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Preface

Quasi-one-dimensional nanoscale materials such as nanowires have been a research 
focus in the fields of material sciences and engineering in the last few decades. A 
series of books emphasizing the research areas of nanowires have been published by 
several scientific publishers. This book provides a review of the recent progress of 
nanowires and their wide range of applications, as well as the associated advance-
ments in material synthesis and characterization.

Low-dimensional nanoscale materials exhibit promising applications in today’s 
science and technology, due to their reduction in size, large surface-to-volume ratio, 
and novel properties resulting from quantum confinement effects. The significantly 
larger surface-to-volume ratio in nanostructures, compared with their bulk coun-
terparts, leads to high sensitivity to surface effects and enables a new generation 
of technologies in research fields. Compared to other low-dimensional structures, 
such as zero-dimensional quantum dots (or nanoclusters) and two-dimensional 
nanosheets, one-dimensional nanowires demonstrate unique geometrical advan-
tages that expedite the application of nanowires as bases of electronic devices, such 
as channels and interconnects. In such applications, the reduction in size of nanow-
ires enables a faster speed and a greater power density, in addition to a reduced 
device form factor. Numerous conventional techniques established in traditional 
bulk devices are readily applicable to nanowire devices, which is expected to boost 
extensive applications of nanowires.

This book contains ten chapters divided into three sections: Oxide Nanowires, 
Group III–V Compounds, and Other Nanowires.

Section 1 examines recent progress in metal oxide nanowires, which include novel 
transition metal oxide nanowire field-effect transistors for biosensing, nanowires as 
building blocks for optoelectronic devices, and an advanced technique of glancing 
angle deposition for nanowire synthesis and their applications. Transition metal 
oxides, such as ZnO, CuO, TiO2, SnO2, and WO3, possess various advanced proper-
ties, for instance, resilient catalyst properties and large magnetoresistance coef-
ficients. These exceptional properties are fundamentally correlated to the unfilled 
d-electrons in the transition metals. Transition metal oxide nanowires, combined 
with their unique size, geometrical effects, and stoichiometry engineering, are 
expected to reveal novel properties/applications and to play an important role in 
many different fields of science and technology. Chapter 1 provides a review of ZnO 
nanowire field-effect transistors and biosensors, emphasizing the different ways 
to improve the properties and performance of doped ZnO as a channel material. It 
suggests that top-down fabrication processes are preferred over bottom-up ones due 
to the former’s enhanced flexibility of geometrical dimension control and capability 
of mass production. Chapter 2 focuses on two types of metal oxide nanowire arrays: 
the n-type eco-friendly and versatile ZnO and p-type highly stable CuO, using two 
straightforward and cost-effective preparation wet and dry methods of chemical 
synthesis in aqueous solution and thermal oxidation in air, respectively. Electronic 
devices based on single metal oxide nanowires were developed and analyzed in 
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terms of electrical characterization. Chapter 3 gives reviews the synthesis of metal 
oxide nanowires and axial hetero-structure nanowire arrays using the technique of 
glancing angle deposition and discusses many related applications such as photo-
detector and wettability applications. It is shown that the glancing angle deposi-
tion technique is simple, cost-effective, and catalytic free with many advantages 
 compared to other methods.

Section 2 mainly focuses on group III–V compounds, including GaN for photoelec-
trochemical water splitting, InGaN nanowires for photovoltaic applications, and 
in situ techniques facilitating understanding of GaAs nanowire growth. Si is one of 
the most known bulk semiconductors and the logic device basis-CMOS structure 
is largely based on Si material. However, group III–V semiconductors, such as 
GaN, GaAs, and InN, provide numerous property advantages over Si. They dem-
onstrate outstanding electronic and optical properties, for instance, direct band 
gap, increased carrier mobility, and low exciton binding energy, which give these 
semiconductors great potential for use in optoelectronic and microelectronic fields. 
Chapter 4 shows that GaN is a promising photoelectrode for photoelectrochemical 
water spitting reaction due to its tunable band gap, favorable band edge positions, 
and extraordinary stability. Chapter 5 presents a comparative analysis of differ-
ent structural formats of InGaN, such as planar, nanodisk, and core-shell-shell 
nanowires, for their performances as potential photovoltaic material and concludes 
that nanowire-type structure displays a better performance. Chapter 6 introduces 
advanced in situ techniques to provide direct interpretation and time-resolved 
observation of the growth mechanism of nanowires, which allows better control of 
nanowire growth for specific applications.

Section 3 contributes to the fundamental understanding of other nanowire 
structures including basic Si nanowires, metallic wires, and complex geometrical 
nanowires. Chapter 7 reports a growth method of indium-catalyzed Si nanowires 
via vapor-liquid-solid mode for nanoscale device applications, with good control 
of scaling down the diameter of the Si nanowire and an enhanced growth density 
of nanowires. In addition to the semiconductor nanowires already mentioned, 
Chapter 8 focuses on a study of a hybridization design between plasmonic and 
photonic-guided modes in periodic arrays of metallic nanowires integrated on top 
of dielectric waveguides. The chapter aims to stimulate further research efforts in 
the development of integrated hybrid photonic–plasmonic devices in the research 
community. The last two chapters introduce complex geometrical nanowires. 
Chapter 9 provides a thorough study on three-nanometer node gate-all-around 
field-effect transistors based on two types of nanostructures: nanowire and 
nanosheet. The study suggests that nanowire field-effect transistors have better 
performance compared to the fin-shaped and nanosheet transistors at low power 
applications. Chapter 10 suggests a method to engineer an enhanced donor-acceptor 
behavior in blending and core-shell nanowires. It describes a synthesis method of 
poly (para-phenylene-vinylene) PPV (electron donor) and poly (vinyl-carbazole) 
PVK (good hole transport) nanowires, and its core-shell architecture bases on  
PPV and PVK polymers. This study found that the core-shell morphology based 
on PVK and PPV polymers showed an amplified emission of PPV intensity 
by adding PVK. The chapter provides a way to develop alternative in-solution 
processing techniques to manage the local organization of donor-acceptor systems 
at the scale of the exciton diffusion length.

V

Finally, I would like to acknowledge all the contributors for their hard work. I am 
also grateful for the opportunity provided by IntechOpen, such that this interest-
ing topic can be reviewed and shared among the research community. I would 
also like to express my appreciation for all the excellent editing work done by the 
IntechOpen staff. At last, my special acknowledgment goes to Author Service 
Manager Josip Knapić for all of his encouragement, patience, and kindness during 
the editing process.

Dr. Xihong Peng
College of Integrative Sciences and Arts,

Arizona State University,
Polytechnic Campus,

Arizona, United States
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Chapter 1

ZnO Nanowire Field-Effect 
Transistor for Biosensing: A 
Review
Nonofo Mathiba Jack Ditshego

Abstract

The last 19 years have seen intense research made on zinc oxide (ZnO) material, 
mainly due to the ability of converting the natural n-type material into p-type. For 
a long time, the p-type state was impossible to attain and maintain. This chapter 
focuses on ways of improving the doped ZnO material which acts as a channel 
for nanowire field-effect transistor (NWFET) and biosensor. The biosensor has 
specific binding which is called functionalization that is achieved by attaching a 
variety of compounds on the designated sensing area. Reference electrodes and 
buffers are used as controllers. Top-down fabrication processes are preferred over 
bottom-up because they pave way for mass production. Different growth techniques 
are reviewed and discussed. Strengths and weaknesses of the FET and sensor are 
also reviewed.

Keywords: zinc oxide (ZnO), semiconductor device, nanosensor,  
nanowire field-effect transistor (NWFET), biosensors, growth techniques

1. Introduction

Zinc oxide (ZnO) material has been known as a semiconductor for over 70 years, 
with some of the first literature being reported as early as in 1944 [1]. It was never 
put to use like other semiconductors (GaN, Si) because it is difficult to dope. The 
past 19 years have seen a revival on the research and use of material because of new 
and emerging ways of doping it. The material is naturally n-type [1–4], and by 
controlling the conditions of growth, the donor concentration can be controlled. 
The growth conditions include temperature, diethyl zinc (DEZ) reactant, O2 or 
H2O reactant, and pressure. P-type material [1–4] is difficult to grow and tends to 
slowly revert back to n-type. Researchers [5–14] who managed to deposit the p-type 
material have shown that it converts back to n-type within a few days. Maximum 
time period shown on p-type ZnO was a few months [5–14].

ZnO is a wide bandgap semiconductor [e.g., (0 K) = (3.441 ± 0.003) eV; 
(300 K) = (3.365 ± 0.005) eV]. It belongs to the group of IIb-VI compound semicon-
ductors which crystalize exclusively in the hexagonal wurtzite-type structure. The 
lattice parameters of the wurtzite crystal structure are: a = 3.24 Å and c = 5.21 Å. 
Related to similar IIb-VI (e.g., CbS, CbSe, ZnSe, and ZnS) or III-V (e.g., AlSb, Bas, 
GaN, and InSb) semiconductors, it has comparatively strong polar binding and 
large exciton binding energy of (59.5 ± 0.5) meV. Its density is 5.6 g cm−3, a value 
which corresponds to 4.2 × 1022 ZnO molecules per cm−3 [1, 2].
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ZnO has practical advantages that make it an attractive semiconductor from an 
industrial point of view. It has low cost; is abundant, nontoxic, and transparent; has 
large excitonic binding energy of 60 meV; is soluble, compatible with intercellular 
material; and has wide and direct bandgap of 3.37 eV, making it highly sensitive. It 
is well known that semiconductors have a small bandgap which allows switching 
between conduction and off-states. The larger the bandgap, the better the semi-
conductor is able to switch states and insulate leakage currents. Bandgap affects 
sensitivity because a device that possesses a wider bandgap allows for higher currents 
to travel but also prevents leakage currents, which results in more sensitive and 
accurate readings. With low-temperature fabrication processes, high-quality devices 
can be fabricated using the conventional processing technology, thereby making 
it suitable for low-cost mass-production. It has potential applications in optoelec-
tronics, transparent electronics, and spintronics. ZnO and its alloys have versatile 
electrical and optical properties for applications in thin film or nanowire transistors, 
light emitters, biosensors, and solar cells. The nanowire biosensor has a high surface-
to-volume ratio, enabling real-time and label-free detection [1–4, 15–17].

Currently, the main commercial application for ZnO (and/or IGZO) material 
is in displays, with companies like Sharp and Samsung putting IGZO into mobile 
phone displays [18–20]. IGZO displays outperform other semiconductor displays 
such as amorphous silicon and organic semiconductors by providing improved 
resolution and reduced power consumption. This is possible because IGZO has 
a 20× to 50× times higher mobility than amorphous silicon and polymers, which 
allows for device scaling without affecting performance [18–20]. Higher mobility 
values can also be achieved with amorphous silicon technology, but it needs to be 
laser annealed which is expensive.

2. Growth techniques of ZnO

ZnO films can be grown using three methods: gas transport (vapor phase depo-
sition), hydrothermal synthesis, and/or melt process. Melt growth techniques are a 
problem due to high vapor pressure of ZnO. Growth using gas transport is difficult 
to control for large film layers and is normally used for bottom-up ZnO nanostruc-
tures. Hydrothermal synthesis is therefore preferred as a method of growth. Thin 
films can be produced through chemical vapor deposition, metalorganic vapor 
phase epitaxy, electrodeposition, pulsed laser deposition, sputtering, sol–gel syn-
thesis, atomic layer deposition, spray pyrolysis, etc. All the mentioned techniques 
fall under hydrothermal synthesis, and one of the preferred methods is atomic layer 
deposition (ALD). The ALD process is capable of producing highly conformal and 
quality films [21]. The process is cyclic and is based on the number of reactants. 
Figure 1 shows that the ALD process for ZnO films is cyclic and depends on two 
reactants: metallization and oxidation.

Metallization uses diethyl zinc (DEZ) as the zinc (Zn) metal precursor. Purge 
and pump steps are used to separate the execution of the reactants and to remove 
by-products. Before deposition, the wafer (substrate) is preheated at a temperature 
that will be used for deposition and it is also cleaned with O2 plasma so as to remove 
any polymer layer. During the metallization step, the DEZ (Zn (C2H5)2) is absorbed 
onto the surface of the wafer and the residual Zn (C2H5)2 is removed from chamber. 
“R” in Figure 1 represents C2H5.Then on another step, water or O2 is delivered to 
react with the absorbed DEZ [23–25]. These steps are executed separately, and to 
ensure this, purge steps are introduced in between the steps.

When water is used instead of O2 for oxidation, the process is called thermal ALD. 
This process tends to produce films similar to chemical vapor deposition (CVD) 
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techniques [25–27]. When O2 is used instead of water, then the process needs plasma 
energy. Remote plasma atomic layer deposition (RPALD) is a fairly new process 
which is why it is still not in used. It is better than the other deposition techniques as 
it tends to produce films close to epitaxial layers. The layers are crystalline but tend 
to be nonuniform to the underlining layer which is why they are not called epitaxial 
layers. It is a process with great potential for depositing highly conformal and quality 
films. The process is better than thermal ALD in terms of conformity and quality, but 
both processes do not generally produce epitaxial layers due to nonuniformity to the 
underlining substrate. The plasma-assisted ALD method has the following advan-
tages: reduction of OH impurity, allows more freedom in processing conditions, and 
provides wider range of material properties. The OH impurity is not desired as it 
affects the conductivity of the semiconductor and induces defects in the dielectrics.

Table 1 compares various growth techniques and how they affect NWFET 
output characteristics. Chemical vapor deposition (CVD) is the most popular 
technique for bottom-up nanowire processes. There are two growth techniques 
classified under CVD which are vapor–liquid–solid (VLS) and vapor–solid (VS) 
deposition techniques. CVD normally give the highest mobility as they produce 
crystalline wires with the only flaw being from the catalysts that guide the growth. 
VS produces better quality nanowires than VLS as it uses no catalysts but instead 
uses very high temperatures (>900°C). The problem with VS is that it is usually 
harder to control the size and morphology of the nanowires.

Figure 1. 
Schematic diagram illustrating a single cycle of ZnO deposition using the ALD tool (A) metallisation and 
oxidation step, (B) Purge and pump step (C) Cleaning with O2 plasma step, (D) Removing non-used products 
with Ar step [22].
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ZnO has practical advantages that make it an attractive semiconductor from an 
industrial point of view. It has low cost; is abundant, nontoxic, and transparent; has 
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laser annealed which is expensive.
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problem due to high vapor pressure of ZnO. Growth using gas transport is difficult 
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films can be produced through chemical vapor deposition, metalorganic vapor 
phase epitaxy, electrodeposition, pulsed laser deposition, sputtering, sol–gel syn-
thesis, atomic layer deposition, spray pyrolysis, etc. All the mentioned techniques 
fall under hydrothermal synthesis, and one of the preferred methods is atomic layer 
deposition (ALD). The ALD process is capable of producing highly conformal and 
quality films [21]. The process is cyclic and is based on the number of reactants. 
Figure 1 shows that the ALD process for ZnO films is cyclic and depends on two 
reactants: metallization and oxidation.

Metallization uses diethyl zinc (DEZ) as the zinc (Zn) metal precursor. Purge 
and pump steps are used to separate the execution of the reactants and to remove 
by-products. Before deposition, the wafer (substrate) is preheated at a temperature 
that will be used for deposition and it is also cleaned with O2 plasma so as to remove 
any polymer layer. During the metallization step, the DEZ (Zn (C2H5)2) is absorbed 
onto the surface of the wafer and the residual Zn (C2H5)2 is removed from chamber. 
“R” in Figure 1 represents C2H5.Then on another step, water or O2 is delivered to 
react with the absorbed DEZ [23–25]. These steps are executed separately, and to 
ensure this, purge steps are introduced in between the steps.

When water is used instead of O2 for oxidation, the process is called thermal ALD. 
This process tends to produce films similar to chemical vapor deposition (CVD) 
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techniques [25–27]. When O2 is used instead of water, then the process needs plasma 
energy. Remote plasma atomic layer deposition (RPALD) is a fairly new process 
which is why it is still not in used. It is better than the other deposition techniques as 
it tends to produce films close to epitaxial layers. The layers are crystalline but tend 
to be nonuniform to the underlining layer which is why they are not called epitaxial 
layers. It is a process with great potential for depositing highly conformal and quality 
films. The process is better than thermal ALD in terms of conformity and quality, but 
both processes do not generally produce epitaxial layers due to nonuniformity to the 
underlining substrate. The plasma-assisted ALD method has the following advan-
tages: reduction of OH impurity, allows more freedom in processing conditions, and 
provides wider range of material properties. The OH impurity is not desired as it 
affects the conductivity of the semiconductor and induces defects in the dielectrics.

Table 1 compares various growth techniques and how they affect NWFET 
output characteristics. Chemical vapor deposition (CVD) is the most popular 
technique for bottom-up nanowire processes. There are two growth techniques 
classified under CVD which are vapor–liquid–solid (VLS) and vapor–solid (VS) 
deposition techniques. CVD normally give the highest mobility as they produce 
crystalline wires with the only flaw being from the catalysts that guide the growth. 
VS produces better quality nanowires than VLS as it uses no catalysts but instead 
uses very high temperatures (>900°C). The problem with VS is that it is usually 
harder to control the size and morphology of the nanowires.

Figure 1. 
Schematic diagram illustrating a single cycle of ZnO deposition using the ALD tool (A) metallisation and 
oxidation step, (B) Purge and pump step (C) Cleaning with O2 plasma step, (D) Removing non-used products 
with Ar step [22].
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Table 1 also shows that atomic layer deposition (ALD) is an attractive technique 
because it deposits high quality films at low temperatures between 120 and 210°C 
[22, 45]. The problem with ALD is that it has only this window for good quality 
conducting films. At temperatures below 120°C, the deposition can be incomplete 
or experience condensation depending on growth rate. At temperatures above 
210°C, the deposition tends to experience desorption or it decomposes toward CVD 
deposition. Nonetheless, it is one of the best techniques toward growing films close 
to epitaxial growth (crystallinity is achievable whereas uniformity is still difficult 
to achieve) [22, 45]. The tool has shown potential by achieving high values of field 
effect mobility >30 cm2/Vs with excellent crystallinity.

2.1 Native point defects

There are three types of defects in a crystal lattice: point defects, area defects, and 
volume defects. Point defects which are caused by native elements and impurities 
are the major problem for ZnO semiconductor. Native point defects for ZnO include 
the following: zinc interstitial (Zni), zinc antisite (Zno), zinc vacancy (VZn), oxygen 
interstitial (Oi), oxygen antisite (OZn), and oxygen vacancy (Vo). Over the years, a 
lot of research advocated them as the major cause for the n-type behavior. Oxygen 
defects are seen as the main contributors toward the n-type behavior [3, 15]. There 
are some researchers [1–4] who hypothesize that impurities (not the native point 
defects) are the main cause of the n-type behavior because they tend to be shallow 
donors whereas Zn and O2 defects tend to be deep donors [1–4]. The two theories 
have not been proven so currently the main cause of the natural n-type behavior of 
ZnO [1–4] is not certain.

2.2 Deep donors versus shallow donors: ZnO

ZnO impurities (foreign atoms) are normally incorporated in the crystal 
structure of the semiconductor. There are two reasons of impurity incorpora-
tion: they can either be unintentionally introduced due to lack of control during 
growth processes or they are intentionally added to increase the number of free 
carriers in the semiconductor. Impurities in the ZnO should have the ability to 
be ionized; which is desirable as it increases conductivity. This means that the 
impurity atoms should be able to give off electrons to the conduction band. If the 
impurities were acceptors—they should be able to give off holes to the valence 
band [3, 16].

Donor Impurities for the n-type ZnO can either be shallow or deep. Figure 2 
shows shallow donors compared to deep donors. Shallow impurities require little 
energy to ionize (this is energy typically around the thermal energy or less). These 
donor impurities possess energy close to the band edge—the extra valence electron 

Figure 2. 
Shallow versus deep donors [1–4].
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of these impurities are loosely bound and occupy effective-mass states near the 
conduction band maximum- CBM- at low temperatures. Deep impurities on- 
the-other-hand require energy greater that the thermal energy to ionize. These 
donor impurities possess energy far from the band edge (CBM) making them very 
hard to ionize. Their presence within the semiconductor tends to contribute only 
a small fraction of free carriers. Deep donors are also called traps because they act 
as effective recombination centers in which electrons and holes fall and annihilate 
each other. Grain boundaries (GB) are main source of deep state impurities and 
they adversely affect transistor performance. ZnO is a wide bandgap material and 
research suggests [3, 4, 16] that there exist possible deep-level traps in GBs. The 
examples of deep donors are Zn and O ions. Zn acts as a deep donor when there is 
a vacancy and O acts as a deep donor in any defect state. An example of a shallow 
donor is the H ion.

2.3 Top-down fabrication of ZnO nanowire FETs

There are four main methods capable of producing nanometer features using 
top-down approaches: UV stepper lithography, e-beam lithography [46], focused 
ion-beam lithography [47], and spacer method [45, 48]. UV lithography is the 
standard industrial method for fabricating nanodevices. E-beam and focused 
ion-beam lithography are often used and can pattern devices down to 5 nm, but 
the equipment is very expensive and the pattern writing is very slow. These two 
instruments resemble scanning electron microscope (SEM) in terms of opera-
tion. Whereas SEM is used to focus a beam of electrons to image samples within 
a chamber, these instruments are used to create patterns on the samples. The 
difference between e-beam and focused ion-beam is that the latter uses an ion 
beam to pattern wafers and hence does not require photoresist. Their advantage 
over optical UV lithography is the small features they reach. For low-cost applica-
tions such as biosensors, the problem with these two methods is that they are 
expensive.

The spacer technique is a low-cost fabrication method for fabricating nanowires. 
It was first reported in 2005 by Ge et al. [49], and other researchers [44, 50, 51] 
have since carried it forward. The technique has great potential in shaping nano-
meter features using conventional, low-cost photolithography. Figure 3 shows the 
concept of the spacer technique. It uses first anisotropic etch to create a vertical 
pillar on an insulating layer (SiO2), then after deposition of a semiconductor layer 
(ZnO) and a second anisotropic etch, to create nanowires made up of the semicon-
ductor layer. This method allows nanowire features with controllable dimensions 
to be developed. The ICP tool is usually used for anisotropic etching and produces 

Figure 3. 
Novel spacer technique used to pattern nanowire features. Cross-sectional schematic of nanowire formation  
(a) before dry etch and (b) after dry etch [22].
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donor impurities possess energy close to the band edge—the extra valence electron 

Figure 2. 
Shallow versus deep donors [1–4].
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It was first reported in 2005 by Ge et al. [49], and other researchers [44, 50, 51] 
have since carried it forward. The technique has great potential in shaping nano-
meter features using conventional, low-cost photolithography. Figure 3 shows the 
concept of the spacer technique. It uses first anisotropic etch to create a vertical 
pillar on an insulating layer (SiO2), then after deposition of a semiconductor layer 
(ZnO) and a second anisotropic etch, to create nanowires made up of the semicon-
ductor layer. This method allows nanowire features with controllable dimensions 
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surface roughness <1.5 nm. Other tools such as RIE and ion beam etch produce 
roughness >5 nm. The fabrication process for the complete ZnO NWFET structure 
is as outlined in [52].

3. Background on FETs

The ZnO field-effect transistor (FET) has been around for decades. The success 
of the device in meeting the technological demands has largely been dominated by 
the shrinking size of its physical geometry. It has an advantage as a junctionless (no 
p-n junctions) FET compared to conventional FETs [17, 21, 23–27, 53, 54]. There has 
been an introduction of new materials and heterojunction structures developed so 
as to move away from conventional silicon devices. High-K dielectrics have been 
introduced to replace the conventional SiO2 which should help maintain acceptable 
dielectric thicknesses while keeping gate leakage currents low [17, 21, 23–27, 53, 54].

Even with so many improvements being made to the device, the limits of FET 
scaling are approaching. The thickness of the oxide (tox) cannot be less than 1 nm 
due to high tunneling current and significant operational variation. The substrate 
doping is also very high which creates leakage and tunneling currents that are 
unacceptable to device operation.

3.1 ZnO thin film transistors (TFTs)

TFTs have also been fabricated using ZnO, mainly as thin film transistors for 
application in displays. Figure 4 compares 20 ZnO TFTs fabricated by different 
authors [27, 53–71] using a variety of fabrication methods over the last 5 years. 
The graph is a plot of field effect mobility versus subthreshold slope which are 
two of the main parameters that describe the performance and efficiency of a 
device. The best device was fabricated by Bayraktaroglu et al. [70] with a SiO2 
insulator and pulsed laser-deposited ZnO active channel layer. The device had a 
field effect mobility 110 cm2/Vs and an excellent subthreshold gate voltage swing 
of 109 mV/decade. This value of mobility is much higher than the value of around 
1 cm2/Vs that is typically achieved with amorphous silicon TFTs in production 
displays. It is clear therefore that ZnO TFTs have considerable potential for 
application in high performance displays.

Figure 4. 
General literature review on TFTs looking at field effect mobility versus subthreshold slope of as-deposited and 
doped ZnO films.
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3.2 Nanowire field-effect transistors (FETs)

Emerging nonplanar devices [17, 21] are being researched to prolong the future 
progress for FETs. Devices based on quasi-one-dimensional (1-D) nanostructures 
are still at an embryonic stage from an industrial point of view. These nanostruc-
tures include the following: nanowires, nanobelts, nanoribbons, and nanoneedles 
[72, 73]. This review is interested in nanowire FETs which are also being researched 
for application in biosensors because the high surface-to-volume ratio provides high 
sensitivity.

3.3 Comparing ZnO NWFETs

Figure 5 compares 15 different ZnO NWFETs fabricated by different authors 
using a variety of methods [22, 74–86]. The graph is plotted with field effect mobility 
against the subthreshold slope, which are two important device parameters that deter-
mine ZnO NWFET performance. The nanowires were fabricated using top-down and 
bottom-up (self-assembled) processes. Self-assembled processes tend to display very 
high field effect mobility which is normally above 200 cm2/Vs; whereas the top-down 
have lower mobility values. Most of the top-down fabricated devices have mobility 
<1.0 cm2/Vs with around three papers giving a mobility >10.0 cm2/Vs. The difference 
in the mobility may be due to the fact that self-assembled nanowires are single-crystal, 
whereas top-down nanowires are polycrystalline. Nonetheless, top-down techniques 
are desirable as they currently pave way for mass production and will be pursued in 
this research investigation.

4. Biosensors

A biosensor is defined by the International Union of Pure and Applied Chemistry 
(IUPAC) as “a self-contained integrated device that is capable of providing specific 
quantitative or semiquantitative analytical information using a biological recogni-
tion element (biochemical receptor), which is retained in contact direct with a 
transduction element” [87]. A biosensor is a “more-than-Moore device” because it 

Figure 5. 
Literature review on nanowire FETs looking at field effect mobility versus subthreshold slope of as-deposited 
and doped ZnO nanowires.
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3.3 Comparing ZnO NWFETs
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bottom-up (self-assembled) processes. Self-assembled processes tend to display very 
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<1.0 cm2/Vs with around three papers giving a mobility >10.0 cm2/Vs. The difference 
in the mobility may be due to the fact that self-assembled nanowires are single-crystal, 
whereas top-down nanowires are polycrystalline. Nonetheless, top-down techniques 
are desirable as they currently pave way for mass production and will be pursued in 
this research investigation.

4. Biosensors

A biosensor is defined by the International Union of Pure and Applied Chemistry 
(IUPAC) as “a self-contained integrated device that is capable of providing specific 
quantitative or semiquantitative analytical information using a biological recogni-
tion element (biochemical receptor), which is retained in contact direct with a 
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incorporates functionalities that do not necessarily scale according to Moore’s law. 
Under the roadmap, the device falls under the category of sensors and actuators. 
Other categories include analogue/RF, passives, HV power, and biochips [88, 89].

Figure 6 shows a typical structure of a biosensor [90–92]. The biomolecules are 
contained within an analytic solution and attach themselves to immobilized enzymes 
or immune-agents on the linkers. Linkers in turn are attached to the transducer. The 
transducer then converts the charge on the analyte into an electrical signal which 
is then transmitted for data processing. Biosensors can be considered as part of the 
research field known as “chemical sensors” in that a biological mechanism is used 
for analyte detection within an analyte solution [93–95]. Quasi-one-dimensional 
nanostructures have a greater surface-to-volume ratio compared to planar structures 
and are therefore expected to be more sensitive than planar sensors [93–95].

Nanowires are the same as nanorods. The words can be used interchangeably [80]. 
These have received enormous attention due to their suitable properties for designing 
novel nanoscale biosensors. For example, the dimensions of ∼1–100 nm are similar 
to those of many biological entities, such as nucleic acids, proteins, viruses, and 
cells [79]. In addition, the high surface-to-volume ratios for nanomaterials allow a 
large proportion of atoms in the bio-analyte to be located at or close to the surface. 
Moreover, some nanowire materials have surfaces that can easily be chemically 

Figure 6. 
Typical structure of a biosensor. The biomolecules are contained within an analytic solution and attach 
themselves to immobilized enzymes or immune-agents on the receptors. The transducer then converts the energy 
signal produced into an electrical signal which is then transmitted for data processing. [22].
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modified which makes them significant candidates for biosensors [79, 80]. There 
are a number of nanostructure-based electrical biosensors which include single-wall 
carbon nanotubes (SWCNT), nanowires, nanogaps, nanochannels, and nano-
electromechanical (NEM) devices. The project will focus on nanowire-based devices 
as they have considerable potential for electrical biosensing that offer the possibility 
of portable assays in a variety of point-of-care environments [48, 90, 96].

4.1 Silicon biosensors

Over the past decade, silicon nanowires have been the most researched for 
application as biochemical sensors [97–108]. Silicon nanowires are of interest for a 
number of reasons, for example, the material is well known and is compatible with 
CMOS integrated circuits for the development of sensor systems [97–108]. The 
nanowire is expected to have high surface-to-volume ratios which give high sensi-
tivity and the electrical sensing will give real-time label-free detection without the 
use of expensive optical components. Mass manufacturing is also a main advantage 
for silicon and is critically important for nanowire biosensor applications because of 
the widespread uptake of biosensors in “point-of-care” settings, the biosensor needs 
to be disposable [97–108].

A number of fabrication methods are well established for silicon nanowires 
which utilize both bottom-up and top-down methods (these methods are called 
hybrids). It still remains that bottom-up techniques have the advantage of simplicity 
[97–108]. Bottom-up methods are still limited due to the alignment problem. The 
hybrid methods require further nanowire technologies to achieve alignment, such 
as electric field or fluid-flow-assisted nanowire positioning to locate the nanowires 
between lithographically defined source and drain electrodes. The technique is 
interpreted as a hybrid between bottom-up and top-down. Top-down methods 
overcome these problems, and several researchers have used advanced lithography 
techniques to fabricate single-crystal silicon nanowires on silicon-on-insulator 
(SOI) substrates. SOI wafers are expensive and to overcome the problem some 
researchers [109] have devised alternatives to SOI. The electrical output character-
istics of silicon nanowires are good and they are well suited for biosensing applica-
tions. The sensitivity range for most silicon-nanowire based biosensors is between 
50 and 400 mV [97–134].

4.2 Comparing ZnO nanowire biosensors

ZnO is investigated as it is expected to be more sensitive than Si due to its wider 
bandgap [109]. This is observed by comparing Table 2 with Table 3. ZnO devices 
show results comparable to silicon devices; especially looking at response time and 
limit of detection. It is required that biosensors should have the liquid reference 
electrode. There are many different types of ZnO nanostructures being used for 
sensing application and Table 2 compares the ZnO nanostructures such as nanotet-
rapods, nanocombs, and nanorods used for biosensing [110, 121]. Nanotetrapods 
[123] are like nanorods but with four single crystalline legs. Most of the ZnO devices 
were synthesized by vapor phase method and then transferred on Au electrode to 
form a multiterminal network for the sensor receptors. Like all other bottom-up 
ZnO nanostructures discussed here, they are transferred to a surface of a work-
ing electrode to form a thin layer to modify the transducer. The devices have low 
sensitivity but the nanotetrapods exhibit good detection limit down to ~1.0 nM. The 
researchers [123] did not explain why the nanostructures possess low sensitivity but 
its three-dimensional features have the potential for multiterminal communication 
applications [123].
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carbon nanotubes (SWCNT), nanowires, nanogaps, nanochannels, and nano-
electromechanical (NEM) devices. The project will focus on nanowire-based devices 
as they have considerable potential for electrical biosensing that offer the possibility 
of portable assays in a variety of point-of-care environments [48, 90, 96].

4.1 Silicon biosensors

Over the past decade, silicon nanowires have been the most researched for 
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number of reasons, for example, the material is well known and is compatible with 
CMOS integrated circuits for the development of sensor systems [97–108]. The 
nanowire is expected to have high surface-to-volume ratios which give high sensi-
tivity and the electrical sensing will give real-time label-free detection without the 
use of expensive optical components. Mass manufacturing is also a main advantage 
for silicon and is critically important for nanowire biosensor applications because of 
the widespread uptake of biosensors in “point-of-care” settings, the biosensor needs 
to be disposable [97–108].

A number of fabrication methods are well established for silicon nanowires 
which utilize both bottom-up and top-down methods (these methods are called 
hybrids). It still remains that bottom-up techniques have the advantage of simplicity 
[97–108]. Bottom-up methods are still limited due to the alignment problem. The 
hybrid methods require further nanowire technologies to achieve alignment, such 
as electric field or fluid-flow-assisted nanowire positioning to locate the nanowires 
between lithographically defined source and drain electrodes. The technique is 
interpreted as a hybrid between bottom-up and top-down. Top-down methods 
overcome these problems, and several researchers have used advanced lithography 
techniques to fabricate single-crystal silicon nanowires on silicon-on-insulator 
(SOI) substrates. SOI wafers are expensive and to overcome the problem some 
researchers [109] have devised alternatives to SOI. The electrical output character-
istics of silicon nanowires are good and they are well suited for biosensing applica-
tions. The sensitivity range for most silicon-nanowire based biosensors is between 
50 and 400 mV [97–134].
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ZnO is investigated as it is expected to be more sensitive than Si due to its wider 
bandgap [109]. This is observed by comparing Table 2 with Table 3. ZnO devices 
show results comparable to silicon devices; especially looking at response time and 
limit of detection. It is required that biosensors should have the liquid reference 
electrode. There are many different types of ZnO nanostructures being used for 
sensing application and Table 2 compares the ZnO nanostructures such as nanotet-
rapods, nanocombs, and nanorods used for biosensing [110, 121]. Nanotetrapods 
[123] are like nanorods but with four single crystalline legs. Most of the ZnO devices 
were synthesized by vapor phase method and then transferred on Au electrode to 
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ZnO nanostructures discussed here, they are transferred to a surface of a work-
ing electrode to form a thin layer to modify the transducer. The devices have low 
sensitivity but the nanotetrapods exhibit good detection limit down to ~1.0 nM. The 
researchers [123] did not explain why the nanostructures possess low sensitivity but 
its three-dimensional features have the potential for multiterminal communication 
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In nanocombs [116] design, each comb has between 3 and 10 rods connected to one 
another by a single rod. ZnO nanocombs were used as the channel for sensing glucose 
[116] and as label-free uric acid biosensor based on uricase [124]. The functionalized 

No. Reference 
electrode

Type of 
sensor

Channel 
material

ZnO 
fabrication 

process

LOD 
(pM)

Response 
time (s)

Ref.

1 No reference 
electrode

Biosensor Si NW nanocluster-
mediated 

vapor–liquid–
solid growth 

method

10 <10 [97]

2 Au Biosensor Si NW Chemical vapor 
deposition

0.002 <10 [98]

3 Platinum 
wire

Biosensor Si NW SNAP technique 10 <10 [101]

4 None Biosensor Si NW Reactive-ion 
etching (RIE)

0.01 <10 [106]

5 None Biosensor Si NW Synthesized by 
chemical vapor 

deposition

100 <10 [122]

Table 3. 
Summary of characteristics for various 1-D Si biosensors, adopted from [121].

No. Reference 
electrode

Type of 
sensor

Channel 
material

ZnO fabrication 
process

LOD 
(μM)

Response 
time (s)

Ref.

1 Au Biosensor ZnO 
nanorod 

array

Hydrothermal 10 <5 [111]

2 ITO Biosensor ZnO 
nanotube 

array

Hydrothermal/
chemical

10 <6 [112]

3 Au Biosensor Tetrapod-
like ZnO

CVD 4 6 [113]

4 Glass 
capillary

Biosensor ZnO 
nanoflakes

Hydrothermal 0.5 <4 [114]

5 GCE Biosensor Fork-like 
ZnO

Annealing 0.3 3 [115]

6 Au Biosensor Comb-like 
ZnO

CVD 20 <10 [116]

7 Ti Biosensor ZnO/C 
nanorod 

array

Hydrothermal 1 4 [117]

8 ITO Biosensor ZnO/
Cu array 
matrix

Hydrothermal 40 <6 [118]

9 GCE Biosensor ZnO/Au 
nanorods

Hydrothermal 0.01 <5 [119]

10 Pt Biosensor ZnO/NiO 
nanorods

Hydrothermal 2.5 <5 [120]

Table 2. 
Summary of characteristics for various 1-D ZnO biosensors, adopted from [110].
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ZnO nanorods showed thermal stability, anti-interference capability, and direct 
electron transfer (DET) between enzyme electroactive sites and external electrodes. 
The activity of the enzyme and the sensitivity can be increased by introducing a lipid 
film between the channel and the enzyme. Another uric acid biosensor [125] example 
is based on uricase-functionalized ZnO nanoflakes, which was hydrothermally 
prepared at low temperatures on Au-coated glass. The sensor produced a sensitivity 
based on subthreshold slope of ~66 mV/decade. Bottom-up ZnO nanorods [126] were 
also used as lactate oxidase (LOD) biosensor using glutaraldehyde cross-linkers. The 
device had a subthreshold sensitivity of ~41 mV/decade, with maximum detection of 
0.1 μM. To test for cholesterol, porous ZnO mirco-tubes [127] were constructed using 
3-D assembled porous flakes. ZnO nanorods [128] were grown on Ag electrode to 
make a cholesterol sensor.

5. Conclusion

Most researchers use bottom-up approaches to fabricate the ZnO biosensors 
because of the straightforward synthesis process. However, these bottom-up 
devices have variable electrical performance due to the lack of geometrical dimen-
sion control and addressing the nanostructures for sensing application. So far, 
there is limited research reported on top-down ZnO biosensors, and previous work 
demonstrated the viability of top-down ZnO NWFET for biosensor applications. 
In the work, however, there was no passivation layer on the ZnO nanowires, which 
led to the dissolution of the material. This made the device unstable and the sens-
ing results were not reproducible. There exists a need to develop a passivating layer 
technology and optimize the fabrication process for biosensor applications. That 
way, a reliable measurement of sensitivity for the nonspecific and specific sensing 
of lysozyme and bovine serum albumin (BSA) can be achieved.
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0.01 <10 [106]

5 None Biosensor Si NW Synthesized by 
chemical vapor 

deposition

100 <10 [122]

Table 3. 
Summary of characteristics for various 1-D Si biosensors, adopted from [121].
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Type of 
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Channel 
material
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process

LOD 
(μM)

Response 
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Ref.
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3 Au Biosensor Tetrapod-
like ZnO

CVD 4 6 [113]

4 Glass 
capillary

Biosensor ZnO 
nanoflakes

Hydrothermal 0.5 <4 [114]
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Cu array 
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nanorods

Hydrothermal 0.01 <5 [119]
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nanorods

Hydrothermal 2.5 <5 [120]

Table 2. 
Summary of characteristics for various 1-D ZnO biosensors, adopted from [110].
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Metal Oxide Nanowires as 
Building Blocks for Optoelectronic 
Devices
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Abstract

Metal oxide nanowires have become the new building blocks for the next 
generation optoelectronic devices due to their specific features such as quantum 
confinement and high aspect ratio. Thus, they can be integrated as active compo-
nents in diodes, field effect transistors, photodetectors, sensors, solar cells and so 
on. ZnO, a n-type semiconductor with a direct wide band gap (3.3 eV) and CuO, a 
p-type semiconductor with a narrow band gap (1.2–1.5 eV), are two metal oxides 
which were recently in the spotlight of the researchers for applications in the 
optoelectronic devices area. Therefore, in this chapter we focused on ZnO and CuO 
nanowires, the metal oxides nanowire arrays being prepared by straightforward wet 
and dry methods. Further, in order to emphasize their intrinsic transport properties, 
lithographic and thin films deposition techniques were used to integrate single ZnO 
and CuO nanowires into diodes and field effect transistors.

Keywords: metal oxide nanowire arrays, single ZnO and CuO nanowires, 
lithographic techniques, diodes, field effect transistors

1. Introduction

Over the last decades, metal oxide nanowires, one dimensional nanostruc-
tures characterized by a high aspect ratio [1], have gained a special interest owed 
among others to their large specific area given by the size effects. This feature 
is responsible for their high sensitivity that is very important in a wide range of 
applications in optoelectronics [2], electrochemical sensors [3], spintronics [4], 
photocatalysis [5], noninvasive medical diagnosis [6], drug delivery [7], etc. 
Thus, due to their high sensitivity, metal oxide nanowires can detect even a single 
molecule, or even mechanical, optical or electrical signals [8–10]. For example, 
the size of biological molecules, such as proteins and nucleic acids, is comparable 
to the size of nanostructures, therefore any interaction between these molecules 
should induce major changes in the properties of the nanowires. Consequently, 
the metal oxide nanowires can be regarded as the perfect candidates for integra-
tion as single components in diodes [11], field effect transistors [12, 13], advanced 
biosensors [14], photodetectors [15], light emitting diodes [16], solar cells [17], 
magnetoresistive sensors [18], etc.
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The preparation methods represent the key factor in order to obtain metal oxide 
nanowires with tunable dimensions and tailored physico-chemical properties. To 
date, many preparation approaches were used for preparing arrays of metal oxide 
nanowires, such as template electrodeposition [19], electroless deposition [20], 
sol–gel [21], chemical bath deposition [22], hydrothermal growth [23], pulsed laser 
deposition [24], chemical vapor deposition [25], atomic layer deposition [26], litho-
graphic techniques [27], etc. Among them, chemical synthesis carried out in water as 
a reaction medium is a simple wet preparation route, easy to process and suitable for 
large-scale synthesis of metal oxide powders consisting in micro- and nano-structures 
with different morphologies featured by a good crystallinity [13, 28, 29]. Another 
preparation method, thermal oxidation in air is a relatively facile dry, low-cost, non-
hazardous and high throughput approach that can be used at a large-scale to obtain 
metal oxides nanostructures of a high purity and crystallinity [13]. Using thermal 
oxidation in air to obtain arrays of metal oxide nanowires, the nanowires length, 
diameter and density can be easily controlled by modifying the parameters involved 
in the thermal oxidation in air process, such as: the heating rate, the annealing 
temperature and the time of the treatment [30].

Zinc oxide (ZnO) is an interesting eco-friendly and versatile metal oxide, suit-
able for many applications due to its remarkable physico-chemical properties. 
Being an n-type semiconductor with a direct band gap (3.37 eV), with an excitonic 
binding energy of 60 meV, it can be easily integrated in optoelectronic devices such 
as photodetectors [15], light emitting diodes [31], solar cells [32]. Additionally, its 
flexibility in terms of nanostructure morphology (nanowires, nanotubes, nanofibers, 
nanorods, nanoneedles, hexagonal nanoprisms, nanoflowers, rings, etc.) [33, 34] 
offers another important advantage for applications in sensors [35], photocatalysis 
[36], as well as in surfaces with self-cleaning properties [37].

Copper oxide (CuO) is a p-type semiconductor easy to prepare, with a high 
stability, having an indirect narrow band gap (1.2–1.8 eV). This metal oxide can be 
implemented in various applications such as: solar cells [38], field effect transistor 
[11], gas sensors [39], photocatalysis [40], water purification [41], etc. Being also 
an antiferromagnetic material below 220 K with a local magnetic moment of about 
0.6 μB, CuO was also investigated for application in magnetic storage units [42].

In this chapter, we present our research regarding the preparation and complex 
characterization of metal oxide nanowire arrays by wet (chemical synthesis in 
aqueous solution) and dry (thermal oxidation in air) approaches. In addition, elec-
tronic devices based on single metal oxide nanowires were developed and analyzed 
in terms of electrical characterization. Further, lithographic techniques such as 
photolithography, electron beam lithography and focused ion beam induced depo-
sition, combined with radio-frequency magnetron sputtering and thermal vacuum 
evaporation were used for fabricating electronic devices like diodes and field effect 
transistors based on single metal oxide (ZnO or CuO) nanowires. In addition, the 
electrical properties of the electronic devices based on single metal oxide nanowires 
prepared by wet and dry methods were analyzed and discussed.

2. Lithographic techniques

Lithographic techniques are mainly used in modern semiconductor manu-
facturing industry, in micro- and nano-fabrication to pattern thin films with 
specific geometries integrated into electronic devices. Lithographic techniques are 
subsequently divided according to the targeted application into: photolithography, 
electron beam lithography, focused ion beam induced deposition, extreme UV 
lithography, nanoimprint lithography, colloidal lithography, soft lithography, and 
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many others. In the following, the techniques involved in the fabrication of our 
electronic devices based on single metal oxide nanowires are briefly described.

2.1 Photolithography

Photolithography is a conventional lithographic process in which specific 
geometric shapes drawn on a photomask are transferred to the desired substrate 
by means of light in the UV range, using a lamp that emits UV light of a certain 
wavelength and a polymer that has a photoactive component sensitive to the UV 
light named photoresist. In this case, the resolution is limited by the wavelength 
used and by the type of the aligner. In our case, the photolithography was involved 
in the fabrication of Ti/Au metallic interdigitated electrodes onto Si/SiO2 wafers. 
The main steps of the process being: cleaning of the Si/SiO2 wafers, deposition of 
the primer and the photoresist by centrifugation, baking of the deposited layer, the 
mask alignment, the UV exposure, baking after UV irradiation, the UV exposure 
through clear mask, the development process and the deposition of Ti and Au 
thin films using radio-frequency (RF) magnetron sputtering and thermal vacuum 
evaporation, respectively.

2.2 Electron beam lithography

Electron beam lithography (EBL) is a lithographic technique that uses a high-
voltage accelerated electron beam to directly pattern a substrate without the need of 
a mask. In this process, the electron beam irradiates a thin layer of electron-sensitive 
polymer which was previously deposited on the substrate. During the exposure, the 
polymer (electron beam resist) bonds break and thus after the lift-off process, the 
appropriate geometric configuration is obtained. This technique has a high resolu-
tion, that can be used in nanoscale electronics, optoelectronics and photonics. In 
our case, in order to contact single nanowires using EBL, the first step is to transfer 
the nanowires between the metallic interdigitated electrodes. Further, a layer of 
electron beam resist –polymethyl methacrylate (PMMA) is deposited on the sample. 
Then, the desired contacts are designed into a CAD program and exposed with the 
electron beam. After the development process, the Ti and Au or Pt thin films are 
deposited by RF magnetron sputtering and thermal vacuum evaporation, respec-
tively. Finally, the lift-off process removes the excess metal and the Ti/Au contacts 
are obtained.

2.3 Focused ion beam induced deposition

Focused ion beam induced deposition (FIBID) is a lithographic technique that 
uses a highly focused ion beam of gallium ions (Ga+), a gas injection system and an 
organometallic precursor gas to deposit a metallic thin film without the need of a 
mask onto a substrate. In our case, similar to the EBL lithographic process, to contact 
single metal oxide nanowires by FIBID, the first step is to place the nanowires 
between the metallic interdigitated electrodes. Afterwards, the future Pt contacts 
are designed into a CAD program. During the deposition of the Pt contacts, an 
injector needle is placed very near to the substrate and upon the interaction between 
the organometallic compound with the ion beam, the precursor molecules are 
decomposed into a platinum layer and a volatile organic compound exhausted into 
the vacuum system. FIBID deposition is limited by the organometallic precursor 
gas and by the delivery rate of the gas. The deposition of a Pt contact by FIBID leads 
to the deposition of a carbon amorphous matrix that incorporates Pt nanoparticles 
implanted with Ga+ ions.



Nanowires - Recent Progress

26

The preparation methods represent the key factor in order to obtain metal oxide 
nanowires with tunable dimensions and tailored physico-chemical properties. To 
date, many preparation approaches were used for preparing arrays of metal oxide 
nanowires, such as template electrodeposition [19], electroless deposition [20], 
sol–gel [21], chemical bath deposition [22], hydrothermal growth [23], pulsed laser 
deposition [24], chemical vapor deposition [25], atomic layer deposition [26], litho-
graphic techniques [27], etc. Among them, chemical synthesis carried out in water as 
a reaction medium is a simple wet preparation route, easy to process and suitable for 
large-scale synthesis of metal oxide powders consisting in micro- and nano-structures 
with different morphologies featured by a good crystallinity [13, 28, 29]. Another 
preparation method, thermal oxidation in air is a relatively facile dry, low-cost, non-
hazardous and high throughput approach that can be used at a large-scale to obtain 
metal oxides nanostructures of a high purity and crystallinity [13]. Using thermal 
oxidation in air to obtain arrays of metal oxide nanowires, the nanowires length, 
diameter and density can be easily controlled by modifying the parameters involved 
in the thermal oxidation in air process, such as: the heating rate, the annealing 
temperature and the time of the treatment [30].

Zinc oxide (ZnO) is an interesting eco-friendly and versatile metal oxide, suit-
able for many applications due to its remarkable physico-chemical properties. 
Being an n-type semiconductor with a direct band gap (3.37 eV), with an excitonic 
binding energy of 60 meV, it can be easily integrated in optoelectronic devices such 
as photodetectors [15], light emitting diodes [31], solar cells [32]. Additionally, its 
flexibility in terms of nanostructure morphology (nanowires, nanotubes, nanofibers, 
nanorods, nanoneedles, hexagonal nanoprisms, nanoflowers, rings, etc.) [33, 34] 
offers another important advantage for applications in sensors [35], photocatalysis 
[36], as well as in surfaces with self-cleaning properties [37].

