and target classification 
have been improved quite significantly. Hyperspectral images can also be used for 
accurate land cover classification [11–16]. Many methods have been developed in 
the past [17–19] for target detection in hyperspectral images. It will be ideal that 
hyperspectral images are available for land cover classification so that more accurate 
DTM can be obtained. However, equipment cost, requirement on data storage, and 
computational burden are limiting the widespread usage of hyperspectral imagers.

In contrast, low-cost color and NIR images are relatively inexpensive, have low 
computational cost, and low data storage. If one is given only color (RGB) and near 
infrared (NIR) images, however, it will be difficult to obtain accurate land cover 
classification for the following reasons. First, the accuracy of using only RGB and 
NIR bands for land cover classification is low as compared to that of using hyper-
spectral images. This point will be clear later in Section 3. Improving land cover 
classification using only color and NIR images will be a good contribution to the 
community. In recent years, there are some new developments along this direc-
tion. In particular, people have developed methods to synthesize spectral bands 
from color and NIR images. One technique is known as Extended Morphological 
Attribute Profile (EMAP) [20]. Several notable applications have appeared in the 
literature [16, 17]. Second, even after the pixels related to trees and man-made 
structures are identified and removed from the DSM, we still need to face an impor-
tant practical issue. How can one recover the missing terrain pixels in the DSM to 
build a DTM? Conventional approaches use simple interpolation such as bilinear or 
bicubic interpolations [1]. However, the accuracy of DTM may be compromised. In 
recent years, there have been new developments in interpolation methods, termed 
as image inpainting methods. Those recent methods can be categorized into several 
groups. The first group is similar to bicubic interpolation methods. Some represen-
tative methods include bicubic, Laplacian [21], and inpaint-nans [22]. The second 
group uses nonlocal sparse representation for inpainting. Well-known methods 
include Local Matrix Completion Sparse (LMCS) [23], field of expert (FOE) [24], 
and Transformic [25]. The last group is the deep learning-based methods. One 
representative method is known as generative inpainting (GenIn) [26].

In this chapter, we propose a low-cost and accurate approach to DTM gen-
eration. Suppose we are given a DSM and only the color and NIR images. Our 
approach consists of four steps. First, we perform land cover classification using 
only color and NIR images. Various methods can be applied in this step. The key 
innovation is to apply synthetic spectral bands to enhance the land cover per-
formance. It was demonstrated that the land cover performance using synthetic 
bands can yield performance very close to that of the hyperspectral image. Second, 
since there may be more than 10 types of land covers, we observed that it is more 
accurate to consolidate some of the land cover types into only five groups. Third, 
the trees and man-made structures are then removed from the DSM. Fourth, 
various conventional and deep learning inpainting methods are applied to gener-
ate the DTM. Comparisons show that GenIn has consistent performance in DTM 
construction.

This chapter is organized as follows. In Section 2, we will briefly review the 
methods and data. Section 3 will discuss the land cover classification results and 
how we consolidate 15 land cover types into only five groups. Section 4 focuses on 
the various DTM reconstruction results. Finally, some concluding remarks will be 
given in Section 5.
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2. Methods and data

2.1 Land cover classification methods

In this research, we have used the following nine methods for land cover clas-
sification. We will not go into the details of each method. Instead, we briefly list the 
names and provide some references for their sources.

We categorize the methods into three groups. In the first group are simple and 
efficient methods, including Matched Subspace Detection (MSD) [18], Adaptive 
Subspace Detection (ASD) [18], and Reed-Xiaoli Detection (RXD) [19]. These 
methods have been used in hyperspectral image processing in the past. In the sec-
ond group are kernel versions of the first group and they are: Kernel MSD (KMSD) 
[18], Kernel ASD (KASD) [18], and Kernel RXD (KRXD) [19]. The kernel-based 
algorithms are computationally expensive and may not be suitable for real-time 
applications. The third group contains Sparse Representation (SR) [27] algorithm, 
Joint Sparse Representation (JSR) [27] algorithm, and Support Vector Machine 
(SVM) [28, 29] algorithm. In the past, we have used the above three methods in 
group 3 for soil detection using multispectral images [27].

2.2 Inpainting methods

We have applied seven methods in this project. They are briefly summarized 
below:

Bicubic: in a recent paper by researchers at Cyprus, a bicubic interpolation 
method was used in [1].

Inpaint_nans: we denote this as “inpaint” in our later experiments. This method 
was developed by D’Errico [22]. This is a very simple method that only uses the 
neighboring pixels to estimate the missing pixels, which will be referred as NaNs 
(not a number).

FOE: the Field of Experts method (FOE) was developed by Roth [24]. This 
method uses pre-trained models that are used to filter out noise and obstructions 
in images.

Laplacian: this method [21] fills in each missing pixel using the Laplacian inter-
polation formula by finding the mean of the surrounding known values.

Local Matrix Completion Sparse (LMCS) [23]: in LMCS, which was developed by 
us, a search is performed for each missing pixel to find a pixel with the most similar 
neighbors. After the search, the missing pixel is replaced with the found pixel. This 
method performs very well with images containing repeating patterns.

Transformic: the Transformic method was developed by Mansfield [25]. It is 
similar to the LMCS in that it searches the whole image for a patch that is similar to 
the neighbors of the missing pixel.

Generative Inpainting (GenIn) [26]: a new inpainting method, Generative 
Inpainting (GenIn), which is a deep learning-based method [26], was considered in 
our research. It was developed at the University of Illinois and aims to outperform 
typical deep learning methods that use convolutional neural network (CNN) 
models. GenIn builds on CNN and Generative Adversarial Networks (GANs) in an 
effort to encourage cohesion between created and existing pixels.

2.3 EMAP

In this section, we briefly introduce EMAP, which has been shown to yield good 
classification performance when one only has a few spectral bands available. Given 
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an input grayscale image f and a sequence of threshold levels { }1 2,, ,, nTh Th Th¼ , the 
attribute profile (AP) of f is obtained by applying a sequence of thinning and 
thickening attribute transformations to every pixel in f as follows:

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }f f f g g g= ¼ ¼1 2 1 2, , , , , , n nAP f f f f f f f f    (1)

where if  and ( )1,,2,,i i ng = ¼  are the thickening and thinning operators at 
threshold ,iTh  respectively. The EMAP of f is then acquired by stacking two or  
more APs using any feature reduction technique on multispectral/hyperspectral 
images, such as purely geometric attributes (e.g., area, length of the perimeter, 
image moments, shape factors), or textural attributes (e.g., range, standard  
deviation, entropy).

 ( ) ( ) ( ) ( ){ }= ¼1 2, mEMAP f AP f AP f AP f  (2)

More technical details about EMAP can be found in [20, 30–32]. In this work, 
the “area (a)” and “length of the diagonal of the bounding box (d)” attributes of 
EMAP [17] were used. The lambda parameters for the area attribute of EMAP, 
which is a sequence of thresholds used by the morphological attribute filters, were 
set to 10 and 15, respectively. The lambda parameters for the length attribute of 
EMAP were set to 50, 100, and 500. With this parameter setting, EMAP creates 11 
synthetic bands for a given single band image. One of the bands comes from the 
original image.

2.4 IEEE dataset

From the IEEE GRSS Data Fusion package [11], we obtained the ground truth 
classification maps, the hyperspectral image of the University of Houston area, 
and the LiDAR data of the same area. The instrument used to collect the dataset is 
simply a hyperspectral and LiDAR sensor. The hyperspectral image contains 144 
bands ranging in wavelength from 380 to 1050 nm with spatial resolution of 0.25 m. 
The LiDAR sensor has the same spatial resolution of 0.25 m.

