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Preface

Diagnosis is one of the milestones of medical assistance and an important research 
area in biological and medical sciences. Even considered as a subdiscipline of 
analytical chemistry, bioanalysis is a complex and translational field in charge of 
the investigation of biotics and xenobiotics structures in biological contexts.

In this book, readers will find different multidisciplinary studies in three sections.

Section 1, “Pharmacology and Drugs Biomarkers,” includes interesting reviews 
on pharmacokinetics markers and multidrug resistance. Chapter 1 by Dr. Ashok 
Palaniappan, et al. brings us an understanding of computational studies, describing 
homology modeling, differential ligand affinity, and receptor-ligand docking, among 
other subjects. Chapter 2 by Dr. Raman Sureshkumar, et al. reports the mechanism 
of natural inhibitors using P-glycoprotein transporters as a representation to describe 
a mechanism of action model. Chapter 3 by Dr. Wai-Kit Ma, et al. presents a specific 
and well-done study about the urological effects of ketamine abuse. This subject 
provides understanding of the use of biomarkers as monitoring tools for clinical aims.

Section 2, “Nephrology and Renal Physiology,” includes three chapters that link 
basic and clinical backgrounds using renal failure to demonstrate the diversity 
of bioanalysis applications and its uses in the medical environment. Chapter 4 
by Professor Silvia De Rosa, et al. discusses nutritional status, muscle mass, 
and muscle wasting through serum creatinine analysis. Chapter 5 by Professor 
Jiang Liu is a comprehensive review of the impact of Na+/K+-ATPase signaling in 
the renal proximal tubule and its outcome on natriuresis, cardiotonic steroids, and 
reactive oxygen species (ROS). Chapter 6 by Dr. Henrique Muela, et al. discusses 
hypertension, salt intake, and the effect of salt dietary restriction in vascular 
scenarios.

Section 3, “Biochemistry, Cellular and Molecular Biology,” presents studies that 
merge different aspects of basic sciences. In Chapter 7, Dr. David Mole, et al. presents 
his study on hypoxia, through the analysis of the hypoxia-inducible factor (HIF) 
pathway, and its effects over clear cell renal cancer. Chapter 8 by Dr. Ernest Anyabolu 
describes urine excretion, using creatinine as a reference, and the differences on its 
mechanism comparing HIV and non-HIV subjects. Chapter 9 by Dr. Tatyanny Fucci, 
et al. focuses on the DNA polymorphisms related to thromboembolism and the signif-
icance of molecular screening as a strategy for following up patients with COVID-19.

This project was launched in early 2019. During this period, the world faced the 
most important public health issue of the century, the COVID-19 pandemic. As an 
academic editor, I had the pleasure of reviewing high-level proposals and, at the 
same time, taking part in a tremendous effort to control the pandemic in different 
countries through collaborations and voluntary work.

For that reason, I wish to dedicate this book to all scientists and health workers who 
played an important role in this historical moment. Beyond them, I also wish to 
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dedicate this book to all patients and their families. Each life, saved or lost, makes 
a difference and contributes to the improvement of health sciences.

I am grateful to all authors, contributors, and experts who took considerable 
effort to ensure that each chapter provides updated and innovative data. I wish  
to thank the team at IntechOpen for their support, especially Sara Debeuc and 
Lucija Tomicic-Dromgool.

The scope of this work goes beyond this preface. I wish you all an excellent reading 
and learning from Biomarkers and Bioanalysis Overview.

Ane C.F. Nunes, Ph.D.
University of California,

Irvine, USA
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Chapter 1

Computational Studies of Drug
Repurposing Targeting
P-Glycoprotein-Mediated
Multidrug Resistance Phenotypes
in Priority Infectious Agents
Arvindh Kumar, Sangeetha Muthamilselvan
and Ashok Palaniappan

Abstract

ABCB1 P-glycoprotein (P-gp) is an ATP-dependent efflux pump with broad
substrate specificity associated with cellular drug resistance. Homologous to role
in mammalian biology, P-glycoproteins of bacterial and fungal pathogens mediate
the emergence of multidrug resistance phenotypes, with widespread clinical/
socioeconomic implications. This work aims to characterize P-gp homologues in
certain WHO-prioritized infectious agents, namely (1) bacteria: Acinetobacter
baumannii and Staphylococcus aureus and (2) fungi: Aspergillus fumigatus, Candida
albicans, and Cryptococcus neoformans. PSI-BLAST searches against the genome
of each of these organisms confirmed the presence of P-gp homologues. Each
homologue was aligned against five known P-gp structures, for structural model-
ing. FDA-approved antibiotics used in the current line of therapy were retrieved
from PubChem, and potential antibiotics were identified based on similarity and
repurposing of the existing drugs. The most tenable target-ligand conformations
from docking studies of the respective modeled P-gp structures and the antibiotic
ligands were assessed for interacting residues within 4.5 Å of the ligand, probable
binding pockets and relative efficacies of the new drugs. Our studies could lay
the foundation for the development of effective synergistic or new therapies
against these pathogens.

Keywords: P-glycoprotein, priority pathogen list, nosocomial infection, multidrug
resistance, homology modeling, receptor-ligand docking, differential ligand
affinity, synergistic effects

1. Introduction

1.1 Multidrug resistance (MDR)

Bacterial evolution tends to respond to the selection constraint of reckless anti-
biotic use, which has led to the emergence of drug-resistant strains mediated by
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varied defense mechanisms. The main mechanisms whereby infectious agents
develop resistance to antimicrobial chemotherapy include enzymatic inactivation,
modification of the drug target(s), and reduction of intracellular drug concentra-
tion by changes in membrane permeability or by the overexpression of efflux
pumps [1]. Multidrug resistance efflux pumps are recognized as an important
component of resistance in both Gram-positive and Gram-negative bacteria [2].
Some bacterial efflux pumps may be selective for one substrate or transport antibi-
otics of different classes, conferring a multidrug resistance phenotype. With respect
to efflux pumps, they provide a self-defense mechanism whereby antibiotics are
extruded from the cell interior to the external environment. This results in sublethal
drug concentrations at the active site that in turn may predispose the organism to
the development of high-level target-based resistance [3]. Therefore, efflux pumps
are viable antibacterial targets and the development of potent efflux pump inhibi-
tors is a promising and valid strategy to rejuvenate the activity of antibiotics that are
no longer effective against bacterial pathogens. The world is searching for new tools
to combat multidrug resistance.

1.2 P-glycoprotein (P-gp)

ATP-binding cassette (ABC) transporters are found in all phyla and constitute one
of the largest protein superfamilies. ABC transporters such as ABCB1 (P-glycoprotein/
P-gp), ABCG2, and ABCC1 are well known for their association with multidrug
resistance, effluxing structurally diverse compounds, powered by the hydrolysis of
ATP [4]. P-gp also plays an important role in the pharmacokinetics of many drugs,
altering their absorption, distribution, and excretion. P-gp has been extensively
studied since 1976, when it was identified as the multidrug efflux pump in Chinese
hamster ovary cells that had been selected for resistance to colchicine [3].

In eukaryotes, it takes the form of a single polypeptide chain consisting of two
transmembrane domains (TMDs) that are usually arranged into six
transmembrane-spanning α-helices that form the pathway through which substrate
crosses the membrane. These domains also form the substrate-binding site (or sites)
which contribute to transport specificity. The two nucleotide-binding domains
(NBDs) couple the energy of ATP catalysis to transport [5]. In some prokaryotes,
however, the P-gp structure comprises a monomeric assembly, namely, a single
TMD and a single NTD. The various domains can comprise one, two, or four
polypeptide chains, encoded by the same or different genes, which assemble into
monomers, homo- or heterodimers, or tetramers.

Prokaryotes harbor both importers for nutrient uptake (including amino acids,
sugars, and metal ions) and exporters (drugs, toxins, polysaccharides, lipids, and
proteins), whereas eukaryotes harbor only exporters [6]. It is believed that this
transporter functions through an alternate access mechanism involving two differ-
ent conformations. Drug binding occurs to the inward-facing from the cytoplasm or
the inner leaflet of the bilayer. After binding two molecules of MgATP, the
nucleotide-binding domains (NBDs) dimerize and switch the transmembrane
domain (TMDs) from the inward- to the outward-facing conformation, followed by
the release of the drug to the extracellular milieu. ATP hydrolysis, ADP/Pi release,
and NBD dissociation reset the transporter to the inward-facing conformation.
The switch from inward to outward form certainly requires a highly flexible
structure [4, 7, 8].

Substrate “promiscuity” or polyspecificity is a well-known characteristic of P-gp
and the subject of much research. Attempts have been made to understand the
ability of P-gp to recognize various chemically and structurally diverse substrates
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through biochemical investigations and structural studies. Despite all these studies,
the molecular basis of this unusual property still remains poorly understood and is a
matter of intense debate [9].

2. Prioritizing pathogenic agents

Opportunistic pathogens with a response profile of drug resistance to antibiotic
treatment are good candidates for study. The organisms chosen here included
bacteria and fungi identified by theWHO as priority pathogens [10] as well as other
nosocomial pathogens that pose an elevated threat level due to acquisition of MDR
over the recent years. Nosocomial pathogens are subject to the evolutionary pres-
sure exerted by constant exposure to antibiotics in hospitals that could accelerate
the emergence of pathogenicity-related mutations.

2.1 Acinetobacter baumannii

Multidrug-resistant Acinetobacter baumannii strains are opportunistic bacterial
pathogens primarily associated with nosocomial infections worldwide [11]. Due to
the remarkable ability of A. baumannii to gain resistance to antibiotics, this bacte-
rium is now considered to be a “superbug.” Acinetobacter baumannii strains resis-
tant to all clinically relevant antibiotics known have also been isolated. Although
MDR A. baumannii (MDR-Ab) continues to disseminate globally, very little is
known about its pathogenesis mechanisms. Once detected within specific areas of
the hospital, various levels of intervention have been attempted to reduce the
incidence and prevalence of infection due to MDR-Ab [12].

Acinetobacter baumannii and its close relatives belonging to genomic species 3
(Acinetobacter pittii) and 13TU (Acinetobacter nosocomialis) are important nosoco-
mial pathogens, often associated with epidemic outbreaks of infection, that are only
rarely found outside of a clinical setting. These organisms are frequently pandrug-
resistant and are capable of causing substantial morbidity and mortality in patients
with severe underlying disease, both in the hospital and in the community [13].
Several epidemic clonal lineages of A. baumannii have disseminated worldwide and
seem to have a selective advantage over non-epidemic strains. Physicians are also
facing challenging therapeutic quandaries when treating patients infected with
MDR-Ab, because the increasing prevalence of resistance continues to restrict their
treatment options [14].

Urban et al. [12] gave us a look into the MDR in Acinetobacter baumannii,
discussing its medical relevance and treatment options. They sought to control infec-
tion due to MDR-Ab by identifying isolates as clonally related, leading to enhanced
infection-control measures, including cohorting, surveillance, contact precaution,
initial therapy with ampicillin/sulbactam and local polymyxin B, and, more recently,
therapy with synergistic antibiotic combinations. Gupta et al. [15] demonstrated the
existence of MDR-Ab and its significance. Park et al. [16] determined the complete
genome sequence of A. baumannii strain 1656-2 to study biofilm formation. This
strain is significant to the project due to its use in target selection.

2.2 Staphylococcus aureus

Staphylococcus aureus is a major human pathogen that causes a wide range of
clinical infections. Approximately 30% of the human population is colonized with
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S. aureus; however, it is a leading cause of bacteremia and infective endocarditis as
well as osteoarticular, skin and soft tissue, pleuropulmonary, and device-related
infections [17]. The WHO has categorized Staphylococcus aureus as a high-priority
pathogen that possesses MDR, as a consequence of its acquisition of methicillin and
vancomycin resistance.

Hiramatsu et al. [18] described the genetic basis for the remarkable ability of
S. aureus to acquire multi-antibiotic resistance and proposed a novel paradigm for
future chemotherapy against the multiresistant pathogens. The evolution of Staph-
ylococcus or for that matter any bacterium does not halt. Lemaire et al. [19] exam-
ined the effect of P-gp on the modulation of the intracellular accumulation and
activity of daptomycin towards phagocytosed Staphylococcus aureus in human THP-
1 macrophages, in comparison with MDCK epithelial cells. Handzlik et al. [2]
delineated recent achievements in the search for new chemical compounds able to
inhibit multidrug resistance mechanisms in Gram-positive pathogens.

2.3 Aspergillus fumigatus

Aspergillus fumigatus is a saprophytic fungus that plays an essential role in
recycling environmental carbon and nitrogen. Its natural ecological niche is the soil,
wherein it survives and grows on organic debris. Aspergillus fumigatus is of the more
prevalent opportunistic pathogens involved in human aspergillosis in which, though
a minor disease, because of the increase in the number of immunosuppressed patients
and the degree of severity of modern immunosuppressive therapies, the situation has
changed dramatically in recent years. The diversity of patients and risk factors com-
plicates diagnostic and therapeutic decision-making [20]. Invasive procedures are
often precluded by host status; noninvasive diagnostic tests vary in their sensitivity
and specificity. The ability of Aspergillus species to withstand antifungal treatment
may be due in part to the presence of the MDR mechanism of drug efflux.

Latge [20] reviewed taxonomy of aspergillosis, its symptoms, diagnosis, viru-
lence factors, defense mechanisms, epidemiology, and treatment. Little is known of
the cellular and humoral defense mechanisms which are essential for the killing of
A. fumigatus conidia and hyphae in the immunocompetent host. Tobin et al. [21]
identified genes encoding proteins of the ATP-binding cassette superfamily in
Aspergillus fumigatus and Aspergillus flavus. In A. fumigatus, two genes (AfuMDR1
and AfuMDR2) encoding proteins of the ATP-binding cassette superfamily were
identified, which are the probable homologue of human P-gp.

2.4 Candida albicans

Candida species have emerged among the top three causes of microbial nosoco-
mial infectious diseases in humans, resulting in 46–75% mortality. The incidence of
candidiasis has increased sharply over the past few decades, primarily due to hos-
pital interventions such as cancer chemotherapy, surgery, organ/bone marrow
transplantation, and indwelling devices [22]. Of note, recently, the incidences of
albicans and non-albicans species of Candida acquiring resistance to antifungals
(particularly to azoles) have increased considerably which poses problems towards
its successful chemotherapy [23]. Drug transporters, such as the ATP-binding cas-
sette transporters encoded by CDR1 and CDR2 (Candida drug resistance), and a
major facilitator superfamily (MFS) transporter encoded byMDR1, play key roles in
azole resistance as deduced by their high level of expression in the majority of azole-
resistant clinical Candida albicans isolates [22].
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Schubert et al. [24] stated that constitutive overexpression of the Mdr1 efflux
pump was an important mechanism of acquired drug resistance C. albicans. The
Mdr1 efflux pump is a P-gp homologue and is hence significant to this project. Sun
et al. [22] highlighted an extensive upregulation of MDR1 as well as polyamine
transporter genes in a fluconazole-resistant strain, going further to correlate the
presence of MDR1 in C. albicans and its role in fluconazole resistance.

2.5 Cryptococcus neoformans

Cryptococcus neoformans is an encapsulated fungal pathogen that is remarkable for
its tendency to cause meningoencephalitis, especially in patients with AIDS. While
the disease is less common in children than adults, it remains an important cause of
morbidity and mortality among HIV-infected children without access to anti-
retroviral therapy [25]. Cryptococcus neoformans is a basidiomycetous yeast ubiquitous
in the environment and a model for fungal pathogenesis. CneMDR1, a gene encoding
a protein related to several eukaryotic multidrug resistance proteins, was identified,
cloned, and characterized from a clinical isolate of Cryptococcus neoformans [26].

Kao and Goldman [25] reviewed recent insights into both the biology and treat-
ment of cryptococcosis with a special emphasis on the pediatric literature.
Thornewell et al. [26] characterized the CneMDR1 gene. Protein structure predic-
tions suggested the presence of two putative 6-transmembrane (TM) domains as
well as two ATP-binding domains, structural characteristics typical of ATP-binding
cassette (ABC) proteins, including P-glycoprotein.

3. Sequence and structure analyses

3.1 Bacterial P-glycoprotein efflux pumps

Bacterial P-glycoproteins were identified based on homology to the mammalian
P-gp in the following manner. The position-specific iterated BLAST (PSI-BLAST)
was performed against a search set of nonredundant protein sequences in the
organism of interest, using hP-GP as the query (hP-gp; UniProt P08183). Through a
PSI-BLAST search, a large set of related proteins are compiled. It is used to identify
distant evolutionary relationships between protein sequences. The algorithm
parameters were set with an E-value of 0.001, and the scoring matrix BLOSUM62
was used. This step was performed on all four organisms of interest (Aspergillus
fumigatus, Acinetobacter baumannii, Staphylococcus aureus, Candida albicans, Cryp-
tococcus neoformans). Hundreds of hits were obtained for P-glycoprotein, and these
results were prioritized according to predetermined parameters such as medical
relevance, annotation status, and the presence of conserved regions. The results
were analyzed, and the P-glycoprotein sequence of each organism was finalized and
recorded as in Appendix A. The results were filtered for the organisms of interest
and shown in Table 1.

Hundreds of hits are obtained for P-glycoprotein, and these results were priori-
tized according to medical relevance and sequence identity. The significance of the
sequence identity is that, with a higher sequence identity, there is a higher similarity
between the query sequence and the aligned sequence. This project will focus on
nosocomial bacterial and fungal strains. The chosen sequences would have con-
served regions determined through multiple sequence alignment with the ClustalX2
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software, the most widely used multiple alignment programs. The guide trees in
Clustal were calculated using the neighbor-joining (NJ) method [27].

3.2 Homology modeling

The target sequences and the suitable templates were chosen and aligned using
ClustalX2. Multiple sequence alignment was performed between the targets and the
templates so that the homology and evolutionary relationship between the
sequences of the biological data set can be inferred [27]. This information was
considered in the structure validation. The templates chosen are:

• 4M1M—Mus musculus

• 2HYD—Staphylococcus aureus

• 3B5Z—Salmonella enterica

• 3WME—Cyanidioschyzon merolae

• 4F4C—Caenorhabditis elegans

The p-glycoprotein sequences would be used as target sequences for structure
modeling with SWISS-MODEL [28]. SWISS-MODEL is an open-source, structural
bioinformatics tool used for the automated comparative modeling of three-
dimensional protein structures. Several P-glycoprotein structures were modeled for
each organism, using multiple templates. The templates having high sequence sim-
ilarity with the target sequences were given preference. The objective of homology
modeling is to identify the best template and build the PDB model of the macro-
molecule to be used in docking. Modeling of the predetermined templates was
accepted if they resulted in high modeling (GMQE) scores. Each modeled structure
was saved as a PDB file. The results are summarized in Table 3.

The validity was checked using the Ramachandran plot with tools such as
Procheck. The structures were refined using energy minimization protocols, and
the least energetic structure corresponding to each efflux pump protein was chosen
for docking studies.

In summary, the FASTA sequences of the BLAST results were obtained and fed
into the SWISS-MODEL to build homology models with the above set of templates.
The SWISS-MODEL provided us with the top 100 templates that can be used to
generate a homology model. To generate the best possible homology model, the
templates were aligned with the target organisms using the multiple alignment tool
Clustalx2, and a phylogenetic analysis is subsequently conducted.

Organism Max score Total score Query cover (%) Ident (%) Length

Aspergillus fumigatus 966 1389 97.00 42.00 1349

Acinetobacter baumannii 256 498 82.00 32.00 555

Staphylococcus aureus 268 504 58.00 34.00 578

Candida albicans 183 352 88.00 23.00 1606

Cryptococcus neoformans 931 931 97.00 42.00 1408

Table 1.
Summary of BLAST results.
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From Table 2, it could be inferred that in the cases of Aspergillus fumigatus and
Cryptococcus neoformans, 4m1m was the most phylogenetically favored templates.
Candida albicans and Staphylococcus aureus are phylogenetically favored to the 2hyd
template, and Acinetobacter baumannii is phylogenetically closer to 3b5z.

The validity of the homology models was further checked with Phi-Psi graphs and
Chi1-Chi2 plots for each residue type. The template comparison is done based on:

• Taxonomy of the target organism with respect to the templates

• Distance analysis

Subsequent to the Ramachandran plot validation, from Table 3, we can infer
that 4m1m is preferred in Aspergillus fumigatus, Aspergillus nidulans, Acinetobacter

Templates Phylogenetic distance

A. fumigatus A. baumannii C. albicans S. aureus C. neoformans

3wme 0.635 0.701 0.844 0.707 0.632

4f4c 0.641 0.703 0.831 0.716 0.637

4m1m 0.584 0.707 0.842 0.711 0.577

2hyd 0.728 0.623 0.81 0.602 0.711

3b5z 0.678 0.592 0.827 0.661 0.694

Bold values indicate the phylogenetically nearest structure.

Table 2.
Phylogenetic distance between templates and the target sequence of each organism.

Total residues Query cover (%) Sequence identity

Organism: Aspergillus fumigatus

3wme.1.a 565 0.43 37.8

4f4c.1.a 1241 0.91 37.48

4m1m.2.a 1251 0.91 42.15

Organism: Acinetobacter baumannii

3wme.1.a 550 0.99 30.29

4f4c.1.a 537 0.99 28.88

4m1m.2.a 545 0.97 32.22

Organism: Candida albicans

4f4c.1.a 912 0.52 17

4m1m.2.a 1272 0.7 18.83

Organism: Staphylococcus aureus

3wme 575 0.98 29.75

Organism: Cryptococcus neoformans

3wme.1.a 608 0.41 37.89

4f4c.1.a 1259 0.88 37.74

4m1m.1.a 582 0.41 38.5

Bold values indicate optimal parameter values for each organism.

Table 3.
Results of template parameter comparison—homology results.
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Antibiotic PubChemID SMILES format

Amikacin 37768 C1C(C(C(C(C1NC(]O)C(CCN)O)OC2C(C(C(C(O2)CO)O)N)O)
O)OC3C(C(C(C(O3)CN)O)O)O)N

Colistin 5311054 CCC(C)CCCC(]O)NC(CCN)C(]O)NC(C(C)O)C(]O)NC(CCN)
C(]O)NC1CCNC(]O)C(NC(]O)C(NC(]O)C(NC(]O)C(NC
(]O)C(NC(]O)C(NC1]O)CCN)CC(C)C)CC(C)C)CCN)CCN)C

(C)O

Kanamycin 6032 C1C(C(C(C(C1N)OC2C(C(C(C(O2)CN)O)O)O)O)OC3C(C(C(C
(O3)CO)O)N)O)N

Netilmicin 90658113 CCNC1CC(C(C(C1OC2C(C(C(CO2)O)NC)(C)O)O)OC3C(CC]C
(O3)CN)N)N

Sulbactam 130313 CC1(C(N2C(S1(]O)]O)CC2]O)C(]O)O)C

Amphotericin B 5280965 CC1C]CC]CC]CC]CC]CC]CC]CC(CC2C(C(CC(O2)(CC
(CC(C(CCC(CC(CC(]O)OC(C(C1O)C)C)O)O)O)O)O)O)O)C(]

O)O)OC3C(C(C(C(O3)C)O)N)O

Anidulafungin 166548 CCCCCOC1]CC]C(C]C1)C2]CC]C(C]C2)C3]CC]C(C]
C3)C(]O)NC4CC(C(NC(]O)C5C(C(CN5C(]O)C(NC(]O)C

(NC(]O)C6CC(CN6C(]O)C(NC4]O)C(C)O)O)C(C(C7]CC]
C(C]C7)O)O)O)C(C)O)C)O)O)O

Isavuconazonium 6918606 CC(C1]NC(]CS1)C2]CC]C(C]C2)C#N)C(CN3C][N+](C]
N3)C(C)OC(]O)N(C)C4]C(C]CC]N4)COC(]O)CNC)(C5]

C(C]CC(]C5)F)F)O

Itraconazole 55283 CCC(C)N1C(]O)N(C]N1)C2]CC]C(C]C2)N3CCN(CC3)
C4]CC]C(C]C4)OC[C@H]5CO[C@](O5)(CN6C]NC]N6)

C7]C(C]C(C]C7)Cl)Cl

Micafungin 477468 CCCCCOC1]CC]C(C]C1)C2]CC(]NO2)C3]CC]C(C]C3)
C(]O)NC4CC(C(NC(]O)C5C(C(CN5C(]O)C(NC(]O)C(NC
(]O)C6CC(CN6C(]O)C(NC4]O)C(C)O)O)C(C(C7]CC(]C
(C]C7)O)OS(]O)(]O)O)O)O)C(CC(]O)N)O)C)O)O)O

Porfimer 57166 CC1]C(C2]CC3]NC(]CC4]NC(]CC5]C(C(]C(N5)C]
C1N2)C(C)OC(C)C6]C(C7]CC8]C(C(]C(N8)C]C9C(]C(C
(]N9)C]C1C(]C(C(]N1)C]C6N7)C)CCC(]O)O)CCC(]O)
O)C)C)C(C)O)C)C)C(]C4CCC(]O)O)C)C(]C3C)CCC(]O)O)

C(C)O

Voriconazole 71616 CC(C1]NC]NC]C1F)C(CN2C]NC]N2)(C3]C(C]C(C]C3)
F)F)O

Fluconazole 3365 C1]CC(]C(C]C1F)F)C(CN2C]NC]N2)(CN3C]NC]N3)O

Clotrimazole 2812 C1]CC]C(C]C1)C(C2]CC]CC]C2)(C3]CC]CC]C3Cl)
N4C]CN]C4

Nystop 11953884 CC1C]CC]CCCC]CC]CC]CC]CC(CC(C(C(CC(]O)CC(C
(CCC(CC(CC(CC(]O)OC(C(C1O)C)C)O)O)O)O)O)O)C(]O)O)

O)OC2C(C(C(C(O2)C)O)N)O

Clindamycin 29029 CCCC1CC(N(C1)C)C(]O)NC(C2C(C(C(C(O2)SC)O)O)O)C(C)Cl

Finafloxacin 11567473 C1CC1N2C]C(C(]O)C3]CC(]C(C(]C32)C#N)N4CC5C(C4)
OCCN5)F)C(]O)O

Vancomycin 14969 CC1C(C(CC(O1)OC2C(C(C(OC2OC3]C4C]C5C]C3OC6]C
(C]C(C]C6)C(C(C(]O)NC(C(]O)NC5C(]O)NC7C8]CC(]
C(C]C8)O)C9]C(C]C(C]C9C(NC(]O)C(C(C1]CC(]C(O4)
C]C1)Cl)O)NC7]O)C(]O)O)O)O)CC(]O)N)NC(]O)C(CC

(C)C)NC)O)Cl)CO)O)O)(C)N)O

Table 4.
List of known FDA approved antibiotics.
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baumannii, and Candida albicans; 4m1m is the best template. In Cryptococcus
neoformans, 4f4c is preferred, and 3wme is preferred in Staphylococcus aureus.

4. Antibiotics of interest

A set of antibiotics were identified for the purposes of investigation and
included known FDA-approved antibiotics (Table 4) against each of the target
organisms as well as promising antibiotics that ranged from repurposed to investi-
gational (Table 5).

For each structure, we surveyed the literature to determine the known antibi-
otics that are effective against it and against which the pathogenic strain might have

Compound PubChemID SMILES format

Levofloxacin 149096 CC1COC2]C3N1C]C(C(]O)C3]CC(]C2N4CCN(CC4)C)F)C(]
O)O

Moxifloxacin 152946 COC1]C2C(]CC(]C1N3CC4CCCNC4C3)F)C(]O)C(]
CN2C5CC5)C(]O)O

Tigecycline 54686904 CC(C)(C)NCC(]O)NC1]C(C2]C(CC3CC4C(C(]O)C(]C(C4(C
(]O)C3]C2O)O)O)C(]O)N)N(C)C)C(]C1)N(C)C)O

Trovafloxacin 62959 C1C2C(C2N)CN1C3]C(C]C4C(]O)C(]CN(C4]N3)C5]C(C]C
(C]C5)F)F)C(]O)O)F

Echinocandin 71723607 CC1CN2C(C1O)C(]O)NCC(CC(C(]O)NC(C(]O)N3CC(CC3C(]
O)NC(C(]O)NC(C2]O)C(CCNC(CO)CO)O)C(CC4]CC(]C(C]
C4)O)OC)O)O)C(C)O)NCC5CCC(CC5)C(]N)SC(]N)C6]CC]C

(C]C6)N7CCC(CC7)(C8CCCCC8)OC)O

Terbinafine 1549008 CC(C)(C)C#CC]CCN(C)CC1]CC]CC2]CC]CC]C21

VL-2397 77843968 CC(C)CC1C(]O)NC(C(]O)NC(C(]O)NC(C(]O)NC(C(]O)NC
(C(]O)N1)CC(]O)N)CCCN(C(]O)C)[O-])CCCN(C(]O)C)[O-])

CCCN(C(]O)C)[O-])CC2]CC]CC]C2.[Al+3]

Bithionol 2406 C1]C(C]C(C(]C1Cl)O)SC2]CC(]CC(]C2O)Cl)Cl)Cl

Carvacrol 10364 CC1]C(C]C(C]C1)C(C)C)O

VT-1129 91886002 C1]CC(]CC]C1C2]CN]C(C]C2)C(C(CN3C]NN]N3)(C4]C
(C]C(C]C4)F)F)O)(F)F)OC(F)(F)F

Aminocandin 16072305 CCCCCCCCOC1]CC]C(C]C1)C2]CC]C(C]C2)C(]O)NC3CC
(CNC(]O)C4C(C(CN4C(]O)C(NC(]O)C(NC(]O)C5CC(CN5C
(]O)C(NC3]O)C(C)O)O)C(CC6]CC]CC]C6)O)CO)C)O)

NCCN

Caspofungin 16119814 C1CC(C(C1)N)C(]O)O

E1210 16719049 C1]CC]NC(]C1)OCC2]CC]C(C]C2)CC3]NOC(]C3)C4]C
(N]CC]C4)N

Ceftobiprole 6918430 Nc1nc(ns1)\C(]N\O)\C(]O)N[C@H]2[C@H]3SCC(]C(N3C2]O)
C(]O)O)\C]C\4/CCN([C@@H]5CCNC5)C4]O

Brilacidin 25023695 C1CNCC1OC2]C(C]C(C]C2NC(]O)CCCCN]C(N)N)C(F)(F)F)
NC(]O)C3]CC(]NC]N3)C(]O)NC4]C(C(]CC(]C4)C(F)(F)

F)NC(]O)CCCCN]C(N)N)OC5CCNC5

Radezolid 11224409 CC(]O)NCC1CN(C(]O)O1)C2]CC(]C(C]C2)C3]CC]C(C]
C3)CNCC4]NNN]C4)F

Table 5.
List of repurposed and investigational antibiotics.
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developed resistance via efflux pump activity. A set of ligands is created for each
efflux pump, comprising of known and potential antibiotics. The PDB model of
each antibiotic is generated using MarvinView by converting the canonical SMILES.
This PDB model will act as the ligand during the docking process.

Open Babel is a file conversion software that provides a wide variety of options
[29]. We use it to convert the canonical SMILES of the ligand set into a .pdb file in
order to perform docking. However, we use this software again during visualization
to convert the docked complex from .pdb to .pdbqt format in order for it to be
recognized by RasMol.

5. Docking studies of pump-drug combinations

5.1 Docking of the bacterial efflux pumps with known and potential antibiotics

Computational docking is widely used for the study of protein-ligand interac-
tions and for drug discovery and development. The methods are fast enough to
allow virtual screening of ligand libraries containing tens of thousands of com-
pounds. Typically, the process starts with a target of known structure, such as a
crystallographic structure of an enzyme of medicinal interest. Docking is then used
to predict the bound conformation and binding free energy of small molecules to
the target. Single docking experiments are useful for exploring the function of the
target, and virtual screening, in which a large library of compounds are docked and
ranked, may be used to identify new inhibitors for drug development. With
AutoDock, it is possible to accomplish the following: basic docking of a drug mole-
cule with an anticancer target, a virtual screen of this target with a small ligand
library, docking with selective receptor flexibility, active site prediction, and
docking with explicit hydration.

The molecular docking was carried out using the AutoDock suite of tools [30].
The search algorithm used was the Lamarckian genetic algorithm (LGA), which
could handle ligands with more degrees of freedom than the simulated annealing
method used in earlier versions of AUTODOCK. LGA is the most efficient, reliable,
and successful search algorithm and mimics a heuristic Lamarckian evolution, a
controversial hypothesis proposed by Jean Batiste de Lamarck that phenotypic char-
acteristics acquired during an individual’s lifetime could become heritable traits. The
affinity maps were used to compute for each ligand-target pair. The docking param-
eters were set to 10 runs per receptor-ligand complex yielding 10 poses per each
docked complex. Based on the interaction energies, the pose with the smallest free
energy of binding was identified as the best pose of the drug and the target.

Each drug is docked with each subsequent target using AutoDock 4.2. The
results are analyzed to verify whether the pathogenic strain could develop resis-
tance to known antibiotics using efflux pump activity and if the novel antibiotics
could be effective against the development of such resistance.

5.2 Best pose analysis

The ligand pose with the least binding energy is defined as the best pose which
was validated by clustering at 2.0 Å r.m.s. The clusterings signify the extent of
difference between the various poses. Extremely similar poses will be clustered
together, increasing the validity of that respective pose. Thus the best pose is
selected based on the combination of the binding energy released and the cluster-
ings of the pose. The output contains the docked structure between the
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macromolecule and the best pose ligand. The output is a PDBQT file which is then
converted to PDB format using Open Babel. Tables 6 and 7 depict the best pose for
every organism in a hierarchy, in the case of both known and investigational drugs,
respectively.

5.3 Differential ligand binding affinity

The differential binding affinities of the repurposed ligands will be determined
using the conventionally used drugs as a baseline. The differential binding affinity
of a potential antibiotic with respect to a known antibiotic can be calculated by
subtracting the binding energy value generated by the known antibiotic from that
of the unknown antibiotic. A lower differential energy value is indicative of a more
stable complex.

ΔΔGpotential ¼ ΔGbind,potential � ΔGbind,known (1)

In the above formula, ΔΔGpotential is the differential binding affinity of the
potential ligand, and ΔGbind is the free energy released during docking. From
Table 8 it is evident that bithionol is the best investigational drug for the Aspergillus

Organism Known drug ΔG kcal/mol

Aspergillus fumigatus Amphotericin �6.99

Itraconazole �3.71

Anidulafungin �3.06

Micafungin �2.97

Voriconazole �2.6

Isavuconazonium �1.1

Porfimer �0.31

Candida albicans Amphotericin �7

Nystatin �6.22

Clotrimazole �5.43

Caspofungin �3.57

Acinetobacter baumannii Sulbactam �4.86

Kanamycin �4.11

Amikacin �3.46

Netilmicin �1.75

Colistin 4.54

Staphylococcus aureus Finafloxacin �5.9

Cephalexin �3.19

Vancomycin �3.18

Cryptococcus neoformans Amphotericin �6.7

Fluconazole �3.55

Voriconazole �2.3

Table 6.
Summary of the docking results of known antibiotics.
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fumigatus compared with other repurposed ligand used. From Table 9 we can infer
E1210 as a potential repurposed ligand for Candida albicans. Table 10 depicts the
differential binding abilities of repurposed ligand for Acinetobacter baumannii of
which moxifloxacin is the best investigational drug. In Tables 11 and 12, tigecycline
and bithionol were the most efficient potential antibiotics for the organisms
Staphylococcus aureus and Cryptococcus neoformans, respectively.

5.4 Identification of interacting residues in each docked complex

The best pose of each docked complex is viewed using RasMol and Pymol v.1.3.
All interacting residues within a radius of 4.5 Å of the ligand are restricted using

Organism Investigational drug ΔG kcal/mol

Aspergillus fumigatus Bithionol �5.9

Moxifloxacin �4.76

e1210 �4.12

Terbinafine �3.76

Cresemba �0.45

Echinocandin 0.03

Candida albicans e1210 �5.22

Moxifloxacin �4.76

Levofloxacin �4.66

Aminocandin �2.71

Bithionol �4.6

Acinetobacter baumannii Levofloxacin �6.34

Gepotidacin �5.58

Tigecycline �4.85

Ceftobiprole �4.72

Moxifloxacin �4.68

Trovafloxacin �4.03

Tigecycline �5.75

Staphylococcus aureus Gepotidacin �5.12

Moxifloxacin �4.92

Ceftobiprole �4.18

934628_27_0 �3.89

Radezolid �3.63

Brilacidin 0.82

Cryptococcus neoformans Bithionol �4.98

e1210 �4.89

Carvacrol �4.23

Moxifloxacin �4.04

vt-1129 �3.85

Table 7.
Summary of the docking results of investigational drugs.
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Candida albicans ΔΔGamphotericin ΔΔGnystatin ΔΔGclotrimazole ΔΔGcaspofungin

E1210 1.78 1 0.21 �1.65

Moxifloxacin 2.24 1.46 0.67 �1.19

Levofloxacin 2.34 1.56 0.77 �1.09

Bithionol 2.4 1.62 0.83 �1.03

Aminocandin 4.29 3.51 2.72 0.86

Bold values indicate that the differential free energy of binding of the potential antibiotic is negative (i.e., stronger
binding).

Table 9.
Differential binding affinities of the repurposed ligands for Candida albicans.

Acinetobacter baumannii ΔΔGsulbactam ΔΔGkanamycin ΔΔGamikacin ΔΔGnetilmicin

Moxifloxacin �1.48 �2.23 �2.88 �4.59

Tigecycline 0.01 �0.74 �1.39 �3.1

Ceftobiprole 0.14 �0.61 �1.26 �2.97

Levofloxacin 0.18 �0.57 �1.22 �2.93

Bold values indicate that the differential free energy of binding of the potential antibiotic is negative (i.e., stronger
binding).

Table 10.
Differential binding affinities of the repurposed ligands for Acinetobacter baumannii.

Staphylococcus aureus ΔΔGfinafloxacin ΔΔGcephalexin ΔΔGvancomycin

Tigecycline 0.15 �2.56 �2.57

Gepotidacin 0.78 �1.93 �1.94

Moxifloxacin 0.98 �1.73 �1.74

Ceftobiprole 1.72 �0.99 �1

934628_27_0 2.01 �0.7 �0.71

Radezolid 2.27 �0.44 �0.45

Brilacidin 6.72 4.01 4

Bold values indicate that the differential free energy of binding of the potential antibiotic is negative (i.e., stronger
binding).

Table 11.
Differential binding affinities of the repurposed ligands for Staphylococcus aureus.

Cryptococcus neoformans ΔΔGamphotericin ΔΔGfluconazole ΔΔGvoriconazole

Bithionol 1.72 �1.43 �2.68

E1210 1.81 �1.34 �2.59

Carvocrol 2.47 �0.68 �1.93

Moxifloxacin 2.66 �0.49 �1.74

VT-1129 2.85 �0.3 �1.55

Bold values indicate that the differential free energy of binding of the potential antibiotic is negative (i.e., stronger
binding).

Table 12.
Differential binding affinities of the repurposed ligands for Cryptococcus neoformans.