Copper oxide (CuO) is a p-type semiconductor easy to prepare, with a high 
stability, having an indirect narrow band gap (1.2–1.8 eV). This metal oxide can be 
implemented in various applications such as: solar cells [38], field effect transistor 
[11], gas sensors [39], photocatalysis [40], water purification [41], etc. Being also 
an antiferromagnetic material below 220 K with a local magnetic moment of about 
0.6 μB, CuO was also investigated for application in magnetic storage units [42].

In this chapter, we present our research regarding the preparation and complex 
characterization of metal oxide nanowire arrays by wet (chemical synthesis in 
aqueous solution) and dry (thermal oxidation in air) approaches. In addition, elec-
tronic devices based on single metal oxide nanowires were developed and analyzed 
in terms of electrical characterization. Further, lithographic techniques such as 
photolithography, electron beam lithography and focused ion beam induced depo-
sition, combined with radio-frequency magnetron sputtering and thermal vacuum 
evaporation were used for fabricating electronic devices like diodes and field effect 
transistors based on single metal oxide (ZnO or CuO) nanowires. In addition, the 
electrical properties of the electronic devices based on single metal oxide nanowires 
prepared by wet and dry methods were analyzed and discussed.

2. Lithographic techniques

Lithographic techniques are mainly used in modern semiconductor manu-
facturing industry, in micro- and nano-fabrication to pattern thin films with 
specific geometries integrated into electronic devices. Lithographic techniques are 
subsequently divided according to the targeted application into: photolithography, 
electron beam lithography, focused ion beam induced deposition, extreme UV 
lithography, nanoimprint lithography, colloidal lithography, soft lithography, and 
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many others. In the following, the techniques involved in the fabrication of our 
electronic devices based on single metal oxide nanowires are briefly described.

2.1 Photolithography

Photolithography is a conventional lithographic process in which specific 
geometric shapes drawn on a photomask are transferred to the desired substrate 
by means of light in the UV range, using a lamp that emits UV light of a certain 
wavelength and a polymer that has a photoactive component sensitive to the UV 
light named photoresist. In this case, the resolution is limited by the wavelength 
used and by the type of the aligner. In our case, the photolithography was involved 
in the fabrication of Ti/Au metallic interdigitated electrodes onto Si/SiO2 wafers. 
The main steps of the process being: cleaning of the Si/SiO2 wafers, deposition of 
the primer and the photoresist by centrifugation, baking of the deposited layer, the 
mask alignment, the UV exposure, baking after UV irradiation, the UV exposure 
through clear mask, the development process and the deposition of Ti and Au 
thin films using radio-frequency (RF) magnetron sputtering and thermal vacuum 
evaporation, respectively.

2.2 Electron beam lithography

Electron beam lithography (EBL) is a lithographic technique that uses a high-
voltage accelerated electron beam to directly pattern a substrate without the need of 
a mask. In this process, the electron beam irradiates a thin layer of electron-sensitive 
polymer which was previously deposited on the substrate. During the exposure, the 
polymer (electron beam resist) bonds break and thus after the lift-off process, the 
appropriate geometric configuration is obtained. This technique has a high resolu-
tion, that can be used in nanoscale electronics, optoelectronics and photonics. In 
our case, in order to contact single nanowires using EBL, the first step is to transfer 
the nanowires between the metallic interdigitated electrodes. Further, a layer of 
electron beam resist –polymethyl methacrylate (PMMA) is deposited on the sample. 
Then, the desired contacts are designed into a CAD program and exposed with the 
electron beam. After the development process, the Ti and Au or Pt thin films are 
deposited by RF magnetron sputtering and thermal vacuum evaporation, respec-
tively. Finally, the lift-off process removes the excess metal and the Ti/Au contacts 
are obtained.

2.3 Focused ion beam induced deposition

Focused ion beam induced deposition (FIBID) is a lithographic technique that 
uses a highly focused ion beam of gallium ions (Ga+), a gas injection system and an 
organometallic precursor gas to deposit a metallic thin film without the need of a 
mask onto a substrate. In our case, similar to the EBL lithographic process, to contact 
single metal oxide nanowires by FIBID, the first step is to place the nanowires 
between the metallic interdigitated electrodes. Afterwards, the future Pt contacts 
are designed into a CAD program. During the deposition of the Pt contacts, an 
injector needle is placed very near to the substrate and upon the interaction between 
the organometallic compound with the ion beam, the precursor molecules are 
decomposed into a platinum layer and a volatile organic compound exhausted into 
the vacuum system. FIBID deposition is limited by the organometallic precursor 
gas and by the delivery rate of the gas. The deposition of a Pt contact by FIBID leads 
to the deposition of a carbon amorphous matrix that incorporates Pt nanoparticles 
implanted with Ga+ ions.
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3.  Metal oxide nanowires: Influence of the preparation method type  
(wet or dry) on their structural, morphological and optical properties

Arrays of metal oxides (ZnO and CuO) nanowires were prepared involving two 
simple cost-effective wet and dry approaches: chemical synthesis in aqueous solution 
and thermal oxidation in air.

3.1 CuO nanowires

CuO nanowire arrays obtained by a wet method were chemically synthesized in 
aqueous solution based on the procedure described in Ref.s [43]. Thus, 0.0045 mol 
NH4OH in 30 ml aqueous solution and 0.007 mol NaOH in 6 ml aqueous solution 
were added, under vigorous stirring, in a glass beaker with 100 ml aqueous solution 
containing 0.004 mol CuSO4. The beaker was covered and stored for 7 days without 
stirring at ambient temperature. The precipitate was collected through centrifuga-
tion, washed several times with water and dried at room temperature.

Figure 1(a) illustrates a SEM image of the CuO nanowires chemically synthe-
sized in aqueous solution, indicating that these nanowires have a cylindrical shape, 
lengths up to 2 μm and diameters of about 40 nm. The XRD pattern of the prepared 
CuO nanowires (Figure 1(b)) evidences peaks corresponding to the Miller indexes 
of the reflecting planes for CuO in a monoclinic phase (JCPDS reference code 
00–048-1548). Based on the reflectance spectrum of the obtained CuO nanowires 
(Figure 1(c)), the band gap value was estimated as being around 1.6 eV, in agree-
ment with previously reported data for CuO nanowires [44].

Arrays of CuO nanowire were prepared also by a dry method, using thermal 
oxidation in air according to the procedure given in Ref.s [11, 30]. Briefly, metallic 
substrates consisting in 2 cm2 copper foils were cleaned in ultrasonic bath with 
acetone and isopropyl alcohol and then annealed in air for 24 h at 400°C, 500°C and 
600°C in a convection oven.

The SEM images in cross-sectional view of the annealed Cu foils  
(Figure 2(a), (c), (e)) revealed that there are three distinct regions with different 
morphologies from the bottom up: the Cu foil, a Cu2O thin film and the CuO 
nanowire arrays. Moreover, the SEM images in plan-view of the CuO nanowire 
arrays (Figure 2(b), (d), (f )) prepared by thermal oxidation in air at different 
temperatures disclose that the increase of the annealing temperature favors a higher 
density and a larger diameter of the CuO nanowires. Thus, the diameters and 
lengths of the CuO nanowires can be tuned as a function of the applied annealing 
temperatures. At 400°C, there is a low density of nanowires with diameters of 

Figure 1. 
(a) SEM image, (b) XRD pattern and (c) reflectance spectrum of the CuO nanowire arrays obtained by 
chemical synthesis in aqueous solution.
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about 40 nm and lengths up to 1 μm. At 500°C, there is a high density of nanowires 
with diameters of about 60 nm and lengths up to 30 μm. Also, at 600°C, there is a 
much higher density of nanowires with diameters of about 100 nm and lengths up 
to 30 μm.

The structural properties of the Cu foils thermally oxidized in air at different 
temperatures consisting in the XRD patterns (Figure 3(a), (c), (e)) evidence the 
presence of diffraction peaks assigned to the Miller indexes of the reflecting planes 
for three crystalline phases: Cu in face-centered-cubic phase (JCPDS reference 
code 00–004-0836), Cu2O in cubic phase (JCPDS reference code 01–071-3645) and 
CuO in monoclinic phase (JCPDS reference code 00–048-1548). These results are 
in accordance with the data obtained for the CuO nanowire arrays in the cross-
sectional SEM images (Figure 2(a), (c), (e)) in which there were clearly observed 
three distinct areas with different morphologies.

The band gap values for the CuO nanowire arrays obtained by thermal oxida-
tion in air at various temperatures were assessed based on the reflectance spectra 
(Figure 3(b), (d), (f )) as being around 1.6 eV, in agreement with data previously 
reported in the literature for CuO nanowires [44].

Figure 2. 
SEM images of the CuO nanowire arrays prepared by thermal oxidation in air at (a), (b) 400°C,  
(c), (d) 500°C and (e), (f) 600°C.
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about 40 nm and lengths up to 1 μm. At 500°C, there is a high density of nanowires 
with diameters of about 60 nm and lengths up to 30 μm. Also, at 600°C, there is a 
much higher density of nanowires with diameters of about 100 nm and lengths up 
to 30 μm.

The structural properties of the Cu foils thermally oxidized in air at different 
temperatures consisting in the XRD patterns (Figure 3(a), (c), (e)) evidence the 
presence of diffraction peaks assigned to the Miller indexes of the reflecting planes 
for three crystalline phases: Cu in face-centered-cubic phase (JCPDS reference 
code 00–004-0836), Cu2O in cubic phase (JCPDS reference code 01–071-3645) and 
CuO in monoclinic phase (JCPDS reference code 00–048-1548). These results are 
in accordance with the data obtained for the CuO nanowire arrays in the cross-
sectional SEM images (Figure 2(a), (c), (e)) in which there were clearly observed 
three distinct areas with different morphologies.

The band gap values for the CuO nanowire arrays obtained by thermal oxida-
tion in air at various temperatures were assessed based on the reflectance spectra 
(Figure 3(b), (d), (f )) as being around 1.6 eV, in agreement with data previously 
reported in the literature for CuO nanowires [44].

Figure 2. 
SEM images of the CuO nanowire arrays prepared by thermal oxidation in air at (a), (b) 400°C,  
(c), (d) 500°C and (e), (f) 600°C.
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3.2 ZnO nanowires

ZnO nanowire arrays were chemically synthesized in aqueous solution based 
on the procedures described in Ref.s [13, 28, 29]. Thus, a glass beaker with 300 ml 
aqueous solution containing 0.1 mmol Zn(NO3)2 and 0.1 mmol (CH2)6N4 was 
covered and placed in a hot air oven, preheated at 90°C. After 5 h, the substrates, 
Si/SiO2 pieces coated with a thin Ti/Au layer, were dipped and kept in the aqueous 

Figure 3. 
(a), (c), (e) XRD patterns and (b), (d), (f) reflectance spectra of the CuO nanowire arrays prepared by 
thermal oxidation in air at (a), (b) 400°C, (c), (d) 500°C and (e), (f) 600°C.
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solution for 2 days. The Ti layer behaves as an adhesion promoter for the Au layer, 
which acts as a nucleation layer assisting the growth of ZnO nanowires.

The morphological properties of the ZnO nanowire chemically synthesized in 
aqueous solution are presented in Figure 4(a), the SEM image revealing that the 
nanowires have a cylindrical shape with lengths up to 10 μm and very thin diameters 
of about 20 nm. The XRD pattern of the ZnO nanowires obtained by a wet method 
(Figure 4(b)) evidences peaks corresponding to the Miller indexes of the reflecting 
planes for ZnO crystalized in a hexagonal wurtzite phase (JCPDS reference code 
00–036-1451).

The optical properties of the ZnO nanowire arrays were analyzed by reflectance 
and photoluminescence measurements (Figure 4(c) and (d)). From the reflectance 
spectrum, a band gap value was estimated of about 3.3 eV, similar with the values 
reported in the literature for ZnO nanowires [13]. The photoluminescence spectrum 
of the obtained ZnO nanowires (Figure 4(d)) disclose only the presence of a broad, 
intense emission band, centered at approximately 2.2 eV. Usually, for the ZnO 
nanowires synthesized in water, this broad emission band from the visible region 
is linked to the higher concentrations of point defects like: zinc vacancy, interstitial 
zinc, oxygen vacancy, interstitial oxygen, hydroxyl group, etc. [13].

Arrays of ZnO nanowire obtained by a dry route were prepared according to the 
method from references [13, 37]. Thus, 2 cm2 zinc foils were cleaned in an ultra-
sonic bath with acetone and isopropyl alcohol and thermally oxidized in air for 24 h 
at 400°C, 500°C and 600°C in a convection oven.

Figure 4. 
(a) SEM image, (b) XRD pattern, (c) reflectance spectrum and (d) photoluminescence spectrum of the ZnO 
nanowire arrays obtained by chemical synthesis in aqueous solution.
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3.2 ZnO nanowires

ZnO nanowire arrays were chemically synthesized in aqueous solution based 
on the procedures described in Ref.s [13, 28, 29]. Thus, a glass beaker with 300 ml 
aqueous solution containing 0.1 mmol Zn(NO3)2 and 0.1 mmol (CH2)6N4 was 
covered and placed in a hot air oven, preheated at 90°C. After 5 h, the substrates, 
Si/SiO2 pieces coated with a thin Ti/Au layer, were dipped and kept in the aqueous 

Figure 3. 
(a), (c), (e) XRD patterns and (b), (d), (f) reflectance spectra of the CuO nanowire arrays prepared by 
thermal oxidation in air at (a), (b) 400°C, (c), (d) 500°C and (e), (f) 600°C.
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solution for 2 days. The Ti layer behaves as an adhesion promoter for the Au layer, 
which acts as a nucleation layer assisting the growth of ZnO nanowires.

The morphological properties of the ZnO nanowire chemically synthesized in 
aqueous solution are presented in Figure 4(a), the SEM image revealing that the 
nanowires have a cylindrical shape with lengths up to 10 μm and very thin diameters 
of about 20 nm. The XRD pattern of the ZnO nanowires obtained by a wet method 
(Figure 4(b)) evidences peaks corresponding to the Miller indexes of the reflecting 
planes for ZnO crystalized in a hexagonal wurtzite phase (JCPDS reference code 
00–036-1451).

The optical properties of the ZnO nanowire arrays were analyzed by reflectance 
and photoluminescence measurements (Figure 4(c) and (d)). From the reflectance 
spectrum, a band gap value was estimated of about 3.3 eV, similar with the values 
reported in the literature for ZnO nanowires [13]. The photoluminescence spectrum 
of the obtained ZnO nanowires (Figure 4(d)) disclose only the presence of a broad, 
intense emission band, centered at approximately 2.2 eV. Usually, for the ZnO 
nanowires synthesized in water, this broad emission band from the visible region 
is linked to the higher concentrations of point defects like: zinc vacancy, interstitial 
zinc, oxygen vacancy, interstitial oxygen, hydroxyl group, etc. [13].

Arrays of ZnO nanowire obtained by a dry route were prepared according to the 
method from references [13, 37]. Thus, 2 cm2 zinc foils were cleaned in an ultra-
sonic bath with acetone and isopropyl alcohol and thermally oxidized in air for 24 h 
at 400°C, 500°C and 600°C in a convection oven.

Figure 4. 
(a) SEM image, (b) XRD pattern, (c) reflectance spectrum and (d) photoluminescence spectrum of the ZnO 
nanowire arrays obtained by chemical synthesis in aqueous solution.
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The SEM images in cross-sectional view of the thermally oxidized Zn foils 
(Figure 5(a), (c), (e)) show that there are two distinct regions with different 
morphologies: one as a film, attributed to the metallic Zn and the second one, as 
nanowire arrays, associated to ZnO.

Additionally, similar with the CuO nanowire arrays obtained by a dry technique, 
the SEM images in plan-view of the ZnO nanowire arrays prepared by thermal 
oxidation in air at different temperatures (Figure 5(b), (d), (f )) evidence that the 
increase of the annealing temperature favors a higher density and a larger diameter 
of the ZnO nanowires. Hence, at 400°C there is a low density of nanowires with 
diameters of about 20 nm and lengths up to 1 μm, while at 500°C and 600°C there 
is a much higher density of nanowires with diameters of about 30 nm (500°C) and 
60 nm (600°C) and lengths up to 30 μm.

The XRD patterns of the Zn foils thermally oxidized in air at different tempera-
tures (Figure 6(a), (d), (g)) disclose the presence of diffraction peaks assigned to 
the Miller indexes of the reflecting planes for two crystalline phases: Zn in hexagonal 
phase (JCPDS reference code 00–004-0831) and ZnO crystalized in a hexagonal 
wurtzite phase (JCPDS reference code 00–036-1451). The structural properties are 
in agreement with the two distinct regions with different morphologies observed in 

Figure 5. 
SEM images of the ZnO nanowire arrays prepared by thermal oxidation in air at (a), (b) 400°C,  
(c), (d) 500°C and (e), (f) 600°C.
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the cross-sectional SEM images (Figure 5(a), (c), (e)) for the ZnO nanowire  
arrays.

Based on the reflectance spectra of the ZnO nanowire arrays obtained by thermal 
oxidation in air at different temperatures (Figure 6(b), (e), (h)), the band gap 
values were estimated as being at about 3.3 eV, in accordance with data previously 
reports for ZnO nanowires [13].

The photoluminescence spectra of the ZnO nanowires obtained by a dry 
method at different annealing temperatures (Figure 6(c), (f ), (i)) reveal the 
presence of two emission bands: one intense, sharp and centered at approximately 
3.3 eV in the UV region and another one, weak and broad, centered at approxi-
mately 2.3 eV in the visible region. The sharp emission band in the UV region is 
related to the band-edge emission and the one in the visible region is linked to the 
various type of point defects [13].

4.  Electronic devices (diodes and field effect transistors: FETs)  
based on single metal oxide nanowires

In order to evaluate the electrical properties and to integrate single CuO or 
ZnO nanowires obtained by wet (chemical synthesis in aqueous solution) and dry 
(thermal oxidation in air) methods into electronic devices like diodes or field effect 

Figure 6. 
(a), (d), (g) XRD patterns, (b), (e), (h) reflectance spectra and (c), (f), (i) photoluminescence spectra of the 
ZnO nanowire arrays prepared by thermal oxidation in air at (a), (b), (c) 400°C, (d), (e), (f) 500°C and 
(g), (h), (i) 600°C.
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the cross-sectional SEM images (Figure 5(a), (c), (e)) for the ZnO nanowire  
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based on single metal oxide nanowires

In order to evaluate the electrical properties and to integrate single CuO or 
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transistors, lithographic techniques and thin films deposition techniques were 
employed.

Firstly, photolithography together with radio-frequency magnetron sputtering 
and thermal vacuum evaporation were used to pattern Si/SiO2 wafers with Ti/Au 
(10 nm/100 nm) metallic interdigitated electrodes systems. Subsequently, suspen-
sions of CuO or ZnO nanowires in ultrapure isopropyl alcohol are prepared by 
ultrasonication and then drop-cast onto the Si/SiO2 substrates patterned with Ti-Au 
metallic interdigitated electrodes. Afterwards, single CuO or ZnO nanowires are 
contacted by EBL, FIBID or EBL combined with FIBID. Figure 7(a) illustrates a SEM 
image of a Si/SiO2 substrate patterned with Ti/Au metallic interdigitated electrode 
system, while Figure 7(b) presents a SEM image of Ti/Au metallic interdigitated 
electrodes having metal oxide nanowires, transferred by drop-casting, between the 
Ti/Au electrodes.

The electrical measurements of the single CuO or ZnO nanowires contacted by 
lithographic techniques were carried out at room temperature in a typical two-
points configuration for diodes and a three-points configuration for FETs.

4.1 Diodes and FETs based on single CuO nanowires

In the following, CuO nanowires prepared by thermal oxidation in air at 500°C 
were used to develop diodes and FETs based on single CuO nanowires, these 
nanowires being chosen owed to the smaller diameter of about 60 nm and the 
lengths of about 30 μm for the nanowires.

Single CuO nanowire based Schottky diodes were fabricated by contacting 
single CuO nanowires at one end with Ti/Au by EBL and at the other end with Pt 
using FIBID. This outcome can be explained considering that a Pt–CuO nanowire 
structure exhibits an Ohmic behavior, and that a CuO nanowire–Ti/Au structure 
discloses a Schottky rectifying behavior [11]. Thus, Figure 8(a) presents a SEM 
image of a single CuO nanowire prepared by thermal oxidation in air and contacted 
at one end with Ti/Au (100 nm/300 nm) by EBL, RF magnetron sputtering and 
thermal vacuum evaporation and at the other end with Pt (300 nm) by FIBID, 
evidencing a distance between the metallic contacts of about 11 μm. Figure 8(b) 
displays the EDX elemental mapping analysis of the metallic electrodes that contact 

Figure 7. 
(a) SEM image of a Si/SiO2 substrate containing Ti/Au metallic interdigitated electrodes and (b) SEM image 
of Ti/Au metallic interdigitated electrodes having metal oxide nanowires placed between the Ti/Au electrodes.
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the nanowire to the metallic interdigitated electrodes, confirming the presence of Ti 
and Au elements in the case of EBL and Pt for FIBID. The current–voltage character-
istics of a single CuO nanowire contacted by EBL and FIBID (Figure 8(c)) reveal a 
rectifying Schottky behavior, typical for a Schottky diode [11]. Moreover, the values 
of the specific parameters for diodes were estimated from the current–voltage depen-
dence to be: ION/IOFF ratio ≈ 103 and the ideality factor n ≈ 1.8, being in accordance 
with data reported in the literature [11].

In order to develop FETs based on single CuO nanowires, FIBID was used to 
contact single CuO nanowires at both ends of the nanowire with Pt (300 nm), the 
SEM image of a single CuO nanowire contacted by this technique being illustrated 
in Figure 9(a). The current–voltage characteristic of a single CuO nanowire con-
tacted by FIBID (Figure 9(b)) evidences a linear dependence, indicating an Ohmic 
contact formed between the CuO nanowire and Pt electrodes.

Figure 10(a) and (b) present a SEM image and the corresponding EDX mapping, 
proving the presence of the Pt element into the source and drain electrodes and Cu 
in the CuO nanowire. The length of the p-type semiconductor channel between the 
source and drain is about 8 μm. The output characteristics (Figure 10(c)) exhibit an 
increase in the source-drain current towards higher negative gate voltages, typical for 
a p-type semiconductor channel. Also, it can be noticed a change in the shape of the 
output characteristic at −12 V applied gate voltage, indicating the saturation region 
of the FET. The semilogarithmic plot of the transfer characteristic of the single CuO 
nanowire based FET (Figure 10(d)) disclose an ION/IOFF ratio ≈ 103, in agreement 
with data reported in the literature for FETs based on single nanowires [11].

4.2 Diodes and FETs based on single ZnO nanowires

In the fabrication of diodes and FETs based on single ZnO nanowires were used 
ZnO nanowires prepared by thermal oxidation in air at 500°C, these being chosen 
due to their smaller diameter of about 30 nm and the lengths of about 30 μm and 
also ZnO nanowires chemically synthesized in aqueous solution.

In order to develop diodes based on ZnO nanowires obtained by a dry method, 
single ZnO nanowire were contacted at the both ends of the nanowire Ti/Au by 
EBL. Hence, Figure 11(a) and (b) displays two SEM images, at different mag-
nifications, of a single ZnO nanowire prepared by thermal oxidation in air and 
contacted at both ends with Ti/Pt (100 nm/200 nm) by EBL and RF magnetron 
sputtering, evidencing a distance between the metallic contacts of about 2 μm. 
The current–voltage measurement of a single ZnO nanowire contacted by EBL 
(Figure 11(c)) exhibits a non-liniar symmetrical shape indicating a structure 
having two back-to-back Schottky diodes, similar type of behavior being reported 
in the literature [45].

Figure 8. 
(a) SEM image, (b) EDX elemental mapping and (c) current–voltage characteristic of a single CuO nanowire 
prepared by a dry method and contacted by EBL and FIBID.
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transistors, lithographic techniques and thin films deposition techniques were 
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and thermal vacuum evaporation were used to pattern Si/SiO2 wafers with Ti/Au 
(10 nm/100 nm) metallic interdigitated electrodes systems. Subsequently, suspen-
sions of CuO or ZnO nanowires in ultrapure isopropyl alcohol are prepared by 
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contacted by EBL, FIBID or EBL combined with FIBID. Figure 7(a) illustrates a SEM 
image of a Si/SiO2 substrate patterned with Ti/Au metallic interdigitated electrode 
system, while Figure 7(b) presents a SEM image of Ti/Au metallic interdigitated 
electrodes having metal oxide nanowires, transferred by drop-casting, between the 
Ti/Au electrodes.

The electrical measurements of the single CuO or ZnO nanowires contacted by 
lithographic techniques were carried out at room temperature in a typical two-
points configuration for diodes and a three-points configuration for FETs.

4.1 Diodes and FETs based on single CuO nanowires

In the following, CuO nanowires prepared by thermal oxidation in air at 500°C 
were used to develop diodes and FETs based on single CuO nanowires, these 
nanowires being chosen owed to the smaller diameter of about 60 nm and the 
lengths of about 30 μm for the nanowires.

Single CuO nanowire based Schottky diodes were fabricated by contacting 
single CuO nanowires at one end with Ti/Au by EBL and at the other end with Pt 
using FIBID. This outcome can be explained considering that a Pt–CuO nanowire 
structure exhibits an Ohmic behavior, and that a CuO nanowire–Ti/Au structure 
discloses a Schottky rectifying behavior [11]. Thus, Figure 8(a) presents a SEM 
image of a single CuO nanowire prepared by thermal oxidation in air and contacted 
at one end with Ti/Au (100 nm/300 nm) by EBL, RF magnetron sputtering and 
thermal vacuum evaporation and at the other end with Pt (300 nm) by FIBID, 
evidencing a distance between the metallic contacts of about 11 μm. Figure 8(b) 
displays the EDX elemental mapping analysis of the metallic electrodes that contact 
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the nanowire to the metallic interdigitated electrodes, confirming the presence of Ti 
and Au elements in the case of EBL and Pt for FIBID. The current–voltage character-
istics of a single CuO nanowire contacted by EBL and FIBID (Figure 8(c)) reveal a 
rectifying Schottky behavior, typical for a Schottky diode [11]. Moreover, the values 
of the specific parameters for diodes were estimated from the current–voltage depen-
dence to be: ION/IOFF ratio ≈ 103 and the ideality factor n ≈ 1.8, being in accordance 
with data reported in the literature [11].

In order to develop FETs based on single CuO nanowires, FIBID was used to 
contact single CuO nanowires at both ends of the nanowire with Pt (300 nm), the 
SEM image of a single CuO nanowire contacted by this technique being illustrated 
in Figure 9(a). The current–voltage characteristic of a single CuO nanowire con-
tacted by FIBID (Figure 9(b)) evidences a linear dependence, indicating an Ohmic 
contact formed between the CuO nanowire and Pt electrodes.

Figure 10(a) and (b) present a SEM image and the corresponding EDX mapping, 
proving the presence of the Pt element into the source and drain electrodes and Cu 
in the CuO nanowire. The length of the p-type semiconductor channel between the 
source and drain is about 8 μm. The output characteristics (Figure 10(c)) exhibit an 
increase in the source-drain current towards higher negative gate voltages, typical for 
a p-type semiconductor channel. Also, it can be noticed a change in the shape of the 
output characteristic at −12 V applied gate voltage, indicating the saturation region 
of the FET. The semilogarithmic plot of the transfer characteristic of the single CuO 
nanowire based FET (Figure 10(d)) disclose an ION/IOFF ratio ≈ 103, in agreement 
with data reported in the literature for FETs based on single nanowires [11].

4.2 Diodes and FETs based on single ZnO nanowires

In the fabrication of diodes and FETs based on single ZnO nanowires were used 
ZnO nanowires prepared by thermal oxidation in air at 500°C, these being chosen 
due to their smaller diameter of about 30 nm and the lengths of about 30 μm and 
also ZnO nanowires chemically synthesized in aqueous solution.

In order to develop diodes based on ZnO nanowires obtained by a dry method, 
single ZnO nanowire were contacted at the both ends of the nanowire Ti/Au by 
EBL. Hence, Figure 11(a) and (b) displays two SEM images, at different mag-
nifications, of a single ZnO nanowire prepared by thermal oxidation in air and 
contacted at both ends with Ti/Pt (100 nm/200 nm) by EBL and RF magnetron 
sputtering, evidencing a distance between the metallic contacts of about 2 μm. 
The current–voltage measurement of a single ZnO nanowire contacted by EBL 
(Figure 11(c)) exhibits a non-liniar symmetrical shape indicating a structure 
having two back-to-back Schottky diodes, similar type of behavior being reported 
in the literature [45].

Figure 8. 
(a) SEM image, (b) EDX elemental mapping and (c) current–voltage characteristic of a single CuO nanowire 
prepared by a dry method and contacted by EBL and FIBID.
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FETs based on single ZnO nanowires prepared by a dry method were fabricated by 
contacting single ZnO nanowires at both ends with Ti/Au (100 nm/300 nm) by EBL, 
RF magnetron sputtering and thermal vacuum evaporation, the SEM image of a single 
ZnO nanowire contacted by EBL being illustrated in Figure 12(a). The current–voltage 
dependence of a single ZnO nanowire contacted by EBL (Figure 12(b)) put in evi-
dence a linear shape, typical for an Ohmic contact formed between the ZnO nanowire 
and the two Ti/Au contacts.

Figure 9. 
(a) SEM image and (b) current–voltage of a single CuO nanowire prepared by a dry method and contacted by 
FIBID.

Figure 10. 
(a) SEM image, (b) EDX elemental mapping, (c) output and (d) transfer characteristics of a FET based on a 
single CuO nanowire prepared by a dry method and contacted by FIBID.
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Figure 13(a) displays a SEM image of a single ZnO nanowire contacted by EBL, 
indicating that the length of the n-type semiconductor channel between the source 
and drain is about 1 μm. The equivalent EDX mapping image (Figure 13(b)) proves 

Figure 11. 
(a), (b) SEM images and (c) current–voltage characteristic of a single ZnO nanowire prepared by a dry 
method and contacted by EBL.

Figure 12. 
(a) SEM image and (b) current–voltage characteristic of a single ZnO nanowire prepared by a dry method 
and contacted by EBL.

Figure 13. 
(a) SEM image, (b) EDX elemental mapping, (c) output and (d) transfer characteristics of a FET based on a 
single ZnO nanowire prepared by a dry method and contacted by EBL.
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the presence of the Ti and Au elements into the source and drain electrodes pro-
vided by EBL.

The output characteristics of a FET based on a single ZnO nanowire (Figure 13(c)) 
evidence an increase in the source-drain current towards higher positive gate voltages, 
typical for an n-type semiconductor channel. It can be observed that at 1.5 V applied 
drain-source voltage, the FET reaches the saturation region. The semilogarithmic 
plot of the transfer characteristic of a FET having a single ZnO nanowire as a channel 
(Figure 13(d)) exhibits an ION/IOFF ratio ≈ 105, in accordance with data reported in the 
literature for FETs based on single nanowires [13].

In the following, single ZnO nanowires synthesized by a wet technique were 
used as n-type channels into FET devices. Accordingly, FETs based on single ZnO 
nanowires were developed by contacting single ZnO nanowires at both ends with 
Ti/Au (100 nm/200 nm) by EBL, RF magnetron sputtering and thermal vacuum 
evaporation. Figure 14(a) reveals the SEM image of a single ZnO nanowire 

Figure 14. 
(a) SEM image and (b) current–voltage characteristic of a single ZnO nanowire obtained by a wet method 
and contacted by EBL.

Figure 15. 
(a) SEM image, (b) EDX elemental mapping, (c) output and (d) transfer characteristics of a FET based on a 
single ZnO nanowire obtained by a wet method and contacted by EBL.
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synthesized by a wet method contacted by EBL. Similar to the ZnO nanowires 
prepared by a dry path, the current–voltage characteristic of a single ZnO nanowire 
obtained by a wet approach contacted by EBL (Figure 14(b)) exhibits a linear 
shape, with an Ohmic contact between the ZnO nanowire and the two Ti/Au 
contacts.

The SEM image at a higher magnification of a single ZnO nanowire contacted 
by EBL (Figure 15(a)) evidences that the length of the nanowire channel between 
the source and drain is about 2 μm. The corresponding EDX mapping image 
(Figure 15(b)) confirms the presence of the Ti and Au elements into the source 
and drain metallic electrodes fabricated by EBL.

The output characteristics of a FET based on a single ZnO nanowire prepared 
by a wet method (Figure 15(c)) disclose an increase in the source-drain current 
towards higher positive gate voltages, demonstrating that the channel is an n-type 
semiconductor. In addition, it can be noticed that at 2 V applied drain-source 
voltage, the FET reaches the saturation region. The semilogarithmic plot of the 
transfer characteristic of a FET having a single ZnO nanowire as an n-type channel 
(Figure 15(d)) reveals an ION/IOFF ratio ≈ 104, the value being in accordance with 
data reported in the literature for ZnO single nanowires based FETs [13].

5. Conclusions

Metal oxide, ZnO and CuO, nanowire arrays were obtained by using two 
straightforward and cost-effective preparation methods: chemical synthesis in 
aqueous solution (wet) and thermal oxidation in air (dry). The influence of the 
preparation technique on the morphological, structural and optical properties 
of the metal oxide nanowire arrays were investigated. Further, ZnO and CuO 
nanowires prepared by these wet and dry approaches were successfully integrated 
as active elements into electronic devices, such as Schottky diodes and FETs by 
using lithographic techniques (photolithography, EBL and FIBID) and thin film 
deposition techniques (RF magnetron sputtering and thermal vacuum evaporation). 
Additionally, the characteristic parameters for the diodes and FETs were estimated 
from the electrical measurements: n ≈ 1.8 and ION/IOFF ratio ≈ 103 for diodes and 
ION/IOFF ratio ≈ 104–105 for the FETs.

The main advantage of fabricating electronic devices based on single metal 
oxide nanowires is represented by the possibility to integrate them in optoelectronic 
applications.
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obtained by a wet approach contacted by EBL (Figure 14(b)) exhibits a linear 
shape, with an Ohmic contact between the ZnO nanowire and the two Ti/Au 
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Chapter 3

Synthesis of Nanowire Using 
Glancing Angle Deposition and 
Their Applications
Chinnamuthu Paulsamy, Pheiroijam Pooja  
and Heigrujam Manas Singh

Abstract

Nanowires are highly attractive for advanced nanoelectronics and nanoscience 
applications, due to its novel properties such as increased surface area, large aspect 
ratio, and increased surface scattering of electrons and phonons. The design and 
fabrication of nanowires array provide a great platform to overcome the challenges/
limitation of its counter partner. This chapter focuses on the synthesis of metal 
oxide nanowire and axial heterostructure nanowire array using the Glancing angle 
deposition (GLAD) technique. The structural, optical and electrical properties are 
studied. This GLAD technique offers control over one-dimensional (1D) nano-
structure growth with self-alignment capability. It is also reviewed in an effort to 
cover the various application in this area of optoelectronic devices and wettability 
applications that had been synthesized using GLAD.

Keywords: nanowire, GLAD, heterojunction, photodetectors, wettability

1. Introduction

Low-dimensional nanostructures such as zero-dimensional (0D), one-dimen-
sional (1D) and two-dimensional (2D) have attracted enormous attention from 
three-dimensional or bulk structure due to the novel physical and chemical proper-
ties caused by size and quantum effects. Figure 1 illustrates the schematic represen-
tation of electron system in bulk structure and low-dimensional nanostructures. 
Quantum dot are 0D nanostructures with three quantum-confined directions. 
Quantum plane are 2D nanostructures with one quantum-confined direction, while 
two unconfined directions is available for movement of particle. Bulk structures 
are 0D structure with no quantum-confined directions. Nanowires (NWs) are 
1D nanostructures with a large aspect ratio (length/diameter), with diameters in 
the 1–200 nm scale and lengths ranging from some hundreds of nanometers up to 
several tens of micrometer. Owing to their nanoscale dimensions, they have size 
confinement effects, which give them novel properties as compared to the bulk 
materials. Nanowires have two quantum-confined directions but one unconfined 
direction which is available for electrical conduction. The 1D geometry on the 
nanoscale of the nanowires provides an increased surface area, very high density of 
states, diameter dependent bandgap, and increased surface scattering of electrons 
and phonons [1]. These anisotropic properties are advantageous in nanoelectronics, 
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photonics, optoelectronics, and bioengineering and have also generated great 
research interest [1, 2]. The concept of many advanced nanowire-based optoelec-
tronics devices, including photodetectors, photovoltaic cells, has also been demon-
strated, making nanowires promising material for advanced optoelectronics. Thus, 
nanowires draw considerable attention from those trying to apply nanotechnology 
as well as investigating in nanoscience.

Nanowires are the result of anisotropic, 1D growth on a nanometer scale. 
Therefore, the critical issue related to the growth of the nanowires is how to syn-
thesize in a controlled manner. Regarding many approached have been employed, 
including the use of the nanolithography-based method [3], solution-based method 
[4], vapor-based methods [5], template-based methods [6], and glancing angle 
deposition (GLAD) technique [7]. Among these, the GLAD is a physical vapor 
deposition technique, which is a combination of oblique angle deposition and 
substrate positional control, which is most attractive owing to its simplicity and 
synthesis of different nanostructures with controlled porosity and shapes [7].

This chapter reviews the synthesis of nanowires by the GLAD technique and 
their applications. Furthermore, this chapter focuses on the GLAD technique. This 
chapter seeks to explain the understanding of the GLAD technique in the synthesis 
of nanowires. Accordingly, the chapter first reviews the fundamentals of the GLAD 
technique and the synthesis of nanowires. They are followed by some examples of 
optoelectronic devices and wettability applications of NWs that have been synthe-
sized based on the GLAD technique.

2. Oblique angle deposition (OAD)

The glancing angle deposition (GLAD) technique is developed by Robbie and 
Brett [8], which is an extension to oblique angle deposition (OAD), where the 
substrate position is manipulated during the deposition. This section reviews the 
oblique angle deposition.

In OAD, the collimated evaporated beam is incident on the substrate surface 
normal with an incident angle α, as shown in Figure 2(a). The incident vapor flux is 
treated as vector denoted by F, as shown in Figure 2(b) with its two components, a 
vertical component, and a lateral component. The arrival of incident vapor flux is a 
random process. During the deposition process, the impinging atoms will form 
islands on the substrate surface at random. The initial deposited seed will act as 
shadowing centers, and the tallest islands will receive more atoms as compared to 

Figure 1. 
Schematic illustration of electron system in (a) bulk structure, (b) quantum plane, (c) quantum wire, and  
(d) quantum dot.
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the shorter ones. This phenomenon is known as the shadowing effect. With this 
procedure, only the tallest deposited material will grow into columns and thus 
result in a nanocolumn thin film formation. The lateral component is responsible 
for the shadowing effect. This leads to the inclination of the tilting of the nano-
structure towards the direction of the incoming vapor flux, and the tilt angle is 
given by the tangent rule, 1tan tan

2
β = θ . Figure 3 shows how this effect takes place. 

In general, the columnar tilt angle β is less than the vapor flux incident angle [7].
The thin films deposited by OAD shows the following properties: Porous thin 

films acquiring nano-columnar structures. The nanocolumns tilt away from the 
substrate surface normal and towards the incident vapor flux direction.

2.1 Glancing angle deposition

The GLAD technique is developed based on the OAD with the only addition, 
which is the manipulation of the substrate position by using two stepper motors, one 
controls the incident angle, α, and the other motor controls the azimuthal rotation of 
the substrate with respect to the substrate surface normal. Figure 4 shows the GLAD 
setup. The tilting of the nanocolumn structure found in OAD is mitigated primar-
ily to the rotation of the substrate, which cancels out the lateral component of the 
incident vapor flux during the deposition process. By changing the speed and phase 
of the azimuthal rotation along with the deposition rate, different sculptures of nano-
columns such as C-shape, S-shape, helical or vertical nanocolumns can be achieved.

The nanocolumns synthesized by GLAD show the following properties: The 
porosity of the film is controlled by changing the incident angle. Self-alignment is 

Figure 2. 
(a) Experimental setup for OAD and (b) incident vapor flux components.

Figure 3. 
The shadowing effect during OAD (a) initial nucleation to form shadowing centres, and (b) columnar 
structures formed due to the shadowing effect.
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result in a nanocolumn thin film formation. The lateral component is responsible 
for the shadowing effect. This leads to the inclination of the tilting of the nano-
structure towards the direction of the incoming vapor flux, and the tilt angle is 
given by the tangent rule, 1tan tan
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β = θ . Figure 3 shows how this effect takes place. 

In general, the columnar tilt angle β is less than the vapor flux incident angle [7].
The thin films deposited by OAD shows the following properties: Porous thin 

films acquiring nano-columnar structures. The nanocolumns tilt away from the 
substrate surface normal and towards the incident vapor flux direction.

2.1 Glancing angle deposition

The GLAD technique is developed based on the OAD with the only addition, 
which is the manipulation of the substrate position by using two stepper motors, one 
controls the incident angle, α, and the other motor controls the azimuthal rotation of 
the substrate with respect to the substrate surface normal. Figure 4 shows the GLAD 
setup. The tilting of the nanocolumn structure found in OAD is mitigated primar-
ily to the rotation of the substrate, which cancels out the lateral component of the 
incident vapor flux during the deposition process. By changing the speed and phase 
of the azimuthal rotation along with the deposition rate, different sculptures of nano-
columns such as C-shape, S-shape, helical or vertical nanocolumns can be achieved.

The nanocolumns synthesized by GLAD show the following properties: The 
porosity of the film is controlled by changing the incident angle. Self-alignment is 

Figure 2. 
(a) Experimental setup for OAD and (b) incident vapor flux components.

Figure 3. 
The shadowing effect during OAD (a) initial nucleation to form shadowing centres, and (b) columnar 
structures formed due to the shadowing effect.
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due to the shadowing effect. The shape and in-plane alignment of nanocolumns 
can be modified. GLAD is compatible with a large number of materials [9]. Table 1 
summarizes the synthesis of nanowires using the GLAD technique. The following 
sections give examples of the various applications of nanowires synthesized using 
the GLAD technique. The general experimental conditions are the following: the 
experiments were performed in an electron-beam evaporator (BC 300 HHV India) 
incorporated with GLAD under high vacuum pressure (6 × 10−6 mbar) inside the 
chamber. The deposition rate varied from 0.5–1 Å/s, and rotation speed was main-
tained at 20–30 rpm. The substrate holder was oriented at 85° with respect to the 
source. During the deposition process, the growth rate was monitored by using a 
quartz crystal-based digital thickness monitor inside the chamber.

2.2 Properties of nanowires synthesized using GLAD

This section discusses the structural and optical properties of nanowires. For 
various applications, characterizing the structural, optical, and electrical properties 
of nanowires is important so that the interrelationship can be investigated and estab-
lished. Nanowires synthesized using the same material under the same experimental 
conditions may possess different properties due to the differences in structural 
properties.

2.2.1 Structural characterization

Structural properties of a nanowire help in determining the various attribute 
like optical and electrical properties. X-ray diffraction (XRD), scanning electron 
microscope (SEM), transmission electron microscope (TEM) are used to investigate 
the structural properties of nanowires. XRD characterization provides crystal 
structure information. The peak in XRD provides the crystal phase structure long 
with growth direction. SEM produces images of the nanowires down to the length 
scale of ~100 nm, which gives information regarding the structural arrangement, 
geometrical features of the nanowire. For example, SEM images of TiO2 nanowire 
arrays grown on Si substrate provide evidence for shadowing effect as well as 

Figure 4. 
Experimental setup for GLAD.
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information on the geometry of the nanowires, as shown in Figure 5(a) and (b). 
TEM is used for studying the nanowire at the atomic scale. Furthermore, selected 
area electron diffraction (SAED) patterns provide information on the crystal 
structure of nanowires. For example, TEM image of TiO2 provide information on 
the geometry of the nanowires at nanoscale along with growth direction as shown 
in inset Figure 5(c).

2.2.2 Optical characterization

The optical characterization of nanowires provides information on properties 
different from those of the bulk forms. Optical measurements like absorption and 
photoluminescence provide information on the absorption and emission of light 
in frequency range varying from UV-Vis-NIR spectra. Absorption measurement 
aids in determining the bandgap of the grown nanowire shown in Figure 6. The 
difference in the optical properties is due to the geometric differences such as the 
diameter and length of nanowires.

Photoluminescence (PL) measurement studies the optical bandgap, oxygen 
vacancies, and defect states in nanowires. For example, Figure 7 investigates the PL 
spectrum of TiO2 NW under 250 nm wavelength excitation.

Figure 5. 
FE-SEM and HR-TEM images of TiO2 nanowire: (a) top view, (b) side view, and (c) HR-TEM images 
(inset). Adapted from Ref. [15].

Material Deposition method Reference

TiO2 Electron beam [10–15]

TiO2/In2O3 Electron beam [16]

SnO2 Electron beam [17]

WO2 Electron beam [18]

Er2O3-doped SnO2 Electron beam [19]

Er2O3 Electron beam [20]

Er-doped TiO2 Electron beam [21, 22]

Co3O4-TiO2 Electron beam [23]

SiOx-In2-x O3-y Electron beam [24]

Ge Electron beam [25]

Table 1. 
Summary of nanowires synthesized using the GLAD technique.
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information on the geometry of the nanowires, as shown in Figure 5(a) and (b). 
TEM is used for studying the nanowire at the atomic scale. Furthermore, selected 
area electron diffraction (SAED) patterns provide information on the crystal 
structure of nanowires. For example, TEM image of TiO2 provide information on 
the geometry of the nanowires at nanoscale along with growth direction as shown 
in inset Figure 5(c).

2.2.2 Optical characterization

The optical characterization of nanowires provides information on properties 
different from those of the bulk forms. Optical measurements like absorption and 
photoluminescence provide information on the absorption and emission of light 
in frequency range varying from UV-Vis-NIR spectra. Absorption measurement 
aids in determining the bandgap of the grown nanowire shown in Figure 6. The 
difference in the optical properties is due to the geometric differences such as the 
diameter and length of nanowires.

Photoluminescence (PL) measurement studies the optical bandgap, oxygen 
vacancies, and defect states in nanowires. For example, Figure 7 investigates the PL 
spectrum of TiO2 NW under 250 nm wavelength excitation.

Figure 5. 
FE-SEM and HR-TEM images of TiO2 nanowire: (a) top view, (b) side view, and (c) HR-TEM images 
(inset). Adapted from Ref. [15].

Material Deposition method Reference

TiO2 Electron beam [10–15]

TiO2/In2O3 Electron beam [16]

SnO2 Electron beam [17]

WO2 Electron beam [18]

Er2O3-doped SnO2 Electron beam [19]

Er2O3 Electron beam [20]

Er-doped TiO2 Electron beam [21, 22]

Co3O4-TiO2 Electron beam [23]

SiOx-In2-x O3-y Electron beam [24]

Ge Electron beam [25]

Table 1. 
Summary of nanowires synthesized using the GLAD technique.
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3. Applications

In the preceding sections, we have discussed the central characteristics of 
nanowires, which attracts attention to find the application by using its novel 
properties compared to their bulk materials. Based on the GLAD technique, 
many conceptual devices have already been reported. In this section, selected 
applications of GLAD synthesized nanowires such as photodetectors and wet-
tability applications are discussed. These conceptual devices were investigated 
based on an array of nanowires. First, the silicon (Si) substrate is subjected to a 
3-step cleaning process using electronic grade acetone, methanol, and deionized 
(DI) water, and then an array of nanowires is synthesized on the Si substrate. 
The top metal contact electrode is synthesized on the nanowire arrays through an 
Al mask with a hole diameter ~1 mm and ITO, which is used as the back-contact 
electrode.

Figure 6. 
Tauc plot of Au-NP:TiO2-NW and TiO2-NW, inset: UV-Vis absorption of both samples. Adapted from Ref. [10].

Figure 7. 
Room temperature PL spectrum of as deposited TiO2 nanowire. Adapted from Ref. [15].
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3.1 Photodetector

Semiconductor photodetectors are devices used for the detection of light. 
More specifically, photodetectors have applications in optical communication, 
flame detection, chemical, and biological detection [26]. The PN junction is one 
of the most commonly used configurations for semiconductor photodetectors. 
Many researchers have synthesized nanowire and axial heterostructure nanowire 
array-based photodetectors using GLAD technique. Table 2 gives a summary of 
the figure of merit for the photodetectors. These photodetectors are used for the 
detection of UV and visible light. The performance of photodetector is evaluated 
by investigation of various parameters such as photosensitivity, responsivity, 
detectivity, and noise equivalent ratio. The photosensitivity for photodetectors 
is calculated from the ratio of light current to dark current given by equation 
below:

 Photo Dark

Dark

I IPhotsensitivity
I
−

=  (1)

The responsivity at a particular wavelength is computed from the ratio of 
photocurrent to incident optical power defined below:

 Photo

Opto

IR
Pλ =  (2)

where IPhoto is the photocurrent and Popto is the optical power. The detectivity 
and NEP give the noise performance of photodetectors. Detectivity is given by

 

Dark

RD
2eJ

∗ λ=
 (3)

where JDark is the dark current density, e is the charge of electron and Rλ is the 
responsivity at a particular wavelength. The NEP is expressed as

 A BNEP
D∗=  (4)

where A is the area of device and B is the bandwidth. The bandwidth is assumed 
to be 1 kHz as the flicker noise. With these relations, detectivity and NEP are plotted 
as a function of voltage to evaluate the performance of photodetector. Furthermore, 
the photocurrent-time response gives the temporal response under light on-off 
to study the switching behavior at a fixed voltage. The cumulative analysis of the 
figure of merit for photodetectors supports that the synthesis of nanowire and axial 
heterostructure nanowire array-based photodetectors using the GLAD technique 
as a potential prospect to fulfill the requirements of commercial UV-Visible 
photodetectors.
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3.2 Wettability application

In today’s world, various technologies have been obtained from nature. Among 
them, self-cleaning technology is one of it. Many surfaces found in nature show 
self-cleaning properties. The leaves of plants such as lotus [27] and wings of butter-
flies [28] are a few examples. Self-cleaning technology obtained a lot of attention in 
the late 20th century for applications ranging from solar panel cleaning, windowpane 
cleaning, and textiles to cement. In recent years, many research works are carried 
out to develop durable and efficient self-cleaning coating surfaces with improved 
optical qualities. The self-cleaning coating can be classified into two categories: 
hydrophobic and hydrophilic coatings. In the hydrophobic coating technique, water 
droplets roll and slide over the surfaces and clean them, while in the hydrophilic 
technique, water forms a sheet of water over the surfaces and carries the dirt and 
other impurities away. The phenomenon of self-cleaning is associated with surface 
contact angle, which is the angle formed between the surfaces of the liquid droplet 
to the solid surface. Generally, when the contact angle is less than 900, the solid 
surface is defined as a hydrophilic surface (Figure 8(a)). If the contact angle is 
greater than 900, the surface is termed as a hydrophobic surface (Figure 8(b)). 
Likewise, the surface with a water contact angle close to zero is defined as super 
hydrophilic, and surface with a contact angle greater than 1500 is categorized as 
super hydrophobic (Figure 8(c)).