As shown in Table 1, there are a number of datasets used for analysis. The first 
group is the RGB (band # 60, 30, 22 in the hyperspectral data) and the NIR band 
(band #103). It should be noted that the above selection of bands is not the same as 
band selection in the literature [33]. In band selection, the objective is to select the 
most informative bands out of the available hyperspectral bands. In our case, we 
are restricted to only having a few bands. We call this group Dataset-4 (DS-4). The 
second group is the four band group put through EMAP augmentation to produce 
44 bands as each band produces 10 other bands in addition to the original band 

Dataset label Bands present in the corresponding dataset

Dataset-4 (DS-4) RGB and the NIR bands (respectively bands # 60, # 30, # 22, and # 103 in the 
hyperspectral data)

Dataset-44 (DS-44) RGB and the NIR bands. Forty bands obtained by EMAP augmentation applied to 
RGB and the NIR bands

Dataset-144 (DS-144) Hyperspectral dataset

Table 1. 
Dataset labels and the corresponding bands.
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[denoted as Dataset-44 (DS-44)]. The third group is the full hyperspectral image of 
144 bands [denoted as Dataset-144 (DS-144)].

3. Consolidation of the number of land cover classes

Before studying the performance of inpainting techniques on the IEEE GRSS 
Data Fusion dataset, in order to create a consensus about the best classification 
method, the number of classes was reduced from 15 to 5. As shown in Table 1, the 
first three grass classes (Healthy, Stressed, and Synthetic) were consolidated into 
simply grass; tree, soil, and water maintained their individual classifications; and 
then all other classes were grouped into one class as man-made structures. This was 
done simply because some of the man-made classes—road, highway, railway, and 
both parking lots—were consistently misclassified and often as the other classes 
in this group. The same is true for the grass classes. By consolidating the classes, 
the classification method selection process was made easier. The averages listed 
in Table 2 are a summation of all non-kernel methods averages. This is shown to 
illustrate how low performing some types are even among the high-performing 
methods.

Table 3, extracted from a recent work [34], corresponds to the accuracy for the 
full 15 class models while Table 4 is for consolidated 5 classes. Comparing the two 
tables, it can be seen that the new class combination results in much improved results 
in all cases. Each method has an overall improvement of at least 13% and most 
methods saw an improvement of over 20%. It is clear from Table 4 that JSR clearly 
stands out as the best performing method. JSR goes from being the best performing 
method in one band case to every band case as well as overall average when using the 
new class arrangement. Yet, every band case of JSR returns over 90% accuracy, when 
previously the smaller number band cases returned results near 50%.

New class # Class type Class # Avg. accuracy (5)

1 Healthy grass 1 72.93

Stressed grass 2 56.67

Synthetic grass 3 91.90

2 Tree 4 70.98

3 Soil 5 82.99

4 Water 6 61.29

5 Residential 7 54.82

Commercial 8 48.16

Road 9 39.23

Highway 10 43.00

Railway 11 45.20

Parking lot 1 12 36.94

Parking lot 2 13 36.69

Tennis court 14 64.03

Running track 15 94.22

Table 2. 
Combining classes down from 15 classes to 5 classes and the average accuracy of each class.
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Recent Advances in Image Restoration with Applications to Real World Problems

154

It should be noted that the results related to the 44-band (DS-44) case are observed 
to perform better than the 4-band (DS-4) and 144-band (DS-144) cases. It may be 
easier to understand why DS-44 is better than DS-4. A simple explanation is that the 
DS-44 data contain some synthetic spectral information, which enriches the spectral 
content. The explanation for why DS-144 case is worse than DS-44 case is because there 
are a lot of redundancies in the various bands in the DS-144 data. The data redundan-
cies appear to cause some conflicts in the classifiers. Other researchers have observed 
similar behaviors [11] before and sometimes they call this the curse of dimension.

4. DTM extraction by removing man-made structures and trees

4.1 Ground truth DTM

The ground truth being used is the 1/9 arc second-resolution Digital Elevation 
map produced by USGS. Additional maps used for comparison in this investigation 
are the Cloth Simulation Filter (CSF) method [35] and the 1 arc second-resolution 
USGS DE map. However, CSF and USGS can only be used for general comparison as 

OA DS-4 (%) DS-44 (%) DS-144 (%) Avg. (%)

ASD 47.17 69.89 65.75 60.94

MSD 63.31 71.32 81.94 72.19

RXD 57.50 68.98 62.29 62.92

KASD 42.67 94.50 82.64 73.27

KMSD 63.53 91.87 75.18 76.86

KRXD 45.62 86.35 88.40 73.46

SR 55.11 90.61 85.50 77.07

JSR 93.15 94.55 93.84 93.85

SVM 91.59 92.25 87.72 90.52

Bold numbers indicate the best performing method of each column.

Table 4. 
Overall accuracies using five classes for the nine classification methods and each band combination.

OA DS-4 (%) DS-44 (%) DS-144 (%) Avg. (%)

ASD 22.59 22.75 21.11 22.15

MSD 0.11 48.65 55.56 34.77

RXD 28.93 46.09 42.69 39.24

KASD 6.16 79.70 53.57 46.48

KMSD 26.32 69.26 53.61 49.73

KRXD 5.72 64.14 71.79 47.22

SR 39.99 64.45 57.46 53.97

JSR 59.83 80.77 72.57 71.06

SVM 70.43 82.64 78.68 77.25

Table 3. 
Overall accuracies using 15 classifications of the 9 classification methods and each band combination.
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their inputs are not dependent on the different numbers of bands. CSF simply uses 
the LiDAR image while USGS is an already completed product. The three DTMs 
are shown in Figure 1. It can be seen that the USGS 1/9 arc second map is more 
accurate.

4.2 Individual inpainting results

The different methods used to compare digital terrain models (DTMs) through 
inpainting were “inpaint_nans,” “LMCS,” “Laplacian,” “Transformic,” and “CSF.” 
However, CSF must be considered separate from others as it is not dependent on the 
same image bands that the other inpainting techniques are dependent on. In this 
study, the best resolution (1/9 arc second) USGS satellite radar imagery was used as 
the ground truth.

With a consistently well-performing method available for the composition of 
DTMs, which is JSR, we now look at the performance of inpainting methods judg-
ing against a general ground truth of the USGS Digital Elevation maps. Our goal 
is to remove Class 2 (trees) and Class 5 (manmade structures) from the DSM. The 
missing pixels will be interpolated by using inpainting techniques. The names of 
the methods tested against this ground truth were: inpaint_nans, LMCS, Laplace, 
Transformic, and FOE. There is also the added variation of downsizing the image 
four times versus maintaining the full-size image to demonstrate affected accuracy 
because the downsized results save considerable time.

After JSR classifier is applied to the EMAP images (DS-44) and the man-made 
objects areas are identified by JSR, these identified man-made and trees areas are 
removed from the LiDAR image (DSM). Inpainting techniques are then applied 
to those missing pixel areas in the LiDAR image. The filled-in LiDAR image with 
inpainting methods corresponds to the estimated DTM. Figure 2 contains the 
DTMs, generated from the four times downsized DS-44 EMAP images for each 
method (excluding CSF). The purpose of downsizing by four times was because of 
computational issues. It took many hours to finish the inpainting for some of the 
methods. The images from Figure 2 can be compared to the ground truth and fully 
produced products of CSF and the lower resolution USGS. The LMCS results have 
issues near the boundary of the image because LMCS cannot handle missing pixels 
near the image boundary.

