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Chapter 1

Lidar Observations in South 
America. Part I - Mesosphere and 
Stratosphere
Eduardo Landulfo, Alexandre Cacheffo, 
Alexandre Calzavara Yoshida, Antonio Arleques Gomes, 
Fábio Juliano da Silva Lopes, Gregori de Arruda Moreira, 
Jonatan João da Silva, Vania Andrioli, Alexandre Pimenta, 
Chi Wang, Jiyao Xu, Maria Paulete Pereira Martins, 
Paulo Batista, Henrique de Melo Jorge Barbosa, 
Diego Alves Gouveia, Boris Barja González, Felix Zamorano, 
Eduardo Quel, Clodomyra Pereira, Elian Wolfram, 
Facundo Ismael Casasola, Facundo Orte, 
Jacobo Omar Salvador, Juan Vicente Pallotta, 
Lidia Ana Otero, Maria Prieto, Pablo Roberto Ristori, 
Silvina Brusca, John Henry Reina Estupiñan, 
Estiven Sanchez Barrera, Juan Carlos Antuña-Marrero, 
Ricardo Forno, Marcos Andrade, Judith Johanna Hoelzemann, 
Anderson Guimarães Guedes, Cristina Tobler Sousa, 
Daniel Camilo Fortunato dos Santos Oliveira,  
Ediclê de Souza Fernandes Duarte,  
Marcos Paulo Araújo da Silva  
and Renata Sammara da Silva Santos

Abstract

South America covers a large area of the globe and plays a fundamental function 
in its climate change, geographical features, and natural resources. However, it still 
is a developing area, and natural resource management and energy production are 
far from a sustainable framework, impacting the air quality of the area and needs 
much improvement in monitoring. There are significant activities regarding laser 
remote sensing of the atmosphere at different levels for different purposes. Among 
these activities, we can mention the mesospheric probing of sodium measurements 
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and stratospheric monitoring of ozone, and the study of wind and gravity waves. 
Some of these activities are long-lasting and count on the support from the Latin 
American Lidar Network (LALINET). We intend to pinpoint the most significant 
scientific achievements and show the potential of carrying out remote sensing 
activities in the continent and show its correlations with other earth science con-
nections and synergies. In Part I of this chapter, we will present an overview and 
significant results of lidar observations in the mesosphere and stratosphere. Part II 
will be dedicated to tropospheric observations.

Keywords: lidar, LALINET, aerosols, atmospheric sciences, remote sensing,  
air quality, environment

1. Introduction

Currently, the world’s leading authority on global warming issues is the 
Intergovernmental Panel on Climate Change (IPCC). The IPCC is a scientific-
political organization, created in 1988 by the United Nations (UN), and received 
the Nobel Peace Prize in 2007 [1, 2]. Since its foundation, the IPCC has issued five 
reports (Assessment Reports), the first in 1990, the next ones in 1995, 2001, 2007, 
and 2014. The next report of IPCC is expected for the year 2022. The IPCC reports 
have reinforced, with growing evidence, that human influence on Earth’s climate is 
incontestable and that the terrestrial climate system’s warming is evident [2].

Aerosols, in particular, can alter the most diverse atmospheric processes, 
significantly affecting weather and climate. For example, they can absorb or scatter 
specific solar radiation wavelengths and radiation reflected by the Earth’s surface 
[3]. They can also modify the albedo (ability to reflect solar radiation on a given sur-
face) and the lifetime of clouds [4]. A decrease in the albedo of clouds, for example, 
can lead to less reflection of radiation from the Sun, contributing to possible global 
warming effects. In this context, it is expected that the aerosol climatological 
behavior in the Earth’s atmosphere and its influence on climate change processes are 
of paramount importance.

The World Meteorological Organization (WMO) has encouraged the creation 
and expansion of networks aimed at atmospheric observations, and ground-based 
lidar networks have acquired great importance, both for atmospheric monitoring 
and research. Thus, regional lidar networks’ development to research the most 
diverse atmospheric configurations is strategic. The main fields where ground-
based lidar measurements can be applied include [5, 6] atmospheric aerosol optical 
properties, urban aerosols and pollution, dust and biomass burning transportation, 
and cloud impacts on climate, planetary boundary layer dynamics, and processes of 
satellite data validation.

In terms of atmospheric structure, ground base lidars cover from the mesosphere 
down to the troposphere, through the stratosphere, and inspect each atmospheric 
layer in question. Under this perspective, laser radars’ operation began in the early 
‘70s by observing stratospheric aerosols in Brazil and continued with sodium atoms 
(Na) concentration in the mesosphere. The stratospheric aerosols and ozone studies 
followed some years later in Argentina [7] and the late ‘80s in Cuba. By the late ‘90s 
and early 2000, the introduction of the lidar for tropospheric studies began.

We intend to summarize the most significant scientific achievements and devel-
opments related to ground-based Lidar remote sensing in South America in the 
next sections. LALINET’s most recent efforts in establishing standard protocols of 
system configurations, quality assurance, measurements, and data processing also 
will be approached [7–11]. The chapter organization should first follow the studies 
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performed in the mesosphere, followed by the work devoted to the stratosphere, 
and then we should show the studies related to the troposphere. These sections will 
be distributed over many specific studies regarding the scientific drives and meth-
odologies employed.

2. Lidar remote sensing in Latin America: LALINET

The South American continent, encompassing 42% of the Americas, is a 
region that shelters the most remarkable ecosystems. Among these, we can cite the 
Amazon Rainforest, which is the largest tropical forest in the world, the Pantanal 
(or Chaco), one of the UNESCO World Heritage Sites [12], and the Andes, the 
most extensive mountain chain in the world, and which hold a plethora of active 
and inactive volcanoes, extending from Venezuela to Patagonia, crossing all the 
continent from north to south. Patagonia, the continent’s southern region, presents 
many plants and wildlife, mostly endemic. It also houses another UNESCO World 
Heritage Site: The National Park Los Glaciares, in Santa Cruz, Argentina [12].

Figure 1. 
Schematic representation for the location of the LALINET stations in South America. Argentina (AR): 
1-) SMN Headquarters (Buenos Aires), 2-) CEILAP Headquarters (Buenos Aires), 3-) Comodoro 
Rivadavia (Chubut), 4-) Neuquén (Neuquén), 5-) Pilar (Cordoba), 6-) Río Gallegos airport (Santa 
Cruz), 7-) OAPA Río Gallegos (Santa Cruz), 8-) San Carlos de Bariloche (Río Negro), 9-) San Miguel de 
Tucumán (Tucumán). Bolivia (BO): 10-) La Paz (La Paz). Brazil (BR): 11-) Manaus (Amazonas), 12-) 
São Paulo (São Paulo), 13-) Cubatão (São Paulo), 14-) Natal (Rio Grande do Norte). Chile (CH): 15-) Punta 
Arenas (Magallanes), 16-) Temuco (Cautín). Colombia (CO): 17-) UNAL Medellín (Antioquia), 18-) SIATA 
Medellín (Antioquia), 19-) Cali (Valle del Cauca). Edited using Google my maps [14].
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Developing a regional ground-based lidar network in Latin and South America 
is of strategic importance: The knowledge rendered by the high-resolution profiles 
allows the knowledge of a wide variety of atmospheric phenomena to complement 
satellite observations and other retrievals by diverse ground-based instruments. 
Unfortunately, the available infrastructure of lidar stations in Latin America is 
limited in certain aspects. For example, only a few stations operate regularly (con-
trasted to Europe and North America), stations have different instrument designs, 
radiosonde launchings are not occurring nearby all stations, and only a reduced 
number of sun photometers is distributed across the continent [7, 11]. To get around 
such limitations and consolidate standard protocols of measurements, data acquisi-
tion, quality control, and assurance routines, and data analysis, the Latin America 
Lidar Network, LALINET, was established in 2001, during the First Workshop on 
Lidar Measurements in Latin America, held in Camagüey, Cuba, in March 2001 [7, 
11, 13]. It was recognized as being part of the GAW (Global Atmospheric Watch) 
Aerosol Lidar Observation Network (GALION) in 2013 [7, 11, 13]. Figure 1 shows 
the location of the LALINET stations [14].

The next sections of this chapter will present information about mesospheric, 
stratospheric, and tropospheric monitoring by LALINET stations and teams around 
South America and Cuba, plus some significant results. Table 1 below shows the 
operational stations and their characteristics. A detailed description of LALINET 
origin and its evolution is given in Ref. [7]. The Letter of Agreement between 
LALINET and GAW can be found in Ref. [15].

Country, City, Location
Coordinates, Altitude (a.s.l.)

System configuration

Instrument Emits (nm) Detects (nm)

AR, Buenos Aires, SMN
34.5641 S, 58.4171 W, 10 m

Elastic 
Polarized

1064, 532, 355 1064, 532 (∥, ⊥),
355 (∥, ⊥)

AR, Buenos Aires, CEILAP
34.5553 S, 58.5062 W, 26 m

HSRL 1064, 532, 355 1064, 607, (HSRL, ∥, ⊥),
408, 387, 355 (∥, ⊥)

AR, Rivadavia, CRD Airport
45.7922 S, 67.4629 W, 48 m

Elastic 
Polarized

1064,
532, 355

1064, 532 (∥, ⊥),
355 (∥, ⊥)

AR, Neuquén, NQN Airport
38.9521 S, 68.1368 W, 266 m

Elastic 
Polarized

1064,
532, 355

1064, 532 (∥, ⊥),
355 (∥, ⊥)

AR, Pilar, OMGP
31.6755 S, 63.8730 W, 332 m

HSRL 1064, 532, 355 1064, 607, 532 (HSRL, ∥, ⊥), 
408, 387, 355 (∥, ⊥)

AR, R. Gallegos, RGL Airport
51.6117 S, 69.3072 W, 17 m

Elastic 
Polarized

1064, 532, 355 1064, 532 (∥, ⊥),
355 (∥, ⊥)

AR, Río Gallegos, OAPA
51.6004 S, 69.3194 W, 19 m

DIAL 355 (Nd:YAG), 
308 (Xe:Cl)

387, 355,
347, 332, 308

AR, Bariloche, BRC Airport
41.1473 S, 71.1640 W, 837 m

Raman 1064, 532, 355 1064, 532,
408, 387, 355

AR, S. M. de Tuc., TMO
26.7871 S, 65.2068 W, 485 m

Elastic 
Polarized

1064, 532, 355 1064, 532 (∥, ⊥),
355 (∥, ⊥)

BO, La Paz, UMSA
16.5381 S, 68.0686 W, 3420 m

Scanning 
Elastic

532 532

BR, Manaus, Embrapa
2.8906 S, 59.9698 W, 80 m

Raman 355 408, 387

BR, São Paulo, IPEN
23.5607 S, 46.7398 W, 764 m

Raman 1064, 532, 355 1064, 532, 530,
408, 387, 355

BR, Cubatão, CEPEMA
23.8865 S, 46.4370 W, 8 m

Mobile 
Raman

532 532, 607
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3. Mesosphere

Meteors enter in the upper atmosphere at very high velocities (15–70 km s−1), 
and the collisions with the atmospheric constituents cause flash heating until the 
particles melt and their chemical elements vaporize. This ablation process is respon-
sible for the layers of metal atoms as Na, K, Fe, Mg, Ca, Si, among others, which 
occur globally in the mesosphere and lower thermosphere (MLT). This cosmic 
dust’s primary sources are the sublimation of comets as they approach the Sun on 
their orbits through the solar system and the collisions between asteroids.

Lidar use for the upper stratosphere, mesosphere, and lower thermosphere 
investigations started in São José dos Campos, Brazil, in 1969 with a ruby laser 
operated at 694.3 nm. Clemesha and Rodrigues obtained the first aerosol profile 
using lidar in South America in 1971 [16]. The height range of measurement was 5 
to 35 km due to the use of an 8 x 10″ receiver mirror. Later were obtained profiles up 
to 90 km in height using a 48″ mirror. In this work, high concentrations of aerosols 
were observed in the troposphere, a minimum just below the tropopause, around 
15 km height, and higher concentrations in the lower stratosphere.

In 1972, when a new “handmade” dye laser became operational (see a Photo 
of this equipment in Figure 2), it was possible to start measurements of the Na 
layer in the MLT region, using Fabry-Perot interferometers and tuning the laser in 
the Na D2 line, 5890 Å, with a precision of 0.02 Å [17]. This system enabled the 
measurement of the mesospheric Na from 75 to 105 km of height [18]. The system 
continued to be operated regularly for long years obtaining the Na concentration at 
MLT region with different time and height resolutions, the stratospheric aerosol by 
Mie Scattering, and the atmospheric density and temperature from 30 to 65 km by 
Rayleigh scattering. In April 1975, 6 months after the eruption of Volcán de Fuego 
in Guatemala, a massive increase in aerosol loads was observed in São José dos 
Campos, which remained in the atmosphere for almost two years [19].

Through Na profiles between 82 and 99 km obtained with the laser beam directed 
alternately in three positions in the sky, it was possible to estimate the wind’s speed 
in the mesosphere [20, 21]. The velocities vary with height in an oscillatory manner, 

Country, City, Location
Coordinates, Altitude (a.s.l.)

System configuration

Instrument Emits (nm) Detects (nm)

BR, Natal, UFRN
5.8431 S, 35.2043 W, 20 m

Elastic 
Polarized

1064, 532, 355 1064, 532 (∥, ⊥), 355

CH, Punta Arenas, UMAG
53.1344 S, 70.8802 W, 10 m

Raman 
Polarized

1064, 532, 355 1064, 607, 532 (∥, ⊥),
408, 387, 355 (∥, ⊥)

CH, Temuco, UFRO
38.7459 S, 72.6156 W, 108 m

Elastic 532 532

CO, Medellín, UNAL
6.2619 N, 75.5760 W, 1538 m

Elastic 1064, 532 1064, 532

CO, Medellín, SIATA
6.2017 N, 75.5784 W, 1502 m

Elastic 
Polarized

355 355 (∥, ⊥)

CO, Cali, CIBioFi-UniValle
3.3770 N 76.5337 W, 982 m

Elastic 
Polarized

1064, 532, 355 1064 (∥, ⊥), 532 (∥, ⊥),
355 (∥, ⊥)

Details about the contributing teams, measurement protocols, reports, and equipment can be found on the web 
page http://www.lalinet.org. Detection of polarized light in the parallel (∥) and perpendicular (⊥) directions are 
indicated.

Table 1. 
LALINET operational stations and their characteristics [7–11].
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with the amplitude increasing with height. These wave-like formations vary slowly 
with time and might be produced by propagating tides in the atmosphere. These 
structures’ common feature is their downward motion with time, consistent with the 
upward propagation of gravity wave energy. The more extended periods of oscilla-
tions are attributed to tides [22, 23]. Lidar measurements of the stratospheric aero-
sols enabled the observation of the eruption of El Chichón in México, eight months 
after in São José dos Campos, Brazil [24]. The transport of aerosols of the Pinatubo 
eruption was much more rapid and could be seen just 45 days after the eruption [25].

Research involving Na has included the first detection of the so-called Sporadic 
Sodium Layers [26]. The events occurred more frequently through periods of more 
significant meteor showers, especially in August. It is common to have sporadic 
E layers coincident with Na enhancement, which suggests that enhanced layers 
are generated by the wind shear distortion of Na clouds originated from meteor 
ablation. A significant result was that the long-lived sporadic layers appear to have a 
different nature from the short-lived ones. The difference is manifested in the more 
extensive duration and broader thickness and how the events are correlated with 
sporadic E layers [27].

In 1992, analyses of the vertical distribution of atmospheric Na layer with lidar 
showed a long-term trend of the centroid height, which decayed by approximately 
700 meters between 1972 and 1987 [28]. However, from 1972 to 2001, the trend was 
93 meters per decade. This new result appears dramatically diminishes the possibil-
ity of long-term cooling of the upper atmosphere [29].

In 1997 a new technique was developed to measure the Doppler temperature of 
the atmospheric Na layer by using a two-element birefringent filter together with 
a 0.2 nm free spectral range Fabry-Perot interferometer to produce a linewidth of 
about 20 pm. It produced a multi-line signal of the laser, with the lines spacing pre-
cisely equal to the separation of D2a and D2b transition of Na. With this assembly, 
it was possible to obtain the mesosphere’s temperature with a 5 K precision, a height 
resolution of 1 km, and a time resolution of 6 minutes [30, 31]. Lately, in 2004 the 
lidar was equipped with a new laser, which permitted more precise measurements 
of the mesopause temperature (see the assembly in Figure 3) [32, 33]. Gravity 
wave’s effects on the temperature in the mesopause were also studied [34, 35].

Figure 2. 
The handmade dye laser for Na probing (it operates from 1972 to 1992). See also in the picture Dr. Barclay R. 
Clemesha (in memoriam), the project’s head.
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Several mesospheric dynamics studies involving other instruments like photom-
eters, meteor radar, and onboard rocket instruments have been made [23, 36–39]. 
A mobile lidar has been developed to measure the Na concentration simultaneously 
with the volume emission profile for the NaD line of airglow in rocket campaigns in 
the Brazilian equatorial region of Alcântara (2.3728 S, 44.3965 W). An illustrative 
photo of this system is shown in Figure 4. This experiment allowed calculating the 
branching ratio of the reaction involved in the Na airglow [40].

Along the time, the São José dos Campos lidar underwent many modifications 
and upgrades. In 1993, the transmitter laser was upgraded with a commercial 
laser (see its illustration in Figure 5). With this upgrade, it was possible to use the 
Rayleigh signal from the clean atmosphere from 30 to 75 km (below the resonant Na 
signal) to measure the relative atmospheric density and the absolute temperature. 
These measurements have been used to study mesospheric temperature general 
behavior and the effects of atmospheric waves [41]. The long series of measurements 
have enabled long-term studies of the mesospheric Na, aerosols, and temperatures 
associated with global change [29, 42, 43]. A dual-beam Na/K lidar was assembled 
in São José dos Campos, Brazil, to extend the Na layer studies and improve the 
knowledge about metal layers in the MLT region. This system was installed owing to 
a cooperative agreement between the National Space Science Center (China) and the 
National Institute for Space Research (Brazil) in November of 2016.

The lidar uses two laser beams of 589 nm and 770 nm to simultaneously measure 
Na and K concentrations by the resonant scattering at MLT. The signal-to-noise 
ratio response allows 3 min time resolution and 96 m of height resolution in the 
profiles [44]. Figure 6 shows the Na/K lidar during operation.

It is essential to point out that, up to the present time, this is the unique K lidar 
system operating in the Southern Hemisphere (SH). For the first time, it was pre-
sented the nocturnal and seasonal behavior of K and Na concentrations measured 
simultaneously at SH [44]. The seasonal variation of these two metals was deter-
mined, and it is interesting to note their different behavior even though both are 
alkali metals and come from meteor ablation. Semiannual variation is observed in 
both metal concentrations with different maxima: K shows its maxima around the 

Figure 3. 
Photo presenting the continuum narrowband tunable laser for Na concentration and Mesopause temperatures. 
It operated at São José dos Campos measuring mesopause temperature from 2007 to 2009 and Na concentration 
from 2006 to 2016. This photo was taken by Barclay R. Clemesha (in memoriam).
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solstices more pronounced around June, and Na concentration shows a maximum 
around May and a broad one centered in September [44]. A plausible interpretation 
of the different seasonal changes between Na and K concentrations is presented 
in Ref. [45]. This analysis is based on two points: 1) the neutralization of K+ ions 
is particularly favored at low temperatures through summer (North Hemisphere), 
and 2) cycling between K and its primary neutral reservoir KHCO3 is substantially 
temperature independent [44]. Unfortunately, the first argument is not significant 
for this latitude, where the mesopause temperature has not a great summer to 
winter variation [33].

Figure 5. 
Photos showing the candela laser system assembled at INPE São José dos Campos in 1993. This system operated 
between 1993 and 2006—Photos taken by B. R. Clemesha (in memoriam).

Figure 4. 
Photo illustrating the INPE mobile lidar used during rocket campaigns in the Brazilian equatorial region of 
Alcântara, on 31 may 1992.
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4. Stratosphere

4.1 Historical overview

The first lidar measurements concerning stratospheric aerosols in Latin America 
were performed in Kingston, Jamaica, between 1964 and 1979 [46]. The lidar sys-
tem held for these measurements was managed by the University of the West Indies 
and supported by the US Air Force [47]. Its primary purpose was to investigate the 
atmospheric profile, measuring molecular scattering. Moreover, the system proved 
valuable for measurements of stratospheric aerosol layers at wavelength 694 nm 
[48]. These lidar measurements from Jamaica represented a pioneering role, con-
comitantly with different research teams, developing lidars’ capacities to measure 
aerosols in the lower stratosphere [49]. Those measurements were also an essential 
contribution to the stratosphere’s early studies in the tropics [50].

In 1969, a new lidar instrument was designed and developed at INPE by Prof. 
Barclay Clemesha (see Section 3 for details). This equipment’s primary objective 
was to investigate the mesosphere dynamics; besides, stratospheric aerosol mea-
surements were also performed. The first measurements were carried in 1970 at 
wavelength 694 nm [16], and regular measurements began in 1972 [51]. This project 

Figure 6. 
Picture showing the dual-beam Na/K lidar located at São José dos Campos, Brazil. The vertical orange beam is 
at 589 nm for Na scattering and the infrared one at 770 nm for K scattering. This last is not visible in the photo, 
but the red star indicates the beam position. Liu Zhengkuan took the original photo.
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was responsible for collecting the longest stratospheric aerosol profile measure-
ments in Latin America and the Southern Hemisphere’s tropical zone, extending 
from 1971 to 2016. It includes stratospheric aerosols profiles from the two more 
significant volcanic eruptions of the XX century second half: the first happened in 
Mexico on 04 April 1982 (El Chichón), and the second in the Philippines on 14 June 
1991 (Mount Pinatubo) [51, 52]. Measurements conducted at INPE between 1972 
and 2016 proved the value and the importance of the stratospheric aerosols’ long-
term monitoring. They have rendered information to understand the stratospheric 
aerosols layer evolution in the Southern Hemisphere’s tropics since the ‘50s [53].

A Cuban-Soviet scientific cooperation agreement supported the deployment 
in 1988 of a lidar system designed for stratospheric aerosols measurements at the 
Camagüey Meteorologic Center in Cuba [54]. The instrument operated intermit-
tently between 1988 and 1997, providing stratospheric aerosols measurements 
from the Mount Pinatubo eruption in 1991. The 1988–1990 lidar aerosol profiles, 
at 532 nm, combined with satellite measurements, have been used to study back-
ground stratospheric aerosols in the Caribbean [55]. Camagüey Lidar Station (CLS) 
stratospheric aerosols profiles from Mount Pinatubo also contributed to the study 
of the radiative impacts of the eruption at regional [56] and global [57] scales. 
Moreover, the Camagüey lidar database was also used to validate the stratospheric 
aerosol SAGE II satellite measurements from Mount Pinatubo eruption [58, 59]. 
Furthermore, it was used to generate an extinction climatology in the UV for cor-
recting Brewer ozone measurements [60].