Young in 1805 proposed a model to define the state of liquid droplet on an ideal 
rigid surface [29]. The equation defined by Young’s model is given as:

 SG SL LG Ycosγ = γ + γ θ  (5)

θY is the water contact angle and ϒSG, ϒSL and ϒLG are the interfacial surface 
tensions of solid and gas, solid and liquid, liquid and gas, respectively. This 

Figure 8. 
Schematic diagram of (a) hydrophilic (θ < 900), (b) hydrophobic (θ > 900), and (c) super hydrophobic 
(θ > 1500) surfaces.
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3.2 Wettability application

In today’s world, various technologies have been obtained from nature. Among 
them, self-cleaning technology is one of it. Many surfaces found in nature show 
self-cleaning properties. The leaves of plants such as lotus [27] and wings of butter-
flies [28] are a few examples. Self-cleaning technology obtained a lot of attention in 
the late 20th century for applications ranging from solar panel cleaning, windowpane 
cleaning, and textiles to cement. In recent years, many research works are carried 
out to develop durable and efficient self-cleaning coating surfaces with improved 
optical qualities. The self-cleaning coating can be classified into two categories: 
hydrophobic and hydrophilic coatings. In the hydrophobic coating technique, water 
droplets roll and slide over the surfaces and clean them, while in the hydrophilic 
technique, water forms a sheet of water over the surfaces and carries the dirt and 
other impurities away. The phenomenon of self-cleaning is associated with surface 
contact angle, which is the angle formed between the surfaces of the liquid droplet 
to the solid surface. Generally, when the contact angle is less than 900, the solid 
surface is defined as a hydrophilic surface (Figure 8(a)). If the contact angle is 
greater than 900, the surface is termed as a hydrophobic surface (Figure 8(b)). 
Likewise, the surface with a water contact angle close to zero is defined as super 
hydrophilic, and surface with a contact angle greater than 1500 is categorized as 
super hydrophobic (Figure 8(c)).

Young in 1805 proposed a model to define the state of liquid droplet on an ideal 
rigid surface [29]. The equation defined by Young’s model is given as:

 SG SL LG Ycosγ = γ + γ θ  (5)

θY is the water contact angle and ϒSG, ϒSL and ϒLG are the interfacial surface 
tensions of solid and gas, solid and liquid, liquid and gas, respectively. This 

Figure 8. 
Schematic diagram of (a) hydrophilic (θ < 900), (b) hydrophobic (θ > 900), and (c) super hydrophobic 
(θ > 1500) surfaces.
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equation shows the water contact angle of a liquid droplet on solid surface from 
the three surface tensions. As seen in Figure 9(a), an equilibrium state is reached 
between these three surface tensions, and the contact angle is given by the angle 
between ϒSL and ϒLG. In 1936, Wenzel further purposed a model to describe 
homogeneous wetting regimes [30]. This wetting regime for water contact angle on 
rough surfaces is defined by the equation given below:

 W Ycos rcosθ = θ  (6)

where θW and θY represent apparent contact angle and Young’s contact angle for 
an ideal rigid surface respectively while r represents the surface roughness factor, 
which is the ratio of true solid surface area to the apparent surface area. This model 
states on the affiliation between the structure and surface tension of a homogeneous 
surface. In Figure 9(b), the true surface area is larger than the apparent surface 
area, thus the value of r is greater than 1. Wenzel’s model is applicable to surface 
with single chemical component and thermodynamically stable state, which limits 
its applications in heterogeneous surfaces. In 1944, Cassie and Baxter defined an 
equation to describe contact angle for composite surfaces [31].

 ( )C 1 1 2 2 1 2cos f cos f cos , f 1fθ = θ + θ + =  (7)

Where θC is apparent contact angle in Cassie–Baxter model, θ1 and θ2 are intrinsic 
contact angle of first and second components, respectively. f1 and f2 are apparent 
area fraction of first and second component, respectively. In general, if either one of 
surface component is air, then θ2 = 1800.

 ( )C 1 1 2 1 1cos f cos f f cos 1 1θ = θ − = θ + −  (8)

Figure 9(c) displays a water droplet on surface showing hydrophobic property 
due to surface composed of air and hydrophobic component.

Metal oxides such as TiO2, SnO2, and ZnO have been used as a self-cleaning and 
antifogging surface [32, 33]. Metal oxides are known to have good stability and 
transparency, which enable tuning wettability on application of proper radiation. 
Amidst them, TiO2 is vastly studied due to its effective photocatalytic activity as it 
washes off dirt or decomposes organic contaminants from surfaces [34]. Moreover, 
TiO2 is known for its nontoxicity, chemical, and thermal stability [16, 35, 36]. 
Moreover, growth of perpendicularly aligned coaxial TiO2/In2O3 NW on Si substrate 
is problematic due to limited growth techniques. Here, coaxial TiO2/In2O3 NW 
assembly deposited employing GLAD technique inside electron beam evaporator 
[37] showed comparatively faster photo-induced wettability tuning within 10 min 
illumination than the reported SnO2 doped with Fe thin film deposited using spin 
coating [38], TiO2 films deposited using metal-organic chemical vapor deposition 
process [39], grapheme films prepared using chemical vapor deposition (CVD) 
method [40], TiO2 films were fabricated on stainless steel substrates via electro-
phoretic deposition (EPD) [41]. Based on Cassie-Baxter relation, the water contact 
angle of TiO2/In2O3 NW was found to be 129°. Figure 10(a) shows coaxial TiO2/
In2O3 NW FESEM side view and inset of Figure 3(b) schematic of TiO2/In2O3 NW. 
In 1D NW heterostructure, there is more surface area to volume ratio and allows 
charge carriers to flow with less scattering enabling more carriers interaction with 
water as compared with uniform thin films. Vertically aligned NWs also acquires 
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Figure 10. 
(a) Coaxial TiO2/In2O3 NW FESEM side view, (b) water contact angle variation under UV illumination of 
coaxial TiO2/In2O3 NW, TiO2 NW and In2O3 NW (inset schematic of TiO2/In2O3 NW), (c) 600°C annealed 
TiO2/In2O3 NW FESEM side view, and (d) static contact angle of as-deposited TiO2-In2O3 NWs and annealed 
samples. Adapted from Ref. [37, 42].

Figure 9. 
(a) A liquid droplet on smooth surface in young model, (b) a liquid droplet on rough surface in Wenzel model, 
and (c) a liquid droplet on rough and porous surface in Cassie and Baxter model.
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equation shows the water contact angle of a liquid droplet on solid surface from 
the three surface tensions. As seen in Figure 9(a), an equilibrium state is reached 
between these three surface tensions, and the contact angle is given by the angle 
between ϒSL and ϒLG. In 1936, Wenzel further purposed a model to describe 
homogeneous wetting regimes [30]. This wetting regime for water contact angle on 
rough surfaces is defined by the equation given below:

 W Ycos rcosθ = θ  (6)

where θW and θY represent apparent contact angle and Young’s contact angle for 
an ideal rigid surface respectively while r represents the surface roughness factor, 
which is the ratio of true solid surface area to the apparent surface area. This model 
states on the affiliation between the structure and surface tension of a homogeneous 
surface. In Figure 9(b), the true surface area is larger than the apparent surface 
area, thus the value of r is greater than 1. Wenzel’s model is applicable to surface 
with single chemical component and thermodynamically stable state, which limits 
its applications in heterogeneous surfaces. In 1944, Cassie and Baxter defined an 
equation to describe contact angle for composite surfaces [31].

 ( )C 1 1 2 2 1 2cos f cos f cos , f 1fθ = θ + θ + =  (7)

Where θC is apparent contact angle in Cassie–Baxter model, θ1 and θ2 are intrinsic 
contact angle of first and second components, respectively. f1 and f2 are apparent 
area fraction of first and second component, respectively. In general, if either one of 
surface component is air, then θ2 = 1800.

 ( )C 1 1 2 1 1cos f cos f f cos 1 1θ = θ − = θ + −  (8)

Figure 9(c) displays a water droplet on surface showing hydrophobic property 
due to surface composed of air and hydrophobic component.

Metal oxides such as TiO2, SnO2, and ZnO have been used as a self-cleaning and 
antifogging surface [32, 33]. Metal oxides are known to have good stability and 
transparency, which enable tuning wettability on application of proper radiation. 
Amidst them, TiO2 is vastly studied due to its effective photocatalytic activity as it 
washes off dirt or decomposes organic contaminants from surfaces [34]. Moreover, 
TiO2 is known for its nontoxicity, chemical, and thermal stability [16, 35, 36]. 
Moreover, growth of perpendicularly aligned coaxial TiO2/In2O3 NW on Si substrate 
is problematic due to limited growth techniques. Here, coaxial TiO2/In2O3 NW 
assembly deposited employing GLAD technique inside electron beam evaporator 
[37] showed comparatively faster photo-induced wettability tuning within 10 min 
illumination than the reported SnO2 doped with Fe thin film deposited using spin 
coating [38], TiO2 films deposited using metal-organic chemical vapor deposition 
process [39], grapheme films prepared using chemical vapor deposition (CVD) 
method [40], TiO2 films were fabricated on stainless steel substrates via electro-
phoretic deposition (EPD) [41]. Based on Cassie-Baxter relation, the water contact 
angle of TiO2/In2O3 NW was found to be 129°. Figure 10(a) shows coaxial TiO2/
In2O3 NW FESEM side view and inset of Figure 3(b) schematic of TiO2/In2O3 NW. 
In 1D NW heterostructure, there is more surface area to volume ratio and allows 
charge carriers to flow with less scattering enabling more carriers interaction with 
water as compared with uniform thin films. Vertically aligned NWs also acquires 
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Figure 10. 
(a) Coaxial TiO2/In2O3 NW FESEM side view, (b) water contact angle variation under UV illumination of 
coaxial TiO2/In2O3 NW, TiO2 NW and In2O3 NW (inset schematic of TiO2/In2O3 NW), (c) 600°C annealed 
TiO2/In2O3 NW FESEM side view, and (d) static contact angle of as-deposited TiO2-In2O3 NWs and annealed 
samples. Adapted from Ref. [37, 42].

Figure 9. 
(a) A liquid droplet on smooth surface in young model, (b) a liquid droplet on rough surface in Wenzel model, 
and (c) a liquid droplet on rough and porous surface in Cassie and Baxter model.



Nanowires - Recent Progress

56

characteristics such as low reflectivity and multiple scattering of light, which 
increase the carriers generation and thus more interaction of separated photogen-
erated charge carriers with water molecules to adsorb on the surface comparing 
with thin film. Moreover, TiO2/In2O3 NW (1.2 × 10−3 degree−1 min−1) showed better 
wettability transition rate than TiO2 NW (3.2 × 10−4 degree−1 min−1) and In2O3 NW 
(9.2 × 10−5 degree−1 min−1) due to the interfacial surface modification between TiO2 
and In2O3 and effective interaction between photogenerated charge carriers with 
water molecules (Figure 10(b)) [37]. All these assure prospective applications of 
coaxial TiO2/In2O3 NW grown using the GLAD technique for smart surfaces, with 
controlled switchable wettability by external stimuli for self-cleaning applications.

Further, TiO2/In2O3 NW surface wettability had been tuned by annealing 
treatment, without changing the surface with extra chemical coating or by external 
light stimuli [42]. Figure 10(c) shows 600°C Annealed TiO2/In2O3 NW FESEM side 
view. TiO2/In2O3 NW samples annealed at 600°C shows nearly superhydrophilic 
with static water contact angle of 12° (Figure 10(d)). The surface of TiO2/In2O3 NW 
had been controlled to acquire desired water contact angles, which is paramount for 
designing practical application in self-cleaning, electronic, and biomedical fields.

4. Conclusion

In this capture, we have reviewed the synthesis of nanowires using GLAD and 
their applications. We have showed that GLAD is a simple, cost effective, and 
catalytic free technique where well-defined vertically aligned nanostructures can 
be synthesized which cannot be achieved easily by nanolithography-based method, 
solution-based method, vapor-based methods, template-based methods. Nanowires 
synthesized by GLAD technique has the following advantages: Growth of vertically 
aligned nanostructure, the shadowing effect introduces self-alignment effect, the 
porosity of the nanostructure film can be controlled by changing the incident angle. 
Various applications of nanowire and axial heterostructure nanowire array-based 
photodetectors as well as wettability applications synthesized using the GLAD 
technique have been discussed. The performance of these applications can be 
improved further with different structural and growth parameters. Therefore, it 
can be concluded that these nanoscale-based applications have potential for future 
industrial and commercial applications.
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Chapter 4

Recent Progress in Gallium Nitride
for Photoelectrochemical Water
Splitting
Fangliang Gao, Qing Liu, Jiang Shi and Shuti Li

Abstract

With the constant consumption of traditional energy sources, it is urgent to
explore and develop new energy sources. Photoelectrochemical (PEC) water split-
ting is a method of preparing energy that can continuously generate hydrogen fuel
without pollution to the environment. As an important part of the PEC water
splitting system, the choice of semiconductor photoelectrode is crucial. Among
these materials, gallium nitride (GaN) has attracted considerable attention due to its
tunable band gap, favorable band edge positions, wide band gap, and good stability.
In the past years, many reports have been obtained in GaN for PEC water splitting.
This review summarizes the GaN as photoelectrodes for PEC water splitting, and
methods to improve the efficiency of GaN for PEC water splitting also will be
summarized from change morphology, doping, surface modification, and composi-
tion of solid solution or multiple-metal incorporation. Eventually, the future
research directions and challenges of GaN for PEC water splitting are also discussed.

Keywords: photoelectrochemical water splitting, GaN, semiconductor

1. Introduction

Rising energy demand due to population growth has led to the rapid
consumption of fossil fuels and serious environmental problems [1]. Currently,
most of the world’s energy comes from fossil fuels, which will eventually lead to
its predictable depletion. The decline of fossil energy reserves and the urgency to
reduce greenhouse gas emissions to alleviate climate warming is forcing us to seek
a cleaner, more renewable, and sustainable alternative energy source [2, 3].
Hydrogen is considered as a future ideal energy carrier to replace fossil fuels due
to its high gravimetric energy density and zero carbon emissions [4–6]. But the
achievement of this clean energy scheme largely depends on economically effi-
cient hydrogen production technologies. At present, the industrial production of
hydrogen is mainly realized by the reforming of hydrocarbon steam in fossil
energy or coal through reaction to fossil fuels under the control of steam, which is
not only expensive but also causes large emissions [7, 8]. Therefore, the use of
renewable energy to produce hydrogen is considered, despite challenges stand in
the way [7, 9].

In recent years, solar energy has attracted much attention as the largest
renewable energy source on the planet. If solar energy can be effectively used, it will
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provide a continuous supply of energy for future energy [10, 11]. However, the
vision of solar power to provide a significant portion of the global infrastructure is
far from being realized. The main challenge comes from not having a cost-effective
way to store solar energy. Solar water splitting is a prospective, environmentally
friendly, and sustainable method to achieve this beautiful vision [10, 12, 13]. There
are three types of solar water decomposition systems, photovoltaic electrolysis
(PV-E), photochemical (PC) systems, and photoelectrochemical (PEC) cells, as
shown in Figure 1. PV-E is achieved by connecting the photovoltaic cell and water
electrolyzer. The advantage of this strategy is its solar-hydrogen conversion effi-
ciency of more than 10%, but it is still too expensive compared to traditional
hydrogen production methods [14–18]. The maturity of PV-E technology also
determines that it is difficult to improve efficiency, so it is particularly important to
find economical and suitable solar-hydrogen conversion methods. PC is a simple
and cost-effective solar-hydrogen conversion method, but its conversion efficiency
is less than 1%. In addition, the potentially explosive hydrogen-oxygen mixture
produced requires expensive equipment for separation to avoid reaction, which
greatly increases production costs [19]. In this case, PEC provides considerable
conversion efficiency at an affordable cost [20, 21]. PEC integrates the light
absorption and electrochemical processes of PV-E into a single unit. Two gases
generated separately at the anode and cathode avoid further separation, which is
helpful for reducing costs. If the conversion efficiency can reach 10% and the life
span reaches 5 years, PEC is expected to be a replacement for traditional hydrogen
production methods [22–24].

Basically, solar energy is converted into chemical energy stored in the form of
hydrogen molecules by PEC devices [25, 26]. And a PEC device usually includes a
metal electrode and a semiconductor photoelectrode. Ideally, semiconductors need
to have a proper band gap and band structure to provide sufficient reaction poten-
tial and cover the solar spectrum as much as possible. In addition, excellent carrier
transport performance and good physicochemical stability are also essential.
Although a large number of semiconductor materials such as ZnO [27, 28], TiO2

[29, 30], WO3 [31, 32], and BiVO4 [33, 34] have been studied for photohydrolysis
experiments, no dependent material meets all the critical conditions described
above. Usually, overall water splitting consists of two half-reactions: oxidation of
water and reduction of protons.

2H2Oþ 4hþ ! 4Hþ þO2 Eox ¼ þ1:23 V (1)

4Hþ þ 4e� ! 2H2 Ered ¼ 0 V (2)

Figure 1.
Schematic of three types of solar water splitting system: PV-E, PC system, and PEC cell.
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It can be seen from the equation that the minimum voltage for water splitting is
1.23 V, which requires that the energy absorbed by exciting an electron is not less
than 1.23 eV. In order to meet this requirement, the photon energy absorbed by the
photoelectrode must also be at least 1.23 eV. But in fact, the energy required due to
the energy loss caused by the failure to reach the ideal structure is far more than
1.23 eV [35, 36].

In general, PEC water splitting includes the following processes:

1.Under light irradiation, carriers are generated in the semiconductor with a
suitable band gap.

2.Photogenerated carriers separate and migrate to the surface of the
semiconductor.

3.Redox reactions are induced by photogenerated carriers on semiconductor
surfaces (Figure 2) [37, 38].

The number of photogenerated carriers is determined by the absorption effi-
ciency of the semiconductor, which also reflects the utilization of sunlight. The
separation and migration processes of carriers are related to how many can reach
the semiconductor surface. Unfortunately, some carriers are lost resulting from
recombining on their way to the surface. And the carriers that reach the surface of
the semiconductor want to trigger an efficient water splitting reaction, which must
meet the following requirements. First, the conduction band edge potential of the
semiconductor material should be lower than H2 evolution potential, while the
valence band edge potential should be higher than O2 evolution potential [39]. This
means that the band gap of the semiconductor should be greater than 1.23 eV.
Semiconductor materials need to have stronger absorption in the solar spectrum to
generate more photogenerated carriers. Although wide band gap semiconductor
materials are likely to meet matching at the band edge positions, the absorption of
sunlight is very limited [7, 9, 40]. Second, carriers need to be separated and trans-
mitted quickly to reduce recombination, thereby improving the utilization effi-
ciency of photogenerated carriers for PEC water splitting. Finally, materials used
for PEC water splitting should be cost-effective and have good stability in the
catalytic process [41].

Among semiconductor materials commonly used in PEC water splitting, gallium
nitride (GaN) has been regarded as a promising candidate [42, 43]. GaN is likely to

Figure 2.
Schematic illustration of typical PEC water splitting.
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achieve self-driven overall water splitting because its band gap has good energy
alignment with the water redox potential [43, 44]. In addition, GaN is inherently
chemically inert even in a harsh environment, which guarantees the stability of the
device [45, 46]. Furthermore, the band gap of GaN and its alloys can be tuned by
alloying with Indium (In) to span nearly the entire solar spectrum [47, 48]. How-
ever, to achieve practical hydrogen production, GaN is still facing many challenges
as an excellent photoelectrode material, including how to get a larger reaction area,
how to enhance the absorption of light, and how to separate and transport
photogenerated carriers more quickly and effectively [49, 50]. Correspondingly,
many strategies have been proposed to address the mentioned drawbacks of GaN
photoelectrode. Compared with thin-film and bulk counterpart, nanostructures
have a smaller size and a larger surface area, which is helpful for shortening the
transmission distance and promotes the separation of carriers. Thus the efficiency
of carrier collection and utilization will be higher [51–53]. Doping is also one of the
commonly used approaches to effectively improve the electrical and optical prop-
erties of GaN, which can directly tune the energy band structure and carrier trans-
mission [54, 55]. Moreover, PEC water splitting kinetics can be promoted through
the surface decoration of co-catalysts, which can enhance the transmission of
carriers for water redox reaction [56, 57].

In this review, we summarize the recent progress of using GaN as
photoelectrode for PEC water splitting and enumerate some commonly used strat-
egies to improve the performance of photoelectrode. In the end, we also have a brief
outlook of GaN for PEC water splitting.

2. Basic principles of solar water splitting

2.1 PEC cell configurations

In the introduction section, we briefly introduced the three types of solar water
splitting. In this section, we will focus on the different structures of the PEC cell,
which can be achieved by an n-type semiconductor as photoanode (or p-type
semiconductor as photocathode) or connecting two different semiconductors.

For a semiconductor PEC cell with a half-reaction to occur on working electrode,
a counter electrode is required to complete the other half-reaction circuit. Gener-
ally, a reference electrode is connected to the working electrode to characterize an
externally applied voltage. If necessary, there are two compartments or ion
exchange membranes between the working and counter electrodes to avoid product
crossover. To overcome the thermodynamic obstacles of water splitting and the
potential losses caused by the recombination process, the band gap of the working
electrode is at least 1.6 eV [58–60]. However, the visible light absorption efficiency
will be attenuated if the band gap is too wide. To solve this problem, that is,
potential loss mechanisms that include reverse contact and overpotential caused by
poor catalytic activity, the semiconductor material should be deposited on a highly
conductive substrate to form a good ohmic contact, which allows most carriers to be
quickly injected from the working electrode into the counter electrode [61, 62].

Obtaining enough photovoltage from a single photoelectrode to achieve solar
water splitting is a challenge. It will be more favorable that combinates with dual
semiconductors, because the second photoelectrode can replace the opposite elec-
trode where the other half-reaction occurs and compensate for the lack of
photovoltage [7]. To increase the light utilization, lighting should be irradiated from
a larger band gap photoelectrode (transparent substrate) to a smaller band gap
photoelectrode. In addition, these two semiconductors can form wireless
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back-to-back ohmic contacts, sharing a transparent conductive substrate [63]. By
doing so, the potential loss in the electrolyte and the pH gradient between the two
photoelectrodes can be reduced. Similarly, lighting should pass from a larger band
gap material to a smaller band gap material. This series of battery structure is a
relatively effective device [64].

2.2 Calculation of efficiencies

Comparing onset potentials and photocurrent density (normalized to the
projected surface area of the photoelectrode) at 1.23 V versus RHE (photoanode)
and 0 V versus RHE (photocathode) is a well-known method to evaluate the
performance of water splitting. Since the product of water splitting is hydrogen,
solar-to-hydrogen (STH) is the most critical parameter of merit to evaluate the
performance and the efficiency of PEC water splitting on the device. It is defined as
the following equation: [65].

ηSTH ¼ ΦH2 mols�1m�2ð Þ �G0
f ,H2

kJmol�1� �

Plight Wm�2ð Þ
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where ΦH2 is the hydrogen gas production rate, G0
f ,H2

is the Gibbs free energy of
hydrogen gas (237 kJ mol�1 at 25°C), and Plight is the total solar irradiation input.
The light source should match the solar spectrum of air mass 1.5 global (AM1.5 G).
Since the redox reaction needs to consider the current loss, the Faraday efficiency
needs to be considered. So, the STH formula is expressed as:

ηSTH ¼ JSC mAcm�2ð Þ � 1:23 V � ηF
Plight mWm�2ð Þ

� �

AM 1:5G

(4)

In general, JSC can use current density instead of under zero bias and stable-state
conditions. Applied bias photon to current conversion efficiency (ABPE) is also an
important parameter for PEC water splitting systems, which is often used to
evaluate the performance of a single photoelectrode independently. It can be
written as: [65].

ABPE ¼ JSC mAcm�2ð Þ �1:23 V � Vapp
� �� ηF

Plight mWm�2ð Þ
� �

AM 1:5G

(5)

where Vapp is the applied potential between photoelectrode and the counter
electrode.

It is important to understand the efficiency of photons to convert electrons/holes
at certain wavelengths of PEC water splitting. Therefore, the incident photon-to-
current conversion efficiency (IPCE) or external quantum efficiency (EQE) is
proposed and expressed as: [65].

IPCE λð Þ ¼ EQE λð Þ ¼ electronflux mols�1ð Þ
photonflux mols�1ð Þ ¼

j jph mAcm�2ð Þj � hc Vmð Þ
Pλ mWcm�2ð Þ � λ nmð Þ (6)

where λ is the wavelength, Pλ is the incident light power, h is Planck’s constant,
c is the speed of light, and jph is the photocurrent density. Besides, integrating the
IPCE value with the standard AM1.5G solar spectrum can estimate the total
photocurrent density under solar light illumination. Its formula is defined as: [65].
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achieve self-driven overall water splitting because its band gap has good energy
alignment with the water redox potential [43, 44]. In addition, GaN is inherently
chemically inert even in a harsh environment, which guarantees the stability of the
device [45, 46]. Furthermore, the band gap of GaN and its alloys can be tuned by
alloying with Indium (In) to span nearly the entire solar spectrum [47, 48]. How-
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many strategies have been proposed to address the mentioned drawbacks of GaN
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erties of GaN, which can directly tune the energy band structure and carrier trans-
mission [54, 55]. Moreover, PEC water splitting kinetics can be promoted through
the surface decoration of co-catalysts, which can enhance the transmission of
carriers for water redox reaction [56, 57].

In this review, we summarize the recent progress of using GaN as
photoelectrode for PEC water splitting and enumerate some commonly used strat-
egies to improve the performance of photoelectrode. In the end, we also have a brief
outlook of GaN for PEC water splitting.

2. Basic principles of solar water splitting
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Obtaining enough photovoltage from a single photoelectrode to achieve solar
water splitting is a challenge. It will be more favorable that combinates with dual
semiconductors, because the second photoelectrode can replace the opposite elec-
trode where the other half-reaction occurs and compensate for the lack of
photovoltage [7]. To increase the light utilization, lighting should be irradiated from
a larger band gap photoelectrode (transparent substrate) to a smaller band gap
photoelectrode. In addition, these two semiconductors can form wireless
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back-to-back ohmic contacts, sharing a transparent conductive substrate [63]. By
doing so, the potential loss in the electrolyte and the pH gradient between the two
photoelectrodes can be reduced. Similarly, lighting should pass from a larger band
gap material to a smaller band gap material. This series of battery structure is a
relatively effective device [64].

2.2 Calculation of efficiencies

Comparing onset potentials and photocurrent density (normalized to the
projected surface area of the photoelectrode) at 1.23 V versus RHE (photoanode)
and 0 V versus RHE (photocathode) is a well-known method to evaluate the
performance of water splitting. Since the product of water splitting is hydrogen,
solar-to-hydrogen (STH) is the most critical parameter of merit to evaluate the
performance and the efficiency of PEC water splitting on the device. It is defined as
the following equation: [65].
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where ΦH2 is the hydrogen gas production rate, G0
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is the Gibbs free energy of
hydrogen gas (237 kJ mol�1 at 25°C), and Plight is the total solar irradiation input.
The light source should match the solar spectrum of air mass 1.5 global (AM1.5 G).
Since the redox reaction needs to consider the current loss, the Faraday efficiency
needs to be considered. So, the STH formula is expressed as:

ηSTH ¼ JSC mAcm�2ð Þ � 1:23 V � ηF
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In general, JSC can use current density instead of under zero bias and stable-state
conditions. Applied bias photon to current conversion efficiency (ABPE) is also an
important parameter for PEC water splitting systems, which is often used to
evaluate the performance of a single photoelectrode independently. It can be
written as: [65].

ABPE ¼ JSC mAcm�2ð Þ �1:23 V � Vapp
� �� ηF
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where Vapp is the applied potential between photoelectrode and the counter
electrode.

It is important to understand the efficiency of photons to convert electrons/holes
at certain wavelengths of PEC water splitting. Therefore, the incident photon-to-
current conversion efficiency (IPCE) or external quantum efficiency (EQE) is
proposed and expressed as: [65].

IPCE λð Þ ¼ EQE λð Þ ¼ electronflux mols�1ð Þ
photonflux mols�1ð Þ ¼

j jph mAcm�2ð Þj � hc Vmð Þ
Pλ mWcm�2ð Þ � λ nmð Þ (6)

where λ is the wavelength, Pλ is the incident light power, h is Planck’s constant,
c is the speed of light, and jph is the photocurrent density. Besides, integrating the
IPCE value with the standard AM1.5G solar spectrum can estimate the total
photocurrent density under solar light illumination. Its formula is defined as: [65].
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JAM 1:5 ¼
ð
IPCEλ �Φλ � eð Þdλ (7)

where e is the elementary electron and Φλ is photon flux of irradiation.

3. Approaches to increase GaN-based PEC water splitting efficiency

3.1 Surface decoration

Up to now, considerable efforts have been investigated on surface decoration to
enhance PEC water splitting performance [66]. In this regard, various co-catalysts
were studied by depositing on the surface of GaN to improve the efficiency of PEC
water splitting. For instance, the quantum efficiency of the solid solution of GaN
and ZnO for overall water splitting in the visible light region achieves the highest
value of 2–3% after modified with a mixed oxide of Rh and Cr nanoparticles [67]. A
Co-Pi catalyst photoelectron deposited on GaN thin-film photoelectrodes elimi-
nated the anomalous two-plateau behavior and current spikes, which revealed that
the Co-Pi catalyst is helpful for suppressing surface recombination and increases the
photocurrent [47]. A similar but deeper achievement was carried out by Tricoli
et al. for hybridizing highly transparent Co3O4 nano-island catalysts on GaN
nanowire to enhance the water oxidation activity. The result shows that the per-
metal turnover frequencies in 1 M NaOH aqueous solution are 0.34–0.65 s�1 at an
overpotential of 400 mV, which is the best result of Co-based electrocatalysts until
this report. This was attributed to Co3O4 that can play a role as hole scavenger,
collecting photogenerated holes rapidly and suppressing carrier recombination [68].
Additionally, a size-controlled effect of poly-protected Rh nanoparticles on the
photocatalytic activity of (Ga1 � xZnx)(N1 � xOx) was studied by Teranishi et al. for
the first time. Their results show that the activity of smaller Rh cores is higher than
the larger ones, which benefits from its increased surface area and improves charge
separation efficiency [69]. This study was inconsistent with the previous report by
Kamat et al. The greater the shift in the Fermi level observed in smaller gold
nanoparticles, which is reflected in the higher photocatalytic reduction efficiency,
the stronger the photocurrent [70].

Apart from nanoparticles, core-shell heterostructure is another important
approach for surface decoration. GaN-InGaN core-shell rod arrays as photoanode
for visible light-driven water splitting were studied by Waag et al. The core-shell
structure extends the use of sunlight to the visible light region, thereby greatly
improving the efficiency of water splitting. The photocurrent density of (0.3 mA/
cm2 at 1.35 V) GaN-InGaN was 10-fold higher than that of GaN (0.03 mA/cm2 at
1.35 V), as shown in Figure 3 [71]. Mi et al. employed GaN-InGaN core-shell
nanowire for PEC water splitting, and the high incident photon-to-current conver-
sion efficiency of up to �27% is obtained [72]. It is expected to achieve higher PEC
activity by surface treatment of GaN. And as far as the current development is
concerned, it is foreseeable that surface modification is still a good strategy to
achieve efficient water splitting.

3.2 GaN material having different morphologies

As an important part of the PEC water splitting system, the morphology of
semiconductor materials is very important. Different morphologies have a great
influence on the efficiency of PEC water splitting. Many different morphologies
of GaN for PEC water splitting have been proposed. Xi and co-workers used
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metal–organic chemical vapor deposition (MOCVD) to fabricate GaN nanowires,
and it has obtained high photocurrent density value at an applied bias voltage from
�1 to 1 V [73]. Its morphology was shown in Figure 4a. It can be found from
Figure 4b that compared to the planar structure and other diameters, 300 nm has a
stronger current density due to a larger body-to-surface ratio, thereby increasing
the efficiency of PEC water splitting. GaN microwires still have problems such as
low crystal quality and light absorption. To further improve the efficiency of PEC

Figure 3.
(a) Current density of 3D GaN-InGaN core-shell rod array (red) and 3D GaN rod array (blue) in 0.01 M
H2SO4 solution under 100 mW/cm2 illumination using AM 1.5 filter [71]. (b) Plasmon energy map in the
highlighted region showing the indium incorporation in the InGaN shell [71]. (a and b) Reproduced from Ref.
[71] with permission from the American Chemical Society.

Figure 4.
(a) SEM images of GaN nanowires, (b) linear sweep voltammetry of GaN nanowires with diameters of 60,
100, and 300 nm and planar GaN [73]. (c) Structure schematic of InGaN/GaN MQW on n-GaN hollow
NWs, (d) comparison of IPCE values for InGaN/GaN MQWs grown on solid and hollow n-GaN nanowires
[74]. (a and b) Reproduced from Ref. [73] with permission from The Royal Society of Chemistry. (c and d)
Reproduced from Ref. [74] with permission from Springer Nature.
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JAM 1:5 ¼
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where e is the elementary electron and Φλ is photon flux of irradiation.
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3.1 Surface decoration

Up to now, considerable efforts have been investigated on surface decoration to
enhance PEC water splitting performance [66]. In this regard, various co-catalysts
were studied by depositing on the surface of GaN to improve the efficiency of PEC
water splitting. For instance, the quantum efficiency of the solid solution of GaN
and ZnO for overall water splitting in the visible light region achieves the highest
value of 2–3% after modified with a mixed oxide of Rh and Cr nanoparticles [67]. A
Co-Pi catalyst photoelectron deposited on GaN thin-film photoelectrodes elimi-
nated the anomalous two-plateau behavior and current spikes, which revealed that
the Co-Pi catalyst is helpful for suppressing surface recombination and increases the
photocurrent [47]. A similar but deeper achievement was carried out by Tricoli
et al. for hybridizing highly transparent Co3O4 nano-island catalysts on GaN
nanowire to enhance the water oxidation activity. The result shows that the per-
metal turnover frequencies in 1 M NaOH aqueous solution are 0.34–0.65 s�1 at an
overpotential of 400 mV, which is the best result of Co-based electrocatalysts until
this report. This was attributed to Co3O4 that can play a role as hole scavenger,
collecting photogenerated holes rapidly and suppressing carrier recombination [68].
Additionally, a size-controlled effect of poly-protected Rh nanoparticles on the
photocatalytic activity of (Ga1 � xZnx)(N1 � xOx) was studied by Teranishi et al. for
the first time. Their results show that the activity of smaller Rh cores is higher than
the larger ones, which benefits from its increased surface area and improves charge
separation efficiency [69]. This study was inconsistent with the previous report by
Kamat et al. The greater the shift in the Fermi level observed in smaller gold
nanoparticles, which is reflected in the higher photocatalytic reduction efficiency,
the stronger the photocurrent [70].

Apart from nanoparticles, core-shell heterostructure is another important
approach for surface decoration. GaN-InGaN core-shell rod arrays as photoanode
for visible light-driven water splitting were studied by Waag et al. The core-shell
structure extends the use of sunlight to the visible light region, thereby greatly
improving the efficiency of water splitting. The photocurrent density of (0.3 mA/
cm2 at 1.35 V) GaN-InGaN was 10-fold higher than that of GaN (0.03 mA/cm2 at
1.35 V), as shown in Figure 3 [71]. Mi et al. employed GaN-InGaN core-shell
nanowire for PEC water splitting, and the high incident photon-to-current conver-
sion efficiency of up to �27% is obtained [72]. It is expected to achieve higher PEC
activity by surface treatment of GaN. And as far as the current development is
concerned, it is foreseeable that surface modification is still a good strategy to
achieve efficient water splitting.

3.2 GaN material having different morphologies

As an important part of the PEC water splitting system, the morphology of
semiconductor materials is very important. Different morphologies have a great
influence on the efficiency of PEC water splitting. Many different morphologies
of GaN for PEC water splitting have been proposed. Xi and co-workers used
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metal–organic chemical vapor deposition (MOCVD) to fabricate GaN nanowires,
and it has obtained high photocurrent density value at an applied bias voltage from
�1 to 1 V [73]. Its morphology was shown in Figure 4a. It can be found from
Figure 4b that compared to the planar structure and other diameters, 300 nm has a
stronger current density due to a larger body-to-surface ratio, thereby increasing
the efficiency of PEC water splitting. GaN microwires still have problems such as
low crystal quality and light absorption. To further improve the efficiency of PEC

Figure 3.
(a) Current density of 3D GaN-InGaN core-shell rod array (red) and 3D GaN rod array (blue) in 0.01 M
H2SO4 solution under 100 mW/cm2 illumination using AM 1.5 filter [71]. (b) Plasmon energy map in the
highlighted region showing the indium incorporation in the InGaN shell [71]. (a and b) Reproduced from Ref.
[71] with permission from the American Chemical Society.

Figure 4.
(a) SEM images of GaN nanowires, (b) linear sweep voltammetry of GaN nanowires with diameters of 60,
100, and 300 nm and planar GaN [73]. (c) Structure schematic of InGaN/GaN MQW on n-GaN hollow
NWs, (d) comparison of IPCE values for InGaN/GaN MQWs grown on solid and hollow n-GaN nanowires
[74]. (a and b) Reproduced from Ref. [73] with permission from The Royal Society of Chemistry. (c and d)
Reproduced from Ref. [74] with permission from Springer Nature.
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water splitting, Park et al. used the plasma-assisted molecular beam epitaxy
(PAMBE) technique to grow InGaN/GaN multiple quantum wells (MQWs) grown
on hollow n-GaN nanowires (Figure 4c) [74]. The hollow and InGaN/GaN multiple
quantum well structures of the nanowires allow the incident light to be refracted
multiple times, increasing the absorption of light. Figure 4d shows the incident
photon-to-current conversion efficiency value of the device, which can be found
that the highest IPCE value of the device is as high as 33.3% and 415 μmol of
hydrogen gas was generated within 1 hour.

Nanopores, nanocones, and honeycombs are other nanostructures of GaN.
Figure 5a shows the GaN nanopore structure [43], nanopore structure used elec-
trochemical lateral etching and ICP etching to prepare laterally porous, vertically
holes well-ordered GaN. This structure reduces the UV reflectivity. The ordered
vertical holes not only help open the embedded channels to the electrolyte on both
sides and reduce the migration distance of bubbles in the water splitting reaction
but also help to modulate the light field. Incident light can be modulated and
captured into the nanopore to enhance the absorption of light, so the saturation
photocurrent was 4.5 times that of the planar structure, as shown in Figure 5d.
Moreover, GaN with aligned nanopore structure had been fabricated by combining
MOCVD using a lateral anodic etching, as shown in Figure 5b [75]. Laterally porous
3D hierarchical nanostructures not only provided a large contact area between the
electrode and the electrolyte but also increased the absorption of light and provided
a channel for the transmission of light and electrons. The device also achieved high
values of photocurrent of 0.32 mA/cm2 by using etching voltages at 10 V
(Figure 5e). Kim et al. had prepared GaN truncated nanocones [76], which was
shown in Figure 5c. GaN truncated nanocones have concentrated incident light
inside the nanostructure and enhanced the light trapping with reduced light losses
from surface reflection. The relationship between current density and potential was
shown in Figure 5f, which indicated that the photocurrent of GaN truncated
nanocones was three times higher than the planar structure.

The above structures are expected, and GaN can also have nanorods [77],
nanocolumns [78], nano-pyramids [79], and so on. It can be known from the above
results that changing the morphology of GaN influences the efficiency of PEC water

Figure 5.
(a) [43], (b) [75], and (c) [76] are the structure schematics of the composite porous GaN, laterally porous
GaN, and photoelectrochemical cell, respectively. (d) Relation curves between photocurrent density and voltage
of the above three GaN photoelectrodes [43]. (e) The photocurrent and applied current curves under different
GaN etching voltages [75]. (f) Dark (segment) and illumination (straight) conditions for photocurrent density
in linear scanning voltammetry [76]. (a and d), (b and e), and (c and f) reproduced from Ref. [43, 75, 76],
respectively, with permission from the American Chemical Society.
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splitting, which mainly affects the light absorption efficiency of GaN and reduces
light reflection and loss. Therefore, it is very important to choose the appropriate
semiconductor morphology for PEC water splitting system.

3.3 GaN material having different doping

Doping is a commonly used and effective method to improve the performance
of materials. It mainly adjusts the energy band of the material, so that the
photogenerated electrons and holes are better transported and high efficiency of PEC
water splitting is obtained. Zhou and co-workers doped ZnO-GaN (GZNO) solid
solution with La, as shown in Figure 6a [80]. La-dopant incorporation is optimized to
adjust the bending of the band gap, which increases the thickness of the space charge
region, thereby improving the separation of photogenerated carriers. Figure 6c
shows the photocatalytic performance of GZNO and 3% La GZNO. It can be clearly
seen that the photocatalyst doped with La produces more hydrogen and oxygen
under the same conditions, which indicates that the performance of the photocatalyst
is significantly improved after doping. Figure 6b shows the schematic of Ni-doped
AlN and two-dimensional GaN monolayers [81]. By controlling the doping content of
Ni, it can adjust the band bending of GaN. Figure 6d displays the binding strength of
GaN and AlN composites with different transition metals doped. It can be found that
Ni doping is the best for OER because they have small OER overpotentials.

GaN doped with Mn [82], Mg [83], or CrO are also reported [84]. Doping is also
a good method to improve the efficiency of PEC water splitting. It mainly adjusts
the energy band of GaN through doping, thereby promoting the separation of
photogenerated electrons and holes and effectively preventing the recombination of

Figure 6.
(a) TEM images of 3% La GZNO [80]. (b) Schematic diagram of Ni-doped structure [81]. (c) The amount of
H2 and O2 produced by overall water splitting after 8 hours of GZNO and 3% La GZNO [80]. (d) Binding
strength of OH or O of different transition metal-doped GaN and AlN composites [81]. (a and c) Reproduced
from Ref. [73] with permission from The Royal Society of Chemistry. (b and d) Reproduced from Ref. [74] with
permission from the American Chemical Society.
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water splitting, Park et al. used the plasma-assisted molecular beam epitaxy
(PAMBE) technique to grow InGaN/GaN multiple quantum wells (MQWs) grown
on hollow n-GaN nanowires (Figure 4c) [74]. The hollow and InGaN/GaN multiple
quantum well structures of the nanowires allow the incident light to be refracted
multiple times, increasing the absorption of light. Figure 4d shows the incident
photon-to-current conversion efficiency value of the device, which can be found
that the highest IPCE value of the device is as high as 33.3% and 415 μmol of
hydrogen gas was generated within 1 hour.
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Figure 5a shows the GaN nanopore structure [43], nanopore structure used elec-
trochemical lateral etching and ICP etching to prepare laterally porous, vertically
holes well-ordered GaN. This structure reduces the UV reflectivity. The ordered
vertical holes not only help open the embedded channels to the electrolyte on both
sides and reduce the migration distance of bubbles in the water splitting reaction
but also help to modulate the light field. Incident light can be modulated and
captured into the nanopore to enhance the absorption of light, so the saturation
photocurrent was 4.5 times that of the planar structure, as shown in Figure 5d.
Moreover, GaN with aligned nanopore structure had been fabricated by combining
MOCVD using a lateral anodic etching, as shown in Figure 5b [75]. Laterally porous
3D hierarchical nanostructures not only provided a large contact area between the
electrode and the electrolyte but also increased the absorption of light and provided
a channel for the transmission of light and electrons. The device also achieved high
values of photocurrent of 0.32 mA/cm2 by using etching voltages at 10 V
(Figure 5e). Kim et al. had prepared GaN truncated nanocones [76], which was
shown in Figure 5c. GaN truncated nanocones have concentrated incident light
inside the nanostructure and enhanced the light trapping with reduced light losses
from surface reflection. The relationship between current density and potential was
shown in Figure 5f, which indicated that the photocurrent of GaN truncated
nanocones was three times higher than the planar structure.

The above structures are expected, and GaN can also have nanorods [77],
nanocolumns [78], nano-pyramids [79], and so on. It can be known from the above
results that changing the morphology of GaN influences the efficiency of PEC water

Figure 5.
(a) [43], (b) [75], and (c) [76] are the structure schematics of the composite porous GaN, laterally porous
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of the above three GaN photoelectrodes [43]. (e) The photocurrent and applied current curves under different
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splitting, which mainly affects the light absorption efficiency of GaN and reduces
light reflection and loss. Therefore, it is very important to choose the appropriate
semiconductor morphology for PEC water splitting system.

3.3 GaN material having different doping

Doping is a commonly used and effective method to improve the performance
of materials. It mainly adjusts the energy band of the material, so that the
photogenerated electrons and holes are better transported and high efficiency of PEC
water splitting is obtained. Zhou and co-workers doped ZnO-GaN (GZNO) solid
solution with La, as shown in Figure 6a [80]. La-dopant incorporation is optimized to
adjust the bending of the band gap, which increases the thickness of the space charge
region, thereby improving the separation of photogenerated carriers. Figure 6c
shows the photocatalytic performance of GZNO and 3% La GZNO. It can be clearly
seen that the photocatalyst doped with La produces more hydrogen and oxygen
under the same conditions, which indicates that the performance of the photocatalyst
is significantly improved after doping. Figure 6b shows the schematic of Ni-doped
AlN and two-dimensional GaN monolayers [81]. By controlling the doping content of
Ni, it can adjust the band bending of GaN. Figure 6d displays the binding strength of
GaN and AlN composites with different transition metals doped. It can be found that
Ni doping is the best for OER because they have small OER overpotentials.

GaN doped with Mn [82], Mg [83], or CrO are also reported [84]. Doping is also
a good method to improve the efficiency of PEC water splitting. It mainly adjusts
the energy band of GaN through doping, thereby promoting the separation of
photogenerated electrons and holes and effectively preventing the recombination of

Figure 6.
(a) TEM images of 3% La GZNO [80]. (b) Schematic diagram of Ni-doped structure [81]. (c) The amount of
H2 and O2 produced by overall water splitting after 8 hours of GZNO and 3% La GZNO [80]. (d) Binding
strength of OH or O of different transition metal-doped GaN and AlN composites [81]. (a and c) Reproduced
from Ref. [73] with permission from The Royal Society of Chemistry. (b and d) Reproduced from Ref. [74] with
permission from the American Chemical Society.
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carriers. However, excessive doping will deteriorate the crystal quality of the material.
So, it is important to choose the doping material and control dopant incorporation.

3.4 Composition of solid solution

The solid solution is a wurtzite structure composite material composed of GaN
and ZnO mixed in a certain proportion. It adjusts the doping content of ZnO to
change the band gap of the solid solution and realizes PEC of water splitting under
the visible light. This concept was first proposed by Maeda and co-workers [85]. And
then, Ohno et al. used Rh2 � yCryO3 nanoparticles to modify the solid solution, and the
device shows outstanding stability; it has been working continuously for half a year
under light irradiation, as shown in Figure 7a [86]. The co-catalyst is beneficial to
suppress the oxidative decomposition of the solid solution, thereby making the device
more stable. NiCoFeP and flux-assisted method can also be used to modify the solid
solution to improve the efficiency of PEC water splitting [87, 88]. The conversion
efficiency of solar energy using NiCoFeP-modified solid solution exceeds 1% at 1.23 V
vs. RHE. To further improve the efficiency of PEC water splitting, solid solution
nanosheets modified with Rh nanoparticles have been proposed, as shown in
Figure 7d [89]. This shows 0.7 μmol h�1 g�1 of hydrogen production in an aqueous
H2SO4 solution. The nitridation process was used to change the morphology from
hexagonal 2D ZnGa2O4 nanosheets to 2D (GaN)1 � x(ZnO)x nanosheets, reducing the
path of carrier transportation and decreasing the recombination of electrons and
holes. So, the composition of a solid solution or multiple-metal incorporation can
expand the light absorption range of the device, improving the absorption of light and
increasing the efficiency of PEC water splitting.