16

Biomarkers and Bioanalysis Overview



RasMol. By studying the PDB file constituting the restricting structure, we can
identify the atoms that are present within the interacting residues. These interacting
residues are then analyzed for recurrences, which are found to be the most active

Antibiotics Interacting residues

Amikacin Ala64, Ser67, Arg68, Arg75, Met103, Tyr104, Glu107, Thr110, Glu115

Colistin Ala87, Tyr90, Leu91, Ser94, Ser95

Kanamycin His290, Glu294, Leu295, Asp297, Leu298, Pro299

Netilmicin Asp277, Val278, Asn279, Glu280, Lys281

Sulbactam Ser160, Lys161, Arg164, Lys165, Met168, Gln283

Ceftobiprole Ile120, Asp123, Gly153, Val156, Arg157, Ser160, Met163, Leu268, Lys273, Thr276

Gepotidacin Gly153, Val156, Arg157, Ser160, Leu268, Lys273, Thr276, Asn279, Leu282, Gln283,
Leu286

Levofloxacin Val78, Tyr79, Ala80, Lys81, Leu82, Leu83, Arg84, Leu85, Tyr90, Asn93, Lys101,
Ser291, Val292, Glu294, Leu295, Leu296

Moxifloxacin Leu384, Ser385, Arg388, Met393, Tyr411, Gly412, Leu414, Arg465, Ala466, Lys469

Tigecycline Tyr79, Leu83, Tyr90, Ser95, Ile98, Met393, Asn395, Gln397, Val398, Val399, Phe401,
Tyr411, Arg465

Trovafloxacin Ile391, Ala392, Met393, Asn395, Phe401, Tyr411, Gly412, Leu414, Arg465, Ala466,
Lys469

Table 13.
Analysis of interacting residues for Acinetobacter baumannii.

Antibiotics Interacting residues

Amphotericin Thr221, Asn225, Phe756, Tyr759, Ser760, Gln953, Lys956, Ser957, Glu960, Ala963

Anidulafungin Trp762, Thr763, Leu764, Phe942, Gly1058, Thr1059, Phe1061, Ser1062, Asp1066,
Met1067, Gly1068, Lys1071, Asn1072

Isavuconazonium Asn392, Leu938, Gly941, Phe942, Arg944, Phe945, Gln1055, Ala1057, Gly1058,
Thr1059, Phe1061, Ser1062

Itraconazole Phe388, Gly391, Asn392, Leu938, Gly941, Phe942, Phe945, Gln1055, Gly1058,
Thr1059, Phe1061, Ser1062, Met1067

Micafungin Trp762, Leu938, Gly941, Phe942, Phe945, Tyr946, Ala949, Gln950, Gln953,
Gly1058, Phe1061, Gly1068, Lys1071, Asn1072

Porfimer Lys210, Glu215, Arg219, Asp223, Ala405, Ala408, Lys409, Ser412, Arg416

Voriconazole Ser760, Leu761, Trp762, Thr763, Leu764, Val765, Lys766, Gly1068, Lys1071,
Asn1072

Bithionol Phe348, Phe352, Tyr355, Ile385, Gln793, Gln796, Tyr800, Phe1052, Gln1055,
Ser1056, Thr1059

Cresemba The238, Phe242, Val393, Ala394, Gly397, Gln398, Phe400, Thr401

E1210 Glu186, Gln228, Arg954, Ser955, Ala958, Lys995, Gln996, Lys999, Ser1003

Echinocandin Thr218, Thr221, Gln580, Arg581, Val752, Gln755, Phe756, Lys758, Tyr759, Glu876,
Glu877, Lys956, Glu960, Ala963

Moxifloxacin Arg307, Tyr1113, Thr1115, Arg1116, Glu1118, Gln1119, Val1121, Gly1142, Cys1143,
Gly1144, Lys1145, Ser1146, Thr1147, Tyr1156

Terbinafine Gln755, Phe756, Glu757, Lys758, Tyr759, Arg875, Glu877

Table 14.
Analysis of interacting residues for Aspergillus fumigatus.
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interactive residues within the respective macromolecule. An analysis of the
interacting residues showed us that:

• (Leu268, Lys273, Thr276, Asn279) and (Gly153, Val156, Arg157, Ser160) are
some recurring residues in Acinetobacter baumannii (Table 13).

• (Phe942, Gly1058, Thr1059, Phe1061, Ser1062) and (Asn392, Leu938, Gly941)
are some recurring residues in Aspergillus fumigates (Table 14).

• (Phe1143, Thr1146, Phe1173, Asn1176, Tyr1177, Arg1179, Ile1180, Ile1317) and
(Gly978, His1357, Leu1358) are some recurring residues in Candida albicans
(Table 15).

Antibiotics Interacting residues

Amphotericin Phe1143, Thr1146, Leu1147, Phe1151, Val1152, Ser1170, Phe1173, Val1174, Asn1176,
Tyr1177, Arg1179, Ile1180, Ile1313, Glu1314, Ile1318, Tyr1319

Caspofungin Ser1104, Val1105, Leu1106, Arg1107, Ser1108, Phe1113, Ile1121, Phe1125, Asp1332

Clotrimazole Tyr1175, Phe1178, Arg1179, Phe1182, Val1183, Arg1187, Thr1254, Ser1257, Ser1258,
Phe1261, Phe1262

Nystatin Arg1002, Thr1005, Val1006, Pro1007, Trp1008, Asp1009, Ile1010, Phe1011, Asn1135,
Phe1143, Phe1173, Pro1323, Pro1327

Aminocandin Asp836, Val953, Asp954, Met1110, Asp1114, Tyr1354, Asp1359, Pro1360, Val1361,
Arg1380, Thr1381, Ala1383, Gly1384, Leu1390, Gln1422, Leu1573, Asp1574, Ser1575,
Gly1576

Bithionol Phe1143, Thr1146, Phe1173, Asn1176, Tyr1177, Arg1179, Ile1180, Ile1317, Glu1318,
Tyr1319

E1210 Arg992, Lys993, Thr994, Arg995, His996, Glu997, Gln998, Glu999, Glu1000, Ser1001,
Arg1002, Thr1116, Arg1120, Arg1124, Met1332, Lys1333

Levofloxacin Val953, Val975, Gly978, His1357, Leu1358, Asp1359, Pro1360

Moxifloxacin Tyr977, Gly978, Ser1111, Phe1112, Thr1115, Lys1333, Arg1355, Lys1356, His1357,
Leu1358

Table 15.
Analysis of interacting residues for Candida albicans.

Antibiotics Interacting residues

Amphotericin The280, Glu583, Pro584, Thr585, Leu586, Phe587, Gly641, Glu642, Leu646, Leu647,
Gly649, Lys652, His1020, Ser1023, Glu1024, Gly1027, Ala1028

Fluconazole Asp801, Ile802, Gln803, Ala804, Arg806, Ala807, Val810, Ala811, Gly812, Glu813,
Asp814, Lys815, Gln946, Lys949

Voriconazole SER818, Ser819, Phe820, Gly821, Arg825, Ala1131, Ser1132, Arg1135, Asp1138

Bithionol Met343, Phe346, Gly347, Ala350, Leu351, Val394, Gly395, Gly398, Ser399, Glu402,
Trp907, Gln948

Carvacrol Lys1002, Val1003, Val1004, Leu1006, Lys1007, Asp1008, Met1011

E1210 Ile802, Gln803, Ala804, Arg806, Ala807, Val810, Ala811, Gly812, Lys815, His933,
Ala938, Ser941, Asn942, Ser1132

Moxifloxacin Lys296, Arg1000, Leu1001, Lys1002, Gly1114, Phe1117, Thr1118, Pro1121

VT1129 Ile802, Gln803, Ala804, Arg806, Ala807, Val810, Ala811, Gly812, Glu813, Lys815

Table 16.
Analysis of interacting residues for Cryptococcus neoformans.
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• (Ile802, Gln803, Ala804, Arg806, Ala807, Val810, Ala811, Gly812, Glu813,
Lys815) are some recurring residues in Cryptococcus neoformans (Table 16).

• (Ala106, Leu107, Ser108, Ala109, Tyr112, Tyr322, Ile324, Phe390) and
(Tyr112, Gln116, Val117, Gly118, Gln119, Val120) are some recurring residues
in Staphylococcus aureus (Table 17).

6. Conclusion

The homology modeling was performed to determine the best template, from
which we concluded that 4m1m is preferred in Aspergillus fumigatus, Aspergillus
nidulans, Acinetobacter baumannii, and Candida albicans. In Cryptococcus neoformans
4f4c is preferred, and 3wme is preferred in Staphylococcus aureus.

The molecular docking led us to conclude that bithionol, levofloxacin, e1210,
tigecycline, and bithionol were the most efficient potential antibiotics for the
organisms Aspergillus fumigatus, Acinetobacter baumannii, Candida Albicans, Staph-
ylococcus aureus, and Cryptococcus neoformans, respectively. Each of the potential
antibiotics was found to be more effective than a number of the known antibiotics
in the treatment of that respective organism.

An analysis of the interacting residues showed us that:

• (Leu268, Lys273, Thr276, Asn279) and (Gly153, Val156, Arg157, Ser160) are
some recurring residues in Acinetobacter baumannii.

• (Phe942, Gly1058, Thr1059, Phe1061, Ser1062) and (Asn392, Leu938, Gly941)
are some recurring residues in Aspergillus fumigatus.

• (Phe1143, Thr1146, Phe1173, Asn1176, Tyr1177, Arg1179, Ile1180, Ile1317)
and (Gly978, His1357, Leu1358) are some recurring residues in Candida
albicans.

Antibiotics Interacting residues

Cephalexin Arg186, Thr302, Thr305, Gln306, Phe308, Ala309

Finafloxacin VAL178, Phe182, Ser247, Phe248, Ile251, Asn252, Gly292, Arg295, Arg296, Ala299

Vancomycin Pro172, Leu1776, Thr177, Tyr179, Val180, Phe181, Gly183, Arg184, Lys187

9346 Ala106, Leu107, Ser108, Ala109, Tyr112, Tyr322, Ile324, Phe390, Thr410, Arg414

Brilacidin Tyr94, Arg97, Lys98, Tyr101, Ile121, Val124, Ile425, Leu426, Phe427, Ser428, Glu473,
Arg474

Ceftobiprole Tyr112, Ala113, Asn115, Gln116, Val117, Gly118, Gln119, Val120, Ile121, Phe427

Gepotidacin Gln105, Ala106, Leu107, Ser108, Ala109, Tyr112, Ile324, Arg389, Phe390, Arg414,
Leu419

Moxifloxacin Tyr12, Trp87, Asn90, Lys91, Tyr94, Asp95, Lys98

Radezolid Arg97, Tyr101, Gln105, Tyr112, Gln116, Val117, Gly118, Gln11, Val120, Ile121, Val124,
Ile125

Tigecycline Gln105, Ala106, Leu107, Ser108, Ala109, Tyr322, Asp323, Ile324, Asn385, Arg389,
Phe390, Arg414, Gln421, Ile425

Table 17.
Analysis of interacting residues for Staphylococcus aureus.
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• (Ile802, Gln803, Ala804, Arg806, Ala807, Val810, Ala811, Gly812, Glu813,
Lys815) are some recurring residues in Cryptococcus neoformans.

• (Ala106, Leu107, Ser108, Ala109, Tyr112, Tyr322, Ile324, Phe390) and
(Tyr112, Gln116, Val117, Gly118, Gln119, Val120) are some recurring residues
in Staphylococcus aureus.

Appendix 1: FASTA sequences obatained from PSI – BLAST searches

>SST02482.1 lipid A export permease/ATP-binding protein MsbA [Acinetobacter
baumannii]

MIDKDLSTRQTFRRLWPTISPFKAGLFVAAIALVINAAGDAFMISLLKPLL-
DEGFEKADNDVLKWLPLAMLGLIIVRGASSFV-
STYCVSWVSGQVVMSMRRKLFGHMMGMPVSFFDQQSTGTLLSRITYDSEQ-
VAASSSGALITIIREGAYIIGLFAMMFYYSWQLSLILIVIAPIVSITIRIVSKRFR-
KISKNMQTGMGHVTASAEQMLKGHKEVLIFGGQKVE-
TERFNKVSNNMRSQSMKMVTASAISDPIIQLIASFALAFVLYAASFPEIREQLSPG-
TIAVVFSSMFALMRPLKSLTNVNSQFQRGMAACQTLFSILDTEQEK-
DEGTKVLSNVKGDIEFENVTFTYATKEHPALDDISFTLPAGKSVALVGRSGSGK-
STIANLITRFYDIDKGSIRIDGHDIREYTLESLRNQVALVSQHVYLFNDTIAN-
NIAYATDGRFSREQIEKAAEMAYAMDFIAKLDKGLDTVIGEN-
GVMLSGGQRQRIAIARALLRDAPILILDEATSALDTESERAIQAALDELQKNRTSL-
VIAHRLSTIENADEILVVQDGRIIERGNHKALLALEGAYAQLHKIQFSQ

>WP_051575420.1 ABC transporter ATP-binding protein [Staphylococcus aureus]
MKFKKFISYYRPYKRIFGLTLICSLLVTVITLVIPLIIRYITENLIQHFSVAHV-

KEIYLLGAAMVLLILIQFLCHIFIDYYGHVMGAKMEKDMSEELYE-
HIQSQPHHFFDRNSTGGLMSRLTGDLENLSELYHHGPEDILMYIIRFIGAVVIL-
LYINVELTIVMMLFIPIMIVVYWYYIKKLSSIYEQDKATNAEIHGFLENTIS-
GIKVTKSFTNESFESNQYKSLNKKAIEIKKKVHKYEALYNEIIGSIIQAMPVIIIVL-
GALLIMKKEISIGDLLAFVLYVGNIATPIEVLVKLSVQYNE-
GISGFNRFFKLMQLKPDITSENTHQQQSPHSNGAIQFDHVYFQYDQEYIIHNLNL-
TIEPGAYIAIVGPSGSGKSTIANLLPRFYDVTSGSITINHQDIRTIPLEELRQKI-
GIVQQDVYIFSSTVYENIKYGNPEASMDEIIHASKLANAHEFIQQLPNGYHTQI-
GEKGAKLSGGQKQRLSIARMFLKNPEVVILDEATSALDNLSEKVVQQ-
SLEQLTLNRTTIVIAHRLSTIRNADNIYVLTKEGIIESGNHDTLIEKQG-
FYYRMYINEEN

>KHC36224.1 alpha-factor-transporting ATPase [Candida albicans P76067]
MFQEKSEKSSFPKRSSSLRSPSDSPAITSKNVFMFVNYSKDWPLILVGILLMGG-

SAIATPMNTYIYGEIMGKLSQFYLQDQSNHSFSQDIVKLCVGLIGIGCCK-
MILVWLGMFTWLKFGEIQQSRARMQIYNKIINESQSWYDSKQNLIGQLTQINR-
CIEELRSCNGEILASLMQTIVLILALLIMSFYQSWSTTLIIMASFPIMALCG-
WYFGKLTYKAQQDENEVTSKASKVFNWCYVNPEMVRFFNSKNIELTKFKQ-
LIEKSAQFYYKLSHAVAANTAVLKTLTLMMFVQGFWFGNYLLSHNTI-
TINQLFTCFSSCLMLGQAVSGITELLAILNTGHAAADKISGFLLQPPS-
KAKLLLLHSKYPPFEIGSIYFKNVWFESNSQNSVAILQDVSFGILQNQFNF-
VIGKSGSGKSTIAKLLMRLYSVSRGTIEIDTVSIDKLDPKYICQNIILLEQNP-
VIFDDKTIAENIAIAIVDDYDSLQAIPYYLIEQSAHFALLSDLDLNMKVNQLTLSG
GQQQRISIARAYLKNSPVLIMDESFSALDTETKQCLIEKVKKWRIGKTTIFITHEY-
KNILDDENVIILDQGMIKNQGQFKKMKNEEIVQNYKSQGIETS-
SYETTSQSFSDNTKLPDGDYNYKTNPYILKDLESQIKEDTDNEKLMGVLAIL-
RYCSSTINGKSLLGFGILLAIFQGGSSPVFSYCFSKLLSTSLDSSIGLNSTQKILQWS-
CISLSIAIFTGVTSYLSEFILNYCGENWIVSLRQLTFFKLNNQDLSFFTRFDTNWSS-
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SEITALLMNDTRDLRNLISQFFPLLANLVSMTLIGIIWSIVSGWKLALV-
GISFVPLVLLVTVLYGKILESIENKYKCKVNNVELDLYRTITTIRTIKIFNIQQY-
FETVFKEDLKVLNSIGVYRALQTGIGFAISDLFSSIGQAIILFYGMKLISQFQY-
NYSQLLQVITLLSFTISNASILIHQLPEITRGQRAGTFIVKLLKDITST-
MEVNDSCGVSSVRKRNSKSGSDSIGTIGPVKDNQLFKKVTTDNDTLAISFNNVSF-
SYPNKLPYILQLKSISLDVKKFTTIGIVGQSGSGKSTILKILFRLYDIKISPDSNTTK-
KYHDQTVKIFNQNLYLINSGLLCQTIAIVPQFPKFFSGTIYDNLTYGINNTN-
SAGSNSSSSVSDSEIIKILKLVNLHQFIVSLPQGLLTIMNDSDNDNDNGNENENE-
NENGNTISTSSSTSFTFSGGQLQLLAIARALLRNPKILLLDECTSNLDPITTKIIIN-
VIKSLHGKLTILFVTHDKELMRIADNLIVMKDGQIVEQGDFQQLISND-
GEFTKITKTII

>OWZ59602.1 ATP-binding cassette, subfamily B (MDR/TAP), member 1
[Cryptococcus neoformans var. grubii c45]

MSASPGLTAAAAGPDHLQARRDEKVIDSEKDALAHDAHAVNSGIPYPTA-
TAPNVGAPTVPIIVGRVSSAPEGKISRSSIAASSDTLRNSPLEKPISNAVSKSH-
PYKKSKFDFLKSRKKKEEEERKNKEKEKEASVLPPVSFFALFRFAA-
PLEIIAMVLGLVLAVAAGSCQPLMTLIFGRLTTSFTNYAVIANQISQGGLTPET-
SAALQAAKDDLKTQSGHNALYLMAIGIGMFLATWLYMFIWNVTGELNSKRIR-
ERYLAAVLRQEIAYFDDLGAGEVATRIQTDCHLVQEGTSEKVALVF-
QYAGTFVCGFVLAFVRSPRLAGALVSILPVIMLCGGIMMTAMAKFGTAALDHIA-
KAGSLAEEVIGSIRTVQAFGKEKILGDKFADHIEQSKIVGRKGSIFEGFGLSIMFF-
VIYAAYALAFFYGGILVSNGQADSGIVINVFMSILIGSFSMAMLAPELAAVTKAR-
GAAAKLFATIDRVPAIDSASEEGFKPDGLRGEISFENVKFHYPSRPSIPILKGFTTT-
FEAGKTFALVGASGSGKSTVVSLIERFYDPVSGVVKLDGRDIRSLNLNWLRQ-
QIGLVSQEPTLFGTTVRGNVEHGLIGSRYENASLEEKFELVKKACVDANAHN-
FIMKLPQGYDTMVGERGMLLSGGQKQRVAIARAIVSDPRILLLDEATSALDTQ-
SEGIVQDALDKASRGRTTITIAHRLSTIRDADRIYVMGGGEVLEQGSHNDLLA-
NENGPYAQLVNNQKLAQEAAAEALQVDDDIDDLDDAVFIGGSSPM-
QEKDKQLHRAVTGRSLASIAMDDIQAKRAEEVAGEDKIPSSFGLYARLLKMN-
SADKFIYILAFIAAICAGMVYPSLAILFGKALSDFEIQDPAELRHALSRSALWYFI-
TALAAAFVIFFQSAGFSRAGWDLNGVLRKKLFTATLRHDIEWFDEERNST-
GAVTSNLADQPQKVQGLFGPTLGTVVQSCATLIGGCIIGLCYGPLLALIGIACI-
PILVSGGYIRLKVVVLKDQRMKKLHAASAHLASEAAGAVKTVASLTREKDVR-
RIYSEALKAPMKLNFRTSIKSQCLFAASQGLTFCIIALVFYIGALWIIDGKYSTAS-
FYTVLNSIVFASIQAGNVFTFVPDASKANSSAASIFRSIDNEPAINAES-
NEGKVLDHKHVVGHVRIEGVHFRYPTRPGVRVLRNLTIDVPAGTY-
VALVGPSGCGKSTTIQMLERFYDPLAGRVTLDGIDIKELNLASYRSQISLVSQEP-
TLYAGTIRFNILLGANKPIEEVTQDEIDAACKDANIYDFIVSLPDGFD-
TEVGGKGSQLSGGQKQRIAIARALIRNPKVLLLDEATSALDSQSEKVVQEALD-
KAAKGRTTIAIAHRLSSIQHSDRIYYFSEGRVAEHGTHQELLAKKG-
GYYELVQMQNLSRQ

>KEY77376.1 ABC multidrug transporter Mdr1 [Aspergillus fumigatus var.
RP-2014]

MPAPETGASSREKSLEDLQVATLEKGRSTSSFGADNEKPHDHHSLSDTI-
MAPPDGKKKDHGKAVDLNDDSLFAHLQEHEKEVLKRQLDAPSVKVSFFTLYR-
YASRKDILIILVSAICAIAAGAALPLFTILFGSLASAFQGISLGTMPYHE-
FYHKLTKNVLYFVYLGIAEFVTVYVSTVGFIYTGEHLTQKIRENYLEAILRQN-
MAYFDKLGAGEVTTRITADTNLIQDAISEKVGLTLTAFATFVTAFIVAYVKYWK-
LALICTSTIVALVMVMGGGSRFIVKYSKKSIESYGAGGTVAEEVISSIRNA-
TAFGTQDKLAKQYETHLAEAEKWGVKQQVILGMMIGGMFGIMFS-
NYGLGFWMGSRFVVGKEVNVGQVLTVLMSILIGSFSLGNVAPNGQAFTNG-
VAAAAKIYSTIDRRSPLDPYSDEGKVLDHFEGNIEFRNVKHIYPSRPEVTV-
MEDVSLSMPAGKTTALVGPSGSGKSTVVGLVERFYLPVGGQVLLDGH-
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DIQTLNLRWLRQQISLVSQEPVLFSTTIFRNIEHGLIGTKFEHESKDKIRELVE-
NAARMANAHDFIMALPEGYDTNVGQRGFLLSGGQKQRIAIARAIVSDPKILLL-
DEATSALDTKSEGVVQAALDKAAEGRTTIVIAHRLSTIKTAHNIVAMVGG-
KIAEQGTHDELVDRKGTYYKLVEAQRINEEKEAEALEADADMDADDFGQEGV-
TRIKTAVSSSNSLDAVDEKARLEMKRTGTQKSVSSAVLSKKVPEQFE-
KYSLWTLVKFIGAFNRPELGYMLIGLTFSFLAGGGQPTQAFLYAKAISTLSL-
PESMFHKLRHDANFWSLMFFVVGIAQFISLSINGTAFAICSERLIRRARSQAFR-
SILRQDISFFDREENSTGALTSFLSTETKNLSGVSGVTLGTIIMTSTTLGAAMIIA-
LAIGWKLALVCISVVPILLACGFLRFYMLAQFQQRSKSAYEGSASYACEATSAIRT-
VASLTREQDVWGVYHDQLQKQGRKSLISVLRSSLLYASSQALVFFCVALGF-
WYGGTLLGHHEYSIFRFFVCFSEILFGAQSAGTVFSFAPDMGKA-
KNAAAQFKKLFDSKPTIDIWSDEGEKLESMEGEIEFRDVHFRYPTR-
PEQPVLRGLNLSVKPGQYIALVGPSGCGKSTTIALLERFYDALAGGVFVDGK-
DITKLNVNSYRSFLSLVSQEPTLYQGTIKENILLGVDKDDVSEETLIKVCKDA-
NIYDFVMSLPEGFDTVVGSKGGMLSGGQKQRVAIARALLRDPKVLLLDEAT-
SALDSESEKVVQAALDAAARGRTTIAVAHRLSTIQNADIIYVFDQGKIVESGTH-
HELIRNKGRYYELVNLQSLGKTH
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Chapter 2

P-Glycoprotein Efflux 
Transporters and Its Resistance 
Its Inhibitors and Therapeutic 
Aspects
Chenmala Karthika and Raman Sureshkumar

Abstract

P-glycoprotein (P-gp) is an active member of the ATP Binding Cassette (ABC) 
protein subfamily which effluxes a wide range of therapeutic drugs out of the cells 
commonly known as multidrug resistance. But its protective action towards the 
normal cells and efflux of the toxic and foreign substances is remarkable. Hence the 
efflux of the P-gp is a crucial step to overcome for the success of the therapy and in 
the drug discovery process. Modification of the action of the P-gp through various 
inducers, inhibitors or the genetic polymorphism is the commonly used methods. 
When it comes to the inhibitor part the natural inhibitors use is more safe and 
economical as compared to the synthetic ones. Here we review at the mechanism 
of action and the pharmacokinetic profile of P-gp, how the P-gp engaged in the 
Multidrug resistance, the strategy to overcome from its action by using natural 
inhibitors and formulation perspectives.

Keywords: P-glycoprotein, multidrug resistance, mechanism of action, 
pharmacokinetics, P-gp inhibitors, natural inhibitors

1. Introduction

Reduce in the remedial rate of most of the diseases and the decline in the 
therapeutic efficacy of most of the anti-neoplastic and anticancer drugs is due to 
the phenomena called drug resistance [1]. The main ambiguity to be found out 
to increase the efficacy of the drugs is to overcome this phenomenon. The drug 
resistance is not observed to a single chemotherapeutic drug but to a broad range 
of structurally and functionally different drugs. The exposure to a single therapy 
for a long time and the recurring use of the medication leads to drug resistance will 
leads to decrease in the therapeutic efficacy of the drugs. Even if the dose is altered 
there would not produce any momentous changes in this phenomena [2]. When 
the human acquired resistance to the drugs it is termed as drug tolerance. This was 
usually seen of two type’s pharmacokinetic drug tolerance and pharmacodynamic 
drug tolerance.
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2. Metabolic or pharmacokinetic tolerance

Followed by the entry of the drug in our body with the time it gets absorbed into 
the bloodstream, which is then carried out and distributed to various other sites, 
additionally gets disintegrated into various segments and eventually gets excreted 
from the body. All these factors determine the potency, side effects and duration 
of action of the drugs. The major reason for the pharmacokinetic tolerance is when 
the drug fails to maintain its minimum therapeutic concentration at the target site. 
Where, in this case the enzymatic action of cytochrome P450 (CYP450) produces 
the effect. This type of tolerance is mainly determined with the oral dosage form 
which produces first pass metabolism. Induction of the enzymes are the major 
reason behind the drug resistance which is further accompanied with various other 
factors which is further disused in this chapter in detail.

3. Pharmacodynamic tolerance

When the cellular feedback to a substrate is concentrated the development of 
the pharmacodynamic tolerance eventually occurs. The principle reason behind 
pharmacodynamic tolerance is when the therapeutic concentration of the substrate 
to the binding receptors reaches above the maximum therapeutic concentration 
which eventually results in the desensitisation of the receptors [3]. Other possibili-
ties include the decline in the receptor density which is mainly associated with 
the receptor agonist and the modification in the action of the possible firing rate. 
Generally the drug resistance will occur subsequent to the incessant exposure to the 
drug, but instant tolerances were also observed in rare cases [4].

4. Factors responsible for drug resistance

There are a variety of drug resistance usually seen such as anticancer resistance, 
anti-human immunodeficiency virus (HIV) drug resistance, antibiotic resistance, 
anti-tubercular drug resistance, anti-malarial drug resistance and anti-microbial 
drug resistance. The most part of the drug resistance is caused by MDR proteins, 
where in this P-gp (P-glycoprotein) involves in producing a major aspect in reduc-
ing the drug efficacy in most of the treatment. P-gp, which is a trans-membrane 
(TM) glycoprotein physiologically, expressed in the parts of the body such as 
kidney, liver, pancreas, colon and jejunum [5], it also expresses its role eventually in 
the brain capillary epithelial cells. The core function of P-gp is to safeguard the cells 
and restrict the entry of xenobiotics and toxic substances. But its action is over-
expressed in the diseased cells by restricting the entry of the drugs hence its action 
should be inhibited in such cases for the success in the therapy.

5. Transporters and its family

P-gp is an efflux protein system associated with the ATP binding cassette 
(ABC) sub-family B membrane or Multi-drug resistance 1 (MDR1) or cluster of 
differentiation 243 which belong to ABCB (MDR) super family of ABC transporter 
[6]. ABC gene indicates the leading family of TM protein, originated mainly in the 
intercellular membrane or the plasma membrane. By using the energy from the 
ATP the transport mechanism across the cell membrane is initiated. In humans 
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around 49 ABC transporters are observed [7], where MDR1A, MDR1B and MDR2 
[8] are usually identified in animals and MDR1 and MDR3 [9] which belong to the 
P-gp gene subfamily is mostly seen in humans. Where MDR1 (P-gp) is widely seen 
all over the body and efflux a wide range of drugs over the plasma membrane and 
MDR3 (P-gp) is predominantly observed in the liver, canalicular membrane of the 
hepatocytes and is accountable for the phosphatidylcholine secretion into the bile 
[10]. Even though the action of MDR3 or P-gp in the efflux transport mechanism is 
observed, their direct action in drug resistance is restricted.

The efflux action exhibited by P-gp is having a greater importance since it can 
protect our body from the entry of the toxins and xenobiotics into the cells mainly 
to brain, placenta and gonads and eliminating the waste products through the urine 
[11], by facilitating the energy driven with the ATP hydrolysis the amphipathic 
drugs are mainly eliminated by the efflux action of the P-gp.

P-gp role is mainly observed in the body parts such as kidney, intestine, liver 
[12], testis and brain [13]. The entry of the xenobiotics into the blood capillaries 
are mainly minimised by the localised action of P-gp in the luminal membrane of 
the epithelial cells [14]. Over-expression of the P-gp is the foremost reason behind 
the failure of the chemotherapy and other treatment strategies where nowadays the 
researchers are mainly focussed to overcome with this issue. The studies related to 
the action exhibited by the P-gp are performed in mice, rats [15] and in humans [16]. 
The substrates which merge with P-gp have unrelated frameworks. The compounds 
transported by P-gp are considered as substrates, while the compounds that prohibit 
the role of P-gp are considered as inhibitors.

P-gp was identified first in 1976 in Chinese hamster ovary cells, where it was 
obtained to demonstrate anticancer resistance [17]. The research data proved that 
the P-gp have the ability to acquire resistance to the cytotoxic drugs. They also 
proved that verapamil was helpful to measure the function of the P-gp by using 
positron emission tomography [18]. P-gp is used for differentiating the transitional 
B-cells from the native B-cells. Rhodamine 123 and Mito Tracker Dyes are also used 
for this purpose [19].

6. Cellular localisation

The expression of P-gp is recurrently found predominant in the cancer cells, 
causing MDR by efflux of lypophilic drug from the cell. P-gp is observed to be over-
expressed in renal, colon and adrenal carcinoma, not often in germ cell tumour and 
lungs even certain in gastric carcinoma, undetectable in breast and endometrial car-
cinomas. In the normal cells the concentration of the P-gp and its expression is found 
to be low, but certain cell types like colon, kidney, liver, jejunum and pancreas shows 
a higher expression of P-gp. While in liver, the broad distribution of P-gp is found on 
the apical surface of epithelial cells and biliary canalicular front in the small biliary 
ductules [20]. When it appears in case of pancreas, P-gp exclusively found of the api-
cal surface of epithelial cells of the small ductules. In Kidney the presence of the P-gp 
is exclusively found on the apical surface of the epithelial cells of the proximal tubules 
[5]. P-gp expression shows an identical expression in the apical surface of superficial 
columnar epithelial cells of both jejunum and colon. Where, the expression of P-gp is 
mostly seen in the surface of cortex and medulla cells in the adrenal glands. Its pres-
ence is found out with both secretary and excretory action in the specialised epithelial 
cells, placental trophoblast [21] and endothelial cells of capillary cells at blood-tissue 
barrier sites. Its presence is also found in the epithelial cells of bronchi and gastroin-
testinal tract, prostate gland, salivary glands and sebaceous gland of the skin.
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The research reports proved the occurrence of P-gp in the human fetus is 
with the significance in the regular performance of various organs in the initial 
stage of embryo development [22]. The evidential reports from the research work 
conducted in the tissues of rodent and humans [23] came to a conclusion that the 
expression of the P-gp in the normal tissues are much lower than compared to that 
at the epithelial cell lining of small Intestine, colon, pancreatic duct, proximal 
tubules of kidney, bile ducts and adrenal gland [24]. P-gp over-expression is also 
observed in the secretary epithelial cells in the endothelium of the pregnant woman 
and also in the placenta for protecting the fetus [25].

7. Kinetics of P-gp

7.1 Absorption

The major reason behind the multidrug resistance in the cancer cells is the action 
exhibited by P-gp. P-gp transports a wide range of structurally and functionally 
different cytotoxic compound out of the cell by using the energy driven from 
ATP. Altering in this property caused by P-gp is a vital approach for overcoming 
the MDR part and to increase the therapeutic efficacy during the treatment. The 
incorporation of the P-gp inhibitors with the resistant drugs can be helpful towards 
suppress the expression of the P-gp. This situation of resistance part not only 
happens with the chemotherapeutic drugs but also for the treatment strategy used 
for other conditions also [26]. The over-expression of P-gp in the diseased cells as 
compared to that of the normal cells is the major reason behind this phenomenon. 
Research work carried out came with a conclusion that P-gp is the major cause for 
the antibiotics resistance part also. P-gp trims the overall permeability of the drug to 
reach the target site by reducing the minimal therapeutic concentration level [27].

7.2 Distribution

P-gp acts as an integral element in the distribution of the drugs. Its action is 
noticed in the blood brain barrier and also the placental barrier. It can accomplish 
its effect on the distribution of various therapeutic agents also reduce its activation 
in the body. The role of P-gp in the brain turned into a point where it resists the 
entry of the neuro-toxic drugs into the brain and hence sustains the penetration of 
central nervous system (CNS) agent delivery in the brain [28]. A modulator is in 
need to inhibit the action of P-gp for improving the efficacy of CNS drugs to the 
target site including for the Parkinson’s and Alzheimer’s disease. When it comes 
towards P-gp inhibition the P-gp also protect the fetus from the entry of the foreign 
bodies and toxic substances through the placenta [29, 30]. Hence by considering 
these aspects the inhibition of the P-gp is to be made in a careful manner by not 
altering the protective mechanism in the normal cells [31].

7.3 Metabolism

The enzymatic activity of CYP3A4 and the efflux mechanism by P-gp together 
play the role for the decreased therapeutic efficacy and bioavailability of the drugs 
administered through the oral route. These are major defence system in intestine 
which acts as a protective barrier from the entry of the toxic substances and the 
xenobiotics. These proteins are mainly over-expressed in enterocytes and hepato-
cytes and also establish its role in first pass metabolism of the drugs.
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For supporting this statement piperine can be taken as an example. The flavo-
noid piperine is obtained from black pepper. It have the ability to act as a natural 
inhibitor of P-gp and CYP34A when and can increase the therapeutic efficacy of the 
drugs when co-administered [32]. The dose of the piperine administered should be 
ideal and reaches the minimum therapeutic concentration to produce this effect. 
Another example is the action exhibited by grape fruit juice. When grape fruit juice 
and saquinavir is co-administered, the therapeutic concentration of the parent drug 
can be increased when administered during oral route.

8. Elimination

8.1 Renal excretion

The process of glomerular filtration, tubular secretion and reabsorption involve 
in the mechanism of renal excretion. P-gp involved in the efflux of the xenobiotics 
and the waste materials from our body via renal excretion, results in reduced level 
of the therapeutic drug in the blood plasma. This can also be altered by incorpo-
rating the flavonoids with the therapeutic agents. When digoxin a flavonoid and 
Cyclosporine A is co-administered, Cyclosporine will increase the concentration 
of digoxin in the plasma by decreasing tubular secretion and glomerular secreation 
rate [33, 34]. Comparable results are obtained when itraconazole and cimetidine is 
coadministered [35].

8.2 Biliary excreation

The excretion of the drugs by the influence of the P-gp can also be altered by 
using the natural P-gp inhibitors. Quercetin, a natural inhibitor of P-gp can add on 
to the therapeutic concentration of a wide range of drugs in the target site when co-
administered. In turn the therapeutic agents such as Azithromycin, erythromycin, 
cyclosporine A and doxorubicin have an inhibitory action on biliary excretion of 
drugs mediated by P-gp [36].

8.3 Antimicrobial drug resistant mechanism

The mechanism by which the antimicrobial drugs acquiring resistance to the 
microorganisms are as follows:

1. Drug inactivation or modification: enzymatic deactivation of pencillin G and 
the synthesis of β-lactamase in the penicillin resistant bacteria.

2. Verification in target site: the shifting of the pencillin binding site from PBP to 
MRSA in the bacteria resistant to the penicillin drug.

3. Metabolic pathway modification: For example, the para-aminobenzoic acid 
path is not necessary for the sulfonamide resistant bacteria which are the 
extensive predecessor for the combination of nucleic acid and folic acid, as an 
alternative of like mammalian cells they employ preformed folic acid.

4. Intercellular drug concentration diminution: accumulation of the drugs within 
the cells is declined by diminishing the drug efflux and drug permeability 
across the cell surface.
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8.4 P-gp role in drug resistance

P-gp has a leading aspect in reducing the bioavailability and distribution of the 
drugs, where P-gp is over-expressed in intestinal region which act as a substrate to 
P-gp and reduces its absorption pathway. Hence the therapeutic level of the drugs 
and the bioavailability of the drugs are not accomplished. On the other hand if the 
P-gp expression is abscessed then the concentration of the drug in the plasma will 
reach to supra-therapeutic concentration leading to toxicity related issues [9].

The substrate infiltrate into the P-gp all the way through the protein cytoplasmic 
side or through the inner leaflet of the membrane. ATP attitudes to the cytoplasmic 
side of P-gp, pursue with its binding, ATP hydrolysis activates which modify the 
substrate to be efflux form the cell. The substrate excretion occurs followed with the 
release of the phosphate from the ATP molecule. A novel molecule of ATP attach to 
the secondary ATP binding site when adenosine diphosphate (ADP) is discharged. 
This process will proceed with the hydrolysis and discharge of ADP and a phosphate 
molecule reset the protein.

8.5 Substrate for P-gp

P-gp transports a broad range of substrates which are structurally and function-
ally different from each other. P-gp substrate mainly appear to be lypophilic and 
amphipathic in nature [37, 38]. For altering the functions of P-gp its inhibitors are 
mostly generated. The mechanism of action is either by competition with the drug 
binding sites without hindering the action of ATP hydrolysis of by blocking the ATP 
hydrolysis process [39]. Recently allosteric mechanism for P-gp mediated transport 
also added with the other two mechanisms [40]. P-gp substrates are attached with 
the protein molecule before getting attached or moved to the extracellular mem-
brane leaflets.