By 1994 the Laser and Applications Research Center (CEILAP - UNIDEF) in 
Buenos Aires, Argentina, developed various lidar systems for atmospheric research 
[7]. One of these devices was designed to measure the atmospheric boundary layer, 
cirrus clouds, and tropospheric aerosols, operating at wavelength 532 nm [61]. A 
collaborative study between CEILAP and CLS evaluated how this lidar system could 
also be used for the higher troposphere and lower stratospheric aerosols research. 
Upon analyzing two tropospheric aerosols profiles extending into the lower strato-
sphere, encouraging results were found [62]. In June 2005, another lidar system was 
designed and installed by CEILAP in Río Gallegos, Patagonia. This instrument’s 
primary goal was performing measurements of stratospheric ozone, tropospheric 
and stratospheric aerosols, and water vapor. In particular, stratospheric aerosol 
profiles are used to correct the stratospheric ozone [63].

Western South America is bordered by the Andes, which divides the continent 
into two distinct regions. In South America, the vast majority of active volcanoes 
are located in the eastern part of the continent, and ash eruptions are routinely 
reported throughout the region. The volcanic activity includes periods of ash 
eruptions and cycling eruptions that spread out over months or even years [64, 
65]. Great active volcanoes in South America are Nevado del Ruíz, in Colombia; 
Cotopaxi, Tungurahua, and Reventador, in Ecuador; Villarrica, Llaima, Nilahue, 
Lascar, Chaitén, and Calbuco, in Chile; El Misti, Ubinas and Sabancaya, in Peru; 
Aracar, Copahue, and Planchón-Peteroa in Argentina. There are no reported active 
volcanoes in Paraguay, Uruguay, Venezuela, Guyana, Suriname, and Brazil [64, 65].

On 22 April 2015, in Chile, the Calbuco volcano erupted and injected a signifi-
cant amount of ashes and aerosols into the atmosphere [66].

The volcanic aerosol profiles in both the upper troposphere and the lower 
stratosphere, which originated from the Calbuco volcano eruption in Chile on 22 
April 2015, were measured by different lidar stations in South America [7]. It was 
the first time that LALINET lidar stations, distributed across the continent, could 
analyze aerosol profiles together during an event. Lidar stations located in Buenos 
Aires, Comodoro Rivadavia, San Carlos de Bariloche, Neuquén, and Rio Gallegos 
(all five in Argentina), Concepción (Chile), and São Paulo (Brazil) observed the 
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aerosols profiles [7, 67]. LALINET stations’ capabilities to operate in a coordinated 
way in case of a volcanic eruption were challenged, highlighting the coordination 
among LALINET teams.

On 23 April 2015 (one day after the eruption), the lidar system at the University 
of Concepción measured the aerosols profiles between 5 and 9 km, showing a 
multilayer structure. Both layers merged at around 7 km, decreasing its intensity 
and narrowing. The following day 24 April 2015, the two layers registered in the day 
before at Concepción were detected in the nighttime by the lidar system placed in 
Buenos Aires, Argentina, in heights varying between 5 and 7 km showing a drown-
ing leaning. The aerosol’s multilayer formation was present at both lidar sites when 
identified for the first time. Lidar measurements conducted at IPEN in São Paulo on 
27 April 2015 (five days after the eruption) exhibited aerosols found at an altitude 
of about 19 km in the stratosphere (Figure 7) [66]. Those lidar extinction profiles 
were confronted with those measured by the Ozone Mapping and Profiler Suite 
Limb Profiler (OMPS/LP) instrument, revealing promising results [7].

4.2 Differential absorption lidar measurements in Argentina

The behavior of trace constituents in the Earth’s upper atmosphere, dictated by 
diverse physical processes, is of particular interest for the balance of stratosphere 
and mesosphere. Expressly, ozone has a principal function by absorbing the short-
wavelength UV radiation (which might damage life) and keep the radiative budget 
stable [68]. For those reasons, ozone has been at the focus of the middle atmosphere 
research effort [69, 70].

Researchers’ interest in performing lidar measurements from the southern 
region of the southern hemisphere dates back to 1995. Researchers from CEILAP, 
together with Prof. Gérard Mégie (who was then head of the Service d’Aéronomie 
in France), considered conducting a campaign to measure ozone profiles using 
a DIAL (differential absorption lidar) system, in Patagonia, Argentina [71]. The 
configuration and installation of the lidar system began as a collaboration linking 
the two institutions. For the DIAL technique, two laser wavelengths are used to 
measure atmospheric ozone. One wavelength is well absorbed by ozone, while the 
other not. After the wavelengths travel into the atmosphere and are backscattered 

Figure 7. 
Quick-look of the RCS at 532 nm measured at SPU Lidar Station on 27 April 2015. The SPU Lidar Station 
is installed at the Center for Lasers and Applications of the nuclear and energy research institute (CELAP/
IPEN) in São Paulo. The signal between 18 km and 20 km shows aerosols originating from the Calbuco volcano 
eruption on 22 April 2015, in Chile.
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to two receivers, it is possible to make a ratio of the measurements, allowing direct 
determination of the ozone concentration as a function of range.

The instrument became operational in 1997 in Villa Martelli, Buenos Aires, 
where the headquarters of CEILAP is located. The initial version had only one 
telescope, which was 50 cm in diameter. It operated successfully until 2002. Later, 
the number of telescopes was increased to four, and a spectrometer was added. The 
apparatus was fine-tuned at the Villa Martelli headquarters.

The Service d’Aéronomie loaned the equipment’s electronic project and a con-
tainer, which had already been used in the Arctic. However, financing was still an 
issue. Fortunately, since 1999, CEILAP has cooperated with the Tohoku Institute of 
Technology in Sendai, Japan. The Japan International Cooperation Agency (JICA) 
supported the south’s entire measurement campaign. It further contributed to acquir-
ing a new Nd:YAG laser, which is imperative to the DIAL instrument. In this way, the 
SOLAR (stratospheric ozone lidar of Argentina) campaign started in June 2005 [72].

The campaign’s feasibility study was conducted, considering the nocturnal cloud 
cover over four towns in Argentine Patagonia. The data were compared with those 
corresponding to days when the Antarctic polar vortex crosses over these towns.

Different tracers were also considered, such as the total ozone column values 
measured by total ozone mapping spectrometry, the equivalent latitude method, 
and the potential vorticity maps calculated for the mid-stratosphere, according to 
studies carried out in collaboration with the Service d’Aeronomie in France and the 
National Institute for Environmental Studies in Japan.

The city of Río Gallegos region met the necessary conditions for the measure-
ments. It is located at 2612 km from Buenos Aires, on the River Gallegos estuary 
banks, and has 140,000 inhabitants. Like other cities in southern Argentina and 
Chile, Río Gallegos is reached by the ozone hole’s edge during the austral spring. 
However, compared with its counterparts, it has a more significant number of 
clear nights or nights with less than one-eighth cloud cover, which means more 
opportunities for making measurements with the ozone DIAL. Río Gallegos also 
hosts the National University of Southern Patagonia, whose staff could participate 
in the campaign, and is near to Punta Arenas, Chile, where another research group 
has used a Brewer instrument to make ozone measurements, in cooperation with 
Brazilian researchers. On 10 June 2005, the team set off overland for Río Gallegos in 
two trucks that traveled 2612 km from Buenos Aires to the Military Air Base in Río 
Gallegos, where a mobile laboratory was set up. The base is located 18 km from the 
center of the town [72, 73].

A Xe:Cl excimer laser emission at 308 nm is employed for the absorbed wavelength 
in the DIAL technique, and an Nd:YAG laser at 355 nm third harmonic line is employed 
as the reference wavelength. Six channels are used for signal acquisition [72]. Four of 
them detect the emitted wavelengths’ elastically backscattered signal (high energy 
mode for the higher altitude ranges, attenuated energy for the lower ranges), and two 
correspond to the Raman wavelengths [72]. The CEILAP’s DIAL instrument setup is 
shown in Figure 8, and its full description can be found in Ref. [10].

The CEILAP Lidar Division, in cooperation with other national and inter-
national institutions, has organized the SOLAR (Stratospheric Ozone Lidar of 
ARgentina) Campaign as a part of environmental investigations in the Southern 
Hemisphere [72]. This campaign’s objective was to monitor different atmospheric 
constituents using remote sensing techniques, mainly related to lidar, in Argentina’s 
southern part. The most critical and complex instrument involved in this campaign 
is a differential absorption lidar capable of producing precise and accurate strato-
spheric ozone profiles [72, 73].

The most substantial decrease of the ozone column over Río Gallegos through 
the 2005 spring was observed on 8 October, with a total ozone column of 196 DU 
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estimated from integrating an ozone profile based on the lidar measurement and 
the US Standard 1976. This value expresses a decrease of 45% in the total ozone col-
umn concerning the mean total ozone value outside the ozone hole for this month 
(about 350 DU). Figure 9 shows the measured lidar profile on this day (dashed 
line), together with the ozone profile measured on 17 October (dotted line), which 
corresponds to standard ozone conditions outside the ozone hole (about 357 DU). 
The figure also shows the climatologic profile (black line) from the SAGE II mea-
surements, which corresponds to the mean of the ozone measurements outside the 
ozone hole for the 1995–2004 period.

From the full set of lidar measurements, were selected 37 lidar profiles that 
match the HRLS profiles. The monthly mean lidar profiles were confronted 
with similar profiles measured by the High-Resolution Dynamics Limb Sounder 
(HIRDLS) device onboard the NASA-Aura satellite. The collocation criteria for 
selecting satellite data were set using a distance of up to 500 km from site measure-
ment and a temporal selection of about twelve hours for the measurement time. 

Figure 8. 
Experimental setup of differential absorption lidar (DIAL) developed at CEILAP.

Figure 9. 
Lidar ozone profile inside (dashed line) and outside (gray dotted line) ozone hole in Río Gallegos. Climatologic 
profile for October from SAGE II data (black line) [74].
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The mean stratospheric ozone lidar profile for October in Río Gallegos is shown in 
Figure 10. For comparison, the same quantity from satellite data is included.

In general, good agreement between lidar and satellite data was found (inside 
the statistical error bar, with a relative difference of around 10%). The maximum 
disagreement between lidar and satellite data was observed in August mean profiles 
around 30 km. For October, the agreement was better than 10% above the ozone 
peak concentration. In general, it was observed that the variability of lidar profile 
concentrations is higher around the ozone peak, decreasing with height.

Differential Absorption lidar techniques have been demonstrated to be a reliable 
remote sensing technique to retrieve the stratosphere’s ozone profile [73]. Argentina 
has used DIAL techniques since 1999. In 2005, with French and Japanese research-
ers’ collaboration, the Lidar Division of CEILAP established a new site in Southern 
Patagonia, the South Patagonia Atmospheric Observatory (OAPA). This device has 
been part of Network Data for Atmospheric Composition Change (NDACC) since 
2008, and the research using its measurements allows the study of ozone hole over-
pass from South America [75] and the satellite validation in the South Hemisphere. 
After the SOLAR Campaign, several initiatives were carried out related to strato-
spheric ozone monitoring in Argentina. For example, the UVO3-Patagonia (2008–
2010) and SAVER-Net projects (2013–2018) were the research activities made in 
collaboration with JICA, and Japanese and Chilean Researchers went more in-depth 
the observation of ozone in vertical profiles and total ozone column [76].

5. Conclusions

Part I of this chapter offered the opportunity to give a scientific overview of cur-
rent and past lidar observation activities conducted in South America, with Cuba’s 
participation. This overview spans over almost 50 years of activities and grants how 
this part of the world is concerned with laser remote sensing of the atmosphere in 
almost its whole structure: Mesosphere and Stratosphere. This top-down approach 

Figure 10. 
Mean lidar profile (black line - error bar corresponds to ±1 std) and mean HIRDLS (white line) ±1 std. 
(shadow area) for October.
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also followed a chronological delivery of results, with the first results coming from 
the region in the highest portion of the atmosphere (mesosphere), and going down-
wards to stratospheric, and finally at the tropospheric studies. If, in the first years, 
these activities started as individual initiatives at different countries and research 
groups levels, the creation of a federative lidar network, namely LALINET, helped 
somehow to have more coordinated measurements. Moreover, the implementation 
of SAVERNET in Argentina and Chile improved how these joint measurements 
are conducted. The studies conducted in the mesosphere account for one of the 
most extended time series of lidar data, being of great importance in the Southern 
Hemisphere. Also, significant results about Na and K concentrations and their vari-
ability over almost three decades are available. The studies of ozone concentration 
in the stratosphere also provided relevant results, unprecedented for this portion of 
the globe. Part II of this chapter will be dedicated to tropospheric lidar observations.
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Abstract

In Part II of this chapter, we intend to show the significant advances and results 
concerning aerosols’ tropospheric monitoring in South America. The tropospheric 
lidar monitoring is also supported by the Latin American Lidar Network (LALINET). 
It is concerned about aerosols originating from urban pollution, biomass burning, 
desert dust, sea spray, and other primary sources. Cloud studies and their impact on 
radiative transfer using tropospheric lidar measurements are also presented.

Keywords: lidar, LALINET, aerosols, atmospheric sciences, remote sensing,  
air quality, environment
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1. Introduction

In Brazil, there are four lidar systems dedicated to the study of aerosols in the 
troposphere. Installed at Embrapa in Manaus (Western Amazon), there is a lidar 
system coordinated by the Atmospheric Physics Laboratory (LFA) of the Institute 
of Physics at the University of São Paulo [1]. In São Paulo, there are two other 
systems, the SPU Lidar Station, installed at the Institute of Energy and Nuclear 
Research (IPEN/CNEN) and coordinated by the Laboratory of Environmental 
Applications of Lasers (LEAL) hosted in the Center for Lasers and Applications 
(CELAP) of the referred institute, and the scanning lidar system located at 
CEPEMA (Centre for Training and Research in Environment) in Cubatão (State of 
São Paulo) [2–5]. Figure 1 shows an example of the aerosol profile retrieved at SPU 
Station.

The DUSTER Lidar system, situated at the Department of Atmospheric and 
Climate Sciences (DCAC) at the Federal University of Rio Grande do Norte 
(UFRN), can measure marine aerosols’ physical and optical properties. It can also 
measure aerosols (mineral dust) that cross the Atlantic Ocean and come from the 
desert Sahara, and aerosols originated from fires in the African continent [6, 7]. The 
lidar system’s design and installation in Natal result from a technical and scientific 
collaboration among UFRN and IPEN. The DUSTER Lidar system is a biaxial 
monostatic lidar with a typical spatial resolution of 7.5 m. Brazil is a country with 
continental dimensions where different aerosols are generated, whether by natural 
or anthropogenic sources. The two systems mentioned above, SPU Lidar Station in 
São Paulo and DUSTER Lidar system in Natal, can measure different aerosols types.

Quality assurance and quality control programs developed by the European 
Aerosol Research Lidar Network (EARLINET) [8] are being implemented at the 
LALINET stations of São Paulo, Manaus, and Natal. This implementation intends 
to increase the capability to provide a reliable dataset in collaboration with three 
EARLINET stations (Bucharest, Granada, and Munich) in the framework of the 
project APEL (Assessment of atmospheric optical Properties during biomass burn-
ing Events and Long-range transport of desert dust) [9, 10]. The main objective is 

Figure 1. 
Quick-look of the Lidar Range Corrected Signal (RCS) at 532 nm measured at SPU Lidar Station on 02 July 
2019. The signal between 10 and 14 km indicates cirrus clouds.
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to make the final data products from the two networks comparable and study the 
similarities and differences in aerosol loads, transport heights, types, and properties 
[11]. The evaluation will be done at the hardware and software levels. At the hard-
ware level, the quality of the signals will be checked using the specific EARLINET 
procedures, and, at the software level, the LALINET data processing algorithms will 
be compared with the EARLINET Single Calculus Chain [12–14]. The last is a fully 
automatic evaluation process that can be used for virtually any lidar configuration 
and was validated for several EARLINET lidar stations, being a powerful tool that 
allows lidar stations to retrieve the aerosol backscatter and extinction profiles from 
the raw lidar data (Figure 2).

In Bolivia’s case, the Laboratory for Atmospheric Physics of Universidad Mayor 
de San Andrés (LFA for its acronym in Spanish) is carrying out some studies related 
to urban aerosols and pollution monitoring in the metropolitan region of La Paz 
and El Alto. This region is one of the fastest-growing urban settlements in South 
America, with the particularity of being located in very complex terrain at a high 
altitude over the Andes. With a total population of around 1.8 million inhabitants is 
the second most populous urban area in Bolivia. La Paz city is located in a stepped 
valley, whose height starts at 3200 m a.s.l. (southern area), going up to 4000 m a.s.l. 
(in the north). The metropolitan area includes El Alto city (4100 m a.s.l), adjacent 
to the west’s valley, and is extended over the Altiplano plateau. The valley has many 
basins that converge in the lower part of the city generating complex air fluxes.

An elastic lidar system was installed in the Science Campus of the Universidad 
Mayor de San Andrés (16.5333 S, 68.0667 W, 3420 m a.s.l.) in 2007 to study the 
boundary layer’s behavior in this complex terrain. The lidar system was developed 
by improving an old system donated by the European Space Agency to the LFA and 
an essential collaboration of the Raman Lidar Laboratory of NASA’s Goddard Space 
Flight Center. The instrument regularly worked for some years collecting data every 
Monday. These ancillary data were used for different short-term studies [15].

In 2011, this lidar acquired an additional relevance when a new Global 
Atmosphere Watch (GAW) station was set up near the metropolitan area at Mount 

Figure 2. 
Particle backscatter (Mm−1 sr−1) and extinction (Mm−1) coefficients and Lidar Ratio (sr), measured at SPU 
Lidar Station on 14 July 2019. Smoothed retrievals, obtained at 355 nm and 532 nm, using the Single Calculus 
Chain Algorithm.
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Chacaltaya (16.3502 S, 68.1314 W, 5240 m a.s.l.). This station was set up to study 
aerosols’ physical and chemical properties, measure atmospheric gas concentra-
tions, study the aerosols injected into the free troposphere, besides the effect of 
aerosols deposition onto the Andean glaciers. In this sense, the main task of the lidar 
system was to help with the study of the air fluxes that go from the metropolitan 
area to the Chacaltaya GAW station and vice versa and the behavior of the local 
atmospheric boundary layer, especially in connection with atmospheric pollution in 
the urban area.

Besides, in 2018 and thanks to a collaboration of the Andalusian Institute for 
Earth System Research, Granada, Spain, a Lufft CHM 15 k ceilometer was installed 
in the northern part of La Paz city, closer to the Chacaltaya GAW station than the 
LFA. The goal was to characterize the boundary layer height’s seasonal behavior 
through continuous measurements for at least one year. The Wavelet Covariance 
Transform (WCT) was used to estimate this behavior using both the ceilometer 
and the university campus’s lidar. Although we gained knowledge about the local 
ABL’s temporal behavior, it is clear that due to the complexity of topography in 
this region, extending this work’s main conclusions is not straightforward. More 
measurements and modeling are needed for this purpose.

2. Urban aerosols and pollution monitoring

2.1 The atmospheric boundary layer

The Atmospheric Boundary Layer (ABL) is the lowest section of the troposphere 
and is directly affected by the surface, responding to surface forcing within a one-
hour or less time scale. The ABL has turbulent properties and high variability in its 
daily cycle, and it is a fundamental parameter to several studies, e.g., air quality, 
numerical weather forecasting, climate modeling, and wind energy applications 
[16]. These characteristics, associated with the variations in the ABL stability, 
enable us to subdivide it into three main layers: The Convective Boundary Layer 
(CBL), the Stable Boundary Layer (SBL), and the Residual Layer (RL).

The ABL height (ABLH) is obtained from the vertical profile of some tracers 
like a potential temperature [17], vertical wind speed [18], relative humidity [19], 
and aerosols [11]. The radiosondes are the more traditional method to estimate the 
variation of some tracers indicated above and, consequently, estimate the ABLH. 
Nevertheless, in most regions, the radiosondes are launched only twice a day, which 
does not provide a detailed observation of the ABLH behavior. In this scenario, due 
to the lidar systems’ high temporal and spatial resolution, the utilization of this 
kind of equipment to estimate the ABLH and other ABL properties had increased 
significantly in the last decade, mainly in South America [20–30].

Elastic lidar and ceilometers can estimate the ABLH from the characteristic 
reduction in the aerosol concentrations in the transition region between the Free 
Troposphere (FT) and ABL. Figure 3 presents an example of the ABLH and its 
subdivisions, both estimated from elastic lidar data. Moreira et al. estimated 
the Urban ABLH to the city of São Paulo (Brazil), using elastic lidar data, from 
a method based on the curtain-plot of the Range Corrected Signal and Wavelet 
Covariance Transform (WCT), respectively [31, 32]. Both algorithms were vali-
dated by radiosonde data, resulting in high correlations during convective and 
clear sky conditions. Also, based on WCT, Niesperuza et al. estimated the ABLH to 
Medellín (Colombia), demonstrating the influence of the selections of the param-
eters in the Haar Wavelet performance [33]. Salvador et al. performed a comparison 
among the ABLH estimated from elastic lidar, SODAR, and Weather Research and 
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Forecasting Model (WRF), finding a high positive correlation during the convective 
period [26]. Besides, elastic lidar data can also observe aerosol plumes’ movement 
as the mixing level in the CBL region, from the skewness and kurtosis profiles. 
This method was applied in the city of São Paulo [34]. The methodology can be 
applied in studies about air quality providing a better observation about pollutant 
concentrations.

In comparison with elastic lidar, Doppler lidar provides more possibilities to 
identify the ABLH due to the capacity to obtain the wind speed profile, which can 
be applied as a tracer from its variance. Using Doppler Lidar data, Moreira et al. 
estimated the ABLH from the variance in the wind speed profile in São Paulo [24]. 
This method was compared with radiosonde data demonstrating a high correlation 
in CBL and SBL situations. The wind speed profile was used to detect low-level jets 
(LLJ). Then from the maximum of LLJ, the SBL height was estimated [25]. Marques 
et al. used the maximum variance in the Noise Ratio to estimate the ABLH. Such a 
result was compared with radiosonde data, reaching high correlations in stable and 
convective situations [28].

2.2 Retrievals from the LiDAR-CIBioFi station at Cali-Colombia

In Colombia (Cali), to detect the ABL altitude, lidar signals obtained from the 
LiDAR-CIBioFi station at Universidad del Valle are employed. The study site is 
georeferenced in Figure 4. The methodology employs an interplay between the 
Gradient [32, 33] and WCT [34] Methods, as described in detail in Ref. [27].

Statistical validation of the implemented instrumentation is performed to sup-
port the data quality by contrasting atmospheric profiles retrieved by radiosondes 
launched at the local international airport, a few kilometers away from our station. 
The maximum vertical gradient level of potential temperature is used to detect the 
ABL top (ABLT) by employing radiosonde profiles. A linear relationship between 
the daily ABLT evolution retrieved by the lidar station and the radiosonde profiles 
goes as follows: ABLLiDAR = 0.967 × ABLRadio - 0.022. It is statistically significant 
at the 95% confidence level and R2 (consider the separation between the radiosonde 
launching site and the lidar station, see Figure 4b).