3.5 The multiple-metal incorporation

The method of forming multiple-metal incorporation is similar to that of a solid
solution. Different In content incorporation can change the band gap of GaN to
widen the absorption spectrum range. Many different multiple-metal incorpora-
tions have been proposed [90–94]. AlOtaibi et al. grown InGaN/GaN core-shell

Figure 7.
(a) Curve of total hydrogen production over time [86]. (b) The relationship between photocurrent and voltage
for GaN-ZnO in different ways of treatment [87]. (c) Variation curve of the amount of hydrogen and oxygen
produced with time of (GaN)1 � x(ZnO)x solid solutions from Zn2Ga-LDH modified with Rh2 � yCryO3
nanoparticles [88]. (d) Structure conversion flowchart from 2D ZnGa2O4 to 2D (GaN)1 � x(ZnO)x [89].
(a–d) Reproduced from Ref. 86–89 with permission from the American Chemical Society.
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nanowire arrays on Si substrate by catalyst-free MBE, as shown in Figure 8a [72]. It
has a photoelectric conversion efficiency of up to 27% under ultraviolet and visible
light irradiation. The photoelectrode continued to work for 10 hours, and the
hydrogen production was consistent with the theoretical value (Figure 8d), which
indicates that the photoelectrode has good stability and hydrogen production ability.
And the quadruple-band InGaN nanowire arrays were integrated on a nonpolar
substrate, which includes In0.35Ga0.65N, In0.27Ga0.73N, In0.20Ga0.80N, and GaN and
exhibits a solar-to-hydrogen efficiency of �5.2% in a relatively stable state
(Figure 8b) [95]. Multiband nanowire arrays enhance light absorption to improve the
performance of PEC water splitting. Moreover, the multiband nanowire array
photoelectrode has good stability and high photocatalyst efficiency for overall water
splitting, as shown in Figure 8e. To improve the efficiency of the photolysis of water,
InGaN heterostructures have been proposed. Kibria and co-workers have fabricated
InGaN/GaN nanowire heterostructures, in which the internal quantum efficiency is
about 13% [48]. The nanowire heterostructure is shown in Figure 8c. The combina-
tion of GaN and InGaN expands the light absorption range of GaN from ultraviolet
light to visible light, which greatly improves the light absorption range and improves
the efficiency of photolysis. The InGaN/GaN nanowire heterostructure
photoelectrode also exhibits extremely high stability and high hydrogen production
capabilities, as shown in Figure 8f. Moreover, nanowire arrays [96], tunnel junction
nanowire [97], have also been reported.

In summary, the multiple-metal incorporation can greatly improve the effi-
ciency of PEC water splitting of GaN. The structures and In content will greatly
affect the efficiency of PEC water splitting. So, it is important to choose a suitable
structure and the In content while preparing the GaN-based photoelectrode.

4. Conclusion

This review mainly introduces the application of GaN in the PEC water splitting
system and summarizes the methods to improve the efficiency of PEC water

Figure 8.
(a) Schematic of the InGaN/GaN core-shell structure [72]. (b) Schematic diagram of ideal light absorption
structure of a multiband InGaN stack with different indium compositions [95]. (c) Schematic diagram of
photocatalytic overall water splitting reaction mechanism [48]. (d) Hydrogen production in 1 mol/L HBr at
0.2 V vs. the counter electrode [72]. (e) Hydrogen and oxygen produced as a function of time under multiple
experiment cycles [95]. (f) Hydrogen and oxygen evolution as a function of irradiation time under full arc
(>300 nm) 300W xenon lamp irradiation [48]. (a and d) and (c and e) Reproduced from Ref. [48, 72] with
permission from the American Chemical Society. (b and f) Reproduced from Ref. [95] with permission from
The Royal Society of Chemistry.
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carriers. However, excessive doping will deteriorate the crystal quality of the material.
So, it is important to choose the doping material and control dopant incorporation.
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and ZnO mixed in a certain proportion. It adjusts the doping content of ZnO to
change the band gap of the solid solution and realizes PEC of water splitting under
the visible light. This concept was first proposed by Maeda and co-workers [85]. And
then, Ohno et al. used Rh2 � yCryO3 nanoparticles to modify the solid solution, and the
device shows outstanding stability; it has been working continuously for half a year
under light irradiation, as shown in Figure 7a [86]. The co-catalyst is beneficial to
suppress the oxidative decomposition of the solid solution, thereby making the device
more stable. NiCoFeP and flux-assisted method can also be used to modify the solid
solution to improve the efficiency of PEC water splitting [87, 88]. The conversion
efficiency of solar energy using NiCoFeP-modified solid solution exceeds 1% at 1.23 V
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Figure 7d [89]. This shows 0.7 μmol h�1 g�1 of hydrogen production in an aqueous
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nanowire arrays on Si substrate by catalyst-free MBE, as shown in Figure 8a [72]. It
has a photoelectric conversion efficiency of up to 27% under ultraviolet and visible
light irradiation. The photoelectrode continued to work for 10 hours, and the
hydrogen production was consistent with the theoretical value (Figure 8d), which
indicates that the photoelectrode has good stability and hydrogen production ability.
And the quadruple-band InGaN nanowire arrays were integrated on a nonpolar
substrate, which includes In0.35Ga0.65N, In0.27Ga0.73N, In0.20Ga0.80N, and GaN and
exhibits a solar-to-hydrogen efficiency of �5.2% in a relatively stable state
(Figure 8b) [95]. Multiband nanowire arrays enhance light absorption to improve the
performance of PEC water splitting. Moreover, the multiband nanowire array
photoelectrode has good stability and high photocatalyst efficiency for overall water
splitting, as shown in Figure 8e. To improve the efficiency of the photolysis of water,
InGaN heterostructures have been proposed. Kibria and co-workers have fabricated
InGaN/GaN nanowire heterostructures, in which the internal quantum efficiency is
about 13% [48]. The nanowire heterostructure is shown in Figure 8c. The combina-
tion of GaN and InGaN expands the light absorption range of GaN from ultraviolet
light to visible light, which greatly improves the light absorption range and improves
the efficiency of photolysis. The InGaN/GaN nanowire heterostructure
photoelectrode also exhibits extremely high stability and high hydrogen production
capabilities, as shown in Figure 8f. Moreover, nanowire arrays [96], tunnel junction
nanowire [97], have also been reported.

In summary, the multiple-metal incorporation can greatly improve the effi-
ciency of PEC water splitting of GaN. The structures and In content will greatly
affect the efficiency of PEC water splitting. So, it is important to choose a suitable
structure and the In content while preparing the GaN-based photoelectrode.

4. Conclusion

This review mainly introduces the application of GaN in the PEC water splitting
system and summarizes the methods to improve the efficiency of PEC water

Figure 8.
(a) Schematic of the InGaN/GaN core-shell structure [72]. (b) Schematic diagram of ideal light absorption
structure of a multiband InGaN stack with different indium compositions [95]. (c) Schematic diagram of
photocatalytic overall water splitting reaction mechanism [48]. (d) Hydrogen production in 1 mol/L HBr at
0.2 V vs. the counter electrode [72]. (e) Hydrogen and oxygen produced as a function of time under multiple
experiment cycles [95]. (f) Hydrogen and oxygen evolution as a function of irradiation time under full arc
(>300 nm) 300W xenon lamp irradiation [48]. (a and d) and (c and e) Reproduced from Ref. [48, 72] with
permission from the American Chemical Society. (b and f) Reproduced from Ref. [95] with permission from
The Royal Society of Chemistry.
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splitting. The methods to enhance efficiency are mainly carried out in the following
four aspects, such as morphology, doping, surface modification, and composition of
solid solution or multiple-metal incorporation. Up to now, GaN has made great
progress in the application of PEC water splitting; the solar-to-hydrogen efficiency
of 12.6% has already been obtained without any external bias [98], better than CoP
catalyst electrodes (6.7%) reported recently [99], but it still not as excellent as TiO2

(18.5%) [100]. And its properties need to be further optimized to improve the
absorption efficiency of visible light, increase the carrier migration speed, and
facilitate carrier transport. The follow-up works are suggested from the following
aspects:

1.At present, most water splitting processes are carried out in alkaline or acidic
solutions. It should be considered how to ensure the stability and catalytic
activity of metal nitrides for a long time.

2.Although the theory of water splitting is simple, the reaction process is still not
clear, and in-depth study of the mechanism is helpful for the design of the
catalyst.

3.Reasonable design of the composition and structure of the catalyst to adjust its
electronic structure, band gap, band edge potential, and microstructure help to
improve the catalytic performance. We believe that with the deepening of
research, the efficiency of GaN for water splitting can be further promoted.
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splitting. The methods to enhance efficiency are mainly carried out in the following
four aspects, such as morphology, doping, surface modification, and composition of
solid solution or multiple-metal incorporation. Up to now, GaN has made great
progress in the application of PEC water splitting; the solar-to-hydrogen efficiency
of 12.6% has already been obtained without any external bias [98], better than CoP
catalyst electrodes (6.7%) reported recently [99], but it still not as excellent as TiO2

(18.5%) [100]. And its properties need to be further optimized to improve the
absorption efficiency of visible light, increase the carrier migration speed, and
facilitate carrier transport. The follow-up works are suggested from the following
aspects:

1.At present, most water splitting processes are carried out in alkaline or acidic
solutions. It should be considered how to ensure the stability and catalytic
activity of metal nitrides for a long time.

2.Although the theory of water splitting is simple, the reaction process is still not
clear, and in-depth study of the mechanism is helpful for the design of the
catalyst.

3.Reasonable design of the composition and structure of the catalyst to adjust its
electronic structure, band gap, band edge potential, and microstructure help to
improve the catalytic performance. We believe that with the deepening of
research, the efficiency of GaN for water splitting can be further promoted.
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Chapter 5

III-Nitride Nanowires: Future 
Prospective for Photovoltaic 
Applications
Soumyaranjan Routray and Trupti Lenka

Abstract

Photovoltaic (PV) technology could be a promising candidate for clean and green 
source of energy. The nanowire technology provides extra mileage over planar solar 
cells in every step from photon absorption to current generation. Indium Gallium 
Nitride (InxGa1-xN) is a recently revised material with such a bandgap to absorb nearly 
whole solar spectrum to increase the conversion efficiency copiously. One of the 
major technological challenge is in-built polarization charges. This chapter highlights 
the basic advantageous properties of InxGa 1−xN materials, its growth technology 
and state-of-the-art application towards PV devices. The most important challenges 
that remain in realizing a high-efficiency InxGa 1−xN PV device are also discussed. 
III-Nitride nanowires are also explored in detail to overcome the challenges. Finally, 
conclusions are drawn about the potential and future aspect of InxGa 1−xN material 
based nanowires towards terrestrial as well as space photovoltaic applications.

Keywords: III-nitride, polarization charges, efficiency, InGaN/GaN, nanowires, 
stress, strain

1. Introduction

Photovoltaic (PV) technology is the most emerging way of harnessing huge 
amount of energy from sun light as compared to solar thermal and photo electro-
chemical cells [1]. PV devices convert incident photons from sunlight to electricity 
upon exposed to light. PVs are popular because of its compactness and can be used 
anywhere for different application [2]. Additionally, involvement of nanostructures 
further boost the performance of solar cell. Over the past decade, nanostructured 
solar cell has become hot topics within research community due to its potential to 
enhance the spectral response of cell. Although, first generation silicon wafer based 
solar cell leads the current global PV market, however this conventional technology 
do not have any further scope to improve efficiency and reduce cost [3]. Additionally, 
it is also not recommended to use Silicon based solar cell for space application due to 
its low radiation tolerance. Second generation thin film technology such as hydro-
genated amorphous silicon (a-Si: H), CIGS, and CdTe could not line-up with wafer-
based silicon due to use of rare earth elements and low stability [4, 5]. Furthermore, 
highly efficient compound semiconductors based third generation solar cell have a 
demerit of high cost which limits its use in terrestrial applications. Hence, the hunt 
for low cost high performance solar cell are still unachievable. In the meantime, 
involvement of nanotechnology could bring a ray of hope for future generation 
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solar cell. Nanowire (NW) geometry has remarkable advantages over planner 
geometry due to optical, electrical, and mechanical effects. New charge separation 
mechanisms, low defects and low cost also add more mileage to this journey. Looking 
towards the current scenario, existing PV technologies aren’t the solid foundation 
for the future projection of the renewable energy generation. None of the existing 
technology can satisfy global energy demand in future [2, 5]. Moreover, if the mate-
rial or technological limitations restrict the future roadmap of PV technology, then 
the incorporation of new efficient materials and transpose of technology will be an 
assurance against high cost and low efficiency solar cells. Newly explored InxGa1-xN 
material brings an bunch of opportunities for future PV technology, having capabil-
ity to absorb full solar spectrum using a single absorber material. One of the major 
properties of InGaN material is its tunable bandgap from 0.6 to 3.4 eV by changing 
‘In’ content [6–10]. It also has easy growth of nanowire and nanorod structures with 
proven technology [11–14]. It is a direct bandgap material where photon absorption 
and direct interband transition can be occurred without interference of phonons to 
conserve momentum. Additionally, high absorption coefficient of 105 is an additional 
benefit for good absorption with thin layer. Hence the cost can be minimized as well 
as recombination rate can also be minimized. InGaN also possess a high saturation 
velocity and a low effective mass of charge carriers, which ensures the more carrier 
separation along the junction. High radiation tolerance of InGaN are always appreci-
ated for harsh environments. Moreover, InGaN solar cell do not contain any toxic 
elements such as arsenic, cadmium or phosphorous as used in MJ solar cell. Thus, 
it is evident that InxGa 1−xN is an extremely allegiant PV material that can enable 
several photovoltaic devices [15, 16]. It is required to explore state-of-art of different 
InGaN based PV technologies and new possibilities of InGaN as a hopeful material 
for future technology [17, 18]. Hence, in this chapter a scope of III-Nitride and its 
progress with nanostructures have been discussed in order to explore more on future 
 generation solar cell.

2. Planar, nanodisk and nanowire III-nitride solar cells

In the present context mainly different geometry of III-Nitride GaN/InGaN 
material based solar cell are considered, such as planar, nanodisk and nanowire 
types. Theoretically, it is anticipated that power conversion efficiency more than 
40% could be achievable with GaN/InGaN junctions [19, 20]. However, practi-
cally achievable efficiency is quite low [21, 22]. One of the major challenges is the 
association of in-house defects with InGaN layer at higher ‘In’ content. Which in 
turn leads to stuck of immobile charges (known as polarization charges) along 
interfaces and reduces minority lifetime. Recently III-Nitride nanowires (NWs) 
are proposed as stand-alone PV devices due to enhanced light trapping, defect and 
stress-free growth [23, 24]. In general, two widely used structure for nanowire 
solar cell are (i) axial junction and (ii) radial junction. Axial junction is also 
known as nanodisk (ND) whereas radial junction is known as core-shell-shell 
(CSS) solar cell. Vapor–liquid–solid (VLS) technique is one of the popular meth-
ods to grow the GaN/InGaN nnaowires [23]. The fabricated NWs have hexagonal 
cross-section with {0001} orientation of top facet and {1–100}/ {10–10} orienta-
tion alongside walls of NWs [23]. Literature shows the comparative analysis of 
planar and circular NWs reported by Y. Zeng et al. [25] and B.M. Kayes et al. [26] 
with achievable conversion efficiency of more than 33% and 50% for Si and GaAs 
respectively. Additionally, ND and NW SCs are reported by Christesen et al. [27], 
which shows comparative better performance in CSS-NW SCs. The analysis in 
literature taken circular cross-section into consideration for NWs but in practice, 
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III-Nitride NWs possess either hexagonal or triangular cross-section. Hence, in 
this chapter, a scope has been taken to analyze the CSS-NW and ND type SCs with 
hexagonal crystallographic orientations as per the fabricated devices. The chapter 
also emphasis on effect of polarization induced electric field with a different ‘In’ 
compositions of InxGa1-xN. The schematic of planar, ND and CSS-NW SCs as 
shown in Figure 1 and simulated using VICTORY 3D Luminous TCAD. Optical 
and electrical properties are solved using Poisson’s equation, drift diffusion, and 
photo generation-recombination models. All the structures are designed with 
n/i/p junctions, which helps to reverse the electric field and match with polariza-
tion-induced electric field [28, 29]. A uniform 40 nm and 100 nm thickness are 
taken for n- and p-GaN layer of three structures. Thin Ni/Au (5 nm/5 nm) layer is 
used as contact for all three considered cells. Incorporation of Ni layer may reduce 
series resistance and hence enhance fill factor (FF) of the solar cell. The thickness 
of intrinsic InGaN layer is varied from 6 nm to 200 nm to optimize the thickness 
in planar, ND and CSS-NW solar cell. The surface recombination velocity of 
105 cm/s is taken into consideration for all three structure. The minority carrier 
lifetime is as follows [29].

 / 2
/ /

1 1 1
n p

n p thermal defect n p AugurN C n C n
τ

σ ϑ
= + +

× × × ×
 (1)

Where /n pσ is the capture cross sections of electron or hole, thermal velocity of 
carriers, thermalϑ  (≈107cm/s), the defect density (cm−2), defectN , electron capture 
coefficient for acceptor or donor, /n pC , and n is the free electron concentrations.

All the material parameters for GaN and InGaN with different compostion can 
be found from [30]. The interpolation method is used to calculate all parameters 
for InxGa1-xN composite alloys. Defect density in the order of 1017, 1014 and 1012 are 
incorporated for planar, ND and CSS-NW SCs respectively [31].

The model developed by Romanov et al. [32] and Mastro et al. [33] are imple-
mented here to calculate polarization charges along InGaN/GaN heterointerfaces 
and is expressed as,

 ( )pz sp sp
total Lz L TP P P P cosϕ′= + −  (2)

Where andsp sp
L TP P  are spontaneous polarizations for top and bottom layer 

respectively, pz
LzP ′  is the piezoelectric polarization along the interface which solely 

depends on strain profile, ϕ  is the angle between planes and basal plane. Angle ϕ  is 

Figure 1. 
Schematics of n-i-p heterojunctions with (a) planar (b) nanodisk (ND) and (c) CSS-NW based solar  
cell [29].
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for InxGa1-xN composite alloys. Defect density in the order of 1017, 1014 and 1012 are 
incorporated for planar, ND and CSS-NW SCs respectively [31].

The model developed by Romanov et al. [32] and Mastro et al. [33] are imple-
mented here to calculate polarization charges along InGaN/GaN heterointerfaces 
and is expressed as,

 ( )pz sp sp
total Lz L TP P P P cosϕ′= + −  (2)

Where andsp sp
L TP P  are spontaneous polarizations for top and bottom layer 

respectively, pz
LzP ′  is the piezoelectric polarization along the interface which solely 

depends on strain profile, ϕ  is the angle between planes and basal plane. Angle ϕ  is 

Figure 1. 
Schematics of n-i-p heterojunctions with (a) planar (b) nanodisk (ND) and (c) CSS-NW based solar  
cell [29].
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considered as 0° for polar {0001} facet and 90° for nonpolar {1–100}/{10–10} facets 
[33]. Finally, material parameters are incorporated into VICTORY 3D Luminous 
TCAD to simulate solar cell.

Vertical illumination of light source on the front surface of the device is con-
sider during all analysis as shown in Figure 1. Transport of carriers and separation 
mechanisms in the device depends solely on its geometrical structure. Here, carrier 
transport in planar, ND and NW type solar cell are explored with the help of energy 
band diagram. Figure 2(a) shows that tilt of energy band along i-InGaN region is 
not in favor of carrier collection due to detrimental polarization effect along {0001} 
orientation of planar Solar cell. Similarly, ND type solar cell also suffers from polar-
ization effect due to axial growth along {0001} orientation. Hence height of barrier 
along the junction increases in case of planar and ND solar cell as shown in Figure 2. 

Figure 2. 
Energy band diagram of (a) planar (b) ND and (c) CSS-NW solar cell at 100 nm, 150 nm, and 180 nm 
i-InGaN thickness respectively.
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High potential barrier hinders the diffusion of photogenerated carriers to either sides 
of the contact. Consequently, carrier collection degrades along {0001} interface. 
Similarly, potential valley is also observed next to barrier along the interfaces, which 
stocks carriers leading towards low collection.

Thus, with increase in bias voltage, photogenerated carriers accumulate 
inside the potential valley rather than traveling in i-region. In contrast, CSS-NW 
type solar cells do not show this effect because of radial separation of carriers. 
Polarization charges have negligible effect on CSS-NW due to nonpolar facets as 
shown in Figure 2(c). The inclination energy band in CSS-NW solar cell is in favor 
of carrier collection. Potential barriers are less as shown in Figure 2(c). Hence a 
hassle-free movement of carriers is possible in CSS-NW solar cell.

Figure 3 shows dependency of short-circuit current density ( scJ ) on ‘In’ compo-
sition and thickness of i-InGaN absorber layer. In planar structure, diffusion length 
carriers are quite low due to high density of defects, which consequently leads to a 
poor scJ . Thus, higher thickness of i-InGaN do not contribute more towards current 
due to low diffusion length of carriers. It is also observed that increase in ‘In’ 
composition leads to higher polarization charges [24], which also block some of the 
diffused carriers before collection. Thus scJ  shows a poor performance at higher ‘In’ 
fraction as shown in Figure 3. However, scJ  is high in radial junctions as compared 
to axial junctions. In order to interpret this result, Shockley diode equation is 
considered for short circuit current as

 ( ) 3

active

sc
V

I q g r d r= ∫
   (3)

Where volume of the absorption region is, activeV , photo-generation rate, ( )g r  
and position vector is given by a . The optical photo generation rate, ( )g r is 
considered as constant g across the entire NW solar cell, which simplifies the 
complexity of the model.

Thus scJ  can be expressed as

 sc activeJ q g L= × ×  (4)

Where, active absorption layer is, .activeL It is noteworthy to mention that due to 
the structural advantages, CSS-NW possess more than two-fold enhancement in 
active absorption region, which in turn support more photon absorption and high 
current. Therefore, it is observed that scJ  is quite enhanced in CSS-NW case as 
compared to ND and planar counterparts. It is due to the high absorption region of 
CSS structure and higher diffusion length of carriers. Depending on the structural 
advancement, carrier diffusion length, and lifetime, an optimized 180 nm, 150 nm 

Figure 3. 
Short circuit current density ( scJ )  at 10%, 20%, and 30%, ‘In’ content for (a) planar (b) Nanodisk and  
(c) CSS-NW solar cell.
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carriers are quite low due to high density of defects, which consequently leads to a 
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composition leads to higher polarization charges [24], which also block some of the 
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Where volume of the absorption region is, activeV , photo-generation rate, ( )g r  
and position vector is given by a . The optical photo generation rate, ( )g r is 
considered as constant g across the entire NW solar cell, which simplifies the 
complexity of the model.

Thus scJ  can be expressed as
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Where, active absorption layer is, .activeL It is noteworthy to mention that due to 
the structural advantages, CSS-NW possess more than two-fold enhancement in 
active absorption region, which in turn support more photon absorption and high 
current. Therefore, it is observed that scJ  is quite enhanced in CSS-NW case as 
compared to ND and planar counterparts. It is due to the high absorption region of 
CSS structure and higher diffusion length of carriers. Depending on the structural 
advancement, carrier diffusion length, and lifetime, an optimized 180 nm, 150 nm 
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Short circuit current density ( scJ )  at 10%, 20%, and 30%, ‘In’ content for (a) planar (b) Nanodisk and  
(c) CSS-NW solar cell.



Nanowires - Recent Progress

88

and 100 nm active layers are obtained for CSS-NW, ND and planar structure 
respectively as given in Figure 3.

Figure 4 shows the current density-voltage-power density (J-V-P) curve of n-GaN/
i-In0.1Ga0.9N/p-GaN planar, ND and NW type solar cell. The optimized thickness of 
100 nm, 150 nm and 180 nm i-InGaN is considered for all performance analysis. It 
shows a higher Jsc in CSS-NW as compared to ND and planar structure. It is anticipated 
that higher current in CSS-NW solar cell is mainly due to higher active absorption 
region and efficient carrier separation. It is important to highlight that planar and 
ND type solar cells shows a stair-case type J-V curve, which is not there in CSS-NW. It 
is may be due to low degree of strain relaxation or higher stress generation along the 
interface which is again related to structural issues of device. Hence, it is always impor-
tant to engineer the device structure as per the material properties of the absorber 
layer. High defect density along the interface is also play a major role for low current 
in planar and ND solar cell. CSS-NW do not possess a staircase J-V curve due to low 
defect density, low stress and high degree of strain relaxation. It is also observed that 
the depth of stair-case in J-V curve is increasing with higher ‘In’ contents. Additionally, 
higher Jsc value of 2.82 mA/cm2 is noted in CSS-NW solar cell (Figure 5).

It is also observed that due to high degree of strain relation, low defects density 
and more active area of absorption, CSS-NW structure can accommodate higher 
thickness of active InGaN layer (W) region. Moreover, higher thickness of absorber 
enhances the probability of more absorption of photons from sunlight. In other hand, 
active region of planar and ND type solar cells cannot be increased due to are limita-
tion of surface recombination arte, polarization induced electric field, low degree of 
strain relaxation and defect density. Voc of ND type solar cell is seen to be higher than 
CSS-NW type solar cell which is may be due to the recombination rate along the junc-
tion. However, the rate of increase in Jsc of CSS-NW structure is comparatively higher 
than ND and planar solar cell. Similarly, planar solar cell possesses a low as compared 

Figure 5. 
Current density (black line) – Voltage – Power density (red line) of (a) planar (b) ND and (c) CSS-NW 
solar cell at 100 nm, 150 nm, and 180 nm i-InGaN thickness respectively.

Figure 4. 
Open circuit voltage, ocV  at 10%, 20%, and 30%, ‘In’ content for (a) planar (b) Nanodisk and (c) CSS-NW 
solar cell.
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to ND and NW solar cell. It is mainly due to appearance of staircase type J-V curve, 
which in turn reduces maximum power (Pm) of solar cell. Finally, achievable conver-
sion efficiency (η) of CSS-NW structure is increased by more than 0.5-fold and 
2.5-fold, compared to ND and planar type solar cells respectively. More analysis on 
different types of CSS nanowire is also studied and can found in [34–36].

3. Conclusion

In this chapter, the importance of nanowire solar cell with III-Nitride material 
is explored in a detailed manner. A comparative analysis is carried out with planar, 
nanodisk and nanowire type solar cell and concluded that nanowire type structure 
shows a better performance as compared to others. Additionally, it is found that nanow-
ires in InGaN materials are grown either in triangular or hexagonal orientation. The 
strain relaxation is more in CSS-nanowires which in turns leads to low in-house defect 
density along the interfaces. CSS-NWs are also able to accommodate higher thickness of 
intrinsic material due to high carrier diffusion length. Radial separation of carriers also 
provides more surface area and better control on carrier separation mechanisms. Hence, 
it is concluded that radial growth of nanowire provides a broad range of opportunity 
for performance enhancement of solar cell. The similar type of observation are also 
applicable to LASER and light emitting diodes, where III-Nitride materials are used.
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InGaN indium gallium nitride
GaN gallium nitride
CIGS copper indium gallium selenide
CdTe cadmium telluride

W
(nm)

Jsc

(mA/cm2)
Voc

(V)
FF

(%)
Efficiency

η (%)

Planar 100 0.90 2.41 82.7 1.8

Nanodisk (ND) 150 1.93 2.52 87.6 4.28

CSS-Nanowire (NW) 180 2.84 2.47 91.6 6.46
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Chapter 6

In Situ TEM Studies of III-V 
Nanowire Growth Mechanism
Carina B. Maliakkal

Abstract

Growing nanowires inside a transmission electron microscope (TEM) and 
observing the process in situ has contributed immensely to understanding nanowire 
growth mechanisms. Majority of such studies were on elemental semiconductors –  
either Si or Ge – both of which are indirect bandgap semiconductors. Several 
compound semiconductors on the other hand have a direct bandgap making them 
more efficient in several applications involving light absorption or emission. During 
compound nanowire growth using a metal catalyst, the difference in miscibility 
of the nanowire species inside the metal catalyst are different, making its growth 
dynamics different from elemental nanowires. Thus, studies specifically focusing 
on compound nanowires are necessary for understanding its growth dynamics. This 
chapter reviews the recent progresses in the understanding of compound semi-
conductor nanowire growth obtained using in situ TEM. The concentrations of the 
nanowire species in the catalyst was studied in situ. This concentration difference 
has been shown to enable independent control of layer nucleation and layer growth 
in nanowires. In situ TEM has also enabled better understanding of the formation of 
metastable crystal structures in nanowires.

Keywords: compound nanowire, transmission electron microscopy, ledge-flow, 
semiconductor, GaAs, in situ techniques, wurtzite, zincblende, polytypism

1. Introduction

The high surface-to-volume ratio and the high aspect ratio of the nanowire 
geometry paves the way to a plethora of interesting advantages. Growing materi-
als as nanowires has enabled the formation of metastable crystal phases, in turn 
enabling crystal structure tuning [1–4]. Integration of different lattice-mismatched 
materials into the same structure was also achieved; compared to growth of hetero-
epitaxial films, defect-free growth is easier in nanowires because of the small 
diameter (a few 10 or 100 nanometers) and small interfacial area [5–7]. Yet another 
advantage of nanowire growth is to form alloy compositions which are unstable 
in the bulk phase [8]. Materials generally grown in the nanowire morphology can 
be broadly classified as elemental and compound [9]. Metallic nanowires (Ti, Fe, 
Co, Ni, Sn etc.) and elemental semiconductors (e.g. Si, Ge) fall under the category 
of elemental materials. Stochiometric compound nanowires are either compound 
semiconductors (e.g. GaAs, ZnO) or insulators (e.g. Al2O3, Si3N4). Alloy nanowires 
are also possible, e.g. SixGe1-x, AlxGa1-xAs. Controlling the electronic, bandgap-engi-
neering related, structural, compositional, morphological, mechanical and optical 
properties of semiconductor nanowires enables its application in devices such 
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solar cells, [10–13] electronics, [14–16] LEDs, [16, 17] LASERS, [18, 19] photodetec-
tors, [20, 21] thermoelectrics, [22, 23] biosensors [24, 25] and qubits [26–29].

Nanowires can be fabricated by a top-down approach (where regions of a film 
are selectively etched) or by a bottom-up approach (where the nanowires are grown 
on a substrate) [30]. Top-down approach often result in rough defected surfaces [9]. 
One way to grow nanowires bottom-up is by electrochemical deposition [31–34]. 
The bottom-up growth of nanowires from a gas phase precursor supply is what we 
will discuss in more detail here. The bottom-up nanowires growth from gas phase 
are done either with or without a foreign metal catalyst. The nanowire growth 
using a metal catalyst was proposed to proceed by the vapor–liquid–solid or ‘VLS’ 
mechanism [35]. According to the VLS mechanism, the nanowire elements or their 
precursor supplied in the vapor (V) phase gets dissolved in the liquid (L) ‘catalyst’ 
and after supersaturation precipitates out as the solid (S) nanowire (Figure 1). The 
metallic liquid, in addition to providing a nucleation point for the solid nanowire, 
fosters the gathering and in some cases the decomposition of precursors – hence 
often called ‘catalyst’ [9]. Later a similar growth mode called the vapor-solid–solid 
(VSS) was also proposed for when the catalyst is a solid, instead of the liquid 
catalyst in VLS [36, 37]. When there is no foreign catalyst used the nanowire 
growth can proceed in either of the two ways: (i) a self-catalyzed mode where the 
metallic element of the nanowire forms the liquid catalyst droplet [38–40] or (ii) a 
non- catalyzed vapor-solid route where the material from the vapor phase directly 
attaches to the solid nanowire without any liquid or solid catalyst [41]. The yield 
of nanowire growth without an external catalyst can be increased by the use of 
selective-area dielectric mask to keep some areas unfavorable for nucleation; small 
openings in the mask acting as preferential nucleation site for nanowires [42, 43].

Some of the common techniques for growing nanowires with gas phase precur-
sors by the aforementioned mechanisms include chemical vapor deposition (CVD), 
metalorganic CVD (MOCVD) and molecular beam epitaxy (MBE). These systems 
were initially designed for growing thin films and later adapted for growing nanow-
ires. Usually for growing nanowires in any of these systems the catalyst-coated sub-
strate is loaded into the system, the system is closed and precursors are supplied at 

Figure 1. 
Nanowire growth with a liquid catalyst is explained by the VLS mechanism. Accordingly, the supplied vapor 
phase precursor species dissolves in the liquid catalyst and at appropriately high supersaturation crystallizes 
atomic layers of the solid nanowire. The TEM image shown here was captured in situ while an atomic layer 
was growing.

97

In Situ TEM Studies of III-V Nanowire Growth Mechanism
DOI: http://dx.doi.org/10.5772/intechopen.95690

appropriate temperature and pressure. In conventional growth systems, either there 
is no in situ monitoring during growth or there is some large-area indirect monitor-
ing. MBE systems sometimes monitors the crystal structure of the surface layer by 
RHEED (reflection high-energy electron diffraction). Some MOCVD systems are 
equipped with in situ light reflectance monitors which can be used to estimate the 
increase in sample height and surface roughening. These methods are used conven-
tionally for tracking growth of thin films from large areas of the sample. Using these 
techniques for monitoring nanowires demand some modifications. After growing 
nanowires, the samples can be elaborately analyzed ex situ by methods relevant to 
the study. Typical characterization techniques are scanning electron microscopy 
(SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy 
dispersive X-ray spectroscopy (XEDS),  photoluminescence, etc.

Such ex situ characterizations could suffice for studying nanowire morphology, 
crystallinity and composition. Analysis of nanowires from multiple growths with 
different parameters can help indirectly understand the growth mechanism to some 
extent. Still the dynamics of the growth understood based on such ex situ charac-
terizations are largely speculative. Moreover, some attributes of the nanowire could 
be different while growing (at high temperature with precursor supply) and after 
cooling down the system for post mortem analysis. Monitoring nanowire growth in 
situ certainly has advantages in elucidating the growth mechanism and dynamics. 
An example of a phenomenon which was discovered only due to in situ observation 
of individual nanowires is truncation — where the nanowire-catalyst interface has 
a dynamic non-flat surface near the triple-phase-line [44–48]. (Triple-phase-line 
refers to the periphery of the interface between the nanowire and the catalyst 
droplet where the vapor, liquid and solid phases meet.) Another interesting in situ 
observation was that the nucleation of wurtzite layer happens at, or at least very 
close to, a corner of the triple-phase-line (observation of the precise location being 
elusive due to the ‘limited’ temporal resolution compared to the expected extremely 
rapid growth of the nucleus to beyond the critical size) [49].

2. In situ techniques

Observing and characterizing the nanowires while they are growing is called in 
situ growth monitoring. Strictly speaking, ‘in operando’ is the exact word, but we 
stick to ‘in situ’ to conform to popular usage. In situ techniques can provide directly 
interpretable and time-resolved observations enabling better understanding of the 
growth mechanism, which in turn empowers better control of nanowire growth for 
specific technological applications.

In situ characterization of nanowire crystal structure or nanowire morphology 
has been reported using various techniques. In situ RHEED attached to MBE systems 
can be used to follow crystal structure changes and nucleation/birth of ensemble of 
nanowires [50, 51]. By modifying the optical reflectometry techniques that have been 
used conventionally in MOCVD systems, the nanowire diameter and length evolu-
tion has been monitored in situ in real time for an ordered array of nanowires [52]. 
Combining finite difference frequency domain simulations with in situ reflectometry 
enabled monitoring growth of randomly positioned nanowires (i.e. periodic array was 
not a necessity) [53]. In situ X-ray diffraction (XRD) has been used to study crystal 
phase of the nanowire [54, 55] and the catalyst phase [56]. In situ infrared spectros-
copy has been used to correlate surface chemistry during nanowire growth to its mor-
phology [57–59] or the choice of growth direction [60]. Line-of-sight quadrupole mass 
spectrometry in situ was used to study different stages of nanowire growth including 
nanowire nucleation [61]. All these techniques give ensemble averaged results.
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tion has been monitored in situ in real time for an ordered array of nanowires [52]. 
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not a necessity) [53]. In situ X-ray diffraction (XRD) has been used to study crystal 
phase of the nanowire [54, 55] and the catalyst phase [56]. In situ infrared spectros-
copy has been used to correlate surface chemistry during nanowire growth to its mor-
phology [57–59] or the choice of growth direction [60]. Line-of-sight quadrupole mass 
spectrometry in situ was used to study different stages of nanowire growth including 
nanowire nucleation [61]. All these techniques give ensemble averaged results.
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In situ imaging techniques on the other hand allows monitoring individual 
nanowires. Optical microscopes due to the limited spatial resolution are not ideal 
for observing growth evolution of nanowire (though some studies have been 
attempted using confocal optical microscopy using photoluminescence measure-
ments [62]). Scanning electron microscopes (SEMs) have better spatial resolution 
than optical microscopes and could be used to monitor nanowire growth [63–67]. 
In situ SEM combined with Auger electron spectroscopy has been used to correlate 
nanowire growth and morphology to surface chemistry [63]. In situ electron back-
scattered electron diffraction (EBSD) performed during growth in an SEM has been 
used to study crystal phases and crystallographic orientation [64]. An SEM uses 
electron scattering from a sample while a transmission electron microscope (TEM) 
uses the electrons transmitted through a thin sample (preferably less than ~50 nm) 
to form images. TEMs have better spatial resolution than SEMs. Be it in an in situ 
SEM or TEM study, a video or a series of images are captured to study the dynam-
ics of the process in relation with the specimen environment. A key advantage of 
using in situ microscopic techniques, particularly in situ TEM, is that localized or 
dynamic behavior happening at individual wires could be investigated. One limita-
tion to studying nanowire growth inside a microscope is that electron microscopes 
require vacuum environment to minimize electron scattering in the air outside the 
specimen. So, often the growth conditions, e.g. pressure, used for the in situ growth 
study are slightly modified compared to a conventional growth method. Typical 
total pressures used in conventional ex situ CVD are much beyond the maximum 
attainable pressure for in situ TEM experiments. Majority of the pressure in the ex 
situ CVD case is from the carrier gas. By careful design of the TEM and the growth 
chamber, it is in principle possible to obtain comparable precursor partial pressures.

3. Techniques for growth nanowire by in situ TEM

The very first demonstration of nanowire growth by in situ TEM was from 
Prof. Yang’s group which validated the VLS mechanism experimentally using the 
Au-catalyzed Ge nanowire growth [68]. This seminal experiment was conducted 
by heating Au nanoclusters along with micrometer-sized Ge particles. They neither 
used a continuous supply of Ge-precursor nor a closed system. Over the course of 
time technological advances in the field of TEM paved the way to environmental 
TEM (ETEM), where the pressure near the sample can be orders of magnitude 
higher than a conventional TEM. Studies in which a continuous supply of precur-
sors was used were reported [41, 46–49, 69–90].

However, an ETEM is not a necessity for studying CVD nanowire growth in situ 
by TEM, it is possible by using a closed or isolated cell instead. In principle, it is 
possible that a cell isolated from the microscope vacuum is used; gaseous precursors 
can be supplied continuously to this cell by external inlet gas-tubes and removed by 
outlet tubes, without releasing the gases to the microscope environment. Another 
strategy is to use completely closed cells, in which powders of precursor material are 
deposited in the cell and then sealed [91]. These powders are heated intentionally 
to evaporate it so as to form a vapor-phase supply of precursors to the catalyst for 
growth [91]. An intermediate method, which is feasible with commercially available 
instruments for gas handling, is to pre-deposit powdered material on the isolated cell 
but externally supply carrier gases such as H2 or N2 (no gases are released here to the 
microscope environment) [92]. The cells have an electron transparent amorphous 
film both at the top and at the bottom of the cell. An advantage of this strategy is that 
any ordinary TEM can be used for it. However, the thickness of the top and bottom 
casing combined could be substantial, reducing the attainable spatial resolution.
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In the more conventional open heating cell geometry, there is either one layer of 
amorphous layer or none, providing better spatial resolution. Commercial chips are 
available with a few holes made in a thin amorphous film. When a piece of commer-
cially available substrate wafer is loaded vertically in the TEM [69, 70] or a litho-
graphically patterned cantilever chips is used [76, 93] for growing epitaxial aligned 
nanowires there is no film on top or bottom of the nanowire sample, enabling 
epitaxial growth and better spatial resolution; in such cases the resolution of the 
microscope and thickness of the sample would be the bottleneck. TEM resolution is 
currently restricted by technical limitations, not by the physically attainable limit; 
over the years TEM resolution has been constantly improving and this evolution is 
visible if we look at reports of nanowire growth with in situ TEM as well.

4. In situ TEM of elemental semiconductor nanowire growth

Si and Ge nanowire growth has been extensively studied by in situ TEM 
[46, 68–78, 81, 82, 85–88]. Several aspects such as diameter dependance of growth 
kinetics [70], nucleation kinetics [87], surface faceting [69], surface migration of 
catalyst (Au) on nanowire (Si) surface [71], tapering [94], and kinking [75] have 
been investigated. Depending on the growth conditions such as temperature, cata-
lyst particle and precursor pressures the growth proceeds either by the VLS mode 
[46, 68–72, 74–76, 78, 81, 82, 85–88] or the VSS mode [46, 72–74, 77, 78, 82, 88]. It 
is interesting to note that VLS growth has been observed to occur even below the 
eutectic temperature [72].

The nanowire catalyst interface is atomically flat, except when a ledge is grow-
ing. The layer-by-layer growth of nanowire atomic layers has been studied in situ 
during the VLS growth of elemental nanowires [74, 78]. A new (bi)layer starts only 
after the previous one is completely grown (at least for the nanowire diameters 
studied) [74, 78]. The time each layer takes to complete once it has nucleated can 
be called ledge-flow time (or layer completion time, also called step-flow time in 
some references). We will use the term incubation time for the difference between 
the ending of one layer and the start of the next layer. (This is not to be confused 
with the incubation time before the birth/nucleation of the nanowire itself). In 
VLS growth of elemental nanowires each layer grows instantaneously (ledge-flow 
time ~ 0) while there is a significant incubation/waiting time between successive 
layer-growth events [74, 78]. This observation can be explained by a very simple 
argument — the amount of material required to raise the chemical potential high 
enough to nucleate a layer is sufficient for forming one full layer as soon as it nucle-
ates. So the layer grows rapidly once nucleated [74]. There is a considerable incuba-
tion time, which in turn determines the average nanowire growth rate.

Most theoretical models for nanowire growth kinetics assume instantaneous 
layer completion and the growth rate is calculated in a nucleation-limited regime 
[95–98]. This assumption seems to be valid for the VLS growth of elemental 
nanowires we discussed above. However, we will now discuss in this section about 
elemental nanowires and the next section about compound nanowires cases where 
this assumption of instantaneous layer-growth breaks down.

As mentioned before, the growth can proceed by the VSS route where the cata-
lyst is a solid particle. In the VSS growth of elemental nanowires the layer comple-
tion is slow [73, 74, 78, 82]. The incubation time in the VSS case is shorter than in 
VLS [74, 78]. The solubility of the growth material in the solid catalyst is much 
lower than in a liquid catalyst, thus a small amount of excess species can increase 
the chemical potential sufficiently to nucleate a new layer — making the incubation 
time short [74, 78]. But the limited amount of material present could be insufficient 
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In situ imaging techniques on the other hand allows monitoring individual 
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for observing growth evolution of nanowire (though some studies have been 
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electron scattering from a sample while a transmission electron microscope (TEM) 
uses the electrons transmitted through a thin sample (preferably less than ~50 nm) 
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ics of the process in relation with the specimen environment. A key advantage of 
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require vacuum environment to minimize electron scattering in the air outside the 
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In the more conventional open heating cell geometry, there is either one layer of 
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available with a few holes made in a thin amorphous film. When a piece of commer-
cially available substrate wafer is loaded vertically in the TEM [69, 70] or a litho-
graphically patterned cantilever chips is used [76, 93] for growing epitaxial aligned 
nanowires there is no film on top or bottom of the nanowire sample, enabling 
epitaxial growth and better spatial resolution; in such cases the resolution of the 
microscope and thickness of the sample would be the bottleneck. TEM resolution is 
currently restricted by technical limitations, not by the physically attainable limit; 
over the years TEM resolution has been constantly improving and this evolution is 
visible if we look at reports of nanowire growth with in situ TEM as well.
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[46, 68–78, 81, 82, 85–88]. Several aspects such as diameter dependance of growth 
kinetics [70], nucleation kinetics [87], surface faceting [69], surface migration of 
catalyst (Au) on nanowire (Si) surface [71], tapering [94], and kinking [75] have 
been investigated. Depending on the growth conditions such as temperature, cata-
lyst particle and precursor pressures the growth proceeds either by the VLS mode 
[46, 68–72, 74–76, 78, 81, 82, 85–88] or the VSS mode [46, 72–74, 77, 78, 82, 88]. It 
is interesting to note that VLS growth has been observed to occur even below the 
eutectic temperature [72].

The nanowire catalyst interface is atomically flat, except when a ledge is grow-
ing. The layer-by-layer growth of nanowire atomic layers has been studied in situ 
during the VLS growth of elemental nanowires [74, 78]. A new (bi)layer starts only 
after the previous one is completely grown (at least for the nanowire diameters 
studied) [74, 78]. The time each layer takes to complete once it has nucleated can 
be called ledge-flow time (or layer completion time, also called step-flow time in 
some references). We will use the term incubation time for the difference between 
the ending of one layer and the start of the next layer. (This is not to be confused 
with the incubation time before the birth/nucleation of the nanowire itself). In 
VLS growth of elemental nanowires each layer grows instantaneously (ledge-flow 
time ~ 0) while there is a significant incubation/waiting time between successive 
layer-growth events [74, 78]. This observation can be explained by a very simple 
argument — the amount of material required to raise the chemical potential high 
enough to nucleate a layer is sufficient for forming one full layer as soon as it nucle-
ates. So the layer grows rapidly once nucleated [74]. There is a considerable incuba-
tion time, which in turn determines the average nanowire growth rate.

Most theoretical models for nanowire growth kinetics assume instantaneous 
layer completion and the growth rate is calculated in a nucleation-limited regime 
[95–98]. This assumption seems to be valid for the VLS growth of elemental 
nanowires we discussed above. However, we will now discuss in this section about 
elemental nanowires and the next section about compound nanowires cases where 
this assumption of instantaneous layer-growth breaks down.

As mentioned before, the growth can proceed by the VSS route where the cata-
lyst is a solid particle. In the VSS growth of elemental nanowires the layer comple-
tion is slow [73, 74, 78, 82]. The incubation time in the VSS case is shorter than in 
VLS [74, 78]. The solubility of the growth material in the solid catalyst is much 
lower than in a liquid catalyst, thus a small amount of excess species can increase 
the chemical potential sufficiently to nucleate a new layer — making the incubation 
time short [74, 78]. But the limited amount of material present could be insufficient 
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for forming a complete bilayer, in turn making the ledge-flow process slow [74, 78]. 
The limited solubility of the nanowire species inside the solid catalyst offers the 
opportunity to grow compositionally abrupt axial heterostructure [74]. Another 
interesting aspect about VSS growth of elemental nanowires is that there can be 
two or more ledges growing simultaneously [73, 78, 82]. This also is in contrast to 
VLS growth of elemental nanowires were a second ledge starts only after the first is 
fully grown.

5. In situ compound nanowire growth

Compound nanowires grown inside TEM include insulator materials (Al2O3 
[45]) and semiconductors (GaAs [49, 84, 99], GaN [79, 83, 100], GaP [46, 80], 
InAs [91] and PdSe [92]). VSS growth of compound nanowires in a TEM with a 
supply of precursors has not been reported so far; hence the discussion we have in 
this section is restricted to VLS growth of compound nanowires. In the cases where 
atomic resolution videos where obtained, ledge-flow was not instantaneous [49, 83, 
84, 90]. The initial studies of MOCVD combined with in situ TEM were at very low 
precursor pressures compared to the typical ‘ex situ’ MOCVD; [83, 84] hence it was 
not sure if the gradual ledge-flow was representative of ex situ growths as well. The 
latest report was with orders of magnitude higher pressures than previous studies, 
but still the precursor pressures values were on the lower end of conventional ex 
situ MOCVD growth parameter regime [90]. If or not the ledge-flow of atomic 
layers is gradual in the entire range of growth parameters used in ex situ growths is 
yet to be investigated.

The gradual ledge-flow growth in compound nanowires, is in striking contrast 
to the VLS monoatomic nanowire growth. But this difference between elemental 
and compound nanowires is simple to understand. In elemental nanowire only one 
material species controls both nucleation and layer-growth events. For example, 
during Si nanowire growth with a Au catalyst the Si dissolving in the Au is the 
key factor. At typical growth temperatures of Si nanowire growth (400–600°C) 
the liquidus line where the Au-Si system is at equilibrium is with about 20–28% Si 
(depending on the growth temperature). A little extra Si is insufficient to supersat-
urate the system enough to trigger a nucleation event. The amount of excess Si that 
accumulates during the incubation time and triggers the nucleation of a layer could 
thus suffice to form an entire layer. However, in a compound nanowire case the 
miscibility of two different nanowire species within the catalyst could be decisive, 
in turn making the dynamics more complex. Species like Ga, In, Al and Zn alloys 
readily with Au while species like As, N, P and O are hardly soluble in Au [101]. 
In the case of Au-catalyzed GaAs growth, for example, theoretical calculations 
predicted that Ga mixes readily in Au but As has poor solubility in Au [102, 103]. 
Experimental studies of the catalyst composition was mostly done ex situ post 
growth until very recently.

6. Catalyst composition measured in situ

Understanding the concentration of the different species during growth is key to 
understanding the growth dynamics. Parameters like surface and interface energies, 
vapor pressure and chemical potential of the catalyst are dependent on the catalyst 
composition [104–106]. The catalyst composition measured ex situ depends not just 
on the growth parameters, but also on the conditions used to terminate growth and 
cool down the sample (the ambient gas, ramp down rate etc.) [2, 44, 107]. Typically 
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in MOCVD the temperature is decreased from the growth temperature down to 
either room temperature or an intermediate temperature in a group V (or group VI) 
precursor environment to prevent etching and surface roughening. At the initial 
part of this ramp down, where the temperature is still adequate to grow, the group 
III (or II) species already present in the catalyst reacts with the group V precursor to 
form an additional nanowire segment, in turn decreasing the concentration of the 
group III species in the catalyst [2, 44, 107]. Hence in situ measurement is key.