8.6 P-gp inhibitors

The reports from the research work proven that the P-gp has the ability to 
interact with more than 20 substrates or the modulators. Some of the substrates 
which are easily transported by P-gp include anthracycline, vinca alkaloids and 
fluorescent lipids. This binding action of the modulators such as cyclosporine 
and verapamil are employed for altering the P-gp activity for the chemotherapy. 
The high flexible and the low specific nature of the P-gp binding pockets could be 
employed for overcoming the MDR related issues during the chemotherapy [41]. 
The Classification of the P-gp inhibitors is mainly based on its specificity, affinity 
and the toxicity. The classification and the division of the inhibitors are mentioned 
in Table 1.

8.7 First generation inhibitors

The inhibitors belonging to this generation are pharmacologically active in 
nature and are used in specific treatment. Some of them are reserpine, verapamil, 
cyclosporine A, yohimbine, quinidine, toremifene and tomoxifene. When we are 
taking the example of leukaemia cells, the resistance could be inverted by using 
verapamil [42] for producing an effective action high dose of the drug is given to the 
patient, results in cardiovascular toxicity [43]. Hence these inhibitors are replaced 
with the second generation inhibitors because of their less therapeutic efficacy.
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8.8 Second generation inhibitor

The substrates coming in this generation inhibitors are pharmacologically 
inactive in nature but produce its action on P-gp. This generation inhibitors are 
developed by structurally modifying the first generation inhibitors for obtaining 
high specificity, low toxicity and potency. Examples for this generation inhibitors 
include doxverapamil [44], valspodar (PSC 833) [45], biricodar citrate (VX710) 
[46], dofequidarfumerate and dexniguldipine. Non immunosuppressant analogues 
of dox verapamil and cyclosporine A are mainly included in this category. PSC 833 
which is the most frequently used inhibitor exhibit 5–10 times more potency as 
compared to that of cyclosporine A [47]. On the other these inhibitors have greater 
affinity and inhibitory activity towards the ABC transporters and CYPA4 enzymes.

8.9 Third generation inhibitor

To overcome the problems associated with the first and second generation inhib-
itors, the third generation inhibitors are generally developed. The main advantage 
of using the third generation inhibitors are their less toxic effect as compared to that 
of the first two generation inhibitors and their specificity and effectiveness towards 
the P-gp. They are found with no pharmacological interaction. They do not possess 
any kind of pharmacological interaction with the chemotherapeutic agents and 
found to be 200 times more potent than first two generation inhibitors. Examples 
include Zosuquidar (LY335979), [48] Tariquidar (XR9576), Laniquidar (R101933), 
[49] Elacridar (F12091), ONT-093, [50] Mitotane (NSC- 38721), [51] annamycin, 
[52] HM30181,R10933, [53] HM30181, Biricodar. From the 3D QSAR and QSAR 
activities it is reported that the structure of the inhibitors are mainly responsible to 
produce the inhibitory activities. Studies reported that the heterocyclic ring of the 
tariquidar near to the antranilamide ring is responsible to produce the inhibitory 
activity. But the recent studies reported that tariquidar is having both substrate as 
well as inhibitory activity on P-gp [54, 55].

8.10 Fourth generation- natural inhibitors

Owing the toxicity issues and the restricted therapeutic caused with the 
synthetic inhibitors, the natural inhibitors are mainly developed which includes 
the dietary supplements also. The natural compounds and the food extracts 
are revealed with an effect on P-gp to reverse MDR and also exhibit anticancer 
property.

Generations Examples

First generation 
inhibitors

Verapamil, cyclosporine A, reserpine, quinidine, yohimbine, tamoxifen, and 
toremifene

Second generation 
inhibitors

Doxverapamil, valspodar, biricodar citrate, dexniguldipine, and dofequidar 
fumerate

Third generation 
inhibitors

Tariquidar, zosuquidr, laniquidar, elacridar, mitotane, annamycin, biricodar, 
ONT-093, R10933, and HM30181

Natural inhibitors Curcumin, piperine, capsaicin, [6]-gingerol, carnosic acid, limonin, quercetin, 
β-carotene, leutiolin, and anthocynine

Table 1. 
Generation of inhibitors with examples.
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8.11 Spices

From the ancient period itself the use of the spices are predominant as preservative 
and colouring agents. The phytochemicals constituent in spices are studied for the cure 
of various ailments and for the management and reversal of MDR caused by P-gp [56].

8.12 Curcumin

Curcumin is used as anti-oxidant, anti-inflammatory agent, anti-infective and 
anticancer agent [57]. It also exhibits an additional use of reversing the MDR caused by 
P-gp. It procure this action by acting on P13K/Akt/NF-kB [58] pathway in L1210 MDR 
leukaemia cells in the mice model. In 2008 Choi et al came with a conclusion that the 
combination of curcumin and Adriamycin can overcome the MDR effect caused by 
P-gp by studying with the western blotting results [59]. Mucoadhesive microemulsion 
loaded with curcumin has the ability for brain targeting through intranasal route [60].

8.13 Piperine

Piperine is the alkaloid constituent present in a larger proportion in black 
pepper, which is consumed by the population all over the world and added in their 
diet. Piperine was found with the activity on altering the MDR by inhibiting ABC 
transporters [61].

8.14 Capsaicin

Capsaicin is found abundant in red chilli, exhibit anticancer and inhibitory 
activity on P-gp. It potentiates anticancer activity of vinblastine by modulating 
P-gp. It has the ability to act on β-catanin and NF-KB pathways [62].

8.15 [6]-Gingerol

Ginger is constituted with a major polychemical compound [6]-Gingerol, which 
add on its spicy taste. It also inhibits β-catanin and NF-KB pathways like the action 
exhibited by capsaicin, but the actual mechanism of action is still not known [63].

8.16 Carnosic acid

Carnosic acid is the major phenolic constituent found in the leaves of rosemary. 
Carcinoic acid can act as a substrate to P-gp by stimulating the ATP activity by 
competitively binding with the ATP binding site [64].

8.17 Procyanidine

This compound composes a major constituent in tea leaves and grape seeds. It 
exhibits both chemopreventive activity and also antiproliferative effect [65]. It can 
inhibit NF-KB and translocate YB-1 into the nucleus through dephosphorylation of 
ERK1/2 and AKT [66].

8.18 Limonin

The citrus fruits are constituted higher with this crystalline compound. It acts 
as a P-gp inhibitor in leukaemia, melanoma and colon cancer cell lines. It elevates 
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the accumulation of the Rhodamine 123 and doxorubicin inside the cells. When 
administered in a concentration of 20 μm it has the ability to increase the anticancer 
activity of the doxorubicin when studied with CED/ADR5000 Caco-2 and leukae-
mia cell lines [67].

8.19 Quercetin

Quercetin is the constituent found in higher amount in onion and apple. From 
the experimental report it is found that Quercetin exhibit chemotherapeutic and 
P-gp inhibition activity. On the addition of concentration of 0.7 μm, it enhances the 
anticancer activity of doxorubicin when studies in MCF-07 cell lines [68].

8.20 β- carotene

β- Carotene is abundantly found in vegetables and fruits [69, 70] and is the 
precursor of Vitamin A [69]. When studied with Caco-2 cell lines it has the ability 
to efficacy of etoposide, doxorubicin and 5-Fluorouracil and even can manage the 
P-gp transport activity.

8.21 Strategies to overcome MDR

Various novel approaches were established for the inhibition of MDR in the 
diseased cell lines, which includes biological, physical and chemical methods as 
well as ribonucleic acid (RNA), interference, micro RNA and Nanotechologies 
[71]. MicroRNAs are the undersized non-coding RNAs are normally not syn-
chronised in the cancer cells; with the modification in the miRNA they have 
the ability to up regulate the MDR part. To alter the expression of P-gp various 
sequence of miRNAs such as miR-296, miR-27a, miR-298, miR-451 and miR-1253 
were resolved, and there were evaluated in esophageal and breast cancer cell 
lines [72–74].

8.22 Monoclonal antibodies

In the early 1980s two monoclonal antibodies MRK-16 and MRK-17 were 
discovered to alter the resistance part developed by P-gp in both in vitro and in vivo 
studies [75]. MRK-16 was proven with their ability to inhibit the efflux of the drugs 
actinomycin-D and vincristine where the MRK-17 was proven with their ability to 
inhibit the MDR cell proliferation. The enhancement in the anticancer activity can 
be achieved by conjugating the monoclonal antibodies with the P-gp inhibitors. 
Euhertner Roninson developed a monoclonal antibody UIC2 from the mouse which 
has the ability to bind with the extracellular parts of the P-gp. In turn it has the abil-
ity to decrease the efflux of P-gp substrates which in turn increases the cytotoxicity 
of P-gp substrates [76].

8.23 Non substrate development

The MDR in cancer cells are towards a broad spectrum of anticancer drugs, 
hence there is a need to develop a new anticancer drug which have less predictable 
by the ABC transporter family proteins. Hence a new strategy is followed where 
the structural modification or the conjugation is made for the discovery of the new 
molecule which is less familiar to the P-gp as a substrate and which are structurally 
similar to the compounds which act as P-gp inhibitors.
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8.24 MDR and nanotechnology

Nanoparticles are having a broad range of activity in the field for delivery of 
the anti-infective, anti-cancer and anti-inflammatory drugs. The nanoparticles 
are usually found in the range from 1 to 100 nm. The categories of nanoparticles 
include metals, solid lipid, micelles, liposome, polymers, dendrimers, and quantum 
dots [77–80]. The assembly of the nanoparticles are usually multilayered and the 
coatings of the nanoparticles are usually done to overcome the problems such as 
solubility, stability and specificity [81]. The issues related with the macromolecules 
such as low specificity, cell toxicity, high dose and cellular uptake can be limited by 
incorporating the drugs in the nanoparticles, even it have the ability to overcome 
the MDR related issues with P-gp and can enhance the therapeutic value of the 
parent drug [82].

8.25 Liposomes

Liposomes are extensively used for the delivery of the drugs which are impotent 
for the diffusion over the membrane layers. These can be modelled in phosphor 
lipid bi-layer and also in a micelle shapes which helps in encapsulating the soluble 
drugs and can hold on to their natural action. Thus nanoparticles mediate an appro-
priate activity in the management of MDR. For instant the activity of the Doxil 
encapsulated liposomal nanoparticles have the ability to manage the MDR part in 
the cancer cell lines [83].

8.26 Micelles

Micelles are the polymeric core-shell nanostructures with lypophilic drug core 
[84]. The lipophobic coating protects the lipophophilic drug from degradation 
and helps in its solubility. For this reason the lypophilic drugs have long circula-
tion in blood and also mediated the P-gp efflux. The Pharmacokinetic property 
of the drugs such as fexofenadine could be enhanced when formulated in a 
self-Nano emulsifying drug delivery system by hampering the CYP450 and P-gp 
mechanism.

8.27 Mesoporous silica nanoparticles

Mesoporous silica nanoparticles (MSNPS) are having larger pore size and pore 
volume, biocompatible in nature and are having high surface area. MSNPS have the 
capacity to load both anticancer drugs and siRNA together at the same time [85]. 
This combination can alter the resistance caused by P-gp and in turn can enhance 
the therapeutic efficacy of the drugs [86].

8.28 Polymeric nanoparticles

Polymers employed are usually natural (Gelatine, chitosan and albumin) or 
synthetic (poly [D, L-lactic acid], poly [D, L-lactic acid] and poly [ε-caprolactone]) 
in nature. The techniques [87] used for the preparation of polymeric nanoparticles 
are salting out, dialysis and microemulsion, interfacial polymerisation, supercriti-
cal fluid technique and solvent evaporation. Nanoparticles of Human albumin with 
abraxane and paclitaxel are formulated for improving the efficacy of metastatic 
breast and pancreatic cancer [88, 89]. This novel formulation is approved for clini-
cal studies by U.S. Food and drug administration.
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8.29 Expression and its over-expression, advantage and drawback

The expression of the P-gp is mainly found in all parts of the body by acting as 
a protective shield from the entry of the toxins and the xenobiotics. Their action 
is unavoidable in the Blood brain barrier, blood placental barrier and blood testes 
barrier but when concentration on the therapeutic aspect of the drugs the absorp-
tion of the drugs through the intestinal is retarded due to the expression of the 
P-gp in the intestinal lumen, not only in the lumen part though their presence are 
predicted all over the body but their expression is more in the diseased cells mainly 
the cancer cells. The plasma membrane of the intestinal epithelial cells pumps back 
the drug which enters into it and which are recognised as the substrate and are 
excreted [90–92]. Higher levels are seen in the biliary epithelium, proximal tubules 
of the kidney and the drugs are seen in the bile and the urine. For inhibiting the 
role of the P-gp the P-gp inhibitors are developed. Though the inhibitors shows the 
action when checked in preclinical studies but their action retards when come into 
the clinical trials. The progress report of the inhibitors are explained in Figure 1. 
The failure in the therapeutic efficacy with the cancer treatment is mainly due to the 
over-expression of P-gp.

8.30 Cancer and drug resistance

In 1940s: first cancer chemotherapy trails begin.
In 1970s: Mammalian cells showed resistance to the anticancer agents recur-

rently exhibited cross-resistance to drugs which are structurally and functionally 
dissimilar.

Multidrug resistance was a foremost problem in the cancer chemotherapy 
because it involved resistance to some of the commonly used and the first line 
anticancer drugs.

In 982s: Multidrug resistance was shown in most of the cases which results in 
decline in the intercellular drug accumulation, apparently as a result of altering in the 
plasma membrane. In many multidrug resistant cell lines, the resistance was found to 
correlate with over expression of a 170-kDa membrane protein (P-gp) [93, 94].

Why to study Multidrug resistance?

• Important role in the cancer multidrug resistance and its pathogenesis.

• Important role in Drug pharmacokinetics (Uptake distribution and excretion).

Figure 1. 
P-gp inhibitor development timeline. The progress report of the inhibitors.
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• Important role in removing toxins.

• Key role in development of inhibitors.

• To learn about the biology of the transport system.

9. Conclusion

P-gp is the protein belonging to the ABC family protein transporters with the 
aspect of protecting the cells and vital organs from the entry of the xenobiotics, 
toxins and drugs. The over-expression of the P-gp in the diseased cells leads to 
the therapeutic failure during the treatment regimen but the role of the P-gp for 
producing protective action in the brain and fetal cells are also unavoidable. Hence 
for an effective therapeutic aspect, the action of the P-gp and its role should be 
studied. For overcoming the unwanted action of the P-gp the inhibitors of the P-gp 
are mainly developed and the strategies for overcoming the MDR by using natural 
inhibitors and the formulation aspects and caused are mentioned in this chapter.
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Chapter 3

Urological Effects of Ketamine 
Abuse
John Shung-Lai Leung and Wai-Kit Ma

Abstract

Emerging evidence has shown that long-term and chronic ketamine use or abuse 
can lead to damages in the urinary tract, a spectrum of clinical presentations from 
mild irritative lower tract symptoms to painful gross haematuria and renal dam-
ages. First reported by a Hong Kong group of urologists in 2007, the phenomenon 
has since then been identified worldwide. Most of the ketamine abusers were ado-
lescents and young adults, and the symptomatology resembled those of chemical 
cystitis or interstitial cystitis. Endoscopic features of ulcerative cystitis, radiological 
features of thickened and contracted bladder wall with or without obstruction to 
upper urinary tract, and histopathological features of inflammation and fibrosis 
and urothelial metaplasia changes were described. With increasing clinical experi-
ence in managing this group of patients, clinical pathways and medical and surgical 
treatment options have been developed. Animal studies on the effects of ketamine 
exposure on the urinary system have also been conducted to help us understand the 
underlying pathophysiology for this distinct entity.

Keywords: ketamine, cystitis, hydronephrosis, detrusor overactivity, uropathy

1. Introduction

Ketamine is listed in the WHO Essential Medicines List since 1985 as an anaesthetic 
and analgesic. Unlike other commonly used anaesthetic agents, ketamine does not tend 
to cause respiratory depression or hypotension, making it ideal for use as a general 
sedative and in veterinary medicine [1].

However, ketamine is also a drug of abuse. The United Nation’s World Drug 
Report 2019 shows that ketamine has been the dominant hallucinogenic seized 
by authorities globally, accounting for 87% of such seizures in the past 5 years 
[2]. In 2017, the global quantity of ketamine seized was approximately 11,000 
kilogrammes, the majority of which was in Asia [3]. Most ketamine seized, in 
the order of descending quantity, was reported by mainland China, followed by 
Taiwan, Hong Kong, Malaysia, Myanmar, Thailand, the United Kingdom, India, 
and the Netherlands [3]. In Taiwan, ketamine has been the most frequently abused 
illicit drug since 2006. The volume of seizures there grew from 916 kg in 2009 to 
1187 in 2010 [4]. However, ketamine is becoming more and more popular not only 
in Southeast Asia but in Europe as well. The number of ketamine users in the United 
Kingdom grew from 85,000 in 2006 to 113,000 in 2008, becoming the fourth most 
popular illicit drug among UK clubbers [5]. Its popularity could be explained by its 
low market price among recreational drugs and also the difficulty in cracking down 
on its trafficking, as it is produced legally for medical use [6].
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The chronic and illicit use of ketamine is associated with urinary tract damages. 
Structural damage to the bladder, ureters, and kidneys has been demonstrated 
in numerous animal and human studies. Patients usually present to the urologi-
cal service with symptoms such as urinary frequency, haematuria, and dysuria. 
Management is multidisciplinary, as a big part of treatment success lies not only in 
urological interventions but also in successful abstinence.

2. Epidemiology of ketamine-associated cystitis

The exact prevalence of ketamine-associated cystitis is difficult to ascertain, 
as most users are reluctant to seek medical attention despite symptoms. A study in 
Taiwan conducted in 2019 by Li et al. reported that whilst 84% of chronic ketamine 
abusers demonstrated urinary tract symptoms, only 48% sought treatment [7]. A sur-
vey involving 3806 participants in the United Kingdom by Winstock et al. found that 
26.6% of ketamine users report urinary symptoms and that the symptoms are signifi-
cantly related to both frequency and duration of use [8]. Similarly, Pal et al. from the 
United States conducted a survey involving 18,802 participants which reported a 30% 
prevalence of lower urinary tract symptoms (LUTS) among recent ketamine users [9].

Lower urinary tract symptoms, as well as dysuria and haematuria, are the most 
common symptoms caused by chronic ketamine abuse. LUTS in the setting of 
ketamine cystitis usually comprises urinary frequency, feeling of incomplete bladder 
emptying, and nocturia. More than 50% of users complain of urinary frequency after 
using ketamine for about 2 years [7]. The severity and number of symptoms are corre-
lated with not only the duration of use but also the route of administration. Ketamine 
may be cut up into a powder form before being inhaled or smoked with pipe-like 
devices. Snorting causes significantly more symptoms than smoking. This is possibly 
due to a higher amount of ketamine entering the circulation via the nasal mucosa [7].

The combined use of ketamine with other substances such as marijuana and 
3,4-methylenedioxy-methamphetamine (MDMA) has also been found to significantly 
increase the severity of LUTS. Marijuana enhances the expression of cannabinoid 
receptors CB1 and CB2, which are found in the human bladder urothelium [10]. This 
is implicated in the worsening of storage symptoms such as frequency and urgency. 
The mechanism through which MDMA exacerbates LUTS remains to be elucidated.

3. Pathogenesis of ketamine cystitis

A number of mechanisms have been proposed to explain the pathogenic effects 
of ketamine on the urinary system. These include (1) direct toxicity of ketamine or 
its metabolites on the bladder tissues; (2) microvascular changes in the bladder and 
kidneys by ketamine or its metabolites; and (3) delayed (type IV) hypersensitivity 
against the urothelium due to ketamine or its metabolites [11]. Infection is unlikely 
to play a role in the primary pathogenesis of ketamine cystitis, as the vast majority 
of patients do not have a positive urine bacterial culture. As of yet, there has not 
been a single conclusive theory on the mechanism of ketamine-induced cystitis.

In vitro studies on human urothelial cells have demonstrated dose-dependent 
toxicity of ketamine to human urothelial cells. The damage is carried out by both 
ketamine itself and its primary metabolite (norketamine) [12]. Norketamine is gen-
erated as ketamine undergoes hepatic metabolism. Both ketamine and norketamine 
are subsequently excreted in the urine. Ketamine and norketamine are equally toxic 
to the urothelium in in vitro studies, but norketamine remains in the urine for longer 
than ketamine, and hence norketamine may be accountable for more of the damage 
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done [13]. As with other toxic exposures, daily exposure has been found to be more 
damaging than a one-off exposure. The accepted anaesthetic dosage of ketamine for 
human medical use is 0.5–2 mg/kg, but much higher concentrations are abused in 
recreational use (up to 20 g per day in some users) [13]. As aforementioned in the 
previous section, it also takes approximately 2 years of abuse before cystitis symp-
toms arise. Therefore, as ketamine is used at much lower doses as well as frequency 
in the context of anaesthesia as compared to daily abuse, the medical use of ket-
amine for one-off anaesthesia is less likely to cause significant ketamine cystitis.

The hypothesis that ketamine and norketamine exert a direct effect on the 
urothelium is based on the knowledge that both chemicals are excreted by the urine 
and have a long contact time with the urothelium (ketamine 5 days, norketamine 
6 days) after ingestion [14].

The urinary tract from the renal pelvis to the proximal urethra is covered by 
the urothelium, a highly specialised transitional epithelium capable of stretching 
to accommodate various degrees of distension in response to urine volume. The 
urothelium comprises three layers—superficial, intermediate, and basal. Under the 
urothelium lies the submucosa, then the detrusor muscle, and then the adventitia.

Classic histological changes found in ketamine cystitis include denudation of 
the urothelium, as well as inflammatory changes including oedematous vessels, and 
infiltration by eosinophils and T-lymphocytes [15]. The affected urothelium loses 
its superficial layer (which provides a barrier function), thus exposing the stroma 
to further insults from urinary ketamine and norketamine. This may be one of the 
mechanisms by which ketamine causes cystitis and the resultant symptoms. Some 
of these histological changes are similarly seen in interstitial cystitis (chronic blad-
der pain in the absence of an identifiable aetiology) [16]. Additionally, haematoxy-
lin and eosin staining in the urothelium affected by ketamine cystitis may in some 
cases display apparent dysplastic changes with the loss of epithelial cohesion. Such 
changes mimic the histology of carcinoma in situ, and hence the clinical history of 
ketamine abuse should alert the clinician or pathologist to the possibility of misdi-
agnosis of carcinoma in situ [12].

The infiltration by T-lymphocytes suggests that a delayed (type IV) hypersen-
sitivity reaction to ketamine may also play a role in the pathogenesis of ketamine 
cystitis [17]. This is because T-lymphocytes are heavily implicated in type IV 
hypersensitivity reaction, and it is known that type IV hypersensitivity reactions 
occur only after prolonged exposure to the causative agent. This reaction conforms 
to the temporal profile of the development of ketamine cystitis, where symptoms 
usually develop only after 2 years of abuse.

4. Clinical presentation

The irritative effects of ketamine on the urinary system, especially the bladder, 
produce myriad symptoms. These include:

• Urinary frequency

• Feeling of incomplete bladder emptying

• Nocturia

• Urinary urgency

• Urge incontinence
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• Haematuria

• Suprapubic pain or ‘bladder pain’

The typical complaint from the affected patients is ‘painful, small voids’, closely 
mimicking that of interstitial cystitis. These symptoms typically develop after 
2 years of ketamine abuse. A study in Hong Kong by Ng et al. has demonstrated 
the relative prevalence of symptoms as follows: urgency (92%), frequency (84%), 
nocturia (88%), dysuria (86%), and haematuria (68%) [18]. The most bothersome 
symptoms reported by users are typically urinary frequency, nocturia, and urgency. 
This is because of the need of frequency visits to the bathroom, which interferes 
significantly with their daily activities [7].

The clinician may evaluate symptoms using standardised methods such as 
frequency-voiding charts (also known as a ‘bladder diary’) and questionnaires 
such as the Pelvic Pain and Urgency/Frequency (PUF). A frequency-voiding chart 
involves the patient recording the volume of every fluid intake and void and also 
instances and degrees of urge incontinence, if any. Reviewing a frequency-voiding 
chart allows the patient to communicate effectively with the clinician the frequency 
and nocturia experienced. Ketamine cystitis typically produces a low-compliance 
bladder, manifesting as frequency, low-volume voids. Urge incontinence is the sud-
den and compelling desire to pass urine that is difficult to defer and is accompanied 
by involuntary leakage.

The Pelvic Pain and Urgency/Frequency questionnaire is a symptom score ques-
tionnaire developed and validated for the diagnosis of interstitial cystitis [19]. As 
mentioned, interstitial cystitis produces symptoms and histological changes in the 
bladder akin to those found in ketamine cystitis, and studies have validated the use 
of this questionnaire to score patients experiencing symptoms of ketamine cystitis 
[18]. The questionnaire includes eight questions evaluating daytime frequency, 
nocturia, pelvic pain, urinary urgency, the degree to which these symptoms bother 
the patient, and sexual function. PUF generates a symptom score and bother score, 
which total at 35. In a patient with history of significant ketamine abuse, a score 
of ≥15 indicates the presence of significant cystitis symptoms, thus leading to the 
diagnosis of ketamine cystitis. The PUF is a useful tool not only for the diagnosis 
of ketamine cystitis but also for symptom quantification so that its severity and 
response to treatment could be monitored over time.

5. Clinical investigation findings

Cystoscopy, computed tomography (CT), ultrasonography, and pyelography 
are examples of investigations that may demonstrate the structural damage 
implicated in ketamine cystitis [20]. Cystoscopy reveals inflammatory changes 
such as telangiectasia (indicative of neovascularisation), ulceration, or even 
petechial haemorrhage in severe cases. Biopsies of the affected bladder urothe-
lium will reveal histological changes mentioned earlier in the chapter, including 
denuded epithelium and infiltration by eosinophils and lymphocytes. Computed 
tomography may show bladder wall thickening and peri-vesical stranding, both of 
which are indicative of chronic inflammation of the bladder wall (Figure 1). Upper 
tract damage usually manifests itself as unilateral or bilateral hydronephrosis, 
with ureteric wall thickening, or luminal narrowing and strictures. CT, pyelog-
raphy, and ultrasound are all suitable modalities to demonstrate hydronephrosis 
(Figures 2–4). CT and pyelography have the additional benefit of evaluating the 
exact level of ureteric stricturing.
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Figure 1. 
Contrast CT scan image showing a thickened and contracted bladder in a patient with a 7-year history of 
ketamine abuse.

Figure 2. 
Reconstructed contrast CT urogram showing bilateral hydronephrosis and hydroureter down to the level of the 
vesicoureteric junctions. The bladder also appears small with generalised wall thickening. This patient has an 
8-year history of ketamine abuse.
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Apart from assessing the degree of structural damage, the functional capacity of 
the urinary system should also be assessed. Urodynamic studies, such as video cys-
tometrogram, reveal reduced bladder capacities, reduced bladder compliance, and 
sometimes detrusor overactivity even at low bladder volumes. Bladder capacities of 

Figure 3. 
This is an antegrade pyelogram of a patient suffering from ketamine cystitis. Contrast is injected through the 
percutaneous nephrostomy. There is hydronephrosis and a contrast upholding at the level of the L3 vertebra. 
This is suggestive of a ureteric stricture at that level causing hydronephrosis.

Figure 4. 
Ultrasound image of the left kidney of a patient with ketamine cystitis complicated by acute left pyelonephritis. 
This patient had a background of ketamine cystitis with bilateral hydronephrosis. She presented acutely with 
left loin pain and fever. The ultrasound image shows debris in the chronically dilated renal pelvis. This is 
compatible with acute pyelonephritis complicating ketamine cystitis. A combination of chronic obstruction and 
vesicoureteral reflux has likely contributed to the development of upper tract infection.
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ketamine cystitis patients are typically <150 ml, and detrusor overactivity has been 
shown to be evident at bladder volumes as low as 14 ml [21]. This means that such 
patients will not only complain of very frequent but small voids, they are also likely 
to experience urge incontinence. One can see how disabling such symptoms are 
from these investigation findings (Figures 5–7).

Renal impairment can be reflected from raised serum creatinine or impaired 
creatinine clearance and estimated glomerular filtration rate. Renal impairment 
may stem from vesicoureteral reflux (VUR) due to chronic reduction in bladder 

Figure 5. 
Cystometrogram (filling phase) of a patient with a 10-year history of ketamine abuse. First desire to void was 
recorded at 14 ml of bladder filling. Also note the multiple spikes at the lowermost tracing indicative of detrusor 
overactivity. (Pves, intravesical pressure; Pabd, intra-abdominal pressure; Pdet, subtracted detrusor pressure of 
Pves–Pabd).

Figure 6. 
Cystometrogram (filling phase) of the same patient after 3 years of abstinence. First desire to void at 51 ml. 
Note the difference in the scale of the x-axis denoting volume. The detrusor overactivity has also dampened, as 
shown by the smoother Pdet tracing.
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compliance. VUR can be demonstrated on video cystometrogram as a reflux of con-
trast material from the bladder up to the ureters. VUR predisposes the upper tract 
from urinary tract infections, increasing the risk of recurrent pyelonephritis and 
resultant renal scarring (Figure 2). Hydronephrosis as a result of ureteric narrow-
ing is also a cause of renal impairment in these patients. Ureteric narrowing is likely 
secondary to urinary ketamine and its metabolites causing transmural inflammation 
and swelling or even fibrosis and strictures (Figure 8).

Papillary necrosis may be seen on renal ultrasound or on contrast studies such as 
an intravenous urogram or computed tomography [11]. The contrast material fills 
necrotic cavities located in the renal papillae. Sometimes, sloughed necrotic mate-
rial may pass into the ureter, causing obstruction, and appear as a filling defect.

Figure 8. 
Contrast CT scan image of a patient with more than 3 years of ketamine abuse, showing bilateral atrophic 
kidneys and hydronephrosis. This patient required bilateral percutaneous nephrostomies (also seen on this 
image) for upper tract urinary diversion.

Figure 7. 
Cystometrogram (filling phase) of the same patient after 8 years of abstinence. First desire to void at 75 ml. 
Much improved bladder compliance as shown by the relatively smooth Pdet tracing.
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6. Management

6.1 Abstinence and a multidisciplinary approach

The management of ketamine cystitis aims at abating the debilitating urinary 
symptoms and preventing further damage to the urinary tract. The most important 
components of the management plan therefore lie in early diagnosis and early 
abstinence, as this aims to effectively remove ketamine and its metabolites from 
the urinary system before irreparable damage to the urinary system sets in. A 
large-scale study involving more than 1000 ketamine users reported that up to 
50% of users report symptomatic improvement after cessation of use. Urinary 
frequency has been shown to be the first symptom to improve [8]. That said, as 
with any detoxification program, psychosocial challenges pose a big barrier to 
long-term abstinence. It is therefore imperative that the clinician solicits help from 
relevant parties such as social workers, clinical psychologists, or even psychiatrists 
to form a multidisciplinary approach in managing these patients [22]. This process 
involves first identifying those suffering from ketamine cystitis, then explaining 
the relationship between ketamine use and cystitis, and finally embarking on the 
detoxification journey. As mentioned earlier in the chapter, the PUF scale serves 
as a standardised and validated means of identifying ketamine users suffering 
from cystitis. Success in multidisciplinary management has been demonstrated by 
outreach teams comprising urologists, psychiatrists, social workers, and nurses in 
Hong Kong [23].

6.2 Oral agents

Although the precise mechanism of injury in ketamine cystitis has yet to be 
elucidated, it is clear that it involves inflammation of the urothelium akin to that of 
interstitial cystitis. Medications that aim to reduce inflammation, such as nonste-
roidal anti-inflammatory drugs (NSAIDs) and glucocorticoids, have thus been 
studied in the treatment of ketamine cystitis symptoms. Other treatment regimens 
involving the use of antibiotics, anti-muscarinic agents, and beta-3 agonists have 
also been examined. However, the results from the medication therapy have been 
suboptimal overall [24].

Medication therapy may not result in significant improvements in LUTS for 
these patients, but analgesics should still be employed generously. This is because 
ketamine itself possesses analgesic properties, and therefore abstinence after long 
periods of abuse may produce pain akin to a withdrawal effect. Analgesics such as 
paracetamol, phenazopyridine, or even narcotic analgesics such as tramadol may 
be used on top of NSAIDs in high doses as pain relief during the initial period of 
detoxification [25].

6.3 Intravesical therapies

Ketamine and its metabolites cause denudation of the urothelium, exposing the 
underlying submucosa and stroma of the bladder wall to further toxic damage. This 
produces the typical LUTS as well as the structural changes such as wall thickening 
and reduction in compliance. This has prompted investigations into the effective-
ness of intravesical therapies that aim to restore the integrity of the urothelium so 
that the underlying tissue may no longer be exposed to the toxicities of ketamine 
and its metabolites. Intravesical instillation of a glycosaminoglycan, such as hyal-
uronic acid or chondroitin sulphate, has been proposed to reconstitute the barrier 



Biomarkers and Bioanalysis Overview

54

function provided by the urothelium and enhance healing. Reports of significant 
reductions in symptoms in patients treated with weekly intravesical instillations 
of hyaluronic acid or chondroitin sulphate have been published recently [26]. 
These patients not only reported a reduction of LUTS, but follow-up cystoscopy 
with biopsies showed decreased inflammatory cell infiltration, less inflammatory 
hypervascularity, as well as regeneration of the urothelium [27].

Cystoscopic injection of botulinum toxin into the bladder wall, followed 
by hydrodistension, is another intravesical treatment that has been shown to 
relieve symptoms of ketamine cystitis [28]. Botulinum toxin type A inhibits the 
presynaptic release of neurotransmitters such as acetylcholine, thus inactivating 
neuromuscular junctions and reducing detrusor activity. The patient is typically put 
under spinal anaesthesia, and a cystoscope is then advanced into the bladder. 20 ml 
of botulinum toxin type A at a concentration of 200 IU in 20 ml is then injected 
into 40 points in the bladder wall. There is currently no standard protocol for the 
technique of hydrodistension, but authors have performed it by filling the bladder 
with saline under a pressure of 80 cmH2O, at a volume of 150–200 ml, for a dura-
tion of 5 minutes [29].

6.4 Surgical therapies

The bladder in a patient with severe ketamine cystitis is thickened and fibrotic 
and has poor compliance. Apart from severe LUTS, these changes may also 
cause vesicoureteral reflux and upper tract damage. Such patients are at risk of 
chronic renal failure. Surgical treatment in the form of augmentation cystoplasty 
is therefore an option to increase the capacity and compliance of the bladder, 
so that symptomatic improvement and upper tract protection could be brought 
about through a single procedure. Techniques vary, but an option is to use a 25 cm 
segment of the ileum and sew it to a surgically created clam-like opening of the 
bladder in order to augment its volume and compliance [30]. Contraindications 
to augmentation cystoplasty using bowel include any condition that renders the 
bowel abnormal at the baseline, for example, inflammatory bowel disease (Crohn’s 
disease, ulcerative colitis) and previous gut resection (such that further resec-
tion may predispose the patient to malabsorption or even short gut syndrome). 
Another alternative is to use a portion of the stomach, termed gastrocystoplasty. 
This has its own issues, as the hydrochloric acid produced by the stomach mucosa 
may cause haematuria-dysuria syndrome, peptic ulceration in the bladder, and 
alkalosis. Complications include a mortality rate of up to 2.7%, small bowel 
obstruction, fistulation, and renal failure (due to the reabsorption of urinary 
waste through the bowel segment). Some patients may furthermore require 
clean intermittent catheterisation to more effectively empty the bladder. Patient 
selection is paramount when considering augmentation cystoplasty for ketamine 
cystitis patients. Failure of abstinence after surgery results in rapid reabsorption 
of ketamine from the urine through the bowel segment. Ketamine and its metabo-
lites are hence recirculated, excreted in the urine again, and once again exerting 
their toxic effects on the urothelium. Augmentation cystoplasty with bowel may 
therefore even accelerate upper tract damage should the patient fail to abstain from 
ketamine postoperatively. The patient should also be willing to comply with clean 
intermittent self-catheterisation should it be required [30].

An alternative surgical strategy is an ileal conduit [31]. This involves brining 
both the ureters to an opening in the abdominal wall through a surgically created 
segment of the ileum. This obviates the need for clean intermittent catheterisation 
and offers quicker postoperative recovery. However, as this is an incontinent type of 
urinary diversion, the patient would have to live with a lifelong urostomy bag.
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6.5 Upper tract protection

Some patients present with bilateral hydronephrosis with or without impair-
ment of renal function. This could be due to vesicoureteral reflux or ureteric 
strictures. As most patients with ketamine cystitis are young, it is of paramount 
importance that their upper tract is protected to prevent chronic renal disease. 
Methods to achieve this include percutaneous nephrostomy and ureteral stenting. 
Percutaneous nephrostomy involves placing a plastic tube through the skin into 
the renal pelvis so that the urine produced by the kidney may drain through the 
tube into an external bag instead of being trapped in the obstructed system. The 
drainage of the urine through nephrostomy tubes into an external bag also reduces 
the LUTS from ketamine cystitis, as there is significantly less urine entering the 
bladder. Disadvantages include inconvenience, as well as nephrostomy tube-related 

Figure 9. 
Clinical pathway for the management of ketamine cystitis (adapted from Ma et al.) [22].
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complications such as frequent dislodgement, and blockage. The inconvenience 
associated with the use of a nephrostomy tube is due not only to the presence of the 
tube exiting the loin but also to the bag to which it is connected. Another way of 
ensuring upper tract drainage is by retrograde stenting [32]. Double J stents can be 
inserted via a cystoscope to ensure ureteric patency. This method obviates the need 
for external tubes and bags, but as urine is allowed to flow into the bladder, LUTS 
may persist. Additionally, some patients may also suffer from stent symptoms, 
which include LUTS due to the stent tips in the bladder irritating the urothelium.

6.6 Clinical pathway

Urologists in Hong Kong such as Ma et al. have established a clinical pathway 
in order to guide and standardise the management of ketamine cystitis [22]. 
Patients going through such a clinical pathway will receive a full workup of 
the extent of their ketamine cystitis and complications and receive treatment 
accordingly (Figure 9).

7. Challenges

The treatment of ketamine cystitis revolves heavily around abstinence. However, 
addiction and withdrawal symptoms, as well as the socioeconomic factors that con-
tribute to the persistence of ketamine abuse, are not the only factors that hamper 
successful abstinence.

Abstinence from ketamine in the presence of ketamine cystitis is made more 
difficult by bladder pain and dysuria. As ketamine exhibits analgesic effects, it 
paradoxically suppresses the bladder pain and dysuria caused by ketamine cystitis. 
Subsequently, the cessation of ketamine use will unmask more intense cystitis 
symptoms. If such symptoms are inadequately controlled by more effective anal-
gesics, the patient may be driven to use ketamine as a means to control the cystitis 
symptoms. Such a pattern of abstinence, failure of symptomatic control, and 
relapse creates a vicious cycle. It is therefore important to prescribe the patient with 
adequate analgesia according to the analgesic ladder to effectively suppress bladder 
pain and dysuria. The flip side of this is that the patient may in turn become depen-
dent on the prescribed analgesics, especially if opioids are used [25].