Figure 1. 
USGS 1/9 arc second resolution (top), CSF (middle), and USGS 1 arc second-resolution (bottom) DTMs.
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It should be noted that the results related to the 44-band (DS-44) case are observed 
to perform better than the 4-band (DS-4) and 144-band (DS-144) cases. It may be 
easier to understand why DS-44 is better than DS-4. A simple explanation is that the 
DS-44 data contain some synthetic spectral information, which enriches the spectral 
content. The explanation for why DS-144 case is worse than DS-44 case is because there 
are a lot of redundancies in the various bands in the DS-144 data. The data redundan-
cies appear to cause some conflicts in the classifiers. Other researchers have observed 
similar behaviors [11] before and sometimes they call this the curse of dimension.

4. DTM extraction by removing man-made structures and trees

4.1 Ground truth DTM

The ground truth being used is the 1/9 arc second-resolution Digital Elevation 
map produced by USGS. Additional maps used for comparison in this investigation 
are the Cloth Simulation Filter (CSF) method [35] and the 1 arc second-resolution 
USGS DE map. However, CSF and USGS can only be used for general comparison as 

OA DS-4 (%) DS-44 (%) DS-144 (%) Avg. (%)

ASD 47.17 69.89 65.75 60.94

MSD 63.31 71.32 81.94 72.19

RXD 57.50 68.98 62.29 62.92

KASD 42.67 94.50 82.64 73.27

KMSD 63.53 91.87 75.18 76.86

KRXD 45.62 86.35 88.40 73.46

SR 55.11 90.61 85.50 77.07

JSR 93.15 94.55 93.84 93.85

SVM 91.59 92.25 87.72 90.52

Bold numbers indicate the best performing method of each column.

Table 4. 
Overall accuracies using five classes for the nine classification methods and each band combination.

OA DS-4 (%) DS-44 (%) DS-144 (%) Avg. (%)

ASD 22.59 22.75 21.11 22.15

MSD 0.11 48.65 55.56 34.77

RXD 28.93 46.09 42.69 39.24

KASD 6.16 79.70 53.57 46.48

KMSD 26.32 69.26 53.61 49.73

KRXD 5.72 64.14 71.79 47.22

SR 39.99 64.45 57.46 53.97

JSR 59.83 80.77 72.57 71.06

SVM 70.43 82.64 78.68 77.25

Table 3. 
Overall accuracies using 15 classifications of the 9 classification methods and each band combination.
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their inputs are not dependent on the different numbers of bands. CSF simply uses 
the LiDAR image while USGS is an already completed product. The three DTMs 
are shown in Figure 1. It can be seen that the USGS 1/9 arc second map is more 
accurate.

4.2 Individual inpainting results

The different methods used to compare digital terrain models (DTMs) through 
inpainting were “inpaint_nans,” “LMCS,” “Laplacian,” “Transformic,” and “CSF.” 
However, CSF must be considered separate from others as it is not dependent on the 
same image bands that the other inpainting techniques are dependent on. In this 
study, the best resolution (1/9 arc second) USGS satellite radar imagery was used as 
the ground truth.

With a consistently well-performing method available for the composition of 
DTMs, which is JSR, we now look at the performance of inpainting methods judg-
ing against a general ground truth of the USGS Digital Elevation maps. Our goal 
is to remove Class 2 (trees) and Class 5 (manmade structures) from the DSM. The 
missing pixels will be interpolated by using inpainting techniques. The names of 
the methods tested against this ground truth were: inpaint_nans, LMCS, Laplace, 
Transformic, and FOE. There is also the added variation of downsizing the image 
four times versus maintaining the full-size image to demonstrate affected accuracy 
because the downsized results save considerable time.

After JSR classifier is applied to the EMAP images (DS-44) and the man-made 
objects areas are identified by JSR, these identified man-made and trees areas are 
removed from the LiDAR image (DSM). Inpainting techniques are then applied 
to those missing pixel areas in the LiDAR image. The filled-in LiDAR image with 
inpainting methods corresponds to the estimated DTM. Figure 2 contains the 
DTMs, generated from the four times downsized DS-44 EMAP images for each 
method (excluding CSF). The purpose of downsizing by four times was because of 
computational issues. It took many hours to finish the inpainting for some of the 
methods. The images from Figure 2 can be compared to the ground truth and fully 
produced products of CSF and the lower resolution USGS. The LMCS results have 
issues near the boundary of the image because LMCS cannot handle missing pixels 
near the image boundary.

Figure 1. 
USGS 1/9 arc second resolution (top), CSF (middle), and USGS 1 arc second-resolution (bottom) DTMs.
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Figure 1 displays the full-size ground truth maps. Figure 3 contains the esti-
mated DTMs using full-size DS-44 EMAP images. The inpainting maps in Figure 2 
and Figure 3 can also be compared against Figure 1.

Clearly the lower resolution USGS image is not a great product to use for the 
digital terrain map. However, it is useful to show a low-resolution picture of what 
the Houston area could look like without classification and inpainting.

To find an objective statistical proof of accuracy of the different inpainting 
methods, there are five different metrics that can be used. By taking the differ-
ence between the DTM of a given inpainting method and the ground truth map 
(USGS)—then calculating mean, standard deviation, root mean squared, and the 
min and max of each instance—we can find a general standard of accuracy for each 
method. The visual observation from LMCS shows that performance is poor on 
the edges of each map, as is expected given that it does not calculate any inpainting 
on the edges. The same can also be said to a lesser extent of inpaint_nans. To help 
alleviate that inaccuracy, a cropped comparison of downsized and full-size versions 
is conducted for all methods, which gets rid of these problematic areas on the edges.

The performance metrics for the DS-44 case can be seen in Table 5. In the DS-44 
case, we observe that two techniques, Laplacian and Transformic, performed better 
than the rest. While Transformic’s mean value is the smallest, the other four metrics 
have better values in Laplacian. For comparison purposes, the performance metrics 
for the CSF method and USGS lower resolution elevation map are also included in 
Table 6. Overall, CSF performs pretty well for the mean; however, because of the 
non-removed bridge, all other metrics are relatively poor performing. The 1 arc 
second resolution USGS image performs poorly in all accuracy categories. It can be 

Figure 2. 
DTMs generated from the four times downsized DS-44 EMAP images: first row: Laplace; second row: inpaint_
nans; third row: Transformic; fourth row: FOE; and fifth row: LMCS.
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also noticed from Table 6 that these values for CSF and USGS are worse than the 
best performing individual cases that are shown in Table 5.

4.3 Fusion of different inpainting results

In an effort to improve the inpainting performance metrics, three different 
fusion methods are utilized. The pixel level fusion methods were used in [36]. For 
the first fusion method, alpha trimmed mean filter (ATMF), the worst and best 
performing methods for a given accuracy measurement are removed and then the 
three in-between results are averaged before re-taking the accuracy measurements 
to see how the results were improved. The second fusion method, weighted method, 
weighs each method based on a specific accuracy measurement and averages those 
results. The final fusion method, F3, simply averages the three best performing 
methods for each accuracy measurement.