Once the data are validated, the ABLT levels are compared against the available 
local Particulate Matter (PM) concentration information. The correlations between 

Figure 3. 
ABL and its subdivisions. WCT and Gradient Methods, applied in elastic lidar data, estimated the CBLH and 
RLH. The aerosol profiles were measured at SPU Lidar Station on 03 August 2020.
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daily ABLT evolution and PM concentration data from three representative city 
ground-stations (Cañaveralejo, Pance, and UniValle), shown in Figure 4c, are 
analyzed. A strong negative relationship for the Cañaveralejo station gives R2 = 0.79, 
while the Pance station exhibits an unencouraging positive slope with a correlation 
coefficient R2 = 0.13, meaning a PM concentration increase for higher ABLT values, 
with PM values above the World Health Organization limits. The UniValle station, 
located about 100 m away from the LiDAR-CIBioFi station, reveals a low negative 
correlation (R2 = 0.20) for the ABLT evolution for all months, especially at the 
beginning of the wet season.

An innovative method for retrieving the ABL top from LiDAR signals was 
developed at the LiDAR-CIBioFi station. It consists of training a convolutional 
neural network (NN) in a supervised manner, driving it to learn how to retrieve this 
dynamical parameter on real, non-ideal conditions and, in a fully automated and 
unsupervised process [31]. The Wavelet Covariance Transform (WCT) is used as a 
labeling method for constructing the training data set and as a baseline method for 
comparison with the trained NN.

The dataset used for the model’s training and tuning is composed of 15,000 
signals extracted from daytime measurements taken during December 2018 and 
February 2019. The signals were labeled using WCT, with a custom search threshold 
for each one; this was done to ensure the labels’ quality and, consequently, the 
neural network predictions [31].

It is expected that the corrected training of the model replicates the predic-
tions of a signal-by-signal fine-tuned WCT but in a completely automated and 
non-supervised process. The convolutional neural network proposed for the ABLT 
detection is compared to WCT in a supervised variant (custom search threshold for 

Figure 4. 
(a) The location of Valle del Cauca county (the gray area) and the city of Cali (white area) in Colombia 
(altitude values according to the color scale). (b) The light color shape represents Cali’s rural area. The 
blue region is linked to the city’s urban area. The red dots mark the LiDAR-CIBioFi system’s location at 
Universidad del Valle (UniValle) and the radiosonde station (at Cali’s international airport). (c) Political 
and administrative division of Cali. The blue dots place the Air Quality Monitoring System (SVCA) ground 
stations of the local Administrative Department of Environmental Management (DAGMA).
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all time evolution) and unsupervised WCT (full signal as input during all time evo-
lution) [31]. WCT was chosen as the labeling and comparison method for its ease of 
implementation and well-known robustness and performance, as for the past two 
decades, it has been used to measure the ABLT in numerous case studies [31].

On 14 August (Figure 5a), clouds around 4 km height, with some formations 
around 2 km, were detected, with the latter being very close to the boundary layer’s 
height, thus posing a challenge for accurate ABLT detection. Besides, some cases of 
changes in density were detected after 14 h [31].

The first single lidar measured profile (Figure 5b), taken at about 12:30 h, 
exhibits a well-mixed layer, making it easy to discriminate between ABL and free 
troposphere. This condition allows a straightforward evaluation of the predic-
tions: the NN gives very similar results to the supervised WCT (about 1.8 km), 
while the unsupervised WCT located the ABLT in a cloud formation above 
4 km height [31]. In contrast, the second profile (Figure 5c), taken at 15:40 h, 
gives very different results for the supervised (sup.) WCT, the unsupervised 
WCT, and the NN. The supervised WCT located the ABLT at 500 m, below the 
expected result.

The unsupervised WCT placed the result at around 4 km, in a cloud formation pat-
tern, while the NN located the ABLT about 2.6 km, following its actual behavior [31]. 
The temporal evolution of the LiDAR measurement profiles of Figure 5 clarifies that 
the unsupervised WCT detection locates the boundary layer position at cloud forma-
tion height, erroneously placing the ABLT in most cases [31]. The supervised WCT 
shows ABLT detection problems, severely underestimating ABLT for cases of proxim-
ity to clouds (see, e.g., around 12 h), and in cases of residual layers (e.g., after 14 h). 
Despite the drawbacks of supervised WCT and unsupervised WCT, Figure 5 clearly 
shows that our convolutional NN estimation of ABLT is more resilient to nearby clouds 
than WCT [31].

Figure 5. 
Lidar retrievals for 14 August 2019 [30]. (a) Temporal evolution of the ABL, and (b), (c) Two selected single 
profiles. They point out different scenarios treated with our method: the measurements exhibit b Profile 1 
(12:30 h), a well-mixed layer where NN and sup. WCT values are very similar, and c, Profile 2 (15:40 h), 
shows conditions where the NN estimation differs from supervised and unsupervised WCT values; the latter 
profile exhibits an extended ABL a height of about 2.6 km for the NN prediction. The intensity of the signals is 
given in arbitrary units (a. u.) [31].
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The SVCA is the local Air Quality Monitoring System, a governmental policy 
for continuously monitoring air quality and assessing the pollutants trend. This 
air quality network provides information in the medium and long term to support 
developing strategies to attend to the air pollution effects from a holistic view. This 
network is composed of nine ground stations distributed, as shown in Figure 4. 
There are six stations to measure PM10 concentration and four stations for PM2.5 
concentration measurements. These stations count with automatic analyzers 
technology for monitoring aerosols and gases such as ozone, carbon dioxide, and 
others. Employing the raw data retrieved by these stations, the local Administrative 
Department of Environmental Management (DAGMA) makes monthly and annual 
reports, which can be found [31] at http://www.cali.gov.co/dagma.

Hourly raw data from three ground base stations that belong to the SVCA net-
work were used to analyze the daily behavior of PM10 and PM2.5. Due to its proximity 
to the LiDAR-CIBioFi station, Cañaveralejo, Pance, and UniValle stations have been 
picked. Specifically, the UniValle station is about 100 m away from the LiDAR-
CIBioFi, and for a direct intercomparison with ABL altitude is a primary source of 
data. The data retrieved from these ground stations are significant since they are the 
only available aerosols data source that features Cali to support environmental public 
policy reinforcement; these are meant to control day-by-day vehicular fleet restric-
tions and industrial emissions.

One way to assess the impact of PM concentration on public health and radia-
tive forcing is to study its response according to the ABL vertical and horizontal 
dynamics. We account for PM10 and PM2.5 concentrations retrieved by the automatic 
analyzers and the vertical atmospheric profiles from LiDAR-CIBioFi. The correla-
tions for the PM as a function of the ABL altitude retrieved by the LiDAR system, 
the vertical response of PM for each station, according to the ABL daily evolution 
during July, August, September, and October 2018, are analyzed. The daily data are 
used as a first step to identify PM daily behavior within the ABL.

The hypothesis to understand the relationship between PM and ABL is that the 
aerosol’s mass volume has an inverse behavior to the ABLT evolution. Figure 6 shows 
how daily data from Cañaveralejo station (red dots) already comply with this hypoth-
esis: PM10 concentration decreases with the ABL height; this behavior is a continuous 
trend for each of the four covered months, regardless of the temperature and solar 
radiation transition along the day. Especially in the mornings, the Cañaveralejo sta-
tion reports the maximum concentration amongst the three stations, with values not 
above the local 24-hour limit.

Regarding Pance (green dots) and UniValle (blue crosses) stations, the regressions 
exhibit odd behavior, particularly during July and August 2018: Figure 6a and b show 
that Pance’s PM10 concentration dangerously grows with increasing ABL height, a 
situation of concern since this means that the population remains exposed to high con-
centrations within a large air volume mass in the ABL. Since we do not have additional 
information about the emission source, we postulate that Pance high concentrations 
could be attributed to tropical forests’ haze. Nevertheless, it is necessary to warn on 
this behavior and spot possible emission sources, and identify such aerosols’ optical 
properties.

The Pance and Cañaveralejo stations were chosen due to their proximity to the 
LiDAR-CIBioFi station, but their locations correspond to a different landscape, and 
the ABLT dynamics could be very different from that of UniValle’s. Since UniValle 
station is located about 100 m away from the LiDAR-CIBioFi station (and within 
the same university campus), it is a direct source for PM data comparison/analysis 
against ABLT dynamics; it is, however, necessary to keep in mind that UniValle 
station only makes measurements of fine (PM2.5) particles concentration. Even 
though UniValle station shows PM2.5 values well below those of PM10 Pance and 
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Cañaveralejo stations during July, August, and September, during October 2018, 
Pance and UniValle registered very similar values for PM2.5 and PM10 against the 
ABL height; this means a high worrying indicator of fine (PM2.5) particles concen-
tration at UniValle. The linear regression between UniValle and Pance stations and 
the ABL height shows similar behavior. Thus, PM2.5 concentration values are kept 
almost constant during the whole day and ABL height evolution. These fine par-
ticles’ size allows them to stay longer in the atmosphere, explaining the regression 
line trend.

All data for each station in Figure 6 and corresponding regressions were 
organized chronologically. Hence, regarding air quality, unquestionably, the most 
critical report is that for UniValle station due to the size of measured particles and 
the worrying linear regression balance with the ABLT daily evolution. The reported 
concentration levels are slightly above the local annual threshold and the World 
Health Organization (WHO) 24-hour PM limits.

To summarize, the ABLT results obtained at the LiDAR-CIBioFi station were 
compared against three PM SVCA ground-stations (Pance, Cañaveralejo, and 
UniValle) to analyze the behavior of the correlation with PM concentration near the 
LiDAR station. The Cañaveralejo station that carries out PM10 measurements shows 
an inversely proportional relationship with the ABLT, indicating that the population 
is not overexposed to PM10 concentration as higher ABLT values are reached. On the 
other hand, PM10 and PM2.5 concentrations retrieved by Pance and UniValle stations 
show a different relationship with ABLT. Unexpectedly, the linear correlation slopes 
for each one of these stations were quite close to zero. The slope’s mean value for 

Figure 6. 
(a) Linear regression between PM (μg m−3) concentration and ABLT (or PBL top-planetary 
boundary layer top) altitude retrieved by LiDAR-CIBioFi in July 2018. (b), (c), and (d) denote the same 
as in (a) except for the month of data collected (August, September, and October 2018, respectively).
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Pance station was 1.67, reporting positive values for July and August, which means 
that PM10 concentrations increased with increasing ABLT, a word of warning due 
to a possible negative impact on public health. On the other hand, the slope’s mean 
value for UniValle (PM2.5) station was −3.85, with negative monthly mean values.

3. Detection of biomass burning events

Wildfires generate large amounts of suspended particles in the atmosphere and 
increase the levels of carbon monoxide. The presence of these particles reduces 
both visibility and solar radiation reaching the Earth’s surface. Besides, they act 
as cloud condensation nuclei, modifying the climate and the air composition and 
being harmful to human health [35]. On 8 November 2019, a dense feather of 
smoke was detached from Australia’s coasts due to the intense fires that affected the 
region. These smoke layers were dragged by the winds to South America, entering 
Argentine territory on 14 November and remaining in suspension until the next 
day. In the particular case of the fires in Australia, a large amount of soot not only 
affected the entire surrounding region, devastating forests, and wildlife: the effects 
were seen around the planet, with measurements of the transport of aerosols at 
thousands of kilometers from the emission sources. An immediate effect of the 
accumulated soot from such a biomass burning was the alteration of river courses 
and the drinking water production in Eastern Australia [36].

The Australian fires started in September 2019 and intensified in November, 
given the drought conditions that affected the region. It was the second warmest 
summer registered, having a rainfall regime below the Australian summer average 
[36]. These major fires produced dense smoke plumes, detected by the Suomi NPP 
(National Polar-orbiting Partnership) VIIRS (Visible Infrared Imaging Radiometer 
Suite) satellites. The images are presented in Figures 7 and 8 for 8 November, and in 
Figures 9 and 10, for 9 November. The figures show Australia’s east coast, the most 
affected area. Figures 7 and 9 show the Earth’s surface’s natural-looking satellite 
images, called True Color RGB images (I1-M4-M3). Meteorological clouds can be 
distinguished in white and smoke layers in translucent gray tones. Figures 8 and 10 
show another combination of spectral bands (M11-I2-I1), which allows observing, 
in shades of blue, the smoke plumes and, in reddish shades, the scars left on the 
surface of the Earth by fires (burned surface) [37]. These smoke plumes crossed the 
Pacific Ocean, reaching the American continent and Argentine territory in mid-
November 2019.

Measurements from sensors onboard satellites and ground-based platforms 
were used to analyze the November biomass burning aerosols intrusion event 
from Australia. Within the satellite measurements, the data from the OMPS sensor 
(Ozone Mapping Profiler Suite) [38, 39] onboard the Suomi NPP satellite were ana-
lyzed for the study of the space–time variability of the Aerosol Index (AI Aerosol 
Index). AOD (Aerosol Optical Depth) measurements at 550 nm were retrieved 
from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument 
onboard the TERRA satellite [40, 41]. Additionally, the total columnar CO (carbon 
monoxide) content and the AI were sensed by the TROPOMI (TROPOspheric 
Monitoring Instrument) instrument onboard the Sentinel-5P satellite [42, 43]. 
AI is a qualitative index that indicates aerosol’s presence at the higher layers of 
the atmosphere, absorbing or reflecting UV radiation. The main types of aerosols 
detected with this index are desert dust, biomass burning, and volcanic ash plumes. 
An advantage of AI is that it can be calculated for clear and (partially) cloudy 
ground pixels.
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Figure 7. 
Satellite image of Australia’s east coast from 8 November 2019. VIIRS - Suomi NPP sensor (combination: 
I1-M4-M3).

Figure 8. 
Satellite image of Australia’s east coast from 8 November 2019. VIIRS - Suomi NPP sensor (combination: 
M11-I2-I1).
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Figure 9. 
Satellite image of Australia’s east coast from 9 November 2019. VIIRS - Suomi NPP sensor (combination: 
I1-M4-M3).

Figure 10. 
Satellite image of Australia’s east coast from 9 November 2019. VIIRS - Suomi NPP sensor (combination: 
M11-I2-I1).
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The ground-based aerosol optical depth (AOD) data is obtained from the 
AERONET/NASA sun photometer network measurements at Buenos Aires, 
CEILPA-BA (34.555 W, 58.506 S, 26 m), Córdoba, and Pilar (31.667 W, 63.883 S, 
333 m) stations, at Level 1.5 (data where the clouds have been extracted automati-
cally) [44, 45].

The AOD is the aerosol vertical column integrated extinction at a given wave-
length. This dimensionless quantity indicates how much aerosols attenuate the 
solar radiation as it passes through the atmosphere. Another value, the Ångström 
coefficient (or exponent), shows the AOD spectral dependence, and it is related 
to the root mean square distribution of the aerosol radii. It is calculated as the 
slope of the linear fit of the spectral AOD in a particular wavelength interval in 
a log–log scale graph. By relating the AOD at 440 nm and the Ångström coef-
ficient, it is possible to classify the aerosol type using the classification table of 
Reference [46].

Measurements from the lidar instrument installed at CITEDEF were analyzed 
to determine the height of the aerosol layers. The normalized aerosol backscatter-
ing coefficient was calculated at 532 nm [47–49]. This system allows measuring 
the atmosphere’s profiles from a few meters to several kilometers, exceeding the 
tropopause height up to the lower stratosphere. Table 1 summarizes the variables 
analyzed, the sensors, and the platform employed.

Figure 11 shows the AI’s space–time evolution measured by the OMPS sensor 
from 8 to 13 November 2019. The images show how a high AI value (greater than 5) 
smoke plume emerges from Australia’s coasts on day 8 November 2019. This plume 
advances over the Pacific Ocean and reaches the coast of South America on 13 
November 2019.

On 14 November 2019, the Australian smoke arrived over Argentine territory for 
the first time, through Neuquén province and covering the country’s entire central 
region. Figure 12 shows the AI coverage map (OMPS), indicating aerosols’ presence 
throughout the area.

Figure 13 shows the TROPOMI sensor AI measurement for 14 November. The 
AI retrieved from OMPS and TROPOMI show similar values, around 1, in almost 
the entire territory and, in particular, values between 2 and 3, in the province of 
Entre Ríos. Both overlapping measurements are plotted in Figure 14 to compare 
the AI measurements coverages with the two sensors. The TROPOMI measurement 
is taken as the basis, and the polygon (red outline) from the OMPS AI coverage is 
superimposed. It can be seen that the presence of aerosols in the upper layers of the 
atmosphere is the same for both sensors. It is known that biomass burning is one of 
the primary sources of CO release to the atmosphere. Figure 15 shows the regional 

Platform Sensor Variable

Satellite Suomi NPP OMPS AI

Satellite Sentinel 5p TROPOMI CO
AI

Satellite TERRA MODIS AOD (550 nm)
Ångström coefficient

Ground-based LIDAR Aerosol backscatter

Ground-based Sun Photometer AOD (440 nm)
Ångström coefficient

Table 1. 
Instruments and variables used to analyze the November biomass burning aerosols intrusion event.
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Figure 11. 
Spatial–temporal evolution of the smoke plume through the OMPS sensor analysis of the Aerosol Index (AI), 
from 8 to 13 November 2019.

Figure 12. 
Aerosol Index (AI), calculated by the OMPS sensor measurements for 14 November 2019.
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Figure 13. 
Aerosol Index (AI), measured with the TROPOMI sensor for 14 November 2019.

Figure 14. 
Comparison of the Aerosol Index (AI) coverages, calculated with the TROPOMI sensor (in color palette) and 
the OMPS sensor (polygon in red), for 14 November 2019.
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total columnar abundance of CO measured by the TROPOMI instrument [50]. The 
values observed throughout the region are not high.

A slight increase of CO measurements was observed in the same area where 
AI values were high, as shown in Figure 16, where the CO measurement overlaps 
the AI coverage (OMPS - red polygon). CO measurements reached a maximum of 
0.04 mol/m2 over the province of Entre Ríos.

A slight increase of CO measurements was observed in the same area where 
AI values were high, as shown in Figure 16, where the CO measurement overlaps 
the AI coverage (OMPS - red polygon). CO measurements reached a maximum of 
0.04 mol/m2 over the province of Entre Ríos.

Another interesting measurement to analyze the aerosols’ presence is the 
AOD, which indicates at which level the aerosols prevent the sunlight from pass-
ing through the atmosphere. Aerosols scatter and absorb sunlight, resulting in 
reduced visibility. An AOD of less than 0.1 is characteristic of a clean atmosphere, 
with a very low number of suspended particles and maximum visibility. The AOD 
increases due to the increase of suspended particles, and this causes visibility loss.

Figure 17 shows the AOD measurement at 550 nm from the MODIS - TERRA 
sensor for 14 November 2019. Maximum values of 0.6 are observed in the southern 
part of the province of Entre Ríos. Values about 0.3 in the vicinity of the City of 
Buenos Aires and 0.2 in the vicinity of the City of Córdoba are also observed.

This satellite measurement can be contrasted with the AERONET/NASA sun 
photometer measurements available at Buenos Aires and Córdoba. Figure 18 shows 
the AOD temporal evolution at 440 nm for 14 and 15 November 2019 for the Buenos 
Aires station and 15 November 2019 for the Córdoba station. At both stations, the 
values are higher than 0.1 along the two days.

Figure 15. 
CO in the total column from TROPOMI-Sentinel-5P for 14 November 2019.
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Figure 16. 
CO in the total column from TROPOMI-Sentinel-5P and the coverage of the AI (OMPS - red polygon).

Figure 17. 
AOD at 550 nm from MODIS-TERRA for 14 November 2019 (logarithmic scale).
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The Ångström coefficient calculation can be used to provide additional information 
related to the size of the aerosols. The higher this coefficient is, the smaller the particle 
size. Values less than 1 suggest the domain of coarse particles (e.g., dust), and values 
greater than 1 suggest the domain of fine particles (e.g., smoke). Figure 19 shows the 
Ångström coefficient from MODIS-TERRA product, where maximum values of 1.8 are 
observed in the southern part of Entre Ríos (in light blue), and 1.1 in the surroundings 
of Buenos Aires and south of Santa Fe (in green).

Figure 18. 
Temporal evolution of the AOD at 440 nm during 14 and 15 November 2019 (BA: CEILAP-BA station (blue); 
CO: Pilar station (red)).

Figure 19. 
Ångström coefficient (Blue) of MODIS-TERRA for 14 November 2019.
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The Ångström coefficient was calculated from the AERONET/NASA sun 
photometers’ AOD data at 870, 670, 500, and 440 nm. Figure 20 shows the AOD 
at 440 nm versus the calculated Ångström coefficient. This style of graphs allows 
classifying the type of aerosols suspended in the atmosphere. From such an analy-
sis, it can be extracted that most of the particles are originated from biomass burn-
ing, therefore being of the types Biomass Burning and Contaminated Continental, 
according to the classification table in Ref. [46].

Measurements with the lidar system made it possible to determine the aerosol 
layers’ heights over the City of Buenos Aires. Figures 21 and 22 show the normal-
ized aerosol backscattering spatial–temporal evolution at 532 nm. On the horizontal 
axis is UTC’s time (Local Time is UTC-3 h); on the vertical axis is the height in kilo-
meters (the tropopause is about 13 km). The color palette shows the intensity of the 
signal. The blue color represents a clean, molecular atmosphere (without suspended 
particles), and the red color indicates particulate material. For both days, numerous 
well-defined layers of aerosols were observed above the atmospheric boundary layer 
at various heights and with different intensities, up to 13 km.

This work analyzed one event of the arrival of smoke plumes from Australia’s 
intense fires to the Argentinean territory in November 2019. The study deter-
mined that, during that period, the AOD values were about 0.25, on average, 
and the Ångström coefficients were about 1.2. The aerosol layers were found 
above the atmospheric boundary layer, between 2 km and 13 km of altitude, in 
the vicinity of the City of Buenos Aires. The CO values were slightly increased 
without presenting significant risk values for human health. The importance of 
conducting this type of study is to show that in such aerosols transport events, 
particles can be transported for hundreds of kilometers from their origin and 
affect the climate, air quality, and visibility of other areas very distant from the 
emission source. Satellite measurements, in combination with sun photometers 
and lidar systems measurements, have allowed an essential synergy for the 
detection and spatial–temporal monitoring of the smoke columns that, generated 
thousands of kilometers away, arrived in Argentine territory. Together, these 
measurements help understand wildfires’ environmental impacts in short and 
long time series, as they provide relevant data for climate and particle dispersion 
models [51].

Figure 20. 
Ångström coefficient versus AOD (440 nm) for 14 and 15 November 2019 (BA: CEILAP-BA station (blue); 
CO: Pilar station (red)).
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4. Dust transport

The long-range transport of desert dust has an essential impact on the atmo-
spheric radiative balance, with a global impact on climate, air quality, and human 
health [52, 53]. It is estimated that between 1 and 2 billion tons of dust are trans-
ported from Sahara each year through the atmosphere [54, 55].