Failure of abstinence in patients who have received surgical treatment such 
as augmentation cystoplasty may prove to be detrimental. As mentioned in the 
Management section, the reabsorption of ketamine and its urinary metabolites via 
the bowel segment used for augmentation cystoplasty may accelerate damage to 
the upper urinary tract, making the surgical treatment counterproductive. Correct 
patient selection for surgical treatment weighs heavily upon the urologist [31].

Upper tract protection by means of bilateral percutaneous nephrostomies (PCNs) 
may be the last resort for patients with identifiable hydronephrosis and impaired 
renal function [33]. However, as most ketamine cystitis patients are young and ambu-
latory, bilateral PCNs prove to be a cumbersome and a general nuisance. Not only are 
the nephrostomy tubes and bags inconvenient to live with, they also come with issues 
such as dislodgement or tube blockage. Tube-related issues may require hospitalisa-
tion for the revision of the nephrostomies, which adds not only to patient dissatisfac-
tion but also to overall healthcare costs. With such inconvenience, the patient may 
be deterred from complying with having bilateral PCNs and in turn exposes himself 
to risks of chronic kidney disease and eventual dialysis dependence. Dialysis depen-
dence in this age group makes the employment difficult, which then contributes to a 
lack of socioeconomic support and again makes abstinence a challenge.
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8. Conclusions

Long-term ketamine abuse leads to the development of ketamine cystitis. 
Symptoms are debilitating and interfere significantly with the patient’s daily activi-
ties. Furthermore, the upper tract may also suffer from irreversible damage, such 
as ureteric stricturing and finally chronic renal failure. Management of ketamine 
cystitis starts with its identification. This could be achieved using standardised 
symptom score questionnaires in known abusers of ketamine. Investigations such as 
blood tests, computed tomography, and cystometrogram are useful to characterise 
and delineate the extent of ketamine cystitis and its sequelae. The cornerstone of 
effective treatment is abstinence. This is done via a multidisciplinary approach 
involving urologists, psychiatrists, social workers, and other relevant disciplines. 
Intravesical therapies, such as hyaluronic acid instillation and botulinum toxin 
injection, are emerging options that have shown promising results. Upper tract pro-
tection in the form of long-term percutaneous nephrostomies may save the patient 
from suffering from chronic renal failure.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

Skeletal muscle places a vital role in regulating immune function, glucose dis-
poser, protein synthesis, and mobility. This massive dynamic reservoir of proteins, 
minerals, and other metabolites could be cannibalized, and a loss of skeletal muscle 
may predispose impaired tissue hailing and few poor immune functions. Several 
studies had shown the reduced survival rates and the increased hospital lengths of 
stay of patients who have a poor nutrition status and low muscle mass. In addition, 
few studies have demonstrated the effect of muscle wasting on serum creatinine. 
There are no data available regarding its effect on serum creatinine, and moreover, 
ICU-acquired myopathy is rarely recognized because of insufficient diagnostic 
criteria or methodological limitations. Despite these limits, serum creatinine is still 
considered the standard for assessing acute changes in renal function. The present 
chapter details the existing evidence related to the effects of nutritional status and 
muscle wasting on serum creatinine based on recent evidences.

Keywords: serum creatinine, muscle mass, muscle wasting, nutritional status

1. Introduction

Skeletal muscle places a vital role in regulating immune function, glucose 
disposer, protein synthesis, and mobility. Unfortunately, critical illness is character-
ized by hypermetabolic and hypercatabolic states, which leads to an elevated resting 
energy expenditure rate, hyperglycaemia, altered substrate use, and increased 
oxygen consumption.

Among the patients who are previously well nourished before intensive care 
unit (ICU) admission, nutritional disorders develop rapidly because of the 
metabolic demands of illness, rapid fluid shifts, and the loss of specific vitamins 
and trace elements. Timely initiation of optimal nutritional support is important 
to slow the catabolic process and minimize adverse events such as prolonged 
mechanical ventilation, longer ICU stay, and increased risk of death [1]. The body’s 
reaction to the illness (trauma, burns, inflammation, or surgery) includes an 
increase of energetic metabolism, hypersecretion of counter-regulatory hormones 
(glucagon, glucocorticoids, and catecholamines), and release of inflammatory 
mediators and other hormonal mediators (vasopressin) in the general setting 
of inflammation. Protein energy malnutrition is associated with muscle weak-
ness, increased risk of infections, impaired wound healing, impaired coagulation 
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capacity, impaired gut function, reduced respiratory muscle function, and pro-
longed time to convalescence [2]. The present chapter details the existing evidence 
related to the effects of nutritional status and muscle wasting on serum creatinine 
(sCr) based on recent evidences.

1.1 Protein-energy nutritional status in intensive care

The assessment of caloric and protein requirements include clinical history, 
nutritional history, physical examination, laboratory test (like albumin, preal-
bumin, blood glucose, transferrin, and kidney and liver function), severity of 
the illness, body mass index (BMI), ideal body weight (IBW), resting energy 
expenditure (based on calorimetry), and protein requirements (based on nitro-
gen balance). The nutritional assessment could be performed by direct calo-
rimetry, performed by placing the patient in a calorimetric chamber, thermally 
insulated, in order to be able to evaluate the heat that it gives off by radiation, 
convection, conduction, and evaporation; this heat is detected by a water-cooled 
heat exchanger. Unfortunately, this method cannot be applied to all hospitalized 
patients. In critically ill, the gold standard is represented by indirect calorimetry, 
a method that measures respiratory gases: the oxygen of a determined volume of 
inspired air and the carbon dioxide produced. Therefore, numerous equations 
have been developed with the measurements performed with the indirect calo-
rimetry in mechanically ventilated patients (Table 1).

Such equations use dynamic physiological variables, which allow the recalcula-
tion of energy expenditure, in order to evaluate how much energy the body spends 
in the acute phase, and then, determine the minimum requests. Predictive equa-
tions are notoriously inaccurate for individual critically ill patients, due to large 
differences in disease-related metabolic rate, treatment, and interindividual factors. 
Many centers that do not have indirect calorimetry adopt a simple approach provid-
ing 25–30 kcal/kg/day. Guidelines of the European Society for Clinical Nutrition 
and Metabolism recommend an intake of 25 kcal/kg/day in critically ill patients, 
and for both females than for males, considering, however, a 10–20% increase in 
patients with SIRS and overweight (BMI > 25), considering the IBW for calculation 
of energetic requirements [3].

Formula Energetic requirements predicted (kcal/day) Mechanical 
ventilation

Harris-Benedict Man: 66 + (13.7 × BW) + (5 × H) − (6.8 × Age)
Woman: 65 + (9.6 × BW) + (1.7 × H) − (4.7 × Age)

No

Ireton-Jones (a) Mechanical Ventilation: 1925 − (10 × Age) + (5 × BW) +  
(281 × Sex) + (292 × Trauma) + (851 × Burn)

Spontaneous Breath: 629 − (11 × Age) + (25 × BW) +  
(689 × Obesity)

Yes

Frankenfield (b) 21,000 + (100 × RR) + (13 × Hb) + (300 × Sepsis) Yes

Swinamer (945 × BSA) - (6.4 × Age) + (108 × BT) + (24.2 × RR) +  
(817 × TV) - 4349

Yes

Faisy (8 × BW) + (15 × H) + (32 × RR) + (94 × BT) − 4834 Yes

BSA, Body surface area; BW, body weight; H, height; Hb, hemoglobin; RR, respiratory rate; BT, body temperature; 
and TV, tidal volume; (a) Sex, 1 = man, 0 = female; Trauma, 1 = present, 0 = absent; Burn, 1 = present, 0 = absent; 
and Obesity, 1 = present, 0 = absent. (b) Sepsis, 1 = present, 0 = absent, based on clinical evidence of presumed 
infection, systemic inflammation, or organ dysfunction.

Table 1. 
Predictive equations of energetic requirements (kcal/die) in critically ill patients.
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1.2 Muscle mass

Skeletal muscle has emerged as a potent regulator of immune system function in 
regulating immune function, glucose disposal, protein synthesis, and mobility [4]. 
Skeletal muscle can be viewed as the dynamic storage depot of amino acid, which 
is sensitive to the fed and fasted states but also of minerals and other intermediate 
metabolites [5], which can be depleted to meet the need for other tissues involved in 
the inflammatory response. The loss of skeletal muscle and reduced protein storage 
may predispose to a relative glutamine deficiency, which is seen as impaired tissue 
healing, poor immune function, and reduced survival [5]. Significant changes in 
body composition occur with aging and are a consequence of imbalances between 
energy intake and needs associated with an increasingly sedentary lifestyle [6].

1.3 Lean body mass

The body composition is often divided into fat mass and lean mass, the latter 
also known as lean body mass (LBM). LBM, unlike the fat mass that stores energy 
in the form of adipose tissue, includes muscle and visceral proteins and is mainly 
composed of water, proteins, glycogen, and minerals.

In pathological conditions such as chronic kidney disease (CKD), which is 
characterized by the presence of a positive water balance, it is necessary to perform 
an assessment of the volume of body water separately from the other components 
of the LBM. About half of LBM is made up of skeletal muscle mass, so the LBM 
compartment can be defined as heterogeneous and influenced by fluctuations in the 
distribution of water and electrolytes, which are more dynamic in nature in patients 
undergoing renal replacement therapy. Recent studies suggest that greater muscle 
mass is associated with greater longevity in people with chronic renal failure and 
in other chronic disease states [7]. Specific to LBM in the ICU, critically ill patients 
suffer significant LBM loss, much of it in the first 7–10 days of ICU stay [8]. However, 
patients gain weight back following ICU stay as fat mass but not as functional LBM 
[9]. Data in literature demonstrate that the catabolic/hypermetabolic state following 
injury can persist for up to 2 years following discharge from hospital, and this can 
markedly hinder the recovery of patients’ LBM and function following injury [9].

1.4 Serum creatinine

sCr is an endogenous substance generated by the nonenzymatic conversion of 
creatine and creatine phosphate, 95% of which is found in the muscles [10]. sCr is an 
uncharged, small molecular weight, unfilled substance (113 Da) which is not related 
to whey protein. It is filtered freely by the glomerulus without tubular resorption. 
sCr is also secreted by the kidney tubules only in small quantities. In clinical practice, 
levels of sCr are used to determine kidney function to estimate the glomerular filtra-
tion rate. Its rise usually indicates either acute kidney injury (AKI) or chronic kidney 
disease [11, 12]. Due to the correlation between sCr levels and muscle mass, sCr in the 
steady state has been used as a surrogate of muscle mass measurements [13].

Low sCr levels could be considered as a proxy of protein-energy wasting in some 
clinical situations [14]. Individuals’ sCr levels can be influenced by diet. In fact, 
arginine and glycine are precursors of creatine, and for this reason, a low protein 
intake in the diet can limit the generation of sCr. The sCr levels can be considerably 
lowered in the presence of protein malnutrition. Factors associated with low sCr 
levels are low muscle mass (female gender, elderly, and chronic illness), malnu-
trition, vegetarian diet, pregnancy, advanced liver disease, fluid overload, and 
augmented renal clearance.
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AKI is an event that commonly complicates the clinical course of critically ill 
patients, contributing to multi-organ failure and requiring appropriate nutritional 
interventions in a strategic treatment.

The metabolic and nutritional demands of AKI patients are affected not only from 
the uremic state but also from the underlying pathology and complications associated.

A personalized approach for each patient that involves an analysis of specific nutri-
tional requirements for each patient and a consideration of renal replacement therapy 
(RRT) support used is therefore necessary to improve the outcome of these patients.

Nitrogen is a fundamental component of the amino acids that make up the 
molecular structure of proteins. Proteins are the major functional substrate for cells 
and tissues and are essential for body growth and also for the maintenance and recov-
ery. Protein metabolism generates calories (about 4 kcal/g). Nitrogen is released from 
protein degradation, which is also lost from secretions or excreted in sweat, feces, and 
urine. In particular, urea nitrogen represents 85–90% of the urinary nitrogen loss.

In the ICU patient, the greater non-urinary loss occurs through the intestine, 
severe burns, RRT, and/or by abdominal drains. The nitrogen balance becomes 
negative (from −5 to −30 g day), reflecting the important protein catabolism.

The nitrogen balance is calculated as the difference between the nitrogen intake 
and output, according to the following equation:

 ( ) ( )N balance protein intake g / die / 6.25 urinary nitrogen g / die skin / stool losses   = − +     

where skin/fecal losses are approximately 2–4 g per day, while urinary losses can be 
recorded in the urine for 24 h (or by sampling for at least 4 h). The equivalence between 
urea in mmol/l and g occurs via two parameters: urea (g) = urea (mmol)/20.36, and 
then through the fact that 6.25 g of protein contains 1 g of nitrogen (Table 2).

In the setting of inflammatory state, acute loss of kidney homoeostatic function 
plays a central role in the worsening of the dysmetabolic state of the condition of 
critical illness. The stress response also induces changes in the use of substrates:

• Cellular insulin resistance acquired and secondary to the reduction of trans-
location of GLUT4 transporters on the plasma membrane, contributing to 
hyperglycaemia and alteration of cellular energy

Non-catabolic state Catabolic 
state

Proteins (g/kg/day) 0.8–1.0 (KDIGO 2012) Minimum 
1.0 (expert 
opinion)

Energy Energetic support is not influenced by AKI. Some authors suggested 20–30 kcal/
kg/day (KDIGO 2012). Others suggested 25–30 kcal/kg/day (Cano 2009, Brown 
2010, Gervisio 2011, McClave 2016)

Fluids Fluid balance and daily body weight must be monitored carefully. Fluid intake 
varies according with patient’s critical state, body weight, and fluid balance

Electrolytes Electrolytes should be monitored frequently and corrections vary according to the 
critical state and type of treatment

Micronutrients Evidences in this regard are scarce and not well documented. Usually, the levels 
of fat-soluble vitamins (Vit. A, Vit. D, Vit. E, Vit. K, and Vit. F) are low. CRRT 
has a negative effect on the balance of some vitamins and trace elements. It is not 
known whether micronutrient supplementation improves results

Table 2. 
Nutritional support in AKI patients.
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• Increased use of fatty acids as the use of glucose becomes inefficient

• Switch from protein anabolism to catabolism (net negative nitrogen balance)

2. Assessment of muscle mass and nutritional status in intensive care

Critically ill patients require a muscle mass assessment during their ICU stay. 
Unfortunately, the tools used to assess nutritional status are poor indicators of mal-
nutrition in the critically ill population. A sarcopenic obesity, characterized by excess 
fat and fluid retention of 10–20% of the patient’s body weight can mask the skeletal 
muscle wasting in the ICU [15]. Many ICU patients are edematous, and the measured 
weight, the BMI, and anthropometric measurements (mid-upper arm circumference 
and triceps skinfold thickness) may not reflect the real body muscle mass and could 
have limited results [16, 17]. In the ICU setting, albumin is also a poor marker of 
nutritional status not only due to changes in intravascular volume but also due to the 
impact of acute infection, inflammation, hepatic function, etc. [18]. Concerning the 
use of tools that assess muscle mass and nutrition, such as Nutrition Risk in Critically 
Ill Score [19], are difficult to perform and hence they cannot uniformly identify 
patients at risk of malnutrition. The bioelectrical impedance vector analysis is a useful 
method not only to evaluate tissue hydration but also to detect muscle mass variations 
in sarcopenic indictviduals, and it is able to discriminate sarcopenic individuals from 
sarcopenic obese individuals. However, the bioelectrical impedance vector analysis 
has some limitations: estimation of hydration status is related to fat-free mass, which 
basically means muscle mass (in the limbs). Whereas, the limbs contribute roughly 
90% to whole body impedance, only 6–12% are contributed by the trunk which, 
however, provides roughly 50% of the body weight and stores most of the surplus 
volume [20]. A baseline muscle mass assessment in the acutely critically ill patient is 
challenging. Muscle ultrasound is an attractive emerging technique able to offer quali-
tative analysis [21], inexpensive, and readily available at bedside. Unlike computed 
tomography (CT), however, international consensus does not exist on methodology, 
with significant differences between the techniques [21]. Although CT scans provide 
a reliable measure of muscle mass in these medically ill populations, CT scans are not 
performed on every critically ill patient due to cost and radiation exposure [22].

3. Muscle wasting and serum creatinine

After 10 days from the intensive care unit (ICU) admission [23, 24], a dynamic 
clinical state characterizes a “cascade” of new clinical problems [25]. This transition 
point is defined as “persistent critical illness” based on the point “beyond which 
diagnosis and severity of illness at admission are no more predictive of in-hospital 
mortality than are simple premorbid patient characteristics” [23]. Characterized by 
persistent inflammation, neurohumoral alterations, and prolonged immobilization, 
this catabolic state is not suppressed by nutrition [26, 27]. Catabolism results in 
muscle wasting and associated weakness, which impairs outcome [26–28]. Currently, 
there is no routine biomarker available with acceptable sensitivity and specificity 
which is able to monitor catabolism. Accurate monitoring of nitrogen losses and 
balances is not easy, but the presence and severity of catabolism often becomes 
clear once muscle loss and weakness are established. SCr is a metabolite of creatine 
phosphate, an energy store found in skeletal muscle, and in normal subjects it is pro-
duced at a constant rate. Particularly, a prolonged immobilization could decrease the 
plasma volume, bone mass, and skeletal muscle mass [29, 30]. A decrease in muscle 
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mass could theoretically be associated with changes in the metabolism of urea and 
sCr. Indeed, a muscle mass reduction could increase the urea generation because the 
muscular tissue has a high protein content and urea is the final catabolite of endog-
enous protein breakdown [31]. Disorders associated with dehydration/hypovolemia 
or with hypercatabolism increase plasma urea [32, 33]. In addition, skeletal muscle 
mass is the main determining factor of creatinine generation since creatinine is the 
final catabolite of muscle energy metabolism [34]. A decrease in muscle mass could 
decrease SCr levels, and conversely, SCr may be falsely increased with higher muscle 
mass. In addition, creatinine generation is low among individuals who have more 
diminutive muscle mass, either constitutionally or disease-related [13]. Due to the 
correlation between SCr levels and muscle mass, SCr in the steady state has been 
used as a surrogate of muscle mass measurements [35].

3.1 Muscle strength and sarcopenia index

Sarcopenia is a skeletal muscle disorder that is characterized by the loss of strength 
and mass together with impairment in physical function [36]. Sarcopenia is a complex 
syndrome that is associated with muscle mass loss, alone or in conjunction with 
increased fat mass. Since 2018, sarcopenia is not only considered as a debilitating 
condition that involves loss of muscle mass and function but also as a muscle disease. 
However, challenges in understanding the current evidence of the role of nutrition 
is represented by the number of different aspects of muscle health that have been 
considered as outcomes, both in observational and interventional study. New guide-
lines, which aim to improve consistency in the identification of sarcopenia in clinical 
care, identify muscle strength as the key characteristic of sarcopenia. This new 
guidance may also offer a useful structure within which to evaluate the influences on 
muscle health, including the effects of differences in diet [37]. Thus, a low muscle 
strength leads to a diagnosis of probable sarcopenia [37]. Sarcopenia is associated 
with frailty, poor surgical outcomes, prolonged need for mechanical ventilation, 
increased hospital cost, depression, decreased quality of life, increased risk of fall, 
nursing home residence, and a higher risk of death [38]. Evaluation of patients with 
sarcopenia could be really difficult as often physical function assessment is not 
performed and the measurement of muscle mass requires expensive and complex 
radiologic technique [39]. In addition, BMI, serum albumin levels, prealbumin levels, 
and physical examination lack in sensitivity and specificity to be used as surrogates 
for muscle mass. As previously reported, a low baseline sCr value is associated with a 
worse outcome and has been proposed as an indicator of low muscle mass [recently, a 
method to estimate muscle mass, named sarcopenia index (SI), was developed using 
the differential origin of two molecules cleared by the kidney: sCr (skeletal muscle 
cells) and cystatin C (nucleated cells) [40, 41], assuming steady kidney function]. 
The SI was calculated as (sCr value/cystatin C value) × 100. The SI not only signifi-
cantly correlates with imaging but also it has a superior performance compared with 
sCr alone in estimation of muscle mass, as reported by recent evidence [42].

3.2 Urea:creatinine ratio

The lack of validated and routinely available biomarkers of catabolism to some 
extent hampers the epidemiological and interventional studies on this topic. The initial 
decreases in sCr may be from altered metabolism and reflect bioenergetic failure. 
The subsequent continued fall in sCr reflected the length of ICU stay and length of 
hospitalization, and it is due to skeletal muscle loss (decreasing creatinine production) 
[43, 44]. Particularly, from 3 to 4 days after ICU admission, urea progressively rises, 
with a higher peak and greater duration of elevation in those patients remaining longer 
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in ICU. Recently, it was suggested that a persistent elevation in urea might reflect 
increased production from muscle catabolism, amino acid liberation, and metabo-
lism. Based on the observed trajectory of urea, this catabolic state appears to persist 
throughout ICU admission [27]. For this reason, elevated urea:creatinine (UCR) may 
reflect a combination of muscle bioenergetic failure, muscle catabolism/altered protein 
homeostasis, and persistent muscle wasting, providing a metabolic signature of the 
effects of prolonged critical illness [27, 45, 46]. Although the potential role of UCR in 
future studies, clinical usability seem limited, as other factors such as the following 
may increase UCR independent of catabolism: decreased effective blood volume, 
protein intake or gastrointestinal bleeding, and acute kidney injury (Figure 1).

Particularly, despite altered tubular reabsorption of urea (normally 40–50%) 
can affect the serum urea:creatinine, classically increased urea retention occurs dur-
ing severe dehydration with preserved tubular function. Conversely, tubular injury 
in AKI will lessen the concentrating capacity, thereby lessening urea:creatinine [47].

4. Conclusions

Critically ill patients suffer significant LBM loss, much of it in the first 7–10 days 
of ICU stay, requiring adequate timing initiation and optimal nutritional support 
to slow the catabolic process and to minimize adverse events such as prolonged 
mechanical ventilation, longer ICU stay, and increased risk of death. Due to the 
correlation between SCr levels and muscle mass, SCr in the steady state has been 
used as a surrogate of muscle mass measurements. However, SI could be consid-
ered a useful tool with a superior performance compared with sCr alone in the 
estimation of muscle mass, while the clinical usability of UCR seems limited and 
influenced by other factors such as decreased effective blood volume, protein intake 
or gastrointestinal bleeding, and also acute kidney injury. However, muscle wasting, 
often present in critically ill patients, can influence SCr and mask a diagnosis of 
AKI, decreasing the sensitivity of SCr for the early detection of AKI. Future studies 
should address the effect of muscle wasting on the true SCr concentration.

Figure 1. 
Urea:creatinine ratio in critical illness.
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The Na/K-ATPase Signaling 
Regulates Natriuresis in Renal 
Proximal Tubule
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Abstract

For decades, the Na/K-ATPase has been proposed and recognized as one of 
the targets for the regulation of renal salt handling. While direct inhibition of the 
Na/K-ATPase ion transport activity and sodium reabsorption was the focus, the 
underlying mechanism is not well understood since decreases in basolateral Na/K-
ATPase activity alone do not appear sufficient to decrease net sodium reabsorption 
across the renal tubular epithelium. The newly appreciated signaling function of 
Na/K-ATPase, which can be regulated by Na/K-ATPase ligands (cardiotonic steroids 
(CTS)) and reactive oxygen species (ROS), has been widely confirmed and pro-
vides a mechanistic framework for natriuresis regulation in renal proximal tubule 
(RPT). The focus of this review aims to understand, in renal proximal tubule, how 
the activation of Na/K-ATPase signaling function, either by CTS or ROS, stimu-
lates a coordinated reduction of cell surface Na/K-ATPase and sodium/hydrogen 
exchanger isoform 3 (NHE3) that leads to ultimately decreases in net transcellular 
sodium transport/reabsorption.

Keywords: cardiotonic steroids, natriuresis, renal proximal tubule, Na/K-ATPase, 
NHE3, signaling, ROS

1. Introduction

Since J.C. Skou’s discovery in 1957 [1], the energy-transducing Na/K-ATPase has 
been extensively studied for its ion-pumping function and, later on, its signaling 
function. While the signaling function was first demonstrated in cardiac myocyte 
primary culture, the phenomenon has been confirmed in different cell types and 
animal models. The roles of Na/K-ATPase signaling in renal proximal tubule (RPT) 
sodium handling and oxidative modification of the Na/K-ATPase α1 subunit in 
Na/K-ATPase signaling were explored both in vitro and in vivo. The findings may 
explain certain mechanism(s) related to the Na/K-ATPase signaling-ROS amplifica-
tion loop and subsequent regulation of salt sensitivity.

The RPT mediates over 60% of the filtered Na+ reabsorption [2, 3]. There are 
two Na+ reabsorption pathways in RPTs. One is through the transcellular pathway, 
mainly through the apical Na+ entry mainly via NHE3 (and other apical Na+-
coupled transporters like Na+-glucose cotransporters 1 and 2, to a lesser extent) 
and basolateral Na+ extrusion through the Na/K-ATPase [2, 3]. A coordinated and 
coupled regulation of sodium/hydrogen exchanger isoform 3 (NHE3, SLC9A3) and 
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the Na/K-ATPase is critical in maintaining intracellular Na+ homeostasis and extra-
cellular fluid volume. The other one is the paracellular Na+ reabsorption pathway 
through a tight junction (TJ), which depends on the transepithelial electrochemical 
force and tight junction permeability. Claudin-2 forms paracellular channels with 
other protein that are selective for small cations like Na+ and K+, small anion like 
Cl−, as well as water [4–6]. Interestingly, the Na/K-ATPase signaling function is able 
to regulate the apical/basolateral polarity of the Na/K-ATPase as well as the tight 
junctions’ components like claudins in distal tubule MDCK cells [7, 8].

The Na/K-ATPase belongs to the P-type ATPase family and consists of two 
non-covalently linked α- and β-subunits. Several α- and β-isoforms, expressed in a 
tissue-specific manner, have been identified and functionally characterized [9–12]. 
In RPTs, the γ-subunit (γa and γb, also known as FXYD2, one of the small type I 
single-span membrane FXYD protein families) also interacts with the α1 subunit 
to regulate the Na/K-ATPase activity [13–15]. There is also a fifth member of the 
β-subunit family, named βm coded by an ATP1B4 gene, that is predominantly 
expressed in skeletal muscle. Interestingly, the βm is not associated with the α1 sub-
unit like other β-subunits, but accumulated in the nuclear membrane and associated 
with transcriptional coregulator Ski-interacting protein, which led to the regulation 
of TGF-β-responsive reporter Smad7 [16]. The α1 subunit contains multiple struc-
tural motifs that interact with soluble, membrane, and structural proteins. Binding 
to these proteins not only regulates the ion-pumping function of the enzyme, but 
it also conveys signal-transducing functions to the Na/K-ATPase [17–32]. NHE3 
belongs to a family of electroneutral mammalian Na+/H+ exchangers [33–35]. In 
RPT, NHE3 resides in the apical membrane of S1 and S2 segments, mediating 
transcellular reabsorption of Na+ and HCO3

− and fluid reabsorption [36, 37]. In 
the kidney, more than 85% of the filtered NaHCO3 is reabsorbed in the RPTs, and 
NHE3 contributes up to ∼60% of the total reabsorption of this segment [38]. RPT 
NHE3 secrets the largest portion of net H+ to the lumen and interacts with HCO3

− to 
form H2O and CO2 which can freely translocate into RPT cytosol. In cytosol, H2O 
and CO2 form H+ and HCO3

− through carbonic anhydrase catalyzation. Finally, the 
newly formed cytosolic H+ will be secreted to the lumen, and HCO3

− will be moved 
to the blood through the basolateral-resided Na+/HCO3

− cotransporter (NBCe1-A, 
SLC4A4). This cycling carbonic anhydrase-controlled CO2-HCO3

− system links 
the NHE3-mediated H+ secretion to HCO3

− reabsorption, to achieve an acid-base 
equilibrium [39, 40]. Moreover, vesicular NHE3 activity also regulates endosomal 
pH and consequently affects receptor-mediated endocytosis as well as endocytic 
vesicle fusion [41, 42]. Under normal conditions, the Na/K-ATPase resides at the 
basolateral surface, providing the driving force for the vectorial transport of Na+ 
from the tubular lumen to the vascular compartment, while the NHE3 resides at the 
apical surface providing a rate-limiting Na+ entry into cells.

2.  The concept of endogenous cardiotonic steroids (CTS) as natriuretic 
hormones

CTS (also known as endogenous digitalis-like substances) are specific ligands 
and inhibitors of the Na/K-ATPase, which include plant-derived glycosides such 
as digoxin and ouabain and vertebrate-derived aglycones such as bufalin and 
marinobufagenin (MBG). Although the production and secretion of endogenous 
CTS are not completely understood, both ouabain and MBG have been identified 
as endogenous steroid hormones whose production and secretion can be regulated 
by multiple stimuli including angiotensin II and adrenocorticotropic hormone 
(ACTH) [30, 43–48]. Endogenous CTS are present in measurable amounts under 
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normal physiological conditions and are markedly increased under a number of 
pathological conditions such as sodium imbalance, chronic renal failure, hyperaldo-
steronism, hypertension, congestive heart failure, acute plasma volume expansion, 
and preeclampsia [46, 49–59].

Even though digitalis-like drugs have been used to treat heart failure patients 
for over 200 years, studies have also revealed many extra-cardiac actions of these 
compounds, such as in response to salt loading in both animal models and human 
hypertensive patients [29, 57, 60–62]. In addition, low doses of CTS not only 
induced hypertension in rats but also caused a significant cardiovascular remodel-
ing independent of their effect on blood pressure (BP) [63–66].

Bricker was the first to propose the existence of “the third factor” (named after 
the glomerular filtration rate as the first factor and the aldosterone as the second 
factor), and Dahl proposed the existence of a hormonal natriuretic factor that 
might cause a sustained increase in BP in salt-sensitive hypertensive rats [67, 68]. 
Subsequently, Bricker, de Wardener, and others proposed that this hormonal natri-
uretic factor inhibits the Na/K-ATPase, and Blaustein described how an increase 
in endogenous Na/K-ATPase inhibitors might cause a vascular contractility change 
and then a rise in BP [67, 69–72]. In 1980, de Wardener and MacGregor summarized 
the state of research at the time and proposed an insightful scheme explaining how 
the Na/K-ATPase inhibitor works as a natriuretic hormone [73]. In essence, it was 
contended that the Na/K-ATPase inhibitor (endogenous CTS) will rise in response 
to either a defect in renal Na+ excretion or high salt intake. This increase, while 
returning Na+ balance toward normal by increasing renal Na+ excretion, also causes 
hypertension through acting on the vascular Na/K-ATPase. With the advances in the 
field over the decades, much has been learned. The first unequivocal demonstration 
of ouabain-like substance in the human plasma was reported decades ago [46]. 
Blaustein and Hamlyn’s laboratory has demonstrated how increases in endogenous 
CTS change vascular contractility and its effect on BP [74]. However, the patho-
physiological significance of endogenous CTS (e.g., as a natriuretic hormone) 
has been a subject of debate since it was first proposed until Lingrel’s laboratory 
reported their gene replacement in vivo studies, which unequivocally demonstrated 
that endogenous CTS play an important role in the regulation of renal Na+ excretion 
and BP through the Na/K-ATPase [75–77]. Specifically, Lingrel’s group generated 
several lines of mice in which the mouse endogenous ouabain-insensitive α1 subunit 
is replaced by a mutant that alters the ouabain sensitivity of the Na/K-ATPase. For 
example, they generated a line of “humanized” α1S/S mice where the endogenous 
ouabain-insensitive α1 is replaced by an ouabain-sensitive (human like) α1-mutant 
and used these mice to explore the role of endogenous CTS in the regulation of 
renal function and BP. Should endogenous CTS be important for these regulations, 
an increased CTS sensitivity in α1S/S mice would make these mice more sensitive 
to conditions that raise circulating CTS. Indeed, when ACTH was administered 
to raise endogenous CTS, it caused much severe hypertension in α1S/S mice than 
their control littermates. Moreover, expression of the ouabain-sensitive α1-mutant 
significantly increased renal Na+ excretion, confirming the natriuretic function 
of endogenous CTS as proposed by the pioneers of the field [67, 68, 70–73]. More 
evidences indicate that increases in endogenous CTS regulate both renal Na+ excre-
tion and BP through the Na/K-ATPase [74–76, 78, 79].

3. The Na/K-ATPase signaling by specific ligands and ROS in RPTs

Ouabain-stimulated protein-protein interaction and subsequent Na/K-ATPase 
signaling function were first demonstrated in rat neonatal myocytes, which were 
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further confirmed and developed in porcine LLC-PK1 cells (an immobilized RPT 
cell line) and other cell types. CTS-stimulated Na/K-ATPase signaling has been 
reviewed everywhere [22, 31, 32, 47, 80–83].

In LLC-PK1 cells, ouabain-stimulated Na/K-ATPase signaling increases ROS 
generation. Other than ouabain, exogenous H2O2 and glucose oxidase-induced H2O2 
also activate Na/K-ATPase signaling pathways including phosphorylation of c-Src 
and ERK1/2, as well as protein carbonylation modification of Na/K-ATPase (direct 
carbonylation of two amino acid residues, Pro222 and Thr224, in the actuator domain 
of the α1 subunit) [84–87]. Pretreatment with antioxidant N-acetyl-l-cysteine 
(NAC) or disruption of the Na/K-ATPase/c-Src signaling complex attenuated 
ouabain- and glucose oxidase-stimulated Na/K-ATPase/c-Src signaling, protein 
carbonylation, redistribution of Na/K-ATPase, and inhibition of active transepithe-
lial 22Na+ transport. A basal level of ROS is critical in initiating ouabain-stimulated 
Na/K-ATPase/c-Src signaling, and carbonylation modification of the α1 subunit 
is involved in a feed-forward mechanism of the regulation of ouabain-mediated 
Na/K-ATPase signal function and subsequent Na+ transport. Furthermore, a stable 
overexpression of rat α1-mutant Pro224/Ala (Pro224 of rat α1 is the same as the Pro222 
of pig α1) prevented ouabain-stimulated signal function of Na/K-ATPase, protein 
carbonylation, Na/K-ATPase endocytosis, and ouabain-induced inhibition of active 
transepithelial 22Na+ transport [79, 86, 87]. Taken together, in LLC-PK1 cells, there 
is a positive-feedback amplification loop of Na/K-ATPase signaling and ROS genera-
tion, in which carbonylation of the Pro222 of the α1 subunit is critical. In this work-
ing model, both Na/K-ATPase-specific ligands (such as ouabain) and ROS increases 
(induced by other stimuli like exogenous added glucose oxidase) could activate 
the Na/K-ATPase signaling, and the Na/K-ATPase/c-Src complex can function as a 
“receptor” of ROS signaling. This Na/K-ATPase signaling-ROS axis may explain the 
role of Na/K-ATPase signaling in the development of different pathophysiological 
conditions, including RPT sodium handling.

4. Endocytosis of Na/K-ATPase

Endocytosis is involved in many important cellular functions. Ouabain-
induced endocytosis of the Na/K-ATPase was first observed by the laboratories 
of Cook and Lamb, which demonstrated that [3H]-ouabain (bound to the Na/K-
ATPase) was translocated from the plasmalemmal membrane surface to intracellu-
lar compartments (lysosomes) in HeLa cells, chick embryo heart cells, and Girardi 
heart cells [88–92].

4.1 Dopamine and PTH

One of the best-studied paradigms of hormonal natriuresis is the renal 
dopamine system [93–96]. Renal dopamine release increases in response to high 
salt intake or volume expansion. The activation of D1-like dopamine receptors 
stimulates PLC-γ and cAMP-PKA pathways and increases intracellular Ca2+. These 
pathways work in concert and produce the coordinated downregulation of NHE3 
and the Na/K-ATPase and consequently natriuresis [93–95, 97, 98]. While Aperia’s 
laboratory first revealed the pathways involved in dopamine-induced regulation of 
Na/K-ATPase activity [99–101] that is related to endocytosis of the Na/K-ATPase 
[102], Moe and others have mapped the pathways of NHE3 phosphorylation and 
trafficking [103–105]. In RPT, dopamine alters sodium handling by inducing 
Na/K-ATPase and NHE3 endocytosis. In RPT primary culture of Sprague-Dawley 
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rats, dopamine-induced clathrin-dependent endocytosis of the rat Na/K-ATPase 
α1 subunit is triggered by activation of PI3K and subsequently phosphorylation of 
Ser-18 of rat α1 subunit [24, 106–109]. The activation of PI3K also stimulated phos-
phorylation of the Tyr537 of the α1 subunit that facilitates its binding with adaptor 
protein-2 (AP-2), providing the inclusion of the Na/K-ATPase into clathrin-coated 
pits (CCP) [24, 108]. However, Ser-18 is found only in rat α1 subunit and is not 
present in pig and dog α1 subunits [110]. Depending on the type of renal tubular 
epithelium, dopamine-induced endocytosis of the Na/K-ATPase may be mediated 
through PKC- or PKA-dependent mechanisms [108, 111–113]. Parathyroid hormone 
(PTH)-induced inhibition and endocytosis of the Na/K-ATPase were also dem-
onstrated in opossum kidney (OK) cells, which is clathrin-mediated and requires 
ERK-dependent phosphorylation of Ser-11 of the α1 subunit [114].

4.2  Ouabain-induced endocytosis of Na/K-ATPase through Na/K-ATPase 
signaling

In LLC-PK1 cells, at the doses used, ouabain has no discernable effects on 
cell morphology, viability, transepithelial electrical resistance, tight junction 
integrity, and intracellular [Na+] [115]. However, ouabain causes decreases in 
membrane-bound Na/K-ATPase without significantly affecting intracellular [Na+] 
[116, 117]. As a specific ligand, nontoxic ouabain (~1/10th–1/20th of acute IC50) 
caused a dose- and time-dependent decrease in Na/K-ATPase ion-pumping activ-
ity (ouabain-sensitive 86Rb uptake), which is attributed to ouabain-stimulated 
clathrin-dependent endocytosis of the α1/β1-subunits, demonstrated by a decrease 
in cell surface biotinylated α1 subunit and a concomitant accumulation of α1/
β1-subunit and c-Src in early endosome (EE)/late endosome (LE) fractions. This 
leads to a net decrease in abundance of Na/K-ATPase in the plasma membrane and 
total ion-pumping activity of Na/K-ATPase and transcellular 22Na+ transport. This 
phenomenon was only observed when ouabain was applied to the basolateral, but 
not apical, aspect of Costar Transwell with membrane support for 12 hours, which 
indicates that this ouabain-induced endocytosis of the Na/K-ATPase is initiated by 
activating the receptor Na/K-ATPase/Src complex involving phosphorylation of 
c-Src and PI3K. The endocytosed [3H]-ouabain/Na/K-ATPase/c-Src/EGFR complex 
can be detected in both EE and LE fractions.