Recently in situ measurement of the catalyst composition during the growth 
process was reported [89]. X-ray energy dispersive spectroscopy (XEDS) spectros-
copy was used in situ to study the catalyst composition during Au-catalyzed GaAs 
growth performed inside an ETEM. Trimethylgallium (TMGa) and arsine (AsH3) 
were used as the precursors. The XEDS measurement was conducted in the TEM 
mode by condensing the beam to a small region and positioning it in the front part 
of the catalyst (like depicted in Figure 2a). Since the nanowire was growing, the 
sample stage was constantly repositioned so that the beam is all the time on the 
catalyst itself, and not hitting the nanowire part. The XEDS signal from Au, Ga and 
As was studied. The catalyst had a significant amount of Ga alloyed with the Au. 
The Ga % in the catalyst was found to increase with both temperature and the Ga 
precursor flux. Figure 2b shows the Ga % as function of the V/III ratio i.e. the ratio 
of the group V precursor to the group III precursor. These experiments were done in 
the 420–500°C temperature range. At these temperatures, the catalyst interaction 
with nanowire depends on the TMGa flow – (a) in the absence of a TMGa flow the 
catalyst particle can etch the nanowire (similar to what was reported by Tornberg 
et al. [108]); (b) at an intermediate TMGa flow there is neither growth nor etching; 
(c) at a slightly higher TMGa there is nanowire growth where the Ga % increases 
with increasing TMGa flow to a quasi-steady state and the catalyst bulges due to the 
additional Ga; (d) eventually there is a regime with truncated nanowire-catalyst 
interface and (e) finally at even higher TMGa the catalyst bulges and topples.

The As signal in the EDX spectra was too low to be conclusively attributed to be 
arising from the catalyst and was suspected to be due to scattered signal from the 
nanowire [89]. The As content was however estimated by an indirect method —
calculating phase diagrams or liquidus lines for different As % and comparing the 
Ga % in these calculations to the measured Ga % value. The estimated minimum 
As % in the catalyst was ~0.01%. For the nanowire dimensions used, this would be 

Figure 2. 
In situ catalyst composition measurement. (a) TEM image of a nanowire. The catalyst composition was 
measured in situ by XEDS by condensing the beam in the front of the catalyst. (b) the Ga % in the catalyst 
is plotted as a function of the V/III ratio. The As % measured in the catalyst was negligible. (a) and (b) are 
adapted from Maliakkal et al. 2019 [89] with permission as per creative commons license.
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for forming a complete bilayer, in turn making the ledge-flow process slow [74, 78]. 
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Ga % in these calculations to the measured Ga % value. The estimated minimum 
As % in the catalyst was ~0.01%. For the nanowire dimensions used, this would be 

Figure 2. 
In situ catalyst composition measurement. (a) TEM image of a nanowire. The catalyst composition was 
measured in situ by XEDS by condensing the beam in the front of the catalyst. (b) the Ga % in the catalyst 
is plotted as a function of the V/III ratio. The As % measured in the catalyst was negligible. (a) and (b) are 
adapted from Maliakkal et al. 2019 [89] with permission as per creative commons license.
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less than the amount of As required to form one complete bilayer. Indirect estimates 
based on ex situ growth, [95] phase diagrams, [109] and theoretical calculations 
related to Au-catalyzed GaAs nanowire growth [102, 103] also suggested low As 
solubility in the Au-Ga alloy.

7. Independent control of layer nucleation and layer-growth

The concentration difference between the two different nanowire species in the 
catalyst [89] implies that both these species could affect the growth in different ways. 
This was studied in detail, again using Au-catalyzed GaAs (and TMGa and AsH3 as 
precursors) [90]. Two sets of experiments were investigated – one was a TMGa series 
(where AsH3 and temperature were kept constant) and a second was AsH3 series 
(where TMGa and temperature were kept constant). The ledge-flow time was found 
to decrease drastically with increasing AsH3 flow (Figure 3b); thus the ledge-flow 
process was understood to be limited by the As availability. This agrees well with the 
low As % present in the catalyst [89]. (The idea that ledge-flow is limited by As avail-
ability was proposed in an earlier study [84] but not elaborately investigated there.) 
On increasing TMGa flow in a separate experiment the incubation time decreased 
drastically while the ledge-flow time remained rather unchanged (Figure 3c). This 
indicated that nucleation of a new layer is triggered by excess Ga.

The experimental observations for the TMGa and AsH3 series matched  
stochastic Monte Carlo simulations done based on mass transport and nucle-
ation theory [89]. An example of how As % and Ga % in the catalyst varies in an 
almost cyclic way during the simulated layer-growth cycle is shown in Figure 3d. 

Figure 3. 
(a) TEM image showing ledge-flow growth of an atomic bilayer. (b,c) Ledge-flow time as a function of 
As-precursor flow (b) and Ga-precursor flow (c). (d) A representative example of simulation of Ga and As 
concentrations in the catalyst. (Plots (b), (c) and (d) are adapted from Maliakkal et al. [90] with permission. 
Further permissions should be directed to ACS.)
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During the incubation process the As concentration in the catalyst is in equilib-
rium with the ambient vapor. Once the layer nucleation happens the ‘excess’ As is 
consumed to form the GaAs nucleus and so As concentration quickly drops to a 
low level (where the As is in equilibrium with the solid GaAs nanowire). As soon 
as the layer is grown completely, the As % quickly rises and equilibrates again 
with the ambient vapor. Once this happens, the As contribution to the liquid 
supersaturation remains the same over the rest of the incubation period. However, 
the Ga building up in the catalyst keeps increasing the liquid chemical potential. 
Eventually, at some point after the liquid chemical potential is higher than the 
nucleation barrier, stochastically a nucleation event happens. Since the As % 
remains steady during the latter part of the incubation period, it is the Ga which is 
triggering nucleation of a new layer [90].

The study demonstrated independent control of layer nucleation (by Ga) and 
layer completion (by As) in GaAs nanowires growth [90]. The underlying reason 
for the nucleation of layer and ledge-flow to be controllable independently is the 
very low solubility of As and the high solubility of Ga in the Au catalyst. Several 
other III-V and II-VI compound semiconductors also consist of a nonmetallic spe-
cies (group V or VI, e.g., N, O, P, S), and a metallic species (group II or III, e.g., Ga, 
In, Zn, Mg) [101]. These nonmetallic species typically dissolve very little in catalyst 
(gold or other typical transition metal catalysts) while the metallic species read-
ily forms alloys. In cases were the amount of nonmetallic species collected in the 
catalyst and available for growth is low, the layer growth process will be restricted 
by availability of this nonmetallic species. Thus, independent control of layer nucle-
ation and growth would be possible in several other nanowire systems too [90].

The occasions where controlling the layer nucleation and growth are extremely 
relevant could include doping and growth of ternary compounds. In VLS growth, 
the nucleation stage determines the crystal stacking of the entire atomic layer [1]. 
However, dopant/impurity incorporation happening would strongly depend on 
ledge-flow. Since impurity incorporation could be happening due to step trapping, 
a slow ledge-flow would help limit the impurity incorporation. On the contrary, for 
higher dopant incorporation, a fast ledge-flow could be advantageous [90].

8. Polytypism in III-V nanowires

Layer nucleation and growth for the different polytypes have been studied by 
in situ TEM. Before we discuss the key in situ results, let us discuss the concept of 
polytypism in nanowires and how the metastable structure could form. Nanowires 
enable the formation of metastable crystalline phases which do not form during 
its bulk growth. For example, most III-arsenides and III-phosphides form in the 
zincblende polytype when grown in bulk, because the bulk energy is lower for zinc-
blende than wurtzite phase. But these materials can form in the wurtzite polytype 
in nanowires due to surface effects [2–4, 44, 110]. (Details of these crystal struc-
tures can be found elsewhere [4]). Controlled polytypism has great technological 
relevance because the electronic band structure depends on crystal structure. For 
example, GaP in the usual zincblende phase is an indirect bandgap material; while 
the wurtzite polytype has a pseudo-direct bandgap [111–113]. The valence and 
conduction bands of the two polytypes are often misaligned, so sections of one 
polytype in a matrix of the other polytype nanowire can confine electrons and/or 
holes. This enables crystal phase quantum dots with abrupt interfaces [114, 115]. 
Compositional quantum dots, on the other hand, often has a gradual variation of 
the composition (depending on the material combination chosen) deteriorating its 
properties.
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Compositional quantum dots, on the other hand, often has a gradual variation of 
the composition (depending on the material combination chosen) deteriorating its 
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Now let us first briefly discuss a simplified explanation for the occurrence of the 
metastable wurtzite structure in nanowires. During VLS growth, at appropriate 
catalyst contact angles, the nucleus of each layer is preferably formed at the triple-
phase-line because it eliminates the energy cost of a preexisting liquid segment [1]. 
For nucleation happening at the triple-phase-line the nanowire surface energy is 
a key factor [1]. The surface energy of possible wurtzite side facets could be lower 
than the zincblende counterparts [1]. In such cases, the wurtzite structure can be 
more favorable than zincblende for energy minimization, depending on the catalyst 
supersaturation and relevant interface energies [1]. Extensive models proposed by 
several groups to correlate the observed crystal structure at different conditions can 
be found elsewhere [1, 96, 103, 104, 116–118].

In GaAs nanowire growth studied ex situ for a very wide range of V/III ratios 
it was found that very low V/III ratios gives zincblende, a higher V/III results in 
wurtzite, and an even higher V/III give zincblende again [110]. A high V/III ratio 
(i.e. higher AsH3, which may also be interpreted as effectively lesser Ga) is associ-
ated with a smaller catalyst; while a low V/III results in bulged up catalyst with 
high contact angle [110]. There are also two intermediate transition regimes with 
mixed structures [110]. Theoretical models of Au-catalyzed GaAs growths could 
also simulate three different growth regimes [103, 104]. Often in typical experiment 
series a narrower range of V/III is studied, and thus it may happen that only a zinc-
blende to wurtzite transition or only a wurtzite to zincblende transition is observed 
on increasing V/III ratio.

Jacobsson et al. observed two growth regimes in situ — at moderate V/III 
ratio wurtzite segments grew, and at low V/III the catalyst bulges and zincblende 
segments grew [84]. The wurtzite growth occurred while the nanowire-catalyst 
interface was one flat plane and the ledge-flow growth was gradual [84]. During 
zincblende growth the interface showed an oscillating truncated corner; the 
ledge-flow was “too rapid to observe” but was correlated to the cyclic dynamics of 
the truncation [84]. According to the study zincblende phase grows if any edge is 
truncated, whereas wurtzite grows only when the interface is flat [84]. They specu-
lated that the truncation happening in the low V/III regime would make nucleation 
occur away from the triple-phase-line which in turn makes zincblende the preferred 
structure. (Note the authors had not claimed an if-and-only-if condition between 
interface geometry and crystal structure. However, in my personal experience, 
some readers misinterpreted that truncation was a necessity for low V/III zinc-
blende growth.) The droplet contact angle was the key parameter in deciding the 
crystal structure [84]. Au:Ga ratio in the droplet was found to be not critical, hence 
a similar crystal structure–geometry correlation was speculated to be applicable to 
self-catalyzed wires too [84].

Polytypism in self-catalyzed GaAs nanowires was recently studied using in situ 
TEM-MBE by Panciera et al [99]. In this work the three regimes were observed as 
shown in Figure 4e, g and h (zincblende at low V/III ratio, wurtzite at higher  
V/III ratio, zincblende at even higher V/III ratio) [99]. In the high V/III zincblende 
regime, (which was not experimentally achievable in Jacobsson et al.), the nucle-
ation was found to occur at the triple-phase-line, the ledge-flow was slow, and 
no truncation was observed. Their observations consistent with Jacobsson et al. 
include (i) control of crystal structure by contact angle, (ii) gradual ledge-flow and 
flat interface during wurtzite growth, and (iii) truncation and rapid ledge-flow 
observed in the low V/III zincblende growth [99].

However, it is not necessary that the low V/III zincblende growth can occur only 
with truncation. The growth of zincblende with a bulged particle (high contact 
angle) at low V/III ratio, but without truncation, has also been reported (Figure 4f) 
[89]. In this study the V/III ratio was decreased to observe bulging of the particle, 

105

In Situ TEM Studies of III-V Nanowire Growth Mechanism
DOI: http://dx.doi.org/10.5772/intechopen.95690

but a lower limit was set on the V/III ratio intentionally to avoid the truncation 
regime [89]. The V/III ratio was varied in small steps and maintained for some 
time to reach steady state [89] – this could be the reason why this intermediate 
zincblende regime with high contact angle and without truncation was observed in 
this study unlike the other two in situ studies discussed above [84, 99]. Thus, we can 
infer that the zincblende growth at low V/III does not necessarily require trunca-
tion. More detailed investigation is necessary to say if the nucleation happened at 
the triple-phase-line or the center in this case, and if the ledge-flow was gradual or 
instantaneous. Whether the presence of truncation makes the nucleation preferable 
away from the triple phase line is also an open question.

A heuristic explanation for the choice of crystal structure based on the currently 
available data [84, 89, 99] and theoretical calculations [1, 49] on GaAs VLS growth 
is as follows. The metastable wurtzite phase can grow only if the layer nucleates at 
the triple-phase-line [49]. If the nucleation is at triple-phase-line, either wurtzite 
or zincblende can form depending on the supersaturation and surface energies 
[1]. When nucleation occurs away from the triple-phase-line, it can form only 
zincblende structure [1, 49]. Now let us look at crystal structure as a function of 
the contact angle. Glas et al. predicted that nucleation is preferred at the triple-
phase-line for a range of contact angles [π − βc; βc], where the critical angle βc is a 
function of the relevant interface energies [1, 49]. Thus, at intermediate contact 
angles (i.e. intermediate V/III ratios), nucleation occurs at the triple-phase-line and 
wurtzite structure is formed as observed( Figure 4c,g) [99]. For the lower contact 
angle (Figure 4d,h), nucleation was reported to be zincblende and at the triple-
phase-line, [99] which demands that zincblende structure would have been the 
lower energy nucleus phase at those growth conditions [1]. For the higher contact 
angle regime, zincblende was found to grow, even without truncation [89]. It would 
have happened either (i) with nucleation away from the triple-phase-line giving 

Figure 4. 
(a)-(d) Schematic representation of crystal phases observed as a function of V/III ratio or catalyst contact 
angle. The catalyst-nanowire interface is either a single plane (b-d) or truncated (a). (e)-(h) shows TEM 
images with zincblende (ZB) or wurtzite (WZ) structures. Scalebars correspond to 5 nm. Inset of (e) shows a 
dynamic truncated corner during the zincblende growth at low V/III ratio. (e), (g) and (h) are adapted with 
permission from Panciera et al. [99] Copyright (2020) American Chemical Society. Image (f) showing low V/
III zincblende growth even without truncation is from another study – Maliakkal et al. [89]. Adapted with 
permission as per Creative Commons license.



Nanowires - Recent Progress

104

Now let us first briefly discuss a simplified explanation for the occurrence of the 
metastable wurtzite structure in nanowires. During VLS growth, at appropriate 
catalyst contact angles, the nucleus of each layer is preferably formed at the triple-
phase-line because it eliminates the energy cost of a preexisting liquid segment [1]. 
For nucleation happening at the triple-phase-line the nanowire surface energy is 
a key factor [1]. The surface energy of possible wurtzite side facets could be lower 
than the zincblende counterparts [1]. In such cases, the wurtzite structure can be 
more favorable than zincblende for energy minimization, depending on the catalyst 
supersaturation and relevant interface energies [1]. Extensive models proposed by 
several groups to correlate the observed crystal structure at different conditions can 
be found elsewhere [1, 96, 103, 104, 116–118].

In GaAs nanowire growth studied ex situ for a very wide range of V/III ratios 
it was found that very low V/III ratios gives zincblende, a higher V/III results in 
wurtzite, and an even higher V/III give zincblende again [110]. A high V/III ratio 
(i.e. higher AsH3, which may also be interpreted as effectively lesser Ga) is associ-
ated with a smaller catalyst; while a low V/III results in bulged up catalyst with 
high contact angle [110]. There are also two intermediate transition regimes with 
mixed structures [110]. Theoretical models of Au-catalyzed GaAs growths could 
also simulate three different growth regimes [103, 104]. Often in typical experiment 
series a narrower range of V/III is studied, and thus it may happen that only a zinc-
blende to wurtzite transition or only a wurtzite to zincblende transition is observed 
on increasing V/III ratio.

Jacobsson et al. observed two growth regimes in situ — at moderate V/III 
ratio wurtzite segments grew, and at low V/III the catalyst bulges and zincblende 
segments grew [84]. The wurtzite growth occurred while the nanowire-catalyst 
interface was one flat plane and the ledge-flow growth was gradual [84]. During 
zincblende growth the interface showed an oscillating truncated corner; the 
ledge-flow was “too rapid to observe” but was correlated to the cyclic dynamics of 
the truncation [84]. According to the study zincblende phase grows if any edge is 
truncated, whereas wurtzite grows only when the interface is flat [84]. They specu-
lated that the truncation happening in the low V/III regime would make nucleation 
occur away from the triple-phase-line which in turn makes zincblende the preferred 
structure. (Note the authors had not claimed an if-and-only-if condition between 
interface geometry and crystal structure. However, in my personal experience, 
some readers misinterpreted that truncation was a necessity for low V/III zinc-
blende growth.) The droplet contact angle was the key parameter in deciding the 
crystal structure [84]. Au:Ga ratio in the droplet was found to be not critical, hence 
a similar crystal structure–geometry correlation was speculated to be applicable to 
self-catalyzed wires too [84].

Polytypism in self-catalyzed GaAs nanowires was recently studied using in situ 
TEM-MBE by Panciera et al [99]. In this work the three regimes were observed as 
shown in Figure 4e, g and h (zincblende at low V/III ratio, wurtzite at higher  
V/III ratio, zincblende at even higher V/III ratio) [99]. In the high V/III zincblende 
regime, (which was not experimentally achievable in Jacobsson et al.), the nucle-
ation was found to occur at the triple-phase-line, the ledge-flow was slow, and 
no truncation was observed. Their observations consistent with Jacobsson et al. 
include (i) control of crystal structure by contact angle, (ii) gradual ledge-flow and 
flat interface during wurtzite growth, and (iii) truncation and rapid ledge-flow 
observed in the low V/III zincblende growth [99].

However, it is not necessary that the low V/III zincblende growth can occur only 
with truncation. The growth of zincblende with a bulged particle (high contact 
angle) at low V/III ratio, but without truncation, has also been reported (Figure 4f) 
[89]. In this study the V/III ratio was decreased to observe bulging of the particle, 

105

In Situ TEM Studies of III-V Nanowire Growth Mechanism
DOI: http://dx.doi.org/10.5772/intechopen.95690

but a lower limit was set on the V/III ratio intentionally to avoid the truncation 
regime [89]. The V/III ratio was varied in small steps and maintained for some 
time to reach steady state [89] – this could be the reason why this intermediate 
zincblende regime with high contact angle and without truncation was observed in 
this study unlike the other two in situ studies discussed above [84, 99]. Thus, we can 
infer that the zincblende growth at low V/III does not necessarily require trunca-
tion. More detailed investigation is necessary to say if the nucleation happened at 
the triple-phase-line or the center in this case, and if the ledge-flow was gradual or 
instantaneous. Whether the presence of truncation makes the nucleation preferable 
away from the triple phase line is also an open question.

A heuristic explanation for the choice of crystal structure based on the currently 
available data [84, 89, 99] and theoretical calculations [1, 49] on GaAs VLS growth 
is as follows. The metastable wurtzite phase can grow only if the layer nucleates at 
the triple-phase-line [49]. If the nucleation is at triple-phase-line, either wurtzite 
or zincblende can form depending on the supersaturation and surface energies 
[1]. When nucleation occurs away from the triple-phase-line, it can form only 
zincblende structure [1, 49]. Now let us look at crystal structure as a function of 
the contact angle. Glas et al. predicted that nucleation is preferred at the triple-
phase-line for a range of contact angles [π − βc; βc], where the critical angle βc is a 
function of the relevant interface energies [1, 49]. Thus, at intermediate contact 
angles (i.e. intermediate V/III ratios), nucleation occurs at the triple-phase-line and 
wurtzite structure is formed as observed( Figure 4c,g) [99]. For the lower contact 
angle (Figure 4d,h), nucleation was reported to be zincblende and at the triple-
phase-line, [99] which demands that zincblende structure would have been the 
lower energy nucleus phase at those growth conditions [1]. For the higher contact 
angle regime, zincblende was found to grow, even without truncation [89]. It would 
have happened either (i) with nucleation away from the triple-phase-line giving 

Figure 4. 
(a)-(d) Schematic representation of crystal phases observed as a function of V/III ratio or catalyst contact 
angle. The catalyst-nanowire interface is either a single plane (b-d) or truncated (a). (e)-(h) shows TEM 
images with zincblende (ZB) or wurtzite (WZ) structures. Scalebars correspond to 5 nm. Inset of (e) shows a 
dynamic truncated corner during the zincblende growth at low V/III ratio. (e), (g) and (h) are adapted with 
permission from Panciera et al. [99] Copyright (2020) American Chemical Society. Image (f) showing low V/
III zincblende growth even without truncation is from another study – Maliakkal et al. [89]. Adapted with 
permission as per Creative Commons license.



Nanowires - Recent Progress

106

zincblende structure or (ii) with nucleation at the triple-phase-line only, but with 
the zincblende structure having lower energy at those growth conditions. Note 
that in the above explanation or in references [1, 49] truncation was not explicitly 
needed to explain crystal phase switching. At extremely high contact angles and at 
extremely low contact angles, there could be either truncation or large tapering; 
[84, 99] but truncation is not a necessity for zincblende growth. The truncation 
might be responsible for the observed quasi-instantaneous ledge-flow though.

9. Open questions

Ideally, for an exact explanation of nanowire crystal phases at different condi-
tions discussed above, one could theoretically model the system and compare the 
contact angles where the structure is predicted to switch phases and compare it 
with experimental values. Such calculations, and also models for other phenomena 
in nanowires, involve different interface energy terms. However, there are hardly 
any direct experimental measurements of interface energies at the different growth 
conditions even for common material systems. The solid surface energies (the 
solid-vapor interface energy to be more precise) would depend on the surface 
relaxations/reconstructions adapted by the system, which again depends on the 
growth condition [119]. There exists post-growth surface energy measurements on 
bulk materials, [120] but is inadequate for knowing nanowire surface energies dur-
ing growth conditions. Some roundabout estimates have been made by comparing 
experimental observations with approximate models for finding surface energies 
during growth; [99, 108] having these values are certainly better than having 
nothing, but we need better measurements. The reason for not having more direct 
measurements is simple – they are challenging to perform and observe at nanowire 
growth conditions. The surface tension of Au-Si liquid catalyst has been beautifully 
measured by studying electric field-induced deformation [85]. This method can be 
used to study other material systems as well. We have to come up with smart strate-
gies for measuring solid–liquid and solid-vapor interface energies.

A seemingly basic, but still ambiguous topic is what are the key parameters 
deciding the nanowire growth direction. For example, unless at very peculiar 
growth conditions, most III-V and II-VI nanowires grow in the <111>/<0001> B 
direction, [3, 4] even on amorphous substrates, [89, 113, 121] in fact even without 
a substrate [122]. (The <0001>B direction in wurtzite structure is equivalent to 
the <111>B of zincblende polytype.) A complete and accurate description in the 
VLS case would involve catalyst chemical potential, solid–liquid interface energy 
for different possible crystal planes in contact with the liquid catalyst, solid-vapor 
surface energy of nanowire sides, liquid–vapor interface energy, edge energies of 
the top facet, edge energies of the growing island, [49] edge energies at nanowire 
side corners, if or not a new layer has well-defined low-index facets or is the surface 
rather rounded, [123] effect of liquid ordering, [45] etc. These individual terms are 
a function of the growth parameters and catalyst composition. As mentioned in the 
previous paragraph, most of these values have not been measured yet. But all these 
factors present, perhaps there is some key factor(s) which overpowers at typical 
growth conditions?

A very interesting but unresolved question is the diffusion pathway of the 
reactants. If the group V or group VI species is expected to hardly dissolve in the 
catalyst during compound nanowire growth, is it necessary that it should diffuse 
through the volume of the catalyst? Could these species be diffusing through the 
catalyst-nanowire surface instead? With the current technology it is not possible 
to watch the trajectory of each individual atom. However, perhaps there could be 
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some strategic in situ experiments, which in combination with appropriate rigor-
ous theoretical simulations, can solve this puzzle. The radius dependence of the 
ledge-flow time might distinguish if the diffusion is through bulk or interface. The 
dynamics of the ledge-flow and the shape of the growing layer might also serve as a 
tool. That said, it is not necessary that there be a unique answer to this puzzle even 
for a given catalyst-nanowire system and catalyst phase (i.e. VLS or VSS), perhaps 
it could be dependent on the growth conditions. Another approach to this puzzle 
could be – diffusion need not even be the rate limiting process; in such a case why 
care about it. But this is nonetheless an interesting unanswered riddle, where in situ 
TEM can be extremely valuable.

10. Summary

Several in situ techniques, including in situ TEM, has been used to study nanow-
ire growth. In situ TEM studies revealed that the growth dynamics of compound 
nanowires (e.g. III-V nanowires like GaAs) is fundamentally different from elemen-
tal nanowires. This can be understood by the difference in solubility of the nanow-
ire species in the catalyst, which was also investigated by in situ TEM. Due to this 
concentration difference the layer nucleation and layer completion processes could 
be independently controlled. The growth dynamics has been studied in relation 
with the crystal structure and nanowire-catalyst interface morphology.
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zincblende structure or (ii) with nucleation at the triple-phase-line only, but with 
the zincblende structure having lower energy at those growth conditions. Note 
that in the above explanation or in references [1, 49] truncation was not explicitly 
needed to explain crystal phase switching. At extremely high contact angles and at 
extremely low contact angles, there could be either truncation or large tapering; 
[84, 99] but truncation is not a necessity for zincblende growth. The truncation 
might be responsible for the observed quasi-instantaneous ledge-flow though.

9. Open questions

Ideally, for an exact explanation of nanowire crystal phases at different condi-
tions discussed above, one could theoretically model the system and compare the 
contact angles where the structure is predicted to switch phases and compare it 
with experimental values. Such calculations, and also models for other phenomena 
in nanowires, involve different interface energy terms. However, there are hardly 
any direct experimental measurements of interface energies at the different growth 
conditions even for common material systems. The solid surface energies (the 
solid-vapor interface energy to be more precise) would depend on the surface 
relaxations/reconstructions adapted by the system, which again depends on the 
growth condition [119]. There exists post-growth surface energy measurements on 
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during growth; [99, 108] having these values are certainly better than having 
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measurements is simple – they are challenging to perform and observe at nanowire 
growth conditions. The surface tension of Au-Si liquid catalyst has been beautifully 
measured by studying electric field-induced deformation [85]. This method can be 
used to study other material systems as well. We have to come up with smart strate-
gies for measuring solid–liquid and solid-vapor interface energies.

A seemingly basic, but still ambiguous topic is what are the key parameters 
deciding the nanowire growth direction. For example, unless at very peculiar 
growth conditions, most III-V and II-VI nanowires grow in the <111>/<0001> B 
direction, [3, 4] even on amorphous substrates, [89, 113, 121] in fact even without 
a substrate [122]. (The <0001>B direction in wurtzite structure is equivalent to 
the <111>B of zincblende polytype.) A complete and accurate description in the 
VLS case would involve catalyst chemical potential, solid–liquid interface energy 
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surface energy of nanowire sides, liquid–vapor interface energy, edge energies of 
the top facet, edge energies of the growing island, [49] edge energies at nanowire 
side corners, if or not a new layer has well-defined low-index facets or is the surface 
rather rounded, [123] effect of liquid ordering, [45] etc. These individual terms are 
a function of the growth parameters and catalyst composition. As mentioned in the 
previous paragraph, most of these values have not been measured yet. But all these 
factors present, perhaps there is some key factor(s) which overpowers at typical 
growth conditions?

A very interesting but unresolved question is the diffusion pathway of the 
reactants. If the group V or group VI species is expected to hardly dissolve in the 
catalyst during compound nanowire growth, is it necessary that it should diffuse 
through the volume of the catalyst? Could these species be diffusing through the 
catalyst-nanowire surface instead? With the current technology it is not possible 
to watch the trajectory of each individual atom. However, perhaps there could be 
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nanowires (e.g. III-V nanowires like GaAs) is fundamentally different from elemen-
tal nanowires. This can be understood by the difference in solubility of the nanow-
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Chapter 7

Indium (In)-Catalyzed Silicon 
Nanowires (Si NWs) Grown by the 
Vapor–Liquid–Solid (VLS) Mode 
for Nanoscale Device Applications
M. Ajmal Khan and Yasuaki Ishikawa

Abstract

Stacking fault free and planar defects (twin plane) free catalyzed Si nanowires 
(Si NWs) is essential for the carrier transport in the nanoscale devices applications. 
In this chapter, In-catalyzed, vertically aligned and cone-shaped Si NWs arrays were 
grown by using vapor–liquid–solid (VLS) mode on Si (111) substrates. We have 
successfully controlled the verticality and (111)-orientation of Si NWs as well as 
scaled down the diameter to 18 nm. The density of Si NWs was also enhanced from 
2.5 μm−2 to 70 μm−2. Such vertically aligned, (111)-oriented p-type Si NWs are very 
important for the nanoscale device applications including Si NWs/c-Si tandem solar 
cells and p-Si NWs/n-InGaZnO Heterojunction LEDs. Next, the influence of sub-
strate growth temperature (TS), cooling rate (∆TS/∆𝑡𝑡) on the formation of planar 
defects, twining along [112] direction and stacking fault in Si NWs perpendicular to 
(111)-orientation were deeply investigated. Finally, one simple model was proposed 
to explain the formation of stacking fault, twining of planar defects in perpendicu-
lar direction to the axial growth direction of Si NWs. When the TS was decreased 
from 600°C with the cooling rate of 100°C/240 sec to room temperature (RT) after 
Si NWs growth then the twin planar defects perpendicular to the substrate and 
along different segments of (111)-oriented Si NWs were observed.

Keywords: silicon nanowires (Si NWs), VLS growth mode, contact angle,  
vertically aligned, In-catalyst, twining plane defects, stacking fault,  
nanoscale devices, solar cells

1. Introduction

Recently much interest has been developed to control the band gap as a func-
tion of diameter of Si nanowires (Si NWs) to exploit the quantum size effect for 
photovoltaic applications [1–5], and its extension according to Moore’s law in view 
of the ongoing downscaling of integrated circuits (ICs) technologies as well as nano 
devices. Specially Si NWs are remarkably important for the fabrication of nanoscale 
devices such as transistors [6], sensors [7, 8], and thermoelectric devices [9]. 
Vapor–liquid–solid (VLS) mechanism provides a unique opportunity to investigate 
the crystalline quality and structures of single NW, where density, orientation, 
and periodicity of Si NWs system can be influenced by growth parameters such as 
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temperature, pressure, plasma treatment, dopants [10–12], and the type of catalyst 
[13, 14], surface condition of substrate as well as size [15] of the metal Nano-
droplets (NDs), shown in Figure 1. Si NWs growth by VLS mode using various 
material catalysts, such as Au, Al, Ga, In, Pb, Sn and Zn have been reported [16–25].

Many researchers already grown vertically aligned Si NWs using Au-catalyst, 
which is not useful candidate for the application of nanoscale devices including 
solar cell and LEDs because it creates deep acceptor energy level at 0.54 eV in the Si 
band gap, whereas In-catalyst creates shallow accepter energy level at 0.16 eV in the 
Si band gap. Au-catalyst particles are strongly degrading the minority carrier life 
time, while In-catalyst particles are boosting to the carrier life time [26]. Previously, 
randomly oriented Si NWs were grown by Jeon and Kamisako et al. using different 
type of catalysts including In-metal in the VLS growth mode [27–29]. Usually, VLS 
grown Si NWs system shows complex faceting [30] including hexagonal structure 
[31]. Ordered arrays of planar faults were reported by Ohno et al. which resulted 
in new phases and properties of well-known materials [32]. Several researchers 
reported about the twinning and generation of polytype defects and their control 
in III-V materials based NWs [11, 12]. Generation of polytype defects in group 
IV-semiconductors were less explored [13, 33]. In Si NWs system {111} planar faults 
were confirmed along the growth axis of 〈112〉-orientation [14]. Such twin planar 
faults along a 〈111〉 direction, are considered as a stacking faults in the ABC stacking 
sequence. Ultimately, this arrangement gives rise to some local hexagonal order-
ing, for example, ABA, and leading to polytypes. It was also observed that isolated 
defects of these {111} faults of NWs can trap to the Au (gold)-catalyst atoms [34]. 
Such arrangements and characteristics have significant influence on the impurity 
distributions, electrical and optical properties of the Si NWs based nano-devices.

The defects study like twin planar defects as well as stacking fault were not 
rigorously investigated in the case of vertically aligned In-catalyzed (111)-oriented 
Si NWs. However, relatively very few investigations have been made about the 
stacking fault and twin planar defects in In-catalyzed Si NWs grown by VLS growth 
[26]. Zhan et al. reported the numerical study of Si NWs which discuss about the 
perpendicularly aligned stacking fault layers, the extrinsic stacking fault (eSF) 
and 9-rhombohedral (9R)-polytype [35]. Large reduction of thermal conductiv-
ity in Si NWs was induced by extrinsic stacking fault (eSF) and 9-rhombohedral 
(9R)-polytype, when compared to the twin boundaries and the intrinsic stacking 
fault (iSFs) [35]. Some single twin planes and arrays of {111} stacking faults were 

Figure 1. 
Schematic flow mechanisms of In-catalyzed Si NWs grown by VLS growth mode.
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observed in Au-catalyzed Si NWs grown in the 〈112〉 direction [14]. Lopez et al. 
reported about such structures in Au-catalyzed 〈111〉-oriented kinked shaped Si 
NWs [36]. Such defects were found to be running parallel to the 〈112〉 NW axis, 
and often extending in the entire length of the wire. There is no report about the 
stacking fault as well as planar defects (twin planar defects) along 〈112〉 direction 
in the case of In-catalyzed, vertically aligned, and (111)-oriented Si NWs grown by 
VLS mode. Our main objective is to control the verticality of p-type Si NWs for the 
applications of nano-devices. We also investigate about the single Si NW, whether 
it contains twining defects, planar defects as well as stacking fault along the growth 
direction of In-catalyzed Si NWs. Second, we attempted to present one simple 
model about the root cause of stacking faults formation that are distributed around 
the Si NWs as well as at the interface of In-NDs/Si-substrate (polytypes). Finally, it 
was established that the Si NWs height were also restricted by the In-NPs migration 
from the top of the Si NWs.

2. Experimental methods

The basic mechanism behind the VLS growth mode is the transformation of the 
solid metal catalyst nanoparticle into a liquid alloy of the catalyst and compound 
of the semiconductor. In this case the liquid particle acts as a privileged site for Si 
deposition (precipitation via liquid catalyst), and has higher sticking coefficient as 
compared to the solid surfaces, shown in the schematic flow mechanism of Figure 1 
[37]. Two different type of experiments were conducted to grow Si NWs. First, 
before the air-breaking condition p-type 300 μm-thick Cz-Si (111) substrate having 
resistivity of 1–10 Ω-cm, was cleaned by RCA washing. Next, In-NDs were grown 
on Si (111) substrate, using a conventional thermal evaporation system by evaporat-
ing pure In wire with base pressure (PB) of 4.4 × 10−4 Pa. Stranski–Krastanow (SK) 
growth mode was followed by In-NDs, which is not a two-dimensional growth, 
but rather gives rise to islands of the In-metal. Subsequently, the In-NDs were 
thermally annealed in a glass tube furnace at 630°C for 360 min and then treated by 
a H2 plasma at substrate temperature (TS) of 200°C for 30 min under a pressure of 
10 Pa in a sputtering chamber (after air-breaking condition). Finally, Si NWs were 
grown by a radio frequency (RF) magnetron sputtering after air-breaking condition 
(sample-Na) at TS = 630°C under pressure of 1 Pa for 30 min growth time.

In the next experiment everything was grown in the same sputtering chamber 
(without air-breaking condition). First, 300 μm-thick p-type Cz-Si (111) substrate, 
having resistivity ~1–10 Ω-cm was washed by RCA washing. Soon after RCA wash-
ing and drying the wafer was transferred to the plasma assisted and high vacuum 
sputtering chamber having background pressure, PB ~ 6.0 × 10−6 Pa. Secondly, 
the In-atoms were deposited on Si substrate by In-sputtering target at room tem-
perature (RT) under working pressure of 3 Pa for 20 min. Thirdly, the as-grown 
In-Islands sample was treated by H2-plasma (200 sccm) in Ar (20 sccm) environ-
ment, where substrate temperature was set to 600°C, for 3 min. The heating rate 
of the substrate was kept 10°C/min to get self-organized and well defined In-NDs 
on the substrate before the Si NWs growth. Finally, the substrate temperature was 
set to 600°C, assisted by H2-plasma (200 sccm) in Ar (20 sccm) for 60 min under 
working pressure of 10 Pa and Si NWs were successfully grown (sample-Nw).

The interface scenario between In-NDs and Si (111), surface morphologies, 
shape, density, and contact angle (θC) of In-NDs on Si-substrate were observed by 
high resolution scanning electron microscopy (HR-SEM). Crystal structure, i.e., 
cross-section, different planar defects and twining of planar defects in the entire 
Si NWs were observed, via selected-area of electron diffraction (SAED) as well 
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temperature, pressure, plasma treatment, dopants [10–12], and the type of catalyst 
[13, 14], surface condition of substrate as well as size [15] of the metal Nano-
droplets (NDs), shown in Figure 1. Si NWs growth by VLS mode using various 
material catalysts, such as Au, Al, Ga, In, Pb, Sn and Zn have been reported [16–25].

Many researchers already grown vertically aligned Si NWs using Au-catalyst, 
which is not useful candidate for the application of nanoscale devices including 
solar cell and LEDs because it creates deep acceptor energy level at 0.54 eV in the Si 
band gap, whereas In-catalyst creates shallow accepter energy level at 0.16 eV in the 
Si band gap. Au-catalyst particles are strongly degrading the minority carrier life 
time, while In-catalyst particles are boosting to the carrier life time [26]. Previously, 
randomly oriented Si NWs were grown by Jeon and Kamisako et al. using different 
type of catalysts including In-metal in the VLS growth mode [27–29]. Usually, VLS 
grown Si NWs system shows complex faceting [30] including hexagonal structure 
[31]. Ordered arrays of planar faults were reported by Ohno et al. which resulted 
in new phases and properties of well-known materials [32]. Several researchers 
reported about the twinning and generation of polytype defects and their control 
in III-V materials based NWs [11, 12]. Generation of polytype defects in group 
IV-semiconductors were less explored [13, 33]. In Si NWs system {111} planar faults 
were confirmed along the growth axis of 〈112〉-orientation [14]. Such twin planar 
faults along a 〈111〉 direction, are considered as a stacking faults in the ABC stacking 
sequence. Ultimately, this arrangement gives rise to some local hexagonal order-
ing, for example, ABA, and leading to polytypes. It was also observed that isolated 
defects of these {111} faults of NWs can trap to the Au (gold)-catalyst atoms [34]. 
Such arrangements and characteristics have significant influence on the impurity 
distributions, electrical and optical properties of the Si NWs based nano-devices.

The defects study like twin planar defects as well as stacking fault were not 
rigorously investigated in the case of vertically aligned In-catalyzed (111)-oriented 
Si NWs. However, relatively very few investigations have been made about the 
stacking fault and twin planar defects in In-catalyzed Si NWs grown by VLS growth 
[26]. Zhan et al. reported the numerical study of Si NWs which discuss about the 
perpendicularly aligned stacking fault layers, the extrinsic stacking fault (eSF) 
and 9-rhombohedral (9R)-polytype [35]. Large reduction of thermal conductiv-
ity in Si NWs was induced by extrinsic stacking fault (eSF) and 9-rhombohedral 
(9R)-polytype, when compared to the twin boundaries and the intrinsic stacking 
fault (iSFs) [35]. Some single twin planes and arrays of {111} stacking faults were 

Figure 1. 
Schematic flow mechanisms of In-catalyzed Si NWs grown by VLS growth mode.
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observed in Au-catalyzed Si NWs grown in the 〈112〉 direction [14]. Lopez et al. 
reported about such structures in Au-catalyzed 〈111〉-oriented kinked shaped Si 
NWs [36]. Such defects were found to be running parallel to the 〈112〉 NW axis, 
and often extending in the entire length of the wire. There is no report about the 
stacking fault as well as planar defects (twin planar defects) along 〈112〉 direction 
in the case of In-catalyzed, vertically aligned, and (111)-oriented Si NWs grown by 
VLS mode. Our main objective is to control the verticality of p-type Si NWs for the 
applications of nano-devices. We also investigate about the single Si NW, whether 
it contains twining defects, planar defects as well as stacking fault along the growth 
direction of In-catalyzed Si NWs. Second, we attempted to present one simple 
model about the root cause of stacking faults formation that are distributed around 
the Si NWs as well as at the interface of In-NDs/Si-substrate (polytypes). Finally, it 
was established that the Si NWs height were also restricted by the In-NPs migration 
from the top of the Si NWs.

2. Experimental methods

The basic mechanism behind the VLS growth mode is the transformation of the 
solid metal catalyst nanoparticle into a liquid alloy of the catalyst and compound 
of the semiconductor. In this case the liquid particle acts as a privileged site for Si 
deposition (precipitation via liquid catalyst), and has higher sticking coefficient as 
compared to the solid surfaces, shown in the schematic flow mechanism of Figure 1 
[37]. Two different type of experiments were conducted to grow Si NWs. First, 
before the air-breaking condition p-type 300 μm-thick Cz-Si (111) substrate having 
resistivity of 1–10 Ω-cm, was cleaned by RCA washing. Next, In-NDs were grown 
on Si (111) substrate, using a conventional thermal evaporation system by evaporat-
ing pure In wire with base pressure (PB) of 4.4 × 10−4 Pa. Stranski–Krastanow (SK) 
growth mode was followed by In-NDs, which is not a two-dimensional growth, 
but rather gives rise to islands of the In-metal. Subsequently, the In-NDs were 
thermally annealed in a glass tube furnace at 630°C for 360 min and then treated by 
a H2 plasma at substrate temperature (TS) of 200°C for 30 min under a pressure of 
10 Pa in a sputtering chamber (after air-breaking condition). Finally, Si NWs were 
grown by a radio frequency (RF) magnetron sputtering after air-breaking condition 
(sample-Na) at TS = 630°C under pressure of 1 Pa for 30 min growth time.

In the next experiment everything was grown in the same sputtering chamber 
(without air-breaking condition). First, 300 μm-thick p-type Cz-Si (111) substrate, 
having resistivity ~1–10 Ω-cm was washed by RCA washing. Soon after RCA wash-
ing and drying the wafer was transferred to the plasma assisted and high vacuum 
sputtering chamber having background pressure, PB ~ 6.0 × 10−6 Pa. Secondly, 
the In-atoms were deposited on Si substrate by In-sputtering target at room tem-
perature (RT) under working pressure of 3 Pa for 20 min. Thirdly, the as-grown 
In-Islands sample was treated by H2-plasma (200 sccm) in Ar (20 sccm) environ-
ment, where substrate temperature was set to 600°C, for 3 min. The heating rate 
of the substrate was kept 10°C/min to get self-organized and well defined In-NDs 
on the substrate before the Si NWs growth. Finally, the substrate temperature was 
set to 600°C, assisted by H2-plasma (200 sccm) in Ar (20 sccm) for 60 min under 
working pressure of 10 Pa and Si NWs were successfully grown (sample-Nw).

The interface scenario between In-NDs and Si (111), surface morphologies, 
shape, density, and contact angle (θC) of In-NDs on Si-substrate were observed by 
high resolution scanning electron microscopy (HR-SEM). Crystal structure, i.e., 
cross-section, different planar defects and twining of planar defects in the entire 
Si NWs were observed, via selected-area of electron diffraction (SAED) as well 
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as via cross-sectional view by high-resolution transmission electron microscope 
(HR-TEM, Model: H-9000NAR). Migration and trapping of In-Nanoparticles (NPs) 
on the side wall of Si NWs were deeply investigated by energy-dispersive X-ray 
spectroscopy (EDX) and dark field scanning of scanning-TEM (STEM).

3. Results and discussion

Indium metal has a low melting point, and the eutectic temperature of the In–Si 
binary system coincides with the melting temperature of indium at 157°C [20, 38]. 
It is also worthy to note that the In–Si eutectic alloy exhibits a steep liquidus line, 
such that the liquid alloy can promptly be supersaturated with Si in a wide range of 
temperatures (at least up to 800°C) and In-Si eutectic alloy has an extremely low Si 
solubility approximately ∼10−4 at.% Si [26].

In this work the In-NDs were grown with the optimized growth condition, 
where the In-deposition time were increased from 20 min to 30 min in the plasma 
assisted crystal growth reactor as shown in Figure 2a and b. By decreasing the 
TS from 600 to 530°C in the high vacuum along with H2-plasma treatment, the 
diameter of the In-NDs were varied from 45 nm and to 500 nm. However, in 
some In-NDs, got an exceptionally low contact angle as shown in Figure 2b, 
which is quite interesting in the context of NWs verticality control for better 
Si-precipitation via In-NDs. On the other hand, we observed exceedingly high 
contact angle approximately 140o, as shown in Figure 2a. In this case the liquid 
NDs acts as a facilitator site for Si deposition (precipitation). It was found that 
In-NDs have higher sticking coefficient than the solid surfaces [37]. As shown in 
the schematic view of Figures 1 and 2c, where the supersaturation of the In-NDs, 
induced by the continuous gas phase supply of Si species (Vapor), leads to the 
precipitation of Si nanowires (Solid) at the interface of Si-substrate and In-NDs 
(Liquid). Si NWs growth was initiated, when a steady-state condition between the 
flux of the Si through the particle and the precipitation of Si on the substrate via 
In-NDs was reached, shown in Figure 1 [26, 37]. Later the growth condition for Si 
NWs was improved from sample-Na to sample-Nw. The contact angle along with 
the In-NDs size together can define the diameter of the Si NWs as depicted in the 
Figures 2c and 3a, b. It is all about the growth condition as well as growth in the 
reactor with and without air-breaking. By using HR-SEM, we investigated the inter-
face condition between the In-NDs and the Si substrate prior to the crystal growth 
of Si NWs, shown in Figure 3a and b. In the case of thermally evaporated In-NDs 
on Si-substrate, a spherical shaped In-NDs were observed with different sizes in 
the range of 30–100 nm, as well as with quite large θC of 140°, shown in Figure 3a. 

Figure 2. 
(a) SEM images of In-NDs (high contact angle) grown by sputtering of In-target at RT, for 20 min and 
then treated by plasma treatment at 530°C for 3 min, (b) SEM images of In-NDs (low contact angle) grown 
by sputtering of In-target at RT, for 20 min and then treated by H2-plasma at 600°C for 3 min, and (c) Si 
precipitation mechanism in the VLS growth mode via well wetted In-NDs to grow Si NWs.

123

Indium (In)-Catalyzed Silicon Nanowires (Si NWs) Grown by the Vapor–Liquid–Solid (VLS)…
DOI: http://dx.doi.org/10.5772/intechopen.97723

The spherical shape of In-NDs (due to low wettability) on the Si substrate can be 
explained by the interactions mechanism of oxidized In-NDs (In2O3) in the context 
of surface free energy (Ef) and θC in a qualitative manner on Si substrate in the 
conventional physical evaporator. Previously, the surface free energy (Ef) for pure 
In droplet and In2O3, respectively, were found to be 525 mN/m and 500–520 mN/m 
at 850 K [40]. During the growth of In-NDs in the air-breaking scenario, where 
the Ef of In-NDs on Si might be reduced due to the presence of the thin oxide layer 
around the In-NDs on substrate and subsequently increased to the θC up to ~140° of 
In-NDs on Si substrate, shown in Figure 3a. As a result, extremely low density of 
vertically aligned (111)-Si NWs at the supersaturation phase were grown, shown in 
Figure 3c. In the grown Si NWs, one can see quite big used cap of In-NDs on the top 

Figure 3. 
SEM images of In-NDs grown by sputtering in the reactor, (a) with air-breaking (sample-Na), (b) without 
air-breaking (sample-Nw). TEM micrograph of Si NWs grown in the reactor, (c) with air-breaking, (d) 
without air-breaking. HR-TEM micrograph of the as-grown Si NWs (e) taken at point “A1” in the sample-Na, 
and the SAED pattern taken at point “A3” and “A2” are shown in the inset, and (f) taken at point “B2” in the 
sample-Nw, and the SAED pattern taken at point “B3” and “B1” are shown in the inset. Figure 3 reproduced 
with the permission from ref [39]. Copyright 2015 the Royal Society of Chemistry (RSC).
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as via cross-sectional view by high-resolution transmission electron microscope 
(HR-TEM, Model: H-9000NAR). Migration and trapping of In-Nanoparticles (NPs) 
on the side wall of Si NWs were deeply investigated by energy-dispersive X-ray 
spectroscopy (EDX) and dark field scanning of scanning-TEM (STEM).

3. Results and discussion

Indium metal has a low melting point, and the eutectic temperature of the In–Si 
binary system coincides with the melting temperature of indium at 157°C [20, 38]. 
It is also worthy to note that the In–Si eutectic alloy exhibits a steep liquidus line, 
such that the liquid alloy can promptly be supersaturated with Si in a wide range of 
temperatures (at least up to 800°C) and In-Si eutectic alloy has an extremely low Si 
solubility approximately ∼10−4 at.% Si [26].