Knowledge of the transport mechanisms of dust aerosols from the Sahara Desert 
to the South American continent can help understand its impact on the balance of 
nutrients in the Amazon basin [56, 57] and its nutrients deposition in the equato-
rial Atlantic [58]. Dust transport from the Sahara over the Atlantic Ocean can 
reach distances greater than 5000 km from its origin and is more intense during 
December, January and February at 5 N, and during June, July, and August at 
20 N latitude. During the boreal winter, desert aerosols are transported across the 
Atlantic towards the northeast coast of South America, and in the summer, they can 
reach the Caribbean Sea [59].

The most favorable periods to observe the presence of Saharan dust with a 
lidar in the atmosphere of the city of Natal (located about 5 S) are in December, 
January, and February. In this period, Oliveira et al. [60] found the mineral dust 

Figure 21. 
Spatial–temporal evolution of the normalized aerosols backscattering at 532 nm for 14 November 2019.

Figure 22. 
Spatial–temporal evolution of the normalized aerosols backscattering at 532 nm for 15 November 2019.
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predominance occurred during February, followed by December, January, and 
March in 2018. Research with lidar on aerosols in the Natal atmosphere focuses 
on the long-range transport of mineral dust and also smoke from biomass burn-
ing from the African continent, occurring under the strong influence of the trade 
winds, during austral summer, when the Intertropical Convergence Zone (ITCZ) 
is positioned further to the south [61, 62]. In a case study on 09 February 2018 
(Reference [60]), Oliveira et al. show that aerosol plumes were identified below 
4000 m altitude.

Landulfo et al. were the first to identify an aerosol plume with a lidar, at 3000 m 
altitude in Natal’s atmosphere, on 01 June 2016 [63]. Direct measurement of the 
Sun and radiances of the sky with a CIMEL solar photometer may also be used to 
identify the measured dust aerosol, as in Ref. [60]. Similar aerosol identification 
studies were carried out [57, 61, 62, 64, 65], showing that African dust’s transatlan-
tic transport reaches the Caribbean. Episodes of mineral dust particles transported 
from Africa to the Amazon between January and April were also observed [66].

The DUSTER Lidar system started operating in 2016 with operational data 
collection campaigns called MOnitoring aerosol LOng-range Transportation OVer 
Natal (MOLOTOV) Zero (March 2016 to July 2016.), MOLOTOV I (December 2016 
to mid-February 2017), MOLOTOV II (January and February 2018), and APEL 
(Assessment of Atmospheric Optical Properties During Biomass Burning Events 
and Long-Range Transport of Desert Dust) (November and December 2017), at the 
Federal University of Rio Grande do Norte (UFRN), in Natal.

Also, during the campaigns MOLOTOV Zero and MOLOTOV I, eighteen cirrus 
cloud profiles were analyzed (7 during MOLOTOV Zero and 11 from MOLOTOV I). 
Part of the research was conducted to calibrate the DUSTER system, applying the 
Δ90° method [67]. The main physical parameters of cirrus clouds obtained from 
lidar data were their thickness, base height, top height, and linear particle depo-
larization (δp) [68, 69]. The determination of parameters such as base height and 
top height was calculated from the analysis of the depolarization profiles obtained 
for each data interval. Data from radiosondes launched by the Natal airport (about 
7 km from the DUSTER system) were used to obtain the average cirrus temperature. 
The average depolarization value for cirrus clouds during the MOLOTOV Zero cam-
paign was δp(cirrus) = 0.43 ± 0.15 with an average base height of 14.23 km and an 
average top height of 15.53 km [70]. The average temperature of cirrus during this 
campaign was −69.23°C. The average thickness of the cirrus found was 1.30 km. For 
the MOLOTOV I campaign, the average value was δp(cirrus) = 0.49 ± 0.13 with the 
average base height equal to 12.96 km and the average top height equal to 14.44 km. 
The average thickness found was 1.48 km. The average cirrus temperature found for 
this campaign was −62.06°C [70].

5. Cloud studies

Clouds play an important role in Earth’s radiation budget as they reflect incom-
ing solar radiation and absorb outgoing thermal radiation emitted from the surface, 
the atmosphere, and other clouds [71]. In tropical regions, Cirrus clouds are omni-
present [72] and hence affect the radiation balance significantly because of their 
sizable horizontal extent (hundreds to thousands of km) and long lifetime (hours to 
days). Cirrus optical properties, altitude, vertical and horizontal coverage control, 
radiative forcing, and detailed measurements are of absolute value [73, 74].

Studies reporting cirrus properties over tropical South America used to be 
scarce, with most studies based on in-frequent satellite observations [72, 75]. For 
obtaining detailed geometrical and microphysical properties of Cirrus clouds, 
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especially the sub-visible type, ground-based lidars are indispensable. For this 
reason, many lidar groups around the world have used such measurements to 
obtain and report these characteristics in mid-latitudes [74] and tropical regions 
[76]. A similar effort is being made in South America, mostly under the auspices 
of LALINET. Here we review studies from five LALINET stations (Cuba, Manaus, 
Natal, São Paulo, and Punta Arenas), and we also discuss results from Reference 
[77], who report on measurements in Buenos Aires. It is compiled a set of statistics 
for optical and geometrical properties of cirrus occurring in this side of the world, 
summarized in Table 2.

The first studies were performed in Cuba by the lidar group in Camagüey using 
6-years (1993 to 1998) elastic lidar data [78]. The lidar measurements were per-
formed for detecting aerosols in the stratosphere, and hence were conducted mostly 
on clear nights to the naked eye, thus introducing a bias in the cloud measurements 
towards subvisual cirrus clouds. Indeed, from 131 clouds measured, only 8% were 
thick (COD >0.3), 67% were thin (0.03 < COD <0.3) and 25% were sub-visual 
(COD <0.03). Sub-visual and thin cirrus have an average cloud top and base at 14.1 
and 11.6 km, respectively, with thick clouds occurring at slightly lower altitudes. 
The authors estimated the respective optical depths to be 0.50 ± 0.27, 0.07 ± 0.05, 
and 0.02 ± 0.01, but these are an upper limit as they were calculated assuming a 
lidar ratio (LR) of 10 sr, which we now know is too low.

In a follow-up study, Barja and Antuña performed radiative transfer simulations 
(GFDL model, Freidenreich and Ramaswamy, 1999) of the impact of cirrus clouds 
on solar radiation (SW) [83]. They have found that the daily mean value of SW cir-
rus radiative forcing (CRFSW) has an average value of −9.1 W m−2 at the top of the 
atmosphere (TOA) and −5.6 W m−2 at the surface (SFC). There is a linear relation 
between CRFSW and COD, with a slope of - 30 W m−2/COD at TOA. The local radia-
tive heating effect where the cirrus is found ranged from 0.35 to 1.24 K day−1, with 
an average of 0.63 K day−1. These results were the first to show that tropical cirrus 
radiative impact on Earth’s energy balance is essential.

In the Amazon region, Gouveia et al. used continuous measurements (July 
2011 to June 2012) at the Manaus station [1] to retrieve the optical and geometrical 
properties of cirrus clouds during day and night [79]. The cirrus frequency of 
occurrence was about 88% during the wet season and not lower than 50% during 
the dry season, with a mean column optical depth of 0.25 ± 0.46. The cloud top and 
base heights, as well as cloud thickness and cloud optical depth, were, respectively, 
14.3 ± 1.9 (std) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, similar to the values 
reported in Cuba. These clouds have a significant radiative impact with such a high 
frequency of occurrence and altitude over the dark-pristine Amazon forest (albedo 
about 0.12).

Gouveia then used these measured optical depths and vertical profiles of the 
cirrus extinction coefficient [84], at 5-min and 200 m resolutions, and calculated 
the cirrus radiative forcing (CRF) with libRadtran [85]. Cirrus in the Amazon 
region produced a net CRF at TOA and SFC of +15.3 and − 3.7 W m−2, respectively, 
much more intense than predicted for 3 European sites (+0.9, +1, and + 1.7 W m−2 at 
TOA) [74, 86]. Optically thicker cirrus, in general, have more prominent net CRF, 
with instantaneous CRF that could reach extremes up (down) to +140 (−65) W m−2 
for the night (day) time [85]. Together, the vertical profiles with total COD >0.3 
were responsible for about 72% (62%) of the TOA (BOA) net CRF, which means 
that a large fraction of the CRF is generated by optically thin cirrus (COD <0.3) 
that are harder to detect by radars and passive instruments on board of satellites 
[86]. A definite daily cycle of the optical depth was found and shows a minimum 
about local noon and a maximum in the late afternoon (~16 h LT), associated with 
the diurnal precipitation cycle. This results in a mean instantaneous TOA (SFC) 
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net CRF ranging from +1.7 (−23) W m−2 in the afternoon to +47 (+3.1) W m−2 at 
night [86]. The cirrus clouds produced an average in-cloud heating rate ranging 
between −1 K day−1 to +2 K day−1 vertical profile from 8 to 18 km (in-cloud), but 
with instantaneous values that can reach values higher than 10 K day−1 for portions 
of the cloud with high ice water content [86].

The DUSTER Lidar station at Natal, Brazil, is the most recent addition to the 
network. Cirrus measurements started only recently, and Santos reports on mea-
surements during January–February (pre-rainy season) of 2017 and 2018 [80]. 
A total number of 35 clouds were studied and showed cirrus up to 16 km. These 
clouds are lower than those in Manaus and were never observed above the tropo-
pause at 17–18 km. The reason is the less vigorous convection in this coastal site, 
which resembles an oceanic precipitation regime. The frequency of occurrence and 
average cloud top altitude was 74% (57%) and 13.9 km (12.3 km) in 2017 (2018), 
respectively. In situ data obtained by radiosondes (9.5 km away) for selected case 
studies showed an increase of the relative humidity in the layer where the lidar 
identified the cirrus clouds, from around 10–20% below/above the cloud to around 
40–55% in the cloud altitude region.

Cirrus clouds over São Paulo, in the subtropics of South America, were studied 
by Larroza [81]. She analyzed 34 days, from June to July 2007, using the method-
ology described in Ref. [87]. The cirrus frequency of occurrence was 54%. The 
vertical distribution of cloud tops showed peaks at 9.6, 10.6, 12.3, and 13.9 km, with 
an average of 12.4 km. These cirri were optically thinner (0.27) and occurred at 
lower altitudes (cloud top 12.4 km) than their tropical counterpart but had a similar 
lidar ratio of about 26 sr. The clouds observed were either produced by the passage 
of cold fronts or transported from the tropics or mid-latitudes.

Going into the mid-latitudes, Lakkis et al. used data from a lidar system in 
Buenos Aires, Argentina, that was not part of LALINET [77]. They studied 60 
diurnal cirrus clouds from 2001 to 2005. Unlike the tropics and sub-tropics, cirrus 
tops were only found very close to the tropopause (~380 m), with cloud tops at 
11.8 ± 0.86 and bases at 9.6 ± 0.9 km. Unfortunately, the low statistics did not allow 
the calculation of a frequency of occurrence, nor did the authors report values 
of optical depth or lidar ratios. The southernmost LALINET station is at Punta 
Arenas, Chile (53°S, 71°W), a sub-Antarctic region. Lidar cirrus measurements 
there began in October 2016 and continue to the present. A preliminary result of 
cirrus clouds’ geometric characteristics in the region, over two years (from 2016 
to 2018), shows that the cirrus’ mean base height is 9.0 ± 2.4 km and the mean top 
height is 10.8 ± 2.2 km. In the same site in November 2018, the Leipzig Aerosol and 
Cloud Remote Observations System (LACROS) [88] was deployed by the Leibniz 
Institute for Tropospheric Research (TROPOS) in collaboration with the University 
of Magallanes (UMAG) for the field experiment DACAPO - PESO (Dynamics, 
Aerosol, Cloud And Precipitation Observations in the Pristine Environment of the 
Southern Ocean). Cirrus clouds measurements are being performed with a Raman 
polarization lidar that will allow the calculation of LR and COD at multiple wave-
lengths, which will be reported in a future study.

There has been a great effort to study cirrus clouds in South America, with 
measurements taking place from 1993 to today, and from 21 N to 53 S. Table 3 
summarizes the main characteristics, and we can see how the cirrus altitude changes 
from the Tropical (high, 14.3 km) to the sub-Antarctic regions (low 10.8 km). The 
frequency of occurrence also becomes smaller, reducing from 74% in Manaus to 45% 
in Punta Arenas. Deep convection, prevalent in the tropics and sub-tropics, pushes 
the tropopause upward and creates optically and physically thick cirrus clouds from 
the anvil’s detrainment. From the subtropics towards the polar regions, convection is 
limited by the lack of surface heating, and the mixing of tropospheric air depends on 
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uplift by frontal systems. This does not reach high altitudes, and the primary cirrus 
production mechanism will be the large-scale lifting of water vapor, rendering phys-
ically and optically thinner clouds. Lidars can directly observe the optical depth, and 
Table 3 shows that it also becomes smaller, decreasing from 0.35 in Manaus to 0.25 
in Punta Arenas. Unfortunately, there are not enough LR estimations to allow for a 
comparison. They were calculated only for Manaus and São Paulo, and the results 
are in close agreement, indicating similar crystal habits and formation mechanisms, 
as expected. Similar relation of the cirrus features and latitude was first reported 
by Cordoba-Jabonero et al. using data from the LALINET subtropical station of São 
Paulo and ground-based lidar located in Belgrano Antarctic Station [88].

Another aspect of this LALINET effort is the diversity in the methods and the 
timespan of the different studies, limiting our ability for a more in-depth com-
parison. The combination of the Klett and transmittance methods, as described 
by Larroza [87] and Gouveia et al. [79], can be applied to elastic data from any of 
the LALINET lidars, providing COD and LR with high temporal resolution (e.g., 
5-min), during both day and night. The use of radiative transfer models to calculate 
the cirrus’ radiative impact could also be performed for all stations doing cirrus 
measurements. It would be essential to homogenize cirrus clouds’ analysis through-
out the network groups, even by sharing analysis algorithms. Moreover, it should 
be emphasized that these critical analyses could be automatized and performed 
unattended on a unique central server. These facts highlight the importance of 
establishing systematic data sharing in the context of LALINET and GALION.

6. Conclusions

Tropospheric lidars can provide impressive results: aerosol studies related to 
volcanic eruptions, tropospheric systems, biomass burning, and dust transport 
(both into and out of the continent) were conducted over the past 15 years. 
Pollutant dispersion studies in large cities of South America employing PBL dynam-
ics, conducted in different sites, and with specific conditions, greatly aid local air 
quality authorities. More recently, studies on clouds and their impact on radiative 
transfer have been carried out. Given the geographical location of the lidar sites, 
essential comparisons can be carried on along a wide longitudinal interval, and 
tropospheric-stratospheric circulation experiments can be performed, as well as 
their climatological interpretation.
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Chapter 3

Application of Remote Sensing in 
Natural Sciences
Ehsan Atazadeh and Mostafa Mahdavifard

Abstract

Generally, the term biomass is used for all materials originating from 
photosynthesis. However, biomass can equally apply to animals. Conservation and 
management of biomass is very important. There are various ways and methods 
for biomass evaluation. One of these methods is remote sensing. Remote sensing 
provides information about biomass, but also about biodiversity and environmental 
factors estimation over a wide area. The great potential of remote sensing has 
received considerable attention over the last few decades in many different areas 
in biological sciences including nutrient status assessment, weed abundance, 
deforestation, glacial features in Arctic and Antarctic regions, depth sounding of 
coastal and ocean depths, and density mapping.

Keywords: biomass, RS, GIS, chlorophyll-a

1. Introduction

A natural resource is any kind of energy or substance that is necessary to meet 
the physiological, social, economic and cultural needs of humanity and to maintain 
all the various activities that lead to production. Natural resources such as solar 
energy, forests, crops, fisheries, etc. are renewable, and such as oil, coal, natural 
gas, etc. are not renewable (Rao). National development requires a comprehensive 
approach to natural resource management. Sustainable natural resource manage-
ment requires long-term oversight. Periodic evaluation and monitoring of natural 
resources enables policymakers to be vigilant in the optimal use of resources and 
the development process to act promptly [1–3]. In recent years, remote sensing data 
has been widely used in various fields of natural resource management as it is one 
of the best data sources for large-scale applications [4]. In general, remote sensing is 
“the measurement or acquisition of information about the properties of an object or 
phenomenon by a recording device (sensor: satellite or aircraft) that is not studied 
in physical or direct contact with the phenomenon” [5]. Integrated use of remote 
sensing data, GPS and GIS enables consultants, natural resource managers and 
researchers in government agencies, conservation organizations and industry to 
develop management plans for a variety of natural resource management programs 
[6]. When natural resources are identified using remote sensing data, sampling 
strategies are also used to collect and evaluate field observations of the variables at 
the selected locations [7]. Remote sensing is a powerful tool for studying land cover, 
forest management, water quality parameters, etc. in remote locations. Among the 
studies using modern remote sensing technology to estimate the concentration of 
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chlorophyll-A (phytoplankton pigment) in the coastal areas of Iran [8] and also in 
Vietnam has been used to identify and estimate the upper biodiversity of mangrove 
forests. In the next section, we discuss some of the applications of remote sensing in 
marine ecosystem management.

2. Remote sensing applications in marine ecosystems

Sea Surface temperature: Most industries use seawater as cooling water. When 
the water used as a coolant returns to the natural environment at a higher tempera-
ture, temperature changes reduce oxygen and affect the marine ecosystem [9]. SST 
information is needed in remote sensing assessment for fisheries applications [10]. 
Satellite SST observations help to understand regional diversity and global climate 
change, and allow the visualization of a wide range of ocean zones. In 1981, SST 
satellite infrared observations began with the launch of the AVHRR sensor on the 
NOAA 7 satellite, so that there are now three decades of SST satellite data [11].

Coral reef: Coral reefs are formed by living coral polyps and calcareous algae 
that grow at sea levels between 77 and 86 degrees Fahrenheit with normal salinity. 
Coral reefs act as feeding, reproductive, breeding, and aquatic habitats for many 
oceanic organisms, so the density and distribution of corals alter the populations 
of fish and other organisms [12]. The advantages of remote sensing systems in this 
area are the ability to survey the area on a large scale, continuous monitoring and 
the ability to check the system ecosystem in remote areas without direct contact 

Figure 1. 
Application of remote sensing: a) SST, b) coral reef, C) mangrove forest D) oil spill.
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with it. Among these, optical Remote sensing systems including multispectral and 
hyperspectral sensors have been most used in this field [13, 14].

Mangrove forest: Mangrove forests are tropical and subtropical ecosystems 
that grow on the margins of two different environments, sea and land [15–17]. 
These forests play an essential role in ecology and are considered as carbon reserves 
[18–20]. Due to their location in the tropics, they are prone to hiding under clouds, 
so a reliable monitoring tool is essential to measure deforestation. Radar remote 
sensing has been shown to be useful in distinguishing mangrove cover from other 
ground cover due to its long wavelengths that can penetrate the cloud [21].

Ocean Color: The color of the ocean is a unique property for water. Mapping 
and understanding ocean color changes can help monitor water quality and identify 
natural and human contaminants (oil slicks and algae blooms) that are dangerous to 
aquaculture and even to humans [8]. Remote sensing optical data can detect targets 
such as suspended sediments, algal blooms, chlorophyll-A, and oil slicks at various 
scales [21]. In the next section, which is research-oriented, we want to examine 
the application of remote sensing in estimating the concentration of chlorophyll- a 
phytoplankton in coastal waters (Figure 1).

3. Materials and methods

3.1 Case study

The current research, which is the result of the authors’ efforts, has been 
conducted on the Tiab estuary. Tiab estuary in Hormozgan province - Iran is one 
of the estuaries of Sirik and Kolahy basin which is located in latitudes of 27 degrees 
and 8 minutes and longitude of 56 degrees and 44 minutes (Figure 1). The climatic 
conditions of this region are tropical to subtropical and its climate is hot and humid. 
The temperature in this region reaches 45 degrees Celsius in summer. The aver-
age annual rainfall in this region is about 100 to 300 mm between November and 
April. Most of the vegetation of this area includes pure communities of mangroves 
(Avicenina marina) which is located at the mouth of the estuary and the edges of 
tidal waterways (Figure 2) [22].

Figure 2. 
Location of the study area.
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3.2 Data collection

3.2.1 In-situ data

To collect field data from the study area for calibration with remote sensing 
data, field measurements were performed on April 7, 2019, at the same time as 
the Landsat-8 satellite passed the study area at 6:37 UTC. On the day of sampling, 
the sea level was at the highest water level and without wave turbulence. For this 
purpose, immediately after collecting the water sample using special bottles, the 
location of each station was determined using a GPS device. A total of 10 sta-
tions were located and sampled. The sampling started from the area between the 
entrance of the estuary and ended at the exit of the estuary leading to the high seas 
and lasted about 1 hour. Figure 3 shows the field operation. In the laboratory, water 
samples were transferred to tubes containing 10 ml of ethanol and then centrifuged 
at 2500 rpm for 5 minutes and decomposed in the absorption range of 664 and 
665 nm using a spectrophotometer. Finally, the field chlorophyll of each station was 
calculated using Eq. 1.

 ( )
( )

3
b a

/m

26.7 664 665 V
Chla

V L
× − ×

=
×

ext
mg

sam

 (1)

Where 665a and 664b, respectively, before and after acidification of the samples 
in the spectral range, Vext amount of extraction per liter unit, Vsam amount of 
sample per cubic meter, L light path of the sample tube per unit centimeter and 
Chla chlorophyll concentration per mg unit Cubic meters.

3.2.2 Remote sensing data

In this study, Landsat-8 satellite images were used to estimate chlorophyll-A 
concentration. Landsat-8 is one of the newest multispectral satellites launched on 
February 11, 2013 to monitor natural resources. This satellite has a spatial resolution 
of 30 meters, 11 Multispectral bands (in the range: visible, reflective infrared and 
thermal infrared) and its review period from Earth is 16 days. Table 1 shows the 
details of Landsat-8 time series data for estimating chlorophyll-A concentration are 
presented.

Figure 3. 
Field operations in the study area.
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3.3 Modeling of chlorophyll-A concentration

Bio-optical algorithms OC2 and OC3 were used to extract chlorophyll-A 
concentration from Landsat-8 data. This bio-optical model is based on nonlinear 
relationships between ocean reflection reflectance and field data that actually link 
optical measurements of reflection to qualitative parameters such as chlorophyll 
concentration and range-of-coastal, blue, and green weather to estimate chlorophyll 
concentration. Uses the following equations to calculate.

 ( )0 1 2 2 3 310 + ∗ + ∗ + ∗= a a R a R a RC  

 ( )log /=R Rrs Blue RrsGreen  (2)

 ( )0 1 2 2 3 310 + ∗ + ∗ + ∗= a a R a R a RC  

 ( )log 490 / 555=R Rrs Rrs  (3)

Where a are coefficients that are estimated and modeled through the relation-
ship between field data and remote sensing. Rrs is a measure of distance at blue and 
green wavelengths, R is the band ratio and C is the concentration of chlorophyll-A 
in milligrams per cubic meter.