To understand the molecular mechanism(s) involved in this process, studies 
were performed with LLC-PK1 as well as SYF and SYF + c-Src cells. SYF cells are 
triple Src kinase (c-Src, Yes, Fyn)-null mouse fibroblast cells, and SYF + c-Src are 
c-Src-rescued SYF cells. This pair of cells was used to determine the role of c-Src 
activation in ouabain-induced Na/K-ATPase signaling and endocytosis. While 
ouabain accumulates Na/K-ATPase α1 subunit content in clathrin-coated pits and 
EE/LE fractions, it also causes a translocation of the α1 subunit to nuclear fraction. 
Interestingly, the effects of ouabain are fully reversible in terms of ion-pumping 
activity, transepithelial 22Na+ flux, and cell surface Na/K-ATPase within 24 hours 
following the removal of ouabain with a fresh culture medium, suggesting a 
reversible process. Immunofluorescence showed that the Na/K-ATPase α1 subunit 
co-localized with clathrin both before and after ouabain treatment, and immuno-
precipitation experiments indicated that ouabain stimulated interactions among 
the α1 subunit, AP-2, and clathrin heavy chain (CHC). Disruption and/or arresting 
of clathrin-coated pit formation (by potassium depletion with hypotonic shock 
[118] and chlorpromazine treatment [119]) significantly attenuated this ouabain-
induced endocytosis, suggesting the involvement of a clathrin-coated pit. Inhibition 
of the ouabain-activated signaling with PP2 (a specific c-Src kinase inhibitor) 
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or wortmannin (a specific PI3K inhibitor) also significantly attenuated ouabain-
induced endocytosis. Experiments performed in SYF cells and SYF + c-Src dem-
onstrated that ouabain induces the endocytosis of the Na/K-ATPase in SYF + c-Src 
cells, but not in the SYF, indicating that ouabain-induced endocytosis of the 
Na/K-ATPase is c-Src-dependent.

Ouabain-stimulated Na/K-ATPase signaling also requires caveolin-1 (Cav-1) 
(a structural protein of caveolae, a subset of membrane lipid rafts) that functions 
as an anchoring protein for attracting the Na/K-ATPase α1 subunit into caveolae 
[120]. Accordingly, depletion of cholesterol (by methyl-β-cyclodextrin (Mβ-CD)) 
or caveolin-1 (by siRNA) blocked ouabain-induced endocytosis of the Na/K-
ATPase, compartmentalization of signaling molecules in clathrin-coated pits, and 
early endosome. In addition, depletion of caveolin-1 also significantly reduced the 
protein-protein interactions among α1 subunit, AP-2, PI3K, and clathrin heavy 
chain, suggesting that caveolin-1 is involved in both ouabain-induced endocytosis 
of Na/K-ATPase and signal transduction [117].

These data demonstrate that ouabain stimulates a clathrin- and caveolin-
1-dependent endocytosis of the Na/K-ATPase, a phenomenon requiring ouabain-
induced Na/K-ATPase signaling function. Taken together, it is most likely that 
clathrin- and/or caveola-/lipid raft-mediated endocytosis of the Na/K-ATPase is 
a common phenomenon, but the mechanism and the relationship between the 
endocytosis of the Na/K-ATPase and signal transduction are still not fully under-
stood. This is the first time to demonstrate that ligand-modulated endocytosis of the 
Na/K-ATPase is a mechanism by which RPT sodium transport is altered in a physi-
ologically meaningful manner (Figure 1).

Figure 1. 
Illustration of activation of the Na/K-ATPase signaling-mediated endocytosis of the Na/K-ATPase. Both CTS 
and ROS can activate Na/K-ATPase signaling, which leads to translocation of cell surface Na/K-ATPase 
(α1- and β1-subunits), along with EGFR, c-Src, and ERK1/2, into clathrin-coated pits and early and late 
endosomes. This process is independent of change in intracellular Na+ and Ca2+, but is dependent on activation 
of c-Src and PI3K, and the presence of caveolin-1. The activation of the Na/K-ATPase signaling also stimulates 
ROS generation which further activates the signaling. In LLC-PK1 cells, ouabain has no significant effect on 
recycling of endocytosed α1 subunit. AP-2, adaptor protein-2; Cav-1, caveolin-1; CCP, clathrin-coated pits; 
CHC, clathrin heavy chain; CTS, cardiotonic steroids; EE, early endosome; LE, late endosome; Na+/X, Na+-
dependent antitransporter; Na+/Y, Na+-dependent cotransporter; NKA, Na/K-ATPase; TJ, tight junction.
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5. The Na/K-ATPase signaling regulates NHE3 trafficking and activity

5.1 NHE3 regulation

In RPT, NHE3 resides in the apical membrane of S1 and S2 segments, mediat-
ing transcellular reabsorption of Na+ and HCO3

− and fluid reabsorption [36, 37]. 
Moreover, vesicular NHE3 activity regulates endosomal pH and consequently 
affects receptor-mediated endocytosis as well as endocytic vesicle fusion [41, 42]. 
Consistent with its cellular function, upregulation of NHE3 activity and expres-
sion is associated with the development of hypertension [121–124]. Conversely, 
the reduction of NHE3 surface expression or NHE3 activity occurs during pressure 
natriuresis in rats [125–128]. As expected, NHE3-deficient mice are hypotensive 
[129–131] because of reduced Na+ reabsorption and increased Na+ excretion. 
Interestingly, NHE3-deficient mice also develop acidosis since the blunted H+ secre-
tion through NHE3, which links to greatly reduced RPT HCO3

− reabsorption (please 
see Introduction for the linkage of NHE3 H+ secretion and HCO3

− reabsorption), 
could not be compensated by H+-ATPase and AE1 (anion exchanger-1, SLC4A1) 
Cl−/HCO3

− exchanger, compared with wild-type mice [131, 132]. These observa-
tions put renal Na+ reabsorption through NHE3 in a central position in the develop-
ment and control of salt loading- and volume expansion-mediated hypertension. 
Structurally, NHE3 has a predicted N-terminal hydrophobic ion-translocating 
domain and a variable C-terminal hydrophilic domain which contains regulatory 
sequences [133].

The NHE3 activity is regulated at various levels through different mechanisms, 
mainly via phosphorylation, trafficking, and transcriptional regulation [34, 35, 103]. 
The surface expression of NHE3 is mainly regulated by changes in endocytosis/exo-
cytosis and is the primary regulatory mechanism of NHE3 activity. NHE3 has been 
found to traffic between the plasma membrane and EE/LE fractions via a clathrin- 
and PI3K-dependent pathway [41, 134–141]. The NHE3 activity can be stimulated by 
exocytosis [141–143] or inhibited by endocytosis [105, 125, 144]. The activation of 
c-Src, PKA, and PKC and increase in intracellular Ca2+ are involved in the regulation 
of NHE3 trafficking.

NHE3 has been shown to be redistributed under a hypertensive state, accom-
panying reversible downregulation of the Na/K-ATPase activity in the renal 
cortex [125, 127, 145]. This raised the possibility that the basolateral-localized 
Na/K-ATPase and apically localized NHE3 work in concert to regulate renal sodium 
handling in response to the Na/K-ATPase signaling. The coordinated regulation of 
NHE3 and the Na/K-ATPase is critical in maintaining intracellular Na+ homeostasis 
and extracellular fluid volume. It is believed that the apical Na+ entry through NHE3 
is the rate-limiting step because the functional reserve of the Na/K-ATPase in the 
nephron is more than sufficient even under some pathological conditions.

5.2 Chronic NHE3 regulation by Na/K-ATPase signaling

In LLC-PK1 cells, chronic, low-concentration ouabain (50 and 100 nM, 
24 hours) treatment in the basolateral aspect, but not in apical aspect, did not 
change intracellular [Na+] but decreased apical NHE3-mediated Na+ absorption, 
NHE3 promoter activity, and NHE3 protein and mRNA abundance. Pretreatment 
with specific inhibitors against c-Src and PI3K attenuates ouabain-induced down-
regulation of NHE3 activity and NHE3 mRNA [146]. In caveolin-1 knockdown 
LLC-PK1 cells, ouabain failed to reduce NHE3 mRNA and NHE3 promoter activ-
ity, in which ouabain-induced Na/K-ATPase signaling reduced Sp1 and TR DNA 



Biomarkers and Bioanalysis Overview

82

Figure 2. 
Illustration of activation of the Na/K-ATPase signaling-mediated endocytosis of NHE3. Activation of the 
Na/K-ATPase signaling leads to intracellular Na+-independent NHE3 endocytosis. However, like Na/K-
ATPase signaling-mediated Na/K-ATPase endocytosis, the NHE3 endocytosis is dependent on intracellular 
Ca2+, activation of c-Src and PI3K, and caveolin-1. In LLC-PK1 cells, ouabain inhibits the endocytic recycling 
of endocytosed NHE3. Since the Na/K-ATPase and NHE3 reside on basolateral and apical membrane in 
monolayer, respectively, it is still unclear how the basolateral Na/K-ATPase signaling is transmitted to NHE3 
regulation. There are several possible pathways as illustrated, as proposed in the text (please see Figure 1 for 
abbreviations).

binding activity and consequently decreased NHE3 expression and activity [146]. 
These effects are abolished by inhibition of either c-Src or PI3K. Promoter mapping 
identified that ouabain-response elements reside in a region between −450 and 
−1194 nt and that ouabain reduces the binding of transcriptional factor Sp1 to its 
cognate cis-element.

5.3 Acute NHE3 regulation by Na/K-ATPase signaling

Acute application of ouabain (1 hour) in the basolateral, but not apical, aspect 
significantly reduced NHE3 activity (22Na+ uptake) and active transepithelial 22Na+ 
transport. This is accompanied by a reduced NHE3 content on cell surface and an 
increased NHE3 content in EE/LE fractions, as seen in the case of the Na/K-ATPase 
α1 subunit. These changes are independent of change in the integrity of tight 
junctions and the intracellular Na+ concentration [115]. Ouabain-induced NHE3 
trafficking was abolished by either PI3K or c-Src inhibition. Disruption of caveolae/
lipid rafts by cholesterol depletion prevented ouabain-induced accumulation of 
NHE3 and Na/K-ATPase α1 in early endosomes, and cholesterol repletion restored 
the ouabain-induced endosomal accumulation of NHE3 and Na/K-ATPase α1. 
Moreover, pretreatment of cells with the intracellular Ca2+ chelator BAPTA-AM 
attenuated ouabain-induced NHE3 trafficking, suggesting Ca2+ might link the 
Na/K-ATPase signaling to NHE3 regulation which is in agreement with observa-
tions that intracellular Ca2+ can regulate NHE3 activity and trafficking [147, 148]. 
These changes indicate that ouabain acutely stimulates NHE3 trafficking, like 
Na/K-ATPase, by activating the basolateral Na/K-ATPase signaling complex [115]. 
In RPT cell lines (human HK-2, porcine LLC-PK1, and AAC-19 originated from 
LLC-PK1 in which the pig α1 was replaced by ouabain-resistant rat α1), results 
further indicate that ouabain-induced inhibition of transcellular 22Na+ transport 
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as well as trafficking of the α1 subunit and NHE3 is not a species-specific phenom-
enon. Furthermore, in LLC-PK1 cells, ouabain inhibited the endocytic recycling 
of internalized NHE3, but has no significant effect on recycling of endocytosed α1 
subunit [149].

Taken together, by activating the basolateral receptor Na/K-ATPase/c-Src 
complex, ouabain can simultaneously and coordinately regulate trafficking of 
basolateral Na/K-ATPase and apical NHE3, leading to inhibition of transepithelial 
Na+ transport. This mechanism may be important to RPT Na+ handling during 
conditions associated with increases in circulating endogenous CTS. However, it 
remains to be established whether ouabain-induced regulation of NHE3 traffick-
ing comes from the endocytosed Na/K-ATPase/c-Src complex or directly from 
the plasma membrane, since ouabain still binds to endocytosed Na/K-ATPase 
(Figure 2).

6.  Ouabain-induced regulation of Na/K-ATPase α1 subunit and NHE3 is 
independent of intracellular [Na+]

High concentrations of ouabain are known to increase intracellular [Na+], 
depolarize the proximal tubule, and affect the tight junction of epithelial cells. In 
LLC-PK1 cells, ouabain (up to 100 nM) has no acute effect on intracellular [Na+], 
transepithelial electrical resistance, and tight junction integrity, suggesting that 
in the concentration, ouabain is not likely to increase passive Na+ transport by 
depolarizing LLC-PK1 monolayers [115]. To further define whether the effects of 
ouabain on the Na/K-ATPase and NHE3 are independent of intracellular [Na+], the 
change in intracellular transporters after the equilibrium of intracellular [Na+] with 
extracellular [Na+] was achieved by using conventional “Na+-clamping” methods 
[150]. LLC-PK1 cells (both control and ouabain-treated) are pretreated either with 
20 μM monensin or with 10 μM monensin plus 5 μM gramicidin for 30 min. Both 
“clamping” methods raise basal levels of α1 and NHE3 in EE/LE fractions (monen-
sin is known to accumulate proteins in intracellular compartments). However, 
ouabain is still able to further accumulate more α1 and NHE3 in EE/LE. These 
observations indicate that ouabain-induced trafficking of α1 and NHE3 can be 
independent of intracellular [Na+] change [115].

7.  Coordinated and coupled regulation of Na/K-ATPase and NHE3 by 
Na/K-ATPase signaling

Although the mechanisms are still being elucidated, accumulating evidence 
supports the notion that the expression and activity of the basolateral Na/K-ATPase 
and apical NHE3 are coordinated and coupled under certain circumstances. For 
example, McDonough’s laboratory has shown that, during pressure natriuresis and 
salt loading, the surface expression and activity of both NHE3 and the Na/K-ATPase 
are simultaneously downregulated to remove Na+ from the body [125, 127, 145, 151]. 
During the development of hypertension in spontaneous hypertensive rat (SHR), 
the expression and activity of both the Na/K-ATPase and NHE3 are elevated in 
comparison with the normotensive control rats [121, 152–155].

Activation of Na/K-ATPase signaling, by either ouabain or a high-salt diet, is 
also capable of stimulating a coordinated and coupled downregulation of apical 
NHE3 and basolateral Na/K-ATPase to inhibit active transepithelial Na+ transport 
in cultured or isolated RPTs [79, 115–117, 149]. This coordinated regulation depends 
on activation of the Na/K-ATPase signaling function, but not on acute inhibition 
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of the Na/K-ATPase activity since it requires the activation of Src and PI3K and 
increase in intracellular Ca2+. Moreover, MBG infusion also induced endocytosis 
of RPT Na/K-ATPase in rats, which could be prevented by an antibody-mediated 
neutralization of infused MBG [156].

A high salt intake or volume expansion increases both dopamine and CTS. It has 
been shown that dopamine-induced regulation of RPT Na/K-ATPase of Dahl S rats 
was defective because of an apparent decoupling between the binding of dopamine 
to its D1 receptor and activation of GPCRs [157–161]. In response to salt loading, 
Dahl S rats have a similar diuretic, but much less CTS-related natriuretic response 
than that seen in Dahl R rats [162]. Both dopamine and CTS can regulate the activ-
ity and trafficking of RPT Na/K-ATPase and NHE3. Even though the initiating steps 
and signaling pathways might be different, they share some signaling steps such as 
the activation of PLC/PKC and calcium signaling. It will be of interest to further assess 
whether there is a crosstalk between CTS- and dopamine-activated signaling pathways 
in the regulation of renal Na+ handling.

In vivo studies suggest the essential role of CTS in modulating renal sodium 
excretion and BP with different approaches. First, the administration of some 
(e.g., ouabain) but not all CTS induces natriuresis [163, 164]. Second, in trans-
genic mice expressing ouabain-sensitive Na/K-ATPase α1 subunit, both acute 
salt load and ouabain infusion augment natriuretic responses, which were pre-
vented by administration of an anti-digoxin antibody fragment [75, 76]. Third, 
immune neutralization of endogenous CTS prevents CTS-mediated natriuretic 
and vasoconstrictor effects [55, 59, 78, 80]. Fourth, the administration of the 
ouabain antagonist, rostafuroxin (also known as PST 2238), prevents not only 
ouabain-induced Na/K-ATPase signaling but also ouabain-induced increase in 
BP [64]. Finally, in humans, a high salt intake increases circulating endogenous 
CTS [57, 80, 165]. An increased CTS excretion is directly linked to an enhanced 
RPT-mediated fractional Na+ excretion, but inversely related to age and to age-
dependent increase in salt sensitivity [165].

Although the historical focus has largely been on the direct inhibition of CTS on 
the Na/K-ATPase ion-pumping activity and sodium reabsorption in RPT as well as 
vascular tone/contractility, decreases in basolateral Na/K-ATPase activity alone do 
not appear to be sufficient to reduce net RPT sodium reabsorption since the apical 
NHE3, but not the Na/K-ATPase, is the rate-limiting step.

In contrast, the newly appreciated signaling function of Na/K-ATPase has been 
widely confirmed and provides a realistic, mechanistic framework that the renal 
Na/K-ATPase and its signaling play a key role in regulating renal sodium handling. 
In porcine RPT LLC-PK1 cells, ouabain activates the Na/K-ATPase signaling 
pathways and consequently redistributes the basolateral Na/K-ATPase and the 
apical NHE3 in a coordinated manner; this leads to a symmetrical reduction of cell 
surface Na/K-ATPase and NHE3 content and ultimately decreased net transcellular 
sodium transport [86, 87, 115–117]. No significant acute change in intracellular 
Na+ concentration was observed [115], further suggesting the coordination of the 
downregulation of both apical and basolateral sodium transporters. This Na/K-
ATPase signaling-mediated regulation of renal tubular epithelial ion transporters 
was further confirmed in in vivo studies [79, 156]. It has been shown that endocy-
tosis of signaling molecules could be a way to terminate or propagate the signaling 
and could further regulate endocytosis itself [166–171]. In this regard, it is possible 
that ouabain- and ROS-induced endocytosis could be an effective way to terminate 
Na/K-ATPase signaling-mediated oxidant amplification loop by the degradation of 
carbonylated Na/K-ATPase, to maintain a certain basal level of ROS and carbonyl-
ated protein [172].
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8. Endocytosis and signaling transduction

The clathrin-dependent endocytosis is the main endocytosis pathway for many 
membrane proteins in mammalian cells [166, 167, 173–175]. Apart from its endo-
cytic function, the clathrin-coated pits also represent a specialized microdomain, 
where proteins are assembled into active signaling complexes before internalization 
of some or all of their components [176]. Some molecules involved in transmem-
brane signaling, such as β-arrestin, RGS-GAIP (a GTPase-activating protein for Gαi 
heterotrimeric G proteins) [177], GIPC (a PDZ domain-containing protein) [178], 
and Src family kinases [179], have been localized to clathrin-coated pits, suggesting 
that the interaction with the components of the pit machinery may facilitate some 
signaling functions of transmembrane receptors.

Caveolae/lipid rafts play a central role in transcytosis and endocytosis [180–184]. 
Many signaling molecules and membrane receptors are dynamically associated 
with caveolae, such as the Src family kinases, Ras, PKC, ERK, insulin receptor, 
platelet-derived growth factor receptor (PDGFR), EGFR, and some entire signaling 
modules like PDGFR-Ras-ERK, mainly through their interactions with caveolins 
[182, 185, 186]. Caveolins stabilize caveolae and modulate signal transduction by 
attracting signaling molecules to caveolae and regulating their activities [186]. 
There is also evidence that caveolins modulate endocytosis through their interac-
tions with clathrin [187–190]. Interestingly, both caveolin and clathrin heavy chain 
are substrates of Src kinase [169, 184].

The Na/K-ATPase α-subunit, c-Src, and caveolin are present in caveolae isolated 
by a detergent-free method, in adult rat cardiac myocytes, human embryonic 
kidney (HEK)-293 cells, and LLC-PK1 cells. In adult rat cardiac myocytes, ouabain 
not only recruits α-subunit and c-Src to caveolae but also activates caveolar ERK1/2 
[191]. Furthermore, some signaling molecules, such as EGFR and c-Src, are also 
concentrated in clathrin-coated pits and endosomes in response to ouabain [116], 
suggesting that both clathrin-coated pits and caveolae are involved in ouabain-
mediated Na/K-ATPase signal transduction and endocytosis.

The receptor-mediated endocytosis has been shown not only to attenuate 
ligand-activated signaling but also to continue the signaling on the endocytic 
pathway, especially from endosomes [166, 167, 192–194]. While endocytosis is 
important in the activation and propagation of signaling pathways [168, 195, 196], 
signal transduction can also regulate endocytosis [169, 197]. Endocytic receptor 
tyrosine kinase (RTK) receptors could control the magnitude of the original signal-
ing responses (generated at the cell surface) or initiate distinct signaling cascades 
(qualitatively different from that generated at the cell surface) [170]. In polarized 
epithelial cells, the distribution of RTK substrates could affect cellular responses 
[118]. The endosomal signaling appears to be dependent on both the receptor and 
cell type.

In LLC-PK1 cells, ouabain not only induced compartmentalization of Na/K-
ATPase, c-Src, EGF receptor, and ERK in early endosomes but also bound to Na/K-
ATPase along the endocytic route [116]. Interestingly, caveolin-1 is also present in 
early or late endosomes. These facts make it possible that endosomal ouabain-Na/K-
ATPase/c-Src might be able to propagate its original signaling or to initiate distinct 
signaling cascades. This is supported by the findings that ouabain-induced NHE3 
regulation is mediated by the activation of the receptor function of Na/K-ATPase. 
Furthermore, endocytosis is required for ouabain to remove basolateral Na/K-
ATPase, which induces a significant inhibition of the pumping activity. Moreover, 
blockade of Na/K-ATPase signaling/endocytosis appears to be sufficient to abolish 
ouabain-induced trafficking and transcriptional regulation of NHE3.
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Although the mechanisms that involved ouabain-initiated endocytosis of the 
Na/K-ATPase and NHE3 (and expression) are not fully understood, endocytosis 
of the Na/K-ATPase may play an important role in renal sodium handling. This is 
because if ouabain induces a significant depletion of plasmalemmal Na/K-ATPase 
in proximal tubule type cells (rat proximal tubule primary culture, LLC-PK1) but 
not in distal tubule type cells (rat distal tubule primary culture, MDCK), it will 
make physiological “sense” in terms of allowing bulk sodium transport (primarily 
in the proximal tubule) to be altered and leaving fine-tuning (distal tubule) sodium 
handling intact.

9.  ROS and the Na/K-ATPase signaling: the possible link from  
CTS-stimulated signaling to NHE3 regulation

It is well established that both oxidative stress and high BP are a cause and 
consequence of each other. The increase in oxidative stress occurs in many forms of 
experimental models of hypertension, including Dahl salt-sensitive hypertension 
[198–204]. Increases in ROS can regulate physiological processes including renal 
tubular ion transport, fluid reabsorption, and sodium excretion [79, 205–210]. In 
particular, increases in ROS regulate the activity and cellular distribution of the 
basolateral Na/K-ATPase as well as the apical NHE3 and sodium/glucose cotrans-
porter, at least under normal circumstances [79, 151, 208, 211–216]. Oxidative 
modification can affect the Na/K-ATPase activity through different mechanisms. 
For example, S-glutathionylation cysteine residue(s) of the Na/K-ATPase α-subunit 
can block the intracellular ATP-binding site [217], and S-glutathionylation of 
cysteine of the Na/K-ATPase β1-subunit can affect the Na/K-ATPase conformational 
poise [218, 219]. Oxidant and oxidative modification of the Na/K-ATPase can lead 
to degradation, functional changes, and formation of Na/K-ATPase oligomeric 
structure [74, 84–87, 217, 219–230]. In LLC-PK1 cells, increase in ROS generation, 
induced by either ouabain or glucose oxidase, is critical in the activation of Na/K-
ATPase signaling which mediates trafficking of the Na/K-ATPase and NHE3 and 
transcellular Na+ transport [86, 87]. Pretreatment with higher doses, but not a low 
dose, of NAC attenuated the effect of ouabain on c-Src activation and transcellular 
22Na+ flux, suggesting a role of basal physiological redox status in the initiation of 
ouabain-induced Na/K-ATPase signaling. While CTS stimulates ROS generation and 
Na/K-ATPase signaling in different in vitro and in vivo models [63, 85, 231–233], an 
increase in ROS alone (without the presence of ouabain) by extracellularly added 
glucose oxidase is also able to activate Na/K-ATPase signaling, indicating that 
activation of Na/K-ATPase signaling can be achieved by general stimuli like ROS, 
other than its specific ligands. Glucose oxidase-induced H2O2 alone also stimulates 
Na/K-ATPase endocytosis and inhibits active transcellular 22Na+ transport [85, 86]. 
The phenomenon of redox sensitivity of the Na/K-ATPase has been demonstrated 
in different cell types, tissues, and animal species.

In LLC-PK1 cells, both ouabain and glucose oxidase-induced H2O2 stimulate 
Na/K-ATPase signaling as well as direct protein carbonylation of Pro222 and Thr224 
residues of the Na/K-ATPase α1 subunit (α1-carbonylation) [86]. The Pro222 and 
Thr224 are located in peptide 211VDNSSLTGESEPQTR225 [UniProtKB/Swiss-Prot No 
P05024 (AT1A1_PIG)]. While the α1 subunit is highly conserved among humans, 
pigs, rats, and mice (the homology is over 98.5%), the identified peptide is 100% 
identical among these four species. This peptide is located in the actuator (A) 
domain of α1 subunit, and Pro222/Thr224 are highly exposed and facing the nucleo-
tide binding (N) domain of the α1 subunit. Upon ouabain binding, Na/K-ATPase 
undergoes conformational changes, in which the A domain is rotated to the N 



87

The Na/K-ATPase Signaling Regulates Natriuresis in Renal Proximal Tubule
DOI: http://dx.doi.org/10.5772/intechopen.92968

domain favoring an E2-P conformation. The structure-function analysis indicates 
that these conformational changes may affect binding of the α1 subunit to signaling 
molecules such as c-Src and PI3K [234]. In addition, the peptide also contains the 
TGES motif that is the anchor of A domain rotation [234].

Biologically, ROS can oxidize various types of biological molecules including 
proteins, leading to their functional changes. Through Fenton’s reaction, H2O2 is 
reduced to HO• by coupling oxidation of reduced ferrous ion (Fe2+) to ferric ion 
(Fe3+). This metal-catalyzed oxidation (MCO) process oxidizes proteins by intro-
ducing carbonyl groups (such as aldehydes, ketones, or lactams) into the side chains 
of certain amino acids (such as proline, arginine, lysine, and threonine) that named 
direct (primary) carbonylation that have been implied in various conditions like 
chronic renal failure [235–240]. Since Fenton’s reaction involves the conversion of 
H2O2 to HO•, any specie of ROS with H2O2 as an intermediate and/or end product 
may stimulate the reaction.

Protein carbonylation is reversible (decarbonylation) and may function as a 
regulatory mechanism of cell signaling [241–244]. We also observed an undefined 
decarbonylation mechanism, which apparently reverses the carbonylation of the 
Na/K-ATPase α1 subunit induced by ouabain [86]. The removal of ouabain from the 
culture medium reverses ouabain-mediated carbonylation, as seen in the reversed 
Na/K-ATPase ion-pumping activity [116]. Moreover, inhibition of de novo protein 
synthesis as well as degradation pathway through lysosome and proteasome does 
not affect this decarbonylation, which is still poorly understood. It is possible that 
carbonylation modification might stabilize the Na/K-ATPase in a certain con-
formational status favoring ouabain binding to the Na/K-ATPase α1 subunit and 
ouabain-Na/K-ATPase signaling. Nevertheless, the underlying mechanism might be 
physiologically significant since the carbonylation/decarbonylation process could 
be an important regulator of the RPT Na/K-ATPase signaling and sodium handling.

It is reasonable to propose that carbonylation modification of RPT Na/K-ATPase 
α1 subunit has biphasic effects. On one hand, physiological and controllable 
α1-carbonylation stimulates Na/K-ATPase signaling and sodium excretion, rendering 
salt resistance, whereas on the other hand, prolonged exposure to oxidant stress leads 
to overstimulated α1-carbonylation and desensitized Na/K-ATPase signaling, increas-
ing salt sensitivity. First, Dahl S rats show considerably higher basal levels of oxidative 
stress than R rats, and high-salt diets increase renal oxidative stresses that contribute 
to salt-sensitive hypertension [202–204]. Second, while high-salt diets increase 
circulating CTS, a high-salt diet (HS, 2% NaCl for 7 days) stimulates the Na/K-ATPase 
signaling in isolated RPT from Dahl salt-resistant (R) but not salt-sensitive (S) rats 
(i.e., impaired Na/K-ATPase signaling in S rats) [79]. Third, CTS- and H2O2-mediated 
redox-sensitive Na/K-ATPase signaling and α1-carbonylation are involved in this 
signaling process, in a feed-forward mechanism [86]. Fourth, high but not low 
concentration of NAC is able to prevent α1-carbonylation and Na/K-ATPase signaling 
[86]. Even though it is still not clear of the carbonylation/decarbonylation process, 
this could be another new regulatory mechanism of Na/K-ATPase signaling. It is 
reasonable to postulate that prolonged excessive α1-carbonylation (by CTS and/or 
other factors) might overcome the decarbonylation capacity, leading to the desensi-
tization or termination of the Na/K-ATPase signaling function. This is reminiscent 
of the observations in clinical trials using antioxidant supplements. The beneficial 
effect of antioxidant supplements is controversial and not seen in most clinical trials 
with administration of antioxidant supplements [200, 245]. Low doses of antioxidant 
supplementation may be ineffective, but high doses may be even dangerous since 
excess antioxidants might become prooxidants if they cannot promptly be reduced in 
the antioxidant chain [246]. It appears that the balance of the redox status, within a 
physiological range, may be critical in order to maintain beneficial ROS signaling.
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10. Endocytosis of Na/K-ATPase and NHE3 in salt sensitivity

In male Sprague-Dawley rats, compared to a normal salt (0.4% NaCl, 7 days) 
diet, a high-salt (4% NaCl, 7 days) diet increased urinary sodium and MBG excre-
tion. In isolated proximal tubules, a high-salt diet inhibits the Na/K-ATPase ion-
exchange activity and enzymatic activity, which is accompanied by a decreased 
Na/K-ATPase α1 content in heavy membrane fraction and an increased Na/K-
ATPase α1 content in both early and late endosomes. These high-salt diet-mediated 
changes were ameliorated by administration of an antibody against MBG [156]. 
Results indicate that a high-salt diet increased MBG production, activated RPT 
Na/K-ATPase signaling, and induced endocytosis of Na/K-ATPase.

The Dahl R and S rat strains were developed from Sprague-Dawley rats by selec-
tive breeding, depending on the resistance or susceptibility to the hypertensive 
effects of high dietary sodium [247]. In these two strains, the RPT sodium handling 
is an essential determinant of their different BP responses [248–251]. At the cost 
of elevated systolic BP, Dahl S rats get rid of excess sodium primarily via pressure 
natriuresis. In contrast, Dahl R rats get rid of excess sodium primarily via a significant 
reduction of renal sodium reabsorption without increasing the BP. In vivo study 
indicates that impaired RPT Na/K-ATPase signaling appears to be causative of experi-
mental Dahl salt sensitivity [79]. In vivo studies with Dahl R and S rats (Jr strains) 
demonstrated that impairment of RPT Na/K-ATPase signaling is a causative factor 
of experimental Dahl salt sensitivity [79]. In Dahl R but not S rats, a high-salt  
(2% NaCl, 1 week) diet activated RPT Na/K-ATPase signaling and stimulated 
coordinated redistribution of the Na/K-ATPase and NHE3, leading to increased total 
and fractional urinary sodium excretion as well as normal BP. However, there are 
still questions about the underlying mechanism(s) that need to be further inves-
tigated, such as the difference of Na/K-ATPase signaling function between Dahl R 
and S rats, as well as the translation of Na/K-ATPase signaling to NHE3 regulation. 
Furthermore, low concentration of ouabain causes hypertrophic response both in 
the heart and kidney, by concentrating the Na/K-ATPase, Src, EGFR, and MAPKs 
within rat caveolae, and activates the Na/K-ATPase/Src/MAPK signaling pathway 
[64]. However, there is no simple explanation for this occurrence. First, the α1 sub-
unit is essentially the only α isoform expressed in RPT, and genes coding α1 subunit 
and NHE3 (in rat chromosomes 1 and 2, respectively) are not located in identified 
and/or proposed BP quantitative trait loci [252]. Second, there is no difference 
in α1 gene (Atp1a1) coding [251], α1 ouabain sensitivity [253], and α1 expression 
[79] between these two strains. Third, acute salt loading increases circulating CTS 
(ouabain and MBG) in both S and R rats [162]. These observations suggest that 
there must be resistance to CTS signaling in the Dahl S rat, a phenomenon that we 
only partially understand. As discussed above, the carbonylation/decarbonylation 
process could be another new regulatory mechanism of Na/K-ATPase signaling. It 
is reasonable to postulate that prolonged excessive α1-carbonylation in Dahl salt-
sensitive rats might overcome the decarbonylation capacity, leading to desensitiza-
tion or termination of the Na/K-ATPase signaling function.

11. Perspective

As pointed out by Guyton many years ago [254], the kidney is the most impor-
tant organ in the regulation of Na+ handling and BP. Dietary salt intake vs. renal 
sodium handling is a key determinant of long-term BP regulation and plays an 
important role in the pathogenesis of hypertension, with more pronounced effects 
seen in salt-sensitive patients. Consequently, modest restriction of dietary salt and 
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diuretic therapy are often recommended for the treatment of resistant hyperten-
sion, particularly with the salt-sensitive subgroup [254–258].

Although the relationships among CTS, renal Na+ handling, and hypertension 
were proposed many years ago, there has been an explosion of reports supporting 
this idea. As discussed, reports from Lingrel’s laboratory clearly demonstrated a 
specific role of the isoforms of the Na/K-ATPase and its interaction with endoge-
nous CTS in the regulation of Na+ excretion and BP in intact animals [75–77]. From 
the ligand perspective, studies have demonstrated that CTS are present in measur-
able amounts under normal physiological conditions and that several disease states 
are associated with elevations in the circulating levels of CTS. The new concept that 
the Na/K-ATPase has an ion-pumping-independent receptor function (induced by 
both CTS and ROS) that can confer the agonist-like effects of CTS on intracellular 
signal transduction is a new mechanism for RPT sodium handling. Moreover, this 
newly discovered signaling mechanism operates in intact animals in response to 
CTS stimulation. The Na/K-ATPase has recently emerged as a therapeutic target 
[259, 260]. A clearer understanding of the mechanisms, in which a CTS-ROS-
Na/K-ATPase signaling axis counterbalancing salt retention, would not only have 
major pathophysiological and therapeutic implications, but also further explain the 
progressive impairment of renal sodium handling under excessive oxidative stresses 
such as hypertension, aging, obesity, and diabetes.
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Abstract

Increased salt consumption is believed to induce high blood pressure  
(BP)-mediated organ damage, although it is not yet clear whether it reflects a 
generalized micro- and macrovascular malfunction independent of BP. Exceeding 
dietary sodium intake is acknowledged to be the main modifiable environmental 
risk factor for cardiovascular events that accounts for an increase in blood pressure 
and induces hypertension (HTN)-related target organ damage. Arterial stiffness is 
well known as an independent cardiovascular risk factor, and sodium intake may be 
a determinant of arterial stiffness. Even so, the studies that investigated the effect 
of dietary sodium reduction intake on arterial stiffness in humans provided incon-
clusive results. Therefore, we aim to perform a review of the available evidence of 
salt restriction and arterial stiffness and its impact on hypertensive patients.

Keywords: salt intake, dietary sodium, arterial stiffness, blood pressure, 
hypertension

1. Introduction

Hypertension (HTN) is a significant risk factor for cardiovascular disease 
(CVD), a major cause of premature death worldwide, and has been identified as one 
of the strongest risk factors in the global burden of disease [1, 2]. Hypertension 
guidelines frequently recommend salt reduction as an important simple strategy to 
reduce high blood pressure (BP) [2–4]. This recommendation is usually extended to 
individuals with normal BP as well as those at risk of becoming hypertensive [5].

The pressure-natriuresis mechanism that was first described by Guyton et al. [6] 
proposes a linkage between dietary sodium intake and renal sodium handling. This 
hypothesis says that, in normal individual, the consumption of high amounts of 
sodium in the diet will cause a transient increase in BP that promotes a higher excre-
tion of sodium by the kidney. The kidney excretes the excess of sodium, leading to 
normal blood pressure restoration. This hypothesis elucidates how blood pressure 
is sustained over the time, although the daily variation in sodium intake is reported 
among most individuals [6–8].
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Excess dietary sodium consumption has several known detrimental effects on 
blood pressure [8–10] and has been associated with a higher risk of stroke and renal 
impairment [11, 12]. Accordingly, there is a strong evidence from randomized con-
trolled trials that a moderate reduction in dietary salt intake safely and effectively 
reduces BP and urinary albumin excretion rate both in hypertensive and diabetic 
patients [13, 14]. Likewise, evidence from epidemiological and clinical studies also 
suggested an association between regular dietary salt intake and pulse wave velocity 
(PWV) [15–17].

This association between dietary salt consumption and pulse wave velocity 
is also supported by experimental evidence in animal models of structural and 
functional changes caused by high salt regimens on the arterial wall above and 
beyond the effect of high BP [18–20]. These changes on arterial wall are believed to 
be induced by both reduced bioavailability of nitric oxide and a deficient response 
of the local renin-angiotensin system to high sodium consumption [21]. Some 
interventional studies in man have investigated the effect of reduction in salt intake 
on arterial stiffness, but their results were not conclusive mainly because of the low 
statistical power of most of them [22–25].

Results from a systematic review and meta-analysis of the available clinical trials 
testing the effect of sodium intake restriction on PWV as a proxy for arterial stiff-
ness, with null hypothesis being that restriction of sodium intake does not affect 
arterial stiffness, indicated that restriction of dietary sodium intake reduces arterial 
stiffness. The authors have suggested that this effect seems to be at least in part 
independent of the changes in blood pressure [26].

To date, the evidence on the effects of dietary sodium restriction on pulse wave 
velocity is still conflicting. Accordingly, this review aims to contribute to increase 
the knowledge about the effects of sodium restriction on arterial stiffness in the 
context of hypertension.

2. Effects of sodium reduction on blood pressure

High sodium intake is linked to a higher risk of stroke, left ventricular hypertro-
phy, and renal impairment and can impair the arterial vasculature and endothelial 
function [10, 22, 27–29]. A moderate reduction in dietary sodium to achieve a 
sodium intake between 1.5 and 2.3 g/day may be cardioprotective independent of 
the BP pathway, but the evidence is not conclusive in this regard. It also may not be 
safe to recommend sodium restriction in older adults with diabetes or those with 
established CVD [3].

Evidence indicates that reducing sodium intake significantly lowers blood 
pressure in both men and women. Sodium is found not only in table of salt but 
also in a variety of foods, including cream, eggs, milk, shellfish, meat, and many 
other processed foods. The World Health Organization (WHO) recommendations 
indicate a reduction in sodium intake to lower blood pressure and risk of stroke, 
cardiovascular disease, and coronary heart disease in adults [30].

The current recommendations in most countries around the world are to reduce 
salt intake from about 9–12 g/day to 5–6 g/day [31]. Much evidence supports that 
such a reduction in salt intake lowers blood pressure. The WHO recommends a 
reduction to <2 g/day sodium (5 g/day salt) in adult individuals [30, 31].