In this work the In-NDs were grown with the optimized growth condition, 
where the In-deposition time were increased from 20 min to 30 min in the plasma 
assisted crystal growth reactor as shown in Figure 2a and b. By decreasing the 
TS from 600 to 530°C in the high vacuum along with H2-plasma treatment, the 
diameter of the In-NDs were varied from 45 nm and to 500 nm. However, in 
some In-NDs, got an exceptionally low contact angle as shown in Figure 2b, 
which is quite interesting in the context of NWs verticality control for better 
Si-precipitation via In-NDs. On the other hand, we observed exceedingly high 
contact angle approximately 140o, as shown in Figure 2a. In this case the liquid 
NDs acts as a facilitator site for Si deposition (precipitation). It was found that 
In-NDs have higher sticking coefficient than the solid surfaces [37]. As shown in 
the schematic view of Figures 1 and 2c, where the supersaturation of the In-NDs, 
induced by the continuous gas phase supply of Si species (Vapor), leads to the 
precipitation of Si nanowires (Solid) at the interface of Si-substrate and In-NDs 
(Liquid). Si NWs growth was initiated, when a steady-state condition between the 
flux of the Si through the particle and the precipitation of Si on the substrate via 
In-NDs was reached, shown in Figure 1 [26, 37]. Later the growth condition for Si 
NWs was improved from sample-Na to sample-Nw. The contact angle along with 
the In-NDs size together can define the diameter of the Si NWs as depicted in the 
Figures 2c and 3a, b. It is all about the growth condition as well as growth in the 
reactor with and without air-breaking. By using HR-SEM, we investigated the inter-
face condition between the In-NDs and the Si substrate prior to the crystal growth 
of Si NWs, shown in Figure 3a and b. In the case of thermally evaporated In-NDs 
on Si-substrate, a spherical shaped In-NDs were observed with different sizes in 
the range of 30–100 nm, as well as with quite large θC of 140°, shown in Figure 3a. 

Figure 2. 
(a) SEM images of In-NDs (high contact angle) grown by sputtering of In-target at RT, for 20 min and 
then treated by plasma treatment at 530°C for 3 min, (b) SEM images of In-NDs (low contact angle) grown 
by sputtering of In-target at RT, for 20 min and then treated by H2-plasma at 600°C for 3 min, and (c) Si 
precipitation mechanism in the VLS growth mode via well wetted In-NDs to grow Si NWs.
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The spherical shape of In-NDs (due to low wettability) on the Si substrate can be 
explained by the interactions mechanism of oxidized In-NDs (In2O3) in the context 
of surface free energy (Ef) and θC in a qualitative manner on Si substrate in the 
conventional physical evaporator. Previously, the surface free energy (Ef) for pure 
In droplet and In2O3, respectively, were found to be 525 mN/m and 500–520 mN/m 
at 850 K [40]. During the growth of In-NDs in the air-breaking scenario, where 
the Ef of In-NDs on Si might be reduced due to the presence of the thin oxide layer 
around the In-NDs on substrate and subsequently increased to the θC up to ~140° of 
In-NDs on Si substrate, shown in Figure 3a. As a result, extremely low density of 
vertically aligned (111)-Si NWs at the supersaturation phase were grown, shown in 
Figure 3c. In the grown Si NWs, one can see quite big used cap of In-NDs on the top 

Figure 3. 
SEM images of In-NDs grown by sputtering in the reactor, (a) with air-breaking (sample-Na), (b) without 
air-breaking (sample-Nw). TEM micrograph of Si NWs grown in the reactor, (c) with air-breaking, (d) 
without air-breaking. HR-TEM micrograph of the as-grown Si NWs (e) taken at point “A1” in the sample-Na, 
and the SAED pattern taken at point “A3” and “A2” are shown in the inset, and (f) taken at point “B2” in the 
sample-Nw, and the SAED pattern taken at point “B3” and “B1” are shown in the inset. Figure 3 reproduced 
with the permission from ref [39]. Copyright 2015 the Royal Society of Chemistry (RSC).
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of Si NWs. The non-uniform diameter and length of Si NWs ranging for 30–100 nm 
and 150–200 nm, respectively, were observed by TEM and SEM observations, 
shown in Figure 3c. It can be speculated that the precipitation of Si atomic migra-
tion through the liquid phase of In-NDs to the Si substrate at the eutectic phase 
might be hindered by the thin oxide layer that exists around the majority of In-NDs 
and on the Si substrate. This kind of low wettability condition with extremely large 
θC of In-NDs on Si substrate does not support to the crystal growth of high-density 
Si NWs, shown in Figure 3c. Due to the small contact area of wet surface of In-NDs 
on the Si substrate may not be symmetric too, which ultimately give rise to the tilted 
Si NWs with big In-NPs cap, shown in Figure 3c. The (111)-oriented crystallinity at 
point “A1” was confirmed by the HR-TEM image (Figure 3e). The SAED at points 
“A3” and “A2” (shown in the inset of Figure 3e) corresponding to Si NWs and Si 
substrate, respectively, exhibit a spotty pattern, which indicating that the VLS 
growth was happened successfully for few Si NWs (with extremely low density of 
2.5 μm−2) using crystal growth in the air-breaking condition (sample-Na).

In the second experiment (without air-breaking), we optimized the growth 
conditions to obtain good interface between In-NDs and Si substrate by eliminat-
ing the oxide layer to enhance the wettability. All the in-situ growth steps starting 
from In-NDs growth, plasma treatment, and up to the crystal growth of Si NWs 
were performed in a relatively clean and high vacuum chamber without air-
breaking (sample-Nw). The θC of In on Si (111) was reported to be approximately 
125° at 350°C by Mattila et al. [41] After improving the wettability condition, the 
θC of In-NDs on Si substrate was remarkably decreased from our previous value 
of 140° to 80°, shown in the inset of Figure 3b. Ultimately the In-NDs on the Si 
substrate were suppressed to hemispherical shaped with uniform sizes in the range 
of 70–100 nm (without air-breaking). The wettability of the In-NDs and increase 
of the Ef of In-NDs, are attributed to the combined action of the H2-plasma treat-
ment at TS of 600°C, and clean growth environment by performing the entire 
growth process in the same chamber (without air-breaking). The verticality of 
(111)-oriented Si NWs was nicely controlled with a uniform top diameter and 
length, respectively, of approximately 18 nm and 100 nm, shown in Figure 3d and 
f. The top diameter value approximately ~18 nm of Si NWs is the smallest value ever 
achieved for the applications of nano-scale devices application. The controllability 
of the verticality of Si NWs are attributed to the cylindrically symmetric flow of the 
precipitated Si atoms via highly wettable In-NDs toward the Si substrate contact 
points at an incredibly low θC, shown in Figure 3d–f. The density of the grown Si 
NWs at TS = 600°C was also remarkably enhanced by 28 time from 2.5 μm−2 (sam-
ple-Na) to 70 μm−2 (sample-Nw). The Si NWs were found to be cone shaped after 
tapering, which is caused by the migration of In-NPs from the top of NWs, shown 
in Figure 3a and b. Based on the HR-TEM observation at point “B2”, the (111)-ori-
entation of Si NWs was confirmed (as shown in the inset of Figure 3f). Also, spotty 
pattern both in Si NWs and Si substrate at point “B1” and “B3”, respectively, were 
confirmed by SAED observation (shown in the inset of Figure 3f). Energy disper-
sive X-ray spectroscopy (EDX) was taken near the cap of the Si NWs to investigate 
the compositional information. It was found that NW only contains a Si peak, while 
In was detected for the spheres only. The top diameter value approximately 18 nm 
was found quite small (without air-breaking) when compared to the previously 
obtained vertically aligned Si NWs grown with In catalyst in the VLS mode (with 
air-breaking condition). We strongly need to decrease the tapering phenomena 
and also to increase the length of the In-catalyzed Si NWs. These are still an open 
research challenges and it can be speculated that the control of the diameter of 
In-NDs both at the top and base area might be possible after suppressing the 
trapping rate of In NPs by Si NWs. Further reduction of In-NDs θC on Si substrate 
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can further enhance the length of NWs. We need to further reduce the size and 
wettability of In-NDs and then can further reduce the diameter of the vertically 
aligned Si NWs to realize the quantum size effect for wide band gap applications of 
solar cells. In-catalyzed Si NWs may be a potential candidate material for nanoscale 
devices, because of its shallow acceptor levels and its vertical alignment.

Alet et al. grown In-catalyzed crystalline Si NWs at low temperature on Indium 
doped Tin Oxide (ITO), which were not vertically aligned and detail investigation 
about the planar as well as stacking fault were not given [42]. In our case a typical 
cross-section TEM image of the cone like Si NWs arrays grown at 600°C has been 
shown in Figure 4b. The HR-TEM shown in Figures 3d and 4b shows that the Si 
NWs have an average diameter of ≅ 18 nm at the top and average diameter≅ 30 nm 
at the bottom, lengths longer than 100 nm and grow at a right angle with respect 

Figure 4. 
(a) Cross-sectional TEM image of the grown Si NWs on Si (111), (b) HR-cross-sectional TEM image 
of an individual Si NW from fig. 4a (In the inset of (b), the corresponding SAED pattern taken along 
the [110] zone axis at point “P1”, “P2”, “P3”, and “P4” respectively are given). Different planar defects 
along the axial segments and twining of planar defects has been shown at point S-I and S-II, respectively. 
Figure 4 reproduced with the permission from ref [43]. Copyright 2016 the Japan Society of Applied 
Physics (JSAP).
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of Si NWs. The non-uniform diameter and length of Si NWs ranging for 30–100 nm 
and 150–200 nm, respectively, were observed by TEM and SEM observations, 
shown in Figure 3c. It can be speculated that the precipitation of Si atomic migra-
tion through the liquid phase of In-NDs to the Si substrate at the eutectic phase 
might be hindered by the thin oxide layer that exists around the majority of In-NDs 
and on the Si substrate. This kind of low wettability condition with extremely large 
θC of In-NDs on Si substrate does not support to the crystal growth of high-density 
Si NWs, shown in Figure 3c. Due to the small contact area of wet surface of In-NDs 
on the Si substrate may not be symmetric too, which ultimately give rise to the tilted 
Si NWs with big In-NPs cap, shown in Figure 3c. The (111)-oriented crystallinity at 
point “A1” was confirmed by the HR-TEM image (Figure 3e). The SAED at points 
“A3” and “A2” (shown in the inset of Figure 3e) corresponding to Si NWs and Si 
substrate, respectively, exhibit a spotty pattern, which indicating that the VLS 
growth was happened successfully for few Si NWs (with extremely low density of 
2.5 μm−2) using crystal growth in the air-breaking condition (sample-Na).

In the second experiment (without air-breaking), we optimized the growth 
conditions to obtain good interface between In-NDs and Si substrate by eliminat-
ing the oxide layer to enhance the wettability. All the in-situ growth steps starting 
from In-NDs growth, plasma treatment, and up to the crystal growth of Si NWs 
were performed in a relatively clean and high vacuum chamber without air-
breaking (sample-Nw). The θC of In on Si (111) was reported to be approximately 
125° at 350°C by Mattila et al. [41] After improving the wettability condition, the 
θC of In-NDs on Si substrate was remarkably decreased from our previous value 
of 140° to 80°, shown in the inset of Figure 3b. Ultimately the In-NDs on the Si 
substrate were suppressed to hemispherical shaped with uniform sizes in the range 
of 70–100 nm (without air-breaking). The wettability of the In-NDs and increase 
of the Ef of In-NDs, are attributed to the combined action of the H2-plasma treat-
ment at TS of 600°C, and clean growth environment by performing the entire 
growth process in the same chamber (without air-breaking). The verticality of 
(111)-oriented Si NWs was nicely controlled with a uniform top diameter and 
length, respectively, of approximately 18 nm and 100 nm, shown in Figure 3d and 
f. The top diameter value approximately ~18 nm of Si NWs is the smallest value ever 
achieved for the applications of nano-scale devices application. The controllability 
of the verticality of Si NWs are attributed to the cylindrically symmetric flow of the 
precipitated Si atoms via highly wettable In-NDs toward the Si substrate contact 
points at an incredibly low θC, shown in Figure 3d–f. The density of the grown Si 
NWs at TS = 600°C was also remarkably enhanced by 28 time from 2.5 μm−2 (sam-
ple-Na) to 70 μm−2 (sample-Nw). The Si NWs were found to be cone shaped after 
tapering, which is caused by the migration of In-NPs from the top of NWs, shown 
in Figure 3a and b. Based on the HR-TEM observation at point “B2”, the (111)-ori-
entation of Si NWs was confirmed (as shown in the inset of Figure 3f). Also, spotty 
pattern both in Si NWs and Si substrate at point “B1” and “B3”, respectively, were 
confirmed by SAED observation (shown in the inset of Figure 3f). Energy disper-
sive X-ray spectroscopy (EDX) was taken near the cap of the Si NWs to investigate 
the compositional information. It was found that NW only contains a Si peak, while 
In was detected for the spheres only. The top diameter value approximately 18 nm 
was found quite small (without air-breaking) when compared to the previously 
obtained vertically aligned Si NWs grown with In catalyst in the VLS mode (with 
air-breaking condition). We strongly need to decrease the tapering phenomena 
and also to increase the length of the In-catalyzed Si NWs. These are still an open 
research challenges and it can be speculated that the control of the diameter of 
In-NDs both at the top and base area might be possible after suppressing the 
trapping rate of In NPs by Si NWs. Further reduction of In-NDs θC on Si substrate 
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can further enhance the length of NWs. We need to further reduce the size and 
wettability of In-NDs and then can further reduce the diameter of the vertically 
aligned Si NWs to realize the quantum size effect for wide band gap applications of 
solar cells. In-catalyzed Si NWs may be a potential candidate material for nanoscale 
devices, because of its shallow acceptor levels and its vertical alignment.

Alet et al. grown In-catalyzed crystalline Si NWs at low temperature on Indium 
doped Tin Oxide (ITO), which were not vertically aligned and detail investigation 
about the planar as well as stacking fault were not given [42]. In our case a typical 
cross-section TEM image of the cone like Si NWs arrays grown at 600°C has been 
shown in Figure 4b. The HR-TEM shown in Figures 3d and 4b shows that the Si 
NWs have an average diameter of ≅ 18 nm at the top and average diameter≅ 30 nm 
at the bottom, lengths longer than 100 nm and grow at a right angle with respect 

Figure 4. 
(a) Cross-sectional TEM image of the grown Si NWs on Si (111), (b) HR-cross-sectional TEM image 
of an individual Si NW from fig. 4a (In the inset of (b), the corresponding SAED pattern taken along 
the [110] zone axis at point “P1”, “P2”, “P3”, and “P4” respectively are given). Different planar defects 
along the axial segments and twining of planar defects has been shown at point S-I and S-II, respectively. 
Figure 4 reproduced with the permission from ref [43]. Copyright 2016 the Japan Society of Applied 
Physics (JSAP).



Nanowires - Recent Progress

126

to the Si (111) surface as shown in Figures 3d–f and 4b. The shape of the Si NWs 
were found to be cone like, and this can be explained by the similar analogy of 
tapering of the NWs grown by Au-catalyzed [44, 45]. Sharma et al. found that, 
when NWs elongate from the In-NDs (or In- droplets), the base area of the NWs 
remains exposed for a longer time to the reactive radicals when compared to the 
newly grown upper part of the NWs [46]. In the case of Au-catalyzed Si NWs grown 
in the 〈112〉 direction, where single twin planes and arrays of {111} stacking faults 
were reported [14], whereas Lopez et al. found the same structures for 〈111〉-ori-
ented Au-catalyzed grown Si NWs [36]. These defects orientation is parallel to the 
〈112〉 NW axis, often extending throughout the entire length of the wire. There is 
no report about the crystalline twining defects, planar defects and stacking fault 
along 〈112〉 direction in case of In-catalyzed vertically aligned, and (111)-ori-
ented Si NWs.

We can see the planar defects as well as twining defects appearing in many 
segments of the Si NWs (sample-Nw) as shown in the inset of Figure 5b by green 
color arrow as well as red color arrow along the 〈112〉 direction. The (111)-oriented 
Si NWs at segments “P1–4” were also confirmed by HR-TEM image, as shown 
in Figure 4b. The corresponding selected area diffraction (SAED) shown in the 
in-set of Figure 4b has been recorded along the [110] zone axis from the Si NWs 
and which confirm the single crystal nature and its axial direction. But you can see 
twining of planes along 〈112〉 direction, which are distributed along the axial direc-
tion marked as S-I and S-II, as shown in Figure 4b for single (111)-oriented Si NW.

It can be established that the HR-TEM image of single Si NWs along with the 
SAED at “P1” and “P3” of Si NWs (taken from Figure 5b), marked by green color 

Figure 5. 
(a) High-resolution cross-sectional TEM image around the Si-substrate and deposited In-NDs surrounded by Si 
NWs at the interface, (b) the corresponding SAED pattern taken along the [1 1 0] zone axis at point “P5” and 
“P6” respectively. In the inset of (b) is a SAED along [ 1 10] zone axis at point “P5”, where the red arrow 
intensity originates from 1/2{111} spots associated with the 2H polytype and the green intensity is originating 
from 1/3{111} spots associated with 9R stacking. Figure 5 reproduced with the permission from ref [43]. 
Copyright 2016 the Japan Society of Applied Physics (JSAP).
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arrow, follow the same crystallinity of Si-substrate orientation marked at “P6” in 
Figure 5b. The diamond structure of the Si NWs with a lattice constant = 0.543 nm 
was confirmed by HR-TEM image and the SAED pattern at segments “P1” and 
“P3”, which corresponds to the space group Fd3m grown along the 〈111〉 direc-
tion. Unfortunately, the SAED at “P2” and “P4” (taken from Figure 4b) of Si NW 
shows small tilt with respect to orientation of Si-substrate, and the same have 
been marked by red color arrow, as shown in HR-TEM image given in Figure 5b. 
Spotty pattern both at “P2” and “P4” segments of the NW were confirmed by SAED 
observation, as shown in the inset of Figure 5b and same value of small angular 
tilt of both “P2” and “P4” segments were observed. We concluded that the Si NWs 
are vertically aligned except the twining of planar defects, which might be caused 
by the faster cooling rate 100°C/6 min, as well as due to the longer exposer time of 
downside wall to the reactive radicals as compared to the upper side of Si NWs [46]. 
We have to consider about the thermal conductivity mechanism, which is different 
for Si NWs as compared to the bulk Si-wafer [35].

Here we focus to discuss about the Si NWs crystallinity at the interface of 
emanating Si NWs from the Si-substrate, as shown in Figure 5a. Figure 5b gives the 
SAED pattern at point “P5”, which confirm the stacking fault in the grown Si NWs. 
The red arrow intensity originates from 1/2{111} spots is related to the 2H-polytype 
(stacking ABAB…) and the green arrow intensity originates from 1/3{111} spots is 
related to 9R (stacking ABCBCACAB…) [47].

Such structures are either attributed to scattering phenomena from two overlap-
ping crystals with a stepped {111} twin boundary (parallel to the electron beam) 
[48, 49], or it might be the direct evidence of a 9R-polytype [23]. Furthermore, it 
has been established, when the crystallographic direction of the lattice abruptly 
changes in the In-Si material system then stacking fault may generated. Especially, 
when two crystals parts begins to grow separately and then meet at certain point, 
where the crystallographic direction remains the same, but each side of the bound-
ary has an opposite phase. These kinds of stacking fault can be formed due to the 
complex dynamics of the In-NPs migration as well as mixing of the Si-atoms from 
the top of the Si NWs as well as precipitated Si atoms too. Such complex scenario 
will be explained later with the help of model given in Figure 7.

We realized that the In-NPs migration from the top of Si NWs toward the 
unused In-NDs and Si-substrate interface, where Si NWs are emanating from 
Si-substrate may cause to the stacking fault. We also know that an isolated defect 
like {111} faults have been observed to trap Au-atoms [34]. Therefore one cannot 
negate the possibility of In-atoms trapping by the planar defects of Si NWs during 
the VLS mode growth. Figure 6a gives the dark field-STEM image of the Si NWs, 
where one can clearly see the white spherical contrast of In-NPs around the side 
wall of the Si NWs. The compositional investigation by EDX taken at top of the Si 
NWs as well as taken from the pure In-NPs around the side wall of the Si NWs has 
been shown in the Figure 6b. The Kα X-ray energies for the In is 24.21 keV, and 
Lα X-ray energies for the same elements is 3.287 keV. Lα lines of the In-atoms can 
be separated, and this technique can be quantitatively used in a SEM. As shown in 
Figure 6c and d, we observed a reasonable mapping of Si and In sources, which 
originate from the Si NWs top and from the pure spherical In-NPs on the side wall 
of the Si NWs structure, respectively. The same phenomenon for Au NPs on the side 
of the Si NWs was observed by Krylyuk et al. [44]. Migration of In-NDs from the 
top of NWs was observed and confirmed by both dark field and bright field-STEM 
images. The coalescence of the migrated In-NPs with the unused In-NDs having 
high contact angle may resulted in relatively large size (~ 500 nm) of In-island as 
shown in the red color dotted marked line in Figure 6a and d, respectively. The 
generation mechanism will be explained in the proposed model given in Figure 7. 
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to the Si (111) surface as shown in Figures 3d–f and 4b. The shape of the Si NWs 
were found to be cone like, and this can be explained by the similar analogy of 
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remains exposed for a longer time to the reactive radicals when compared to the 
newly grown upper part of the NWs [46]. In the case of Au-catalyzed Si NWs grown 
in the 〈112〉 direction, where single twin planes and arrays of {111} stacking faults 
were reported [14], whereas Lopez et al. found the same structures for 〈111〉-ori-
ented Au-catalyzed grown Si NWs [36]. These defects orientation is parallel to the 
〈112〉 NW axis, often extending throughout the entire length of the wire. There is 
no report about the crystalline twining defects, planar defects and stacking fault 
along 〈112〉 direction in case of In-catalyzed vertically aligned, and (111)-ori-
ented Si NWs.

We can see the planar defects as well as twining defects appearing in many 
segments of the Si NWs (sample-Nw) as shown in the inset of Figure 5b by green 
color arrow as well as red color arrow along the 〈112〉 direction. The (111)-oriented 
Si NWs at segments “P1–4” were also confirmed by HR-TEM image, as shown 
in Figure 4b. The corresponding selected area diffraction (SAED) shown in the 
in-set of Figure 4b has been recorded along the [110] zone axis from the Si NWs 
and which confirm the single crystal nature and its axial direction. But you can see 
twining of planes along 〈112〉 direction, which are distributed along the axial direc-
tion marked as S-I and S-II, as shown in Figure 4b for single (111)-oriented Si NW.

It can be established that the HR-TEM image of single Si NWs along with the 
SAED at “P1” and “P3” of Si NWs (taken from Figure 5b), marked by green color 

Figure 5. 
(a) High-resolution cross-sectional TEM image around the Si-substrate and deposited In-NDs surrounded by Si 
NWs at the interface, (b) the corresponding SAED pattern taken along the [1 1 0] zone axis at point “P5” and 
“P6” respectively. In the inset of (b) is a SAED along [ 1 10] zone axis at point “P5”, where the red arrow 
intensity originates from 1/2{111} spots associated with the 2H polytype and the green intensity is originating 
from 1/3{111} spots associated with 9R stacking. Figure 5 reproduced with the permission from ref [43]. 
Copyright 2016 the Japan Society of Applied Physics (JSAP).
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arrow, follow the same crystallinity of Si-substrate orientation marked at “P6” in 
Figure 5b. The diamond structure of the Si NWs with a lattice constant = 0.543 nm 
was confirmed by HR-TEM image and the SAED pattern at segments “P1” and 
“P3”, which corresponds to the space group Fd3m grown along the 〈111〉 direc-
tion. Unfortunately, the SAED at “P2” and “P4” (taken from Figure 4b) of Si NW 
shows small tilt with respect to orientation of Si-substrate, and the same have 
been marked by red color arrow, as shown in HR-TEM image given in Figure 5b. 
Spotty pattern both at “P2” and “P4” segments of the NW were confirmed by SAED 
observation, as shown in the inset of Figure 5b and same value of small angular 
tilt of both “P2” and “P4” segments were observed. We concluded that the Si NWs 
are vertically aligned except the twining of planar defects, which might be caused 
by the faster cooling rate 100°C/6 min, as well as due to the longer exposer time of 
downside wall to the reactive radicals as compared to the upper side of Si NWs [46]. 
We have to consider about the thermal conductivity mechanism, which is different 
for Si NWs as compared to the bulk Si-wafer [35].

Here we focus to discuss about the Si NWs crystallinity at the interface of 
emanating Si NWs from the Si-substrate, as shown in Figure 5a. Figure 5b gives the 
SAED pattern at point “P5”, which confirm the stacking fault in the grown Si NWs. 
The red arrow intensity originates from 1/2{111} spots is related to the 2H-polytype 
(stacking ABAB…) and the green arrow intensity originates from 1/3{111} spots is 
related to 9R (stacking ABCBCACAB…) [47].

Such structures are either attributed to scattering phenomena from two overlap-
ping crystals with a stepped {111} twin boundary (parallel to the electron beam) 
[48, 49], or it might be the direct evidence of a 9R-polytype [23]. Furthermore, it 
has been established, when the crystallographic direction of the lattice abruptly 
changes in the In-Si material system then stacking fault may generated. Especially, 
when two crystals parts begins to grow separately and then meet at certain point, 
where the crystallographic direction remains the same, but each side of the bound-
ary has an opposite phase. These kinds of stacking fault can be formed due to the 
complex dynamics of the In-NPs migration as well as mixing of the Si-atoms from 
the top of the Si NWs as well as precipitated Si atoms too. Such complex scenario 
will be explained later with the help of model given in Figure 7.

We realized that the In-NPs migration from the top of Si NWs toward the 
unused In-NDs and Si-substrate interface, where Si NWs are emanating from 
Si-substrate may cause to the stacking fault. We also know that an isolated defect 
like {111} faults have been observed to trap Au-atoms [34]. Therefore one cannot 
negate the possibility of In-atoms trapping by the planar defects of Si NWs during 
the VLS mode growth. Figure 6a gives the dark field-STEM image of the Si NWs, 
where one can clearly see the white spherical contrast of In-NPs around the side 
wall of the Si NWs. The compositional investigation by EDX taken at top of the Si 
NWs as well as taken from the pure In-NPs around the side wall of the Si NWs has 
been shown in the Figure 6b. The Kα X-ray energies for the In is 24.21 keV, and 
Lα X-ray energies for the same elements is 3.287 keV. Lα lines of the In-atoms can 
be separated, and this technique can be quantitatively used in a SEM. As shown in 
Figure 6c and d, we observed a reasonable mapping of Si and In sources, which 
originate from the Si NWs top and from the pure spherical In-NPs on the side wall 
of the Si NWs structure, respectively. The same phenomenon for Au NPs on the side 
of the Si NWs was observed by Krylyuk et al. [44]. Migration of In-NDs from the 
top of NWs was observed and confirmed by both dark field and bright field-STEM 
images. The coalescence of the migrated In-NPs with the unused In-NDs having 
high contact angle may resulted in relatively large size (~ 500 nm) of In-island as 
shown in the red color dotted marked line in Figure 6a and d, respectively. The 
generation mechanism will be explained in the proposed model given in Figure 7. 
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Figure 7. 
Schematic overview of the proposed model to explain step by step about the In-NPs migration from the top of 
the Si NWs and tapering as well as stacking fault formation in Si NWs, which in return restricted the length 
of the Si NWs. Figure 7 is reproduced with the permission from ref [43]. Copyright 2016 the Japan Society of 
Applied Physics (JSAP).

Figure 6. 
(a) Dark-field-STEM images of Si NWs along the [1 1 0] zone axis to show the In-NPs as a white spherical 
contrast on the side wall of the Si NWs, (b) Elemental analysis of sample-Nw, (c) EDX intensity mapping of 
pure Si NWs, and (d) EDX intensity mapping of precipitated In-composition. Figure: 6 reproduced with the 
permission from ref [43]. Copyright 2016 The Japan Society of Applied Physics (JSAP).
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The reason of the In-NPs migration from the top of the Si NWs toward the 
Si-substrate during the crystal growth of Si NWs may not be clearly known yet but 
we can anticipate the mechanism of In-NPs coalescence with In-NDs and mixing 
with precipitated Si-atoms via proposed model shown in Figure 7.

The In-catalyzed Si NWs grown by VLS mechanism confronted with planar 
defects, twining and stacking fault, which were observed by HR-STEM, as shown 
in Figures 4a, b and 5a, b. To explain about the In-NPs migration to Si-substrate, Si 
NWs tapering, stacking fault, as well as limiting of NWs length by In-NPs migra-
tion, one simple model was anticipated. In this model, as a first step (Step-I), the 
In-NPs on Si(111), investigated, where most of the In-NDs got good wettability 
after Ar/H2-plasma treatment at 600°C with semispherical shape and few In-NDs 
were got spherical shape as shown in Figure 2a as well as in Figure 3a and the 
same is depicted schematically in Figure 7, Step-I. The spherical shape In-NDs 
may be confronted with thin oxide problems at the interface, shown in Figure 7 
(Step-I). During the Si NWs growth as a second step (Step-II) we observed that the 
In-NPs migration from the top of Si NWs toward the Si-substrate are taking place 
and mixing with already grown In-NDs having thin oxide interface layer between 
Si-substrate and In-NDs, as shown in Figure 6a–d and the same is depicted sche-
matically in Figure 7. Due to the migration of In-NPs toward the Si-substrate some 
new contact points on Si-substrate were created and the already In-NDs size were 
enhanced or elongated.

The supersaturation of the droplet, induced by the continuous gas phase supply 
of Si species, leads to the precipitation of Si nanowhiskers at the interface between 
the particle and the substrate, shown in Figure 1. Growth is obtained, as shown in 
Figure 7, Step-II, when a steady-state condition is reached between the flux of the 
Si through the In-NDs and the precipitation of Si on the Si-substrate [26, 37]. At the 
same time Si-atoms from sputtering source are also adsorbed on the same surface 
of In-NDs already deposited In-NDs on substrate having weak oxide interface 
layer, where the super saturation limit may be exceeded and now the precipitation 
of In-NPs were initiated as depicted in Figure 7, Step-II and the same has been 
confirmed in Figure 6a–d. Previously, the boron precipitation limit in BaSi2 were 
studied by in-plane and out of plane XRD, HR-STEM and TEM measurement and 
then successfully overcome the boron precipitation issue in bulk thin film p-BaSi2 
layer [50, 51]. Altogether XRD out of-plane and in-plane characterization, SEM and 
HR-STEM observation could be a useful approach to investigate the precipitation 
of In-NPs in Si NWs. In Step-III, tapering of NWs are started due to the decreas-
ing of In-NDs size at the top of Si NWs, which is caused by the In-NPs migration/
trapping from the top of the Si NWs as well as due to the longer exposer time of 
downside wall to the reactive radicals as compared to the upper side of Si NWs, as 
shown in Figure 6a and c [46]. At the same time the Si atoms adsorption by In-NDs 
are increasing because the In-NDs at the top of the Si NWs are decreasing. During 
such situation, the adsorbed Si-atoms by In-NPs cannot be precipitated to grow 
Si NWs due the partial oxide thin layer between the In-NDs and Si-substrate but 
instead support to sidewise expansion of the two neighboring In-NDs, shown in 
Figure 6a–d and the same has been depicted in Step-III, of Figure 7. At last, the two 
In-NDs coalesce on the surface of Si-substrate surrounded by Si NWs, as depicted in 
schematically in Step-III of Figure 7. Also, the deposition of the Si-atoms is increas-
ing and at the same time the In-NPs migration are decreasing, which initiated the 
stacking fault shown in the inset of Figures 4a, b and 5a, b. In Step-IV, finally the 
In-NPs migration is stopped as shown in Figure 6a as well as depicted in Figure 7. 
Subsequently, highly precipitated of In-NPs/NDs in the liquid phase are mixed with 
Si-atoms then finally give rise to stacking fault at the Si-substrate surrounded by 



Nanowires - Recent Progress

128

Figure 7. 
Schematic overview of the proposed model to explain step by step about the In-NPs migration from the top of 
the Si NWs and tapering as well as stacking fault formation in Si NWs, which in return restricted the length 
of the Si NWs. Figure 7 is reproduced with the permission from ref [43]. Copyright 2016 the Japan Society of 
Applied Physics (JSAP).

Figure 6. 
(a) Dark-field-STEM images of Si NWs along the [1 1 0] zone axis to show the In-NPs as a white spherical 
contrast on the side wall of the Si NWs, (b) Elemental analysis of sample-Nw, (c) EDX intensity mapping of 
pure Si NWs, and (d) EDX intensity mapping of precipitated In-composition. Figure: 6 reproduced with the 
permission from ref [43]. Copyright 2016 The Japan Society of Applied Physics (JSAP).
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The reason of the In-NPs migration from the top of the Si NWs toward the 
Si-substrate during the crystal growth of Si NWs may not be clearly known yet but 
we can anticipate the mechanism of In-NPs coalescence with In-NDs and mixing 
with precipitated Si-atoms via proposed model shown in Figure 7.

The In-catalyzed Si NWs grown by VLS mechanism confronted with planar 
defects, twining and stacking fault, which were observed by HR-STEM, as shown 
in Figures 4a, b and 5a, b. To explain about the In-NPs migration to Si-substrate, Si 
NWs tapering, stacking fault, as well as limiting of NWs length by In-NPs migra-
tion, one simple model was anticipated. In this model, as a first step (Step-I), the 
In-NPs on Si(111), investigated, where most of the In-NDs got good wettability 
after Ar/H2-plasma treatment at 600°C with semispherical shape and few In-NDs 
were got spherical shape as shown in Figure 2a as well as in Figure 3a and the 
same is depicted schematically in Figure 7, Step-I. The spherical shape In-NDs 
may be confronted with thin oxide problems at the interface, shown in Figure 7 
(Step-I). During the Si NWs growth as a second step (Step-II) we observed that the 
In-NPs migration from the top of Si NWs toward the Si-substrate are taking place 
and mixing with already grown In-NDs having thin oxide interface layer between 
Si-substrate and In-NDs, as shown in Figure 6a–d and the same is depicted sche-
matically in Figure 7. Due to the migration of In-NPs toward the Si-substrate some 
new contact points on Si-substrate were created and the already In-NDs size were 
enhanced or elongated.

The supersaturation of the droplet, induced by the continuous gas phase supply 
of Si species, leads to the precipitation of Si nanowhiskers at the interface between 
the particle and the substrate, shown in Figure 1. Growth is obtained, as shown in 
Figure 7, Step-II, when a steady-state condition is reached between the flux of the 
Si through the In-NDs and the precipitation of Si on the Si-substrate [26, 37]. At the 
same time Si-atoms from sputtering source are also adsorbed on the same surface 
of In-NDs already deposited In-NDs on substrate having weak oxide interface 
layer, where the super saturation limit may be exceeded and now the precipitation 
of In-NPs were initiated as depicted in Figure 7, Step-II and the same has been 
confirmed in Figure 6a–d. Previously, the boron precipitation limit in BaSi2 were 
studied by in-plane and out of plane XRD, HR-STEM and TEM measurement and 
then successfully overcome the boron precipitation issue in bulk thin film p-BaSi2 
layer [50, 51]. Altogether XRD out of-plane and in-plane characterization, SEM and 
HR-STEM observation could be a useful approach to investigate the precipitation 
of In-NPs in Si NWs. In Step-III, tapering of NWs are started due to the decreas-
ing of In-NDs size at the top of Si NWs, which is caused by the In-NPs migration/
trapping from the top of the Si NWs as well as due to the longer exposer time of 
downside wall to the reactive radicals as compared to the upper side of Si NWs, as 
shown in Figure 6a and c [46]. At the same time the Si atoms adsorption by In-NDs 
are increasing because the In-NDs at the top of the Si NWs are decreasing. During 
such situation, the adsorbed Si-atoms by In-NPs cannot be precipitated to grow 
Si NWs due the partial oxide thin layer between the In-NDs and Si-substrate but 
instead support to sidewise expansion of the two neighboring In-NDs, shown in 
Figure 6a–d and the same has been depicted in Step-III, of Figure 7. At last, the two 
In-NDs coalesce on the surface of Si-substrate surrounded by Si NWs, as depicted in 
schematically in Step-III of Figure 7. Also, the deposition of the Si-atoms is increas-
ing and at the same time the In-NPs migration are decreasing, which initiated the 
stacking fault shown in the inset of Figures 4a, b and 5a, b. In Step-IV, finally the 
In-NPs migration is stopped as shown in Figure 6a as well as depicted in Figure 7. 
Subsequently, highly precipitated of In-NPs/NDs in the liquid phase are mixed with 
Si-atoms then finally give rise to stacking fault at the Si-substrate surrounded by 
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the neighboring Si NWs and the same has been confirmed in the inset of Figure 5b 
at “P5”. Probably at this situation the sticking coefficient of Si-atoms are reduced, 
and no further Si-atoms can be absorbed by In-NDs island. This is the time where 
all In-NDs at the top of Si NWs might be disappeared and give rise to stacking fault 
on the surface of Si-substrate surrounded by Si NWs, shown in Figure 6a as a white 
contrast (red dotted line). As a result, Si NWs growth were stopped, and we can 
safely say that the tapering of the Si NWs and length of the Si NWs were restricted 
by In-NDs disappearance or migration from the top of the In-catalyzed Si NWs.

Suppression of the In-NPs migration from the top of the Si NWs are essential 
to grow longer Si NWs as well as to avoid NWs tapering and also to fix the stack-
ing fault in Si NWs. We need to find new growth condition to suppress the In-NPs 
migration to find the lower optimal substrate temperature without compromising 
on the verticality control of Si NWs. The ultra-clean interface between Si-substrate 
and In-NDs is essential to get smaller θC of the In-NDs to increase its wettability 
on Si-substrate, without any oxidation issues prior to Si NWs growth. We have to 
try with longer Ar/H2 plasma treatment time, by using low plasma power to avoid 
any kind of surface damage to the Si-substrate to further reduce the θC. Our new 
growth condition can be used to grow vertically aligned Si NWs using In-catalyzed 
in VLS mode for many electronic and nano device applications [52]. Solar cell 
architecture of the 4-terminal based wide bandgap top cell (Si NWs) and narrow 
bandgap bottom cell for best matching efficiency with 10% Ge in SiGe active layer is 
possible, where the photocurrent limits under the solar spectrum for varying band 
gap of SiGe materials due to the Ge composition for bottom Heterojunction solar 
cell applications can be achieved [53]. Heterojunction light-emitting diodes (LEDs) 
comprising p-type Si nanowires (p-Si NWs) and n-type indium gallium zinc oxide 
(n-IGZO) were successfully fabricated [54]. Band gap energy of Si NWs can be 
controlled around 1.7 eV by changing the diameter of the NW [3]. Quite high 
conversion efficiency around 30% is expected in the Si NWs/c-Si tandem solar cells 
structure, as shown in Figure 8.

4. Summary

Using In-catalyzed VLS mode growth, we have successfully controlled the 
verticality and (111)-orientation of Si NWs and ultimately scaled down the diam-
eter of NWs to 18 nm. The density of vertically aligned Si NWs was enhanced from 
2.5 μm−2 to 70 μm−2. During the in situ sequential deposition of In-NDs catalyzed 
Si NWs in high vacuum environment has successfully blessed us with vertically 
aligned and (111)-oriented Si NWs arrays using VLS mode. Using the HR-TEM, 
HR-SEM, and EDX, the planar defects as well as twining defect structure, which 
is grown perpendicularly to the Si-substrate (along 〈112〉 Si-NW direction) to 

Figure 8. 
Schematic Si NWs/c-Si tandem solar cells with expected efficiency of 30% (1sun).
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Chapter 8

Nanowires Integrated to Optical
Waveguides
Ricardo Téllez-Limón and Rafael Salas-Montiel

Abstract

Chip-scale integrated optical devices are one of the most developed research
subjects in last years. These devices serve as a bridge to overcome size mismatch
between diffraction-limited bulk optics and nanoscale photonic devices. They have
been employed to develop many on-chip applications, such as integrated light
sources, polarizers, optical filters, and even biosensing devices. Among these
integrated systems can be found the so-called hybrid photonic-plasmonic devices,
structures that integrate plasmonic metamaterials on top of optical waveguides,
leading to outstanding physical phenomena. In this contribution, we present a
comprehensive study of the design of hybrid photonic-plasmonic systems
consisting of periodic arrays of metallic nanowires integrated on top of dielectric
waveguides. Based on numerical simulations, we explain the physics of these struc-
tures and analyze light coupling between plasmonic resonances in the nanowires
and the photonic modes of the waveguides below them. With this chapter we
pretend to attract the interest of research community in the development of inte-
grated hybrid photonic-plasmonic devices, especially light interaction between
guided photonic modes and plasmonic resonances in metallic nanowires.

Keywords: plasmonics, integrated optics, nanowires, optical waveguides,
hybrid modes

1. Introduction

Plasmonics, the science of plasmons, is a research field that has been extensively
studied in recent years due to its multiple applications like biosensing, optical
communications, or quantum computing, to mention but a few.

Generally, the field of plasmonics is associated with two types of collective
oscillations of conductive electrons at the boundaries of metallic nanostructures,
known as surface plasmon polaritons (SPP) and localized surface plasmons (LSP).
While SPP are referred as surface waves propagating at a dielectric-metal interface,
LSP can be regarded as standing surface waves confined in metallic nanoparticles
embedded in a dielectric environment [1].

As it is well known, SPP modes can only be excited when appropriate phase
match conditions are fulfilled. An option to achieve this condition, is by making use
of the electromagnetic near field scattered by a local defect or emitter. To this
purpose, the LSP mode of a metallic nanoparticle can be excited and coupled to the
SPP of a metallic substrate, giving rise to hybrid plasmon polaritons [2, 3].

In addition to these types of plasmonic oscillations, there are other resonances
named plasmonic chain modes. These modes can be generated in linear arrays of
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waveguides. Based on numerical simulations, we explain the physics of these struc-
tures and analyze light coupling between plasmonic resonances in the nanowires
and the photonic modes of the waveguides below them. With this chapter we
pretend to attract the interest of research community in the development of inte-
grated hybrid photonic-plasmonic devices, especially light interaction between
guided photonic modes and plasmonic resonances in metallic nanowires.
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1. Introduction

Plasmonics, the science of plasmons, is a research field that has been extensively
studied in recent years due to its multiple applications like biosensing, optical
communications, or quantum computing, to mention but a few.

Generally, the field of plasmonics is associated with two types of collective
oscillations of conductive electrons at the boundaries of metallic nanostructures,
known as surface plasmon polaritons (SPP) and localized surface plasmons (LSP).
While SPP are referred as surface waves propagating at a dielectric-metal interface,
LSP can be regarded as standing surface waves confined in metallic nanoparticles
embedded in a dielectric environment [1].

As it is well known, SPP modes can only be excited when appropriate phase
match conditions are fulfilled. An option to achieve this condition, is by making use
of the electromagnetic near field scattered by a local defect or emitter. To this
purpose, the LSP mode of a metallic nanoparticle can be excited and coupled to the
SPP of a metallic substrate, giving rise to hybrid plasmon polaritons [2, 3].

In addition to these types of plasmonic oscillations, there are other resonances
named plasmonic chain modes. These modes can be generated in linear arrays of
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closely spaced metallic nanoparticles, including nanowires, and they result from the
near field coupling between adjacent nanoparticles excited at their plasmonic reso-
nances. Due to this coupling effect, light can propagate through the periodic arrays.
Thus, these periodic structures can be regarded as discrete plasmonic waveguides
[4–6]. When placing a periodic array of metallic nanoparticles in a layered media,
under proper excitation conditions, the plasmonic chain modes can also couple to
the SPP of a metallic substrate, forming hybrid SPP-chain modes [7].

In this same sense, when placing periodic arrays of metallic nanoparticles on top
of dielectric waveguides, the plasmonic chain modes can couple to the photonic
modes of the waveguide [8]. These integrated structures give rise to the so-called
hybrid photonic-plasmonic waveguide modes [9], and they are the main subject of
interest in this chapter. We will focus our attention to integrated structures
consisting of periodic arrays of metallic nanowires integrated on top of two-
dimensional dielectric photonic waveguides.

To this purpose, we will bring a comprehensive explanation about the physics
behind the dispersion curves of integrated hybrid photonic-plasmonic waveguiding
structures. Then will be studied the propagation of electromagnetic fields through
the integrated systems varying the geometric cross-section of the metallic
nanowires. For a better understanding, this comprehensive study will be accompa-
nied by numerical simulations, making easier to elucidate the potential applications
of these outstanding structures.

2. Hybrid photonic-plasmonic waveguides

2.1 Optical waveguides

From the analysis of the chemical composition of farer stars to imaging of
microscopic living cells, information transport through light is one of the main
subjects of interest in optical sciences. Among the different ways to transport light
can be found optical waveguides, whose principle of operation is based on the total
internal reflection effect. This phenomenon consists of the complete reflection of
light within a medium surrounded by media with smaller refractive index, as
depicted in Figure 1.

The schematic in Figure 1a represents an asymmetric planar waveguide invari-
ant along the out-of-plane direction, consisting of a dielectric medium of refractive
index n2 between two media of refractive index n1 and n3, where n2 > n1 > n3. As
light propagates in the inner medium n2, certain rays will present a phase difference
of zero or a multiple of 2π, when they are twice reflected. This situation means that

Figure 1.
Schematic representation of a planar asymmetric waveguide consisting of three dielectric media of refractive
index n1, n2 and n3. (a) Self-consistency condition defining the modes of the waveguide. (b) Profile of the field
distributions of the first two guided modes of the waveguide.
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after a round-trip the wave reproduces itself, preserving the same spatial distribu-
tion and polarization along the waveguide. Fields satisfying this self-consistency
condition are known as eigenmodes or modes of the waveguide [10]. The schematic
in Figure 1b shows the profile of the field distribution for the first two modes of the
proposed waveguide.

2.2 Dispersion relation

To determine the propagation constant of the modes supported by the wave-
guide, let us consider a waveguide with a core of refractive index n2 and thickness d,
surrounded by two semi-infinite dielectric media of refractive index n1 and n3, as
depicted in Figure 2.

For each medium, the field can be represented as a sum of propagative and
counter-propagative waves along the z axis, and propagative in the x direction that
can be represented as

ψm x, z,ωð Þ ¼ Ame�iαmze�iβmxe�iωt þ Bmeiαmze�iβmxe�iωt, (1)

where m ¼ I, II, III, Am and Bm are the amplitudes of the propagative and
counter-propagative waves, respectively, and the propagation constants αm and βm
along the z and x axis are related through

βm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω

c

� �2
εm ωð Þ � α2m

r
, (2)

where εm ωð Þ is the dielectric constant of the m-th medium related to the refrac-
tive index by nm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε ωð Þμ ωð Þp
. At optical wavelengths, he magnetic permeability

μ ωð Þ can be considered as unit. Req. (2) is obtained from the Helmholtz and
Maxwell equations [11].

At the interfaces z ¼ 0 and z ¼ d, the electromagnetic field should be contin-
uum, that is to say:

ψ I x, z,ωð Þjz¼0 ¼ ψ II x, z,ωð Þjz¼0, (3)

and

ψ II x, z,ωð Þjz¼d ¼ ψ III x, z,ωð Þjz¼d: (4)

Figure 2.
Schematic representation of the field components in an asymmetric planar waveguide.
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after a round-trip the wave reproduces itself, preserving the same spatial distribu-
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condition are known as eigenmodes or modes of the waveguide [10]. The schematic
in Figure 1b shows the profile of the field distribution for the first two modes of the
proposed waveguide.
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depicted in Figure 2.

For each medium, the field can be represented as a sum of propagative and
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From the conservation of the tangential components of the electromagnetic field
at the boundaries between two media [12] are obtained the relationships

1
νI

∂ψ I x, z,ωð Þ
∂z

����
z¼0

¼ 1
νII

∂ψ II x, z,ωð Þ
∂z

����
z¼0

, (5)

1
νII

∂ψ II x, z,ωð Þ
∂z

����
z¼�d

¼ 1
νIII

∂ψ III x, z,ωð Þ
∂z

����
z¼d

, (6)

with νm ¼ 1 for TE polarized electromagnetic fields and νm ¼ εm ωð Þ for TM
polarized fields. Substituting Eq. (1) in Eqs. (3–6), and considering that AI ¼ BIII ¼
0 because both, I and III are semi-infinite media and no back-reflections from the
boundaries are present, it is obtained a two coupled equation system that can be
represented in a matrix way of the form

αI
νI

� αII
νII

αI
νI

þ αII
νII

e�iαIId
αI
νI

þ αIII
νIII

� �
�e�iαIId

αI
νI

� αIII
νIII

� �

2
6664

3
7775

AII

BII

� �
¼ 0

0

� �
: (7)

By equating to zero the determinant of the matrix it is possible to obtain the
non-trivial solutions of this eigenmode equation system, resulting in the dispersion
relation of a three-layered media

αII
νII
� αI

νI

� �
αII
νII
� αIII

νIII

� �

αII
νII
þ αI

νI

� �
αII
νII
þ αIII

νIII

� � ¼ ei2dαII : (8)

We must notice that Eq. (8) is a transcendental function with no analytical
solution, thus, numerical methods should be employed to solve it.

When solving this dispersion relation, it is obtained the mode propagation
constant, β, that depends on the optical frequency or wavelength of light and
determines how the amplitude and phase of light varies along the x direction. In the
same way as wavenumber can be related to the refractive index of a homogeneous
medium, the propagation constant can be regarded as the wavenumber (spatial
frequency) of light propagating through an effective medium composed by the
inhomogeneous three-layered structure. The propagation constant is then related to
the so-called effective index through the relationship

β ¼ 2π
λ
neff , (9)

being λ the wavelength of light in vacuum. We must notice that the effective
index is only defined for a mode of the waveguide and it should not be understood
as a material property. We can say then that each mode of the waveguide will “see”
different effective media.