4. Results and analysis

4.1 Field measurement

The results of field sample analysis showed that the lowest concentration of 
chlorophyll-A was in station number 9 with 0.11 mg/m3 and the highest level was in 
station number 6 with 6 mg/m3 (due to severe algae) and in the rest of the stations. 
Chlorophyll content is below 1 mg/m3. The diagram below shows the trend of 
chlorophyll-A changes in the stations (Figure 4).

4.2 Chlorophyll-A validation received from satellites with field data

The results of chlorophyll-A evaluation show that the use of OC2 bio-optical 
algorithm to estimate chlorophyll-A concentration using Landsat-8 data has accept-
able results and has a high correlation with field data. Table 2 shows the result of 
statistical parameters shows the correlation between field data and chlorophyll 
derived from Landsat-8 data.

ID-Landsat-8 Flight time Date

LC08_L1TP_159041_20190407_20190407_01_RT.tar 6:39 (UTC) 2019/4/7

LC08_L1TP_159041_20190728_20190801_01_T1.tar 2019/7/28

LC08_L1TP_159041_20191117_20191202_01_T1.tar 2019/11/17

Table 1. 
Specifications of time series data used.
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4.3 Seasonal estimation of chlorophyll-A concentration with Landsat-8

After obtaining the appropriate results from the OC2 algorithm in Landsat-8 
Remote Sensing data using Eq. (2) and the modeled coefficients presented in the 
table above, a chlorophyll-A concentration map was prepared in the seasons of 2019. 
The chlorophyll-A concentration estimation map is shown in Figure 5.

 ( )a0 a1 R a2 R2 a3 R3C 10 + ∗ + ∗ + ∗=  

 ( )R log 490 / 555= Rrs Rrs   (4)

Figure 5. 
Time series map of chlorophyll-A concentration in Tiab estuary prepared from Landsat-8 images [22].

Figure 4. 
The trend of field chlorophyll changes.

Algorithm R2 RMSE ax

OC2 0.91 0.13 −0.20094

−1.3018

0.52631

1.4235

OC3 0.88 0.16 −0.22314

−1.3116

0.70002

1.4329

−0.16545

Table 2. 
Results of RMSE, R2 and Landsat-8 modeled coefficients with field data.
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The coefficients a0, a1, a2, a3, a4 were determined for Landsat OC2 algorithm 
−0.20094, −1.3018, 0.52631 and 1.4235, Rrs is the reflection of distance measure-
ment at blue and green wavelengths, R is the band ratio and C, chlorophyll-A 
concentration to The unit is milligrams per cubic meter.

5. Discussion and conclusion

In this study, the potential of remote sensing data for modeling and estimating 
the time series of chlorophyll-A concentration with field data for the coastal region 
of Khor Tiab was evaluated.Coastal Aerosol, Blue and green band-based bio-optical 
models (OC2 and OC3) were applied to Landsat-8 satellite multispectral data to 
estimate chlorophyll-A concentrations in the coastal area. The results of this study 
show that OC2 and OC3 bio-optical models have a high correlation with field data 
sampled from the coastal waters of Tiab estuary so that the statistical parameter 
values R2 and RMSE in the OC2 model with field data were equal to 0.91 and 0.13, 
respectively. While the results of statistical parameter R2 and RMSE in the OC3 
model were evaluated with field data with a slight difference of 0.88 and 0.16, 
respectively. Due to the good performance of the OC2 algorithm compared to the 
OC3 algorithm with field data, this algorithm was selected and used to estimate the 
time series of chlorophyll-A concentration in the Tiab estuary. As the time series 
map shows, the concentration of chlorophyll-A in April and November compared 
to July has a relatively high concentration of chlorophyll that follows the natural 
conditions, which is due to the fact that in April and November the sea temperature 
is low and cold. This has increased the concentration of chlorophyll-A in the region, 
while the concentration of chlorophyll-A has decreased significantly in July because 
the sea temperature is high this month and is completely correlated with natural 
conditions. In fact, there is an inverse relationship between chlorophyll-A concen-
tration and sea surface temperature, which fully illustrates the Remote Sensing data 
used in this study. The end result of this study indicates that remote sensing data 
is a much better alternative to field operations due to its cost and time consuming 
nature. Finally, the participants of this study are suggested to use more field data to 
calibrate the Remote Sensing data in order to estimate the chlorophyll-A concentra-
tion in order to obtain better results.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Assessment of Ecological 
Disturbance Caused by Flood 
and Fire in Assam Forests, India, 
Using MODIS Time Series Data of 
2001-2011
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Abstract

The forest area of Assam State is known for its rich biodiversity. In the  present 
study, the disturbance regime within the Assam forest area caused by periodic 
flood and forest fire, was assessed using the Moderate Resolution Imaging 
Spectroradiometer (MODIS) time-series (2001–2011) data. The MODIS Global 
Disturbance Index (MGDI) images were generated using MODIS derived Enhanced 
Vegetation Index (EVI) and Land Surface Temperature (LST) images. The temporal 
intensity of flood and forest fire in sixteen representative forests was analyzed to 
develop the MGDI based thresholds for detecting the disturbed area. The threshold 
for the non-instantaneous disturbance, i.e. flood, was found to be 107% whereas it 
was 111% for instantaneous disturbance, i.e. forest fire. The thresholds were applied 
on the MGDI images to delineate disturbed caused by flood and fire, separately 
for each year. The time-series disturbance areas were integrated over the years 
(2001–2011) to generate the classified disturbance prone maps.

Keywords: ecological disturbance, MGDI, flood, forest fire, Assam forest, MODIS, 
EVI, LST

1. Introduction

The north-eastern state of Assam is known for its rich biodiversity and considered 
as biological hotspot with many rare and endemic plant and animal species. Out 
of total 78,438 sq. km geographical area of the state, the forest area covers around 
24.58% area. The moderate dense forests areas which are mainly extended through 
districts of Karbi Anglong, NC Hills, Cachar, Karimganj, Hailakandi, northern part 
of Kokrajhar, Bongaigaon and southern part of Kamrup, Tinsukia, are vulnerable to 
frequent flood incidents. The Brahmaputra River and its tributaries, flowing from 
north-east to south-west, are the mainly responsible for the periodic floods in Assam 
State. Along with flood events, the incidence of forest fires in the deciduous forests 
during summer season, i.e. March to April, causing a wide spread disturbance in 
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the forest eco-system. Assam State has 5 National Parks and 16 Wildlife Sanctuaries 
under protected area (PA) network and constituting 4.98% of the geographical area. 
The protected areas can act as benchmark for differentiating the ecological distur-
bance from the natural fluctuation [1]. Hence, regular monitoring of PA’s is crucial 
for detecting the rapid changes in functional attributes as well as to identify areas that 
need to adapt or modify to meet the challenges posed by global warming [2].

The understanding of the global carbon cycle is being affected due to the existing 
spatio-temporal variability of eco-system disturbance and resultant emissions from 
loss of terrestrial biomass [3–8]. Hence, the regular monitoring and assessment 
of the ecological disturbance is essential for understanding the cause and effect of 
the disturbances and subsequent effective management of the forest ecosystems. 
With the advent of multispectral and thermal remote sensing technology, the earth 
observation satellites data became more effective for monitoring biodiversity. The 
altered ecosystem structure and functions due to sustained disturbance in Woody 
ecosystem can be captured by remote sensing for mapping the extent and loca-
tion of the disturbance [9, 10]. The effectiveness of the management practices 
or impact of global environment changes in the forest areas, especially Protected 
Area (PA), can be successfully carried out using satellite remote sensing [11, 12]. 
The technology can also provide valuable information on the alteration of landuse, 
productivity or phenology [13].

The MODIS global disturbance index (MGDI) was first proposed and used by 
[14] for assessing the disturbance in woody ecosystems of North America. The 
MGDI was conceptualized based on the fact that the surface temperature decreases 
with the increase in vegetation density through the latent heat transfer [15, 16]. The 
index was further utilized for assessing the impact of cyclones on the ecological dis-
turbance of mangrove forest of Sundarbans. For further details about the concept 
and computation of MGDI, one can refer [14] or [16].

In the present study, MODIS global disturbance index (MGDI) was used to 
assess the ecological disturbance caused by two different kinds of natural hazards, 
viz. river flood and forest fire, in the perennial forest ecosystem of Assam State 
during 2001 to 2011. The flood and forest fire induced disturbed areas were identi-
fied based on the MGDI based thresholds and the spatio-temporal dynamics of the 
disturbance over the Assam forest area was studied. Finally, a classified geo-spatial 
product of disturbed prone forests was generated based on estimated disturbed area 
during the entire study period.

2. Study area

Assam State, situated at the north-east of India and foothills of the eastern 
Himalayas, covers an area of 78,438 sq. km and lies in the middle reach of the 
Brahmaputra River and Barak (http://www.asbb.gov.in/geophysical.html). 
The state is bounded by 88.25°E to 96.00°E longitude and 24.50oN to 28.00oN 
latitude (Figure 1). Mean annual temperature varies from 6–38°C and average 
annual rainfall is 3000 mm on the Brahmaputra River valley and the surrounding 
region. In Assam State around 51 types of forests and sub-forests can be found. 
Physiographically the state can be classified into 3 groups, viz. vast alluvial plains of 
the Brahmaputra River valley in the north, the central Assam hills and the hilly and 
alluvial terrain in the south.

In the present study, the ecological disturbance regime of the Assam forest 
area, India has been analyzed. Based on the intensity of flood and fire incidence, 
total 16 forests have been selected for MGDI based thresholds development and 
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discrimination of the disturbed areas. The details of the selected forests, i.e. eight for 
each of flood and forest fire, were shown in Figure 1. The flood prone forests were 
mainly situated along the Brahmaputra River, whereas the fire prone forests were 
distributed throughout the Assam State.

3. Data used

3.1 Satellite data

The 16-day composite Enhanced Vegetation Index (EVI) data products 
(MOD13Q1) and 8-day composite Land Surface Temperature (LST) data products 
(MOD11A2) for the period of 2001 to 2011 were downloaded from the MODIS 
web-site (www.e4ftl01.cr.usgs.gov/MOLT/). The datasets were re-projected to 
Geographic (Lat/Long) projection and respective scale factors were applied on the 

Figure 1. 
(a) Location of the study area in India (b) flood and fire prone forests.
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datasets [16]. The 8-day composite LST data was converted to 16-day composite 
using simple average, as the EVI is available at 16-day interval.

3.2 Forest boundary

The forest boundaries of Assam State were generated by digitizing the Survey of 
India Topomaps at 1:50,000 scale. According to the World Database on Protected 
Areas (www.protectedplanet.net) Assam State constitutes total 14 Protected Areas 
(PA), out of which 7 viz. Pabitora, Orang, Kaziranga, Manas, Sonai-Rupai, North 
Cachar and Barail, were analyzed in the present study. Theoretically no resource 
exploitation is allowed in PA’s of categories I and II (IUCN, 1994). For further 
analysis, boundary pixels were excluded to avoid the contamination error.

3.3 Flood inundated area

The date wise flood maps were downloaded from National Remote Sensing 
Centre (NRSC) web site (www.nrsc.gov.in) prepared by Disaster Management 
Support Service Group of NRSC/ISRO, Hyderabad. The extent of flood was 
extracted from each geo-referenced image and stacked at different time scale 
(annual and multi-year). Flood intensity maps were generated based on the number 
of flood occurrence in a pixel within a year (Figure 2).

3.4 Forest fire data

Date wise forest fire information for Assam State was collected from MODIS site 
(https://earthdata.nasa.gov/data/near-real-time-data/firms/active-fire-data) for 
different locations as point information. A grid of 1 × 1 km dimension was created 
for the entire forest area and total number of forest fire incidents within each grid 
was recorded at different temporal interval (annual and multi-year) to generate 
fire intensity grid and subsequent use (Figure 3). Major districts where forest fire 
was reported during the study period include Hailakandi, Cachar, Karbi Anglong, 
Kamrup, Kokrajhar and NC Hills. The forest fire frequency for each of the selected 
forests during the study period was given in Table 1.

Figure 2. 
Flood intensity map of Assam State (www.nrsc.gov.in).



75

Assessment of Ecological Disturbance Caused by Flood and Fire in Assam Forests, India…
DOI: http://dx.doi.org/10.5772/intechopen.94282

4. Methodology

The MODIS global disturbance index (MGDI) was developed based on the concept 
that any perceptible disturbance of ecology will result in a significant alteration in 
vegetation and a concomitant change in the land surface temperature [14, 16].

In the present study, the flood and forest fire were selected as the causative 
factors that create ecological disturbance to address both the non-instantaneous 
and instantaneous disturbance, respectively. In case of instantaneous disturbance 
like forest fire, the disturbance is manifested immediately after the event, resulting 
in immediate increase in LST with decreased vegetation cover. On the contrary, 

Figure 3. 
Forest fire intensity map.

Year Rifu Manas Sonai 
Rupai

Kaliyani Langting
Mupa

North 
Cachar

Barail Badsahitila

2001 15 1 10 0 1 1 2 18

2002 2 23 1 1 2 0 1 16

2003 4 18 18 4 20 19 40 219

2004 12 17 55 5 44 20 26 96

2005 12 6 18 6 64 11 25 86

2006 35 13 32 6 41 31 58 158

2007 6 6 19 12 43 17 45 252

2008 4 4 41 16 25 7 27 108

2009 52 24 54 18 71 33 84 157

2010 11 17 21 4 165 11 41 212

2011 36 23 29 2 64 16 14 91

Table 1. 
Forest fire events for selected Assam State forests (2001–2011).
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non-instantaneous disturbance like flood will not trigger immediate change in 
either LST or EVI due to availability of abundant moisture for evaporation to offset 
the loss of transpiration. Whereas, in the following year the effect of flood damage 
was evident due to vegetation mortality and severe structural damage, which will 
eventually lead to increase in annual maximum LST due to the reduction in transpi-
ration [14].

The instantaneous (MGDIinst) and non-instantaneous (MGDInon-inst) MGDI were 
computed using the following equations: 
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Where, MGDIinst and MGDInon-inst are the instantaneous and non-instanta-
neous MGDI value, respectively. LSTmax and EVImax are the annual maximum 
16-day composite LST (°C) and EVI, respectively. EVImax-post is the maximum 
16-day composite EVI following the LSTmax, current year (y) is the year being 
evaluated for disturbance and multi-year mean (y − 1) is the mean of the ratios 
excluding the current year [14, 16].

A two-step methodology, as explained by Dutta et al. [16], was adopted for to 
discriminate the disturbed forest areas caused due to flood and forest fire. In the 
1st step, the % change in MGDI values were calculated based on the time-series 
data for each pixel. Whereas in the second step the MGDI based thresholds were 
estimated for flood and forest fire, separately. The Percentage change in MGDI for 
both the instantaneous and non-instantaneous disturbance were calculated using 
the following equation:
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As discussed earlier, the forests prone to flood and fire were selected based 
on the temporal occurrence of the natural disturbance. Total 16 representative 
forests frequently affected by flood and forest fire were extensively analyzed 
to develop the thresholds for flood and forest fire separately based upon the % 
change of MGDI over multi-year mean. The spatio-temporal variation of the % 
change in MGDInon-inst over the Assam forest area was shown in Figure 4 for some 
selected years.

The year-wise % change in MGDI was generated for all the representative forests 
wherein only the flood affected pixels were considered. Similarly, year-wise % 
change in MGDI was generated for the pixels undergone forest fire. The temporal 
profile of the percent change in MGDI of each forest was compared with the area 
weighted flood and fire intensity, to confirm the effect of natural disturbances 
on the MGDI. The multi-year mean value plus one standard deviation of the % 
change in MGDI was considered to be the threshold, and the value was used for 
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discrimination of the disturbed pixels [16]. Due to the slow and gradual impact 
of flood, unlike forest fire, a lower disturbance threshold was estimated in case of 
flood. The % change of MGDI greater than 7% and 11% of the temporal mean was 
fixed for discriminating the non-instantaneous (flood) and instantaneous (forest 
fire) disturbed pixels.

The selected thresholds were applied on the % change MGDI images (both 
non-instantaneous and instantaneous, separately) for identifying the year-wise 
disturbed forest areas. The year-wise % disturbed area was estimated for each forest 
and the temporal profiles were used to analyze the disturbance intensity at spatio-
temporal scale. Upon integration of the year-wise disturbed area, disturbance 
prone maps were generated for both instantaneous and non-instantaneous  
events.

5. Results and discussion

5.1 Disturbed area caused by the flood

The summary statistics of the flood affected forests is shown in Table 2. 
According to the % disturbed area it was found that the year 2003, 2008, 2009 and 
2010 were the most disturbed years caused by river flood in comparison to rest 
of the years. These findings are in corroboration with the rainfall data collected 
from Indian Meteorological Department (www.imd.gov.in). During 2001, 2002, 
2004, 2005 and 2006, the disturbed area for all the selected forests were less than 
10% of the total area, whereas in 2007 and 2011, only few of the selected forests 
like Pobitora, Orang and Kukrakata Hills could cross the disturbed area limit of 
10%. During 2003 the impact of flood was more than 2010 in the forests namely 
Phathasil, BuraMayang and Orang. On the contrary, in case of Pobitora, Kamakhya 
Hills, Kukrakata, Kaziranga and Dihing mukh the devastating effect of the 2010 
flood was found to supersede the effect of 2003 flood.

Figure 4. 
Percent change in MGDInon-inst over the Assam forest area.
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The disturbed area maps of the Assam forests showed (Figure 5) that the area 
under disturbance was much higher in the year of 2003, 2008 and 2010 in com-
parison to others, whereas it was minimum in the year of 2006. The flood intensity 
maps (Figure 2) showed that the extent of flooded area is mainly confined around 
the Brahmaputra and Barak River valley, but it was interesting to note that a subset 
of the flood pixels were marked as disturbed pixels (Figure 5). Hence, the temporal 
frequency of flood along with extent was a decisive factor whether a pixel was 
disturbed or not. For example, in BuraMayang around 80% of the total forest area 

Figure 5. 
The disturbed area maps of Assam forests shows higher disturbances in the 2003, 2008 and 2010 and a 
minimum in 2006.

Year Phathasil Bura 
Mayang

Pobitora Orang Kamakhya 
Hills

Kukrakata 
Hills

Kaziranga Dihing 
mukh

2001 8.4 1.2 4.7 8.4 6.7 2.0 1.4 1.4

2002 7.4 9.1 8.4 4.3 7.9 2.0 3.4 4.3

2003 39.1 31.2 17.1 10.4 29.6 9.3 4.0 6.1

2004 7.2 5.4 4.0 3.0 7.5 4.1 0.7 1.4

2005 0.5 1.1 0.0 2.6 0.0 0.0 0.3 3.3

2006 0.4 1.5 0.9 3.6 2.5 0.0 0.1 2.9

2007 4.8 8.5 14.0 4.1 8.8 1.1 2.8 5.8

2008 18.9 9.0 2.5 10.0 12.9 17.8 0.9 7.4

2009 28.0 10.2 10.2 12.4 2.5 6.1 2.6 9.4

2010 12.2 24.0 30.1 8.1 34.6 22.8 14.2 20.6

2011 1.9 1.2 0.6 11.8 2.5 11.1 2.0 2.1

Table 2. 
Percent disturbed area caused by flood in selected Assam State forests.
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was under flood during 2008 with frequency value of one, whereas during 2010 
around 40% forest area was inundated by flood with frequency more than 10. 
Consequently, the disturbance was recorded in 9% of the total forest area in 2008, 
whereas it was around 24% during 2010. Similarly, in case of Pobitora the whole 
forest was under flood during both 2008 and 2010, but due to the difference in flood 
frequency the disturbed area were 2.5 and 30.1% of the total area, respectively.

The temporal dynamics of disturbed area, caused by river flood, for two selected 
forests, namely Kamakhya and Kukrakata Hills was shown in Figure 6. In case 
of Kamakhya Hills the year 2010 was found to the most disturbed year, followed 
by 2003 and 2008. Hardly any disturbance was noticed during 2005, 2006, 2009 
and 2011. Similarly, in case of Kukrakata Hills also three major flood events were 
observed in 2010, 2008 and 2003. Though the major flood years were common in 
both the cases, their magnitude varies.

5.2 Disturbed area caused by forest fire

The distribution of disturbed area caused by forest fire is shown in Table 3. 
Unlike flood, the spatial extent of % disturbed area caused by forest fire was much 
lower as the fire is a localized phenomenon. A maximum value of 3.5% of the 
total forest area was disturbed due to the fire during 2010 in Barail forest. More 
than 2% of the forest area was affected in Sonai Rupai, Langting Mupa, Barail and 
Badsahitila forests during 2003. Whereas in 2010 more than 1% of the total forest 
area of Sonai Rupai, North Cachar and Barail was affected.

It was noteworthy that unlike flood, forest fire intensity was not in direct 
corroboration with disturbed area statistics (Tables 1 and 3). As discussed earlier, 
the point locations of forest fire were converted to fire intensity information using 
1 km grid, to make it spatially contiguous, as the extent of forest fire information 
was not available. Hence, the discrepancy between the disturbed area statistics and 
fire frequency may be attributed to lack of spatial representation of fire extent. In 
addition frequent fire incidences might have hindered the process of re-generation 
and vegetative growth of the forest causing insignificant changes in the MGDI 
values in post incidence dates. For example, in case of Rifu forest the fire frequency 
was 52 and 36 during 2009 and 2011, respectively, but the disturbed area was 0.34 
and 0.45% of the total forest area. On the other hand, 0.84% of the forest area 
was found to be disturbed during 2010 with only 11 fire incidences. Similar kind 
of observation was found in case of Badsahitila also, where the fire frequency was 

Figure 6. 
Temporal dynamics of disturbed area caused by river flood for two selected forests of Assam state.
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Figure 7. 
Temporal dynamics of disturbed area caused by the forest fire for selected forests of Assam state.

more than 150 times during 2003, 2006, 2007, 2008, 2009 and 2010, but the % 
disturbed area were 3.73, 0.21, 0.28, 0.05, 1.39 and 0.69, respectively.

The temporal dynamics of disturbed area induced by the forest fire for two 
selected forests, namely Badsahitila and Sonai Rupai, were shown in Figure 7. In 
case of Badsahitila, the major disturbance due to forest fire was found during 2003, 
followed by the year 2009, whereas during 2001, 2002, 2005, 2006, 2007, 2008 and 
2011 very less area was noted to be disturbed due to the fire incidences. On the other 
hand, in case of Sonai Rupai three major disturbances were noted during 2003, 
2008 and 2010, with two other intermediate disturbances during 2005 and 2009. 
The major fire incidents were reported from moist deciduous forest and grass lands.