The effects of sodium reduction on blood pressure have been evaluated in 
many studies. In their study that evaluated the effect of sodium reduction on 
blood pressure, D’Elia et al.’s [26] pooled analyses showed a significant reduc-
tion of both systolic blood pressure (SBP) (mean difference, −5.82 mmHg; 
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95% IC, −8.42 to −3.43 mmHg) and diastolic blood pressure (DBP) (mean dif-
ference, −2.75 mmHg; 95% IC, −3.67 to −1.87 mmHg) upon the reduction of 
sodium intake.

Evidence also shows that a modest reduction in salt intake for a couple of weeks 
(4 or more weeks) causes important and significant lowering in blood pressure 
levels in both normal and hypertensive individuals, independent of sex and ethnic-
ity [13]. Salt reduction is linked to a mild increase in noradrenaline, aldosterone, 
and plasma renin activity, and no significant change in lipid concentrations. These 
results may support a reduction in population salt consumption, which would lower 
population mean blood pressure and thereby reduce cardiovascular risk outcomes. 
In their meta-analysis, He et al. [13] have shown that a modest reduction in salt 
intake, as currently recommended, has a significant effect on blood pressure both 
in individuals with hypertension and in those with normal blood pressure. The fall 
in blood pressure is seen in white and black individuals irrespective of their gender. 
These findings provide additional support for reducing salt intake in the population.

3. Effect of sodium intake reduction on pulse wave velocity

Evidences suggest that salt intake plays an important role on blood pressure 
regulation, and it is also suggested a direct effect of salt on large artery wall that 
modulates vascular stiffness [14].

Pulse wave velocity is known to be associated with BP and age [26, 32, 33]. In a 
recent study where the authors have evaluated the effect of salt restriction on pulse 
wave velocity, no significant statistical differences were detected. Although sodium 
restriction reduced SBP and DBP in the combined analysis of all studies, results of 
the meta-regression analysis, however, indicated that the effect of salt restriction on 
arterial stiffness did not depend on changes in blood pressure. In fact, in one of the 
studies included in the meta-analysis, there was a significantly greater reduction in 
pulse wave velocity in black than white and Asian hypertensive patients, despite the 
fact that the three ethnic groups had similar reductions in blood pressure [34].

Another study evaluating the long-term sodium restriction showed an improve-
ment in arterial stiffness independently of the changes in BP [35]. The authors did 
not detect a dose dependence in the pooled association between salt restriction and 
reduction of PWV. Accordingly, the lack of a dose-related effect in the range of 
salt reduction applied in the available studies might be the possible cause of these 
results.

In subgroup analyses of nine cohorts that evaluated the effect of sodium restric-
tion on PWV including prehypertensive and/or hypertensive participants, whereas 
in the five cohorts that enrolled non-hypertensive individuals, an inverse trend 
was detected, but this difference was not statistically significant. A larger effect 
of sodium reduction on PWV was also seen in the three cohorts that included 
hypertensive patients under antihypertensive treatment (5.07%) than in the cohorts 
enrolling untreated normotensive or prehypertensive individuals (1.70%): again, 
however, this difference was not statistically significant [14].

More recently, a study using a hypothetical model to analyze the association 
between salt intake and PWV (carotid-femoral) through direct and mediating 
pathways that aimed to investigate whether the association between salt intake 
and arterial stiffness also has a sex-specific pattern has demonstrated that high salt 
intake has a direct and independent effect increasing on arterial stiffness regard-
less of sex. The authors also concluded that the association between salt intake 
and arterial stiffness is more dependent on BP in normotensive women than it is 
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in normotensive men. As stated by the authors, these results highlight the need 
for a sex-specific approach in the evaluation of cardiovascular risk associated with 
dietary habits [36].

Furthermore, Grigorova et al. [37] have demonstrated that high salt intake was 
associated with an increase in Na/K-ATPase inhibitor marinobufagenin (MBG) 
levels, and an activation of the transforming growth factor-beta (TGF-β) mediated 
pro-fibrotic pathway in the vasculature, leading to an increase of aortic stiffness 
without elevation of BP. MBG activated TGFβ1 pro-fibrotic pathway in cultural 
vascular smooth muscle cell (VSMC), indicating a fundamental role of MBG in the 
development of fibrosis via the Na/K-ATPase signaling function. The decrease in 
salt consumption restored the aortic elasticity through inactivation of the TGF-β 
pathway. Therefore, decreasing salt consumption can improve vascular elasticity 
and lower the risk of cardiovascular disease by MBG level reduction [37].

4. Renal sodium handling, blood pressure, and vascular compliance

The relationship between sodium intake and blood pressure regulation has been 
suggested through animal experiments indicating that a high-sodium diet, at their 
initial phase, leads to volume expansion and cardiac output increases. Based on 
experiments including mainly nephrectomized dogs that received a large amount of 
saline solution daily for 2 weeks, Guyton [7] suggested that the BP increases mainly 
through two mechanisms: (1) volume expansion and cardiac output increases and 
(2) an autoregulatory mechanism that affects the vessel resistance. Accordingly, 
the hypothetic mechanism on how dietary salt increases blood pressure includes 
Guyton’s main theory that the increase in blood pressure is initially associated 
with an increase in extracellular fluid and blood volumes [7, 15, 26]. According to 
Guyton’s hypothesis, in the hypertension pathophysiology, irrespective of the causal 
factor, the pressure-natriuresis relationship in the kidney is always involved, with 
higher blood pressures being required to eliminate a higher given sodium load [38]. 
However, it has never been demonstrated that measurements of extracellular fluid 
volume in hypertensive individuals are modified consistently. All of the authors 
found that the volumes of extracellular fluid and exchangeable sodium were normal 
in hypertensive individuals [39, 40].

The only similitudes were the lower ratio between intravascular and interstitial 
fluid volumes and smaller plasma volume, indicating unbalanced division in hyper-
tensive patients [39]. Additionally, high levels of atrial natriuretic peptide hormone, 
lower levels of plasma renin, and an increased capacity of plasma to inhibit Na+/K+-
ATPase were observed in these patients [15, 41, 42]. In fact, all these apparent 
paradoxes can be easily understood when we observe that, in hypertensive patients, 
if total vascular compliance is reduced, a slight decrease in intravascular volume can 
be too large for the capacity of the corresponding vascular space [39].

Vascular compliance establishes the volume-pressure relationship or the volume 
within a vascular segment and the blood pressure that is generated by the pres-
ence of that blood volume. It is simply the basic concept of compliance applied to a 
vascular segment and represents a classic index of the elasticity of the intravascular 
compartment, from the slope of the curve plotting changes of blood volume (∆V) 
versus changes of intravascular pressure (∆P) [6].

Within a narrow range of volume and pressure changes, the linear relation-
ship curve between both variables is used to define the compliance as the slope 
∆V/∆P [6]. In a clustered circulation model, the vascular compliance expresses 
the sum of complacencies of all vascular segments, including arteries and veins 
[43]. Accordingly, Guyton [6] has defined “total” vascular compliance based on 
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experimental animal models as the relationship between the mean circulatory fill-
ing pressure (MCFP) and blood volume. The MCFP is the pressure that is registered 
throughout the entire circulatory system if the heart is suddenly stopped and the 
blood volume is redistributed entirely in the vascular system taking into account 
the capacity of the vessels. Vascular compliance is then defined as the product 
of volume change and mean circulatory filling pressure. However, as the MCFP 
measurement implies the presence of a non-beating heart, in humans, it cannot 
be measured. Therefore, an alternative index of the capacitance function had to be 
defined.

Evidence from studies in both animals and humans has shown that similar 
indices are observed in cases where the circulation is not interrupted between blood 
volume changes and pressures measured throughout the different parts of the 
venous system [6, 37]. For example, the relationship between rapid blood volume 
expansion (∆V) and central venous pressure (∆CVP) with a plasmatic expander 
such as dextran has the dimensions of compliance [39, 44]. The “true” vascular 
compliance measured from ∆V/∆MCFP ratio is also called “effective” total vascular 
compliance to differentiate it from the ∆V/∆MCFP ratio [39, 45].

Compared to the normotensive patients, the slope of the curve plotting 
blood-volume versus central venous pressure (∆V/∆CVP) is markedly lower in 
hypertensive subjects [39, 45]. On the other hand, there are no changes in curves of 
cardiac output versus blood volume expansion, indicating that the cardiac function 
is maintained despite cardiac structural modifications in hypertensive individuals. 
At these conditions, compared to non-hypertensive individuals, in hypertensive 
patients, the central venous pressure increases more, and the decrease in the effec-
tive compliance of the vascular bed is pointed out as the responsible factor for this 
phenomenon [46, 47].

Evidence suggests that renal sodium handling is the main factor influencing the 
level of intra- and extrarenal blood pressure and is regulated by complex physiolog-
ical and inflammatory mediators, hormones, and the sympathetic nervous system 
[48]. Therefore, a compromised kidney capacity to eliminate sodium in response to 
increased blood pressure is a major factor for a sustained increase in blood pressure, 
irrespective of the primary cause.

The changes registered in plasma sodium levels exert their effects on the vascu-
lar system, affecting not only the small resistance arteries but also the large artery 
properties leading to an increase in arterial stiffness and consequent decrease in 
vascular compliance [49].

Both observational and longitudinal studies have suggested that lower sodium 
intake is associated with lower wave pulse velocity. Evidence suggests that in 
hypertensive patients, a low sodium intake is associated with a larger brachial artery 
diameter than that seen with a high sodium intake [50]. A sodium overload reduces 
arterial distensibility and compliance irrespective of blood pressure changes in 
hypertension in the elderly and in severe hypertension patients with end-stage renal 
disease [51].

5. Sodium-induced change in arterial stiffness and BP

A considerable body of evidence has shown major links along with cause-and-
effect relationships between salt intake and BP [15, 16, 52]. In many studies, both 
SBP and DBP had a similar effect regarding their action on the arterial wall, regard-
less of the presence of a high-sodium diet or not. Remarkably, many observational 
studies suggest a special role of systolic blood pressure, which, until recently, was 
rarely considered.
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Evidence from studies of genetic models of animal hypertension suggested 
that long-term high sodium intake is associated with increased intima-media 
thickness due to the extracellular matrix (ECM) development and aortic hyper-
trophy regardless of blood pressure. These changes caused by high sodium 
consumption and often associated with increased arterial stiffness and changes in 
smooth vascular cells properties are reversed by reducing sodium and/or giving 
diuretics [16, 53].

Hormonal counterregulatory mechanisms that modulate arterial changes act 
chronically in the presence of a high-sodium diet because bradykinin β2-receptor 
blockage by Hoe-140 (selective B2 bradykinin receptor antagonist that suppresses 
the effects of bradykinin) produces more carotid hypertrophy, while in case of 
normal sodium intake, less aortic collagen accumulates due to AngII-specific type 1 
receptor activity [54, 55].

Several studies have consistently established an independent correlation 
between sodium dietary intake, arterial stiffness, and blood pressure, regardless 
of whether systemic, regional, or local determinations were present [16, 56]. In 
a study addressing the relationship between sodium intake and arterial stiffness 
based on the Chinese populations, Avolio et al. [57] have found that sodium 
intake has an independent effect on arteriolar tone and arterial wall properties, 
with the former indirectly and the later directly contributing to increased arte-
rial stiffness with age. In the same study, the comparison of salt intake between 
urban and rural subjects, as determined by urinary sodium excretion, was greater 
in the urban subjects (13.3 g NaCl/day) than in rural ones (7.3 g NaCl/day). This 
difference was related to higher arterial stiffness and hypertension prevalence 
and lesser vascular compliance in urban subjects. Salt intake had, therefore, an 
independent effect on arterial structural and functional properties, with the 
arterial wall directly and arterial tone indirectly contributing to increased PWV 
with age [16]. Another study from Australia involving young and middle-aged 
(20–66 years old) normotensive subjects on a low-salt diet who were compared 
with age- and BP-matched subjects on a normal-sodium diet showed adult 
subjects on a low-sodium diet have lower arterial stiffness independent of blood 
pressure [35].

On the other hand, the benefits of a low-salt diet on blood pressure seem to be 
greater in hypertensive patients than in normotensive ones. A systematic review 
carried out by Graudal et al. [58] that included 185 randomized controlled tri-
als found that sodium reduction from an average high usual sodium intake level 
(201 mmol/day) to an average level of 66 mmol/day, which is below the recom-
mended upper level of 100 mmol/day (5.8 g salt), resulted in a small decrease 
(1/0 mmHg) in systolic and diastolic BP in white normotensive patients and 
a decrease in systolic and diastolic BP of 5.5/2.9 mmHg in white hypertensive 
patients. The decrease of blood pressure was even greater in black and Asian 
populations.

Moore et al. [59] in their study addressing the effect of low sodium intake on the 
blood pressure levels among Framingham Offspring Study adults even found para-
doxical results. These authors analyzed dietary data from 2632 subjects (normo-
tensive men and women) aged 30–64 years old who were part of the Framingham 
Offspring Study. Over 16 years of follow-up, systolic and diastolic blood pressures 
decreased with increasing sodium intake (≥2.5 g). Mean systolic and diastolic blood 
pressures of 129.5 mmHg and 75.6 mmHg, respectively, were seen among subjects in 
the high-sodium and high-potassium (≥2.3 g) groups compared with 135.4 mmHg 
and 79.0 mmHg, respectively, among people in the low-sodium (<2.5 g) and  
low-potassium (<2.3 g) groups.
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6.  Possible mechanisms of the effect of sodium intake reduction on 
arterial stiffness

Animal studies of hypertension demonstrate that elevated salt consumption can 
increase arterial stiffness and this effect is independent of BP as reviewed by Safar 
et al. [52]. On the other hand, reduced dietary sodium has been shown to lower 
arterial stiffness in humans with hypertension [27, 60]. Cross-sectional studies 
in humans have provided evidence of an independent effect of salt on arterial 
stiffness.

Experimental studies on animal models did show that changes in sodium 
intake have effects on arterial structure and function independent of blood 
pressure [18, 61]. Studies carried out in normotensive rats have shown that these 
changes might be associated with increased production of transforming growth 
factor-beta 1 (TGF-β1), decreased endothelial nitric oxide synthase expression, 
and reduced bioavailability of endothelial nitric oxide induced by a high-salt diet 
[18, 37, 61–63]. TGF-β is a family of three pleiotropic growth factors that have 
complex effects on cell growth and differentiation and organ development, but 
they are particularly important in the expression of extracellular matrix proteins 
and vascular and renal fibrosis promotion in a variety of disease states [64]. The 
TGF-β1 is considered the most important mammalian TGF-β family member syn-
thesized by many cell types including endothelium. It is secreted by endothelium 
acting, basically, on adjacent vascular smooth muscle and seems to be involved in 
blood pressure regulation [37].

The reduction of salt intake in the diet can affect the vascular properties by 
reducing the production of TGF-β. The study by Grigorova et al. [37] has investi-
gated whether high salt intake stimulates the production of MBG, an endogenous 
steroidal Na+/K+-ATPase ligand which activates transforming growth factor-beta 
pro-fibrotic signaling in young normotensive rats and whether these changes can 
be reversed by reducing salt to a normal salt level. Their data have suggested that a 
decrease in salt consumption could help to restore vascular properties such as the 
aortic elasticity and lower the risk of cardiovascular disease by reducing the produc-
tion of the pro-fibrotic factor MBG.

The local renin-angiotensin-aldosterone system (RAAS) is believed to be one 
of the most important mediators of vascular wall elasticity at the heart, vessels, 
and kidneys [19, 65]. At the cardiovascular system, high sodium intake increases 
the AT1 receptor expression and promotes vascular damage [19]. Evidence from 
experimental studies has shown that there was a decrease in aortic collagen accu-
mulation and improvement of vascular, cardiac, and renal function and an AT1 
receptor blocker during the high salt intake diet [12, 19, 66]. Additionally, high 
sodium intake has been reported to increase the vascular angiotensin-converting 
enzyme levels, which opposes to the effects of concomitant renin suppression [67]. 
Studies carried out in hypertensive subjects found gene polymorphisms of aldo-
sterone synthase enzyme and AT1 receptor that was significantly associated with 
higher PWV [68, 69].

Stocker et al. [70] in their study discussing the recent evidence to support the 
role of plasma or cerebrospinal fluid hypernatremia as a key mediator of sym-
pathoexcitation and elevated blood pressure have found that both experimental 
and clinical studies suggested that a high dietary salt increases plasma and cere-
brospinal fluid sodium concentration. Sodium concentration variation modulates 
the sympathetic neurons in rostral medulla by activating the osmoreceptors in the 
rostral nervous system that is responsible for the tone of basal sympathetic vaso-
motor [70–73].



Biomarkers and Bioanalysis Overview

116

Author details

Henrique Cotchi Simbo Muela1*, Mujimbi José Viana2,  
António Gerson Bastos Francisco1, Isaura da Conceição Almeida Lopes1  
and Valeria Aparecida Costa-Hong3

1 Department of Physiology, Faculty of Medicine, Agostinho Neto University, 
Luanda, Angola

2 Dante Pazzanese Institute of Cardiology, São Paulo, Brazil

3 Hypertension Unit, Heart Institute (Incor), University of São Paulo Medical 
School, São Paulo, Brazil

*Address all correspondence to: henrimuela@hotmail.com

The evidence also point outs the high dietary salt intake is one of the most 
important factors to the activation of the sympathetic nervous system, which is one 
of the main contributing factors for the pathogenesis of salt-sensitive hypertension 
[69, 74]. Although not well understood, it is proposed that increased salt intake 
causes salt retention and raises plasma sodium chloride concentrations, which acti-
vates sodium/osmoreceptors to trigger sympathoexcitation [75]. Some studies have 
suggested that vascular properties such as arterial compliance may be affected by 
sympathetic nervous activity, independently of its effects on BP [76]. Therefore, the 
reduction of salt intake decreases the excitability of the sympathetic nervous system 
and interferes with its effects on vascular properties reducing the arterial stiffness.

7. Conclusions

Health recommendations and most clinical studies have been focused on the 
adverse effects of salt dietary on blood pressure. However, evidence to support 
a deleterious effect of dietary salt on endothelial function and arterial stiffness 
independent of BP is increasing. The mechanisms responsible continue to be 
elucidated. Endothelial dysfunction and increased arterial stiffness are predictors 
of cardiovascular disease, and data from clinical trials have indicated that both are 
associated with incident hypertension. Therefore, reducing excessive salt intake in 
the diet should be considered important for overall vascular health in addition to 
blood pressure control.
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HIF Pathways in Clear Cell Renal 
Cancer
Olivia Lombardi and David Robert Mole

Abstract

Clear cell renal cancers (ccRCC) are characterized by inactivation of the VHL 
(von Hippel–Lindau) tumor suppressor. Work leading to the 2019 Nobel Prize for 
Physiology or Medicine has shown that this is central to cellular oxygen-sensing, 
orchestrated by the HIF (hypoxia-inducible factor) transcription factors. These 
regulate hundreds of genes that underpin many hallmarks of cancer, including 
angiogenesis, cellular energetics, cell proliferation, resisting cell death, and avoid-
ing immune destruction. However, HIF also promotes processes that are detrimen-
tal to cancer cells. Therefore, the overall consequence of HIF pathway activation is 
a balance of these influences. We explore how variations in the HIF pathway during 
tumorigenesis alter this balance to promote ccRCC formation.

Keywords: cancer, kidney, renal, clear cell, von Hippel Lindau, VHL, hypoxic, 
hypoxia-inducible factor, HIF

1. Introduction

Kidney cancer is the seventh most common malignancy in the Western world. In 
2018, there were approximately 400,000 new kidney cancer cases and 180,000  
kidney cancer-associated deaths worldwide [1]. The underlying causes of kidney 
cancer are complex and incompletely understood, although genetic factors 
(both inherited and somatic genetic mutations) are known to drive the disease. 
Additionally, certain lifestyle choices (such as smoking and a high protein diet) 
increase the risk of developing kidney cancer, consistent with its prevalence in the 
Western world. Unless surgically resectable, kidney cancer is largely incurable, 
and the 5-year survival rate for those with metastatic disease is only about 10% [2]. 
Systemic anti-cancer therapies, including those that inhibit the vascular response 
or enhance patients’ immune response to the malignancy, have offered some hope 
[3]. However, these treatments confer limited efficacy and a considerable burden 
of toxicity. Therefore, there is a pressing need to better understand the drivers of 
kidney cancer in order to identify novel therapeutic strategies.

2. Histological subtypes of renal cancers

The most common form of kidney cancer is clear cell renal cell carcinoma 
(ccRCC), which arises from the adult renal tubular epithelium and accounts for 
approximately 75% of all kidney cancer cases. This subtype is termed as such due to 
the characteristic ‘clear’ cytoplasm of malignant cells observed histologically. This is 
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caused by accumulation of excess glycogen and lipid in the cytoplasm (due to highly 
dysregulated metabolic pathways), which are dissolved by the tissue fixation pro-
cess [4]. Other less common subtypes of adult renal cancers that also arise from the 
tubular epithelium include papillary RCC (types 1 and 2); chromophobe RCC; and 
oncocytoma. Each subtype is associated with different histological features, genetic 
drivers, and clinical behaviors. Rarely, cancers can arise from other cell types in the 
adult kidney, including transitional epithelial cells of the ureter and renal pelvis 
(giving rise to transitional cell carcinoma) and various mesenchymal cell types (e.g. 
interstitial cells, giving rise to renomedullary interstitial cell tumors). Although 
childhood kidney cancer is generally rare, the most common form is Wilms tumor, 
which originates in developing tubular cells during fetal development [5].

It should be noted that even within a specific renal cancer histological subtype 
there is evidence for substantial heterogeneity, which has initiated efforts to further 
refine subtype classification based on additional features. Recent studies have 
found that ccRCC can be further stratified based on architectural, cytological and 
microenvironmental features, and that these features can predict patient outcome 
and response to therapy [6]. The underlying cause of this variation remains to be 
determined but could be due to certain genetic or epigenetic differences between 
ccRCC tumors. Consolidation of histological and molecular heterogeneity in ccRCC 
will be important for disease subclassification, as well as better understanding 
ccRCC biology, going forward.

3. VHL syndrome

Each kidney cancer subtype is associated with its own monogenic cancer  
syndrome [7]. Studying these rare family kindreds has provided unique insight into 
the genetic mechanisms underlying both inherited and sporadic cancers. In particu-
lar, clear cell renal cancer is associated with VHL syndrome, which is an autosomal 
dominant disorder, affecting 1 in 32,000 individuals, caused by heterozygous 
germline mutations of the VHL gene [8, 9]. As well as ccRCC, VHL syndrome is 
associated with a limited number of other tumors types, including hemangioblasto-
mas of the retina and the central nervous system; pheochromocytomas; pancreatic 
lesions; endolymphatic sac tumors and epidydimal cysts [8, 9]. VHL syndrome can 
be further sub-divided according to which of these different tumor types develop in 
individuals within the kindred [10, 11]. Four distinct patterns have been identified: 
type 1 VHL disease, which is associated with hemangioblastoma and ccRCC; type 
2A, which is associated with hemangioblastoma and pheochromocytoma; type 2B, 
which is associated with hemangioblastoma, pheochromocytoma and ccRCC; and 
type 2C, which is associated with pheochromocytoma alone. Each of these subtypes 
is linked to particular types of VHL mutation, which have been shown to have  
different downstream biological effects [12–17].

4. The VHL gene

The human VHL gene was first identified following classical linkage analysis of 
families with VHL syndrome and was cloned in 1993 [18]. In humans it is located on 
the short arm of chromosome 3 (3p25) and has three exons that encode a protein of 
213 amino acids, with a molecular weight of around 30 kDa (termed p30). However, 
the gene also contains a second translation start site at codon 53, leading to the gen-
eration of a shorter protein of approximately 19 kDa (termed p19), which appears 
to retain canonical activity [19]. As a consequence, oncogenic mutations, most 
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typically single-nucleotide variants (SNVs) or short insertion/deletions (indels), are 
restricted to codons 53–213 in exons two and three.

VHL acts as a tumor suppressor gene [20, 21]. ccRCC and other cancer types are 
associated with inactivating mutations of VHL, which lead to loss-of-function of 
the gene product (termed pVHL). Although autosomal dominant at the level of the 
individual, both alleles of the VHL gene must be inactivated in a cell for cancer to 
develop, in line with Knudson’s two-hit hypothesis [22, 23]. Since VHL syndrome 
is caused by germline VHL mutation, all cells of the affected individual harbor this 
mutation. The remaining wild-type (WT) allele is somatically inactivated in the 
tumor progenitor cell, which then multiplies to form the cancer [20, 21]. Typically, 
somatic inactivation of the WT allele occurs as a result of an arm-level loss of 
chromosome 3p (Figure 1), although promoter hypermethylation or a second SNV/
indel may also cause complete loss of functional VHL in the cell. Furthermore, 
since the cells of patients with VHL syndrome only require one somatic mutation to 
become functionally deficient in VHL, it is a relatively common event, accounting 
for the high tumor penetrance in these individuals. Indeed, over the course of their 
lifetime, these individuals often develop multiple tumors and close examination of 
their organs often reveals the presence of numerous synchronous tumors. However, 
VHL mutation is only associated with the very limited range of cancers outlined 
above, despite it being ubiquitously expressed. Therefore, VHL only appears to 
act as a tumor suppressor gene in very few tissues. Indeed, even within the kidney, 
ccRCCs appear to develop from a subset of proximal tubular cells [24]. It is assumed 
that somatic mutations in the wild-type copy of VHL do occur in other cell types, 
but it is not known whether these cells are eliminated by other tumor suppressor 
mechanisms, or simply fail to progress to overt cancer.

Importantly, VHL is also inactivated in the vast majority (approximately 90%) 
of sporadic ccRCC tumors, which occur in patients without a germline mutation in 
the VHL gene [25]. In order to develop cancer, these individuals require two somatic 

Figure 1. 
VHL inactivation in ccRCC. Individuals with VHL syndrome are predisposed to ccRCC (termed hereditary 
ccRCC) as a result of a heterozygous germline VHL mutation. The second, wild-type allele is subsequently 
inactivated by somatic loss of chromosome 3p, resulting in biallelic VHL inactivation. On the other hand, in 
sporadic ccRCC, two somatic events are required for biallelic inactivation. Typically, one copy of chromosome 
3p is lost followed by inactivation of the second VHL allele through mutation or promoter hypermethylation. 
Although the ordering is reversed, the same genetic aberrations are observed in both sporadic and hereditary 
ccRCC. However, because only one somatic event is required for biallelic VHL inactivation in patients with 
VHL syndrome, this is a much more likely event and occurs in multiple cells within the kidney, causing many 
pre-malignant lesions and multiple ccRCC tumors. chr= chromosome; CNAs= chromosomal copy number 
alterations; mut= mutation; WT= wild-type.
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events affecting both copies of the VHL gene in the same cell (Figure 1). As a result, 
this occurs much less frequently, accounting for the much lower overall prevalence 
of ccRCC in the general population of about 1%. However, in contrast to VHL 
syndrome, the order of events is typically reversed, with loss of chromosome 3p 
frequently occurring first and the remaining copy then being inactivated by single-
nucleotide substitution (SNV) or small insertions or deletions (indels) [26].

Of note, although biallelic VHL inactivation is required for ccRCC (and other 
tumors) to develop, it does not appear to be sufficient on its own (Figure 1). 
Mitchell et al. have estimated that in sporadic ccRCC, VHL inactivation predates 
tumor formation by a number of years or even decades [26]. Consistent with this, 
examination of the kidneys from patients with VHL syndrome has identified 
multiple isolated VHL-defective cells, which may be present as single cells or small 
non-invasive cysts [27, 28]. Furthermore, in vitro, inactivation of VHL leads to cellu-
lar senescence rather than unrestricted proliferation [29, 30]. Therefore, it is thought 
that additional gene mutations are required for these early VHL-defective lesions to 
develop into mature ccRCC. Indeed, more recently, additional somatic mutations 
have been identified in ccRCC [25, 31–33]. Most notable among these are inactivat-
ing mutations in the PBRM1 (polybromo 1), SETD2 (SET domain-containing 2) 
and BAP1 (BRCA-associated protein 1) tumor suppressor genes, mutation of which 
typically follows loss of VHL. Importantly, these three genes also reside on the short 
arm of chromosome 3. As a result, the loss of chromosome 3p frequently observed 
in both familial and sporadic ccRCC can simultaneously result in copy loss of all 4 of 
these ccRCC-associated tumor suppressor genes; VHL, PBRM1, SETD2 and BAP1.

5. Function of pVHL

Following identification and cloning of the VHL tumor suppressor gene, its 
sequence did not immediately suggest a function for the protein. However, early 
immunoprecipitation experiments indicated that pVHL forms a complex with 
elongin B and elongin C [34]; cullin 2, a member of the Cdc53 family of proteins 
[35]; and the RING-box protein Rbx1 [36, 37]. Importantly, the binding of pVHL 
to elongins B and C could be blocked by specific ccRCC-associated mutations in 
the VHL gene, strongly suggesting that these two proteins contribute to the tumor 
suppressor activity of VHL [34]. The subsequent identification of mutations in the 
TCEB1 gene, which encodes elongin C, in ccRCC tumors that have wild-type VHL 
further emphasizes the importance of this complex in ccRCC formation [25, 32, 38].

Elongins B and C, cullin 2 and Rbx1 are all components of an E3-ligase com-
plex that adds polyubiquitin chains to specific proteins and thus targets them for 
degradation by the proteasome [39, 40]. This suggested that pVHL might act as 
the recognition component of a pVHL ligase complex. In a separate line of work, 
dysregulation of the hypoxia-inducible factor (HIF) transcription factors had been 
identified in VHL-defective ccRCC cells [41]. It was subsequently shown that pVHL 
directly interacted with HIF, leading to polyubiquitination and subsequent protea-
somal degradation of its alpha-subunits [42, 43]. Again, the pVHL-HIF interac-
tion could be blocked by specific ccRCC-associated mutations in VHL, leading to 
overexpression of HIF and underlining the importance of HIF in the development 
of ccRCC [42]. Importantly, this interaction was not only altered by pathogenic 
VHL mutations but was also regulated in an oxygen-dependent manner [44, 45]. 
This indicated that the pVHL-HIF interaction was integral to the mechanism of 
cellular oxygen-sensing.

The central role of HIF in ccRCC biology has been further underscored in 
numerous studies. In particular, in xenograft and transgenic mouse models of 
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VHL-defective ccRCC, tumor growth is dependent upon the presence of HIF 
[46–51]. Specifically, tumor growth is dependent on the DNA binding activity of 
HIF, which is required for it to transactivate its target genes [48]. Thus, HIF and its 
associated transcriptional response are key mediators of tumorigenesis in ccRCC.

In addition to HIF, pVHL can interact with a number of other proteins, 
although the biological significance of these interactions is incompletely under-
stood [52]. Some of these interactions can lead to ubiquitination of other proteins 
aside from HIF. For example, pVHL has been reported to interact with and ubiqui-
tinate two de-ubiquitinase enzymes (VDU1 and VDU2) leading to their degrada-
tion [53, 54]. In turn, VDU2 but not VDU1 may de-ubiquitinate HIF-1α, potentially 
providing another level of control to the HIF pathway [55]. In addition, pVHL can 
bind to and ubiquitinate two subunits of the RNA polymerase 2 complex, POL2RA 
(RPB1) and POL2RG (RPB7) [56–58]. Importantly, the pVHL-RPB1 interac-
tion was shown to be oxygen-dependent, involving a mechanism similar to that 
regulating pVHL interaction with HIF [58]. Similarly, the erythropoietin receptor 
(EPOR), which lies downstream of the canonical HIF-target gene, erythropoietin 
(EPO), may also be bound and ubiquinated by pVHL in response to oxygen [59]. 
pVHL can also interact with and ubiquitinate the regulatory domain of atypical 
protein kinase C (PKC), a serine–threonine kinase that has roles in cell polarity 
and cell growth, leading to its degradation [60–62]. Again, this interaction may 
be regulated by oxygen [62]. Similarly, an oxygen-dependent interaction between 
pVHL and sprouty homolog 2 (SPRY2), which modulates the action of receptor 
tyrosine kinases, has been reported [63]. Taken together, these findings indicate 
that pVHL may contribute to oxygen signaling more extensively than simply 
through regulation of HIF.

pVHL may also play a non-canonical role in extra-cellular matrix assembly, 
independently of HIF. Specifically, pVHL can interact directly with the alpha-chain 
of collagen 4 and is important in maintaining the collagen 4 network [64, 65]. This 
molecule is heavily hydroxylated, and as will be explained below, hydroxylation 
is important in the recognition of HIF-alpha (as well as collagen 4) by pVHL. 
Importantly, this interaction can be dissociated by ccRCC-associated VHL muta-
tions. Similarly, fibronectin co-immunoprecipitates with pVHL, and consistently 
the extracellular fibronectin matrix produced by VHL-defective ccRCC cells is also 
disrupted [66]. However, the contribution of this phenomenon to cellular oxygen 
sensing and ccRCC tumorigenesis is still unclear.

6. Oxygen-dependent regulation of HIF by pVHL

The importance of pVHL in the regulation of the HIF transcription factors, 
and the cellular transcriptional response to altered levels of oxygen, has provided 
tremendous insights into the mechanisms of cellular oxygen sensing. HIF was first 
discovered in the quest for transcriptional regulators of the erythropoietin gene 
(EPO), encoding the master regulator of red blood cell production [67]. It later 
emerged there were three HIF isoforms, HIF-1, HIF-2 [68, 69], and HIF-3 [70], each 
composed of a common, constitutive β-subunit (HIF-1β, also known as ARNT – aryl 
hydrocarbon receptor nuclear translocator) and a regulated alpha-subunit (HIF-1α, 
HIF-2α and HIF-3α respectively). HIF-1α is ubiquitously expressed at the mRNA 
level, thus HIF-1α protein is capable of being stabilized in all tissue types. HIF-1α is 
thought to drive core, canonical cellular responses to low oxygen levels (hypoxia) 
[71], including the metabolic switch to anaerobic glycolysis. The expression of HIF-2α 
mRNA and HIF-3α mRNA is more cell-type-specific and thus these transcription 
factors are thought to drive more specialized responses to hypoxia [69, 70, 72]. 
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HIF-2α expression is generally more restricted to particular mesenchymal cell types, 
including endothelial cells in which it was first identified, hence its alias endothelial 
PAS domain-containing protein 1 (EPAS1) [69]. However, HIF-2α is also expressed 
in some epithelial malignancies, including ccRCC. HIF-3α expression is restricted to 
a select few cell types and can be alternatively spliced to yield several transcript vari-
ants [70]. The biological functions of HIF-3α have not been well-explored, although it 
is thought to antagonize the transcriptional responses of HIF-1α and HIF-2α [73–75].

HIF isoforms are all basic helix–loop–helix/Per-ARNT-SIM (bHLH–PAS) 
transcription factors, belonging to a much larger family that includes the onco-
genic MYC proteins [76]. Each possess an N-terminal bHLH DNA-binding domain 
and two protein–protein interaction PAS domains responsible for dimerization. 
In addition, the three HIF-α isoforms each contain oxygen-dependent degrada-
tion domains (ODDDs), responsible for regulating protein abundance [77]. 
However, only HIF-1α and HIF-2α possess the C-terminal transactivation domains 
(C-TAD) [78].

In the presence of oxygen, HIF-α subunits are hydroxylated on two residues 
in the ODDD domains by a family of prolyl hydroxylase enzymes (PHD1, PHD2 
and PHD3) [44, 45, 79]. These hydroxylated residues are recognized and bound 
by pVHL (in a complex with elongin B, elongin C and cullin 2) leading to its rapid 
ubiquitination and proteasomal degradation (Figure 2). Thus, when oxygen is 
abundant, HIF-α levels are low. However, since oxygen is a rate-limiting substrate 
for this reaction, HIF-α is stabilized in hypoxia. Inactivation of VHL in ccRCC cells 
will also block HIF from being degraded, leading to constitutive activation of HIF 
and its target genes, even in cells that are well-oxygenated. Accordingly, activation 
of both HIF and HIF target genes are hallmarks of ccRCC.

Figure 2. 
Regulation of HIF by PHD enzymes and pVHL E3 ligase. (A) In normal oxygen conditions (normoxia), 
the oxygen-dependent PHD enzymes (PHD1, PHD2 and PHD3) hydroxylate both HIF-1α and HIF-2α 
transcription factor isoforms. This causes HIF proteins to be recognized and ubiquitinated by the pVHL E3 
ubiquitin ligase complex, which targets them for rapid degradation via the proteasome. (B) In low oxygen 
conditions (hypoxia), PHD enzymes are inactive due to the lack of their oxygen substrate. Therefore, HIF-1α 
and HIF-2α are not hydroxylated and are not targeted for degradation by pVHL. Due to their stabilization, 
they are able to dimerize with their obligate binding partner HIF-1β. This allows them to bind to DNA and 
upregulate their target genes. (C) When the VHL gene is inactivated (as is the case in ccRCC and some other 
cancers), pVHL is either not expressed or is dysfunctional. Therefore, pVHL is unable to recognize HIF-1α 
and HIF-2α, even in the presence of oxygen when they are hydroxylated by PHD enzymes. This causes 
inappropriate stabilization of HIF-1α and HIF-2α, which then dimerize with HIF-1β and upregulate their 
target genes, regardless of oxygen levels.
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In addition, HIF-1α and HIF-2α can be further modified at an additional site in 
the C-terminal TAD by an asparaginyl hydroxylase, termed factor inhibiting HIF 1 
(FIH-1) [80, 81]. Similar to the PHD enzymes, FIH-1 activity is oxygen-dependent, 
but asparagine hydroxylation does not prompt recognition by pVHL. Instead, aspa-
raginyl hydroxylated HIF is unable to bind to the transcriptional co-factor, CREB 
binding protein (CBP)/p300, which facilitates transcriptional activation at a subset 
of HIF-target genes [80–82]. Therefore, two distinct mechanisms act to control HIF 
activity and expression in an oxygen-dependent manner, one of which is blocked by 
VHL inactivation. In the context of ccRCC, this has two consequences. Firstly, FIH-1 
may facilitate residual hypoxic regulation of HIF despite constitutive HIF stabiliza-
tion [83]. Secondly, the transcriptional response to VHL inactivation in normoxic 
cells may not precisely mimic the transcriptional response to hypoxia.

7. The HIF transcriptional response

Once stabilized, both HIF-1α and HIF-2α, in complex with HIF-1β, are able to 
bind chromatin at either gene promoters or promoter-distant enhancers that contain 
one or more 5′-RCGTG-3′ recognition motifs, termed hypoxia response elements 
(HREs) [84, 85]. These short motifs are highly numerous across the genome and 
only a small proportion of accessible motifs are occupied by HIF, indicating that 
additional factors are involved in HIF DNA-binding [85]. HIF-binding sites may lie 
several hundreds of kilobases from the target promoter, interacting with it through 
chromatin looping, which can make it difficult to identify the transcriptional target 
of any given binding site. Therefore, much effort has been directed at determin-
ing both direct and indirect targets of the HIF transcriptional pathway in multiple 
settings, including in VHL-defective ccRCC cells, using both transcriptomic assays 
such as RNA-seq and assays of chromatin binding such as ChIP-seq [85–89].