As the refractive index of a dielectric medium, as well as the dielectric constant,
is a real number equal or greater than the unit (n≥ 1) the modes in a dielectric
waveguide are diffraction limited: if the thickness of the waveguide, d, is smaller
than λ= 2neff

� �
, the solutions for the dispersion Eq. (8) will lead to evanescent waves,

meaning that no modes can be propagated below this limit.
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2.3 Plasmonic waveguides

As previously explained, dielectric waveguides guide light modes by using the
total internal reflection principle and self-consistency condition. These waveguides
are diffraction limited due to the dielectric constant values. However, if the dielec-
tric constant is a complex number, it would be possible to obtain solutions to the
dispersion relation (Eq. 8) below the diffraction limit. This is the case of metallic
materials. Hence, if at least one of the three media in the waveguide structure is
metallic, it is always possible to obtain a propagative mode in the structure. The
price to pay for this solution is that due to ohmic losses in metals, these modes
propagate just few microns, in opposition to dielectric waveguides where light can
propagate through kilometers.

These structures are known as plasmonic waveguides, and their operation
principle is based on SPP mode propagation. These surface waves are the result of
collective oscillations of the conductive electrons at a metal-dielectric interface
induced by the electric field of an electromagnetic wave. For a system invariant in
the ŷ direction, SPP modes can only be excited if the electric field oscillates in the xz
plane. Hence, only TM polarized electromagnetic fields couple to SPP modes (for
TE polarized waves the electric field only oscillates along the ŷ direction).

Different combinations of insulator (I) and metallic (M) materials can be used to
define a plasmonic waveguide. In Figure 3 are represented IIM, IMI and MIM
plasmonic waveguide structures as well as the amplitude distribution of the out-
of-plane electromagnetic field (Hy component) of the SPP modes. For the IIM
structure, there is only one SPP mode at the interface between the metal (εm) and
first dielectric (εd1). For both IMI and MIM configurations, two SPP modes can be
excited. They result from in-phase and out-of-phase coupling of SPP at the first
and second dielectric-metal interfaces, and they are known as symmetric and
antisymmetric modes, respectively.

As plasmonic waveguides allow light propagation beyond the diffraction limit,
these structures have been used for the development of integrated nanophotonic
devices for optical signal transportation, optical communications, biosensing and
even imaging applications [13–15].

2.4 Hybrid photonic-plasmonic waveguides

From the previous waveguiding configurations, it is natural to think that modes
propagating through a dielectric waveguide can be coupled to a plasmonic wave-
guide. This kind of structures is named hybrid photonic-plasmonic waveguide, or
simply hybrid plasmonic waveguide.

The structure depicted in Figure 3a can be considered as a hybrid plasmonic
waveguide, but more complex multilayered systems can be designed to propagate
more than one mode in these structures. For instance, in Figure 4 are presented two

Figure 3.
Schematic representation of plasmonic waveguides for (a) IIM, (b) IMI and (c) MIM configurations and SPP
modes profiles. For IMI and MIM waveguides, symmetric and antisymmetric modes are excited.
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metallic, it is always possible to obtain a propagative mode in the structure. The
price to pay for this solution is that due to ohmic losses in metals, these modes
propagate just few microns, in opposition to dielectric waveguides where light can
propagate through kilometers.

These structures are known as plasmonic waveguides, and their operation
principle is based on SPP mode propagation. These surface waves are the result of
collective oscillations of the conductive electrons at a metal-dielectric interface
induced by the electric field of an electromagnetic wave. For a system invariant in
the ŷ direction, SPP modes can only be excited if the electric field oscillates in the xz
plane. Hence, only TM polarized electromagnetic fields couple to SPP modes (for
TE polarized waves the electric field only oscillates along the ŷ direction).

Different combinations of insulator (I) and metallic (M) materials can be used to
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first dielectric (εd1). For both IMI and MIM configurations, two SPP modes can be
excited. They result from in-phase and out-of-phase coupling of SPP at the first
and second dielectric-metal interfaces, and they are known as symmetric and
antisymmetric modes, respectively.

As plasmonic waveguides allow light propagation beyond the diffraction limit,
these structures have been used for the development of integrated nanophotonic
devices for optical signal transportation, optical communications, biosensing and
even imaging applications [13–15].
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From the previous waveguiding configurations, it is natural to think that modes
propagating through a dielectric waveguide can be coupled to a plasmonic wave-
guide. This kind of structures is named hybrid photonic-plasmonic waveguide, or
simply hybrid plasmonic waveguide.

The structure depicted in Figure 3a can be considered as a hybrid plasmonic
waveguide, but more complex multilayered systems can be designed to propagate
more than one mode in these structures. For instance, in Figure 4 are presented two

Figure 3.
Schematic representation of plasmonic waveguides for (a) IIM, (b) IMI and (c) MIM configurations and SPP
modes profiles. For IMI and MIM waveguides, symmetric and antisymmetric modes are excited.
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examples of hybrid plasmonic waveguides able to support symmetric and antisym-
metric SPP modes coupled to photonic modes of a dielectric waveguide.

To compute the supported modes of these structures, we can make use of the
dispersion relation for a N-layered medium in terms of the T-matrix that relates the
amplitudes of propagative and counter-propagative waves, Am and Bm, in the m-th
medium, to those from the mþ 1 medium through the relationship [16].

ANþ1

BNþ1

� �
¼ ½ � A1

B1

� �
¼

YN

m¼1
Tm½ � A1

B1

� �
¼ t11 t12

t21 t22

� �
A1

B1

� �
, (10)

where A1 ¼ BNþ1 ¼ 0 (no back reflections from substrate and superstrate) and

Tm½ � ¼ 1
2

1þ γð Þe�i km�kmþ1ð Þ 1� γð Þei kmþkmþ1ð Þ

1� γð Þe�i kmþkmþ1ð Þ 1þ γð Þei km�kmþ1ð Þ

" #
, (11)

with km ¼ αmdm, kmþ1 ¼ αmþ1dm, γ ¼ αmνmþ1ð Þ= αmþ1νmð Þ, being dj the position
of the interface between j and j +1 media, considering that dN+1 = dN and νm ¼ 1 for
TE polarized electromagnetic fields and νm ¼ εm ωð Þ for TM polarized fields. By
equating to zero the term t22 of the matrix, we can directly obtain the propagation
constant of the modes supported by the structure.

2.5 Dispersion curves and mode analysis

Before studying light propagation in complex hybrid plasmonic waveguides, it is
worthily to briefly comment on the dispersion diagrams that would help to perform
an analysis of the modes propagating through these waveguides. So far, we have
presented the dispersion relation for a multilayered media. It is not our intention to
explore the numerical methods that can be employed to solve this transcendental
equation, but to analyze the information obtained from these results. The reader
can look at references [17–22] to have an insight of how to solve the dispersion
relation.

As an example, let us analyze the modes of a four-layered media as schematized
in Figure 4a, consisting of a glass substrate with refractive index n1 ¼ 1:5, a silicon
nitride layer (core of the photonic waveguide) of thickness d ¼ 300 nm and refrac-
tive index nc ¼ 2:0, a thin gold layer of thickness t ¼ 40 nm, and air superstrate
(n2 ¼ 1:0). The numerical results obtained from the calculation of the dispersion
relation for TM polarized fields by using the Raphson–Newton method [23] are
plotted in Figure 5. For these calculations was considered a spectral wavelength
range from 400 nm to 1 μm, and effective index range between 0.9 and 2.5. Since

Figure 4.
Schematic representation of hybrid photonic-plasmonic waveguides and mode profiles for (a) a metallic layer
placed directly on top of the dielectric waveguide, and (b) with an intermediate dielectric layer between
photonic and plasmonic waveguides. In both systems, the fundamental mode of the waveguide couple to the
symmetric and antisymmetric SPP modes.

140

Nanowires - Recent Progress

the results are just numerical solutions, we need to understand the physical meaning
for each solution.

The vertical constant lines at 1, 1.5 and 2.0 correspond to the refractive index of
each dielectric medium: air superstrate, glass substrate and silicon nitride core,
respectively. These vertical lines are also referred as light lines, as they are linked to
the propagation constant of light traveling in that specific homogeneous medium
through Eq. (9).

These light lines define four different regions. The first region, for effective
index values below 1 (gray region), are numerical solutions without physical mean-
ing: if the effective index is smaller than unit, the modes would travel faster than
speed of light in vacuum (which obviously is not our case). The second region
between the refractive index of glass and air refractive index (orange region)
defines modes with effective index smaller than glass but greater than air. Hence,
they are modes whose energy is propagating in the glass substrate, and they are
referred as radiated modes. The third region, between the silicon nitride (core) light
line and glass light line, define modes whose energy is propagating in the core of the
waveguide: as the effective index is higher than glass substrate index, the energy of
these modes does not propagates in glass, so the energy is confined in the core.
These are guided modes. The value at which the effective index of these modes
matches the refractive index of the glass substrate determines the cut-off wave-
length of guided modes. For the analyzed example, these values are λc1 ¼ 886 nm
and λc2 ¼ 430 nm (red circles).

The fourth region (blue colored) correspond to modes whose energy does not
propagates in any of the dielectric layers: their effective index is greater than the
core, substrate, and superstrate. Hence, these modes are confined to the metallic
layer. These solutions correspond to propagative SPP modes and they are referred as
confined modes.

In literature, different representations of the dispersion curves can be found,
like propagation constant vs. frequency (usually normalized to a reference value),

Figure 5.
Dispersion curves for a hybrid photonic-plasmonic waveguide consisting of a glass substrate (n1 ¼ 1:5), silicon
nitride core of 300 nm thickness (nc ¼ 2:0), a thin gold layer of thickness 40 nm, and an air superstrate
(n2 ¼ 1:0). The numerical results show a confined mode (blue region) and two guided modes (green region). At
the orange region, many radiated modes were obtained, as well as many non-physical solutions (gray region).
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examples of hybrid plasmonic waveguides able to support symmetric and antisym-
metric SPP modes coupled to photonic modes of a dielectric waveguide.

To compute the supported modes of these structures, we can make use of the
dispersion relation for a N-layered medium in terms of the T-matrix that relates the
amplitudes of propagative and counter-propagative waves, Am and Bm, in the m-th
medium, to those from the mþ 1 medium through the relationship [16].
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with km ¼ αmdm, kmþ1 ¼ αmþ1dm, γ ¼ αmνmþ1ð Þ= αmþ1νmð Þ, being dj the position
of the interface between j and j +1 media, considering that dN+1 = dN and νm ¼ 1 for
TE polarized electromagnetic fields and νm ¼ εm ωð Þ for TM polarized fields. By
equating to zero the term t22 of the matrix, we can directly obtain the propagation
constant of the modes supported by the structure.

2.5 Dispersion curves and mode analysis

Before studying light propagation in complex hybrid plasmonic waveguides, it is
worthily to briefly comment on the dispersion diagrams that would help to perform
an analysis of the modes propagating through these waveguides. So far, we have
presented the dispersion relation for a multilayered media. It is not our intention to
explore the numerical methods that can be employed to solve this transcendental
equation, but to analyze the information obtained from these results. The reader
can look at references [17–22] to have an insight of how to solve the dispersion
relation.

As an example, let us analyze the modes of a four-layered media as schematized
in Figure 4a, consisting of a glass substrate with refractive index n1 ¼ 1:5, a silicon
nitride layer (core of the photonic waveguide) of thickness d ¼ 300 nm and refrac-
tive index nc ¼ 2:0, a thin gold layer of thickness t ¼ 40 nm, and air superstrate
(n2 ¼ 1:0). The numerical results obtained from the calculation of the dispersion
relation for TM polarized fields by using the Raphson–Newton method [23] are
plotted in Figure 5. For these calculations was considered a spectral wavelength
range from 400 nm to 1 μm, and effective index range between 0.9 and 2.5. Since

Figure 4.
Schematic representation of hybrid photonic-plasmonic waveguides and mode profiles for (a) a metallic layer
placed directly on top of the dielectric waveguide, and (b) with an intermediate dielectric layer between
photonic and plasmonic waveguides. In both systems, the fundamental mode of the waveguide couple to the
symmetric and antisymmetric SPP modes.
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the results are just numerical solutions, we need to understand the physical meaning
for each solution.

The vertical constant lines at 1, 1.5 and 2.0 correspond to the refractive index of
each dielectric medium: air superstrate, glass substrate and silicon nitride core,
respectively. These vertical lines are also referred as light lines, as they are linked to
the propagation constant of light traveling in that specific homogeneous medium
through Eq. (9).

These light lines define four different regions. The first region, for effective
index values below 1 (gray region), are numerical solutions without physical mean-
ing: if the effective index is smaller than unit, the modes would travel faster than
speed of light in vacuum (which obviously is not our case). The second region
between the refractive index of glass and air refractive index (orange region)
defines modes with effective index smaller than glass but greater than air. Hence,
they are modes whose energy is propagating in the glass substrate, and they are
referred as radiated modes. The third region, between the silicon nitride (core) light
line and glass light line, define modes whose energy is propagating in the core of the
waveguide: as the effective index is higher than glass substrate index, the energy of
these modes does not propagates in glass, so the energy is confined in the core.
These are guided modes. The value at which the effective index of these modes
matches the refractive index of the glass substrate determines the cut-off wave-
length of guided modes. For the analyzed example, these values are λc1 ¼ 886 nm
and λc2 ¼ 430 nm (red circles).

The fourth region (blue colored) correspond to modes whose energy does not
propagates in any of the dielectric layers: their effective index is greater than the
core, substrate, and superstrate. Hence, these modes are confined to the metallic
layer. These solutions correspond to propagative SPP modes and they are referred as
confined modes.

In literature, different representations of the dispersion curves can be found,
like propagation constant vs. frequency (usually normalized to a reference value),

Figure 5.
Dispersion curves for a hybrid photonic-plasmonic waveguide consisting of a glass substrate (n1 ¼ 1:5), silicon
nitride core of 300 nm thickness (nc ¼ 2:0), a thin gold layer of thickness 40 nm, and an air superstrate
(n2 ¼ 1:0). The numerical results show a confined mode (blue region) and two guided modes (green region). At
the orange region, many radiated modes were obtained, as well as many non-physical solutions (gray region).
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wavelength vs. incidence angle (used in attenuated total internal reflection mea-
surements), among others. The representation that we use in Figure 5 allows us to
understand the dispersion curves in terms of two quantities that can be easily
identified: wavelength and effective index.

2.6 Mode hybridization

To further understand the origin of the modes appearing in the hybrid photonic-
plasmonic structure, let us analyze the multilayered system by parts: first we will
compute the dispersion curves of the photonic waveguide (Figure 6a), then the
modes of the plasmonic waveguide (Figure 6b), and finally compare them with the
full hybrid photonic-plasmonic structure (Figure 6c). The numerical results for the
dispersion relation of each one of these cases are presented in Figure 6d. The
dimensions of the structures are the same than those used for Figure 5.

The blue dots and circles in guided region, correspond to the fundamental TM0
and higher order TM1 modes of the silicon nitride waveguide (thickness d ¼ 300
nm and refractive index nc ¼ 2:0) surrounded by air superstrate (nsup ¼ 1:0) and
glass substrate (nsub ¼ 1:5), as depicted in Figure 6a. These modes present cut-off
wavelength values around λTM0 ¼ 1:58 μm and λTM1 ¼ 545 nm, respectively.

When computing the modes of a thin gold layer of thickness t ¼ 40 nm on top of
a glass substrate (nsub ¼ 1:5) and air superstrate, as depicted in Figure 6b, it is
observed one mode in the guided region that tends to a constant value (red dots in
Figure 6d). For this structure, we must notice that no core was present, then, the
effective index of this mode is higher than the refractive index of the glass sub-
strate, hence, it is a SPP mode confined to the metallic layer.

We can observe that both, TM0 and SPP modes, cross each other around an
effective index value of 1.798. In other words, the propagation constant for both
modes are the same, so they are phase matched. This situation means that the
photonic mode of the waveguide will excite the plasmonic mode of the metallic
layer.

When the modes of the complete integrated structure (Figure 6c) are com-
puted, two branches are observed. The first one, represented by red triangles, is a

Figure 6.
Schematic representation of (a) photonic waveguide, (b) plasmonic waveguide, and (c) hybrid photonic-
plasmonic waveguide. (d) Dispersion curves for the three studied structures. Due to phase matching between
TM0 and SPP modes, hybrid symmetric and antisymmetric modes arise in the full integrated structure.
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mode confined to the metallic layer, and the second one, relies in the guided region
(green diamonds). These modes arise from the coupling of the TM0 and SPP modes,
and they are referred as hybrid modes, being the first one a symmetric mode and
the second an antisymmetric mode.

It is important to say that both symmetric and antisymmetric modes are not
independent, they are hybrid modes. Like in two coupled harmonic oscillators, this
hybridization means that there is an energy exchange between photonic and
plasmonic waveguides. For the symmetric mode, the amplitude of light in both,
photonic and plasmonic waveguides, are in phase, while for the antisymmetric are
out-of-phase [24, 25].

Finally, in Figure 7 are plotted the normalized intensity profiles of the
symmetric (red curve) and antisymmetric (green curve) modes at a wavelength of
λ ¼ 750 nm. The intensity is derived from the amplitudes of Eq. 1. As expected from
the dispersion curves, the intensity of the symmetric mode is mainly confined in the
metallic layer (the mode solution relies in the confined region), while for the
antisymmetric mode the intensity is distributed in both photonic and plasmonic
waveguides, being greater the intensity in the dielectric region (the solution relies in
the guided region).

3. Mode propagation in a periodic array of metallic nanowires

In general, plasmonic resonances in metallics nanostructures are divided in two
kinds, namely SPP and LSP. SPP modes are propagative waves confined at the
dielectric/metal interface, while LSP are standing waves or cavity modes oscillating
in a nanoparticle.

As it is well known, LSP resonances depend not only on the material of the
nanoparticles, but also on their shape and polarization of the incident wave: the
orientation of the electric field defines the direction of the oscillation of the charges
in the metallic nanoparticle; these charges will distribute depending on the geome-
try of the particle, giving rise to different modes. For small nanoparticles, usually

Figure 7.
Intensity profiles of the symmetric (red) and antisymmetric (green) modes of the hybrid photonic plasmonic
waveguide at λ ¼ 750 nm. The symmetric mode is mainly confined in the metallic layer, while the
antisymmetric presents amplitude in both, photonic and plasmonic waveguides.
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wavelength vs. incidence angle (used in attenuated total internal reflection mea-
surements), among others. The representation that we use in Figure 5 allows us to
understand the dispersion curves in terms of two quantities that can be easily
identified: wavelength and effective index.

2.6 Mode hybridization

To further understand the origin of the modes appearing in the hybrid photonic-
plasmonic structure, let us analyze the multilayered system by parts: first we will
compute the dispersion curves of the photonic waveguide (Figure 6a), then the
modes of the plasmonic waveguide (Figure 6b), and finally compare them with the
full hybrid photonic-plasmonic structure (Figure 6c). The numerical results for the
dispersion relation of each one of these cases are presented in Figure 6d. The
dimensions of the structures are the same than those used for Figure 5.

The blue dots and circles in guided region, correspond to the fundamental TM0
and higher order TM1 modes of the silicon nitride waveguide (thickness d ¼ 300
nm and refractive index nc ¼ 2:0) surrounded by air superstrate (nsup ¼ 1:0) and
glass substrate (nsub ¼ 1:5), as depicted in Figure 6a. These modes present cut-off
wavelength values around λTM0 ¼ 1:58 μm and λTM1 ¼ 545 nm, respectively.

When computing the modes of a thin gold layer of thickness t ¼ 40 nm on top of
a glass substrate (nsub ¼ 1:5) and air superstrate, as depicted in Figure 6b, it is
observed one mode in the guided region that tends to a constant value (red dots in
Figure 6d). For this structure, we must notice that no core was present, then, the
effective index of this mode is higher than the refractive index of the glass sub-
strate, hence, it is a SPP mode confined to the metallic layer.

We can observe that both, TM0 and SPP modes, cross each other around an
effective index value of 1.798. In other words, the propagation constant for both
modes are the same, so they are phase matched. This situation means that the
photonic mode of the waveguide will excite the plasmonic mode of the metallic
layer.

When the modes of the complete integrated structure (Figure 6c) are com-
puted, two branches are observed. The first one, represented by red triangles, is a

Figure 6.
Schematic representation of (a) photonic waveguide, (b) plasmonic waveguide, and (c) hybrid photonic-
plasmonic waveguide. (d) Dispersion curves for the three studied structures. Due to phase matching between
TM0 and SPP modes, hybrid symmetric and antisymmetric modes arise in the full integrated structure.
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mode confined to the metallic layer, and the second one, relies in the guided region
(green diamonds). These modes arise from the coupling of the TM0 and SPP modes,
and they are referred as hybrid modes, being the first one a symmetric mode and
the second an antisymmetric mode.

It is important to say that both symmetric and antisymmetric modes are not
independent, they are hybrid modes. Like in two coupled harmonic oscillators, this
hybridization means that there is an energy exchange between photonic and
plasmonic waveguides. For the symmetric mode, the amplitude of light in both,
photonic and plasmonic waveguides, are in phase, while for the antisymmetric are
out-of-phase [24, 25].

Finally, in Figure 7 are plotted the normalized intensity profiles of the
symmetric (red curve) and antisymmetric (green curve) modes at a wavelength of
λ ¼ 750 nm. The intensity is derived from the amplitudes of Eq. 1. As expected from
the dispersion curves, the intensity of the symmetric mode is mainly confined in the
metallic layer (the mode solution relies in the confined region), while for the
antisymmetric mode the intensity is distributed in both photonic and plasmonic
waveguides, being greater the intensity in the dielectric region (the solution relies in
the guided region).

3. Mode propagation in a periodic array of metallic nanowires

In general, plasmonic resonances in metallics nanostructures are divided in two
kinds, namely SPP and LSP. SPP modes are propagative waves confined at the
dielectric/metal interface, while LSP are standing waves or cavity modes oscillating
in a nanoparticle.

As it is well known, LSP resonances depend not only on the material of the
nanoparticles, but also on their shape and polarization of the incident wave: the
orientation of the electric field defines the direction of the oscillation of the charges
in the metallic nanoparticle; these charges will distribute depending on the geome-
try of the particle, giving rise to different modes. For small nanoparticles, usually

Figure 7.
Intensity profiles of the symmetric (red) and antisymmetric (green) modes of the hybrid photonic plasmonic
waveguide at λ ¼ 750 nm. The symmetric mode is mainly confined in the metallic layer, while the
antisymmetric presents amplitude in both, photonic and plasmonic waveguides.
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are only excited dipolar LSP resonances, but quadrupoles, octupoles and higher
order modes can also be excited.

When metallic nanoparticles are closely placed and excited at their LSP reso-
nance, it is possible to couple them via near field interaction, leading to higher order
LSP modes. To understand this coupling mechanism, let us take a look to Figure 8,
where a dimmer of spherical metallic nanoparticles oriented along the x axis
(dimmer axis), is excited with electric field oscillating in z and x directions.

When the electric field is oriented along the z axis, perpendicular to the dimer
axis, the dipolar resonances of the nanoparticles are oriented also in the z direction.
If the dipoles are in phase (Figure 8a), the dimmer also presents a dipolar reso-
nance. If the dipoles are out-of-phase (Figure 8b), the dimmer presents a
quadrupolar resonance. Since the distribution of the charges is perpendicular to the
dimmer axis, both modes are referred as dipolar and quadrupolar transverse modes,
respectively.

If the electric field oscillates along the x axis, the dipoles of the nanoparticles will
be oriented along the dimmer axis, thus, the coupled modes are called dipolar
longitudinal modes. If the dipoles are in phase (Figure 8c), the resonance wave-
length of the longitudinal mode will be shorter than the resonance wavelength of
the out-of-phase dipoles (Figure 8d).

In the same way, a periodic array of metallic nanoparticles can be coupled,
allowing light propagation. Thus, when properly excited, a periodic array of metal-
lic nanoparticles can be regarded as a plasmonic waveguide. These resonances are
named plasmonic chain modes, and their waveguiding properties will depend on
the shape and period of the nanoparticles, as well as the orientation of the incident
electromagnetic field. Besides energy transportation capabilities, these modes have
been widely studied because they allow a strong enhancement of the electromag-
netic field in a localized nanometric region.

If we consider that the nanoparticles in Figure 8 are invariant in the out-of-
plane y direction, the same coupling mechanism is preserved. These structures are
named metallic nanowires (MNW): metallic nanostructures with nanometric cross
section and micrometric lengths. As the length of the nanowires is times longer than
the incident wavelength, the absorption of light prevents from the formation of
cavity modes in this direction. This means that plasmonic resonances in metallic
nanowires can be excited only if the electric field is perpendicular to the invariant

Figure 8.
LSP coupled modes for spherical nanoparticle dimmers. When the electric field is perpendicular to the main
axis of the dimmer are excited (a) dipolar and (b) quadrupolar transverse modes. When the electric field is
parallel to the main axis of the dimmer, dipolar longitudinal modes of (c) shorter and (d) longer resonant
wavelengths are obtained.
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y axis, i. e. with TM polarized light. Thus, the plasmonic chain modes in metallic
nanowires will mainly depend on the geometry of their cross section [26–28].

3.1 Plasmonic chain modes in MNW with rectangular cross section

Let us consider an infinite periodic array of gold nanowires of width w ¼ 80 nm,
gap between them g ¼ 50 nm (period Λ ¼ 130 nm) and thickness t ¼ 20 nm,
embedded in a homogeneous dielectric medium of refractive index nd ¼ 1:5 (glass),
as depicted in Figure 9a. The structure in invariant along the out-of-plane
direction.

To perform a modal analysis, it is required to compute the dispersion curves of
these system. Different numerical methods can be employed, like effective index
method [29–31], source model technique [32], rigorous coupled wave analysis
(RCWA) [33–35], or Fourier modal method (FMM) [36–39], among others.

In our case, we will make use of the FMM to compute the dispersion curves of
the periodic structure. This rigorous method computes the Maxwell equations in the
frequency domain. To solve them, a unit cell of the periodic structure, as well as the
dielectric function and electromagnetic field are expanded in Fourier series. This
formulation leads to an eigenvalue matrix formulation that can be used to obtain the
modes of the nanowires in a multilayered media. Also, by adding perfectly matched
layers (PML), it is possible to compute the beam propagation in a finite periodic
structure. It is not our intention to show how to implement this numerical method,
but to analyze plasmonic chain modes in periodic MNW. For a better comprehen-
sion about this method, we invite the reader to look at references [37, 38].

The plot in Figure 9b corresponds to the dispersion curves of the system under
study. As we are dealing with a periodic structure, it is useful to represent this plot
in terms of the propagation constant (along the periodicity direction), normalized
to the Bragg condition (β ¼ π=Λ), which defines the first Brillouin zone (vertical
black line). The red dotted curve represents the modes supported by the MNW, as
they are confined below the glass light-line. To understand the behavior of this

Figure 9.
(a) Schematic representation of a periodic infinite array of gold nanowires of width w ¼ 80 nm, gap g ¼ 50
nm, period Λ ¼ 130 nm and thickness t ¼ 20 nm in a homogeneous dielectric medium. (b) the confined modes
below the glass light-line (green curve) correspond to a dipolar longitudinal mode (red dotted curve). (c) the
energy density map and electric field lines computed at the Bragg condition (λ ¼ 645 nm), reveals the dipolar
longitudinal coupling between MNW. (d) out of the Bragg condition, at λ ¼ 667 nm, we still observe the
dipolar coupling.
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are only excited dipolar LSP resonances, but quadrupoles, octupoles and higher
order modes can also be excited.

When metallic nanoparticles are closely placed and excited at their LSP reso-
nance, it is possible to couple them via near field interaction, leading to higher order
LSP modes. To understand this coupling mechanism, let us take a look to Figure 8,
where a dimmer of spherical metallic nanoparticles oriented along the x axis
(dimmer axis), is excited with electric field oscillating in z and x directions.

When the electric field is oriented along the z axis, perpendicular to the dimer
axis, the dipolar resonances of the nanoparticles are oriented also in the z direction.
If the dipoles are in phase (Figure 8a), the dimmer also presents a dipolar reso-
nance. If the dipoles are out-of-phase (Figure 8b), the dimmer presents a
quadrupolar resonance. Since the distribution of the charges is perpendicular to the
dimmer axis, both modes are referred as dipolar and quadrupolar transverse modes,
respectively.

If the electric field oscillates along the x axis, the dipoles of the nanoparticles will
be oriented along the dimmer axis, thus, the coupled modes are called dipolar
longitudinal modes. If the dipoles are in phase (Figure 8c), the resonance wave-
length of the longitudinal mode will be shorter than the resonance wavelength of
the out-of-phase dipoles (Figure 8d).

In the same way, a periodic array of metallic nanoparticles can be coupled,
allowing light propagation. Thus, when properly excited, a periodic array of metal-
lic nanoparticles can be regarded as a plasmonic waveguide. These resonances are
named plasmonic chain modes, and their waveguiding properties will depend on
the shape and period of the nanoparticles, as well as the orientation of the incident
electromagnetic field. Besides energy transportation capabilities, these modes have
been widely studied because they allow a strong enhancement of the electromag-
netic field in a localized nanometric region.

If we consider that the nanoparticles in Figure 8 are invariant in the out-of-
plane y direction, the same coupling mechanism is preserved. These structures are
named metallic nanowires (MNW): metallic nanostructures with nanometric cross
section and micrometric lengths. As the length of the nanowires is times longer than
the incident wavelength, the absorption of light prevents from the formation of
cavity modes in this direction. This means that plasmonic resonances in metallic
nanowires can be excited only if the electric field is perpendicular to the invariant
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LSP coupled modes for spherical nanoparticle dimmers. When the electric field is perpendicular to the main
axis of the dimmer are excited (a) dipolar and (b) quadrupolar transverse modes. When the electric field is
parallel to the main axis of the dimmer, dipolar longitudinal modes of (c) shorter and (d) longer resonant
wavelengths are obtained.
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y axis, i. e. with TM polarized light. Thus, the plasmonic chain modes in metallic
nanowires will mainly depend on the geometry of their cross section [26–28].

3.1 Plasmonic chain modes in MNW with rectangular cross section

Let us consider an infinite periodic array of gold nanowires of width w ¼ 80 nm,
gap between them g ¼ 50 nm (period Λ ¼ 130 nm) and thickness t ¼ 20 nm,
embedded in a homogeneous dielectric medium of refractive index nd ¼ 1:5 (glass),
as depicted in Figure 9a. The structure in invariant along the out-of-plane
direction.

To perform a modal analysis, it is required to compute the dispersion curves of
these system. Different numerical methods can be employed, like effective index
method [29–31], source model technique [32], rigorous coupled wave analysis
(RCWA) [33–35], or Fourier modal method (FMM) [36–39], among others.

In our case, we will make use of the FMM to compute the dispersion curves of
the periodic structure. This rigorous method computes the Maxwell equations in the
frequency domain. To solve them, a unit cell of the periodic structure, as well as the
dielectric function and electromagnetic field are expanded in Fourier series. This
formulation leads to an eigenvalue matrix formulation that can be used to obtain the
modes of the nanowires in a multilayered media. Also, by adding perfectly matched
layers (PML), it is possible to compute the beam propagation in a finite periodic
structure. It is not our intention to show how to implement this numerical method,
but to analyze plasmonic chain modes in periodic MNW. For a better comprehen-
sion about this method, we invite the reader to look at references [37, 38].

The plot in Figure 9b corresponds to the dispersion curves of the system under
study. As we are dealing with a periodic structure, it is useful to represent this plot
in terms of the propagation constant (along the periodicity direction), normalized
to the Bragg condition (β ¼ π=Λ), which defines the first Brillouin zone (vertical
black line). The red dotted curve represents the modes supported by the MNW, as
they are confined below the glass light-line. To understand the behavior of this

Figure 9.
(a) Schematic representation of a periodic infinite array of gold nanowires of width w ¼ 80 nm, gap g ¼ 50
nm, period Λ ¼ 130 nm and thickness t ¼ 20 nm in a homogeneous dielectric medium. (b) the confined modes
below the glass light-line (green curve) correspond to a dipolar longitudinal mode (red dotted curve). (c) the
energy density map and electric field lines computed at the Bragg condition (λ ¼ 645 nm), reveals the dipolar
longitudinal coupling between MNW. (d) out of the Bragg condition, at λ ¼ 667 nm, we still observe the
dipolar coupling.
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plasmonic mode, it is necessary to observe the distribution of the charges in the
MNW.

In Figure 9c are shown the energy density map and electric field lines distribu-
tion of the plasmonic mode at λ ¼ 645 nm. At this wavelength, the red curve crosses
the Bragg condition, defining a stationary mode. As we can observe, MNW are
coupled, with a phase shift of π rad between them. Thus, it is a plasmonic chain
mode. Out of the Bragg condition, for instance, at λ ¼ 667 nm (β ¼ 0:641π=Λ), the
chain mode becomes propagative and the electric field lines remain almost longitu-
dinally oriented inside the MNW (Figure 9d). In view of the phase shift and the
orientation of the electric field lines, the plasmonic chain mode results from coupled
dipolar resonances oriented along the x axis. Thus, the red dotted curve corresponds
to the dispersion relation of a dipolar longitudinal plasmonic chain mode.

As defined for a SPP, the propagation length of this plasmonic chain mode can
be computed through the relationship

Lp ¼ 1
2β}

, (12)

where β} is the imaginary part of the propagation constant. In our structure, the
propagation length varies from Lp ¼ 200 nm (for wavevectors close to the glass
light-line) up to Lp ¼ 1:14 μm (for wavevectors near the Bragg condition).

3.2 Hybrid plasmonic chain modes in MNW integrated to a dielectric
waveguide

Now, let us study a hybrid photonic-plasmonic system consisting of a dielectric
waveguide of thickness d ¼ 200 and refractive index nwg ¼ 2:0, on top of which is
placed, at a distance h ¼ 30 nm, a periodic array of gold nanowires with the same
parameters than those of the previous subsection, as depicted in Figure 10a.

The dispersion curves in the first Brillouin zone, obtained with the FMM, are
shown in Figure 10b. The green and magenta curves represent the glass and wave-
guide light lines, respectively, while the black vertical line represents the Bragg
condition. The blue triangles curve corresponds to the fundamental TM0 photonic
guided mode without the presence of the MNW, while the green asterisk curve is
the dispersion curve of the dipolar longitudinal plasmonic chain mode (without the
presence of the waveguide). As can be observed, there is an intersection point
between the TM0 and dipolar longitudinal modes in the guided region around a
wavelength value λ ¼ 664 nm (Figure 10c). This crossing point means that both
modes have the same propagation constant (β ¼ 0:672 π=Λð Þ), hence, they will
couple when placing them near to each other, leading to a hybrid photonic-
plasmonic mode. As a result, symmetric and anti-symmetric modes will arise. This
hybridization is corroborated when computing the dispersion curves of the inte-
grated system, being observed two curves: a lower branch passing from guided to
confined region (red circles) and an upper branch in the guided region. In analogy
with a two coupled waveguide system, this situation means that, for the lower
branch, energy from the TM0 mode is converted into plasmonic chain mode; for the
upper branch, the energy from the plasmonic chain mode is converted into TM0
mode. This anti-crossing phenomenon is the characteristic signature of strong
coupling between guided modes.

To corroborate the symmetry of these modes, in Figure 11 we plot the energy
density maps and electric field lines distribution for both modes at the Bragg
condition. Figure 11a corresponds to the energy density map computed for the
upper branch at λ ¼ 473 nm, where we can observe that the energy is distributed in

146

Nanowires - Recent Progress

the dielectric waveguide and the periodic array of MNW. When looking at the
electric field lines, it is observed a phase difference between these vectors above and
below the MNW, defining an antisymmetric quadrupolar chain mode. For the case
of the lower branch, computed at λ ¼ 660 nm (Figure 11b), the energy is confined
to the MNW and not in the waveguide, as expected from the dispersion curves. For
this case, the electric field lines above and below the MNW are in phase, defining a
symmetric dipolar chain mode.

Finally, by making use of the aperiodic Fourier modal method [27, 39],
and considering a finite number of 27 MNW, we computed the transmission

Figure 10.
(a) Schematic representation of the integrated structure consisting of an infinite periodic arrays of gold
nanowires (w ¼ 80 nm, g ¼ 50 nm, Λ ¼ 130 nm, t ¼ 20 nm) surrounded by glass (ns ¼ 1:5), placed on top of
a dielectric waveguide (d ¼ 200 nm, nwg ¼ 2:0) at a distance h ¼ 30 nm. (b) Dispersion curves of the
integrated system. (c) Inset at the anti-crossing region.

Figure 11.
Energy density maps and electric field lines distribution for (a) the antisymmetric mode at λ ¼ 473 nm, and
(b) for the symmetric mode at λ ¼ 660 nm.
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plasmonic mode, it is necessary to observe the distribution of the charges in the
MNW.

In Figure 9c are shown the energy density map and electric field lines distribu-
tion of the plasmonic mode at λ ¼ 645 nm. At this wavelength, the red curve crosses
the Bragg condition, defining a stationary mode. As we can observe, MNW are
coupled, with a phase shift of π rad between them. Thus, it is a plasmonic chain
mode. Out of the Bragg condition, for instance, at λ ¼ 667 nm (β ¼ 0:641π=Λ), the
chain mode becomes propagative and the electric field lines remain almost longitu-
dinally oriented inside the MNW (Figure 9d). In view of the phase shift and the
orientation of the electric field lines, the plasmonic chain mode results from coupled
dipolar resonances oriented along the x axis. Thus, the red dotted curve corresponds
to the dispersion relation of a dipolar longitudinal plasmonic chain mode.

As defined for a SPP, the propagation length of this plasmonic chain mode can
be computed through the relationship

Lp ¼ 1
2β}

, (12)

where β} is the imaginary part of the propagation constant. In our structure, the
propagation length varies from Lp ¼ 200 nm (for wavevectors close to the glass
light-line) up to Lp ¼ 1:14 μm (for wavevectors near the Bragg condition).

3.2 Hybrid plasmonic chain modes in MNW integrated to a dielectric
waveguide

Now, let us study a hybrid photonic-plasmonic system consisting of a dielectric
waveguide of thickness d ¼ 200 and refractive index nwg ¼ 2:0, on top of which is
placed, at a distance h ¼ 30 nm, a periodic array of gold nanowires with the same
parameters than those of the previous subsection, as depicted in Figure 10a.

The dispersion curves in the first Brillouin zone, obtained with the FMM, are
shown in Figure 10b. The green and magenta curves represent the glass and wave-
guide light lines, respectively, while the black vertical line represents the Bragg
condition. The blue triangles curve corresponds to the fundamental TM0 photonic
guided mode without the presence of the MNW, while the green asterisk curve is
the dispersion curve of the dipolar longitudinal plasmonic chain mode (without the
presence of the waveguide). As can be observed, there is an intersection point
between the TM0 and dipolar longitudinal modes in the guided region around a
wavelength value λ ¼ 664 nm (Figure 10c). This crossing point means that both
modes have the same propagation constant (β ¼ 0:672 π=Λð Þ), hence, they will
couple when placing them near to each other, leading to a hybrid photonic-
plasmonic mode. As a result, symmetric and anti-symmetric modes will arise. This
hybridization is corroborated when computing the dispersion curves of the inte-
grated system, being observed two curves: a lower branch passing from guided to
confined region (red circles) and an upper branch in the guided region. In analogy
with a two coupled waveguide system, this situation means that, for the lower
branch, energy from the TM0 mode is converted into plasmonic chain mode; for the
upper branch, the energy from the plasmonic chain mode is converted into TM0
mode. This anti-crossing phenomenon is the characteristic signature of strong
coupling between guided modes.

To corroborate the symmetry of these modes, in Figure 11 we plot the energy
density maps and electric field lines distribution for both modes at the Bragg
condition. Figure 11a corresponds to the energy density map computed for the
upper branch at λ ¼ 473 nm, where we can observe that the energy is distributed in
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the dielectric waveguide and the periodic array of MNW. When looking at the
electric field lines, it is observed a phase difference between these vectors above and
below the MNW, defining an antisymmetric quadrupolar chain mode. For the case
of the lower branch, computed at λ ¼ 660 nm (Figure 11b), the energy is confined
to the MNW and not in the waveguide, as expected from the dispersion curves. For
this case, the electric field lines above and below the MNW are in phase, defining a
symmetric dipolar chain mode.

Finally, by making use of the aperiodic Fourier modal method [27, 39],
and considering a finite number of 27 MNW, we computed the transmission

Figure 10.
(a) Schematic representation of the integrated structure consisting of an infinite periodic arrays of gold
nanowires (w ¼ 80 nm, g ¼ 50 nm, Λ ¼ 130 nm, t ¼ 20 nm) surrounded by glass (ns ¼ 1:5), placed on top of
a dielectric waveguide (d ¼ 200 nm, nwg ¼ 2:0) at a distance h ¼ 30 nm. (b) Dispersion curves of the
integrated system. (c) Inset at the anti-crossing region.

Figure 11.
Energy density maps and electric field lines distribution for (a) the antisymmetric mode at λ ¼ 473 nm, and
(b) for the symmetric mode at λ ¼ 660 nm.
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(red curve), reflection (blue dashed curve), and absorption (black dotted curve)
spectra of light propagating through the integrated system, normalized to the
incident beam (Figure 12a). The reflection spectrum (blue dashed curve) exhibits
a maximum peak around λ ¼ 474 nm, while the transmission spectrum shows
a broad depth around λ ¼ 520 nm and a narrower depth around λ ¼ 678 nm.
The first depth (close to the maximum in reflection) is due to a Bragg reflection
induced by the periodic array of MNW. This condition can be verified with the
expression

λBragg ¼
2neffΛ
m

, (13)

where neff is the effective index of the mode, Λ the period of the MNW array,
and m the Bragg order. According to the dispersion curves, at λ ¼ 520 nm, the
effective index of the antisymmetric mode is neff ¼ 1:801, and considering the
period Λ ¼ 130 nm, the first order Bragg reflection will occur at λBragg ¼ 468 nm,
which is a value close to the maximum in the reflection spectrum. The near
field map in Figure 12b, shows the amplitude of the Hy field component,
where are observed periodic lobes inside the waveguide core due to the Bragg
reflection.

The second depth on the transmission spectrum corresponds to the excitation
of the dipolar longitudinal plasmonic chain mode. In the dispersion curves, this
wavelength value corresponds to the anti-crossing point between symmetric and
antisymmetric modes, around β ¼ 0:672 π=Λð Þ. As expected, at this wavelength
the plasmonic chain mode is efficiently coupled to the photonic TM0 mode of the
waveguide, leading to an anergy exchange between the photonic waveguide and
the periodic array of MNW, as illustrated in the near field map of Figure 12c.

3.3 Hybrid plasmonic chain modes in MNW of triangular cross section
integrated to a dielectric waveguide

Among the large variety of shapes in nanowires, sharp geometries such as
nanotips stimulate a great interest in applications where a strong localization of the
electromagnetic field is required. These triangular geometries present an

Figure 12.
(a) Normalized transmission (red), reflection (blue dashed) and absorption (black dotted) spectra of light
propagating through the waveguide in the integrated device. (b) At λ ¼ 474 nm, the Hy field component
exhibits a Bragg reflection, while at (c) λ ¼ 678 nm, the it is observed an energy exchange between the
waveguide and periodic array of MNW.
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extraordinary enhancement of light in the vicinity of their apex resulting from the
excitation of LSP resonances polarized along their tip axis. In this section, we will
study the excitation of plasmonic chain modes in periodic arrays of gold nanowires
with triangular cross section through the photonic mode of a dielectric waveguide.

Firstly, we will study the plasmonic chain modes of the MNW placed on top of a
glass substrate and the photonic modes of the dielectric waveguide that will be used
to excite them. The MNW consist of an infinite periodic array of gold nanowires
with triangular cross section of height t ¼ 144 nm, width w ¼ 72 nm, and period
Λ ¼ 200 nm, placed on top of a glass substrate (nsub ¼ 1:5). The superstrate is air
(nsup ¼ 1:0), the tip radius of the nanowires is r ¼ 5 nm, and the system is invariant
in the out-of-plane y direction, as depicted in Figure 13a. Then dielectric waveguide
consist of a core of thickness d ¼ 200 nm end refractive index nwg ¼ 2:0, buried a
distance h ¼ 30 nm from the glass/air interface (Figure 13b).

The dispersion curves in the first Brillouin zone are plotted in Figure 13c, where
can be observed the light lines of air superstrate (white curve), glass substrate
(black curve) and core of the waveguide (green curve). The colored regions corre-
spond to the normalized absorption spectra obtained when illuminating the struc-
ture from the substrate with a plane wave and mapped into β ¼ k0nsub sin θincΛ=π
(see reference [28] for a detailed explanation). The blue triangles curve in the
guided region correspond to the fundamental TM0 photonic mode of the isolated
waveguide. The array of MNW supports plasmonic chain modes. The first one is a

Figure 13.
Schematic representation of (a) periodic array of gold nanowires with triangular cross section (w ¼ 72 nm,
t ¼ 144 nm, Λ ¼ 200 nm) on top of a glass substrate surrounded by air, and (b) a dielectric waveguide of
thickness d ¼ 200 nm and refractive index nwg ¼ 2:0 buried a depth h1 ¼ 30 nm in a glass substrate. (c)
Dispersion curves of the TM0 mode supported by the waveguide (blue triangles), dipolar longitudinal mode
(radiated to the substrate) and dipolar longitudinal mode (green stars). Energy density maps of (d) DLM at
λ ¼ 600 nm and (e) DTM at λ ¼ 800 nm.
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(red curve), reflection (blue dashed curve), and absorption (black dotted curve)
spectra of light propagating through the integrated system, normalized to the
incident beam (Figure 12a). The reflection spectrum (blue dashed curve) exhibits
a maximum peak around λ ¼ 474 nm, while the transmission spectrum shows
a broad depth around λ ¼ 520 nm and a narrower depth around λ ¼ 678 nm.
The first depth (close to the maximum in reflection) is due to a Bragg reflection
induced by the periodic array of MNW. This condition can be verified with the
expression

λBragg ¼
2neffΛ
m

, (13)

where neff is the effective index of the mode, Λ the period of the MNW array,
and m the Bragg order. According to the dispersion curves, at λ ¼ 520 nm, the
effective index of the antisymmetric mode is neff ¼ 1:801, and considering the
period Λ ¼ 130 nm, the first order Bragg reflection will occur at λBragg ¼ 468 nm,
which is a value close to the maximum in the reflection spectrum. The near
field map in Figure 12b, shows the amplitude of the Hy field component,
where are observed periodic lobes inside the waveguide core due to the Bragg
reflection.

The second depth on the transmission spectrum corresponds to the excitation
of the dipolar longitudinal plasmonic chain mode. In the dispersion curves, this
wavelength value corresponds to the anti-crossing point between symmetric and
antisymmetric modes, around β ¼ 0:672 π=Λð Þ. As expected, at this wavelength
the plasmonic chain mode is efficiently coupled to the photonic TM0 mode of the
waveguide, leading to an anergy exchange between the photonic waveguide and
the periodic array of MNW, as illustrated in the near field map of Figure 12c.

3.3 Hybrid plasmonic chain modes in MNW of triangular cross section
integrated to a dielectric waveguide

Among the large variety of shapes in nanowires, sharp geometries such as
nanotips stimulate a great interest in applications where a strong localization of the
electromagnetic field is required. These triangular geometries present an

Figure 12.
(a) Normalized transmission (red), reflection (blue dashed) and absorption (black dotted) spectra of light
propagating through the waveguide in the integrated device. (b) At λ ¼ 474 nm, the Hy field component
exhibits a Bragg reflection, while at (c) λ ¼ 678 nm, the it is observed an energy exchange between the
waveguide and periodic array of MNW.

148

Nanowires - Recent Progress

extraordinary enhancement of light in the vicinity of their apex resulting from the
excitation of LSP resonances polarized along their tip axis. In this section, we will
study the excitation of plasmonic chain modes in periodic arrays of gold nanowires
with triangular cross section through the photonic mode of a dielectric waveguide.

Firstly, we will study the plasmonic chain modes of the MNW placed on top of a
glass substrate and the photonic modes of the dielectric waveguide that will be used
to excite them. The MNW consist of an infinite periodic array of gold nanowires
with triangular cross section of height t ¼ 144 nm, width w ¼ 72 nm, and period
Λ ¼ 200 nm, placed on top of a glass substrate (nsub ¼ 1:5). The superstrate is air
(nsup ¼ 1:0), the tip radius of the nanowires is r ¼ 5 nm, and the system is invariant
in the out-of-plane y direction, as depicted in Figure 13a. Then dielectric waveguide
consist of a core of thickness d ¼ 200 nm end refractive index nwg ¼ 2:0, buried a
distance h ¼ 30 nm from the glass/air interface (Figure 13b).

The dispersion curves in the first Brillouin zone are plotted in Figure 13c, where
can be observed the light lines of air superstrate (white curve), glass substrate
(black curve) and core of the waveguide (green curve). The colored regions corre-
spond to the normalized absorption spectra obtained when illuminating the struc-
ture from the substrate with a plane wave and mapped into β ¼ k0nsub sin θincΛ=π
(see reference [28] for a detailed explanation). The blue triangles curve in the
guided region correspond to the fundamental TM0 photonic mode of the isolated
waveguide. The array of MNW supports plasmonic chain modes. The first one is a

Figure 13.
Schematic representation of (a) periodic array of gold nanowires with triangular cross section (w ¼ 72 nm,
t ¼ 144 nm, Λ ¼ 200 nm) on top of a glass substrate surrounded by air, and (b) a dielectric waveguide of
thickness d ¼ 200 nm and refractive index nwg ¼ 2:0 buried a depth h1 ¼ 30 nm in a glass substrate. (c)
Dispersion curves of the TM0 mode supported by the waveguide (blue triangles), dipolar longitudinal mode
(radiated to the substrate) and dipolar longitudinal mode (green stars). Energy density maps of (d) DLM at
λ ¼ 600 nm and (e) DTM at λ ¼ 800 nm.
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dipolar longitudinal mode (DLM) radiating into the substrate (which is barely
excited at the Bragg condition). This mode is characterized by charges coupling and
electromagnetic field enhancement at the base (bottom apexes) of the nanowires, as
can be observed in the energy density map in Figure 13d. The second plasmonic
chain mode (green stars) is a dipolar transverse mode (DTM) resulting from cou-
pling of dipoles oriented along the z axis. This guided mode is characterized by a
strong electromagnetic field enhancement at the upper apexes of the nanowires, as
can be observed in Figure 13e. We can notice in the dispersion curves that at λ ¼
747 nm (β ¼ 0:86π=Λ), the DTM crosses the TM0 mode of the waveguide, situation
that will lead to a strong coupling between these modes when integrating both
waveguiding systems.