In order to perform these operations, it was necessary to rank each of the meth-
ods based on the three main accuracy measurements: mean, standard deviation 

Figure 3. 
DTMs generated from the full-size DS-44 EMAP images. We could not generate LMCS, which took many days 
and we stopped the program. First row: Laplace; second row: inpaint_nans; third row: Transformic; fourth 
row: FOE.

Inpaint_nans LMCS Laplacian Transformic FOE

Mean 0.39 0.24 0.34 0.08 0.38

Sigma 0.74 0.82 0.58 0.67 0.64

RMS 0.84 0.85 0.67 0.67 0.74

Min −3.43 −11.87 −3.43 −3.55 −3.43

Max 6.38 18.45 6.30 6.56 6.60

Bold numbers indicate the best performing method of each row.

Table 5. 
Mean, standard deviation (sigma), root mean square (RMS), min, and max accuracy results using five 
inpainting methods for the DS-44 case.
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Figure 1 displays the full-size ground truth maps. Figure 3 contains the esti-
mated DTMs using full-size DS-44 EMAP images. The inpainting maps in Figure 2 
and Figure 3 can also be compared against Figure 1.

Clearly the lower resolution USGS image is not a great product to use for the 
digital terrain map. However, it is useful to show a low-resolution picture of what 
the Houston area could look like without classification and inpainting.

To find an objective statistical proof of accuracy of the different inpainting 
methods, there are five different metrics that can be used. By taking the differ-
ence between the DTM of a given inpainting method and the ground truth map 
(USGS)—then calculating mean, standard deviation, root mean squared, and the 
min and max of each instance—we can find a general standard of accuracy for each 
method. The visual observation from LMCS shows that performance is poor on 
the edges of each map, as is expected given that it does not calculate any inpainting 
on the edges. The same can also be said to a lesser extent of inpaint_nans. To help 
alleviate that inaccuracy, a cropped comparison of downsized and full-size versions 
is conducted for all methods, which gets rid of these problematic areas on the edges.

The performance metrics for the DS-44 case can be seen in Table 5. In the DS-44 
case, we observe that two techniques, Laplacian and Transformic, performed better 
than the rest. While Transformic’s mean value is the smallest, the other four metrics 
have better values in Laplacian. For comparison purposes, the performance metrics 
for the CSF method and USGS lower resolution elevation map are also included in 
Table 6. Overall, CSF performs pretty well for the mean; however, because of the 
non-removed bridge, all other metrics are relatively poor performing. The 1 arc 
second resolution USGS image performs poorly in all accuracy categories. It can be 

Figure 2. 
DTMs generated from the four times downsized DS-44 EMAP images: first row: Laplace; second row: inpaint_
nans; third row: Transformic; fourth row: FOE; and fifth row: LMCS.
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also noticed from Table 6 that these values for CSF and USGS are worse than the 
best performing individual cases that are shown in Table 5.

4.3 Fusion of different inpainting results

In an effort to improve the inpainting performance metrics, three different 
fusion methods are utilized. The pixel level fusion methods were used in [36]. For 
the first fusion method, alpha trimmed mean filter (ATMF), the worst and best 
performing methods for a given accuracy measurement are removed and then the 
three in-between results are averaged before re-taking the accuracy measurements 
to see how the results were improved. The second fusion method, weighted method, 
weighs each method based on a specific accuracy measurement and averages those 
results. The final fusion method, F3, simply averages the three best performing 
methods for each accuracy measurement.

In order to perform these operations, it was necessary to rank each of the meth-
ods based on the three main accuracy measurements: mean, standard deviation 

Figure 3. 
DTMs generated from the full-size DS-44 EMAP images. We could not generate LMCS, which took many days 
and we stopped the program. First row: Laplace; second row: inpaint_nans; third row: Transformic; fourth 
row: FOE.

Inpaint_nans LMCS Laplacian Transformic FOE

Mean 0.39 0.24 0.34 0.08 0.38

Sigma 0.74 0.82 0.58 0.67 0.64

RMS 0.84 0.85 0.67 0.67 0.74

Min −3.43 −11.87 −3.43 −3.55 −3.43

Max 6.38 18.45 6.30 6.56 6.60

Bold numbers indicate the best performing method of each row.

Table 5. 
Mean, standard deviation (sigma), root mean square (RMS), min, and max accuracy results using five 
inpainting methods for the DS-44 case.
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(STD, also denoted in other tables as sigma), and root mean squared (RMS). This 
was done for exclusively DS-44 results. It includes both the full-sized results and 
the four times down-sampled results. Table 7 shows the performance rankings for 
various combinations of band number with respect to three performance metrics: 
mean, sigma, and root mean squared (RMS). From the results in Table 7, it is clear 
that overall the downsized results return much more accurate values than the full-
sized values in most cases.

Table 8 shows the performance metrics for the DS-44 case when three different 
fusion methods were applied to the best five individual inpainting methods’ results 
where the ranking was conducted with respect to three performance metrics sepa-
rately (mean, STD, and RMS). F3 produces the lowest mean value and relatively 
lower sigma and RMS values in comparison to others.

Table 9 shows the performance metrics for the special case (which we name as 
combo) when three different fusion methods are applied to the best five individual 
inpainting methods’ results from both 44-bands inpainting results where the rank-
ing is conducted with respect to three performance metrics separately (mean, STD, 
and RMS). In this case, F3 method produces lower mean, sigma, and RMS values 
with respect to ranking according to the mean performance metric.

Table 10 shows a summary of the best performing individual cases (no fusion) and 
the best performing cases with fusion for DS-44 case with fusion. From Table 10, it 
can be noticed that the F3 (with respect to ranking according to lowest mean) improves 
the RMS value slightly when compared with the RMS values of the best performing 
individual inpainting method results (Laplacian and Transformic in DS-44). However, 
when all performance metrics are considered as a whole, we cannot clearly state F3 
performs the best in all performance accuracy metrics but improves a few of the 
parameters.

Mean STD RMS

Rank Method Value Rank Method Value Rank Method Value

1 4 × T 0.08 1 4 × LP 0.58 1 4 × LP 0.67

2 4 × LMCS 0.24 2 4 × FOE 0.64 2 4 × T 0.67

3 4 × LP 0.34 3 Full T 0.65 3 4 × FOE 0.74

4 4 × FOE 0.38 4 4 × nans 0.74 4 4 × nans 0.84

5 4 × nans 0.39 5 4 × LMCS 0.82 5 4 × LMCS 0.85

Transformic is T and Laplacian is LP.

Table 7. 
Ranking results for various combinations of band number and accuracy measurement for DS-44 case.

CSF USGS 1 arc second

Mean 0.37 4.70

Sigma 1.02 3.10

RMS 1.08 5.63

Min −5.81 −7.83

Max 15.98 19.04

Table 6. 
Accuracy values for CSF and USGS lower resolution map.
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(STD, also denoted in other tables as sigma), and root mean squared (RMS). This 
was done for exclusively DS-44 results. It includes both the full-sized results and 
the four times down-sampled results. Table 7 shows the performance rankings for 
various combinations of band number with respect to three performance metrics: 
mean, sigma, and root mean squared (RMS). From the results in Table 7, it is clear 
that overall the downsized results return much more accurate values than the full-
sized values in most cases.

Table 8 shows the performance metrics for the DS-44 case when three different 
fusion methods were applied to the best five individual inpainting methods’ results 
where the ranking was conducted with respect to three performance metrics sepa-
rately (mean, STD, and RMS). F3 produces the lowest mean value and relatively 
lower sigma and RMS values in comparison to others.