These sequencing studies indicate that HIF acts as a gene activator rather than a 
repressor; causing the induction of hundreds to thousands of genes and triggering 
massive pathway activation [90–93]. These genes mediate diverse cellular functions 
including angiogenesis, erythropoiesis, glycolysis and the cell cycle [77, 94, 95]. 
This triggers a physiological response that enables cells to survive in low oxygen 
conditions. For example, HIF-dependent angiogenesis increases blood supply to 
oxygen-starved tissue; HIF-dependent erythropoiesis improves systemic oxygen 
delivery; HIF-dependent glycolysis allows cells to generate ATP in the absence of 
oxygen; and HIF-dependent cell cycle arrest can allow cells to conserve energy and 
reduce oxygen consumption.

Importantly, HIF-binding sites and HIF-regulated genes are highly cell-type 
specific. Thus, whilst HIF may regulate many hundreds of genes in any given cell 
type, only a small, core set of well-described genes are regulated in the major-
ity of tissues [90, 93]. Furthermore, although both HIF-1α and HIF-2α share the 
same binding motif and their binding sites often overlap, HIF-1α tends to be more 
prevalent at gene promoters whereas HIF-2α is more prevalent at promoter-distant 
enhancers [90, 92]. In addition to this binding site specificity, post-DNA-binding 
mechanisms likely contribute to transcriptional selectivity between the two isoforms 
[96], such that specific genes may be regulated by either HIF-1α or HIF-2α only, 
even when both isoforms are bound [50, 97] For example, cyclin D1 (CCND1), 
transforming growth factor alpha (TGFA), vascular endothelial growth factor A 
(VEGFA), glucose uptake transporter 1 (SLC2A1/GLUT1), the MYC oncogene, and 
the stemness-related transcription factor OCT4/POU5F1 are specifically induced by 
HIF-2, whilst BCL2-interacting protein 3 (BNIP3) and carbonic anhydrase 9 (CA9) 
are positively regulated by HIF-1 [97–102].
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Although primarily a physiological response, the HIF pathway is also relevant 
to the pathophysiology of cancer and many HIF target genes are central to the 
hallmarks of cancer described by Hanahan and Weinberg [103]. These include genes 
with prominent roles in angiogenesis, glycolysis, cell proliferation, cell invasion 
and immune evasion among other oncogenic processes (Figure 3). Indeed, HIF is 
activated in many types of solid tumor, largely as a result of intra-tumor hypoxia 
and is almost universally associated with a poor prognosis [104].

In particular, HIF promotes the metabolic switch from oxidative phosphoryla-
tion to anaerobic glycolysis by inducing a range of target genes, including those 
encoding transmembrane proteins that import glucose into the cell (SLC2A1/
GLUT-1 and SLC2A3/GLUT-3) as well as multiple catalytic enzymes in the gly-
colytic pathway [71]. Oxidative phosphorylation is oxygen-dependent, therefore 
switching to oxygen-independent glycolysis allows hypoxic cancer cells to generate 
energy. However, glycolysis causes accumulation of byproducts in the form of acidic 
metabolites, which can be toxic to cancer cells. Therefore, HIF also upregulates 
genes encoding transmembrane proteins that rebalance intracellular pH to promote 
cancer cell survival. For example, the HIF target genes CA9 and CA12, encoding 
carbonic anhydrases, generate alkaline sodium bicarbonate ions in the extracellular 
space [105]. Sodium bicarbonate can then be imported into cells by ion channels 
to counteract intracellular acidity. Furthermore, once a tumor outgrows its blood 
supply and becomes hypoxic, HIF induces genes encoding pro-angiogenic secreted 
factors, such as VEGFA and placental growth factor (PGF), that serve to transmit 
extracellular signals and stimulate blood vessel production [106]. This increases 
delivery of nutrients and oxygen to cancer cells, enabling the tumor to further 
expand. Furthermore, HIF has recently been found to upregulate genes that help 
cancer cells evade destruction by the immune system. One such example is CD274, 

Figure 3. 
HIF target genes that promote or restrict tumorigenesis. HIF regulates hundreds to thousands of target genes, 
which mediate diverse and sometimes conflicting cellular processes. For example, such processes can either 
promote or restrict tumor growth. Those that are typically considered tumor-promoting processes are depicted 
in red, whereas those that are typically considered tumor-suppressive are depicted in green. Cellular processes 
that can be either tumor-promoting or -suppressive (depending on the context) are depicted in red and green. 
Exemplar HIF target genes involved in each process are listed. Note that whilst some HIF target genes appear to 
be consistent across cell types and conditions, others are context-dependent.
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encoding the transmembrane protein termed programed death ligand 1 (PD-L1), 
which is expressed in cancer cells [107]. PD-L1 interacts with its receptor termed 
programed cell death protein 1 (PD-1), which is expressed on the cell surface of 
T cells. The PD-L1/PD-1 interaction prevents T cell-mediated killing of cancer cells, 
therefore HIF may exacerbate this oncogenic mechanism.

However, since HIF evolved to mediate physiological responses to hypoxia, not 
all HIF target genes are advantageous in a cancer setting. Paradoxically, although 
HIF activates many pro-tumorigenic target genes, there are also anti-tumorigenic 
HIF targets (Figure 3). These may represent in-built tumor suppressor mechanisms 
that counterbalance oncogenic target genes when HIF is activated in response to 
physiological hypoxia. Tumor suppressive HIF target genes include BNIP3 and 
BNIP3L, which are pro-apoptotic proteins. BNIP3 and BNIP3L can promote either 
cell death or autophagy in response to hypoxia, depending on the context [108]. 
Furthermore, some HIF target genes may not influence cancer pathogenesis what-
soever and may represent genes that are only important in other contexts. This is 
epitomized by VHL loss in the earliest stages of ccRCC formation, which causes HIF 
activation in an inappropriate context (i.e. causing a cellular response to hypoxia 
when the cell is not hypoxic). In this setting, HIF causes a change in cell state that 
is unwarranted since the cell is exposed to normal oxygen levels. Therefore, many 
activated HIF target genes may confer no survival advantage or may even result in a 
“fitness penalty” to the cell in this context. Taken together, the overall consequences 
of massive HIF pathway activation in ccRCC will be a balance of many positive, neu-
tral and negative effects [109]. The contribution of each effect may change during 
cancer pathogenesis as a result of subsequent somatic mutation, epigenetic events 
or changes in the tumor microenvironment allowing cancer cells to escape the long 
prodromal dormancy that occurs following VHL inactivation. Alternatively, the 
poise of the HIF transcriptional pathway may be partially pre-set prior to VHL inac-
tivation due to cell-type specific differences in HIF target genes. In turn, this could 
render specific cell types particularly susceptible to VHL inactivation. Furthermore, 
genetic differences between individuals might alter specific HIF target genes, thus 
making that individual more or less susceptible to developing kidney cancer.

Activation of contrasting and aberrant pathways as part of large transcriptional 
programs is an emerging theme in cancer biology. For example, MYC, like HIF, 
has transcriptional targets with both oncogenic and tumor suppressive properties 
[110, 111]. Therefore, HIF activation in ccRCC serves as a model for studying large 
transcriptional cascades in cancer more generally.

8. Modulation of the HIF response during the pathogenesis of ccRCC

Early evidence to support the pleiotropic nature of the HIF pathway in kidney 
cancer came from the observation that HIF-1α and HIF-2α have opposing actions 
on tumor growth in ccRCC xenograft models. Whilst HIF-2α promotes tumor 
growth, HIF-1α has the opposite effect and restricts tumor growth [46, 48, 50, 51]. 
Furthermore, expression of HIF-2α target genes in ccRCC tumors correlates with 
poor patient prognosis, whereas HIF-1α targets genes are associated with improved 
survival [91].

Commensurate with this, HIF isoform expression appears to switch from HIF-1α 
to HIF-2α during the development of kidney cancer [28, 112]. In renal tubule epithelial 
cells, including proximal tubular cells from which ccRCC is derived, HIF-1α mRNA 
is highly expressed, whereas HIF-2α mRNA is undetectable [28]. Conversely, HIF-2α 
mRNA (and protein) is highly expressed in ccRCC, possibly as a result of downregula-
tion of DNMT3a and resultant promoter demethylation of the EPAS1 gene that encodes 
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HIF-2α [113]. Furthermore, ccRCCs often downregulate HIF-1α through loss of copy 
number, deletion, truncation or transcript downregulation [25, 31, 32, 112, 114]. Given 
the tumor-suppressive function of HIF-1 and the oncogenic function of HIF-2, the shift 
from HIF-1α in the ccRCC cell of origin to dominant HIF-2α expression in overt ccRCC 
would favor a more oncogenic phenotype. However, even within the transcriptional rep-
ertoire of each isoform there are genes with heterogenous associations with prognosis, 
suggesting that other selective pressures, effective at the level of individual HIF target 
genes, may also be operating [91].

Indeed, suppression of individual HIF target genes with anti-tumorigenic 
properties has been reported in ccRCC. The pro-apoptotic gene BNIP3 is a canoni-
cal HIF target gene in many cell types. However, rather than being increased by 
constitutive HIF in ccRCC cells, its expression was found to be lower than in normal 
kidney cells. This is most likely as a result of epigenetic modification of the BNIP3 
gene locus involving histone deacetylation [115].

In this respect, it is notable that of the many somatic mutations that co-occur with 
VHL inactivation in ccRCC, very few occur within HIF-target genes. However, to 
date, the majority of ccRCC sequencing efforts have focused on the coding genome 
or have targeted genomic regions of interest. Therefore, the majority of HIF binding 
sites (which are usually intergenic) have not been extensively examined and further 
studies may reveal somatic mutation of these sites in the future. However, epigenetic 
modifiers such as PBRM1, SETD2 and BAP1 are recurrently mutated in these tumors 
[25, 31, 32, 116–120]. PBRM1 encodes a subunit of the chromatin remodeling PBAF 
SWI/SNF complex; SETD2 encodes a histone methyltransferase; and BAP1 encodes 
a histone deubiquitinase. Interestingly, parallel evolution has been reported with 
respect to these mutations, whereby multiple mutations in the same gene are pres-
ent in different cells of the same tumor [32]. This emphasizes their importance in 
driving ccRCC, as well as illustrating their temporal occurrence (i.e. subsequent to 
VHL mutation). Although the interaction between these ccRCC-associated somatic 
mutations and the HIF pathway remains unclear, PBRM1 inactivation enhances 
some aspects of the HIF response [121] and reduces the tumor-suppressor activity 
of HIF-1α, although the mechanisms are unknown [122]. Recurrent mutations are 
also found in genes within the PI3K/AKT/mTOR pathway, which is a master regula-
tor of RNA translation. Expression of both HIF-1α and HIF-2α protein are differ-
entially dependent on mTOR, with HIF-1α being regulated by both the mTORC1 
and mTORC2 complexes, whilst HIF-2α is dependent solely on mTORC2 [123]. 
Therefore, HIF isoforms may be differentially affected by mutations in this pathway.

In addition, other oncogenic transcription factors activated in ccRCC may modu-
late the HIF response. For example, MYC activity is enhanced in ccRCC [124, 125] 
and synergizes preferentially with HIF-2, whilst antagonizing HIF-1 [102, 126]. In 
this way, MYC augments the switch from HIF-1 to the more oncogenic HIF-2 iso-
form. Importantly, MYC itself is a transcriptional target of HIF in ccRCC cells [127], 
providing a mechanism whereby stabilization of HIF following inactivation of VHL 
preferentially amplifies the HIF-2 transcriptional pathway in these cells.

9. Variation in the HIF pathway pre-disposes to renal cancer

As discussed above, genetic and epigenetic events occur somatically in ccRCC 
following VHL inactivation, allowing the HIF transcriptional output to adapt to a 
more oncogenic phenotype, thereby promoting tumor formation. However, dif-
ferences in the HIF pathway that exist prior to VHL inactivation can also affect the 
ability of cells to form cancer. Indeed, it is highly likely that cell-type differences in 
the HIF pathway contribute to the tight tissue-specificity of VHL-associated cancer, 
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despite the almost universal operation of the VHL-HIF pathway in different mam-
malian cell types. Potentially, cell-type-specific components of the HIF pathway 
might favor tumorigenesis in permissive cell types, inhibit tumorigenesis in non-
permissive cell types, or a combination of both (Figure 4). The exact mechanism 
underlying this tissue specificity remains to be determined, although elucidation of 
HIF target genes in cells permissive to VHL-associated cancers (compared to that in 
non-permissive cells) will be key in future studies. Of note, the G1/S-phase cell-
cycle regulator cyclin D1 (CCND1) has been found to be a HIF-2 responsive gene, 
which is not regulated by HIF-1 and is unique to ccRCC cells [50]. Furthermore, 
CCND1 is required for ccRCC cell growth in mice [128]. This indicates that CCND1 
and likely other tissue-specific HIF target genes may render certain cell types recep-
tive to tumorigenesis upon VHL inactivation.

As well as being affected by somatic alterations and cell-type-specific features, 
the HIF pathway can also be modified by inherited genetic variants. Polymorphisms 
that predispose individuals to kidney cancer have been studied, and several of these 
have been shown to affect HIF target genes. Such variants have been identified by 
genome wide-association studies (GWAS), which compare the genome sequence 
of renal cancer patients with healthy control individuals [129–135]. Although these 
variants likely only account for about 5% of kidney cancer heritability [129], a 
disproportionately high number of these susceptibility loci overlap with cis-acting 
components of the HIF pathway [136]. This indicates that specific aspects of the 
HIF pathway are under genetic selection during the development of kidney cancer.

Many of these RCC-susceptibility loci lie in intergenic regions and so the 
functional target of these polymorphisms is not immediately apparent. However, 
several susceptibility loci overlap with, or lie adjacent to, HIF-binding sites [136]. 
In-depth analysis of chromatin looping and HIF-dependent gene regulation has 
identified a number of HIF target genes associated with these loci [127, 136–138]. 
At each locus, the renal cancer susceptibility polymorphism affects both HIF 
binding and expression of the HIF-target gene, either by generating a second HRE 

Figure 4. 
Rebalancing the HIF pathway to favor tumorigenesis. HIF target genes include those that promote tumor growth 
(depicted in red), restrict tumor growth (depicted in green) and those that do not influence tumor growth 
(depicted in gray). Depending on the context (i.e. in a permissive or non-permissive context), activation of the 
HIF pathway may or may not be conducive to tumorigenesis. Features that could ‘tip the balance’ in a HIF-
activated cell include genetic mutations, epigenetic features and the cell state (e.g. the underlying gene expression 
program).
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motif or by altering chromatin accessibility. Most notable are polymorphisms at 
the 11q13.3 locus, which affect HIF-2-dependent expression of cyclin D1 (CCND1) 
[137]; polymorphisms at the 8q24.21 locus, which affect HIF binding and expres-
sion of the oncogenic transcription factor MYC [127]; and polymorphisms at the 
12p12.1 locus, which alter HIF-1 dependent expression of the basic helix–loop–
helix transcription factor BHLHE41 (also known as DEC2) [138]. Furthermore, 
RCC-susceptibility polymorphisms have been identified at the 2p21 locus, lying 
in the first intron of the EPAS1 gene that encodes HIF-2α, although whether these 
affect HIF-2α expression remains unclear [130, 139]. Importantly, each renal 
cancer susceptibility locus affects a single component of the HIF pathway. This 
directly implicates these genes in the pathogenesis of kidney cancer. Furthermore, 
it helps distinguish them from HIF target genes with neutral effects on RCC sus-
ceptibility that might be simply co-activated as part of large pathway upregulation. 
Therefore, these analyses have highlighted specific ‘driver’ genes that may provide 
attractive targets for future therapeutic approaches or as biomarkers that might 
predict tumor behavior.

10. Therapeutic implications of HIF pathway activation in ccRCC

In the absence of a surgical cure, the outlook for patients with clear cell renal 
cancer is poor, with a median survival of just 2 years. However, over recent years 
a number of systemic anti-cancer therapeutic strategies have emerged, which are 
beginning to alter the outcome for some of these patients.

10.1 Anti-angiogenic therapies

One strategy has focused on angiogenesis inhibitors to treat metastatic ccRCC. 
Whilst all tumors require a blood supply to obtain sufficient oxygen and nutrients 
to grow, ccRCC (and other VHL-dependent cancers such as hemangioblastoma) are 
particularly rich in blood vessels. Indeed, VEGFA, a master regulator of angiogene-
sis, [98, 99] is a direct transcriptional target of HIF and is highly expressed in ccRCC 
cells [41, 140]. Early anti-angiogenic strategies targeted VEGFA using the mono-
clonal antibody bevacizumab, with limited efficacy [141]. However, several other 
HIF target genes also encode pro-angiogenic factors, such as PGF, adrenomedullin 
(ADM) and plasminogen activator 1 (PAI-1), as well as the VEGF receptor, FLT1. 
These likely act in concert with VEGFA to orchestrate a robust angiogenic pheno-
type in the context of HIF activation. Therefore, rather than targeting individual 
factors, more recent strategies have used small-molecule receptor tyrosine kinase 
inhibitors (TKIs) to block the overarching angiogenic pathways [142]. However, 
while effective in some individuals, other tumors may fail to respond, likely reflect-
ing heterogeneity in gene expression between tumors. Furthermore, the duration 
of response may be limited, possibly reflecting intra-tumor heterogeneity and the 
growth of resistant subclones.

10.2 Immunotherapy

In recent years, immune checkpoint inhibition via targeting PD-L1 and CTLA-4 
has emerged as an effective treatment for advanced ccRCC. This is despite the 
relatively low mutational burden seen in this type of cancer, which often correlates 
with sensitivity to immunomodulatory therapy in other cancer types. Whilst HIF has 
multiple effects on the immune response [143], it is of particular interest that PD-L1 
has been found to be transcriptionally regulated by HIF in ccRCC cells [107, 144, 145].  
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Therefore, it is possible that HIF-mediated activation of PD-L1 may underlie the 
sensitivity of ccRCC to inhibition of this pathway.

10.3 mTOR inhibitors

Historically, mTOR inhibitors have been used in the treatment of metastatic kid-
ney cancer and remain part of the modern armamentarium [146, 147]. Inhibition of 
mTOR will negatively impact translation of HIF-alpha subunits, while preferential 
blockade of mTORC1 or mTORC2 may alter the balance of the two isoforms. Given 
the oncogenic role of HIF-2α in ccRCC and the selective regulation of HIF-2α by 
mTORC2, mTORC2 inhibition may provide a more targeted therapeutic approach 
in the future.

10.4 HIF-2 inhibitors

The finding that HIF-1α and HIF-2α have opposing effects on the pathogenesis 
of ccRCC initiated efforts to generate isoform-specific inhibitors. This led to the 
development of small molecule inhibitors that specifically prevent HIF-2α dimer-
izing with HIF-1β, thereby blocking HIF-2α -dependent transcription without 
affecting HIF-1α activity [148]. These inhibitors would be predicted to have greater 
efficacy compared to targeting both isoforms simultaneously, whilst reducing 
off-target side-effects. Indeed, investigation of these compounds as potential ccRCC 
treatments, both in animal models of ccRCC and early clinical trials, have yielded 
promising results [149–151]. Therefore, these compounds could provide another 
strategy for treating metastatic ccRCC.

11. Conclusions

Inactivation of the VHL tumor suppressor gene is the hallmark of clear cell renal 
cancer and leads to the upregulation of wide-spread hypoxia pathways, orchestrated 
by the transcription factor HIF. Whilst HIF proteins activate many genes that are 
central to the “hallmarks of cancer”, other HIF-target genes may restrict cancer pro-
gression and the overall consequence of HIF pathway activation is a balance of these 
effects (Figure 4). Both genetic and epigenetic genetic events, occurring before or 
after VHL loss and HIF activation, can alter this balance to promote tumorigenesis.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
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Chapter 8

Urine Creatinine Excretion in HIV 
and Non-HIV Subjects
Ernest Ndukaife Anyabolu

Abstract

This study assessed urine creatinine in spot and 24-hour samples in HIV and 
non-HIV population. We categorized dilute urine as a 24-hour urine creatinine 
<300 mg, concentrated urine as a 24-hour urine creatinine >3000 mg, and nor-
mal urine as a 24-hour urine creatinine 300–3000 mg. Association of variables 
with creatinine was evaluated. In HIV subjects, the mean spot urine creatinine 
was 137.21 ± 98.47 mg/dl and a 24-hour urine creatinine was 1507 ± 781 mg.  
The prevalence of dilute urine was 0.5%, normal urine 93.1%, and concentrated 
urine 6.4%. 20-hour urine creatinine was associated with serum LDL, and 
HDL. Concentrated urine was correlated with a 24-hour urine osmolality (r = 
0.95), serum HDL (r = −0.73), CD4 cells count (r = −0.71), and BMI (r = 0.74). 
Dyslipidemia was common in HIV subjects with concentrated urine. In non-HIV 
subjects, the mean spot urine creatinine was 148 ± 167 mg/dl and the 24-hour 
urine creatinine was 1203 ± 316 mg. The 24-hour urine creatinine was within 
the normal range. The spot urine creatinine significantly correlated with BMI, 
spot urine protein, spot urine osmolality, 24-hour urine protein, 24-hour urine 
creatinine, serum creatinine, serum cholesterol, and serum LDL. Conversely, 
the 24-hour urine creatinine significantly correlated with 24-hour urine volume, 
serum creatinine, and serum cholesterol. The spot urine protein and 24-hour 
urine protein were predictors of spot urine creatinine. Serum creatinine was 
a predictor of 24-hour urine creatinine. Proteinuric renal abnormalities were 
common.

Keywords: HIV, urine creatinine, spot urine creatinine, 24-hour urine creatinine, 
CD4 cell count, concentrated urine, dilute urine, abnormal weight, dyslipidemia, 
proteinuria

1. Introduction

1.1 Impact of HIV

Human immunodeficiency virus infection is a world healthcare burden with 
sub-Saharan Africa as a geographic area accounting for about 70% of HIV-infected 
persons [1]. In Nigeria the prevalence of HIV is 3.7% [1]. HIV infection directly or 
indirectly affects most organs of the body [2]. In like manner, tons of physiological 
responses are also altered by HIV disease process [3–5].
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1.2 Factors which may influence creatinine

Creatinine is produced by the muscles, degraded within the liver, and efficiently 
excreted by the kidney at a rate that is not only constant but is additionally modu-
lated by weight, gender, and age [6].

Many environmental, physiologic, and disease conditions may impact on daily 
urine creatinine excretion. Excretion of creatinine is further altered by exogenous 
substances such as cocaine and heavy metals which include arsenic and cadmium 
seen within the bioenvironment related to environmental pollution. Others 
include meat consumption and medications such as cimetidine and trimethoprim. 
Consequently, urine creatinine is employed in monitoring bioenvironmental 
pollutants and substance use [7–9].

1.3 Variability of daily urine creatinine

There is high variability of the values of daily urine creatinine excretion in 
normal healthy state [10]. Impaired renal function usually results in poor renal 
secretion of creatinine in urine; urine creatinine decreases as renal function impair-
ment increases [11].

1.4 Identified factors of high and low 24-hour urine creatinine

Studies have identified some associated factors of high 24-hour urine creatinine 
or concentrated urine. They include age, sex, race, body mass index, hyperten-
sion, water intake, and blood osmolality [12]. At the other pole, low 24-hour urine 
creatinine or dilute urine was reported to be associated with glomerular filtration 
rate, an older age, diabetes, and lower levels of body mass index, proteinuria, and 
protein intake [11]. Another important use of urine creatinine is for evaluating the 
completeness of 24-hour urine sample collection [13].

1.5  A necessity for routine assessment of urine creatinine in HIV and non-HIV 
subjects

Studies are sparse on urine creatinine in HIV and non-HIV subjects originating 
from Nigeria. We have, therefore, launched to evaluate urine creatinine and factors 
which influence low and high urine creatinine in these groups of subjects.

2. Methods

2.1 Study location and population

This was a cross-sectional study, comprising 375 HIV-positive subjects and 
136 subjects recruited from an HIV clinic and also the general outpatient clinic, 
respectively, of the Federal Medical Centre, Owerri, Nigeria. The study was 
disbursed and carried out between April and August 2011. The standards for inclu-
sion were HIV-positive status for the HIV subjects and HIV-negative status for the 
non-HIV participants. For both groups of subjects, another criterion was age range 
of 16–65 years. The themes excluded from the study were people who had adrenal, 
pituitary, and renal diseases, terminal illness, and pregnancy. For the non-HIV 
subjects, the inclusion criteria were similar, but those with HIV-positive status 
were excluded.
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2.2 Ethics approval

The study was approved by the ethics research committee of the hospital. Its 
approval reference number was FMC/HCS/VOL II and was dated 16 March, 2011. 
Informed written consent was obtained from all the themes participated within 
the study.

2.3 Variables, data collection, and sample analyses

With the help of a questionnaire, demographic, anthropometric, and other rel-
evant data were obtained from the themes. The purpose of the study was explained 
to the themes. The age, gender, place of origin, and domicile were obtained. Height 
was measured and recorded in meter (m). Weight was measured employing a 
weighing scale. Body mass index was taken as the ratio of weight/height2 (kg/m2).

The study participants were clearly instructed on the way to collect 24-hour 
urine sample. At the conclusion of the 24-hour urine sample collection, blood 
samples, and daytime random spot urine samples were collected. Spot urine 
creatinine, spot urine osmolality, and spot urine protein from the random spot 
urine samples were performed. Also from the 24-hour urine samples collected, 
24-hour urine protein, 24-hour urine creatinine, and 24-hour urine osmolality 
were performed. Serum creatinine was performed on the blood samples collected. 
Freezing point depression assay was used to determine osmolality, protein by pho-
tometric method, and creatinine by modified Jaffe’s method. Creatinine clearance 
and spot urine creatinine/osmolality ratio were calculated. HIV screening and 
confirmatory tests, fasting serum lipid profile, CD4 cell count, and hemoglobin 
were performed.

2.4 Potential risk variables analyzed

The potential associated factors of dilute and concentrated urine evaluated were 
CD4 cells, spot urine protein, spot urine osmolality, 24-hour urine osmolality, 24-hour 
urine protein, spot urine creatinine/osmolality ratio, creatinine clearance, serum 
cholesterol, serum low-density lipoprotein cholesterol, serum triglyceride, and serum 
high-density lipoprotein cholesterol.

2.5 Statistical analyses

The data were analyzed using SPSS version 17.0 (SPSS Inc. Chicago, IL, USA). The 
distribution and characterization of clinical and laboratory variables within the study 
participants with different levels of 24-hour urine creatinine were analyzed using 
cross-tabulation, whereas statistical significance of association of these variables 
with 24-hour urine creatinine levels was evaluated using Student’s t-test. Correlation 
statistics were used to determine the association of those variables with concentrated 
urine on the one hand and with dilute urine on the other hand. The strength of vari-
ables to predict dilute urine and concentrated urine was determined using multivari-
ate linear regression analyses. P < 0.05 was taken as statistically significant.

2.6 Definition of terms

Normal urine creatinine: 24-hour urine creatinine 300–3000 mg. Low urine 
creatinine or dilute urine: 24-hour urine creatinine <300 mg. High urine creatinine 
or concentrated urine: 24-hour urine creatinine >3000 mg.
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3. Results

3.1 Results in HIV patients

3.1.1 Age, spot urine, and 24-hour urine creatinine in HIV patients

Out of the 393 participants studied, 18 were excluded due to errors from 
incomplete sample collection. Their mean age was 39 ± 11 years. For all the HIV 
participants, the mean spot urine creatinine was 137.21 ± 98.47 (mg/dl), minimum 
value 13.3 mg/dl, maximum value 533.3 mg/dl, and range 520.0 mg/dl. The mean 
24-hour urine creatinine was 1507 ± 781 mg, minimum value 206 mg, maximum 
value 4849 mg, with a range of 4643 mg (Table 1).

3.1.2 Prevalence of dilute and concentrated urine and factors of 24-hour urine

Two (0.5%) of the HIV subjects have 24-hour urine creatinine <300 mg, 349 
(93.1%) have 300–3000 mg, and 24 (6.4%) have >3000 mg. Serum low-density 
lipoprotein cholesterol was significantly associated with 24-hour (p = 0.001) in 
these HIV subjects. Two subjects have 24-hour urine creatinine <300 mg, and both 
of them have borderline serum low-density lipoprotein cholesterol. Twenty-four 
subjects have high urine creatinine, and all of them have desirable serum low-
density lipoprotein cholesterol (Table 2).

3.1.3 Dilute urine, concentrated urine, and serum HDL in HIV patients

There was a significant association between serum high-density lipoprotein 
cholesterol and 24-hour urine creatinine, p = 0.028, in the HIV subjects. Two subjects 

Variables (mean ± SD) HIV subjects

Body mass index (kg/m2) 26.2 ± 5.4

Hemoglobin (g/dl) 11.2 ± 1.8

CD4 cells/ml (median) 391

SUOsm (mOsm/kgH2O) 464 ± 271

Spot urine protein (mg/dl) 11.89 ± 19.13

Spot urine creatinine (mg/dl) 137.21 ± 98.47

24-hour urine protein (g) 0.187 ± 0.290

24-hour urine creatinine (mg) 1507 ± 781

24HUOsm (mOsm/kgH2O) 564 ± 501

SUCOR (mg/dl/mOsm/kgH2O) 0.422 ± 0.486

Cholesterol (mmol/l) 4.26 ± 0.90

Triglyceride (mmol/l) 1.23 ± 0.37

HDL (mmol/l) 1.18 ± 0.39

LDL (mmol/l) 2.05 ± 0.58

Creatinine clearance (mls/min) 91.42 ± 22.98

SD, standard deviation; SUOsm, spot urine osmolality; 24HUOsm, 24-hour urine osmolality; SUCOR, spot urine 
creatinine/osmolality ratio; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.

Table 1. 
Variables in HIV patients.
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Variables 24-hour urine creatinine levels (no (%)) Chi-
square

Likelihood 
ratio

P 
value<300 mg 300–750 mg >750 mg

BMI (kg/m2) 
< 18.5

0 (0.0%) 22 (91.7%) 2 (8.3%) 8.702 0.143 0.191

18.5–24.9 0 (0.0%) 124 (96.9%) 4 (3.1%)

25.0–29.9 2 (1.4%) 128 (88.9%) 14 
(9.7%)

≥30 0 (0.0%) 75 (94.9%) 4 (5.1%)

CD4 cell count 
<200

0 (0.0%) 41 (97.1%) 4 (8.9%) 0.781 0.614 0.677

≥200 2 (0.6%) 307 (93.3%) 20 
(6.1%)

Hb (g/dl) ≥12.0 2 (1.6%) 108 (88.5%) 12 
(9.8%)

9.644 0.107 0.140

10.0–11.9 0 (0.0%) 163 (96.4%) 6 (3.6%)

7.0–9.9 0 (0.0%) 72 (92.3%) 6 (7.7%)

<7.0 0 (0.0%) 6 (100.0%) 0 
(0.0%)

ClCr  
(mls/min) ≥ 90 
mls/min

0 (0.0%) 183 (92.0%) 16 
(8.0%)

5.229 0.204 0.265

60–89 2 (1.4%) 135 (94.4%) 6 (4.2%)

30–59 0 (0.0%) 31 (93.9%) 2 (6.1%)

24 HUP <0.300 g 2 (0.6%) 301 (93.8%) 18 
(5.6%)

8.018 0.178 0.237

≥0.300 g 0 (0.0%) 48 (88.9%) 6 
(11.1%)

FSLP (mmol/l)

CholT Des (<5.2) 2 (0.6%) 308 (92.5%) 23 
(6.9%)

1.618 0.806 0.659

BorderL (5.2–6.2) 0 (0.0%) 35 (97.2%) 1 (2.8%)

High (>6.2) 0 (0.0%) 6 (100.0%) 0 
(0.0%)

LDL Des (<2.6) 0 (0.0%) 284 (92.2%) 24 
(7.8%)

14.609 <0.001 0.001

BorderL (2.6–4.1) 2 (3.0%) 64 (97.0%) 0 
(0.0%)

HDL Low (<1) 2 (1.5%) 124 (95.4%) 4 (3.1%) 7.317 0.016 0.028

High (≥1) 0 (0.0%) 225 (91.8%) 20 
(8.2%)

TG Des (<1.7) 2 (0.6%) 311 (92.3%) 24 
(7.1%)

3.150 0.449 0.790

BorderL (1.7–2.2) 0 (0.0%) 29 (100.0%) 0 
(0.0%)
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have 24-hour urine creatinine <300 mg, and both have desirable serum high-
density lipoprotein cholesterol <1 mg/dl. Twenty-four subjects have 24-hour urine 
creatinine >3000 mg. Out of this number, 83.3% have high serum high-density 
lipoprotein cholesterol, whereas 16.7% have desirable serum high-density lipopro-
tein cholesterol. This showed that the prevalence of high urine creatinine increased 
as serum high-density lipoprotein cholesterol increased (Table 2).

3.1.4  Dissociation and association between daily urine creatinine excretion and 
variables in HIV patients

There was no significant association between 24-hour urine creatinine and 
body mass index, p = 0.191; serum total cholesterol, p = 0.659; creatinine clear-
ance, p = 0.265; 24-hour urine protein, p = 0.237; CD4 cell count, p = 0.677; 
serum triglyceride, p = 0.790; and hemoglobin, p = 0.140 in the HIV subjects 
(Table 2). Significant correlation was obtained between 24-hour urine creatinine 
and spot urine creatinine (p = 0.19), 24-hour urine volume (p = 0.004), spot urine 
creatinine/osmolality ratio (<0.001), serum low-density lipoprotein cholesterol 
(p = 0.31), creatinine clearance (p < 0.001), and serum creatinine (<0.001) in the 
treatment-naïve HIV subjects. Hemoglobin, spot urine protein, spot urine osmolal-
ity, 24-hour urine protein, 24-hour urine osmolality, serum cholesterol, serum 
high-density lipoprotein cholesterol, and serum triglyceride did not have significant 
correlation with 24-hour urine creatinine (Table 3).

3.1.5 Correlates of daily urine creatinine excretion in HIV patients

There was a very strong correlation between 24-hour urine creatinine 
>3000 mg and 24-hour urine osmolality (r = 0.95), body mass index, (r = 0.74), 
CD4 cell count, (r = −0.71), and serum high-density lipoprotein cholesterol 
(r = −0.73) in the HIV subjects. However, there was a moderate correlation 
between 24-hour urine creatinine and 24-hour urine volume (r = 0.58) and 
hemoglobin (r = −0.43). Conversely, there was a poor correlation between spot 
urine creatinine and body mass index (r = 0.131, p = 0.009)), spot urine protein 
(r = 0.183, p = <0.001), spot urine osmolality (r = 0.288, p = <0.001), 24-hour 
urine volume (r = −0.111, p = 0.032), and creatinine clearance (r = 0.108, 
p = 0.036) (Table 4).

3.1.6 Predictors of concentrated urine in HIV patients

Multivariate linear regression of 24-hour urine creatinine >3000 mg with its 
potential risk factors was voided as the colinearity variance was skewed due to the 
small subpopulation (24) that have 24-hour urine creatinine >3000 mg.

Variables 24-hour urine creatinine levels (no (%)) Chi-
square

Likelihood 
ratio

P 
value<300 mg 300–750 mg >750 mg

High (>2.2) 0 (0.0%) 8 (100.0%) 0 
(0.0%)

LHR, likelihood ratio; BMI, body mass index; Hb, hemoglobin; ClCr, creatinine clearance; 24HUP, 24-hour urine 
protein; FSLP, fasting serum lipid profile; CholT, total cholesterol; Des, desirable; BorderL, borderline; LDL,  
low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; TG, triglyceride.

Table 2. 
Distribution and characterization of variables at different levels of 24-hour urine creatinine in HIV-positive 
patients (n = 375).
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Variables Correlation coefficient (r) P value

Body mass index −0.036 0.470

Hemoglobin (g/dl) 0.075 0.117

Spot urine protein 0.044 0.538

Spot urine creatinine 0.129 0.019

Spot urine osmolality 0.107 0.058

24-hour urine protein 0.035 0.625

24-hour urine osmolality 0.063 0.167

24-hour urine volume 0.143 0.004

SUCOR 0.288 <0.001

Serum creatinine 0.290 <0.001

Serum cholesterol (total) 0.074 0.242

Serum Triglyceride −0.075 0.189

Serum HDL 0.029 0.542

Serum LDL −0.109 0.031

Creatinine clearance 0.367 <0.001

SUCOR, spot urine creatinine osmolality ratio; HDL, high-density lipoprotein cholesterol; LDL, low-density 
lipoprotein cholesterol.

Table 3. 
Correlation of 24HUCr with variables in HIV patients (n = 375).

Variables Correlation coefficient (r) P value

Body mass index 0.744 <0.001

Hb (g/dl) −0.427 <0.001

Spot urine protein 0.397 <0.001

Spot urine creatinine 0.371 <0.001

Spot urine osmolality −0.549 <0.001

24-hour urine protein −0.109 0.001

24-hour urine osmolality 0.952 <0.001

24-hour urine volume 0.578 <0.001

Serum creatinine −0.198 <0.001

Serum cholesterol (total) 0.215 <0.001

Serum triglyceride 0.001 0.925

Serum HDL −0.729 <0.001

Serum LDL 0.289 <0.001

Hemoglobin −0.427 <0.001

SUCOR, spot urine creatinine osmolality ratio; HDL, high-density lipoprotein cholesterol; LDL, low-density 
lipoprotein cholesterol.

Table 4. 
Correlation of 24HUCr > 3000 mg with variables in HIV patients (n = 24).
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3.2 Results in non-HIV subjects

3.2.1 Values of spot urine and 24-hour urine creatinine in non-HIV subjects

Out of the 136 non-HIV subjects enrolled in this study, females constituted 
72.1% and males 27.9%. Their mean age was 39 ± 12 years. They all have complete 
data or sample collection, and there was no attrition. The value of the mean 
spot urine creatinine was 148 ± 167, minimum value 14.7 mg/dl, and maximum 
value 746.7 mg/dl with a range of 732.0 mg/dl. Further, the value of the mean 
24-hour urine creatinine was 1203 ± 316, minimum value 651.0 mg, maximum 
value 2320 mg, and range 1669.0 mg. The mean values of all other variables are 
depicted in Table 5.

For all the subjects the mean 23-hour urine creatinine was in the normal range 
(300–3000 mg). The potential risk factors for concentrated or dilute urine were 
voided and could not be distributed or characterized.

3.2.2 Correlates of spot urine creatinine

There was a significant correlation between spot urine creatinine and body 
mass index (r = 0.225, p = 0.009), spot urine protein (r = 0.292, p = 0.001), spot 
urine osmolality (r = 0.223, p = 0.009), serum low-density lipoprotein cholesterol 
(r = 0.282, p = 0.001), 24-hour urine protein (r = −0.187, p = 0.030), 24-hour urine 
creatinine (r = −0.178, p = 0.038), serum creatinine (r = −0.212, p = 0.013), as well 
as serum cholesterol (r = 0.246, p = 0.004). In contrast, spot urine creatinine has 
no significant correlation with hemoglobin, 24-hour urine volume, 24-hour urine 

Variables (mean ± SD) Subjects

Body mass index (kg/m2) 25.5 ± 6.5

Hemoglobin (g/dl) 12.9 ± 1.6

Serum creatinine (mg/dl) 0.88 ± 0.19

SUOsm (mOsm/kgH2O) 334 ± 204

Spot urine protein (mg/dl) 7 ± 18

Spot urine creatinine (mg/dl) 148 ± 167

24-hour urine volume (ml) 1874 ± 681

24-hour urine protein (g) 0.095 ± 0.087

24-hour urine creatinine (mg) 1203 ± 316

24HUOsm (mOsm/kgH2O) 160 ± 133

Cholesterol (mmol/l) 3.8 ± 1.2

Triglyceride (mmol/l) 1.2 ± 0.4

HDL (mmol/l) 1.2 ± 0.3

LDL (mmol/l) 2.3 ± 1.0

Creatinine clearance (mls/min) 93.0 ± 41.2

SD, standard deviation; SUOsm, spot urine osmolality; 24UOsm, 24-hour urine osmolality; HDL, high-density 
lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.