5.3 Mapped forest areas prone to disturbance

The spatial distribution of both the non-instantaneous and instantaneous forest 
disturbances maps have been generated and presented in Figures 8 and 9 respec-
tively. In non-instantaneous disturbance the effect is not triggered immediately 
in terms of changes in LST and/or EVI. In contrast post-event effect is immedi-
ately exhibited due to changes in LST and EVI, for example, in case of forest fire 
both the LST increases and the EVI changes drastically. Based upon the percent 

Year Rifu Manas Sonai
Rupai

Kaliyani Langting
Mupa

North  
Cachar

Barail Badsahitila

2001 0.18 0.00 0.05 0.00 0.01 0.01 0.00 0.14

2002 0.00 0.00 0.03 0.26 0.18 0.00 0.00 0.12

2003 0.28 0.26 2.11 0.53 1.80 0.98 1.88 3.73

2004 0.24 0.23 0.07 0.13 0.98 0.08 0.07 0.73

2005 0.01 0.01 0.67 0.13 0.15 0.16 0.60 0.34

2006 0.01 0.01 0.00 0.00 0.20 0.11 0.16 0.00

2007 0.00 0.00 0.23 0.39 0.29 0.25 0.48 0.28

2008 0.07 0.08 1.78 0.34 0.26 0.31 0.58 0.05

2009 0.34 0.46 0.46 0.00 0.28 0.31 0.23 1.39

2010 0.84 0.44 1.55 0.05 0.00 1.34 3.44 0.69

2011 0.45 0.17 0.23 0.06 0.06 0.12 0.44 0.11

Table 3. 
Year-wise percentage disturbed forest area caused by forest fire for selected forests of Assam State.
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change of MGDI, both the disturbance types are classified into low, medium and 
high category to spatially depict the disturbance regime. It was seen that most of 
the non-instantaneous disturbed area falling under “low” category, followed by 
“moderate”. Patches of “highly disturbed” areas are observed in north of Tinsukia 
district which falls under the flood plain of Brahmaputra River. Scattered patches 
of “highly disturbed” areas also noticed along the northern boundary of the Assam 
state adjoining to Bhutan, Kokrajhar and at the border of Karbi Anglong (East) and 
Golaghat districts. Under instantaneous disturbance regime most of the forest areas 
are falling under “low” disturbance category presumably due to high threshold 

Figure 8. 
Spatial distribution of non-instantaneous disturbance categories.

Figure 9. 
Spatial distribution of instantaneous disturbance categories.
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value. Notably the forests of north Tinsukia district falls under “highly disturbed” 
category in both the instantaneous and non-instantaneous disturbance.

6. Conclusions

The ecological disturbance regime of the Assam forest area was assessed using 
Global Disturbance Index derived from the time-series MODIS EVI and LST 
data. The % change in MGDI from its multi-year mean was found to be in good 
agreement with the flood as well as forest fire intensity. The thresholds for non-
instantaneous disturbance, i.e. flood, was found to be lower than the instantaneous 
disturbance, i.e. forest fire. The time-series disturbed area maps were able to cap-
ture the spatio-temporal dynamics of the disturbance regimes. The high disturbed 
area due to flood were in good agreement with the high rainfall year. The temporal 
profiles of the forest specific disturbed area could able to distinguish the major 
disturbed years. The disturbed prone area maps were able to classify the Assam 
forest areas into three major classes, which can be further utilized for the better 
management of the forest areas. The main assumption of the study was that the dis-
turbances were created due to two natural hazards, like flood and forest. However, 
disturbances can be caused by disease/pests, anthropogenic interference, climate 
change etc. which needs to be examined. Hence, future study can be adopted for 
estimating the disturbance regime using multiple factors with an intensive ground 
data support. In the present study, forest fire events was used for estimating the fire 
intensity, whereas with the aid of the forest fire extent the present methodology 
would have been more robust. Sensors with better spatial resolution would increase 
the estimation accuracy of the disturbed area for localized disturbance.
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Chapter 5

Delineation of Open-Pit Mining 
Boundaries on Multispectral 
Imagery
Ioannis Kotaridis and Maria Lazaridou

Abstract

During the last decades, monitoring the spatial growth of open-pit mining 
areas has become a common procedure in an effort to comprehend the influence 
that mining activities have on the adjacent land-use/land-cover types. Various case 
studies have been presented, focusing on land-cover mapping of complex mining 
landscapes. They highlight that a rapid as well as accurate approach is critical. This 
paper presents a methodological framework for a rapid delineation of open-pit 
mining area boundaries. For that purpose an Object-Based Image Analysis (OBIA) 
methodology is implemented. Sentinel-2 data were obtained and the Mean-Shift 
segmentation algorithm was employed. Among the many methods that have 
been presented in literature in order to evaluate the performance of an image 
segmentation, an unsupervised approach is carried out. A quantitative evalua-
tion of segmentation accuracy leads to a more targeted selection of segmentation 
parameter values and as a consequence is of utmost importance. The proposed 
methodology was mainly conducted through python scripts and may constitute a 
guide for relevant studies.

Keywords: OBIA, image segmentation, lignite mine, open-pit mining, Sentinel-2

1. Introduction

1.1 Mining activity and remote sensing

Mining comprises the activity that includes the extraction of geological materials 
from earth with tunnels, shafts or pits. Mining and mines can be classified in several 
ways. According to materials commonly mined, three classes of mining can be distin-
guished: metallic, non-metallic and fuel minerals. Based on the nature of excavation, 
mineral extraction can be categorized into two classes: underground and surface 
mining. The latter includes open-pit mining (also known as open-cast mining) that 
is implemented to extract deep and massive deposits that are not covered by a thick 
overburden. Underground mining of such deposits would be disadvantageous, since 
the material is mainly close to the surface [1].

Greece has been commonly included in the top lignite producers in Europe [2]. 
Mining of fuel minerals constitutes a critical activity, since a large percentage of 
the country’s energy needs is covered by a solid fuel, lignite. The first lignite mine 
in Greece appeared in 1873, whereas systematic exploitation commenced after 
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1950. Nowadays, the primary lignite extraction basins are located in Ptolemaida 
and Amyntaio. Lignite exploitation in Greece is conducted by surface mining and 
specifically open-pit mining [3].

Mining and specifically coal mining activities may cause severe environmental 
impacts [4]. Landscapes formed by mining activities are vulnerable to several 
geomorphic hazards, for instance, landslides and rockfalls [1]. The stability of 
excavations is a critical aspect of Greek lignite mines which become larger and 
deeper in comparison with those in the past. During the last few years, many events 
of severe deformations and disastrous slope failures occurred [2]. In addition, flood 
is a probable hazard, since water can enter pits and tunnels [1]. Surrounding areas 
are affected by mining with economic, environmental and social impacts [5].

Taking into consideration their synoptic coverage and multitemporal data 
acquisition capabilities, remote sensing methods have been widely implemented in 
applications related to mining activities. Availability of high spatial resolution data 
resulted in an increased interest of using satellite data to monitor surface mining 
activities [4]. Remote sensing offers a valuable tool for acquiring rigorous data, 
while decreases the cost of field surveys both in time and money [6].

Remote sensing applications related to mining activities include the following: 
mapping of the surface mineralogy, topography and related changes that are quite 
valuable throughout the operation and planning of mine, identifying and moni-
toring environmental effects and mapping surface movements of mine structures 
in order to monitor safety features [7]. Furthermore, the size and location of mine 
areas as well as land-cover changes due to mining can be extracted from satellite 
images [5]. Remote sensing can make mine planning procedures easier, enhance 
safety during and after mine operation and monitor environmental effect as well 
as rehabilitation [7].

1.2 Image segmentation in OBIA

In contrast with traditional pixel-based approaches, the primary methodological 
component in Object-Based Image Analysis (OBIA) is the image object [8, 9]. OBIA 
produces meaningful image objects only if the imagery is partitioned into similar or 
relatively similar areas. This requires a low value of internal heterogeneity regarding 
the parameter that is examined in comparison with its adjoining areas [8].

Image segmentation is the first but also fundamental procedure to produce the 
core elements of OBIA [10]. It is about the partitioning of an image into spatially 
adjoining and homogenous groups of pixels (segments) that constitute the founda-
tion for further analysis [8, 11]. These regions have similar spatial and spectral 
features, which, if considered as meaningful, depict a real-world object [9, 12]. By 
implementing image segmentation, the level of detail is decreased to make image 
content more comprehensive by lessening image complexity [9]. By transitioning 
from pixel to image object-based framework, in an effort to follow the example 
of visual interpretation, better management of spatial information can be accom-
plished, thus a more beneficial integration with Geographic Information System 
(GIS) can be achieved [13].

During the last decades, several segmentation methods were matured and 
employed in remote sensing applications [10]. Commonly, segmentation methods 
are classified into three broad categories: pixel-based, edge-based and region-based 
methods [14]. The selection of segmentation method is substantially influenced 
by the objective of image analysis study and it is typically acknowledged that it 
does not exist a perfect algorithm that will demonstrate adequate results with every 
satellite image. It has to be mentioned that most segmentation methods do not 
instantly produce meaningful image objects. However, clusters are generated with 
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generic labels, for example, region A, region B, etc. Then, these clusters have to be 
converted to meaningful image objects through a post-segmentation process [15].

A fairly demanding task in image segmentation procedure is the selection of 
segmentation parameters’ values in order to generate segments that will comply 
with the needs of user and the purpose of study [10]. Since there is not a commonly 
accepted method to determine optimal segmentation parameters’ values, image 
segmentation continues to be an interactive procedure that includes trial-and-error 
approaches.

A typical OBIA approach includes two main steps, image segmentation and object 
classification. On the other hand, there are studies that propose a methodology that 
includes only the step of image segmentation. It hast to be noted that the application 
objective is the definitive factor concerning the methodology implemented. This 
study does not follow the traditional OBIA approach.

1.3 Relevant studies

Several studies have utilized satellite data and remote sensing methods to 
investigate an issue related to mining activities. Monitoring and evaluating rec-
lamation procedure in mining areas is a common application [16]. LaJeunesse 
Connette et al. [17] developed a methodology to detect mining areas and evaluate 
mining expansion in Myanmar. For this reason they used data free of charge and 
open-source software. Likewise, Li et al. [18] employed multitemporal Landsat 
data to monitor the expansion of coal mining activity. Demirel et al. [6] proposed 
a methodology for detecting land use changes in surface coal mines with the use 
of multi-temporal high-resolution satellite data. Similarly, Guan et al. [19] investi-
gated land use changes in a surface coal mine area located in the northeast China. 
In addition, Latifovic et al. [20] presented a methodology for land-cover change 
evaluation in the Athabasca Oil Sands region, northeast Alberta, Canada. For this 
purpose Landsat data were obtained. Maxwell et al. [21] combined very high resolu-
tion imagery and LIDAR data for mapping land-cover of a surface coal mine area 
in the southern coalfields of West Virginia, USA. Demirel et al. [22] investigated 
the potential implementation of a machine learning classifier (Support Vector 
Machines) for classifying high spatial resolution multispectral data of an open-cast 
mine area. Lechner et al. [23] carried out a spatial assessment of mine disturbance 
and rehabilitation of an open-pit mining study area. Townsend et al. [24] presented 
a methodology for quantifying land-use and land-cover change patterns due to 
surface mining and reclamation in the Central Appalachian Mountain region of the 
Eastern U.S., during a 30-year timeframe.

1.4 Scope of the study

The primary objective of the present work is to provide an object-based meth-
odology for rapid detection and delineation of an open-pit mining area boundaries 
located nearby Amyntaio town, in northwestern Greece. Since image segmenta-
tion quality is a critical part in our analysis, an unsupervised evaluation of image 
segmentation performance was conducted, quantifying the internal homogeneity 
of segments and between segment separability.

2. Study area and data

The study area that was selected for this paper covers the Public Power 
Corporation (PPC) SA Amyntaio lignite mine. It has an extended mining history 
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that includes opencast mining with depths that reach 180 m, since the mid-1980s 
and is considered a critical mine for energy production in Greece. It is located in the 
north west part of mainland Greece. A subset was extracted from the main scene 
for analysis in order to include the mining operations as it appears in Figure 1, that 
is presented below.

In this paper Sentinel-2A, Level 2A (Bottom-Of-Atmosphere) corrected 
reflectance imagery was obtained. The scene acquisition date is 30 June 2020 (Tile 
T34TEK). The criteria for the selection of scene were limited cloud coverage and 
high quality.

3. Methodological procedure

The methodology implemented in order to delineate the boundaries of this 
open-pit mining area is presented in Figure 2.

3.1 Tools

Orfeo Toolbox (OTB) was used for digital processing of the imagery. It is an 
open-source project that supports processing of remote sensing data including high 
resolution optical, multispectral and radar images [25]. The algorithms utilized for 
the purpose of this study were accessed from Python through the otbApplication 
module. Spatial analysis procedures were carried out in QGIS, a free and open-
source Geographic Information System that supports the creation, editing visualiza-
tion and publication of geospatial data [26].

3.2 Initial processing of data

Initial processing of Sentinel-2A imagery includes resampling the 20 m bands 
to 10 m, clipping the scene to the boundaries of Area Of Interest (AOI) and concat-
enating the spectral bands to produce a single stacked image.

Figure 1. 
Study area located in Greece (left) and the subset of Sentinel-2A imagery (2020) (right).
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3.3 Image segmentation

The stacked image was used as input for image segmentation. For the purpose 
of this study, Mean-Shift segmentation algorithm was implemented. It is a non-
parametric clustering approach that is widely utilized in image analysis [27]. 
Mean-Shift segmentation algorithm has depicted adequate results regarding 
object extraction [28, 29]. It can handle different remote sensing satellite data, for 
instance, medium or high spatial resolution images. Critical factors that are related 
to its popularity are the simplicity of filtering step, the multivariate nature and the 

Figure 2. 
Methodological framework.
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existence of various implementations [30]. The vector output of segmentation and 
the selected parameter values of Mean-Shift algorithm are presented in Figure 3.

As shown in Figure 3, range radius and minimum region size parameter values 
were increased drastically compared to default values. This is necessary in order 
not to confuse mine areas with different land-cover types and not to have a large 
number of segments, so that they are manageable.

3.4 Evaluation of segmentation

A qualitative evaluation of segmentation output is commonly implemented 
through visual assessment [31]. This is a rather subjective mean of segmentation 
accuracy evaluation. Conversely, several supervised and unsupervised approaches 

Figure 3. 
Segmentation results. The boundaries of segments are symbolized with red color (spatial radius: 4, range 
radius: 160, minimum region size: 700).
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have been presented in order assess image segmentation accuracy. Supervised 
methods typically compare segmentation output with a reference layer and measure 
the overlapping area [32]. Unsupervised approaches measure particular features 
of segments, for example, spectral homogeneity and between object heterogeneity 
[33]. However, there is not a standard methodology [32].

For the purpose of this study, an unsupervised approach was selected. In 
specific, the objective function proposed by Espindola et al. [33] was calculated 
to evaluate the quality of image segmentation results. This function consists of a 
measure of intrasegment homogeneity and one of intersegment heterogeneity. The 
first part is intrasegment variance of segments, a weighted average, where the area 
of each segment represents the corresponding weight. Thus, probable variabilities 
produced by smaller segments are eliminated. Furthermore, in order to evaluate 
intersegment heterogeneity, the function employs Moran’s I autocorrelation index 
[34] that measures the spatial association as derived from the total of segments. 
Moran’s I reflects how, on average, mean values of each segment vary from mean 
values of its adjacent segments. Small values of Moran’s I suggest low spatial auto-
correlation, hence the adjacent regions are statistically different. This denotes large 
intersegment heterogeneity. In other words, image segmentation produces segments 
with discrete boundaries. Employing spatial autocorrelation for evaluating image 
segmentation quality is especially suitable for region growing algorithms that 
generate closed polygons [33].

An adequate selection of parameters’ values incorporates low intersegment 
Moran’s I index with low intrasegment variance. The proposed function from 
Espindola [33] adds the normalized values of variance and autocorrelation mea-
sures. The objective function and its components were computed for each spectral 
band of Sentinel-2 imagery. Following, the value of objective function for the entire 
imagery was calculated by averaging the values of each spectral band. The results 
are presented in Table 1.

As shown in Table 1, the mean normalized value of variance slightly changes 
for different parameters’ values and the lowest values corresponds to the low-
est values of range radius and minimum region size, as expected. Moran’s I 
index value is decreasing when range radius value and minimum region size 
are increasing, which means that segments get larger in size but also fewer in 
number. The selected Mean-Shift parameters’ values for this specific study area 

Mean-Shift parameters’ values (Spatial 
radius/Range radius/Minimum region size)

Variance Moran’s I 
index

Objective 
function

5/15/100 0.53 0.57 1.10

4/80/700 0.59 0.38 0.97

4/120/700 0.60 0.35 0.95

4/160/700 0.60 0.34 0.95

4/200/700 0.60 0.38 0.98

4/240/700 0.59 0.36 0.95

4/200/1500 0.61 0.27 0.89

4/300/2000 0.59 0.28 0.87

Table 1. 
The values of variance, Moran’s I index and objective function for specific Mean-Shift parameters’ values.
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(4/160/700) correspond to relatively low Moran’s I index value which denotes 
that neighboring segments are statistically discrete.

3.5 NDVI calculation

Normalized Difference Vegetation Index (NDVI) was computed among several 
spectral indices. The relevant bands for NDVI are Red and NIR. NDVI is a simple 
but also undoubtedly effective and extensively implemented index for quantifying 
green vegetation. NDVI values range from −1 to +1. Negative values suggest the 
existence of water bodies. Values close to zero (−0.1–0.1) typically correspond to 
barren land. Values above 0.1 commonly indicate the existence of green vegetation 
[35]. NDVI of the study area is presented in Figure 4.

As shown in Figure 4, values from 0 to 0.2 clearly indicate the existence of 
mine areas, as it can be visually recognized from the natural color image. This 

Figure 4. 
NDVI of the imagery.
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observation lead to the exploitation of this specific feature to extract the bound-
aries of mine areas.

3.6 Zonal statistics

Zonal statistics of segments were computed from NDVI raster layer. In specific, 
min, max, standard deviation and mean statistics were calculated over each seg-
ment. Following, they were exported in a vector layer (shapefile). It was ascertained 
that mean value statistic comprise an ideal indicator to identify mine areas. Mean 
value of NDVI for each segment is presented in Figure 5 superimposed on the 
natural color image of the study area.

3.7 Delineation of mine area

Following the identification of mine areas, isolation of these areas is the next 
step. Since some areas outside mines share the same mean NDVI values with mines, 

Figure 5. 
Mean NDVI value of segments.
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further processing of the vector layer is required. A dataset with rough boundaries 
of mine areas forms an auxiliary layer that can help to remove non-mine areas. In 
specific, Corine Land Cover (CLC) 2018 polygon of mine class was employed. A 
buffer area was computed using a fixed distance of 500 m for two main reasons. 
Minimum mapping unit of CLC datasets is 25 hectares, thus it is not appropriate for 
the scale of the analysis of this study and cannot be used unchanged. In addition, 
the reference year of satellite data used for the production of the latest CLC status 
layer is 2018, while the reference year of the imagery used in this paper is 2020. 
Several changes regarding mine boundaries occurred during this timeframe. CLC 
2018 mine polygon and 500 m buffered polygon are presented in Figure 6.

A segment, in order to be characterized as mine area has to satisfy two condi-
tions. It has to intersect with CLC 2018 buffered boundaries and its mean NDVI 
value has to be in the range of 0.00 to 0.25. Through this approach, segments 
were filtered and non-mine areas (polygons outside buffer zone) were erased. 
Furthermore, a manual more precise removal of non-mine areas was carried out 
to the remaining segments. The final step includes the implementation of dissolve 
algorithm in order to dissolve adjacent segments that share a common boundary. 

Figure 6. 
CLC 2018 mine polygon (in orange color) and 500 m buffered polygon (in red color).
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In this way, several segments were converted to a single meaningful image object 
(the mine area), that is demonstrated in Figure 7.

4. Discussion

An effective way of accomplishing adequate environmental management of 
mining areas requires the integration of remote sensing methods and Geographic 
Information Systems. Remote sensing provides image analysis fundamentals while 
a Geographic Information System offers spatial data analysis and geo-visualization 
tools. If these are exploited in a proper way, then continuous monitoring of mining 
activity can lead to efficient reclamation. In addition, freely-available data and 
open-source software drastically facilitates the efforts in this direction. This study 
utilized both of them in an effort to develop a comprehensive and at the same time 
rapid methodology for identifying mining areas and precisely delineating their 
boundaries. Of course, this approach can be beneficial for a multitemporal analysis 
in order to evaluate mining expansion.

Figure 7. 
Mine area in crosshatch pattern.
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The implemented approach for image segmentation evaluation that is demon-
strated in this study does not require ground truth data, since it is an unsupervised 
method that is characterized by two features included in the following. Each 
segment should be internally homogeneous (weighted variance metric) and at the 
same time discrete from its adjacent segments (Moran’s I spatial autocorrelation 
index). These two indicators are calculated for each spectral band and then com-
bined into a global evaluation metric, the objective function. The main advantage of 
this approach is its robustness, since it exploits well-established statistical methods. 
However, since it is a global evaluation metric, it may not perform well when two 
segmentation results depict very similar performance but have dissimilar local error 
distributions. An approach that is capable of quantifying both locally and globally 
segmentation performance may be more suitable for the aforementioned situation.

5. Conclusion

In this study a methodology for rapid identification of mines and precise 
delineation of theirs boundaries is presented, with the use of both freely-available 
data and open-source software. For this reason a cloudless Sentinel-2A imagery was 
obtained covering the area of interest. Following the initial processing steps, image 
segmentation was carried out using Mean-Shift algorithm and an unsupervised 
segmentation evaluation metric was calculated for different parameters’ values. It is 
combined by an autocorrelation index that identifies separability between segments 
and variance, an indicator that depicts the global homogeneity of segments. Then, 
NDVI and its mean values for each segment were computed. Finally, the mine 
area was extracted by implementing some spatial analysis tools including dissolve 
algorithm in order to aggregate segments that share a common boundary.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 6

Stereoscopic Precision of the Large
Format Digital Cameras
Benjamin Arias-Perez

Abstract

Stereoscopic vision is fundamental in the task of photogrammetric restitution
(stereo compilation) in which, by inserting a floating mark in the 3D observation of
pairs of images, it is possible to draw the elements of the terrain in space and obtain
cartography of a part of the land cover from aerial images. Initially with film
photographs, which were later scanned, and finally with large format digital cam-
eras that began in the 2000s, photogrammetry has undergone a series of techno-
logical revolutions up to the present time. In this chapter, after a brief exposition of
the basic principles of photogrammetric restitution, a review of current large-
format digital cameras and their main implications in restitution is made, which,
despite the advances and other similar semi-automatic products (DTM,
orthophoto) is still manual and must be operated by a person with the implications
that this entails in stereoscopic vision.

Keywords: photogrammetry, aerial digital cameras, stereoscopic precision,
Ground Sample Data, photogrammetric restitution

1. Introduction

Photogrammetry (the art and science of determining the position and shape of
objects from photographs [1]) has been used since the early 20th century as an
efficient method of generating mapping of large areas of the territory, from images
obtained with cameras on board an aircraft.