Table 9 shows the performance metrics for the special case (which we name as 
combo) when three different fusion methods are applied to the best five individual 
inpainting methods’ results from both 44-bands inpainting results where the rank-
ing is conducted with respect to three performance metrics separately (mean, STD, 
and RMS). In this case, F3 method produces lower mean, sigma, and RMS values 
with respect to ranking according to the mean performance metric.

Table 10 shows a summary of the best performing individual cases (no fusion) and 
the best performing cases with fusion for DS-44 case with fusion. From Table 10, it 
can be noticed that the F3 (with respect to ranking according to lowest mean) improves 
the RMS value slightly when compared with the RMS values of the best performing 
individual inpainting method results (Laplacian and Transformic in DS-44). However, 
when all performance metrics are considered as a whole, we cannot clearly state F3 
performs the best in all performance accuracy metrics but improves a few of the 
parameters.

Mean STD RMS

Rank Method Value Rank Method Value Rank Method Value

1 4 × T 0.08 1 4 × LP 0.58 1 4 × LP 0.67

2 4 × LMCS 0.24 2 4 × FOE 0.64 2 4 × T 0.67

3 4 × LP 0.34 3 Full T 0.65 3 4 × FOE 0.74

4 4 × FOE 0.38 4 4 × nans 0.74 4 4 × nans 0.84

5 4 × nans 0.39 5 4 × LMCS 0.82 5 4 × LMCS 0.85

Transformic is T and Laplacian is LP.

Table 7. 
Ranking results for various combinations of band number and accuracy measurement for DS-44 case.

CSF USGS 1 arc second

Mean 0.37 4.70

Sigma 1.02 3.10

RMS 1.08 5.63

Min −5.81 −7.83

Max 15.98 19.04

Table 6. 
Accuracy values for CSF and USGS lower resolution map.
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4.4 Comparison with deep learning inpainting

Using the pre-trained model provided by the GenIn package [26] for an image 
the size of about 350 by 1900 pixels (that covers the University of Houston campus 
and surrounding area), the computation time observed is roughly 2 minutes.

The accuracy of the GenIn model as compared to the other inpainting techniques 
is competitive and, cases, if not overall, is a more accurate result. In Table 11, statistics 
from GenIn together with the statistics from other inpainting techniques for the IEEE 
dataset are provided. In regards to mean, root mean square (RMS), and the maximum 
difference (max), GenIn outperforms all other techniques. For the sigma metric, it is 
the second-best performing method. The minimum difference accuracy measure is the 
only underperforming value coming in as the fourth best performing statistic. However, 
it is still the second-best value available, closely trailing the other three techniques.

It is also helpful to visualize GenIn’s digital terrain map estimation as compared 
to the ground truth. In Figure 4, an image of the U. Houston area can be observed 
after GenIn is applied on that area’s LiDAR data. Figure 5 corresponds to the USGS 
1/9 arc second Digital Elevation map that is used as the ground truth for the area.

The GenIn-generated results are found to be a very close reproduction of the 
ground truth. In some instances, it is observed that it provides more realistic results 
than the ground truth. As an example, in the horizontal right and vertical center 

No fusion With fusion

Metric Best DS-44 (Laplacian) Best DS-44 (Transformic) Best DS-44 (F3-mean)

Mean 0.34 0.08 0.22

Sigma 0.58 0.67 0.61

RMS 0.67 0.67 0.64

Min −3.43 −3.55 −5.93

Max 6.30 6.56 6.40

Bold numbers indicate the best performing method of each row.

Table 10. 
Summary of the best performing individual and fusion cases.

4 × crop Inpaint-nans LMCS Laplacian Transformic FOE GenIn

Mean 0.39 0.24 0.34 0.08 0.38 0.23

Sigma 0.74 0.82 0.58 0.67 0.64 0.59

RMS 0.84 0.85 0.67 0.67 0.74 0.63

Min −3.43 −11.87 −3.43 −3.55 −3.43 −3.50

Max 6.38 18.45 6.30 6.56 6.60 6.29

Bold numbers indicate the best performing method of each row.

Table 11. 
Comparison of GenIn statistics with respect to other inpainting methods’ performances for IEEE dataset.

Figure 4. 
GenIn digital terrain map for the U. Houston (UH) area. Scale is from 8 to 25 m.
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4.4 Comparison with deep learning inpainting

Using the pre-trained model provided by the GenIn package [26] for an image 
the size of about 350 by 1900 pixels (that covers the University of Houston campus 
and surrounding area), the computation time observed is roughly 2 minutes.

The accuracy of the GenIn model as compared to the other inpainting techniques 
is competitive and, cases, if not overall, is a more accurate result. In Table 11, statistics 
from GenIn together with the statistics from other inpainting techniques for the IEEE 
dataset are provided. In regards to mean, root mean square (RMS), and the maximum 
difference (max), GenIn outperforms all other techniques. For the sigma metric, it is 
the second-best performing method. The minimum difference accuracy measure is the 
only underperforming value coming in as the fourth best performing statistic. However, 
it is still the second-best value available, closely trailing the other three techniques.

It is also helpful to visualize GenIn’s digital terrain map estimation as compared 
to the ground truth. In Figure 4, an image of the U. Houston area can be observed 
after GenIn is applied on that area’s LiDAR data. Figure 5 corresponds to the USGS 
1/9 arc second Digital Elevation map that is used as the ground truth for the area.

The GenIn-generated results are found to be a very close reproduction of the 
ground truth. In some instances, it is observed that it provides more realistic results 
than the ground truth. As an example, in the horizontal right and vertical center 

No fusion With fusion

Metric Best DS-44 (Laplacian) Best DS-44 (Transformic) Best DS-44 (F3-mean)

Mean 0.34 0.08 0.22

Sigma 0.58 0.67 0.61

RMS 0.67 0.67 0.64

Min −3.43 −3.55 −5.93

Max 6.30 6.56 6.40

Bold numbers indicate the best performing method of each row.

Table 10. 
Summary of the best performing individual and fusion cases.

4 × crop Inpaint-nans LMCS Laplacian Transformic FOE GenIn

Mean 0.39 0.24 0.34 0.08 0.38 0.23

Sigma 0.74 0.82 0.58 0.67 0.64 0.59

RMS 0.84 0.85 0.67 0.67 0.74 0.63

Min −3.43 −11.87 −3.43 −3.55 −3.43 −3.50

Max 6.38 18.45 6.30 6.56 6.60 6.29

Bold numbers indicate the best performing method of each row.

Table 11. 
Comparison of GenIn statistics with respect to other inpainting methods’ performances for IEEE dataset.

Figure 4. 
GenIn digital terrain map for the U. Houston (UH) area. Scale is from 8 to 25 m.
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of the plot in Figure 5, there is a deep dark spot that is observed, which is to be 
denoted as a low spot. However, this is caused because of a highway bridge that 
runs over a railway and could be considered a miscalculated section of the Digital 
Elevation map. The GenIn-generated map produces no such deep dark spot and 
instead smoothly removes the bridge and because it does this, it then slightly suffers 
in the resultant accuracy statistics.