Table 5. 
Variables in non-HIV subjects (n = 136).



157

Urine Creatinine Excretion in HIV and Non-HIV Subjects
DOI: http://dx.doi.org/10.5772/intechopen.91416

osmolality, serum triglyceride, serum high-density lipoprotein cholesterol, as well 
as creatinine clearance (Table 6).

3.2.3 Correlates of 24-hour urine creatinine

Twenty-four-hour urine creatinine significantly correlated with 24-hour urine 
volume (r = 0.213, p = 0.013), serum creatinine (r = 0.741, p < 0.001), and spot 
urine creatinine (r = −0.178, p < 0.001). On the contrary, 24-hour urine creatinine 
did not significantly correlate with body mass index, hemoglobin, spot urine pro-
tein, spot urine osmolality, 24-hour urine protein, 24-hour urine osmolality, serum 
cholesterol, serum triglyceride, serum high-density lipoprotein cholesterol, as well 
as serum low-density lipoprotein cholesterol (Table 7).

Twenty-four-hour urine protein significantly correlated with 24-hour urine 
volume (r = 0.213, p = 0.013), serum creatinine (r = 0.741, p < 0.001), and spot 
urine creatinine (r = −0.178, p < 0.001).

3.2.4 Predictors of spot urine creatinine

The variables that predicted spot urine creatinine were spot urine protein 
(p < 0.001) and 24-hour urine protein (p = 0.021), whereas body mass index, 
serum creatinine, spot urine osmolality, 24-hour urine creatinine, serum choles-
terol, and serum low-density lipoprotein cholesterol did not (Table 8).

3.2.5 Predictor of 24-hour urine creatinine in non-HIV subjects

Only one variable predicted 24-hour urine creatinine—serum creatinine 
(p < 0.001)—whereas spot urine creatinine and 24-hour urine volume did  
not (Table 9).

Variables Correlation coefficient(r) P value

Body mass index 0.225 0.009

Hemoglobin 0.024 0.782

Spot urine protein 0.292 0.001

Spot urine osmolality 0.223 0.009

24-hour urine protein −0.187 0.030

24-hour urine creatinine −0.178 0.038

24-hour urine volume −0.097 0.259

24HUOsm −0.165 0.055

Serum creatinine −0.212 0.013

Serum cholesterol (total) 0.246 0.004

Serum Triglyceride 0.157 0.067

Serum HDL 0.137 0.112

Serum LDL 0.282 0.001

Creatinine clearance 0.024 0.782

HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; 24HUOsm, 24-hour urine 
osmolality.

Table 6. 
Correlation of spot urine creatinine with variables in non-HIV subjects (n = 136).
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Body mass index 0.056 0.520

Hemoglobin 0.046 0.593

Spot urine protein −0.083 0.337

Spot urine osmolality −0.091 0.294

Spot urine creatinine −0.178 0.038

24-hour urine protein −0.027 0.753

24-hour urine volume 0.213 0.013

24-hour urine osmolality 0.106 0.220

Serum creatinine 0.741 <0.001

Serum cholesterol (total) −0.032 0.708

Serum triglyceride −0.008 0.925

Serum HDL 0.038 0.657

Serum LDL −0.092 0.286

Creatinine clearance 0.634 <0.001

HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.

Table 7. 
Correlation of 24-hour urine creatinine with variables in non-HIV subjects.

Variables Beta T P value 95% CI

Body mass index 0.107 1.160 0.248 −1.964–7.523

Serum creatinine −0.200 −1.729 0.086 −282.537–23.785

Spot urine protein 0.312 3.760 <0.001 1.350–4.346

Spot urine osmolality 0.100 1.318 0.190 −0.045–0.225

24-hour urine protein −0.184 −2.331 0.021 −53.513 0–0.354

24-hour urine creatinine 0.026 0.228 0.820 −105.945–133.584

Serum cholesterol −0.136 −0.632 0.528 −1.952–1.007

Serum LDL 0.375 1.804 0.074 −0.148–3.199

CI, confidence interval; LDL, low-density lipoprotein cholesterol.

Table 8. 
Multivariate linear regression of variables with spot urine creatinine in non-HIV subjects (n = 136).

Variables Beta T P value 95% CI

Serum creatinine 0.723 26,353 <0.001 −1.065–0.814

Spot urine creatinine −0.003 −0.097 0.923 0.000–0.000

24-hour urine volume −0.038 −1.389 0.167 0.011–0.013

CI, confidence interval.

Table 9. 
Multivariate linear regression of variables with 24-hour urine creatinine in non-HIV subjects (n = 136).
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4. Discussion

4.1 Discussion in HIV patients

4.1.1 Prevalence of dilute urine in HIV patients

This study noted the prevalence of dilute urine or low urine creatinine of 0.5% 
and concentrated urine or high urine creatinine of 6.4% in HIV patients. It showed 
an association between high urine creatinine and serum low-density lipoprotein cho-
lesterol, p = 0.001, as well as serum high-density lipoprotein cholesterol, p = 0.028. 
It further showed that high urine creatinine very strongly correlated with 24-hour 
urine osmolality (r = 0.95), body mass index (r = 0.74), CD4 cell count (r = −0.71), 
and serum high-density lipoprotein cholesterol (r = −0.73). In this study the preva-
lence of low urine creatinine was 0.5%. This is in disagreement with 8.1% docu-
mented by Barr et al. [14]. In the same vein, the observed 6.4% prevalence of high 
urine creatinine in this study was a bit higher than the 3.1% reported by Barr et al. 
[14] in the same study previously mentioned. Differences in study design perhaps 
might explain the observed difference in the prevalence. Whereas the subjects in this 
group of our study participants were HIV patients in Nigeria, their study partici-
pants were non-HIV from a US general population. In Romania, studies reported 
high chronic kidney disease prevalence in HIV patients who were on variable antiret-
roviral therapy duration [15–17]. These Romanian studies evaluated kidney disease 
using MDRD equation, a formula that incorporated serum creatinine in its utility. 
Glaringly, however, their study failed to analyze daily urine creatinine excretion.

4.1.2 Concentrated urine associated with serum LDL and HDL in HIV patients

This study demonstrated a significant association between high urine 
creatinine and serum low-density lipoprotein cholesterol as well as serum high-
density lipoprotein cholesterol. Literature was sparse on the impact of high urine 
creatinine excretion on serum low-density lipoprotein cholesterol or serum 
high-density lipoprotein cholesterol. Nonetheless, in chronic kidney disease, low 
serum low-density lipoprotein cholesterol and low serum high-density lipoprotein 
cholesterol are characteristic components of dyslipidemia. Lipid synthesis by the 
liver is thought to be induced by proteinuria in kidney disease. Triglyceride-rich 
apolipoprotein B (apoB) containing complex lipoproteins, mark these syntheses. 
They have profound atherogenic potential which inadvertently will impact nega-
tively on the kidney and subsequently affect urine creatinine excretion [18–20].

4.1.3 Concentrated urine associated with 24-hour urine osmolality in HIV patients

This study showed that there was very strong correlation between high urine 
creatinine and 24-hour urine osmolality (r = 0.95). A similar observation was 
reported in a study that assessed the utility of urine creatinine and urine osmolal-
ity in determining dilute or concentrated urine and therefore the factors that 
influenced these. That study observed that the quantum of associations depicted 
as a fraction in change was profoundly stronger with urine creatinine than urine 
osmolality. The report noted that urine osmolality, compared to urine creatinine, 
was influenced by daily total protein intake but failed to vary by diabetes status. 
Although this association seemed relevant, the study inferred that the plausibil-
ity of accepting the utilization of urine osmolality adjustment and water intake 
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prescription to enhance on the accuracy of spot urine samples provision for the 
monitoring of bioenvironmental pollution would in itself espouse the merit for 
further evaluations [12].

4.1.4 Concentrated urine associated with BMI in HIV patients

High urine creatinine has a high correlation with body mass index, r = 0.74, in 
this study. This is in conformity with the findings reported by Forbes et al. [21] with 
r = 0.99 and Baxmann et al. [22] with r = 0.74. These two studies differed in design 
as they were administered in a very general population, compared to the present 
index subpopulation of our study that was an HIV patient population. The mar-
ginally higher correlation seen within the Forbes et al. [21] study showed a rather 
higher correlation which could be adduced to urine creatinine evaluation in lean 
body mass, in subjects very likely to be underweight.

4.1.5  Inverse correlation between concentrated urine and CD4 cell count and HDL 
in HIV patients

In this study high urine creatinine has a high inverse correlation, r = −0.71, with 
CD4 cell count. A study has documented an association between low CD4 cells 
count and underweight in HIV subjects [23]. Perhaps, this might account for the 
high, albeit inverse, correlation between high urine creatinine and CD4 cell count 
noted in our study. We also observed in our study that high urine creatinine has a 
high but inverse correlation, r = −0.73, with serum high-density lipoprotein choles-
terol. There was dearth of studies that assessed the link between serum high-density 
lipoprotein cholesterol and high urine creatinine.

4.1.6  Correlation between concentrated urine and 24-hour urine volume and 
anemia in HIV patients

This study showed that there was moderate correlation statistics between 
high urine creatinine and 24-hour urine volume (r = 0.58) and hemoglobin 
(r = −0.43). The higher the concentration of urine, the lower the hemoglobin, 
implying that anemia was associated with concentrated urine. Literature search 
did not reveal any study that evaluated the effects of urine volume or hemoglobin 
on urine creatinine.

4.2 Discussion in non-HIV patients

4.2.1 Absent abnormal urine concentration in non-HIV subjects

This study showed that low and high urine creatinine was absent within the 
outpatient population as all of them have 24-hour urine protein within the normal 
range.

4.2.2  Correlates of spot urine and daily urine creatinine excretion in non-HIV 
subjects

Spot urine creatinine correlated significantly with body mass index 
(r = 0.225, p = 0.009), spot urine protein (r = 0.292, p = 0.001), spot urine 
osmolality (r = 0.223, p = 0.009), 24-hour urine protein (r = −0.187, p = 0.030), 
24-hour urine creatinine (r = −0.178, p = 0.038), serum creatinine (r = −0.212, 
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p = 0.013), serum cholesterol (r = 0.246, p = 0.004), and serum low-density 
lipoprotein cholesterol (r = 0.282, p = 0.001). Factors that significantly cor-
related with 24-hour urine creatinine were 24-hour urine volume (r = 0.213, 
p = 0.013), serum creatinine (r = 0.741, p < 0.001), and spot urine creatinine 
(r = −0.178, p < 0.001). Spot urine protein and 24-hour urine protein predicted 
spot urine creatinine, whereas only serum creatinine predicted 24-hour urine 
creatinine.

4.2.3 Only normal levels of urine creatinine in non-HIV subjects

In this study there was an absence of low and high urine creatinine in subjects 
attending the outpatient clinic. This disagrees with the prevalence of 8.1% of low 
urine creatinine and 3.1% of high urine creatinine reported by Barr et al. [14]. Their 
study was conducted in a US general population in contrast with ours that was 
done in a general outpatient clinic population in Nigeria. This difference in study 
design might have accounted for the observed differences between the two studies. 
Additionally, our study subjects were patients who might have presented to hospital 
for one illness or the other that might impact on urine creatinine.

4.2.4 Spot urine creatinine associated with BMI in non-HIV subjects

Our study showed that BMI was associated with spot urine creatinine but not 
with 24-hour urine creatinine. This observation is similar to that reported in two 
studies [14, 24]. Two studies further demonstrated that body mass index was a 
predictor of spot urine creatinine [24, 25], in contrast with our study which showed 
that body mass index did not predict spot urine creatinine and 24-hour urine 
creatinine. Urine creatinine, a function of body mass index, a measure of lean body 
mass, depends on muscle mass.

4.2.5  Spot urine and daily urine protein excretion were predictors of spot urine 
creatinine in non-HIV subjects

This study demonstrated that spot urine protein and 24-hour urine protein 
were predictors of spot urine creatinine. This was slightly similar to a study that 
found protein intake associated with urine creatinine [26]. We observed that 
these two variables were not associated with 24-hour urine creatinine. Protein in 
urine predicting spot urine creatinine, with 24-hour urine creatinine within the 
normal range, indicated that the subjects studied might have proteinuria even in 
the presence of normal renal filtration function.

Spot urine osmolality was associated with spot urine creatinine but did not 
predict it, in this study. The precise relationship between urine creatinine and urine 
osmolality has not been fully elucidated, even though the utility of the hypotheti-
cal ratios for estimation of daily urine protein excretion involving creatinine and 
osmolality has been established [27, 28].

4.2.6  Inverse correlation between spot urine creatinine and daily urine creatinine 
excretion in non-HIV subjects

There was an inverse correlation between spot urine creatinine and 24-hour 
urine creatinine observed in this study. This implied that as spot urine creatinine 
increased, 24-hour urine creatinine declined and vice versa. Studies were sparse 
on the link between spot urine creatinine and 24-hour urine creatinine.
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4.2.7  Association between serum creatinine and spot urine creatinine in non-HIV 
subjects

The study showed that serum creatinine was associated with spot urine cre-
atinine. Serum creatinine in normal state is maintained at a reasonably constant 
level as excess creatinine produced by the body or taken exogenously is excreted 
in urine. This produces variability in the amount of creatinine in urine excreted 
by an individual and between different individuals [29]. However, elevated serum 
creatinine would be observed in impaired renal function, associated with reduced 
urine creatinine [30]. Expectedly, serum creatinine was a predictor of 24-hour urine 
creatinine in this study.

4.2.8 Spot urine creatinine associated with HDL and LDL in non-HIV subjects

Serum cholesterol and serum low-density lipoprotein cholesterol were associ-
ated with spot urine creatinine, as observed in our study. Lipid abnormalities have 
been described in renal disease associated with reduced urine creatinine excretion 
[31, 32]. This might suggest that our study subjects might have renal impairment.

4.2.9  Daily urine creatinine excretion associated with daily urine volume in  
non-HIV subjects

We noted that 24-hour urine volume was associated with 24-hour urine creati-
nine in this study. A related study reported an association between 24-hour urine 
volume and creatinine clearance [33]. In contrast, our study did not find any asso-
ciation between 24-hour urine creatinine and creatinine clearance. Nonetheless, 
urine volume tends to decrease with decreasing creatinine clearance, and 24-hour 
urine creatinine is a function of creatinine clearance. This probably would explain 
the association between 24-hour urine volume and 24-hour urine creatinine 
observed in this study.

5. Conclusion

The prevalence of low urine creatinine and high urine creatinine was low. 
Twenty-four-hour urine osmolality, body mass index, CD4 cell count, and hemo-
globin were strong correlates of high urine creatinine. Dyslipidemia was common 
in HIV subjects who have high urine creatinine. Low and high urine creatinine was 
absent in non-HIV subjects. Proteinuric renal abnormalities, abnormal weight, and 
dyslipidemia were common in these non-HIV subjects with normal urine creati-
nine. There is need for clinicians to routinely conduct urine creatinine and further 
search for dyslipidemia, abnormal weight, depressed immunity, and anemia in HIV 
subjects with dilute or concentrated urine in the early stages of the infection. There 
is also a necessity for clinicians to routinely conduct urine creatinine and further 
explore for abnormalities of lipids, renal function, and weight changes in subjects 
with normal urine creatinine in non-HIV subjects.

6. Limitations of the study in HIV subpopulation

A larger HIV study population would have been better, as it would have pre-
vented skewing of the colinearity that rendered null and void the multivariate linear 
regression of urine creatinine with the variables. Staging of HIV infection for all the 
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Abstract

Coronavirus disease 2019 (COVID-19) is a major issue of our times. Many 
aspects and features of this new and complex disease are being described on a 
daily basis. Major endpoints are systemic inflammation, markedly characterized 
by the cytokine storm, respiratory failure, and coagulation disorders, such as 
thrombophilia. In its terms, thrombophilia has a major impact on the COVID-19 
prognosis. With regard to this, paying attention on molecular variants, such as 
DNA polymorphisms, epigenetic factors, and other biomarkers, could be an 
important approach to optimizing and personalizing the treatment of patients 
according to their inherited thrombotic features. This chapter brings an overview 
on the three major DNA polymorphisms associated with thrombophilia and 
proposes that these same biomarkers could be used in pretreatment screenings of 
patients with COVID-19 to seek the most appropriate therapy for each individual 
molecular profile.

Keywords: COVID-19, coagulation, thrombophilia, biomarkers,  
DNA polymorphisms

1. Introduction

One of the major issues of the 21st century, without any doubt, is the viral 
respiratory disease discovered at the end of 2019, the COVID-19. Using next-
generation sequencing, the pathogen related to COVID-19 was described as a novel 
coronavirus, which is related to the SARS-coronavirus described in 2003, mainly in 
Asia, from the molecular and phylogenetic aspects [1].

A severe respiratory disease was reported in Wuhan, Hubei province, China. 
Epidemiological investigations have suggested that the outbreak was associated 
with a seafood market in Wuhan [2].

The first case reported in the medical literature was that of a 41-year-old 
man who was hospitalized in the Central Hospital of Wuhan. The patient was 
admitted to the hospital reporting an extensive set of symptoms since one week 
before his admission on December 26, 2019, which included dry cough without 
sputum, fever, weakness, chest tightness, and widespread pain. Normal signs were 
observed at physical examination on abdominal, cardiovascular, and neurological 
features.
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2. General aspects on COVID-19 diagnosis

Among the biomarkers analyzed, one of the most important findings was the 
raised C-reactive protein (CRP) level of 41.4 mg/L (standard at 0–6 mg/L) whose 
circulating concentrations rise in response to inflammation. Followed by the higher 
CRP, the biochemistry cardiac panel also showed raised myocardial infarction 
markers, such as lactic dehydrogenase (LDH), aspartate aminotransferase (AST), 
and creatine kinase (CK). Taken together, these biomarkers strongly indicated a 
severe acute inflammatory phase with the ongoing cardiac effect to be controlled. 
Mild lymphopenia with less than 9 × 10e5 cells per mL with normal platelet counts 
completes the first patient’s overview [2].

Pulmonary function and lung aspects were investigated in this patient in order to 
do the etiological diagnosis. Hypoxemia was observed according to oxygen levels of 
67 mm Hg. Lungs’ aspect was set by chest radiographs on day 1 of hospital admis-
sion, which was the 6th day of disease progression. The images showed abnormal 
features with focal and patchy consolidation in both lungs, beyond air-space 
shadowing such as ground-glass like opacities [2].

Image examination of the chest shows a consolidation pattern at computed-
tomography (CT) scans: bilateral focal consolidation, lobar consolidation, and 
patchy consolidation, especially in the lower lung. Five days after admission, at 
the 11th day of disease progression, a chest radiograph revealed a bilateral diffuse 
patchy and fuzzy shadow [2].

With the advancement of the pandemic, what was seen as a respiratory disease 
became a more complex disease and new studies were set up to list other complica-
tions and associated risk factors.

3. Potential impact of thrombotic complications on COVID-19 prognosis

Many factors can contribute to increasing the risk for severe COVID-19, in some 
cases followed to death. The main comorbidities described are high age, obesity, 
diabetes, and hypertension. Beyond the inflammation and impaired coagulation, 
focal damage in some tissues/organs is also related to the COVID-19 spectrum, such 
as liver, kidney, and heart [3].

Thrombotic complications seem to emerge as an important issue in patients 
infected with COVID-19. Preliminary reports on COVID-19 patients’ clinical and 
laboratory findings include thrombocytopenia, elevated D-dimer, prolonged 
prothrombin time, and disseminated intravascular coagulation.

In the course of the COVID-19 studies, a clear association with coagulation 
dysfunction was pointed in many cases. Intra-alveolar clots were prominent find-
ings in COVID-19 patients who developed severe respiratory disease. The same 
findings have been described in both clinical and animal model studies. Apparently, 
an impaired response in the prothrombotic pathway is in charge of diffuse alveolar 
hemorrhage since it is related to overt clot formation [4].

In the recent publication “Should COVID-19 be branded to Viral Thrombotic 
Fever?,” the authors intended to frame COVID-19 in more clinical terminology, 
making an analogy to Viral Hemorrhagic Fever (VHF). In this article, the authors 
reported: “We found irrefutable evidence in the current literature that COVID-
19 is the first viral disease that can be marketed as a viral thrombotic fever” [5]. 
Although this is a very categorical statement, considering the small number of 
studies exclusively dedicated to the characterization of COVID-19 as a thrombotic 
fever, it is very important to consider this designation. Categorizing COVID-19 as 
a febrile variant of thromboembolism adds a series of procedures to be adopted in 
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patients’ care. This approach can advance the treatment adequacy by many steps, 
making it as more personalized as possible.

4.  DNA polymorhisms for a pharmacogenonic approach to COVID-19 
treatment

The risk of thromboembolism in COVID-19 is documented in an article pub-
lished in The Lancet [6]. This finding brings up an important issue to be screened on 
COVID-19 patients: the impact of inherited predisposition to thrombotic events in 
patients affected by COVID-19.

Given this, thrombophilic genetic abnormalities in variants were widely reported 
in the medical sciences such as Factor V Leiden (F5), Prothrombin (F2), and the 
polymorphism in methylenetetrahydrofolate reductase (MTHFR), among others 
[7]. These polymorphisms could put a patient’s carriers of mutant alleles in the 
Risk Group, beyond the well-known factors, such as elderly patients, hypertension, 
cardiac and respiratory diseases, cancer, and diabetes [8].

In this chapter, we present a brief review of the three main DNA polymorphisms 
associated with thrombophilic events and suggest the inclusion of these, as well as 
the coagulation profiles of their carriers, as aggravating comorbidities of COVID-19.

Firstly, a brief review of the main molecular characteristics of these polymor-
phisms is as follows:

4.1 Factor V Leiden (FVL or F5)

It represents one of the main causes of resistance to protein C, as mutation 
increases the risk of thrombotic disease three to ten times for heterozygous carriers 
and eighty times for homozygous carriers [4, 9]. About 90% of cases of protein C 
resistance result from point mutation in the coagulation factor V gene. This muta-
tion occurs in exon 10 of the factor V gene, causing a substitution of the G/A base 
(Guanine/Adenine) in nucleotide 1691, resulting in the exchange of Arg (Arginine) by 
Gln (Glutamine) at position 506 of the protein, one of the main cleavage sites for pro-
tein C activation [10]. FVL is the most common inherited cause of venous thrombosis.

In patients with increased protein C resistance, venous thrombosis without 
known etiology and familiar history of unexplained thrombosis, the FVL muta-
tions’ screening should be considered beyond a strong clinical investigation. The 
diagnosis for FVL mutations is based on well-known molecular biology approaches. 
The clotting time-based functional assays and genetic biomarkers’ screening 
become together the basis for clinical decisions. It is a very important step to guide 
the clinical approach, balancing the long-term anticoagulation with its side effects 
and benefits [11].

Briefly, the mechanism of action of factor V could be described as follows. 
Factor V is cleaved by thrombin on its B domain at cleavage sites R709, R1018, and 
R1545, producing an amino-terminal heavy chain and a carboxy-terminal light 
chain, which binding themselves create a dimer called Factor Va (FVa). In turn, 
FVa binds with Factor Xa creating a prothrombinase complex which on the platelet 
surface converts prothrombin (II) to thrombin (IIa). FV can also be split by the 
action of activated protein C (APC) at the cleavage site R506 before it is cleaved by 
thrombin. It results in the inactivation of factor V to factor Vi and the generation of 
an imperfect peptide, the Factor Vac, which apparently has anticoagulant charac-
teristics by stimulating APC- and protein S-mediated inactivation of factor VIIIa. 
A second mechanism of thrombosis observed with FVL is its diminished cofactor 
activity with APC and phospholipid in the inactivation of factor VIIIa to factor 
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VIIIi. Taken together, FVL is a prothrombotic mutation due to a combination of a 
gain of function, with higher prothrombin activation, and loss of function due to 
low cofactor activity with APC in the inactivation of factor VIIIa. Normally, patients 
with defective FVL have a variable thrombophilia phenotype, have increased 
thrombin generation, have a longer factor Va half-life in plasma, and are resistant to 
factor Va inactivation [11]. A larger C-terminal peptide results if factor V is cleaved 
by APC before it is cleaved by thrombin [12].

4.2 Prothrombin (PTB, factor 2 or F2)

The G20210A mutation of prothrombin causes a G to A transition at the nucleo-
tide position 20,210. This mutation increases circulating prothrombin activity and 
levels [13]. PTB is a vitamin K-dependent coagulation factor, which in its active 
form is cleaved, forming in this way the thrombin. The thrombin catalyzes many 
other coagulation-related reactions and acts as a serine protease that converts 
fibrinogen to fibrin. PTB mutations are the second-most common inherited throm-
bophilia. In the United States, the heterozygous carrier frequency is about 1–2%, 
accounting for approximately 6–18% of VTE cases. Hyperthrombinemia has been 
associated with a mutation in the 3′ termination of the PTB gene, called c.∗97G > A, 
which results in increased production, due to the increased PTB mRNA expression 
and stabilization. An increased amount of circling prothrombin can lead to higher 
thrombin generation in the plasma, followed by coagulation activation and throm-
bosis. This mutation is also more common in the Caucasian population and is rare in 
other ethnic groups. Homozygosity, for this mutation, is found in about 1 in 10,000 
individuals. Transheterozygosity for FVL and prothrombin c.∗97G > A affects about 
1 in 1000 individuals. Additional variations identified in the 3′-untranslated region 
of the prothrombin gene include changes at positions 20,207, 20,209, 20,218, and 
20,221. High PTB levels also inhibit APC-mediated inactivation of activated FV and 
factor VIII. The prevalence of prothrombin G20210A mutation varies in differ-
ent countries and ethnic groups, being highest in Caucasians, especially those in 
Southern Europe, and in the Mediterranean region [14].

4.3 Polymorphism in the MTHFR enzyme

Hotoleanu, in his article Genetic Risk Factors in Venous Thromboembolism, 
described that MTHFR acts on homocysteine metabolism, reducing 
5.10-Methylenetetrahydrofolate to 5-methylenetetrahydrofolate. The enzyme 
polymorphisms generally occur at two sites, at position C677T, which character-
izes the substitution of alanine for valine at codon 222, and at position A1298C, 
which occurs due to the substitution of glutamine for alanine at codon 429, the 
second mutation being less aggressive than C677T, which is homozygous and in 
the presence of low levels of folate decreases enzyme activity leading to hyperho-
mocysteinemia, a risk factor for thrombophilia [15].

Simoni et al. corroborate this theory, when they describe that mutations in the 
MTHFR enzyme reduce its activity leading to hyperhomocysteinemia. Increase in 
homocysteine levels is a risk factor for thromboembolism [16].

Considering patients with COVID-19, especially those seriously ill, there are 
several potential risk factors for venous thromboembolism, including infection, 
immobilization, respiratory failure, mechanical ventilation, and use of a central 
venous catheter [17, 18]. Wang et al. reported in their Lancet article that patients 
at a high risk for venous thromboembolism had worse results with COVID-19 than 
patients at a low risk for venous thromboembolism, suggesting that these patients 
may require more attention in the event of rapid deterioration [6].
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A systematic review and meta-analysis done to analyze the thromboembolism 
risk on COVID-19 patients showed that its occurrence is high and associated with 
the worst clinical development. A total of 8271 patients from 425 eligible studies 
were included in the meta-analysis. In summary, the data set showed that COVID-19 
patients had a higher risk of mortality, as described in Table 1 [19].

Our suggestion of early detection and greater attention in COVID-19 patients 
with aggravating factors of thromboembolism may be addressed to the data found 
by Wang and colleagues [6]. Considering the correct prophylaxis, the majority of 
the venous thromboembolism occurrences could be prevented, mainly on patients 
with a higher risk for it. In spite of that, from the 140 patients investigated in the 
cohort, only 7% (10 patients) were maintained under anticoagulant therapy during 
their hospitalization. Among them, one received rivaroxaban and nine received 
heparin. It is a low proportion compared to the total number of patients with high 
risk to develop venous thromboembolism in their cohort. This finding possibly 
indicates that the prophylactic approach applied in the patients with COVID-19 was 
not adequate.

Other coagulation disorders observed in patients with COVID-19 also support 
the idea that a preliminary analysis of the genetic factors involved may better guide 
the therapeutic approach to be adopted. COVID-19-associated coagulopathy and 
disseminated intravascular coagulation (DIC) are being described as common 
findings in these patients. It is known that the pathophysiology of DIC associated 
with COVID-19 differs from that of septic DIC, and in this context both thrombotic 
and hemorrhagic pathologies must be observed. Thrombosis events in COVID-19 
include macrothrombosis (MAT) and microthrombosis (MIT), and it is important 
to note that the diagnosis of MIT depends on coagulation and fibrinolysis markers. 
Consequently, molecular nuances can have a major impact on the worsening of the 
thrombohemorrhagic condition in different individuals [20, 21].

5. Conclusion

Screening and inclusion of COVID-19 patients with genetic abnormalities 
in thrombophilic conditions could guide the medical team to identify possible 
aggravating complication factors even if their patients are not in the group pre-
determined risk, described by the World Health Organization (WHO) [8].

Overall venous thromboembolism (TE): 21% (95% CI: 17–26%)
ICU: 31% (95% CI: 23–39%)

Overall deep vein thrombosis rate: 20% (95% CI: 13–28%)
ICU: 28% (95% CI: 16–41%)
Postmortem: 35% (95% CI: 15–57%)

Overall pulmonary embolism rate: 13% (95% CI: 11–16%)
ICU: 19% (95% CI: 14–25%)
Postmortem: 22% (95% CI: 16–28%)

Overall arterial TE rate: 2% (95% CI: 1–4%)
ICU: 5% (95% CI: 3–7%)

Pooled mortality rate among patients with TE: 23% (95% CI: 14–32%) and
Pooled mortality rate among patients without TE: 13% (95% CI: 6–22%)

The pooled odds of mortality among patients who developed TE was 4% higher compared to those who did 
not (OR: 1.74; 95% CI: 1.01–2.98; P = 0.04)

Table 1. 
Summary of the data set described by Malas et al. [19].
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The treatment of COVID-19 is based on antiviral therapy, treatment to contain the 
cytokine storm, and treatment of thrombosis. Rather than providing uniform treat-
ment, a method best suited for severity and stage should be selected. Considering the 
molecular profile of each individual can be an important tool in this race against time 
that characterizes care for patients with COVID-19. In this scenario, COVID-19 could 
be another exponent for a pharmacogenomics approach to the treatment of human 
diseases and it proved to be a challenge for humanity in the 21st century. The com-
plications, sequels, and deaths took on catastrophic proportions. Despite the speed 
with which a significant range of vaccines were presented, comprehensive coverage 
worldwide is likely to face dares.
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of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



173

DNA Polymorphisms as Potential Biomarkers of Thrombophilic Prognosis…
DOI: http://dx.doi.org/10.5772/intechopen.101138

References

[1] Lu R, Zhao X, Li J, et al. Genomic 
characterisation and epidemiology of 
2019 novel coronavirus: Implications for 
virus origins and receptor binding. The 
Lancet. 2020;395(10224):565-574.  
DOI: 10.1016/S0140-6736(20)30251-8

[2] Wu F, Zhao S, Yu B, et al. A new 
coronavirus associated with human 
respiratory disease in China. Nature. 
2020;579(7798):265-269. DOI: 10.1038/
s41586-020-2008-3

[3] Wolff D, Nee S, Hickey NS, 
Marschollek M. Risk factors for  
Covid-19 severity and fatality: A 
structured literature review. Infection. 
2021;49(1):15-28. DOI: 10.1007/s15010- 
020-01509-1

[4] Giannis D, Ziogas IA, Gianni P. 
Coagulation disorders in coronavirus 
infected patients: COVID-19, SARS-
CoV-1, MERS-CoV and lessons from the 
past. Journal of Clinical Virology. 
2020;127:104362. DOI: 10.1016/j.jcv. 
2020.104362

[5] Costa-Filho RC, Castro-Faria 
Neto HC, Mengel J, et al. Should 
COVID-19 be branded to viral 
thrombotic fever? Memórias do Instituto 
Oswaldo Cruz. 2021;116:e200552.  
DOI: 10.1590/0074-02760200552

[6] Wang T, Chen R, Liu C, et al. 
Attention should be paid to venous 
thromboembolism prophylaxis in the 
management of COVID-19. Lancet 
Haematology. 2020;7(5):e362-e363. 
DOI: 10.1016/S2352-3026(20)30109-5

[7] Franco RF. Trombofilias hereditárias. 
Medicina. 2001;34(3/4):248.  
DOI: 10.11606/issn.2176-7262.v34i3/ 
4p248-257

[8] World Health Organization (WHO) 
Coronavirus. 2020. Available from: 
https://www.who.int/news-room/g-a- 
detail/q-a-coronaviruses [Accessed: 
April 2020]

[9] Van Cott EM, Soderberg BL, 
Laposata M. Activated protein C 
resistance, the Factor V Leiden 
mutation, and a laboratory testing 
algorithm. Archives of Pathology & 
Laboratory Medicine. 2002;126(5):577-
582. DOI: 10.5858/2002-126-0577- 
APCRTF

[10] Norstrøm E, Thorelli E, Dahlbäck B. 
Functional characterization of 
recombinant FV Hong Kong and FV 
Cambridge. Blood. 2002;100(2):524-
530. DOI: 10.1182/blood-2002-02-0343

[11] Rosendorff A, Dorfman DM. 
Activated protein C resistance and 
Factor V Leiden: A review. Archives of 
Pathology & Laboratory Medicine. 
2007;131(6):866-871. DOI: 10.5858/ 
2007-131-866-APCRAF

[12] Castoldi E, Rosing J. Factor V 
Leiden: A disorder of factor V 
anticoagulant function. Current 
Opinion in Hematology. 2004;11(3):176-
181. DOI: 10.1097/01.moh.0000130315. 
41033.32

[13] Simioni P, Tormene D, Manfrin D,  
et al. Prothrombin antigen levels in 
symptomatic and asymptomatic carriers 
of the 20210A prothrombin variant: 
Prothrombin antigen and 20210A 
variant. British Journal of Haematology. 
1998;103(4):1045-1050. DOI: 10.1046/j. 
1365-2141.1998.01112.x

[14] Jadaon MM. Epidemiology of 
prothrombin G20210A mutation in  
the Mediterranean region. 
Mediterranean Journal of Hematology 
and Infectious Diseases. 2011;3(1): 
e2011054. DOI: 10.4084/mjhid.2011.054

[15] Hotoleanu C. Genetic risk factors in 
venous thromboembolism. In: MDS I, 
editor. Thrombosis and Embolism: From 
Research to Clinical Practice. Vol. 906. 
Advances in Experimental Medicine and 
Biology. New York, USA: Springer 



Biomarkers and Bioanalysis Overview

174

International Publishing; 2016. pp. 
253-272. DOI: 10.1007/5584_2016_120

[16] Simoni RZ, Couto E, Barini R, et al. 
Malformações do sistema nervoso 
central e a presença da mutação C677T-
MTHFR no sangue fetal. Revista 
Brasileira de Ginecologia e Obstetrícia. 
2013;35(10):436-441. DOI: 10.1590/
S0100-72032013001000002

[17] Chen N, Zhou M, Dong X, et al. 
Epidemiological and clinical 
characteristics of 99 cases of 2019 novel 
coronavirus pneumonia in Wuhan, 
China: A descriptive study. The Lancet. 
2020;395(10223):507-513. DOI: 10.1016/
S0140-6736(20)30211-7

[18] Wang D, Hu B, Hu C, et al. Clinical 
characteristics of 138 hospitalized 
patients with 2019 novel coronavirus-
infected pneumonia in Wuhan, China. 
Journal of the American Medical 
Association. 2020;323(11):1061.  
DOI: 10.1001/jama.2020.1585

[19] Malas MB, Naazie IN, Elsayed N, 
Mathlouthi A, Marmor R, Clary B. 
Thromboembolism risk of COVID-19 is 
high and associated with a higher risk of 
mortality: A systematic review and 
meta-analysis. EClinicalMedicine. 
2020;29-30:100639. DOI: 10.1016/j.
eclinm.2020.100639

[20] Asakura H, Ogawa H. COVID-19-
associated coagulopathy and 
disseminated intravascular coagulation. 
International Journal of Hematology. 
2021;113(1):45-57. DOI: 10.1007/
s12185-020-03029-y

[21] Levi M, Thachil J, Iba T, Levy JH. 
Coagulation abnormalities and 
thrombosis in patients with COVID-19. 
Lancet Haematology. 2020;7(6): 
e438-e440. DOI: 10.1016/S2352-3026 
(20)30145-9





Biomarkers and Bioanalysis 
Overview

Edited by Ane Claudia Fernandes Nunes

Edited by Ane Claudia Fernandes Nunes

Diagnosis is the basis for appropriate medical assistance. From the bench to the bed, 
physicians from different areas use several techniques to obtain accurate diagnoses. 
This book discusses some of the most current approaches to diagnosis in a variety of 

medical specialties. This collection of translational studies provides interesting reviews 
on pharmacology, drug biomarkers, nephrology and renal physiology, biochemistry, 

and cellular and molecular biology.

Published in London, UK 

©  2021 IntechOpen 
©  defun / iStock

ISBN 978-1-83968-324-4

Biom
arkers and Bioanalysis O

verview

ISBN 978-1-83968-326-8


	Biomarkers and Bioanalysis Overview
	Contents
	Preface
	Section 1
Pharmacology and Drugs Biomarkers
	Chapter1
Computational Studies of Drug Repurposing Targeting P-Glycoprotein-Mediated Multidrug Resistance Phenotypes in Priority Infectious Agents
	Chapter2
P-Glycoprotein EffluxTransporters and Its Resistance Its Inhibitors and Therapeutic Aspects
	Chapter3
Urological Effects of Ketamine Abuse

	Section 2
Nephrology and Renal Physiology
	Chapter4
Serum Creatinine, Muscle Mass, and Nutritional Status in Intensive Care
	Chapter5
The Na/K-ATPase Signaling Regulates Natriuresis in Renal Proximal Tubule
	Chapter6
The Effect of Dietary Sodium Restriction onVascular Stiffness in Hypertension

	Section 3
Biochemistry, Cellular and Molecular Biology
	Chapter7
HIF Pathways in Clear Cell Renal Cancer
	Chapter8
Urine Creatinine Excretion in HIV and Non-HIV Subjects
	Chapter9
DNA Polymorphisms as Potential Biomarkers of Thrombophilic Prognosis for COVID-19 Patients