The “General Method of Photogrammetry” describes the stereoscopic
processing of images: acquisition of a pair of images that verify artificial
stereoscopy conditions; orientation of the images to each other; and virtual
three-dimensional exploration of the stereoscopic space generated and cartographic
capture of points:

• Acquisition of a pair of images that verify artificial stereoscopy conditions. The
process of artificial stereoscopic vision is based on generating an image for the
left eye and an image for the right eye (as in natural stereoscopic vision). In
photogrammetry, images are separated from each other by a certain distance
(called base, b) and the image axes are normal to this base and parallel to each
other. This configuration is known as a normal case.

• Orientation of the images to each other. This achieves a stereoscopic model that
is also metric (relative to an external reference system).
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• Virtual three-dimensional exploration of the stereoscopic space generated and
cartographic capture of points. In 1892 Stolze invented the floating mark,
which allows metric three-dimensional exploration. Two marks located in
photography paths are perceived as a single point located in space. If the
observer can move the marks on the images while receiving a stereoscopic
perception of them, they can “pose the floating mark” on the surface of the
object. This way of obtaining 3D coordinates is known as photogrammetric
restitution or stereo compilation (Figure 1).

The XY precision is directly proportional to the scale of the image, mb, and the
measurement precision of the image, σi:

σxy ¼ σi ∗mb (1)

The precision of the measure on the image plane, σi usually �6 μm [1] can be
expressed in terms of pixel size, px, as a fraction (1/k). This value k can be consid-
ered as an indicator of measurement precision in the image.

σi ¼ px
k

) σxy ¼ px
k

∗mb (2)

Moreover, the product of pixel size for image scale provides the pixel size in the
ground, GSD (Ground Sample Distance):

GSD ¼ px ∗mb ) σxy ¼ GSD
k

(3)

Thus, the precision observed in XY can be expressed as a fraction of the GSD.
Once the empirical planimetric standard deviation, SXY, is obtained, the empirical
measurement precision of the image, Si is get. From Si the value of k can be
computed which is a good value of comparison between cameras.

Figure 1.
Floating mark principle.
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Sxy ¼ Si ∗mb ) Si ¼
Sxy
mb

Si ¼ px
k

) k ¼ px
Si

(4)

From this expression it follows that the higher k, the better precision.
It is important to note that σ expresses the theoretical precision while S expresses

the empirical standard deviation which is determined from measurements.
The precision in Z, σZ, depends on the precision of measurement of the

horizontal parallax, σPx, the image scale, mb, and the ratio height/base, H/B [1]:

σz ¼ σPx ∗mb ∗
H
B

(5)

The measurement precision of the horizontal parallax can be replaced by the
measurement precision in the image plane, σi. The ratio height/base can be replaced
by the ratio focal/photobase (c/b), then:

σz ¼ σi ∗mb ∗
c
b

(6)

The precision of the measure in the image plane, σi, can be expressed in terms of
pixel size as a fraction of it. In this case, it is assigned a value of 1/k:

σi ¼ px
k

σz ¼ px
k

∗mb ∗
c
b

(7)

Moreover, the product of pixel size for image scale provides the pixel size in the
ground, GSD:

GSD ¼ px ∗mb

σz ¼ GSD
k

∗
c
b

(8)

As can be seen, precision in Z can also be expressed in terms of the GSD, the
focal length and photobase. This is a function of longitudinal overlap, RL, together
with the image width:

b ¼ 1� RLð Þ ∗width (9)

Camera c (mm) Width (mm) b (RL = 60%) (mm) c/b

Analogue 150 220 88 1,70

DMC 120 95 38 3,16

UltraCamD 100 67,5 27 3,70

DMC III 92 56,9 22.8 4,04

UltraCam Eagle M3 f80 80 68 2722 2,94

UltraCam Eagle M3 f210 210 68 27.2 7,72

Table 1.
Ratios c/b or various photogrammetric aerial cameras, calculated for a longitudinal overlap of 60%.
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The value c/b affects proportionally the Z precision, so that the higher the value
of this ratio less precision in Z (Table 1).

2. Aerial digital cameras

2.1 Technological evolution: film to digital

Photogrammetry has undergone three digital revolutions. The first took place in
the 1980s with the digitization of the mathematical model that resulted in analytical
stereoplotters (process input, frames, remained analogue). Analogue stereoplotters
that solved the mathematical model by mechanical analogy disappeared.

The second occurred in the 1990s with digitization, using powerful and accurate
photogrammetric scanners, analogue images from the aircraft that resulted in digi-
tal stations. This revolution was possible when personal computers had sufficient
capacity to efficiently handle digital images, and represented the extinction of
analytical stereoplotters and, with them, the stereoplotters themselves; that is, of
the specific physical machines used for photogrammetry.

The third revolution took place in the first decade of the 21st century thanks to the
development of digital cameras that began to compete with the large format (230 x
230 mm) of analogue cameras. These cameras were already used in terrestrial photo-
grammetry, where the small and medium formats were enough to develop projects.
The need to cover large areas of land in aerial photogrammetry made the large size of
the camera the only possible solution between the two photogrammetric require-
ments: accuracy (requiring long focal length), and performance in object coverage
(requiring either short focal or large focal planes). This phase involves the disappear-
ance of analogue cameras and, consequently, films. Therefore it will also represent
the disappearance of photogrammetric scanners (Table 2).

The main advantages of digital versus analogue images are [2]: the ability to
establish an entirely digital workflow (suppressing the scanners), a considerable
improvement in radiometric quality as well as the possibility of simultaneously
acquiring panchromatic images in the different color bands and in the near infrared;
as well as the ability to generate real-time mapping [3]. The color depth of digital
cameras (12-bit) should allow flights to be carried out in poor lighting conditions [4].

A first approach to digital cameras for photogrammetric use allows them to be
classified into two large groups: frame and pushbroom. The first can be classified
according to the size of the sensor [5]: small format cameras (up to 16 megapixels);
medium format cameras (from 16 to 50 megapixels); and large format cameras (50
megapixels or higher). More recently, medium format can be located at 80–100
megapixels [6], and large format larger than 100 megapixels.

It consists of Appears Disappears

First revolution
(80s)

Digitizing the mathematical
model

Analytical
stereoplotters

Analogue stereoplotters

Second revolution
(90s)

Post-flight scanning of the
image

Digital station
Photogrammetric
scanner

Analytical stereoplotters

Third revolution
(00s)

In-flight scanning of the
image

Digital aerial camera Analogue aerial camera
Aerial films
Photogrammetric scanner

Table 2.
Evolution of digital photogrammetry.
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2.2 Cameras in the photogrammetric mapping sector

The two large manufacturers of analogue cameras for aerial photogrammetry
took the first steps towards digital cameras around 2000, each opting for a different
technology. Leica, who manufactured the RC30 model, used a pushroom camera,
ADS40, based on space sensors (HSRC, WAAC) from the German institute DLR.
Meanwhile, Z/I Imaging moved from the RMK-TOP analogue model to the DMC
modular camera in 2000 (synchronous mode).

Following the launch in 2000 of ADS40 and DMC, Vexcel, manufacturer of
scanners for photogrammetric use, offered the UltraCamD digital camera to the
market in 2003 (syntopic mode).

Currently there are also other large format cameras and even some medium
format ones competing for the same sector, but it is not our intention in this chapter
to give a review of the current offer of cameras for mapping, only to study the
characteristics related to stereoscopic accuracy. To do this, the current models of
Leica, Z/I Imaging (now both in Hexagon Group) and Vexcel are considered repre-
sentative: DMC III and UltraCam Eagle M3. In addition, they allow working with
interchangeable lenses, which adds versatility so as to be able to use the most
appropriate focal length for each use: short for mapping purposes, and long for
orthophotos generation.

The sensors of large format digital cameras are clearly smaller in size than
conventional cameras (Width in Table 3). To find an easily interpretable
equivalence, we could say that, in order for digital cameras to compete with
analogue, it must be assumed that there is an equivalence between 20 μm, the
size of the scanned pixel, and the 10 μm average pixel size in a digital camera
(Table 3).

Initially, the equivalence between 20 μm scanned and 10 μm digital is assumed
by the manufacturers of these cameras because they think that the digital pixel is of
higher quality than the scanned pixel [7]. According to these same authors, differ-
ent experiments indicate that automatic matching is 2,5 times better in the case of a
digital image.

Angular resolution refers to the angle subtended by a pixel from the point of
view. The initial digital cameras can be considered equivalent to the 15 μm scan;
however, the current ones are much better (less than 10″).

Figure 2 provides a comparison of a reticle photographed and scanned at a
resolution of 5, 10 and 15 μm (a, b and c) while on the right (d) the same grid
obtained directly by a digital camera appears.

Camera Width
(mm)

Pixel size
(μm)

Focal lenght
(mm)

Angular
resolution (″)

AGL (m) for
GSD = 0,10 m

Analogue 220 20 150 28 750

Analogue 220 15 150 21 1000

DMC 168 12 120 21 1000

UltraCamD 103,5 9 100 19 1111

DMC III 56,9 3,9 92 9 2359

UltraCam Eagle M3 f80 68 4 80 10 2000

UltraCam Eagle M3 f210 68 4 210 4 5250

Table 3.
Data of large format digital cameras.
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3. Stereoscopic performance

Another issue in favor of digital cameras is their increased ability to get more
images [7]. This gives them an advantage in terms of the possibility of achieving
greater redundancy in the aerotriangulation process, and obtaining greater overlaps
that decrease the overlap in the direction of flight.

The following sections provide a theoretical analysis of the stereoscopic perfor-
mance of the DMC and UltraCam compared to the performance of analogue cameras.

3.1 Frame rate

Considering an airplane speed of 75 m/s and a frame rate of 1 second, the
movement of the aircraft between two shots is 75 metros. The image size, in the case
of the UltracamD camera, is 7.500 pixels in the direction of flight (along track). If
the longitudinal overlap is 60%, this means that the base is 3.000 pixels. In this
way, the minimum GSD with stereoscopic overlap that can be obtained with 60%
longitudinal overlap is 25 mm.

GSDminimum ¼ Desplaz
Px ∗ 1� RLð Þ (10)

Where Desplaz is the displacement of the aircraft between two shots (75 m), Px
is the number of pixels of the sensor in the direction of flight (7.500), RL is the
longitudinal overlap (60%).

This means that images with GSD from 25 mm to 90% cannot be achieved,
because the plane cannot fly that slowly (750 pixels * 25 mm = 18,75 m). These
25 mm imply a flight height 277,78 m:

H ¼ c
sx

∗GSD (11)

where f is the focal length (100 mm), sx the pixel size (9 μm) and GSD is
Ground Sample Distance (25 mm).

The following Tables 4–6 show the resulting minimum stereoscopic GSD sizes for
different longitudinal overlaps, for UltraCamD, UltraCamX, and DMC cameras.

Figure 2.
A reticle photographed and scanned at a resolution of 5, 10 and 15 μm (a, b and c). The same grid obtained
directly by a digital camera (d) [8].
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3.2 Coverage

A fundamental part of any photogrammetric flight project is determining the
direction and number of passes, number of total and past photographs, among other
data. All this is determined from a series of initial conditions that establish the work
area, which define the scale of the photograph to be obtained, etc...

First, a flight made with analogue camera is analyzed, for example, with the
following characteristics:

• Scale of photography: 1:20.000

• Scanning photo size: 15 μm.

• Useful photo size: 220x220 mm.

RL (%) GSD min (m) H (m)

60 0,025 277,778

70 0,033 366,667

80 0,050 555,56

90 0,10 1111,111

It has been considered an aircraft speed of 75 m/s and a frame rate of 1 second (base on the ground of 75 meters).

Table 4.
Minimum stereoscopic GSD sizes and their corresponding flight height (H) for the UltraCamD camera
(Px = 7.500; sx = 9 μm; f = 100 mm), given the desired longitudinal overlap (RL).

RL (%) GSD min (m) H (m)

60 0,020 276,451

70 0,027 368,601

80 0,040 552,902

90 0,080 1105,803

It has been considered an aircraft speed of 75 m/s and a frame rate of 1 second (base on the ground of 75 meters).

Table 5.
Minimum stereoscopic GSD sizes and their corresponding flight height (H) for the UltraCamX camera
(P = 9.420; sx = 7.2 μm; f = 100 mm), given the desired longitudinal overlap (RL).

RL (%) GSD min (m) H (m)

60 0,049 488,281

70 0,065 651,042

80 0,098 976,563

90 0,195 1953,125

It has been considered an aircraft speed of 75 m/s and a frame rate of 1 second (base on the ground of 75 meters).

Table 6.
Minimum stereoscopic GSD sizes and their corresponding flight height (H) for the DMC camera (P = 7.680;
sx = 12 μm; f = 120 mm), given the desired longitudinal overlap (RL).
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This provides a GSD of:

15μm ∗ 20:000 ¼ 300 mm (12)

considering that each frame has a useful format of 220x220 mm, due to the space
reserved in the frame for marginal information, the surface contained per frame is:

220 mm ∗ 20:000 ¼ 4:400 m

4:400 ∗ 4:400 ¼ 1:936 Ha
(13)

Now, with that same GSD, the resulting area for the UltraCamD image is:

11:500 pixels ∗ 300 mm ¼ 3:450 m

7:500 pixels ∗ 300 mm ¼ 2:250 m

3:450 ∗ 2:250 ¼ 776, 25Ha

(14)

Comparing both surfaces,

1:936
776, 25

¼ 2, 49 (15)

This means that approximately the 2.5-frame area of UltraCamD is required to
cover the same surface as an analogue image. However, in the particular case of a
frame, this is not true due to the different shapes of these (analog and rectangular
square in digital camera). However, if the approach is generic, i.e., to cover a certain
area for a project, that relationship can actually be valid.

3.3 Number of frames

Considering first longitudinally, and with the overlap of 60%, each new frame
adds one side of 40%more to the strip. That is, the covered length, L, by n frames of
a certain width, is determined by:

L ¼ width ∗n ∗ 40%
L ¼ width ∗n ∗ 100� RLð Þ (16)

To relate the number of photos to both flights to cover the same length L, with
the same longitudinal overlap, this ratio is determined by the relationship between
the widths of the frames, calculated above (Eqs (13) and (14)):

4:400
2:250

¼ 1, 956 (17)

Similar reasoning can be followed for cross-sectional overlap:

L ¼ high ∗n ∗ 100� RTð Þ (18)

which in the example provides the following relationship:

4:400
3:450

¼ 1, 275 (19)

If we now want to know the relationship between the total number of
photographs between the two flights:

110

Remote Sensing



1, 956 ∗ 1, 275 ¼ 2, 49 (20)

corresponding to the amount found in Eq. (15).

3.4 Conclusions on coverage

The relationship between the number of frames taken with analog camera and
UltraCamD digital camera depends on the size of the pixel in the field, GSD. That is,
by imposing a certain size of GSD, the relationship between the number of frames
in both cameras is determined at the same time.

With the digital camera it is enough to multiply the number of pixels in height
and width of the image by the GSD to obtain the actual magnitudes of the terrain to
be covered with each frame In addition, it is clear that said GSD, the pixel size in the
CCD, and the focal length will determine the flight height and scale of the photo-
graph (Table 7).

While with the analog camera it is necessary to determine either the frame scale
or the scanning pixel (variable depending on the scanner). Depending on one
parameter, the other parameter is obtained. However, it is true that it is scanned at
15–20 μm., therefore, usually this pixel size determines the frame scale.
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Camera Useful width Useful height Coverage Ratio

Analogue 220 mm 220 mm 1.936 Ha —

UltraCamD 7.500 pixels 11.500 pixels 776,25 Ha 2,49

UltraCamX 9.420 pixels 14.430 pixels 1.223,38 Ha 1,58

DMC 7.680 pixels 13.824 pixels 955,51 Ha 2,03

Table 7.
Surfaces contained in a frame for different cameras, considering in all cases a GSD, where ratio expresses the
ratio between the coverage of the analog camera and the coverage of the digital camera 300 mm.

111

Stereoscopic Precision of the Large Format Digital Cameras
DOI: http://dx.doi.org/10.5772/intechopen.97125



References

[1] KRAUS, Karl; WALDHÄUSL, P.
Photogrammetry Fundamentals and
Standard Processes. vol. 1. Dümmler,
Bonn,, 1993, vol. 14.

[2] Heipke, C., Jacobsen, K., Mills, J.
Editorial Theme issue: “Digital aerial
cameras”. ISPRS Journal of
Photogrammetry and Remote Sensing.
2006;60.6:361–362. DOI: 10.1016/j.
isprsjprs.2006.06.004

[3] Tempelmann, U., Börner, A.,
Chaplin, B., Hinsken, L., Mykhalevych,
B., Miller, S., Recke, U., Reulke, R.,
Uebbing, R. Photogrammetric Software
for the LH Systems Airborne Digital
Sensor. International Archives of
Photogrammetry, Remote Sensing and
Spatial Information Sciences. 2000;33.
B2:552–559.

[4] Markelin, L.,Ahokas, E.,
Honkavaara, E., Kukko, A. Peltoniemi,
J. Radiometric quality comparison of
UltraCamD and analog camera.
International Archives of
Photogrammetry, Remote Sensing and
Spatial Information Sciences. 2005;34.

[5] Petrie, G. Further Advances in
Airborne Digital Imaging - Several New
Imagers Introduced at ASPRS.
GeoInformatic. 2006;9.8:16–23.

[6] RAIZMAN, Yuri. Productivity
Analysis for Medium Format Mapping
Cameras. Photogrammetric Engineering
& Remote Sending. 2018;84.5:235–238.

[7] Leberl, F., Gruber, M., Ponticelli, M.,
Bernoegger, S., & Perko, R. The
UltraCam large format aerial digital
camera system. Proceedings of the
American Society For Photogrammetry
& Remote Sensing. 2003;sn:5–9.

[8] Perko, Roland; Gruber, Michael.
Comparison of quality and information
content of digital and film-based
images. International Archives of

Photogrammetry, Remote Sensing and
Spatial Information Sciences. 2002;34.3/
B:206–209.

112

Remote Sensing



113

Chapter 7

Remote Sensing Applications  
in Disease Mapping
Sabelo Nick Dlamini

Abstract

Disease mapping utilizes disease maps as visual representations of sophisticated 
geographic data that provide a general overview of the disease situation in a defined 
geographic area. Epidemiology is concerned with investigating the causes of diseases, 
and often, these causes vary in frequency and in space. This variation in space gave 
a niche to remote sensing to find its way into the public health domain as disease 
researchers sought to investigate the explaining environmental and climatic factors. 
Studies have demonstrated the potential offered by remote sensing application to 
disease mapping and epidemiology and to support surveillance and control efforts. 
We used some examples from a case study conducted in Eswatini in Southern Africa. 
Remote sensing imagery when combined with GIS spatial analyses techniques could 
support and guide existing disease surveillance and control programs at local, regional, 
and even continental scales. Researchers have also studied factors influencing the 
patterns and distributions of vector-borne diseases at a variety of landscape scales. 
However, successful application of remote sensing technology depends on the ability 
of nonexperts’ remotely sensed data and end users to access, retrieve, and analyze 
the data captured from satellites. The exploration of some of the opportunities 
presented by remote sensing to disease mapping and epidemiology is still unfolding 
as new opportunities are being presented.

Keywords: disease mapping, epidemiology, geostatistics, remote sensing, GIS

1. Introduction

Remote sensing could be described as the science of scanning the earth using 
sensors onboard a satellite platform launched into space or high flying aircraft to 
obtain information and also monitor land use and land cover changes on the earth 
surface [1]. Often, the monitored land use and land cover changes emanate from 
human activities and their interaction with the environment. The observation 
of the earth by the orbiting satellites is done at different geographic scales and at 
different intervals or revisit periods, which are both widely referred to as spatial 
and temporal resolutions, respectively. Over the years, there had been noticeable 
improvements in the spatial and temporal resolutions which had been accompanied 
by an interesting visibility and readability of the captured images. In addition, the 
number of spectral bands used by the sensors to capture images had also increased, 
aiding in an appealing appearance to the human eye. Consequently, even nonex-
pert remote sensing users had been drawn into remote sensing by the beautiful 
pictures and availability of some of the end products of remote sensing. There had 
been, therefore, an increase in the application of remote sensing products by other 
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disciplines and fields of study. In public health, remotely sensed (RS) data products 
had been widely adopted and used in disease mapping and epidemiology. We used 
some examples from a case study conducted in Eswatini in Southern Africa.

Disease mapping referrers to the use of disease maps as visual representations of 
sophisticated geographic data that provide a general birdeye overview of the disease 
situation in a defined geographic area. On the other hand, epidemiology is a branch 
of medicine that deals with the incidence, distribution, and strategies for disease 
containment and control as well as other factors relating to human and animal health. 
Epidemiology is concerned with investigating the cause of disease, and often, these 
causes vary in frequency and in space. This variation in space is what gave a niche 
to remote sensing to find its way into the public health domain as disease research-
ers sought to investigate the explaining environmental and climatic factors. For this 
reason, remote sensing which provides a birdeye overview of the earth surface had 
continued to be applied in disease mapping for rapid risk assessment and monitor-
ing efforts. As a result, remote sensing products have for quite a reasonable while 
been prolifically applied and used in disease mapping and epidemiology. Products of 
remote sensing include various vegetation indices and environmental proxies which 
are derived from satellite images and used to elucidate land use and land cover changes 
as well as to approximate environmental and climatic conditions on the earth surface.

Vegetation indices are mathematical combinations of different spectral bands 
that are designed to numerically separate or stretch the pixel value of different 
features in an image [2, 3]. RS data products had been used in a number of disease 
mapping and epidemiological studies such as in risk mapping of malaria [4, 5], soil-
transmitted helminths [6], schistosomiases, and prediction of high risk areas for 
leishmaniasis in Brazil. Previous work include incorporation of RS data in human 
health studies and spatial targeting of trachoma control in Southern Sudan [7] by 
developing a national risk map and mapping tsetse fly habitat suitability among 
others [8]. In addition, identification of environmental risk factors for cholera 
using satellite-derived remotely sensed data products had been undertaken by [9]. 
Determination of population living in a city using remotely sensed data products 
was carried out in a study by Karume et al. [10], whereby a GeoEye satellite image 
at 50-m resolution was used, and population of the city was obtained by taking 
the number of houses times an average number of habitants per house. To date, 
an inexhaustible number of exploratory research studies in disease mapping and 
epidemiology had been undertaken using remote sensing vegetation indices as envi-
ronmental and climatic proxies in combination with various modeling approaches.

One of the main advantages of using RS data products in disease mapping and 
epidemiology is its near real-time availability for rapid assessment of at risk areas 
and prediction of disease distribution, especially in inaccessible areas that may also 
lack baseline data [11]. The increase in the launch of higher resolution satellites 
sensors and advances in data processing techniques have enabled a wider adoption 
of RS data [12]. In economically disadvantaged areas with poor ground measure-
ment meteorological station networks, RS data had often been preferred and used 
as environmental and climatic proxies in disease risk mapping and prediction. As 
new sensors with better spatial and temporal resolutions become available, new 
opportunities had been presented and explored in the application of remote sensing 
products in disease mapping and epidemiology [13].