5. Conclusions

In this research, we investigated the feasibility of using only color and NIR 
images for accurate DTM extraction. We assume the DSM is also available. Our 
approach involves several steps. The first step is to use color and NIR images for 
land cover classification. After some extensive experiments, it was observed that 
using only four bands cannot achieve accurate land cover classification. A mor-
phological filtering approach was applied to generate synthetic spectral bands. 
Using nine land cover classification algorithms, it was observed that the use of 
synthetic bands significantly improved the land cover classification accuracy for 
the well-known IEEE dataset. The second step is to consolidate the many land cover 
types into only five groups. This was observed to further improve the accuracy. The 
third step is to apply nine inpainting algorithms to recover DTM from DSM. It was 
observed that the deep learning algorithm yielded more consistent performance.

Here, we also briefly mention a few future research directions. One direction is 
to focus on DSM generation using color images. The second direction is to obtain 
ortho-rectified images for the color and NIR images. A third direction is to build a 
software prototype that integrates DSM generation tool, ortho-rectification tool, 
land cover classification tool, and DTM reconstruction tool.
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163

Practical Digital Terrain Model Extraction Using Image Inpainting Techniques
DOI: http://dx.doi.org/10.5772/intechopen.93184

Author details

Chiman Kwan*, David Gribben, Bulent Ayhan and Jude Larkin
Applied Research LLC, Rockville, MD, USA

*Address all correspondence to: chiman.kwan@signalpro.net

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 



Recent Advances in Image Restoration with Applications to Real World Problems

162

of the plot in Figure 5, there is a deep dark spot that is observed, which is to be 
denoted as a low spot. However, this is caused because of a highway bridge that 
runs over a railway and could be considered a miscalculated section of the Digital 
Elevation map. The GenIn-generated map produces no such deep dark spot and 
instead smoothly removes the bridge and because it does this, it then slightly suffers 
in the resultant accuracy statistics.

5. Conclusions

In this research, we investigated the feasibility of using only color and NIR 
images for accurate DTM extraction. We assume the DSM is also available. Our 
approach involves several steps. The first step is to use color and NIR images for 
land cover classification. After some extensive experiments, it was observed that 
using only four bands cannot achieve accurate land cover classification. A mor-
phological filtering approach was applied to generate synthetic spectral bands. 
Using nine land cover classification algorithms, it was observed that the use of 
synthetic bands significantly improved the land cover classification accuracy for 
the well-known IEEE dataset. The second step is to consolidate the many land cover 
types into only five groups. This was observed to further improve the accuracy. The 
third step is to apply nine inpainting algorithms to recover DTM from DSM. It was 
observed that the deep learning algorithm yielded more consistent performance.

Here, we also briefly mention a few future research directions. One direction is 
to focus on DSM generation using color images. The second direction is to obtain 
ortho-rectified images for the color and NIR images. A third direction is to build a 
software prototype that integrates DSM generation tool, ortho-rectification tool, 
land cover classification tool, and DTM reconstruction tool.

Acknowledgements

This research was supported by DOE under contract # DE-SC0019936.

Figure 5. 
USGS 1/9 arc second digital elevation map for the UH area. Scale is from 8 to 25 m.

163

Practical Digital Terrain Model Extraction Using Image Inpainting Techniques
DOI: http://dx.doi.org/10.5772/intechopen.93184

Author details

Chiman Kwan*, David Gribben, Bulent Ayhan and Jude Larkin
Applied Research LLC, Rockville, MD, USA

*Address all correspondence to: chiman.kwan@signalpro.net

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 



164

Recent Advances in Image Restoration with Applications to Real World Problems

[1] Skarlatos D, Marinos V. Vegetation 
removal from UAV derived DSMS using 
combination of RGB and NIR imagery. 
ISPRS Annals of Photogrammetry, 
Remote Sensing and Spatial Information 
Sciences. 2018;IV-2:255-262

[2] Lee CM, Cable ML, Hook SJ, 
Green RO, Ustin SL, Mandl DJ, et al. An 
introduction to the NASA hyperspectral 
infrared imager (HyspIRI) mission and 
preparatory activities. Remote Sensing 
of Environment. 2015;167:6-19

[3] Zhou J, Kwan C, Budavari B. 
Hyperspectral image super-resolution: 
A hybrid color mapping approach. 
Journal of Applied Remote Sensing. 
2016;10(3):035024

[4] Kwan C, Choi JH, Chan S, Zhou J, 
Budavari B. Resolution enhancement 
for hyperspectral images: A super-
resolution and fusion approach. In: IEEE 
International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). 
New Orleans, LA; 2017. pp. 6180-6184

[5] Wang W, Li S, Qi H, Ayhan B, 
Kwan C, Vance S. Identify anomaly 
component by sparsity and low rank. In: 
IEEE Workshop on Hyperspectral Image 
and Signal Processing: Evolution in 
Remote Sensor (WHISPERS); 2-5 June 
2015; Tokyo, Japan. 2015

[6] Zhou J, Kwan C, Ayhan B, 
Eismann MT. A novel cluster kernel RX 
algorithm for anomaly and  
change detection using hyperspectral 
images. IEEE Transactions on 
Geoscience and Remote Sensing. 
2016;54(11):6497-6504

[7] Qu Y, Qi Y, Ayhan B, Kwan C,  
Kidd R. Does multispectral/
hyperspectral pansharpening improve 
the performance of anomaly detection? 
In: IEEE International Geoscience and 
Remote Sensing Symposium (IGARSS). 
2017. pp. 6130-6133

[8] Zhou J, Kwan C, Ayhan B. Improved 
target detection for hyperspectral 
images using hybrid in-scene 
calibration. Journal of Applied Remote 
Sensing. 2017;11(3):035010

[9] Kwan C, Ayhan B, Chen G, Wang J, 
Ji B, Chang C-I. A novel approach for 
spectral unmixing, classification, and 
concentration estimation of chemical 
and biological agents. IEEE Transactions 
on Geoscience and Remote Sensing. 
2006;44(2):409-419

[10] Eismann MT, Stocker AD, 
Nasrabadi NM. Automated 
hyperspectral cueing for civilian search 
and rescue. Proceedings of the IEEE. 
2009;97(6):1031-1055

[11] Khodadadzadeh M, Li J, Prasad S, 
Plaza A. Fusion of hyperspectral and 
LiDAR remote sensing data using 
multiple feature learning. IEEE Journal 
of Selected Topics in Applied Earth 
Observations and Remote Sensing. 
2015;8(6):2971-2983

[12] Kwan C, Ayhan B, Larkin J, 
Kwan LM, Bernabé S, Plaza A.  
Performance of change detection 
algorithms using heterogeneous 
images and extended multi-attribute 
profiles (EMAPs). Remote Sensing. 
2019;11(20):2377

[13] Kwan C, Larkin J, Ayhan B, 
Kwan LM, Skarlatos D, Vlachos M. 
Performance comparison of different 
inpainting algorithms for accurate DTM 
generation. In: Geospatial Informatics 
X (Conference SI113). 2020. DOI: 
10.1117/12.2557824

[14] Ayhan B, Kwan C, Kwan LM, 
Skarlatos D, Vlachos M. Deep learning 
models for accurate vegetation 
classification using RGB image only.  
In: Geospatial Informatics X 
(Conference SI113). 2020. DOI: 
10.1117/12.2557833

References

165

Practical Digital Terrain Model Extraction Using Image Inpainting Techniques
DOI: http://dx.doi.org/10.5772/intechopen.93184

[15] Ayhan B, Kwan C. Tree, shrub, and 
grass classification using only RGB 
images. Remote Sensing. 2020;12. DOI: 
10.3390/rs12081333

[16] Ayhan B, Kwan C. Application 
of deep belief network to land cover 
classification using hyperspectral 
images. In: International Symposium on 
Neural Networks. 2017. pp. 269-276