When integrating the MNW on top of the dielectric waveguide (Figure 14a),
the dispersion curves shows three modes in the guided region (Figure 14b), one
corresponding to the DLM (magenta circles) and two other branches corresponding
to the anti-symmetric (blue circles) and symmetric (red dots) dipolar transverse
chain modes. The mode splitting between these two last resonances arises from
strong coupling between dipolar transverse and TM0 modes. The near field maps in
Figure 14c present the amplitude and phase of the Hy field for the DLM, where is
observed a field enhancement below each nanowire and in the waveguide region.
For the antisymmetric DTM (Figure 14d) the field is mainly enhanced in the
waveguide region, with a phase difference of π rad between the MNW and the
waveguide; for the symmetric DTM (Figure 14e), the field is enhanced between the

Figure 14.
(a) Schematic representation of an infinite periodic array of MNW integrated on top of a dielectric waveguide
buried in a glass substrate. The superstrate is air. (b) In the dispersion curves are observed three chain modes in
the guided region: DLM (magenta circles), asymmetric DTM (blue circles) and symmetric DTM (red dots).
Distribution of the amplitude and phase of magnetic field in the out of plane direction of the (c) DLM, (d)
asymmetric DTM and (e) symmetric DTM.
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MNW with no phase difference between waveguide and MNW, being defined the
symmetry of the modes.

To corroborate the coupling between the photonic and plasmonic chain modes,
we simulated the beam propagation along the integrated structure. For this simula-
tion, we used a finite number of 5 MNW and excited the waveguide with its
fundamental TM0 mode. The transmission (red curve), reflection (blue dashed
curve) and absorption plus scattering (black dotted curve) where normalized to the
incident electromagnetic field and the results are shown on Figure 15a.

The transmission shows a first minimum value around λ ¼ 650 nm,
corresponding to the excitation of DLM and antisymmetric DTM. This excitation if
corroborated in the energy density map of Figure 15b, where is observed a field
enhancement at the bottom apexes of the nanowires. The second minimum
observed in the transmission spectrum around λ ¼ 810 nm, correspond to the
efficient excitation of the symmetric DTM, being characterized by a strong
enhancement of the electromagnetic field at the upper apexes of the nanowires, as
can be observed in the energy density map of Figure 15c. According to the numer-
ical calculations, at this wavelength the amplitude of the electromagnetic field
measured 10 nm above the apex of the nanowires, is 8.7 times stronger in compar-
ison to the amplitude of the incident electromagnetic field. This field enhancement
is referred as tip-localized surface plasmon resonance.

4. Conclusions

As we have studied in this chapter, mode hybridization between plasmonic and
photonic guided modes offers the possibility to design integrated devices for light

Figure 15.
(a) Normalized transmission (red), reflection (blue dashed) and absorption plus scattering (black dotted)
curves of a periodic array of 5 gold nanowires integrated on top of the dielectric waveguide. (b) At λ ¼ 650 nm,
the energy density map shows a field enhancement at the lower apexes of the MNW. (c) At λ ¼ 810 nm, the
energy density map shows a strong enhancement of the field at the upper apexes of the MNW.
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chain mode (green stars) is a dipolar transverse mode (DTM) resulting from cou-
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MNW with no phase difference between waveguide and MNW, being defined the
symmetry of the modes.

To corroborate the coupling between the photonic and plasmonic chain modes,
we simulated the beam propagation along the integrated structure. For this simula-
tion, we used a finite number of 5 MNW and excited the waveguide with its
fundamental TM0 mode. The transmission (red curve), reflection (blue dashed
curve) and absorption plus scattering (black dotted curve) where normalized to the
incident electromagnetic field and the results are shown on Figure 15a.

The transmission shows a first minimum value around λ ¼ 650 nm,
corresponding to the excitation of DLM and antisymmetric DTM. This excitation if
corroborated in the energy density map of Figure 15b, where is observed a field
enhancement at the bottom apexes of the nanowires. The second minimum
observed in the transmission spectrum around λ ¼ 810 nm, correspond to the
efficient excitation of the symmetric DTM, being characterized by a strong
enhancement of the electromagnetic field at the upper apexes of the nanowires, as
can be observed in the energy density map of Figure 15c. According to the numer-
ical calculations, at this wavelength the amplitude of the electromagnetic field
measured 10 nm above the apex of the nanowires, is 8.7 times stronger in compar-
ison to the amplitude of the incident electromagnetic field. This field enhancement
is referred as tip-localized surface plasmon resonance.

4. Conclusions

As we have studied in this chapter, mode hybridization between plasmonic and
photonic guided modes offers the possibility to design integrated devices for light
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curves of a periodic array of 5 gold nanowires integrated on top of the dielectric waveguide. (b) At λ ¼ 650 nm,
the energy density map shows a field enhancement at the lower apexes of the MNW. (c) At λ ¼ 810 nm, the
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confinement in nanometric volumes. Also, as light propagates in dielectric struc-
tures, these integrated devices reduce intrinsic propagation losses in conventional
plasmonic waveguides.

When properly excited, we have studied how localized surface plasmons can
couple in periodic arrays of metallic nanowires, leading to light propagation. In
other words, periodic arrays of MNW can behave as plasmonic waveguides.
Depending on the geometry of their cross section (shape and aspect ratio), the
electromagnetic field can be strongly confined and localized, desired property for
number of applications, like excitation of quantum dots or single photon emitters,
surface enhanced Raman spectroscopy, and biosensing.

The examples and explanations brought in this chapter can also be expanded to
other geometries and material combinations. The reader should always remind that
mode hybridization is the core of the physics behind the design of integrated
photonic-plasmonic devices for light guiding applications.

These hybrid photonic-plasmonic systems offers the capability of matching
diffraction limited guided optics, with nanometric materials, opening new
perspectives for the development of a new generation of integrated optical devices.
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photonic-plasmonic devices for light guiding applications.
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Chapter 9

Gate-All-Around FETs: Nanowire 
and Nanosheet Structure
Jun-Sik Yoon, Jinsu Jeong, Seunghwan Lee, Junjong Lee  
and Rock-Hyun Baek

Abstract

DC/AC performances of 3-nm-node gate-all-around (GAA) FETs having  
different widths and the number of channels (Nch) from 1 to 5 were investigated 
thoroughly using fully-calibrated TCAD. There are two types of GAAFETs: nanowire 
(NW) FETs having the same width (WNW) and thickness of the channels, and 
nanosheet (NS) FETs having wide width (WNS) but the fixed thickness of the 
channels as 5 nm. Compared to FinFETs, GAAFETs can maintain good short channel 
characteristics as the WNW is smaller than 9 nm but irrespective of the WNS. DC 
performances of the GAAFETs improve as the Nch increases but at decreasing rate 
because of the parasitic resistances at the source/drain epi. On the other hand, gate 
capacitances of the GAAFETs increase constantly as the Nch increases. Therefore, 
the GAAFETs have minimum RC delay at the Nch near 3. For low power applications, 
NWFETs outperform FinFETs and NSFETs due to their excellent short channel 
characteristics by 2-D structural confinement. For standard and high performance 
applications, NSFETs outperform FinFETs and NWFETs by showing superior DC 
performances arising from larger effective widths per footprint. Overall, GAAFETs 
are great candidates to substitute FinFETs in the 3-nm technology node for all the 
applications.

Keywords: gate-all-around, nanowire, nanosheet, field-effect transistors, fin,  
RC delay, parasitic resistance, parasitic capacitance

1. Introduction

Gate-all-around (GAA) is a widely-using structure such as logic field-effect 
transistor (FET) due to its excellent short channel characteristics [1–6] or its high 
surface-to-volume ratio [7, 8], 3-D NAND flash memory for bit-cost scalability 
[9, 10], photodiode due to its waveguide effect [11, 12], and gas sensor due to its 
high physical fill factor or surface-to-volume ratio [13, 14]. Especially for logic 
applications, GAAFETs have been introduced by attaining good gate electronics and 
increasing current drivability under the same active area.

Currently, fin-shaped FETs (FinFETs) have been scaled down to 10-nm node 
[15] and further to 5-nm node [16] by forming ultra-sharp fin for high current 
drivability while maintaining gate-to-channel controllability. GAAFETs are possibly 
showing great potential to substitute FinFETs in the following technology node, 
and the performance comparisons between FinFETs and GAAFETs have been 
investigated [3–6, 17]. But more detailed analysis between FinFETs and GAAFETs 
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is needed to set the device guideline by considering fine TCAD calibration and 
middle-of-line levels.

Therefore, in this work, DC/AC performances of 3-nm-node GAAFETs 
were investigated using fully-calibrated TCAD platform. By changing the GAA 
geometries, we found optimal GAA structure to minimize the RC delay for three 
different applications such as low power (LP), standard performance (SP), and 
high performance (HP) applications.

2. Device structure and simulation methods

All the simulation works were performed using Sentaurus TCAD [18]. Drift 
diffusion transport equations were calculated self-consistently with Poisson and 
electron/hole continuity equations. Density-gradient model was adopted for the 
quantum confinement of carriers within the channel. Slotboom bandgap narrowing 
model was used to consider the doping-dependent energy bandgap. Mobility models 
include Lombardi for the mobility degradation at the channel/oxide interface, inver-
sion and accumulation layer model for impurity, phonon, and surface roughness 
scatterings, and low-field ballistic model for quasi-ballistic effects in ultra-short gate 
length (Lg). Shockley-Read-Hall, Auger, and Hurkx band-to-band tunneling recom-
bination models were adopted. Deformation potential model was used to consider 
the stress-induced energy bandgap, effective mass, and effective density-of-states. 
All these physical models were used equivalently in [19, 20].

Figure 1 shows the schematic diagrams of FinFETs and three-stacked 
GAAFETs. FinFETs have highly-doped punch-through-stopper (PTS) at 2 × 1018 
and 4 × 1018 cm−3 for NFETs and PFETs, respectively, in order to prevent the 
sub-fin leakage currents at off state [21, 22]. GAAFETs, on the other hand, have 
buried oxide (BOX) layer beneath the source/drain (S/D) regions without PTS 
so that the bottom leakage currents are completely blocked [1, 23]. Bulk FinFETs 
can adopt the BOX layer according to [24], but the conventional device structure 

Figure 1. 
Schematic diagrams of FinFETs and GAAFETs. 2-D cross-sections of nanosheet and nanowire channels were 
also specified to the right.

159

Gate-All-Around FETs: Nanowire and Nanosheet Structure
DOI: http://dx.doi.org/10.5772/intechopen.94060

was considered in this work. S/D doping concentrations of the n-type and p-type 
devices are 2 × 1020 and 4 × 1020 cm−3, respectively. Interfacial layer (IL), HfO2, 
and low-k spacer regions have the dielectric constants of 3.9, 22.0, and 5.0, respec-
tively. Contact resistivity at S/D and silicide interface is fixed to 10−9 Ω·cm2 [25]. 
Equivalent oxide thickness (EOT) is 1.0 nm, which consists of 0.7-nm-thick IL and 
1.7-nm-thick HfO2.

Table 1 shows the geometrical parameters and values of 3-nm-node FinFETs 
and GAAFETs. Contacted poly pitch (CPP) and fin pitch (FP) are 42 and 21 nm, 
following 3-nm technology node [5]. There are two types of GAAFETs: nanowire 
FETs (NWFETs) having the same width and thickness as WNW, and nanosheet 
FETs (NSFETs) having thin NS thickness (TNS) of 5 nm but wide NS width (WNS) 
as 10, 20, 30, 40, and 50 nm. The number of NW or NS channels (Nch) is varied as 
1, 2, 3, 4, and 5.

Figure 2 shows the schematic process flows of GAAFETs. The detailed gate-las 
process flows are described in [1]. After depositing Si0.7Ge0.3/Si multi-layer and 
etching like fin structure, poly-Si gate and low-k regions are formed. Inner-spacer 
is formed by etching sidewalls of Si0.7Ge0.3 regions selectively and depositing low-k 
regions. Followed by depositing BOX layer, selective epitaxial growth of S/D regions 
is performed. After removing poly-Si gate, channel release process is performed by 
etching Si0.7Ge0.3 regions selectively. Replacement metal gate, silicidation, and metal 
contact formations are done afterwards.

All the TCAD results were calibrated to Intel 10-nm node FinFETs [15]. 
Detailed calibration flows are as follows. Geometrical parameters such as Lg, fin 
width (Wfin), fin height (Hfin), CPP, and FP were referred from [15]. Subthreshold 
characteristics such as subthreshold swing (SS) and drain-induced barrier lowering 
(DIBL) were fitted by changing annealing temperature and time for proper S/D 
doping profiles. Saturation velocity was tuned to fit the drain current (Ids) in the 
saturation region, whereas minimum low-field mobility and ballistic coefficient 
were varied to fit the Ids in the linear region. Some parameters related to surface 
roughness scatterings were also modified to fit the Ids in the strong inversion region 
accordingly. These calibration flows were equivalent as in [26]. After calibration, 
FinFETs were scaled down to the 3-nm node for comparison with GAAFETs.

Geometrical parameters Values

CPP Contacted poly pitch 42 nm

FP Fin pitch 21 nm

NP Nanowire/sheet pitch WNW or WNS + 16 nm

Lg Gate length 12 nm

Lsp Spacer length 5 nm

Wfin Fin width 5 nm

Hfin Fin height 46 nm

WNW Nanowire width 5, 6, 7, 8, 9, 10 nm

WNS Nanosheet width 10, 20, 30, 40, 50 nm

TNS Nanosheet thickness 5 nm

TSP Nanowire/sheet spacing 10 nm

Nch The number of channels 1, 2, 3, 4, 5

Table 1. 
Geometrical parameters and values of FinFETs and GAAFETs.
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etching like fin structure, poly-Si gate and low-k regions are formed. Inner-spacer 
is formed by etching sidewalls of Si0.7Ge0.3 regions selectively and depositing low-k 
regions. Followed by depositing BOX layer, selective epitaxial growth of S/D regions 
is performed. After removing poly-Si gate, channel release process is performed by 
etching Si0.7Ge0.3 regions selectively. Replacement metal gate, silicidation, and metal 
contact formations are done afterwards.

All the TCAD results were calibrated to Intel 10-nm node FinFETs [15]. 
Detailed calibration flows are as follows. Geometrical parameters such as Lg, fin 
width (Wfin), fin height (Hfin), CPP, and FP were referred from [15]. Subthreshold 
characteristics such as subthreshold swing (SS) and drain-induced barrier lowering 
(DIBL) were fitted by changing annealing temperature and time for proper S/D 
doping profiles. Saturation velocity was tuned to fit the drain current (Ids) in the 
saturation region, whereas minimum low-field mobility and ballistic coefficient 
were varied to fit the Ids in the linear region. Some parameters related to surface 
roughness scatterings were also modified to fit the Ids in the strong inversion region 
accordingly. These calibration flows were equivalent as in [26]. After calibration, 
FinFETs were scaled down to the 3-nm node for comparison with GAAFETs.

Geometrical parameters Values

CPP Contacted poly pitch 42 nm

FP Fin pitch 21 nm

NP Nanowire/sheet pitch WNW or WNS + 16 nm

Lg Gate length 12 nm

Lsp Spacer length 5 nm

Wfin Fin width 5 nm

Hfin Fin height 46 nm

WNW Nanowire width 5, 6, 7, 8, 9, 10 nm

WNS Nanosheet width 10, 20, 30, 40, 50 nm

TNS Nanosheet thickness 5 nm

TSP Nanowire/sheet spacing 10 nm

Nch The number of channels 1, 2, 3, 4, 5

Table 1. 
Geometrical parameters and values of FinFETs and GAAFETs.
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3. Results and discussion

3.1 DC performances of NWFETs and NSFETs

Figure 3 shows the Ids of all the GAAFETs having different WNW or WNS at the 
fixed Nch of 3 at the drain voltages (Vds) of 0.70 V. It is not shown in this figure, 
but the Ids increases generally as the WNW or WNS increases irrespective of Nch. 
As the WNW increases, the Ids shifts leftward and the gate-induced drain leak-
age (GIDL) increases by losing the gate-to-channel controllability [27]. P-type 
NWFETs have larger GIDL than n-type NWFETs due to larger S/D doping 
penetrations into the channel for p-type devices. On the other hand, NSFETs have 
small GIDL and Ids shifts as thin TNS of 5 nm forms 1-D structural confinement 
and maintains good short channel characteristics. To the following, there are 
three applications at different off-state currents (Ioff): LP at the Ioff of 100 pA/μm, 
SP at the Ioff of 10 nA/μm, and HP at the Ioff of 100 nA/μm [28]. These values were 
normalized to NP.

Figure 4 shows SS and DIBL of all the devices. Threshold voltages (Vth) and 
SS are extracted at the constant current of Weff/Lg × 108 A, where Weff is the effec-
tive width equal to 2 × Hfin + Wfin for FinFETs, 4 × WNW × Nch for NWFETs, and 
(2 × WNS + 2 × TNS) × Nch for NSFETs. DIBL is calculated as the difference of the Vth 
at two different Vds of 0.05 and 0.70 V for n-type (−0.05 and − 0.70 V for p-type) 
devices [29]. NWFETs degrade the short channel characteristics much than FinFETs 
as the WNW is 9 and 10 nm. NSFETs, on the other hand, have smaller SS and DIBL 
than FinFETs even as the WNS increases up to 50 nm because the gate-to-channel 
controllability is maintained by GAA structure and thin TNS of 5 nm. But when the 
NWFETs have ultra-small WNS of 5 or 6 nm, 2-D structural confinement decreases 
the SS and DIBL greatly, which would be preferable for LP applications. It is not 
shown in this figure, but the SS and DIBL are independent of Nch.

Figure 5 summarizes the effective currents (Ieff) of n-type (top) and p-type 
(bottom) GAAFETs having different WNW (or WNS) and Nch. Ieff was calculated 
using two Ids at different Vds and gate voltages (Vgs) as

 ( ) / ln H
eff H L

L

II I I
I

 
= −  

 
 (1)

Figure 2. 
Process flows of GAAFETs. Key process schemes of GAAFETs are Si0.7Ge0.3/Si multi-layer stacking,  
inner-spacer formation, and channel release by etching Si0.7Ge0.3 regions selectively.
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where IH = Ids (Vgs = VDD, Vds = VDD/2) and IL = Ids (Vgs = VDD/2, Vds = VDD) [30], 
and VDD is the operation voltage fixed to 0.7 V. All the Ieff were normalized to the 
NP, and the Ioff were fixed to 10 nA/μm for SP applications. GAAFETs need to have 
at least the Nch of 3 to outperform the FinFETs. As the WNW is 9 nm, both n-type 
and p-type NWFETs suffer from short channel effects (SCEs) and thus have smaller 
Ieff than the devices having smaller WNW in spite of larger Weff. NSFETs, on the 
other hand, have larger Ieff as the WNS is larger as the SCEs are reduced by thin TNS 
of 5 nm. But even though small same SS and DIBL are maintained for all the Nch, the 
increasing rate of Ieff as a function of Nch decreases as Nch increases.

Figure 6 shows the S/D parasitic resistance (Rsd) of the GAAFETs having the 
WNW or 7 nm and the WNS of 30 nm as a function of Nch. Other WNW and WNS have 
the same Rsd trends and thus are not shown in this work. Rsd was possibly extracted 
using Y-function method due to the linearity of Y-function at high Vgs [31]. As the 

Figure 4. 
SS (left) and DIBL (right) of FinFETs, NWFETs, and NSFETs having fixed Nch of 3. It is not shown in this 
figure, but the GAAFETs have the same SS and DIBL irrespective of Nch.

Figure 3. 
Ids of n-type (top) and p-type (bottom) NWFETs and NSFETs having different WNW or WNS at the fixed 
Nch of 3 at the drain voltages (Vds) of 0.70 V. it is not shown in this figure, but the GAAFETs have the same Ids 
trends irrespective of Nch (Ids increases as the WNW or WNS increases).
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where IH = Ids (Vgs = VDD, Vds = VDD/2) and IL = Ids (Vgs = VDD/2, Vds = VDD) [30], 
and VDD is the operation voltage fixed to 0.7 V. All the Ieff were normalized to the 
NP, and the Ioff were fixed to 10 nA/μm for SP applications. GAAFETs need to have 
at least the Nch of 3 to outperform the FinFETs. As the WNW is 9 nm, both n-type 
and p-type NWFETs suffer from short channel effects (SCEs) and thus have smaller 
Ieff than the devices having smaller WNW in spite of larger Weff. NSFETs, on the 
other hand, have larger Ieff as the WNS is larger as the SCEs are reduced by thin TNS 
of 5 nm. But even though small same SS and DIBL are maintained for all the Nch, the 
increasing rate of Ieff as a function of Nch decreases as Nch increases.

Figure 6 shows the S/D parasitic resistance (Rsd) of the GAAFETs having the 
WNW or 7 nm and the WNS of 30 nm as a function of Nch. Other WNW and WNS have 
the same Rsd trends and thus are not shown in this work. Rsd was possibly extracted 
using Y-function method due to the linearity of Y-function at high Vgs [31]. As the 

Figure 4. 
SS (left) and DIBL (right) of FinFETs, NWFETs, and NSFETs having fixed Nch of 3. It is not shown in this 
figure, but the GAAFETs have the same SS and DIBL irrespective of Nch.

Figure 3. 
Ids of n-type (top) and p-type (bottom) NWFETs and NSFETs having different WNW or WNS at the fixed 
Nch of 3 at the drain voltages (Vds) of 0.70 V. it is not shown in this figure, but the GAAFETs have the same Ids 
trends irrespective of Nch (Ids increases as the WNW or WNS increases).



Nanowires - Recent Progress

162

Nch increases, Rsd of the GAAFETs decrease but at decreasing rate. Furthermore, 
Rsd becomes saturated as the Nch is 3 or 4. This phenomena can be explained by 2-D 
schematic diagrams shown in the right of Figure 6. Since the S/D contacts reside at 
the top of the S/D epi, current paths start from the top toward the channels at the 
bottom. As the Nch increases, longer current paths are needed to flow the bottom-
side channels, facing more Rsd components at the S/D epi. Thus, increasing the Nch 
beyond 3 or 4 does not help DC performance improvements greatly.

3.2 AC performances of NWFETs and NSFETs

Figure 7 summarizes the gate capacitances (Cgg) of all the GAAFETs. The Cgg is 
extracted at the Vgs and the Vds of VDD. Generally, Cgg increases as the WNW (or WNS) 
or Nch increases due to the increased Weff. PFETs have larger Cgg than NFETs due 
to larger S/D doping concentrations and penetrations into the channels. Different 

Figure 5. 
Ieff of n-type (top) and p-type (bottom) GAAFETs having different WNW (or WNS) and Nch. Ieff of n-type and 
p-type FinFETs are also specified as yellow symbols. Blue regions indicate that the GAAFETs have superior Ieff 
than the FinFETs.

Figure 6. 
Rsd of n-type and p-type GAAFETs having the WNW of 7 nm and the WNS of 30 nm as a function of Nch (left) 
and the 2-D schematic diagram of half of the GAAFETs showing the current paths and Rsd components (right).
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from the Ieff trends, the GAAFETs have Nch smaller than 3 to outperform the 
FinFETs, thus there are performance trade-offs between Ieff and Cgg as a function of 
Nch. Furthermore, the increasing rate of Cgg as a function of Nch is constant while 
the increasing rate of Ieff as a function of Nch decreases, which would degrade the RC 
delay (= IeffVDD/Cgg) as the Nch increases.

Figure 7. 
Cgg of n-type (top) and p-type (bottom) GAAFETs having different WNW (or WNS) and Nch. Cgg of n-type 
and p-type FinFETs are also specified as yellow symbols. Blue regions indicate that the GAAFETs have smaller 
Cgg than the FinFETs.

Figure 8. 
Cgg and Cpara of NWFETs (left) and NSFETs (right) having different WNW (or WNS) at the fixed Nch of 3 and 
having different Nch at the fixed WNW of 7 nm (or WNS of 30 nm). Percentages represent the Cpara/Cgg.
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Figure 8 shows the Cgg and parasitic capacitances (Cpara) of the GAAFETs varying 
Nch and WNW (or WNS). Cpara is extracted at off-state for SP applications. For all the 
cases, PFETs have larger Cpara than NFETs due to larger S/D doping and penetra-
tions into the channels [20]. At the fixed Nch of 3, larger WNW or WNS, except for 
p-type NWFETs, decreases the Cpara/Cgg because the proportion of the channels out 
of the metal gate increases. For the same reason, larger Nch decreases the Cpara/Cgg. 
Large Cpara/Cgg at the WNW of 9 nm for NFETs is because large SS forms on state 
before reaching strong inversion region.

Figure 9 shows the S/D doping profiles of NFETs (top) and PFETs (bottom) 
having different WNW at the fixed Nch of 3. In general, NFETs have larger doping con-
centrations in the middle of channels than PFETs because the Ge intermixing within 
multi-stacked Si/Si0.7Ge0.3 layers increases the Ge concentration at the channels and 
assists more phosphorus dopants diffusing into the channels while it segregates 
boron dopants [32–34]. Both NFETs and PFETs increase the doping concentrations 
in the middle of channels as the WNW increases because the dopant segregations 
near the low-k spacer regions decrease [35]. But PFETs increase the doping concen-
trations in the middle of channels much due to smaller Ge intermixing for larger 
WNW. This great increase of the doping concentrations in the middle of channels 
increases the Cpara/Cgg for p-type NWFETs (as shown in Figure 8).

Figure 10 finalizes the RC delay of all the GAAFETs for LP, SP, and HP applica-
tions. N-type FinFETs have smaller RC delay than p-type FinFETs for all the applica-
tions due to better short channel characteristics, greater Ieff (as shown in Figure 5) 
and smaller Cgg (as shown in Figure 8). For LP applications, n-type GAAFETs having 

Figure 9. 
S/D doping profiles of NFETs (top) and PFETs (bottom) having different WNW at the fixed Nch of 3. Doping 
concentrations in the middle of top-side channels are also specified.
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small WNW equal to 5 or 6 nm can outperform n-type FinFETs by decreasing SS and 
DIBL critically. But as the Nch is 1 (or 5), the Ieff decreases greatly (or the Cgg increases 
greatly), thus degrading the RC delay. On the other hand, p-type GAAFETs have more 
WNW or WNS options to outperform p-type FinFETs because boron dopants of the 
GAAFETs are segregated by Si/Si0.7Ge0.3 intermixing and have more abrupt S/D doping 
profile than p-type FinFETs. For LP applications, both n- and p-type GAAFETs have 
the minimum RC delay at the WNW of 5 nm and the Nch of 4. For both SP and HP 
applications, both n- and p-type GAAFETs have the minimum RC delay at the WNS 
of 50 nm and the Nch of 3. As the WNS increases beyond 50 nm, RC delay decrease but 
a little (as shown in Appendix). All these RC delay are achieved by enhancing the 
Ieff rather than the Cgg. To outperform the FinFETs, therefore, GAAFETs should be 
NWFETs, showing outstanding short channel characteristics, for LP applications and 
NSFETs, showing superior DC performance, for SP and HP applications.

4. Conclusion

3-nm-node GAAFETs have been analyzed by changing WNW (or WNS) and Nch 
using fully-calibrated TCAD. Compared to FinFETs, GAAFETs have smaller and 

Figure 10. 
RC delay of all the GAAFETs for (a) LP, (b) SP, and (c) HP applications. RC delay of FinFETs for three different 
applications are also specified. The devices having the RC delay smaller than FinFETs are marked as yellow.
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small WNW equal to 5 or 6 nm can outperform n-type FinFETs by decreasing SS and 
DIBL critically. But as the Nch is 1 (or 5), the Ieff decreases greatly (or the Cgg increases 
greatly), thus degrading the RC delay. On the other hand, p-type GAAFETs have more 
WNW or WNS options to outperform p-type FinFETs because boron dopants of the 
GAAFETs are segregated by Si/Si0.7Ge0.3 intermixing and have more abrupt S/D doping 
profile than p-type FinFETs. For LP applications, both n- and p-type GAAFETs have 
the minimum RC delay at the WNW of 5 nm and the Nch of 4. For both SP and HP 
applications, both n- and p-type GAAFETs have the minimum RC delay at the WNS 
of 50 nm and the Nch of 3. As the WNS increases beyond 50 nm, RC delay decrease but 
a little (as shown in Appendix). All these RC delay are achieved by enhancing the 
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NWFETs, showing outstanding short channel characteristics, for LP applications and 
NSFETs, showing superior DC performance, for SP and HP applications.

4. Conclusion
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SS and DIBL as the WNW is smaller than 9 nm but irrespective of the WNS. Both Ieff 
and Cgg of the GAAFETs increase as the Nch increases, but the increasing rate of Ieff 
decreases due to the increase of Rsd at the longer S/D epi. The increasing rate of Cgg, 
on the other hand, is almost constant. Because of these phenomena, Minimum RC 
delay are formed at the middle Nch of 3 or 4. The NWFETs having the WNW of 5 or 
6 nm achieve smaller RC delay than the FinFETs by achieving better gate electronics 
for LP applications, whereas the NSFETs having the WNS of 40 or 50 nm increase 
the Ieff greatly and thus decrease the RC delay for SP and HP applications. Overall, 
GAAFETs are possible candidates to substitute FinFETs in the 3-nm technology 
node for all the applications by adopting different WNW or WNS.
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Appendices and nomenclature

Figure A1 shows the DC/AC performances of the NSFETs as the WNS increases 
from 40 to 100 nm. Minimum RC delay are formed at the WNS of 50 nm and the Nch 
of 3 as shown in Figure 10, but much smaller RC delay can be attained as the WNS 
increases to 100 nm by increasing the Ieff rather than the Cgg even though larger WNS 
extends the device area. For the most, RC delay decrease by 5.4% for PFETs as the 
WNS increases from 40 to 100 nm.

Figure A1. 
Ieff, Cgg, and RC delay of the NSFETs having the WNS of 40, 50, 60, 70, 80, 90, and 100 nm at the fixed Nch of 3 
for SP and HP applications.
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extends the device area. For the most, RC delay decrease by 5.4% for PFETs as the 
WNS increases from 40 to 100 nm.

Figure A1. 
Ieff, Cgg, and RC delay of the NSFETs having the WNS of 40, 50, 60, 70, 80, 90, and 100 nm at the fixed Nch of 3 
for SP and HP applications.
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Chapter 10

Engineering the Color and the 
Donor-Acceptor Behavior in 
Nanowires: Blend Versus Coaxial 
Geometry
Mohamed Mbarek and Kamel Alimi

Abstract

The blending or the bilayering of two complementary species are the dominant 
methods for in-solution-processed thin film devices to get a strong donor-acceptor 
behavior. They propose opposite strategies for the respective arrangement of the two 
species, a central point for energy and/or charge transfer. In this work, we propose 
to engineer at the scale of the exciton diffusion length the organization of a donor 
(poly(vinyl-carbazole), PVK) and an acceptor (poly(para-phenylene-vinylene), 
PPV) in a nanowire geometry. A two-step template strategy was used to fabricate 
coaxial nanowires with PPV and PVK, alternatively as the core or the shell material. 
Their stationary and time-resolved photoluminescence properties were investigated 
and compared to the case of PVK-PPV blend. Their respective characteristics are 
direct evidences of the dominant mechanisms responsible for the emission properties.

Keywords: organic nanowires, luminophores, exciton, shell-core

1. Introduction

π-conjugated molecules and polymers have attracted considerable interest 
in both fundamental studies and applied research [1]. This is due to their one-
dimensional characteristics and their many potential applications. One-dimensional 
(1D) nanostructures based on organic materials are attracting significant research 
[2–4] interest owing to the many novel chemical, physical, and electronic properties 
that may arise in such systems and the possibility of exploiting these properties 
in a variety of applications [5–9]. However, for 1D nanostructure in general, a 
key challenge is the development of new approaches that will permit controlled 
nanowires and nanotubes architectures [10]. Nanoporous template method has been 
used to synthesize well-defined nanoscale tubes or wires inside nanoporous chan-
nels [10, 11]. This technique has many advantages, in that it is low-cost, control of 
physical properties or size is easy [10, 11], and that it lends itself to the logic of mass 
production. The fabrication of nanoscale structures has attracted much interest 
due to their potential use in electronic and optical applications [12–16]. Among 
many techniques generating the nanoscale structures, the anodized aluminum 
oxide (AAO) [10, 11] has been most widely used as a template for forming metal or 
semiconductor nanowires. The AAO has been known to have a clear advantage of 
an economical way to produce the large area periodic nanostructures [11]. These 
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nanostructures were a seat of charge and energy transfer especially on the acceptor-
donor architecture [17, 18]. The energy transfer [19] depend the absorption, the 
quantum yield of emitter’s efficiency. Additionally, it depend on the donor and 
acceptor characters of luminophores, the relative spatial distribution of acceptor 
and donor, the overlapping between the donor absorption spectrum and the accep-
tor emission spectrum.

In this way, we report the synthesis of poly(para-phenylene-vinylene) PPV 
[20] (electron donor) and poly(vinyl-carbazole) PVK [20] (good hole transport) 
nanowires, and a coaxial architecture bases on PPV and PVK polymers using the 
AAO and describe their optical and structural characteristics. Stationary and tran-
sition photoluminescence have been employed to demonstrate the nature of energy 
and charge-transfer processes occurring in these nanostructures.

2. Materials and techniques

2.1 Materials

Poly(N-vinylcarbazole) PVK powder, chloroform, methanol, used for the 
synthesis of the studied compounds were purchased from Sigma Aldrich, Merk, 
and Fluka. The materials were used as received. The PPV precursor was synthe-
sized by addition of 33 mL of tetrahydrothiophenium in the dichloroparaxylene 
dissolved in methanol. The aqueous solution of PPV precursor was dialyzed with 
deionized water for several days. The PPV precursor was kept at 0°C in the dark. 
The mass concentration of the PPV precursor is about 2.4 mg mL. Commercial 
AAO membranes purchased from Whatman (anodisc 13) have been used. They are 
60 μm thick with a real pore diameter showing a polydispersity between200 nm and 
around 250 nm as revealed by SEM analysis.

2.2 Fabrication of the coaxial NWs

The coaxial NWs were fabricated by a wetting template method in anodic alumina 
oxide (AAO) nanoporous template. For the synthesis of coaxial NWs, two steps of 
wetting are required. The first step consists in the wetting of AAO membrane with the 
PPV precursor in methanol solution. To obtain PPV nanotubes, the concentration of 
PPV precursor in methanol was chosen at 1.2 mg/mL and 200 μL of this solution was 
drop-casted on AAO membrane, as described elsewhere. The precursor embedded in 
AAO membrane was then thermally converted under a dynamic secondary vacuum 
(≈10–6 Torr) for 4 h to obtain PPV. The coaxial nanowires are then obtained by a 
secondary-template strategy. The AAO membrane containing PPV nanotubes was wet-
ted with the solution containing PVK dispersed in chloroform. The wetted templates 
were left overnight under ambient condition to allow solvent evaporation. For some 
characterization, the AAO templates containing coaxial NWs was completely etched 
in H3PO4 (25 wt %) overnight and washed several time with DI water. The coaxial 
NWs were homogeneously dispersed in DI water solution by ultrasonication during 
10 s with a power of 140 W (Fisher Scientific FB 15052). Ultrasonication results in the 
shortening of the nanowire length.

3. Characterization methods

A field-effect scanning electron microscope (JEOL, JSM-7600F operating at 
5 kV), an AFM (Nanowizard II, JPK instruments) working in intermittent contact 
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mode in air with Si tips (PPP-NCHR, Nanosensors) and a transmission electron 
microscope (Hitachi H9000 NAR operating at 300 kV) were used to investigate the 
morphology and the composition of the nanowires. For SEM, AFM and fluores-
cence microscopy experiments, a drop of solution (10 μL) containing the nanowires 
was deposited onto silicon or glass substrates after the dissolution of the template. 
For TEM experiments, a drop of the solution was deposited on TEM copper grids 
covered with a thin holeycarbon film. Epi-fluorescence micrographs were acquired 
using a calibrated microscope (Eclipse Ti, Nikon) equipped with a 60 objective and 
a CCD camera, 130WHg lamp and fluorescence filter cube (EX 330–380, Dm: 400, 
BA 420). Spectroscopic Characterizations.

All characterizations were performed at room temperature. Absorption and 
photoluminescence of the PVK were measured on spin coated thin films (1500 rpm, 
30 s) deposited on glass and silica from a solution with 2.4 mg/mL-1, and from a 
PPV precursor (PPV precursor: 2.4 mg/mL-1 in methanol, 1500 rpm, 30 s, thermal 
conversion at 300°C for 3 h). UV–vis absorption on thin film sample was performed 
with a Perkin-Elmer double beam spectrophotometer equipped with an integrating 
sphere; we carried out PL measurements using a Jobin-Yvon Fluorolog 3 equipped 
with a CCD camera and PL experiments on film were achieved under 400 nm 
excitation at 0.5 mW by a Spectra-Physics Hurricane X laser. For micro-Raman 
and micro photoluminescence studies, the template containing the nanowires was 
broken to reveal a cross section and consequently the whole length of the nanowires. 
Micro-Raman spectra were recorded using a Renishaw inVia Raman microscope 
equipped with a 785 nm line of a HPNIR diode laser. We measured steady state 
micro-PL spectra with a Jobin-Yvon T64000 spectrometer under 325 nm laser 
excitation obtained by an argon ion laser. In each case, the spot size of the focused 
laser beam on the sample was estimated to be about 1.2 μm. The transient PL 
experiments have been achieved under 400 nm excitation using Spectra-Physics 
Hurricane X laser system (82 fs, 1 kHz) onto mat of NWs. The collected emission 
was temporally detected with a streak camera (Hamamatsu C7700) coupled with 
an imaging spectrograph. The laser pump power in pinging on sample was kept at 
0.5 mW to minimize sample photobleaching.

4. Results and discussion

A selection of transmission electron microscopy (TEM) was performed to 
characterize the different nanowires based on PPV and PVK. The different types of 
TEM imaging and their correspondent’s histograms are shown in the Figure 1.

A selection of transmission electron microscope (TEM) images of the as-
prepared nanofibres after the dissolution of the AAO membrane is presented in 
Figure 1. The PPV nanofibres have a mean diameter d (272 nm) exceeding the 
nominal manufacturer pore diameter dp (200 nm) of AAO membrane as shown by 
the histograms. The same diameter was observed in the PVK nanowires displayed 
in TEM micrographs with a mean diameter d = 270 nm (Figure 1b) supported by 
their histograms nanowires diameters in the right of Figure 1.The nanowires length 
10 μm does not correspond to the membrane thickness (60 μm), this difference can 
be explained by the alumina removal step and the sonication step required for their 
dispersion in solution, which result in shortening of the NWs.

We performed also transmission electron microscopy (TEM) and scanning 
electron microscopy experiments on the coaxial nanowires to make evidence of the 
coaxial architecture and to prove the successful synthesis of these coaxial nano-
structures bases on PVK and PPV polymers. The poor imaging contrast typical of 
polymeric materials make not easy to prove that. In Figure 2.
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Figure 1. 
Selection of TEM micrographs of: (a) PPV nanowires and it histograms nanowires diameters (right of TEM 
image), (b) of PVK nanowires and it histograms nanowires diameters (right of TEM micrograph).

Figure 2. 
Selection of SEM and TEM images of coaxial nanowires based on PVK and PPV polymers of an isolated NW 
which reveals the coaxial geometry.
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Generally, this strategy promotes complex phenomena occurring when two 
(or more) kinds of emitters are into contact, that are Dexter and Förster energy 
transfers as well as charge transfers. The first mechanism is the energy transfer 
between PVK and PPV. The emission spectrum of PVK has some overlap with the 
absorption spectrum of PPV. The spectral overlap is large enough for the efficient 
energy transfer according to the Forster theory [21]. The energy transfer process 
from PVK to PPV enhances the PL intensity of PPV.

Here, an energy transfer was accrued between two luminophores because the 
absorption band of the PPV unit (green dashed-dot line, peak at 420 nm) has a 
significant overlap with the emission band of the PVK (blue line, peak at 400 nm) 
as shown on Figure 3. Thus, the absorption by the PPV units of the photons emitted 
by PVK can significantly occur and make evidence of reabsorption phenomenon 
(energy transfer). This phenomenon was more clearly visible in the PL spectra as 
shown in Figure 4.

The emissive characteristics of the as-prepared NWs have been investigated by 
PL spectroscopy with a 2 μm diameter microprobe for pumping at 325 nm along 
the membrane pores, as show in Figure 4. The bleu spectrum is composed of the 
characteristic PVK PL bands located at 389, 418 and 453 nm [20]. However in the 
case of the green spectra four bands which constitute the spectrum of the PPV are 
located at 520 nm, 550, 600 and 650 nm [20]. The obtained spectra of the mixture 
of [PVK@PPV] traced with magenta lines present a linear combination of the PVK 
and PPV spectra with a strongest contribution of PPV emission. In fact the intensity 
of PPV luminophores is triple of PVK emission intensity. It is clearly seen that the 
intensity of PVK is more than PPV emission intensity of about 1.5 before combined 
together. After mixing the two luminophores [PVK@PPV] the PPV emission 
intensity become triple of PVK emission intensity. So adding a type of luminophore 
witch her emission is overlapping with the absorption of the other luminophore 
resulting increase in emission of this latter.

The sum of two photoluminescence spectra is accompanied by a strong energy 
transfer as well as evidence of charge transfer. The emission energy of PVK 
was reabsorbed by PPV units which amplified the PPV emission in the mixture 
[PVK@PPV]. In addition, as previously reported the PVK emission is overlap of 
PPV absorption and this is leads to a Forster energy transfer [22–26]. In the same 
regard, we recall that the quantum yield of PL of PPV is more than of PVK. That 
means that the PPV polymer has more power to create emissive excitons than in 

Figure 3. 
Normalized absorption (dashed-dot lines), and photoluminescence (solid lines, λexc = 330 nm) spectra of the 
PVK (blue lines) and of the PPV polymer (green lines).
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regard, we recall that the quantum yield of PL of PPV is more than of PVK. That 
means that the PPV polymer has more power to create emissive excitons than in 

Figure 3. 
Normalized absorption (dashed-dot lines), and photoluminescence (solid lines, λexc = 330 nm) spectra of the 
PVK (blue lines) and of the PPV polymer (green lines).
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the case of PVK. This is evidence of charge transfer between PPV and PVK units. 
For charge transfer phenomenon, a similar distance between the donor and the 
acceptor is needed. Concerning Förster energy transfer, the process is efficient for 
typical distances 5–10 nm between the donor and the acceptor [26].

Figure 4 shows epi-fluorescence micrographs of random PVK NWs, PPV NWs 
[PVK@PPV] blend nanowires and coaxial nanowires. A green emission of PPV, 
blue emission and a bright blue-green characteristic of PPV and PVK emissions 
are observed in the case of mixture [PVK@PPV]. The color emission correspond-
ing to each PL spectrum has been determined for PVK, PPV and [PVK@PPV] 
nanowires and reported in a chromaticity diagram. The coordinates of PVK NWs 

Figure 4. 
(a) Fluorescence microscopy images (λexc = 330–380 nm; λem > 420 nm) of dispersed PPV nanowires (green), 
PVK nanowires (blue) and [PPV@PVK] nanowires (green-bleu) (b) energy transfer phenomena between 
PVK and PPV (HOMO: Highest occupied molecular orbital, LUMO: Lowest unoccupied molecular orbital); 
(c) chromaticity diagram (CIE coordinates) for PVK (x = 0.1575; y = 0.0814), PPV (x = 0.3787; y = 0.5919) and 
[PVK@PPV] (x = 0.3091; y = 0.4968) nanowires LEDs described; (d) photoluminescence (solid lines, laser 
λexc = 325 nm) spectra of the PVK nanowires (blue lines), PPV nanowires (green lines) and [PPV@PVK] 
nanowires (magenta lines).

179

Engineering the Color and the Donor-Acceptor Behavior in Nanowires: Blend Versus Coaxial…
DOI: http://dx.doi.org/10.5772/intechopen.94214

(x = 0.1575; y = 0.0814), PPV NWs (x = 0.3787; y = 0.5919) and [PVK@PPV] 
NWs LEDs are displayed in Figure 4. It can be noted that the perception of the 
emission color for the mixture NWs [PVK@PPV] was dominated by the PPV one. 
Moreover, the contribution of the PPV emission is favored by the higher quantum 
yield of PPV.

The effect of the coaxial morphology on energy transfer dynamics is now 
examined. It has been investigated by time-resolved photoluminescence of PVK 
and PPV thin films, blended and coaxial PVK/PPV nanowires for an excitation 
at 3.10 eV (400 nm). The nanowires were dispersed on a silica substrate after the 
total etching of the template. Furthermore, the energy transfer dynamics was 
investigated by time resolving the PVK, PPV and [PVK@PPV] nanowires optical 
emission upon excitation at 3.10 eV (400 nm).

Due to the very weak signal measured in the spectral range of PVK emission 
and of the proximity of the excitation at 400 nm, it was not possible to address the 
dynamics of the main photoluminescence band. So, we focused on the emission at 
535 nm, because it corresponds to the second emission band in the PL tail of PVK, 
and it is close to the PL maximum of PPV spectrum. Its dynamic behavior is thus 
expected to take into account the behavior of each polymer and an eventual donor-
acceptor mechanism.

Figure 5 depicts the 535 nm PL intensity decays of all the systems investigated in this 
study. These PL kinetics are simulated with two exponential decays with characteristic 
time τ1 and τ2. In this simple model, the populations of levels 1 and 2 are independent. 
These populations include photogenerated charges recombining radiatively and 
non-radiatively. The decaying population is 1 1 2 2n A n A n= + , where A1 and A2 are 
proportional to the PL intensity from levels 1 and 2, respectively [27]. The intensity 
averaged decay time τmean has been determined in order to show the average trend 
of the photogenerated charge migration time. The corresponding decay times and 
 corresponding yields Pi defined as

 ( ) 2
i i i i ii 1
P % A / A

=
= τ τ∑  

are compiled in the Table 1.

A first analysis shows that the decays for the blend and the core-shell nanowires 
are in-between the decay of pure PPV (the faster) and PVK (the slower) decays. 
The corresponding average decay times are longer (183, 158 and 176 ps) than for 

Figure 5. 
Normalized photoluminescence decay curves of PVK (red) and PPV (black) nanowires, PVK-PPV blend 
nanowires (green), and coaxial PPV@PVK (gray) and PVK@PPV (blue) nanowires, extracted for PL 
emission intensity at 535 nm (excitation wavelength: 400 nm).
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pristine PPV (τmean = 118 ps) and shorter than for pristine PVK (τmean = 342 ps). 
It can be noted that at an emission wavelength of 535 nm, whatever the kind of 
nanowires, blend or coaxial, the PL of the PPV component dominates because PPV 
has the shortest lifetime and a quantum yield slightly larger. In one hand, the system 
which shows the decay closer to PVK is PPV@PVK. Its longer average lifetime 
can be attributed to the photogenerated excitons in the PVK when considered as 
a donor. They have an important probability to diffuse to the acceptor PPV and 
to transfer their energy before any radiative recombination. In another hand, 
the system which shows the decay closer to PPV is PVK@PPV. It suggests that the 
emission by the PPV shell is due to the excitation of PPV excitons partly by the 
laser probe, and partly by the energy transfer from the photogenerated excitons 
in the PVK acting as a donor. The case of PVK-PPV blend decay is intermediate 
between the two coaxial configurations, a bit closer from the PVK@PPV arrange-
ment. It suggests that for this blend, PPV and PVK segments do not deeply affect 
the exciton dynamics of each other, as expected when chains of both polymers are 
not entangled, or at least close enough.

These results strongly support the analysis and the conclusion of the steady-
state PL study, dominated by morphological issues in relation with the exciton 
diffusion length of PVK: thin PVK shell for the PPV@PVK nanowires, large PVK 
diameter for PVK@PPV nanowires, large PVK domains due to a poor intermixing 
between PPV and PVK obtained during the blending process. This work opens 
the way to develop alternative solution processing techniques to manage the local 
organization of donor-acceptor systems at the scale of the exciton diffusion  
length.

5. Conclusion

In this work, the template method with in-solution processes was exploited 
to control the respective organization of two polymers at the nanoscale in order 
to tune the donor-acceptor behavior, and then the photoluminescence proper-
ties of such nanowires. Two luminophores, PPV and PVK, were used for the 
fabrication of coaxial architectures and blend arrangement. The analysis of 
both steady-state and time-resolved photoluminescence study were analyzed by 
comparing the exciton diffusion length to the domain size of the nanowire shell, 

Nanowire material τ1
a

(ps)
τ2

b

(ps)
P1

c

(%)
P2

d

(%)
τmean

e

(ps)

PPV 35 238 0.59 0.41 118

PVK 37 405 0.17 0.83 342

PPV-PVK blend 33 254 0.32 0.68 183

PVK@PPV 35 230 0.37 0.63 158

PPV@PVK 67 221 0.29 0.71 176
aLifetime of the photo-generated charge in the level 1.
bLifetime of the photo-generated charge in the level 1.
cWeight relative of population of photo-generated charges contributing to level 1.
dWeight relative of population of photo-generated charges contributing to level 1.
eAverage decay time.

Table 1. 
Photoluminescence decays times (in picosecond, with error bars estimated at about 10%) and yields of each 
component determined from the PL decays shown in Figure 5.
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