From the early generation of ecological studies that demonstrated the capability 
of RS data products in disease mapping [13–16], there had been a sustained prolif-
eration of such studies in disease mapping and epidemiology. The application of 
geostatistical techniques to identify spatial heterogeneities in disease distributions, 
patterns, and trends as well as forecasting for epidemic preparedness planning had 
been demonstrated in studies by Chilès and Delfiner [17]; and Tran et al. [18] inter 
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alia. Geostatistics is a branch of statistics that is used to analyze and predict the values 
associated with spatial and temporal phenomena [17]. It is often incorporated 
into modeling through the use of coordinates attached to the data that are being 
analyzed. An almost similar terminology also commonly used in such analysis is 
the term “biostatistics,” which also refers to a similar approach except that the data 
being analyzed would involve biological data. Such models are then referred to as 
space–time models, especially due to the fact that they also include the observation 
dates of the mapped data. The theory behind incorporation of RS data in disease 
mapping and epidemiology was based on the field-observed association between 
environmental conditions and some of the disease-causing vectors [18–20], in 
particular how they vary in geographic space. For instance, some studies have dem-
onstrated the association between radiation reflectance as measured by satellites 
and certain land cover types which have been used as environmental and climatic 
proxies for measurement of presence or absence of a disease and its vectors [21].

Incorporating remotely sensed data products in spatial modeling had been 
common in most aspects of geographic analyses. From the early usage of aerial 
photographs taken onboard aircraft to the launch of satellite-based sensors, remotely 
sensed data products have been in the forefront of scientific research on the land use 
and land cover changes of the earth. Many other disciplines such as public health 
and epidemiology have until recently overwhelmingly taken up remotely sensed data 
products and utilized them in disease mapping and in improvement of their under-
standing of environmentally driven diseases. The utilization of RS data products, 
especially in disease mapping, for instance, in mapping vector-borne diseases, had 
been prolific over the years. As mentioned earlier, products derived from remote 
sensing had been widely used in models as environmental proxies to analyze various 
behaviors of observed spatial phenomenon. Furthermore, environmental proxies had 
been incorporated as covariates in statistical models aimed at mapping, analyzing, 
and predicting spatial phenomenon relating to disease epidemiology.

In statistical models, disease analysis had been pursued by adjusting models with 
spatial covariates derived from remote sensing and regressed with any outcome 
of interest. In such cases, spatial regression models had often been parameterized 
using data variables derived from remotely sensed products. As a result, there 
had been an unprecedented upsurge in the utilization of environmental variables 
and proxies derived from remote sensing in statistical analysis models attempting 
to map diseases such as vector-borne diseases, including malaria, dengue fever, 
chikungunya fever, zika virus, and leishmaniasis inter alia [22]. Studies mapping the 
spatial distribution of such vector-borne diseases had often applied remotely sensed 
data products as environmental proxies by approximating either environmental 
conditions or land use and land cover features. When the spatial covariates had been 
used in such a manner in models, they would often be referred to as predictors or 
risk factors since they tend to covary with the severity of the disease. This associa-
tion of diseases with their environment was first noted in some of the early ecologi-
cal studies that demonstrated the capability of remote sensing products in disease 
mapping, including authors such as Beck et al. [15]; Hay [16], and Thomson et al. 
[14] among others. As an example, malaria had on numerous cases been referred to 
as an environmental disease, and describing environmental risk factors associated 
with this disease had driven the research in malaria risk mapping [23].

Whereas, the early uptake of remotely sensed products was initially limited 
by the slow processing power of first-generation computers as well as the limited 
and cumbersome storage facility required to store remotely sensed and geographic 
information system (GIS) data sets; the advent of fast processing computer power 
had made it possible to include remotely sensed data in mapping studies. In addi-
tion, storage facilities of geographic data sets had improved from the large and 
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difficult-to-handle cassettes to small, easy-to-carry hard drives and universal serial 
bus (usb) including portable external hard drives. Furthermore, the open access 
to remote sensing end products even for civilian usage had stimulated the interest 
of the scientific community and facilitated the uptake and application of remote 
sensing in disease mapping and epidemiology.

In areas with limited ground-based environmental data observation stations, 
remotely sensed data products became the only option available for mapping disease 
risk distribution. Such inaccessible areas included those with rugged terrain, areas 
in armed conflict, and those with limited resources which would not be enough 
to undertake field-based studies. Also, in cases where for example, ground-based 
weather stations had been used, they had often been limited by data discrepancies 
emanating from human interference, human error, instrument jamming, and in 
some cases, power failure. This would often result in missing data as observation 
could not be completed on those days when the weather station failed. During the 
processing and analysis of such data, the missing values in the data would often 
require sophisticated methods of data imputation which would not escape criticism 
from the scientific peer review community. Therefore, remote sensing products 
had been preferred because of the reliability of availability often in near real-time 
compared to other data sources which may require field surveys to be undertaken 
and thus too expensive to be repeated.

2. Mapping environmental diseases in the twenty-first century

Most of the epidemiological studies that had mapped vector-borne diseases in 
the context of the environmental factors associated with those diseases [18–20] 
had based their assumptions on the established scientific evidence that those 
environmental factors were associated with the disease outcome of interest. To 
date an increasing number of disease mapping and epidemiology studies continue 
to use environmental and climatic data to map and predict disease distribution 
in defined geographic areas. Such studies would often be used to help guide and 
target the deployment of health interventions to those areas that had been identi-
fied to have high burden of the mapped disease. As the resolutions (both spatial 
and temporal) of remote sensing sensors had improved from the first generation of 
this technology, so has the interest and confidence in the use of their data products 
increased among the scientific community. As much as early studies were limited 
by computer processing power and storage, they were also limited by poor spectral 
bands of sensors which could not faithfully enhance delineation and demarcation 
of features. The spectral bands refer to the recorded wavelengths of the elec-
tromagnetic spectrum recorded by a sensor during image acquisition. Recently, 
sensor spectral bands have also improved and could now resolve and aid multicolor 
image display during feature analysis and identification. These advances in image 
processing, visualization and display have also supported and enabled the uptake 
and appreciation of research findings from mapping efforts as the resultant maps 
became more beautiful in addition to providing more information. Figure 1 is an 
example of a high-resolution satellite imagery that had been used to develop a land 
cover classification map for part of Eswatini as shown in Figure 2.

In disease mapping, these advances in remote sensing and sensor technology 
meant that identification of spatial heterogeneities would be possible even at small 
geographic or local scales. These advances were pivotal for disease mapping as 
epidemiologist could identify important drivers of disease risk and thus be able 
to guide control programs more efficiently and with evidence-based decisions. 
Also, the costs of remotely sensed data products had been significantly reduced 
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as more sensors had been launched thus stabilizing the demand for data products 
and reliance in only a few remote sensing agents. More and more countries and 
private companies have launched satellites into space in the twenty-first century and 
the resultant imagery data products have been availed to the research community 
[24]. In addition, archived remotely sensed data products had often been offered to 
researchers free of charge and this have enabled spatial analysts to perform various 
analysis techniques such as time-series analysis, data mining and other data learning 
techniques. The RS data and other end products had also been customized in terms 
of the derivation and calculation of vegetation indices used in mapping studies. 
This customization had enabled direct incorporation of such indices into models as 
interpretation became possible to the research community even though not being 
experts in the remote sensing field. Common indices that had been widely adopted 
into disease mapping models because of their ease in interpretation include those 
of the Normalized Difference Vegetation Index (NDVI), temperature and rainfall. 
These indices had often been supplied or archived in their complete processed 
(derived) and customized form, thus enabling researchers to easily access them 
from the hosting agencies and websites and directly incorporate them into their 
mapping models as they had become interoperable.

Advances made in mapping software, particularly geographic information 
system (GIS) software, had seen interest being stimulated among disease researchers 
and epidemiologist. Whereas, earlier software was mostly geared toward solely 
remote sensing experts, the availability of customized mapping platforms for 
spatial epidemiology meant that these software programs could be utilized even by 

Figure 1. 
An example of high-resolution true color image covering part of Eswatini used to develop a land cover 
classification.
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non-remote sensing experts. For instance, the public health community had been 
able to facilitate the development and customization of disease mapping software 
programs like; Health Mapper, Epi-Info, etc. Other GIS software programs such as 
ESRI ArcGIS had over the years added more customized mapping tools and exten-
sions meant to support disease mapping and epidemiology efforts. Again, the high 
costs which were often associated with some of the commercial software had been 
reduced as more open source software became available. For example, GIS software 
programs such as QGIS had been availed as open source and could be directly 
downloaded and installed into any GIS capable computer. Also, true color visual-
ization web-based software such as Google Earth which had even given mapping 
novices some level of confidence due to the fact that it had been made without any 
associated sophistication had contributed to the hype about disease mapping, rapid 
risk assessment, and prediction among epidemiologists. No mapping experts could 
leverage on such web-based imagery software programs and be able to identify, 
analyze, and interpret spatial phenomenon explicitly as it appears on the zoomed 
imagery on a computer screen. This way, disease experts had been able to explain 
some of the identified trends and patterns and also directly answer some of the 
pertinent questions associated with disease epidemiology such as clustering, severity 
variation and disease presence or absence inter alia.

Figure 2. 
An example of high-resolution land cover classification in Eswatini.
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Again, a number of statistical software programs have also added mapping 
extensions which have enabled the analysis of environmental and climatic data to be 
undertaken using such software. This has resulted to a new field of research called 
geostatistics, which combines both geography and statistics during spatial analysis. 
For example, statistical software programs such as STATA, R, WINBUGS, and others 
have been used to process and analyze climatic data derived from remote sensing. In 
disease risk mapping, space and time analysis had often been conducted using these 
statistical software programs and they had been widely used as research methods in 
epidemiology and disease risk prediction in addition to the usage of mathematical 
models which attempt to explain the underlying factors and quantities in disease risk 
modeling. Geostatistics therefore had been pivotal in the application and incorpora-
tion of remotely sensed data products into disease mapping and epidemiology. The 
capability of Geostatistics to incorporate technical algorithms that could be used to 
forecast disease burden in space and time had also contributed to the wide adoption 
of such approaches as it meant that control programs could a priori be informed 
about disease risk and thus be better prepared to deal with disease outbreaks.

As already mentioned, advances in computer processing power had enabled 
the integration of computing methods based for instance on Bayesian inference 
approaches which had been previously limited due to poor computer performance. 
Data simulation methods such as Markov Chain Monte Carlo (MCMC) and the inte-
grated Laplace approximation (INLA) had been widely used to estimate posterior 
distribution of geographic data in space and time. The results of which had been 
obtainable within reasonable time frames compared to earlier computation efforts 
of similar data. In statistics MCMC are methods comprised of a class of algorithms 
that sample from a probability distribution. MCMC uses simulation techniques to 
find a posterior distribution and sample from it. On the other hand INLA relies 
on analytical combinations that approximate and efficiently integrate numerical 
schemes to achieve highly accurate deterministic approximations of posterior quan-
tities of interest [25, 26]. As a result of these statistical and computational advances, 
the integration of environmental and climatic data derived from remote sensing 
technology into disease mapping models had over the years markedly increased.

Recently, the capability of big data, machine learning and other location intelli-
gence methods to handle a large array of data sets have contributed to the awareness 
about the application of geographic data as often models using these methods would 
be performed on geographic software. Big data refers to extremely large data sets 
that may be computationally analyzed to reveal patterns, trends, and associations 
relating to human behavior. Machine learning approaches focuses on computer 
programs that can assess data and use them to learn and improve from experience 
of them without being explicitly programmed [27]. These analysis methods are 
often conducted on GIS capable computers and they also rely on remote sensing 
products such as satellite imagery to analyze and reveal any patterns, trends and 
associations coming from the data. In disease mapping and epidemiology such 
analysis approaches are important in understanding risk of disease spread due to 
human behavior and their interaction with the environment. As a result, most of 
the diseases mapping efforts currently applied have either practically or theoreti-
cally ended up either utilizing remotely sensed data or its associated geographic 
data products into spatial analysis models as often the resultant modeling outputs 
would be displayed in a mapping environment.

2.1 Remote sensing data application in vector-borne disease surveillance

Mapping of vector-borne diseases began around 1950 with the use of aerial 
photography and cartographic techniques. Early studies included those that focused 
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on eradicating malaria, dengue fever and yellow fever whereby climatic factors 
were used to identify areas at risk of higher transmission. The Malaria Atlas Project 
founded in 2006 took over from previous mapping efforts and demonstrated the 
application of geography based variables to map and disseminate accurate informa-
tion on malaria endemicity. Identifying and mapping vector habitats using climatic 
suitability was used to guide surveillance and control efforts. Different approaches 
were used to improve visualization and to produce detailed maps such as high-altitude 
color-infrared photography and also incorporating high-resolution images [28]. 
Mapping of vegetation types associated with some of the vector breeding habitat 
had been carried out since 1973. The techniques used in such analysis had been 
very important for surveillance support and for identification of vector oviposition 
habitats. The visualization and interpretation techniques used were based on tone 
and texture and were used to identify habitats associated with tick-borne disease in 
some areas based on the concepts of landscape epidemiology of disease [29].

In early 1970s, multispectral scanner data was first used to monitor and map 
environmental parameters required for the breeding of disease vectors. A combina-
tion of remote sensing data acquired from satellites as well as aircraft platforms was 
used for this task. Later in 1976, some studies demonstrated that computer processing 
techniques could be used to classify airborne multispectral scanner data for mapping 
and identifying vegetation types associated with certain disease-causing mosquitoes. 
Around 1984, remote sensing techniques were applied to describe and map geographic 
characteristics associated with schistosomiasis [30]. Temperature and precipitation 
data obtained from remote sensing was also used to estimate the probability of disease 
occurrence at unsampled locations. These data were also used to identify and map 
mosquito larval habitats and their association with certain environmental variables in 
space and time. A study by [31] identified tick habitats on the island of Guadeloupe 
using derived vegetation and moisture indices.

Most of the studies discussed above were primarily focused on the application of 
remote sensing to identify and map potential vector habitats and breeding sites based 
on vegetation, water, and soil. Identifying existing or potential habitats and breeding 
sites would not be enough to adequately guide surveillance and control efforts unless 
all possible affected areas were identified and mapped. Therefore most studies have 
also incorporated predictive techniques as part of their support of surveillance and 
control efforts. Consequently, it had been necessary for studies to go beyond mere 
habitat and potential breeding sites mapping and to make predictions of vector 
distributions in space and time often for the entire geographic area of interest. 
This often included identification and mapping areas where vector production and 
disease transmission risk would be greatest in defined time and space thresholds. 
Figure 3 is an example of the spatial distribution of malaria vector breeding sites and 
their distance to subsistence farming in Eswatini.

2.2 Predicting diseases using remotely sensed data variables

An important aspect in the application of RS data in disease mapping and epi-
demiology is their use as predictor variables in modeling. Disease mapping studies 
had often used environmental and climatic proxies derived from remote sensing 
in statistical regression models aiming to predict disease risk in both its spatial and 
temporal dynamics. These studies predict disease distributions, vector populations 
and disease transmission risk within the affected populations in specific areas. 
Common climatic variables used in disease predictive modeling studies often com-
bine remote sensing measurements of vegetation, precipitation, and temperature 
to identify when and where conditions would be favorable for disease propagation. 
Other studies have attempted to use remote sensing to predict the temporal as well 
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as spatial patterns, of habitat development, vector populations, and disease trans-
mission risk [32, 33].

Among the most common disease mapping studies where predictions had 
often been used included those of malaria. These studies also use remote sensing 
to predict which populations or villages are at risk of transmission. In these cases 
risk would often be defined by the proximity of a village to areas of heightened 
transmission as well as the breeding, feeding, and resting habitats required by 
the malaria vector Anopheles mosquito. In addition recent studies have focused 
on assessing the issue of predictive modeling and disease transmission risk based 
on the application of remote sensing and GIS technologies. To date, there have 
not yet been an alternative to disease mapping and prediction in space and time 
and to identify, characterize, and map the patterns of vector habitats other than 
using products derived from satellite imagery and remote sensing. For instance, 
identification and location of areas where vector survival rates are highest had been 
done using vegetation indices derived from remote sensing. Figure 4 is an example 
of predicted potential malaria vector breeding sites in the northeastern part of 
Eswatini.

Also remote sensing data and GIS techniques had been used to identify and map 
landscape features associated with disease transmission risk. Landscape features 
such as brush, woodland and grassland and areas cleared for housing, roads, or 
trails and other similar locations identified through remote sensing had often been 
used for detecting intercept areas between human hosts, vectors and parasites. 
Other landscape features such as coniferous forest, deciduous forest, mixed forest, 

Figure 3. 
Example of mapped breeding sites and their distance to subsistence farming.
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water bodies, glades, and housing developments had also been identified via remote 
sensing. Some studies have assessed these landscapes for their association with 
the presence of certain disease vectors and the proximity of housing as a measure 
of human exposure to those diseases. Such landscape epidemiology had therefore 
been used to identify areas where transmission risk is greatest by characterizing 
the mixture of deciduous forest and residential developments that bring diseases, 
vectors, and humans into contact.

Field studies had often been used to train spatial models that make use of 
remote sensing to map the distribution of disease and predict transmission risk 
areas. These studies also use GIS to capture groundtruthed coordinates or Global 
Positioning System point (GPS) which would then be used to assess the accuracy 
of predictive models. For instance, GIS and remote sensing had been used to 
investigate the adjacency of certain landscape features and residential properties 
with dense vegetation as a potential measure of human-vector contact. In this 
case, regression models would be used to assess general correlations between 
landscape and disease transmission risk. Evidently, remote sensing and GIS had 
been combined to study, for instance, the structure and composition of a landscape 
as it relates to the epidemiology of a disease. Again some studies have combined 
remote sensing and GIS analysis techniques, to assess various associations between 
diseases, vectors and human contacts.

Models based on remote sensing data and GIS techniques have also been used 
to study certain disease vector population dynamics using remote sensing and GIS 
technologies. Such studies use satellite imagery and GIS modeling techniques to 
distinguish between areas with either high or low disease-causing vectors. In these 
cases, ground data on vector populations are used jointly with remote sensing data 
combined via either a statistical or a GIS software. Ground data variables on vector 
presence or absence are analyzed in relation to the remotely-sensed spectral data 
captured via satellite imagery. The groundtruthed field measurement data, that 

Figure 4. 
An example of identified potential malaria vector breeding sites in Eswatini.
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were observable using GPS, would then be used to evaluate the accuracy of the 
remote sensing based predictive models.

2.3 Current applications of remote sensing in epidemiology

Current research is focusing on the capabilities of remote sensing and GIS data 
to perform various spatial analyses. The goal is to describe the landscape, or land 
cover, composition that explains better the distribution of diseases. In this regard 
spatial models mounted on different software platforms are being developed and 
validated with observed data to predict spatial phenomenon and in particular 
diseases that are of public concern. The approaches used to process, analyze and fit 
data into models are also constantly evolving as new software programs and tool 
extensions and functionalities become available. There is also an increase in explor-
atory research involving mathematical and statistical models which aim to capture 
both the deterministic and the stochastic components during data analyses. In such 
cases dynamic models involving Susceptible Infectious and Recovered models (SIR) 
used to model highly infectious diseases such as COVID-19 are being extended by 
adding probabilistic based components in order to model uncertainty in the behav-
ior of the diseases among the affected population. In these instances, environmen-
tally determined infectious diseases rely on climatic and weather data derived from 
remote sensing for effective modeling. Furthermore, Satellite imagery could be used 
to analyze the socioeconomic changes that are currently taking place as a result of 
COVID-19. This could also be useful in identifying the impacts that measurers such 
as the national lockdowns are having on the environment. Depending on the resolu-
tion of the RS data product being utilized, frequency of data capture and timeliness 
of the data capture, there is a high potential for remote sensing to be used a tool 
for deployment and monitoring the effects of health interventions implemented to 
fight COVID-19.

Point process models such as Log-Gaussian Cox Process had been developed are 
also being used to model climatic and environmental data on fine geographic scale. 
These models combine a Poisson process in the first level with a Gaussian Process 
at the second level and are used to analyze point patterns. In such cases very high-
resolution remotely sensed data would be used to enhance boundary delineation 
during mapping especially at local scales. Tools like spatial scan statistics had also 
been used to identify and map disease clusters and to determine the key driving 
factors resulting in the identified clusters. Spatial scan statistics defined as the 
maximum likelihood ratio statistics over a collection of scanning windows had 
also been widely used to determine clustering in space and time. Research stud-
ies applying remote sensing in disease mapping and epidemiology are currently 
being undertaken at various degrees of complexity as new methods and techniques 
become available. The primary focus had been on the use of remote sensing and 
GIS capabilities to quantify various disease determining factors and to estimate the 
probability that vector-borne diseases will be more abundant in some of the identi-
fied habitats as well as to determine the factors necessary for transmission, survival 
and reproduction.

3. Conclusions

As already discussed, over the past 30 years, prolific research studies demon-
strating the potential opportunities offered by the use of remote sensing, GIS, and 
statistics in disease mapping and epidemiology had been undertaken. Most of such 
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studies aimed to analyze and measure some of the presumed associations between 
environmental factors and human diseases. The results of the studies mentioned 
above had been used to guide the public health community during health interven-
tion planning and decision-making. The studies had also been used to demonstrate 
the potential offered by remote sensing application to disease mapping and epi-
demiology and to support surveillance and control efforts. They have illustrated 
the diversity of potential remote sensing applications in disease surveillance and 
control programs. However, successful application of remote sensing technology 
depends on the ability of nonexperts’ RS data and end users to access, retrieve, and 
analyze the data captured from satellites. The preprocessing steps involved before 
such data could be added as covariates into models also determine their uptake 
and usage by nonexperts. The ability to develop near real-time monitoring spatial 
models in order to timely predict the spatial and temporal patterns of vector-borne 
diseases, and transmission risk is also a motivation for the use of RS data in disease 
mapping and epidemiology.

Clearly, the dynamics of vector-borne diseases at any location are influenced by 
processes that operate at a variety of landscape and geographic scales. For instance, 
malaria transmission is a result of spatial interaction between hosts, vectors, and 
parasites. Remote sensing imagery involving both high and coarse resolutions 
when combined with GIS spatial analyses techniques could be used to support and 
guide existing vector surveillance and control programs at local, regional, and even 
continental scales. The findings of some the studies cited above had been used 
to illustrate and cement how remote sensing and GIS technologies can provide 
epidemiologists with a new perspective in as far as determining the environmental 
drivers of the diseases concerned. Researchers had been able to study the multiple 
factors influencing the patterns and distributions of vector-borne diseases at a 
variety of landscape and geographic scales. The exploration of some of the oppor-
tunities presented by remote sensing to disease mapping and epidemiology is still 
unfolding as new opportunities are being presented.
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