[17] Dao M, Kwan C, Bernabé S, Plaza A, 
Koperski K. A joint sparsity approach 
to soil detection using expanded bands 
of WV-2 images. IEEE Geoscience 
and Remote Sensing Letters. Dec 
2019;16(12):1869-1873

[18] Nasrabadi NM. Kernel-based 
spectral matched signal detectors for 
hyperspectral target detection. In: 
International Conference on Pattern 
Recognition and Machine Intelligence. 
Berlin, Heidelberg: Springer; 2007

[19] Kwon H, Nasrabadi NM. Kernel 
RX-algorithm: A nonlinear anomaly 
detector for hyperspectral imagery. 
IEEE Transactions on Geoscience and 
Remote Sensing. 2005;43(2):388-397

[20] Bernabé S, Marpu PR, Plaza A, 
Mura MD, Benediktsson JA. Spectral-
spatial classification of multispectral 
images using kernel feature space 
representation. IEEE Geoscience and 
Remote Sensing Letters. 2014;11:288-292

[21] Doshkov D, Ndjiki-Nya P, 
Lakshman H, Köppel M, Wiegand T. 
Towards efficient intra prediction based 
on image inpainting methods. In: 28th 
Picture Coding Symposium. IEEE; 2010

[22] Inpaint_nans. Available from: 
https://www.mathworks.com/
matlabcentral/fileexchange/ 
4551-inpaint_nans

[23] Zhou J, Kwan C. High performance 
image completion using sparsity based 
algorithms. In: SPIE Commercial +  
Scientific Sensing and Imaging 
Conference. Orlando, FL; 2018

[24] Roth S, Black MJ. Fields of experts. 
International Journal of Computer 
Vision. 2009;82:205

[25] Mansfield A, Prasad M, Rother C, 
Sharp T, Pushmeet K, Van Gool L. 
Transforming image completion. In: 
The 22nd British Machine Vision 
Conference; 29 August-2 September 
2011. 2011

[26] Yu J, Lin Z, Yang J, Shen X, Lu X, 
Huang T. Generative Image Inpainting 
with Contextual Attention. 
arXiv:1801.07892 [cs.CV]. 2018

[27] Dao M, Kwan C, Koperski K, 
Marchisio GA. Joint sparsity approach 
to tunnel activity monitoring using high 
resolution satellite images. In: IEEE 
Ubiquitous Computing, Electronics & 
Mobile Communication Conference. 
2017. pp. 322-328

[28] Burges CA. Tutorial on support 
vector machines for pattern recognition. 
In: Data Mining and Knowledge 
Discovery. Boston: Kluwer Academic 
Publishers; 1998. pp. 121-167

[29] Qian T, Li X, Ayhan B, Xu R,  
Kwan C, Griffin T. Application 
of support vector machines to 
vapor detection and classification 
for environmental monitoring of 
spacecraft. In: Lecture Notes in 
Computer Science, LNCS 3973. New 
York: Springer; 2006. pp. 1216-1222

[30] Bernabé S, Marpu PR, Plaza A, 
Benediktsson JA. Spectral unmixing 
of multispectral satellite images with 
dimensionality expansion using 
morphological profiles. In: Proceedings 
of the SPIE Satellite Data Compression, 
Communications, and Processing VIII; 
19 October 2012; San Diego, CA, USA. 
Vol. 8514. 2012. p. 85140Z

[31] Mura MD, Benediktsson JA, 
Waske B, Bruzzone L. Morphological 
attribute profiles for the analysis of 



164

Recent Advances in Image Restoration with Applications to Real World Problems

[1] Skarlatos D, Marinos V. Vegetation 
removal from UAV derived DSMS using 
combination of RGB and NIR imagery. 
ISPRS Annals of Photogrammetry, 
Remote Sensing and Spatial Information 
Sciences. 2018;IV-2:255-262

[2] Lee CM, Cable ML, Hook SJ, 
Green RO, Ustin SL, Mandl DJ, et al. An 
introduction to the NASA hyperspectral 
infrared imager (HyspIRI) mission and 
preparatory activities. Remote Sensing 
of Environment. 2015;167:6-19

[3] Zhou J, Kwan C, Budavari B. 
Hyperspectral image super-resolution: 
A hybrid color mapping approach. 
Journal of Applied Remote Sensing. 
2016;10(3):035024

[4] Kwan C, Choi JH, Chan S, Zhou J, 
Budavari B. Resolution enhancement 
for hyperspectral images: A super-
resolution and fusion approach. In: IEEE 
International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). 
New Orleans, LA; 2017. pp. 6180-6184

[5] Wang W, Li S, Qi H, Ayhan B, 
Kwan C, Vance S. Identify anomaly 
component by sparsity and low rank. In: 
IEEE Workshop on Hyperspectral Image 
and Signal Processing: Evolution in 
Remote Sensor (WHISPERS); 2-5 June 
2015; Tokyo, Japan. 2015

[6] Zhou J, Kwan C, Ayhan B, 
Eismann MT. A novel cluster kernel RX 
algorithm for anomaly and  
change detection using hyperspectral 
images. IEEE Transactions on 
Geoscience and Remote Sensing. 
2016;54(11):6497-6504

[7] Qu Y, Qi Y, Ayhan B, Kwan C,  
Kidd R. Does multispectral/
hyperspectral pansharpening improve 
the performance of anomaly detection? 
In: IEEE International Geoscience and 
Remote Sensing Symposium (IGARSS). 
2017. pp. 6130-6133

[8] Zhou J, Kwan C, Ayhan B. Improved 
target detection for hyperspectral 
images using hybrid in-scene 
calibration. Journal of Applied Remote 
Sensing. 2017;11(3):035010

[9] Kwan C, Ayhan B, Chen G, Wang J, 
Ji B, Chang C-I. A novel approach for 
spectral unmixing, classification, and 
concentration estimation of chemical 
and biological agents. IEEE Transactions 
on Geoscience and Remote Sensing. 
2006;44(2):409-419

[10] Eismann MT, Stocker AD, 
Nasrabadi NM. Automated 
hyperspectral cueing for civilian search 
and rescue. Proceedings of the IEEE. 
2009;97(6):1031-1055

[11] Khodadadzadeh M, Li J, Prasad S, 
Plaza A. Fusion of hyperspectral and 
LiDAR remote sensing data using 
multiple feature learning. IEEE Journal 
of Selected Topics in Applied Earth 
Observations and Remote Sensing. 
2015;8(6):2971-2983

[12] Kwan C, Ayhan B, Larkin J, 
Kwan LM, Bernabé S, Plaza A.  
Performance of change detection 
algorithms using heterogeneous 
images and extended multi-attribute 
profiles (EMAPs). Remote Sensing. 
2019;11(20):2377

[13] Kwan C, Larkin J, Ayhan B, 
Kwan LM, Skarlatos D, Vlachos M. 
Performance comparison of different 
inpainting algorithms for accurate DTM 
generation. In: Geospatial Informatics 
X (Conference SI113). 2020. DOI: 
10.1117/12.2557824

[14] Ayhan B, Kwan C, Kwan LM, 
Skarlatos D, Vlachos M. Deep learning 
models for accurate vegetation 
classification using RGB image only.  
In: Geospatial Informatics X 
(Conference SI113). 2020. DOI: 
10.1117/12.2557833

References

165

Practical Digital Terrain Model Extraction Using Image Inpainting Techniques
DOI: http://dx.doi.org/10.5772/intechopen.93184

[15] Ayhan B, Kwan C. Tree, shrub, and 
grass classification using only RGB 
images. Remote Sensing. 2020;12. DOI: 
10.3390/rs12081333

[16] Ayhan B, Kwan C. Application 
of deep belief network to land cover 
classification using hyperspectral 
images. In: International Symposium on 
Neural Networks. 2017. pp. 269-276

[17] Dao M, Kwan C, Bernabé S, Plaza A, 
Koperski K. A joint sparsity approach 
to soil detection using expanded bands 
of WV-2 images. IEEE Geoscience 
and Remote Sensing Letters. Dec 
2019;16(12):1869-1873

[18] Nasrabadi NM. Kernel-based 
spectral matched signal detectors for 
hyperspectral target detection. In: 
International Conference on Pattern 
Recognition and Machine Intelligence. 
Berlin, Heidelberg: Springer; 2007

[19] Kwon H, Nasrabadi NM. Kernel 
RX-algorithm: A nonlinear anomaly 
detector for hyperspectral imagery. 
IEEE Transactions on Geoscience and 
Remote Sensing. 2005;43(2):388-397

[20] Bernabé S, Marpu PR, Plaza A, 
Mura MD, Benediktsson JA. Spectral-
spatial classification of multispectral 
images using kernel feature space 
representation. IEEE Geoscience and 
Remote Sensing Letters. 2014;11:288-292

[21] Doshkov D, Ndjiki-Nya P, 
Lakshman H, Köppel M, Wiegand T. 
Towards efficient intra prediction based 
on image inpainting methods. In: 28th 
Picture Coding Symposium. IEEE; 2010

[22] Inpaint_nans. Available from: 
https://www.mathworks.com/
matlabcentral/fileexchange/ 
4551-inpaint_nans

[23] Zhou J, Kwan C. High performance 
image completion using sparsity based 
algorithms. In: SPIE Commercial +  
Scientific Sensing and Imaging 
Conference. Orlando, FL; 2018

[24] Roth S, Black MJ. Fields of experts. 
International Journal of Computer 
Vision. 2009;82:205

[25] Mansfield A, Prasad M, Rother C, 
Sharp T, Pushmeet K, Van Gool L. 
Transforming image completion. In: 
The 22nd British Machine Vision 
Conference; 29 August-2 September 
2011. 2011

[26] Yu J, Lin Z, Yang J, Shen X, Lu X, 
Huang T. Generative Image Inpainting 
with Contextual Attention. 
arXiv:1801.07892 [cs.CV]. 2018

[27] Dao M, Kwan C, Koperski K, 
Marchisio GA. Joint sparsity approach 
to tunnel activity monitoring using high 
resolution satellite images. In: IEEE 
Ubiquitous Computing, Electronics & 
Mobile Communication Conference. 
2017. pp. 322-328

[28] Burges CA. Tutorial on support 
vector machines for pattern recognition. 
In: Data Mining and Knowledge 
Discovery. Boston: Kluwer Academic 
Publishers; 1998. pp. 121-167

[29] Qian T, Li X, Ayhan B, Xu R,  
Kwan C, Griffin T. Application 
of support vector machines to 
vapor detection and classification 
for environmental monitoring of 
spacecraft. In: Lecture Notes in 
Computer Science, LNCS 3973. New 
York: Springer; 2006. pp. 1216-1222

[30] Bernabé S, Marpu PR, Plaza A, 
Benediktsson JA. Spectral unmixing 
of multispectral satellite images with 
dimensionality expansion using 
morphological profiles. In: Proceedings 
of the SPIE Satellite Data Compression, 
Communications, and Processing VIII; 
19 October 2012; San Diego, CA, USA. 
Vol. 8514. 2012. p. 85140Z

[31] Mura MD, Benediktsson JA, 
Waske B, Bruzzone L. Morphological 
attribute profiles for the analysis of 



Recent Advances in Image Restoration with Applications to Real World Problems

166

very high resolution images. IEEE 
Transactions on Geoscience and Remote 
Sensing. 2010;48:3747-3762

[32] Mura MD, Benediktsson JA, 
Waske B, Bruzzone L. Extended 
profiles with morphological attribute 
filters for the analysis of hyperspectral 
data. International Journal of Remote 
Sensing. 2010;31:5975-5991

[33] Sun W, Du Q. Hyperspectral band 
selection: A review. IEEE Geoscience 
and Remote Sensing Magazine. 
2019;7(2):118-139

[34] Kwan C, Gribben D, Ayhan B, 
Bernabe S, Plaza A, Selva M. Improving 
land cover classification using 
extended multi-attribute profiles 
(EMAP) enhanced color, near infrared, 
and LiDAR data. Remote Sensing. 
2020;12(9). DOI: 10.3390/rs12091392

[35] Zhang W, Qi J, Wan P, Wang H, 
Xie D, Wang X, et al. An easy-to-use 
airborne LiDAR data filtering method 
based on cloth simulation. Remote 
Sensing. 2016;8(6):501

[36] Kwan C, Chou B, Kwan LM, 
Larkin J, Ayhan B, Bell JF, et al. 
Demosaicking enhancement using 
pixel-level fusion. Journal of Signal, 
Image, and Video Processing. 
2018;12:749-756. DOI: 10.1007/
s11760-017-1216-2



Recent Advances in Image Restoration with Applications to Real World Problems

166

very high resolution images. IEEE 
Transactions on Geoscience and Remote 
Sensing. 2010;48:3747-3762

[32] Mura MD, Benediktsson JA, 
Waske B, Bruzzone L. Extended 
profiles with morphological attribute 
filters for the analysis of hyperspectral 
data. International Journal of Remote 
Sensing. 2010;31:5975-5991

[33] Sun W, Du Q. Hyperspectral band 
selection: A review. IEEE Geoscience 
and Remote Sensing Magazine. 
2019;7(2):118-139

[34] Kwan C, Gribben D, Ayhan B, 
Bernabe S, Plaza A, Selva M. Improving 
land cover classification using 
extended multi-attribute profiles 
(EMAP) enhanced color, near infrared, 
and LiDAR data. Remote Sensing. 
2020;12(9). DOI: 10.3390/rs12091392

[35] Zhang W, Qi J, Wan P, Wang H, 
Xie D, Wang X, et al. An easy-to-use 
airborne LiDAR data filtering method 
based on cloth simulation. Remote 
Sensing. 2016;8(6):501

[36] Kwan C, Chou B, Kwan LM, 
Larkin J, Ayhan B, Bell JF, et al. 
Demosaicking enhancement using 
pixel-level fusion. Journal of Signal, 
Image, and Video Processing. 
2018;12:749-756. DOI: 10.1007/
s11760-017-1216-2



Recent Advances in Image 
Restoration with Applications 

to Real World Problems
Edited by Chiman Kwan

Edited by Chiman Kwan

In the past few decades, imaging hardware has improved tremendously in terms of 
resolution, making widespread usage of images in many diverse applications on Earth 
and planetary missions. However, practical issues associated with image acquisition 
are still affecting image quality. Some of these issues such as blurring, measurement 
noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect 

the accuracy of the aforementioned applications. This book intends to provide the 
reader with a glimpse of the latest developments and recent advances in image 

restoration, which includes image super-resolution, image fusion to enhance spatial, 
spectral resolution, and temporal resolutions, and the generation of synthetic images 

using deep learning techniques. Some practical applications are also included.
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